Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  7 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  8 *    Copyright (C) 1996 Paul Mackerras
  9 *
 10 *  Derived from "arch/i386/mm/init.c"
 11 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 12 *
 13 *  Dave Engebretsen <engebret@us.ibm.com>
 14 *      Rework for PPC64 port.
 15 */
 16
 17#undef DEBUG
 18
 19#include <linux/signal.h>
 20#include <linux/sched.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/string.h>
 24#include <linux/types.h>
 25#include <linux/mman.h>
 26#include <linux/mm.h>
 27#include <linux/swap.h>
 28#include <linux/stddef.h>
 29#include <linux/vmalloc.h>
 30#include <linux/init.h>
 31#include <linux/delay.h>
 32#include <linux/highmem.h>
 33#include <linux/idr.h>
 34#include <linux/nodemask.h>
 35#include <linux/module.h>
 36#include <linux/poison.h>
 37#include <linux/memblock.h>
 38#include <linux/hugetlb.h>
 39#include <linux/slab.h>
 40#include <linux/of_fdt.h>
 41#include <linux/libfdt.h>
 42#include <linux/memremap.h>
 43
 44#include <asm/pgalloc.h>
 45#include <asm/page.h>
 46#include <asm/prom.h>
 47#include <asm/rtas.h>
 48#include <asm/io.h>
 49#include <asm/mmu_context.h>
 50#include <asm/mmu.h>
 51#include <linux/uaccess.h>
 52#include <asm/smp.h>
 53#include <asm/machdep.h>
 54#include <asm/tlb.h>
 55#include <asm/eeh.h>
 56#include <asm/processor.h>
 57#include <asm/mmzone.h>
 58#include <asm/cputable.h>
 59#include <asm/sections.h>
 60#include <asm/iommu.h>
 61#include <asm/vdso.h>
 62#include <asm/hugetlb.h>
 63
 64#include <mm/mmu_decl.h>
 65
 66#ifdef CONFIG_SPARSEMEM_VMEMMAP
 67/*
 68 * Given an address within the vmemmap, determine the page that
 69 * represents the start of the subsection it is within.  Note that we have to
 70 * do this by hand as the proffered address may not be correctly aligned.
 71 * Subtraction of non-aligned pointers produces undefined results.
 72 */
 73static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
 74{
 75	unsigned long start_pfn;
 76	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
 77
 78	/* Return the pfn of the start of the section. */
 79	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
 80	return pfn_to_page(start_pfn);
 81}
 82
 83/*
 84 * Since memory is added in sub-section chunks, before creating a new vmemmap
 85 * mapping, the kernel should check whether there is an existing memmap mapping
 86 * covering the new subsection added. This is needed because kernel can map
 87 * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
 88 * a range covers multiple subsections (2M)
 89 *
 90 * If any subsection in the 16G range mapped by vmemmap is valid we consider the
 91 * vmemmap populated (There is a page table entry already present). We can't do
 92 * a page table lookup here because with the hash translation we don't keep
 93 * vmemmap details in linux page table.
 94 */
 95static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
 96{
 97	struct page *start;
 98	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
 99	start = vmemmap_subsection_start(vmemmap_addr);
100
101	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
102		/*
103		 * pfn valid check here is intended to really check
104		 * whether we have any subsection already initialized
105		 * in this range.
106		 */
107		if (pfn_valid(page_to_pfn(start)))
108			return 1;
109
110	return 0;
111}
112
113/*
114 * vmemmap virtual address space management does not have a traditional page
115 * table to track which virtual struct pages are backed by physical mapping.
116 * The virtual to physical mappings are tracked in a simple linked list
117 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
118 * all times where as the 'next' list maintains the available
119 * vmemmap_backing structures which have been deleted from the
120 * 'vmemmap_global' list during system runtime (memory hotplug remove
121 * operation). The freed 'vmemmap_backing' structures are reused later when
122 * new requests come in without allocating fresh memory. This pointer also
123 * tracks the allocated 'vmemmap_backing' structures as we allocate one
124 * full page memory at a time when we dont have any.
125 */
126struct vmemmap_backing *vmemmap_list;
127static struct vmemmap_backing *next;
128
129/*
130 * The same pointer 'next' tracks individual chunks inside the allocated
