Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  PowerPC version
  4 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  5 *
  6 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  7 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  8 *    Copyright (C) 1996 Paul Mackerras
  9 *
 10 *  Derived from "arch/i386/mm/init.c"
 11 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 12 *
 13 *  Dave Engebretsen <engebret@us.ibm.com>
 14 *      Rework for PPC64 port.
 
 
 
 
 
 
 15 */
 16
 17#undef DEBUG
 18
 19#include <linux/signal.h>
 20#include <linux/sched.h>
 21#include <linux/kernel.h>
 22#include <linux/errno.h>
 23#include <linux/string.h>
 24#include <linux/types.h>
 25#include <linux/mman.h>
 26#include <linux/mm.h>
 27#include <linux/swap.h>
 28#include <linux/stddef.h>
 29#include <linux/vmalloc.h>
 30#include <linux/init.h>
 31#include <linux/delay.h>
 32#include <linux/highmem.h>
 33#include <linux/idr.h>
 34#include <linux/nodemask.h>
 35#include <linux/module.h>
 36#include <linux/poison.h>
 37#include <linux/memblock.h>
 38#include <linux/hugetlb.h>
 39#include <linux/slab.h>
 40#include <linux/of_fdt.h>
 41#include <linux/libfdt.h>
 42#include <linux/memremap.h>
 43
 44#include <asm/pgalloc.h>
 45#include <asm/page.h>
 46#include <asm/prom.h>
 47#include <asm/rtas.h>
 48#include <asm/io.h>
 49#include <asm/mmu_context.h>
 
 50#include <asm/mmu.h>
 51#include <linux/uaccess.h>
 52#include <asm/smp.h>
 53#include <asm/machdep.h>
 54#include <asm/tlb.h>
 55#include <asm/eeh.h>
 56#include <asm/processor.h>
 57#include <asm/mmzone.h>
 58#include <asm/cputable.h>
 59#include <asm/sections.h>
 60#include <asm/iommu.h>
 61#include <asm/vdso.h>
 62#include <asm/hugetlb.h>
 63
 64#include <mm/mmu_decl.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 65
 66#ifdef CONFIG_SPARSEMEM_VMEMMAP
 67/*
 68 * Given an address within the vmemmap, determine the page that
 69 * represents the start of the subsection it is within.  Note that we have to
 70 * do this by hand as the proffered address may not be correctly aligned.
 71 * Subtraction of non-aligned pointers produces undefined results.
 72 */
 73static struct page * __meminit vmemmap_subsection_start(unsigned long vmemmap_addr)
 74{
 75	unsigned long start_pfn;
 76	unsigned long offset = vmemmap_addr - ((unsigned long)(vmemmap));
 77
 78	/* Return the pfn of the start of the section. */
 79	start_pfn = (offset / sizeof(struct page)) & PAGE_SUBSECTION_MASK;
 80	return pfn_to_page(start_pfn);
 81}
 82
 83/*
 84 * Since memory is added in sub-section chunks, before creating a new vmemmap
 85 * mapping, the kernel should check whether there is an existing memmap mapping
 86 * covering the new subsection added. This is needed because kernel can map
 87 * vmemmap area using 16MB pages which will cover a memory range of 16G. Such
 88 * a range covers multiple subsections (2M)
 89 *
 90 * If any subsection in the 16G range mapped by vmemmap is valid we consider the
 91 * vmemmap populated (There is a page table entry already present). We can't do
 92 * a page table lookup here because with the hash translation we don't keep
 93 * vmemmap details in linux page table.
 94 */
 95static int __meminit vmemmap_populated(unsigned long vmemmap_addr, int vmemmap_map_size)
 96{
 97	struct page *start;
 98	unsigned long vmemmap_end = vmemmap_addr + vmemmap_map_size;
 99	start = vmemmap_subsection_start(vmemmap_addr);
100
101	for (; (unsigned long)start < vmemmap_end; start += PAGES_PER_SUBSECTION)
102		/*
103		 * pfn valid check here is intended to really check
104		 * whether we have any subsection already initialized
105		 * in this range.
106		 */
107		if (pfn_valid(page_to_pfn(start)))
108			return 1;
109
110	return 0;
111}
112
113/*
114 * vmemmap virtual address space management does not have a traditional page
115 * table to track which virtual struct pages are backed by physical mapping.
116 * The virtual to physical mappings are tracked in a simple linked list
117 * format. 'vmemmap_list' maintains the entire vmemmap physical mapping at
118 * all times where as the 'next' list maintains the available
119 * vmemmap_backing structures which have been deleted from the
120 * 'vmemmap_global' list during system runtime (memory hotplug remove
121 * operation). The freed 'vmemmap_backing' structures are reused later when
122 * new requests come in without allocating fresh memory. This pointer also
123 * tracks the allocated 'vmemmap_backing' structures as we allocate one
124 * full page memory at a time when we dont have any.
125 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126struct vmemmap_backing *vmemmap_list;
127static struct vmemmap_backing *next;
128
129/*
130 * The same pointer 'next' tracks individual chunks inside the allocated
131 * full page during the boot time and again tracks the freed nodes during
132 * runtime. It is racy but it does not happen as they are separated by the
133 * boot process. Will create problem if some how we have memory hotplug
134 * operation during boot !!
135 */
136static int num_left;
137static int num_freed;
138
139static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
140{
141	struct vmemmap_backing *vmem_back;
142	/* get from freed entries first */
143	if (num_freed) {
144		num_freed--;
145		vmem_back = next;
146		next = next->list;
147
148		return vmem_back;
149	}
150
151	/* allocate a page when required and hand out chunks */
152	if (!num_left) {
153		next = vmemmap_alloc_block(PAGE_SIZE, node);
154		if (unlikely(!next)) {
155			WARN_ON(1);
156			return NULL;
157		}
158		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
159	}
160
161	num_left--;
162
163	return next++;
164}
165
166static __meminit int vmemmap_list_populate(unsigned long phys,
167					   unsigned long start,
168					   int node)
169{
170	struct vmemmap_backing *vmem_back;
171
172	vmem_back = vmemmap_list_alloc(node);
173	if (unlikely(!vmem_back)) {
174		pr_debug("vmemap list allocation failed\n");
175		return -ENOMEM;
176	}
177
178	vmem_back->phys = phys;
179	vmem_back->virt_addr = start;
180	vmem_back->list = vmemmap_list;
181
182	vmemmap_list = vmem_back;
183	return 0;
184}
185
186static bool altmap_cross_boundary(struct vmem_altmap *altmap, unsigned long start,
187				unsigned long page_size)
188{
189	unsigned long nr_pfn = page_size / sizeof(struct page);
190	unsigned long start_pfn = page_to_pfn((struct page *)start);
191
192	if ((start_pfn + nr_pfn) > altmap->end_pfn)
193		return true;
194
195	if (start_pfn < altmap->base_pfn)
196		return true;
197
198	return false;
199}
200
201int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
202		struct vmem_altmap *altmap)
203{
204	bool altmap_alloc;
205	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
206
207	/* Align to the page size of the linear mapping. */
208	start = ALIGN_DOWN(start, page_size);
209
210	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
211
212	for (; start < end; start += page_size) {
213		void *p = NULL;
214		int rc;
215
216		/*
217		 * This vmemmap range is backing different subsections. If any
218		 * of that subsection is marked valid, that means we already
219		 * have initialized a page table covering this range and hence
220		 * the vmemmap range is populated.
221		 */
222		if (vmemmap_populated(start, page_size))
223			continue;
224
225		/*
226		 * Allocate from the altmap first if we have one. This may
227		 * fail due to alignment issues when using 16MB hugepages, so
228		 * fall back to system memory if the altmap allocation fail.
229		 */
230		if (altmap && !altmap_cross_boundary(altmap, start, page_size)) {
231			p = vmemmap_alloc_block_buf(page_size, node, altmap);
232			if (!p)
233				pr_debug("altmap block allocation failed, falling back to system memory");
234			else
235				altmap_alloc = true;
236		}
237		if (!p) {
238			p = vmemmap_alloc_block_buf(page_size, node, NULL);
239			altmap_alloc = false;
240		}
241		if (!p)
242			return -ENOMEM;
243
244		if (vmemmap_list_populate(__pa(p), start, node)) {
245			/*
246			 * If we don't populate vmemap list, we don't have
247			 * the ability to free the allocated vmemmap
248			 * pages in section_deactivate. Hence free them
249			 * here.
250			 */
251			int nr_pfns = page_size >> PAGE_SHIFT;
252			unsigned long page_order = get_order(page_size);
253
254			if (altmap_alloc)
255				vmem_altmap_free(altmap, nr_pfns);
256			else
257				free_pages((unsigned long)p, page_order);
258			return -ENOMEM;
259		}
260
261		pr_debug("      * %016lx..%016lx allocated at %p\n",
262			 start, start + page_size, p);
263
264		rc = vmemmap_create_mapping(start, page_size, __pa(p));
265		if (rc < 0) {
266			pr_warn("%s: Unable to create vmemmap mapping: %d\n",
267				__func__, rc);
 