131 * full page during the boot time and again tracks the freed nodes during
132 * runtime. It is racy but it does not happen as they are separated by the
133 * boot process. Will create problem if some how we have memory hotplug
134 * operation during boot !!
135 */
136static int num_left;
137static int num_freed;
138
139static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
140{
141	struct vmemmap_backing *vmem_back;
142	/* get from freed entries first */
143	if (num_freed) {
144		num_freed--;
145		vmem_back = next;
146		next = next->list;
147
148		return vmem_back;
149	}
150
151	/* allocate a page when required and hand out chunks */
152	if (!num_left) {
153		next = vmemmap_alloc_block(PAGE_SIZE, node);
154		if (unlikely(!next)) {
155			WARN_ON(1);
156			return NULL;
157		}
158		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
159	}
160
161	num_left--;
162
163	return next++;
164}
165
166static __meminit int vmemmap_list_populate(unsigned long phys,
167					   unsigned long start,
168					   int node)
169{
170	struct vmemmap_backing *vmem_back;
171
172	vmem_back = vmemmap_list_alloc(node);
173	if (unlikely(!vmem_back)) {
174		pr_debug("vmemap list allocation failed\n");
175		return -ENOMEM;
176	}
177
178	vmem_back->phys = phys;
179	vmem_back->virt_addr = start;
180	vmem_back->list = vmemmap_list;
181
182	vmemmap_list = vmem_back;
183	return 0;
184}
185
186static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
187				unsigned long page_size)
188{
189	unsigned long nr_pfn = page_size / sizeof(struct page);
190	unsigned long start_pfn = page_to_pfn((struct page *)start);
191
192	if ((start_pfn + nr_pfn) > altmap->end_pfn)
193		return true;
194
195	if (start_pfn < altmap->base_pfn)
196		return true;
197
198	return false;
199}
200
201int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
202		struct vmem_altmap *altmap)
203{
204	bool altmap_alloc;
205	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
206
207	/* Align to the page size of the linear mapping. */
208	start = ALIGN_DOWN(start, page_size);
209
210	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
211
212	for (; start < end; start += page_size) {
213		void *p = NULL;
214		int rc;
215
216		/*
217		 * This vmemmap range is backing different subsections. If any
218		 * of that subsection is marked valid, that means we already
219		 * have initialized a page table covering this range and hence
220		 * the vmemmap range is populated.
221		 */
222		if (vmemmap_populated(start, page_size))
223			continue;
224
225		/*
226		 * Allocate from the altmap first if we have one. This may
227		 * fail due to alignment issues when using 16MB hugepages, so
228		 * fall back to system memory if the altmap allocation fail.
229		 */
230		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
231			p = vmemmap_alloc_block_buf(page_size, node, altmap);
232			if (!p)
233				pr_debug("altmap block allocation failed, falling back to system memory");
234			else
235				altmap_alloc = true;
236		}
237		if (!p) {
238			p = vmemmap_alloc_block_buf(page_size, node, NULL);
239			altmap_alloc = false;
240		}
241		if (!p)
242			return -ENOMEM;
243
244		if (vmemmap_list_populate(__pa(p), start, node)) {
245			/*
246			 * If we don't populate vmemap list, we don't have
247			 * the ability to free the allocated vmemmap
248			 * pages in section_deactivate. Hence free them
249			 * here.
250			 */
251			int nr_pfns = page_size >> PAGE_SHIFT;
252			unsigned long page_order = get_order(page_size);
253
254			if (altmap_alloc)
255				vmem_altmap_free(altmap, nr_pfns);
256			else
257				free_pages((unsigned long)p, page_order);
258			return -ENOMEM;
259		}
260
261		pr_debug("      * %016lx..%016lx allocated at %p\n",
262			 start, start + page_size, p);
263
264		rc = vmemmap_create_mapping(start, page_size, __pa(p));
265		if (rc < 0) {
266			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
267				__func__, rc);
268			return -EFAULT;
269		}
270	}
271
272	return 0;
273}
274
275#ifdef CONFIG_MEMORY_HOTPLUG
276static unsigned long vmemmap_list_free(unsigned long start)
277{
278	struct vmemmap_backing *vmem_back, *vmem_back_prev;
279
280	vmem_back_prev = vmem_back = vmemmap_list;
281
282	/* look for it with prev pointer recorded */
283	for (; vmem_back; vmem_back = vmem_back->list) {
284		if (vmem_back->virt_addr == start)
285			break;
286		vmem_back_prev = vmem_back;
287	}
288
289	if (unlikely(!vmem_back))
 