268			return -EFAULT;
269		}
270	}
271
272	return 0;
273}
274
275#ifdef CONFIG_MEMORY_HOTPLUG
276static unsigned long vmemmap_list_free(unsigned long start)
277{
278	struct vmemmap_backing *vmem_back, *vmem_back_prev;
279
280	vmem_back_prev = vmem_back = vmemmap_list;
281
282	/* look for it with prev pointer recorded */
283	for (; vmem_back; vmem_back = vmem_back->list) {
284		if (vmem_back->virt_addr == start)
285			break;
286		vmem_back_prev = vmem_back;
287	}
288
289	if (unlikely(!vmem_back))
 
290		return 0;
 
291
292	/* remove it from vmemmap_list */
293	if (vmem_back == vmemmap_list) /* remove head */
294		vmemmap_list = vmem_back->list;
295	else
296		vmem_back_prev->list = vmem_back->list;
297
298	/* next point to this freed entry */
299	vmem_back->list = next;
300	next = vmem_back;
301	num_freed++;
302
303	return vmem_back->phys;
304}
305
306void __ref vmemmap_free(unsigned long start, unsigned long end,
307		struct vmem_altmap *altmap)
308{
309	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
310	unsigned long page_order = get_order(page_size);
311	unsigned long alt_start = ~0, alt_end = ~0;
312	unsigned long base_pfn;
313
314	start = ALIGN_DOWN(start, page_size);
315	if (altmap) {
316		alt_start = altmap->base_pfn;
317		alt_end = altmap->base_pfn + altmap->reserve +
318			  altmap->free + altmap->alloc + altmap->align;
319	}
320
321	pr_debug("vmemmap_free %lx...%lx\n", start, end);
322
323	for (; start < end; start += page_size) {
324		unsigned long nr_pages, addr;
325		struct page *page;
326
327		/*
328		 * We have already marked the subsection we are trying to remove
329		 * invalid. So if we want to remove the vmemmap range, we
330		 * need to make sure there is no subsection marked valid
331		 * in this range.
332		 */
333		if (vmemmap_populated(start, page_size))
334			continue;
335
336		addr = vmemmap_list_free(start);
337		if (!addr)
338			continue;
339
340		page = pfn_to_page(addr >> PAGE_SHIFT);
341		nr_pages = 1 << page_order;
342		base_pfn = PHYS_PFN(addr);
343
344		if (base_pfn >= alt_start && base_pfn < alt_end) {
345			vmem_altmap_free(altmap, nr_pages);
346		} else if (PageReserved(page)) {
347			/* allocated from bootmem */
348			if (page_size < PAGE_SIZE) {
349				/*
350				 * this shouldn't happen, but if it is
351				 * the case, leave the memory there
352				 */
353				WARN_ON_ONCE(1);
354			} else {
355				while (nr_pages--)
356					free_reserved_page(page++);
357			}
358		} else {
359			free_pages((unsigned long)(__va(addr)), page_order);
360		}
361
362		vmemmap_remove_mapping(start, page_size);
 
363	}
364}
365#endif
366void register_page_bootmem_memmap(unsigned long section_nr,
367				  struct page *start_page, unsigned long size)
368{
369}
370
371#endif /* CONFIG_SPARSEMEM_VMEMMAP */
372
373#ifdef CONFIG_PPC_BOOK3S_64
374unsigned int mmu_lpid_bits;
375#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
376EXPORT_SYMBOL_GPL(mmu_lpid_bits);
377#endif
378unsigned int mmu_pid_bits;
379
380static bool disable_radix = !IS_ENABLED(CONFIG_PPC_RADIX_MMU_DEFAULT);
381
382static int __init parse_disable_radix(char *p)
383{
384	bool val;
385
386	if (!p)
387		val = true;
388	else if (kstrtobool(p, &val))
389		return -EINVAL;
390
391	disable_radix = val;
392
393	return 0;
394}
395early_param("disable_radix", parse_disable_radix);
396
397/*
398 * If we're running under a hypervisor, we need to check the contents of
399 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
400 * radix.  If not, we clear the radix feature bit so we fall back to hash.
 
 
 
 
 
 
 
 
 
 
401 */
402static void __init early_check_vec5(void)
403{
404	unsigned long root, chosen;
405	int size;
406	const u8 *vec5;
407	u8 mmu_supported;
408
409	root = of_get_flat_dt_root();
410	chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
411	if (chosen == -FDT_ERR_NOTFOUND) {
412		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
413		return;
414	}
415	vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
416	if (!vec5) {
417		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
418		return;
419	}
420	if (size <= OV5_INDX(OV5_MMU_SUPPORT)) {
421		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
422		return;
423	}
424
425	/* Check for supported configuration */
426	mmu_supported = vec5[OV5_INDX(OV5_MMU_SUPPORT)] &
427			OV5_FEAT(OV5_MMU_SUPPORT);
428	if (mmu_supported == OV5_FEAT(OV5_MMU_RADIX)) {
429		/* Hypervisor only supports radix - check enabled && GTSE */
430		if (!early_radix_enabled()) {
431			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
 
 
 
432		}
433		if (!(vec5[OV5_INDX(OV5_RADIX_GTSE)] &
434						OV5_FEAT(OV5_RADIX_GTSE))) {
435			cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
436		} else
437			cur_cpu_spec->mmu_features |= MMU_FTR_GTSE;
438		/* Do radix anyway - the hypervisor said we had to */
439		cur_cpu_spec->mmu_features |= MMU_FTR_TYPE_RADIX;
440	} else if (mmu_supported == OV5_FEAT(OV5_MMU_HASH)) {
441		/* Hypervisor only supports hash - disable radix */
442		cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
443		cur_cpu_spec->mmu_features &= ~MMU_FTR_GTSE;
444	}
445}
446
447static int __init dt_scan_mmu_pid_width(unsigned long node,
448					   const char *uname, int depth,
449					   void *data)
450{
451	int size = 0;
452	const __be32 *prop;
453	const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
454
455	/* We are scanning "cpu" nodes only */
456	if (type == NULL || strcmp(type, "cpu") != 0)
457		return 0;
458
459	/* Find MMU LPID, PID register size */
460	prop = of_get_flat_dt_prop(node, "ibm,mmu-lpid-bits", &size);
461	if (prop && size == 4)
462		mmu_lpid_bits = be32_to_cpup(prop);
463
464	prop = of_get_flat_dt_prop(node, "ibm,mmu-pid-bits", &size);
465	if (prop && size == 4)
466		mmu_pid_bits = be32_to_cpup(prop);
467
468	if (!mmu_pid_bits && !mmu_lpid_bits)
469		return 0;
470
471	return 1;
 