290		return 0;
 
291
292	/* remove it from vmemmap_list */
293	if (vmem_back == vmemmap_list) /* remove head */
294		vmemmap_list = vmem_back->list;
295	else
296		vmem_back_prev->list = vmem_back->list;
297
298	/* next point to this freed entry */
299	vmem_back->list = next;
300	next = vmem_back;
301	num_freed++;
302
303	return vmem_back->phys;
304}
305
306void __ref vmemmap_free(unsigned long start, unsigned long end,
307		struct vmem_altmap *altmap)
308{
309	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
310	unsigned long page_order = get_order(page_size);
311	unsigned long alt_start = ~0, alt_end = ~0;
312	unsigned long base_pfn;
313
314	start = ALIGN_DOWN(start, page_size);
315	if (altmap) {
316		alt_start = altmap->base_pfn;
317		alt_end = altmap->base_pfn + altmap->reserve +
318			  altmap->free + altmap->alloc + altmap->align;
319	}
320
321	pr_debug("vmemmap_free %lx...%lx\n", start, end);
322
323	for (; start < end; start += page_size) {
324		unsigned long nr_pages, addr;
325		struct page *page;
326
327		/*
328		 * We have already marked the subsection we are trying to remove
329		 * invalid. So if we want to remove the vmemmap range, we
330		 * need to make sure there is no subsection marked valid
331		 * in this range.
332		 */
333		if (vmemmap_populated(start, page_size))
334			continue;
335
336		addr = vmemmap_list_free(start);
337		if (!addr)
338			continue;
339
340		page = pfn_to_page(addr >> PAGE_SHIFT);
341		nr_pages = 1 << page_order;
342		base_pfn = PHYS_PFN(addr);
343
344		if (base_pfn >= alt_start && base_pfn < alt_end) {
345			vmem_altmap_free(altmap, nr_pages);
346		} else if (PageReserved(page)) {
347			/* allocated from bootmem */
348			if (page_size < PAGE_SIZE) {
349				/*
350				 * this shouldn't happen, but if it is
351				 * the case, leave the memory there
352				 */
353				WARN_ON_ONCE(1);
354			} else {
355				while (nr_pages--)
356					free_reserved_page(page++);
357			}
358		} else {
359			free_pages((unsigned long)(__va(addr)), page_order);
360		}
361
362		vmemmap_remove_mapping(start, page_size);
363	}
364}
365#endif
366void register_page_bootmem_memmap(unsigned long section_nr,
367				  struct page *start_page, unsigned long size)
368{
369}
370
371#endif /* CONFIG_SPARSEMEM_VMEMMAP */
372
373#ifdef CONFIG_PPC_BOOK3S_64
374unsigned int mmu_lpid_bits;
375#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
376EXPORT_SYMBOL_GPL(mmu_lpid_bits);
377#endif
378unsigned int mmu_pid_bits;
379
380static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
381
382static int __init parse_disable_radix(char *p)
383{
384	bool val;
385
386	if (!p)
387		val = true;
388	else if (kstrtobool(p, &val))
389		return -EINVAL;
390
391	disable_radix = val;
392
393	return 0;
394}
395early_param("disable_radix", parse_disable_radix);
396
397/*
398 * If we're running under a hypervisor, we need to check the contents of
399 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
400 * radix.  If not, we clear the radix feature bit so we fall back to hash.
401 */
402static void __init early_check_vec5(void)
403{
404	unsigned long root, chosen;
405	int size;
406	const u8 *vec5;
407	u8 mmu_supported;
408
409	root = of_get_flat_dt_root();
410	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
411	if (chosen == -FDT_ERR_NOTFOUND) {
412		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
413		return;
414	}
415	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
416	if (!vec5) {
417		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
418		return;
419	}
420	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
421		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
422		return;
423	}
424
425	/* Check for supported configuration */
426	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
427			OV5_FEAT(OV5_MMU_SUPPORT);
428	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
429		/* Hypervisor only supports radix - check enabled && GTSE */
430		if (!early_radix_enabled()) {
431			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
432		}
433		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
434						OV5_FEAT(OV5_RADIX_GTSE))) {
435			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
436		} else
437			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
438		/* Do radix anyway - the hypervisor said we had to */