472}
 
473
474void __init mmu_early_init_devtree(void)
475{
476	bool hvmode = !!(mfmsr() & MSR_HV);
477
478	/* Disable radix mode based on kernel command line. */
479	if (disable_radix) {
480		if (IS_ENABLED(CONFIG_PPC_64S_HASH_MMU))
481			cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
482		else
483			pr_warn("WARNING: Ignoring cmdline option disable_radix\n");
484	}
485
486	of_scan_flat_dt(dt_scan_mmu_pid_width, NULL);
487	if (hvmode && !mmu_lpid_bits) {
488		if (early_cpu_has_feature(CPU_FTR_ARCH_207S))
489			mmu_lpid_bits = 12; /* POWER8-10 */
490		else
491			mmu_lpid_bits = 10; /* POWER7 */
492	}
493	if (!mmu_pid_bits) {
494		if (early_cpu_has_feature(CPU_FTR_ARCH_300))
495			mmu_pid_bits = 20; /* POWER9-10 */
496	}
497
498	/*
499	 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
500	 * When running bare-metal, we can use radix if we like
501	 * even though the ibm,architecture-vec-5 property created by
502	 * skiboot doesn't have the necessary bits set.
503	 */
504	if (!hvmode)
505		early_check_vec5();
506
507	if (early_radix_enabled()) {
508		radix__early_init_devtree();
509
510		/*
511		 * We have finalized the translation we are going to use by now.
512		 * Radix mode is not limited by RMA / VRMA addressing.
513		 * Hence don't limit memblock allocations.
514		 */
515		ppc64_rma_size = ULONG_MAX;
516		memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
517	} else
518		hash__early_init_devtree();
519
520	if (IS_ENABLED(CONFIG_HUGETLB_PAGE_SIZE_VARIABLE))
521		hugetlbpage_init_defaultsize();
522
523	if (!(cur_cpu_spec->mmu_features & MMU_FTR_HPTE_TABLE) &&
524	    !(cur_cpu_spec->mmu_features & MMU_FTR_TYPE_RADIX))
525		panic("kernel does not support any MMU type offered by platform");
526}
527#endif /* CONFIG_PPC_BOOK3S_64 */
 
 
v4.6
 
  1/*
  2 *  PowerPC version
  3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4 *
  5 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7 *    Copyright (C) 1996 Paul Mackerras
  8 *
  9 *  Derived from "arch/i386/mm/init.c"
 10 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 11 *
 12 *  Dave Engebretsen <engebret@us.ibm.com>
 13 *      Rework for PPC64 port.
 14 *
 15 *  This program is free software; you can redistribute it and/or
 16 *  modify it under the terms of the GNU General Public License
 17 *  as published by the Free Software Foundation; either version
 18 *  2 of the License, or (at your option) any later version.
 19 *
 20 */
 21
 22#undef DEBUG
 23
 24#include <linux/signal.h>
 25#include <linux/sched.h>
 26#include <linux/kernel.h>
 27#include <linux/errno.h>
 28#include <linux/string.h>
 29#include <linux/types.h>
 30#include <linux/mman.h>
 31#include <linux/mm.h>
 32#include <linux/swap.h>
 33#include <linux/stddef.h>
 34#include <linux/vmalloc.h>
 35#include <linux/init.h>
 36#include <linux/delay.h>
 37#include <linux/highmem.h>
 38#include <linux/idr.h>
 39#include <linux/nodemask.h>
 40#include <linux/module.h>
 41#include <linux/poison.h>
 42#include <linux/memblock.h>
 43#include <linux/hugetlb.h>
 44#include <linux/slab.h>
 
 
 
 45
 46#include <asm/pgalloc.h>
 47#include <asm/page.h>
 48#include <asm/prom.h>
 49#include <asm/rtas.h>
 50#include <asm/io.h>
 51#include <asm/mmu_context.h>
 52#include <asm/pgtable.h>
 53#include <asm/mmu.h>
 54#include <asm/uaccess.h>
 55#include <asm/smp.h>
 56#include <asm/machdep.h>
 57#include <asm/tlb.h>
 58#include <asm/eeh.h>
 59#include <asm/processor.h>
 60#include <asm/mmzone.h>
 61#include <asm/cputable.h>
 62#include <asm/sections.h>
 63#include <asm/iommu.h>
 64#include <asm/vdso.h>
 
 65
 66#include "mmu_decl.h"
 67
 68#ifdef CONFIG_PPC_STD_MMU_64
 69#if PGTABLE_RANGE > USER_VSID_RANGE
 70#warning Limited user VSID range means pagetable space is wasted
 71#endif
 72
 73#if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
 74#warning TASK_SIZE is smaller than it needs to be.
 75#endif
 76#endif /* CONFIG_PPC_STD_MMU_64 */
 77
 78phys_addr_t memstart_addr = ~0;
 79EXPORT_SYMBOL_GPL(memstart_addr);
 80phys_addr_t kernstart_addr;
 81EXPORT_SYMBOL_GPL(kernstart_addr);
 82
 83static void pgd_ctor(void *addr)
 84{
 85	memset(addr, 0, PGD_TABLE_SIZE);
 86}
 87
 88static void pud_ctor(void *addr)
 89{
 90	memset(addr, 0, PUD_TABLE_SIZE);
 91}
 92
 93static void pmd_ctor(void *addr)
 94{
 95	memset(addr, 0, PMD_TABLE_SIZE);
 96}
 97
 98struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
 99
100/*
101 * Create a kmem_cache() for pagetables.  This is not used for PTE
102 * pages - they're linked to struct page, come from the normal free
103 * pages pool and have a different entry size (see real_pte_t) to
104 * everything else.  Caches created by this function are used for all
105 * the higher level pagetables, and for hugepage pagetables.
106 */
107void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
108{
109	char *name;
110	unsigned long table_size = sizeof(void *) << shift;
111	unsigned long align = table_size;
112
113	/* When batching pgtable pointers for RCU freeing, we store
114	 * the index size in the low bits.  Table alignment must be
115	 * big enough to fit it.
116	 *
117	 * Likewise, hugeapge pagetable pointers contain a (different)
118	 * shift value in the low bits.  All tables must be aligned so
119	 * as to leave enough 0 bits in the address to contain it. */
120	unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
121				     HUGEPD_SHIFT_MASK + 1);
122	struct kmem_cache *new;
123
124	/* It would be nice if this was a BUILD_BUG_ON(), but at the
125	 * moment, gcc doesn't seem to recognize is_power_of_2 as a
126	 * constant expression, so so much for that. */
127	BUG_ON(!is_power_of_2(minalign));
128	BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
129
130	if (PGT_CACHE(shift))
131		return; /* Already have a cache of this size */
132
133	align = max_t(unsigned long, align, minalign);
134	name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
135	new = kmem_cache_create(name, table_size, align, 0, ctor);
136	kfree(name);
137	pgtable_cache[shift - 1] = new;
138	pr_debug("Allocated pgtable cache for order %d\n", shift);
139}
140
141
142void pgtable_cache_init(void)
143{
144	pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
145	pgtable_cache_add(PMD_CACHE_INDEX, pmd_ctor);
146	/*
147	 * In all current configs, when the PUD index exists it's the
148	 * same size as either the pgd or pmd index except with THP enabled
149	 * on book3s 64
150	 */
151	if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
152		pgtable_cache_add(PUD_INDEX_SIZE, pud_ctor);
153
154	if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_CACHE_INDEX))
155		panic("Couldn't allocate pgtable caches");
156	if (PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE))
157		panic("Couldn't allocate pud pgtable caches");
158}
159
160#ifdef CONFIG_SPARSEMEM_VMEMMAP
161/*
162 * Given an address within the vmemmap, determine the pfn of the page that
163 * represents the start of the section it is within.  Note that we have to
164 * do this by hand as the proffered address may not be correctly aligned.
165 * Subtraction of non-aligned pointers produces undefined results.
166 */
167static unsigned long __meminit vmemmap_section_start(unsigned long page)
168{
169	unsigned long offset = page - ((unsigned long)(vmemmap));
 
170
171	/* Return the pfn of the start of the section. */
172	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
 
173}
174
175/*
176 * Check if this vmemmap page is already initialised.  If any section
177 * which overlaps this vmemmap page is initialised then this page is
178 * initialised already.
 
 
 
 
 
 
 
179 */
180static int __meminit vmemmap_populated(unsigned long start, int page_size)
181{
182	unsigned long end = start + page_size;
183	start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
 
184
185	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
186		if (pfn_valid(page_to_pfn((struct page *)start)))
 
 
 
 
 
187			return 1;
188
189	return 0;
190}
191
192/* On hash-based CPUs, the vmemmap is bolted in the hash table.
193 *
194 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
195 * the vmalloc space using normal page tables, though the size of
196 * pages encoded in the PTEs can be different
 
 
 
 
 
 
 