439		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
440	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
441		/* Hypervisor only supports hash - disable radix */
442		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
443		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
444	}
445}
446
447static int __init dt_scan_mmu_pid_width(unsigned long node,
448					   const char *uname, int depth,
449					   void *data)
450{
451	int size = 0;
452	const __be32 *prop;
453	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
454
455	/* We are scanning "cpu" nodes only */
456	if (type == NULL || strcmp(type, "cpu") != 0)
457		return 0;
458
459	/* Find MMU LPID, PID register size */
460	prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
461	if (prop && size == 4)
462		mmu_lpid_bits = be32_to_cpup(prop);
463
464	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
465	if (prop && size == 4)
466		mmu_pid_bits = be32_to_cpup(prop);
467
468	if (!mmu_pid_bits && !mmu_lpid_bits)
469		return 0;
470
471	return 1;
472}
473
474void __init mmu_early_init_devtree(void)
475{
476	bool hvmode = !!(mfmsr() & MSR_HV);
477
478	/* Disable radix mode based on kernel command line. */
479	if (disable_radix) {
480		if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
481			cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
482		else
483			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
484	}
485
486	of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
487	if (hvmode && !mmu_lpid_bits) {
488		if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
489			mmu_lpid_bits = 12; /* POWER8-10 */
490		else
491			mmu_lpid_bits = 10; /* POWER7 */
492	}
493	if (!mmu_pid_bits) {
494		if (early_cpu_has_feature(CPU_FTR_ARCH_300))
495			mmu_pid_bits = 20; /* POWER9-10 */
496	}
497
498	/*
499	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
500	 * When running bare-metal, we can use radix if we like
501	 * even though the ibm,architecture-vec-5 property created by
502	 * skiboot doesn't have the necessary bits set.
503	 */
504	if (!hvmode)
505		early_check_vec5();
506
507	if (early_radix_enabled()) {
508		radix__early_init_devtree();
509
510		/*
511		 * We have finalized the translation we are going to use by now.
512		 * Radix mode is not limited by RMA / VRMA addressing.
513		 * Hence don't limit memblock allocations.
514		 */
515		ppc64_rma_size = ULONG_MAX;
516		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
517	} else
518		hash__early_init_devtree();
519
520	if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
521		hugetlbpage_init_defaultsize();
522
523	if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
524	    !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
525		panic("kernel does not support any MMU type offered by platform");
526}
527#endif /* CONFIG_PPC_BOOK3S_64 */
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  7 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  8 *    Copyright (C) 1996 Paul Mackerras
  9 *
 10 *  Derived from "arch/i386/mm/init.c"
 11 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 12 *
 13 *  Dave Engebretsen <engebret@us.ibm.com>
 14 *      Rework for PPC64 port.
 15 */
 16
 17#undef DEBUG
 18
 19#include <linux/signal.h>
 20#include <linux/sched.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/string.h>
 24#include <linux/types.h>
 25#include <linux/mman.h>
 26#include <linux/mm.h>
 27#include <linux/swap.h>
 28#include <linux/stddef.h>
 29#include <linux/vmalloc.h>
 30#include <linux/init.h>
 31#include <linux/delay.h>
 32#include <linux/highmem.h>
 33#include <linux/idr.h>
 34#include <linux/nodemask.h>
 35#include <linux/module.h>
 36#include <linux/poison.h>
 37#include <linux/memblock.h>
 38#include <linux/hugetlb.h>
 39#include <linux/slab.h>
 40#include <linux/of_fdt.h>
 41#include <linux/libfdt.h>
 42#include <linux/memremap.h>
 43
 44#include <asm/pgalloc.h>
 45#include <asm/page.h>
 46#include <asm/prom.h>
 47#include <asm/rtas.h>
 48#include <asm/io.h>
 49#include <asm/mmu_context.h>
 50#include <asm/mmu.h>
 51#include <linux/uaccess.h>
 52#include <asm/smp.h>
 53#include <asm/machdep.h>
 54#include <asm/tlb.h>
 55#include <asm/eeh.h>
 56#include <asm/processor.h>
 57#include <asm/mmzone.h>
 58#include <asm/cputable.h>
 59#include <asm/sections.h>
 60#include <asm/iommu.h>
 61#include <asm/vdso.h>
 
 62
 63#include <mm/mmu_decl.h>
 64
 65#ifdef CONFIG_SPARSEMEM_VMEMMAP
 66/*
 67 * Given an address within the vmemmap, determine the page that
 68 * represents the start of the subsection it is within.  Note that we have to
 69 * do this by hand as the proffered address may not be correctly aligned.
 70 * Subtraction of non-aligned pointers produces undefined results.
 71 */
 72static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
 73{
 74	unsigned long start_pfn;
 75	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
 76
 77	/* Return the pfn of the start of the section. */
 78	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
 79	return pfn_to_page(start_pfn);
 80}
 81
 82/*
 83 * Since memory is added in sub-section chunks, before creating a new vmemmap
 84 * mapping, the kernel should check whether there is an existing memmap mapping
 85 * covering the new subsection added. This is needed because kernel can map
 86 * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
 87 * a range covers multiple subsections (2M)
 88 *
 89 * If any subsection in the 16G range mapped by vmemmap is valid we consider the
 90 * vmemmap populated (There is a page table entry already present). We can't do
 91 * a page table lookup here because with the hash translation we don't keep
 92 * vmemmap details in linux page table.
 93 */
 94static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
 95{
 96	struct page *start;
 97	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
 98	start = vmemmap_subsection_start(vmemmap_addr);
 99
100	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
101		/*
102		 * pfn valid check here is intended to really check
103		 * whether we have any subsection already initialized
104		 * in this range.
105		 */
106		if (pfn_valid(page_to_pfn(start)))
107			return 1;
108
109	return 0;
110}
111
112/*
113 * vmemmap virtual address space management does not have a traditonal page
114 * table to track which virtual struct pages are backed by physical mapping.
115 * The virtual to physical mappings are tracked in a simple linked list
116 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
117 * all times where as the 'next' list maintains the available
118 * vmemmap_backing structures which have been deleted from the
119 * 'vmemmap_global' list during system runtime (memory hotplug remove
120 * operation). The freed 'vmemmap_backing' structures are reused later when
121 * new requests come in without allocating fresh memory. This pointer also
122 * tracks the allocated 'vmemmap_backing' structures as we allocate one
123 * full page memory at a time when we dont have any.
124 */
125struct vmemmap_backing *vmemmap_list;
126static struct vmemmap_backing *next;
127
128/*
129 * The same pointer 'next' tracks individual chunks inside the allocated
130 * full page during the boot time and again tracks the freeed nodes during
131 * runtime. It is racy but it does not happen as they are separated by the
132 * boot process. Will create problem if some how we have memory hotplug
133 * operation during boot !!
134 */
135static int num_left;
136static int num_freed;
137
138static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
139{
140	struct vmemmap_backing *vmem_back;
141	/* get from freed entries first */
142	if (num_freed) {
143		num_freed--;
144		vmem_back = next;
145		next = next->list;
146
147		return vmem_back;
148	}
149
150	/* allocate a page when required and hand out chunks */
151	if (!num_left) {
152		next = vmemmap_alloc_block(PAGE_SIZE, node);
153		if (unlikely(!next)) {
154			WARN_ON(1);
155			return NULL;
156		}
157		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
158	}
159
160	num_left--;
161
162	return next++;
163}
164
165static __meminit void vmemmap_list_populate(unsigned long phys,
166					    unsigned long start,
167					    int node)
168{
169	struct vmemmap_backing *vmem_back;
170
171	vmem_back = vmemmap_list_alloc(node);
172	if (unlikely(!vmem_back)) {
173		WARN_ON(1);
174		return;
175	}
176
177	vmem_back->phys = phys;
178	vmem_back->virt_addr = start;
179	vmem_back->list = vmemmap_list;
180
181	vmemmap_list = vmem_back;
 