197 */
198
199#ifdef CONFIG_PPC_BOOK3E
200static int __meminit vmemmap_create_mapping(unsigned long start,
201					    unsigned long page_size,
202					    unsigned long phys)
203{
204	/* Create a PTE encoding without page size */
205	unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
206		_PAGE_KERNEL_RW;
207
208	/* PTEs only contain page size encodings up to 32M */
209	BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
210
211	/* Encode the size in the PTE */
212	flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
213
214	/* For each PTE for that area, map things. Note that we don't
215	 * increment phys because all PTEs are of the large size and
216	 * thus must have the low bits clear
217	 */
218	for (i = 0; i < page_size; i += PAGE_SIZE)
219		BUG_ON(map_kernel_page(start + i, phys, flags));
220
221	return 0;
222}
223
224#ifdef CONFIG_MEMORY_HOTPLUG
225static void vmemmap_remove_mapping(unsigned long start,
226				   unsigned long page_size)
227{
228}
229#endif
230#else /* CONFIG_PPC_BOOK3E */
231static int __meminit vmemmap_create_mapping(unsigned long start,
232					    unsigned long page_size,
233					    unsigned long phys)
234{
235	int rc = htab_bolt_mapping(start, start + page_size, phys,
236				   pgprot_val(PAGE_KERNEL),
237				   mmu_vmemmap_psize, mmu_kernel_ssize);
238	if (rc < 0) {
239		int rc2 = htab_remove_mapping(start, start + page_size,
240					      mmu_vmemmap_psize,
241					      mmu_kernel_ssize);
242		BUG_ON(rc2 && (rc2 != -ENOENT));
243	}
244	return rc;
245}
246
247#ifdef CONFIG_MEMORY_HOTPLUG
248static void vmemmap_remove_mapping(unsigned long start,
249				   unsigned long page_size)
250{
251	int rc = htab_remove_mapping(start, start + page_size,
252				     mmu_vmemmap_psize,
253				     mmu_kernel_ssize);
254	BUG_ON((rc < 0) && (rc != -ENOENT));
255	WARN_ON(rc == -ENOENT);
256}
257#endif
258
259#endif /* CONFIG_PPC_BOOK3E */
260
261struct vmemmap_backing *vmemmap_list;
262static struct vmemmap_backing *next;
 
 
 
 
 
 
 
 
263static int num_left;
264static int num_freed;
265
266static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
267{
268	struct vmemmap_backing *vmem_back;
269	/* get from freed entries first */
270	if (num_freed) {
271		num_freed--;
272		vmem_back = next;
273		next = next->list;
274
275		return vmem_back;
276	}
277
278	/* allocate a page when required and hand out chunks */
279	if (!num_left) {
280		next = vmemmap_alloc_block(PAGE_SIZE, node);
281		if (unlikely(!next)) {
282			WARN_ON(1);
283			return NULL;
284		}
285		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
286	}
287
288	num_left--;
289
290	return next++;
291}
292
293static __meminit void vmemmap_list_populate(unsigned long phys,
294					    unsigned long start,
295					    int node)
296{
297	struct vmemmap_backing *vmem_back;
298
299	vmem_back = vmemmap_list_alloc(node);
300	if (unlikely(!vmem_back)) {
301		WARN_ON(1);
302		return;
303	}
304
305	vmem_back->phys = phys;
306	vmem_back->virt_addr = start;
307	vmem_back->list = vmemmap_list;
308
309	vmemmap_list = vmem_back;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
310}
311
312int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
 
313{
 
314	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
315
316	/* Align to the page size of the linear mapping. */
317	start = _ALIGN_DOWN(start, page_size);
318
319	pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
320
321	for (; start < end; start += page_size) {
322		void *p;
323		int rc;
324
 
 
 
 
 