182}
183
184static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
185				unsigned long page_size)
186{
187	unsigned long nr_pfn = page_size / sizeof(struct page);
188	unsigned long start_pfn = page_to_pfn((struct page *)start);
189
190	if ((start_pfn + nr_pfn) > altmap->end_pfn)
191		return true;
192
193	if (start_pfn < altmap->base_pfn)
194		return true;
195
196	return false;
197}
198
199int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
200		struct vmem_altmap *altmap)
201{
 
202	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
203
204	/* Align to the page size of the linear mapping. */
205	start = ALIGN_DOWN(start, page_size);
206
207	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
208
209	for (; start < end; start += page_size) {
210		void *p = NULL;
211		int rc;
212
213		/*
214		 * This vmemmap range is backing different subsections. If any
215		 * of that subsection is marked valid, that means we already
216		 * have initialized a page table covering this range and hence
217		 * the vmemmap range is populated.
218		 */
219		if (vmemmap_populated(start, page_size))
220			continue;
221
222		/*
223		 * Allocate from the altmap first if we have one. This may
224		 * fail due to alignment issues when using 16MB hugepages, so
225		 * fall back to system memory if the altmap allocation fail.
226		 */
227		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
228			p = vmemmap_alloc_block_buf(page_size, node, altmap);
229			if (!p)
230				pr_debug("altmap block allocation failed, falling back to system memory");
 
 
231		}
232		if (!p)
233			p = vmemmap_alloc_block_buf(page_size, node, NULL);
 
 
234		if (!p)
235			return -ENOMEM;
236
237		vmemmap_list_populate(__pa(p), start, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
238
239		pr_debug("      * %016lx..%016lx allocated at %p\n",
240			 start, start + page_size, p);
241
242		rc = vmemmap_create_mapping(start, page_size, __pa(p));
243		if (rc < 0) {
244			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
245				__func__, rc);
246			return -EFAULT;
247		}
248	}
249
250	return 0;
251}
252
253#ifdef CONFIG_MEMORY_HOTPLUG
254static unsigned long vmemmap_list_free(unsigned long start)
255{
256	struct vmemmap_backing *vmem_back, *vmem_back_prev;
257
258	vmem_back_prev = vmem_back = vmemmap_list;
259
260	/* look for it with prev pointer recorded */
261	for (; vmem_back; vmem_back = vmem_back->list) {
262		if (vmem_back->virt_addr == start)
263			break;
264		vmem_back_prev = vmem_back;
265	}
266
267	if (unlikely(!vmem_back)) {
268		WARN_ON(1);
269		return 0;
270	}
271
272	/* remove it from vmemmap_list */
273	if (vmem_back == vmemmap_list) /* remove head */
274		vmemmap_list = vmem_back->list;
275	else
276		vmem_back_prev->list = vmem_back->list;
277
278	/* next point to this freed entry */
279	vmem_back->list = next;
280	next = vmem_back;
281	num_freed++;
282
283	return vmem_back->phys;
284}
285
286void __ref vmemmap_free(unsigned long start, unsigned long end,
287		struct vmem_altmap *altmap)
288{
289	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
290	unsigned long page_order = get_order(page_size);
291	unsigned long alt_start = ~0, alt_end = ~0;
292	unsigned long base_pfn;
293
294	start = ALIGN_DOWN(start, page_size);
295	if (altmap) {
296		alt_start = altmap->base_pfn;
297		alt_end = altmap->base_pfn + altmap->reserve +
298			  altmap->free + altmap->alloc + altmap->align;
299	}
300
301	pr_debug("vmemmap_free %lx...%lx\n", start, end);
302
303	for (; start < end; start += page_size) {
304		unsigned long nr_pages, addr;
305		struct page *page;
306
307		/*
308		 * We have already marked the subsection we are trying to remove
309		 * invalid. So if we want to remove the vmemmap range, we
310		 * need to make sure there is no subsection marked valid
311		 * in this range.
312		 */
313		if (vmemmap_populated(start, page_size))
314			continue;
315
316		addr = vmemmap_list_free(start);
317		if (!addr)
318			continue;
319
320		page = pfn_to_page(addr >> PAGE_SHIFT);
321		nr_pages = 1 << page_order;
322		base_pfn = PHYS_PFN(addr);
323
324		if (base_pfn >= alt_start && base_pfn < alt_end) {
325			vmem_altmap_free(altmap, nr_pages);
326		} else if (PageReserved(page)) {
327			/* allocated from bootmem */
328			if (page_size < PAGE_SIZE) {
329				/*
330				 * this shouldn't happen, but if it is
331				 * the case, leave the memory there
332				 */
333				WARN_ON_ONCE(1);
334			} else {
335				while (nr_pages--)
336					free_reserved_page(page++);
337			}
338		} else {
339			free_pages((unsigned long)(__va(addr)), page_order);
340		}
341
342		vmemmap_remove_mapping(start, page_size);
343	}
344}
345#endif
346void register_page_bootmem_memmap(unsigned long section_nr,
347				  struct page *start_page, unsigned long size)
348{
349}
350
351#endif /* CONFIG_SPARSEMEM_VMEMMAP */
352
353#ifdef CONFIG_PPC_BOOK3S_64
 
 
 
 
 
 
354static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
355
356static int __init parse_disable_radix(char *p)
357{
358	bool val;
359
360	if (!p)
361		val = true;
362	else if (kstrtobool(p, &val))
363		return -EINVAL;
364
365	disable_radix = val;
366
367	return 0;
368}
369early_param("disable_radix", parse_disable_radix);
370
371/*
372 * If we're running under a hypervisor, we need to check the contents of
373 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
374 * radix.  If not, we clear the radix feature bit so we fall back to hash.
375 */
376static void __init early_check_vec5(void)
377{
378	unsigned long root, chosen;
379	int size;
380	const u8 *vec5;
381	u8 mmu_supported;
382
383	root = of_get_flat_dt_root();
384	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
385	if (chosen == -FDT_ERR_NOTFOUND) {
386		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
387		return;
388	}
389	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
390	if (!vec5) {
391		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
392		return;
393	}
394	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
395		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
396		return;
397	}
398
399	/* Check for supported configuration */
400	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
401			OV5_FEAT(OV5_MMU_SUPPORT);
402	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
403		/* Hypervisor only supports radix - check enabled && GTSE */
404		if (!early_radix_enabled()) {
405			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
406		}
407		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
408						OV5_FEAT(OV5_RADIX_GTSE))) {
409			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
410		} else
411			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
412		/* Do radix anyway - the hypervisor said we had to */
413		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
414	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
415		/* Hypervisor only supports hash - disable radix */
416		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
417		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
418	}
419}
420
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
421void __init mmu_early_init_devtree(void)
422{
 
 
423	/* Disable radix mode based on kernel command line. */
424	if (disable_radix)
425		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
426
427	/*
428	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
429	 * When running bare-metal, we can use radix if we like
430	 * even though the ibm,architecture-vec-5 property created by
431	 * skiboot doesn't have the necessary bits set.
432	 */
433	if (!(mfmsr() & MSR_HV))
434		early_check_vec5();
435
436	if (early_radix_enabled()) {
437		radix__early_init_devtree();
 
438		/*
439		 * We have finalized the translation we are going to use by now.
440		 * Radix mode is not limited by RMA / VRMA addressing.
441		 * Hence don't limit memblock allocations.
442		 */
443		ppc64_rma_size = ULONG_MAX;
444		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
445	} else
446		hash__early_init_devtree();
 
 
 
 
 
 
 
447}
448#endif /* CONFIG_PPC_BOOK3S_64 */