 
325		if (vmemmap_populated(start, page_size))
326			continue;
327
328		p = vmemmap_alloc_block(page_size, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
329		if (!p)
330			return -ENOMEM;
331
332		vmemmap_list_populate(__pa(p), start, node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
333
334		pr_debug("      * %016lx..%016lx allocated at %p\n",
335			 start, start + page_size, p);
336
337		rc = vmemmap_create_mapping(start, page_size, __pa(p));
338		if (rc < 0) {
339			pr_warning(
340				"vmemmap_populate: Unable to create vmemmap mapping: %d\n",
341				rc);
342			return -EFAULT;
343		}
344	}
345
346	return 0;
347}
348
349#ifdef CONFIG_MEMORY_HOTPLUG
350static unsigned long vmemmap_list_free(unsigned long start)
351{
352	struct vmemmap_backing *vmem_back, *vmem_back_prev;
353
354	vmem_back_prev = vmem_back = vmemmap_list;
355
356	/* look for it with prev pointer recorded */
357	for (; vmem_back; vmem_back = vmem_back->list) {
358		if (vmem_back->virt_addr == start)
359			break;
360		vmem_back_prev = vmem_back;
361	}
362
363	if (unlikely(!vmem_back)) {
364		WARN_ON(1);
365		return 0;
366	}
367
368	/* remove it from vmemmap_list */
369	if (vmem_back == vmemmap_list) /* remove head */
370		vmemmap_list = vmem_back->list;
371	else
372		vmem_back_prev->list = vmem_back->list;
373
374	/* next point to this freed entry */
375	vmem_back->list = next;
376	next = vmem_back;
377	num_freed++;
378
379	return vmem_back->phys;
380}
381
382void __ref vmemmap_free(unsigned long start, unsigned long end)
 
383{
384	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
385
386	start = _ALIGN_DOWN(start, page_size);
 
 
 
 
 
 
 
 
387
388	pr_debug("vmemmap_free %lx...%lx\n", start, end);
389
390	for (; start < end; start += page_size) {
391		unsigned long addr;
 
392
393		/*
394		 * the section has already be marked as invalid, so
395		 * vmemmap_populated() true means some other sections still
396		 * in this page, so skip it.
 
397		 */
398		if (vmemmap_populated(start, page_size))
399			continue;
400
401		addr = vmemmap_list_free(start);
402		if (addr) {
403			struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
404
405			if (PageReserved(page)) {
406				/* allocated from bootmem */
407				if (page_size < PAGE_SIZE) {
408					/*
409					 * this shouldn't happen, but if it is
410					 * the case, leave the memory there
411					 */
412					WARN_ON_ONCE(1);
413				} else {
414					unsigned int nr_pages =
415						1 << get_order(page_size);
416					while (nr_pages--)
417						free_reserved_page(page++);
418				}
419			} else
420				free_pages((unsigned long)(__va(addr)),
421							get_order(page_size));
 
 
 
 
422
423			vmemmap_remove_mapping(start, page_size);
424		}
425	}
426}
427#endif
428void register_page_bootmem_memmap(unsigned long section_nr,
429				  struct page *start_page, unsigned long size)
430{
431}
432
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
433/*
434 * We do not have access to the sparsemem vmemmap, so we fallback to
435 * walking the list of sparsemem blocks which we already maintain for
436 * the sake of crashdump. In the long run, we might want to maintain
437 * a tree if performance of that linear walk becomes a problem.
438 *
439 * realmode_pfn_to_page functions can fail due to:
440 * 1) As real sparsemem blocks do not lay in RAM continously (they
441 * are in virtual address space which is not available in the real mode),
442 * the requested page struct can be split between blocks so get_page/put_page
443 * may fail.
444 * 2) When huge pages are used, the get_page/put_page API will fail
445 * in real mode as the linked addresses in the page struct are virtual
446 * too.
447 */
448struct page *realmode_pfn_to_page(unsigned long pfn)
449{
450	struct vmemmap_backing *vmem_back;
451	struct page *page;
452	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
453	unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
454
455	for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
456		if (pg_va < vmem_back->virt_addr)
457			continue;
458
459		/* After vmemmap_list entry free is possible, need check all */
460		if ((pg_va + sizeof(struct page)) <=
461				(vmem_back->virt_addr + page_size)) {
462			page = (struct page *) (vmem_back->phys + pg_va -
463				vmem_back->virt_addr);
464			return page;
465		}
 
 
 
 
 
 
 
 
 
 
 
466	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
467
468	/* Probably that page struct is split between real pages */
469	return NULL;
470}
471EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
472
473#elif defined(CONFIG_FLATMEM)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
474
475struct page *realmode_pfn_to_page(unsigned long pfn)
476{
477	struct page *page = pfn_to_page(pfn);
478	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479}
480EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
481
482#endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */