Linux Audio

Check our new training course

Loading...
  1/*
  2 *  PowerPC version
  3 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
  4 *
  5 *  Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
  6 *  and Cort Dougan (PReP) (cort@cs.nmt.edu)
  7 *    Copyright (C) 1996 Paul Mackerras
  8 *
  9 *  Derived from "arch/i386/mm/init.c"
 10 *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
 11 *
 12 *  Dave Engebretsen <engebret@us.ibm.com>
 13 *      Rework for PPC64 port.
 14 *
 15 *  This program is free software; you can redistribute it and/or
 16 *  modify it under the terms of the GNU General Public License
 17 *  as published by the Free Software Foundation; either version
 18 *  2 of the License, or (at your option) any later version.
 19 *
 20 */
 21
 22#undef DEBUG
 23
 24#include <linux/signal.h>
 25#include <linux/sched.h>
 26#include <linux/kernel.h>
 27#include <linux/errno.h>
 28#include <linux/string.h>
 29#include <linux/types.h>
 30#include <linux/mman.h>
 31#include <linux/mm.h>
 32#include <linux/swap.h>
 33#include <linux/stddef.h>
 34#include <linux/vmalloc.h>
 35#include <linux/init.h>
 36#include <linux/delay.h>
 37#include <linux/bootmem.h>
 38#include <linux/highmem.h>
 39#include <linux/idr.h>
 40#include <linux/nodemask.h>
 41#include <linux/module.h>
 42#include <linux/poison.h>
 43#include <linux/memblock.h>
 44#include <linux/hugetlb.h>
 45#include <linux/slab.h>
 46
 47#include <asm/pgalloc.h>
 48#include <asm/page.h>
 49#include <asm/prom.h>
 50#include <asm/rtas.h>
 51#include <asm/io.h>
 52#include <asm/mmu_context.h>
 53#include <asm/pgtable.h>
 54#include <asm/mmu.h>
 55#include <asm/uaccess.h>
 56#include <asm/smp.h>
 57#include <asm/machdep.h>
 58#include <asm/tlb.h>
 59#include <asm/eeh.h>
 60#include <asm/processor.h>
 61#include <asm/mmzone.h>
 62#include <asm/cputable.h>
 63#include <asm/sections.h>
 64#include <asm/iommu.h>
 65#include <asm/abs_addr.h>
 66#include <asm/vdso.h>
 67
 68#include "mmu_decl.h"
 69
 70#ifdef CONFIG_PPC_STD_MMU_64
 71#if PGTABLE_RANGE > USER_VSID_RANGE
 72#warning Limited user VSID range means pagetable space is wasted
 73#endif
 74
 75#if (TASK_SIZE_USER64 < PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
 76#warning TASK_SIZE is smaller than it needs to be.
 77#endif
 78#endif /* CONFIG_PPC_STD_MMU_64 */
 79
 80phys_addr_t memstart_addr = ~0;
 81EXPORT_SYMBOL_GPL(memstart_addr);
 82phys_addr_t kernstart_addr;
 83EXPORT_SYMBOL_GPL(kernstart_addr);
 84
 85static void pgd_ctor(void *addr)
 86{
 87	memset(addr, 0, PGD_TABLE_SIZE);
 88}
 89
 90static void pmd_ctor(void *addr)
 91{
 92	memset(addr, 0, PMD_TABLE_SIZE);
 93}
 94
 95struct kmem_cache *pgtable_cache[MAX_PGTABLE_INDEX_SIZE];
 96
 97/*
 98 * Create a kmem_cache() for pagetables.  This is not used for PTE
 99 * pages - they're linked to struct page, come from the normal free
100 * pages pool and have a different entry size (see real_pte_t) to
101 * everything else.  Caches created by this function are used for all
102 * the higher level pagetables, and for hugepage pagetables.
103 */
104void pgtable_cache_add(unsigned shift, void (*ctor)(void *))
105{
106	char *name;
107	unsigned long table_size = sizeof(void *) << shift;
108	unsigned long align = table_size;
109
110	/* When batching pgtable pointers for RCU freeing, we store
111	 * the index size in the low bits.  Table alignment must be
112	 * big enough to fit it.
113	 *
114	 * Likewise, hugeapge pagetable pointers contain a (different)
115	 * shift value in the low bits.  All tables must be aligned so
116	 * as to leave enough 0 bits in the address to contain it. */
117	unsigned long minalign = max(MAX_PGTABLE_INDEX_SIZE + 1,
118				     HUGEPD_SHIFT_MASK + 1);
119	struct kmem_cache *new;
120
121	/* It would be nice if this was a BUILD_BUG_ON(), but at the
122	 * moment, gcc doesn't seem to recognize is_power_of_2 as a
123	 * constant expression, so so much for that. */
124	BUG_ON(!is_power_of_2(minalign));
125	BUG_ON((shift < 1) || (shift > MAX_PGTABLE_INDEX_SIZE));
126
127	if (PGT_CACHE(shift))
128		return; /* Already have a cache of this size */
129
130	align = max_t(unsigned long, align, minalign);
131	name = kasprintf(GFP_KERNEL, "pgtable-2^%d", shift);
132	new = kmem_cache_create(name, table_size, align, 0, ctor);
133	PGT_CACHE(shift) = new;
134
135	pr_debug("Allocated pgtable cache for order %d\n", shift);
136}
137
138
139void pgtable_cache_init(void)
140{
141	pgtable_cache_add(PGD_INDEX_SIZE, pgd_ctor);
142	pgtable_cache_add(PMD_INDEX_SIZE, pmd_ctor);
143	if (!PGT_CACHE(PGD_INDEX_SIZE) || !PGT_CACHE(PMD_INDEX_SIZE))
144		panic("Couldn't allocate pgtable caches");
145
146	/* In all current configs, when the PUD index exists it's the
147	 * same size as either the pgd or pmd index.  Verify that the
148	 * initialization above has also created a PUD cache.  This
149	 * will need re-examiniation if we add new possibilities for
150	 * the pagetable layout. */
151	BUG_ON(PUD_INDEX_SIZE && !PGT_CACHE(PUD_INDEX_SIZE));
152}
153
154#ifdef CONFIG_SPARSEMEM_VMEMMAP
155/*
156 * Given an address within the vmemmap, determine the pfn of the page that
157 * represents the start of the section it is within.  Note that we have to
158 * do this by hand as the proffered address may not be correctly aligned.
159 * Subtraction of non-aligned pointers produces undefined results.
160 */
161static unsigned long __meminit vmemmap_section_start(unsigned long page)
162{
163	unsigned long offset = page - ((unsigned long)(vmemmap));
164
165	/* Return the pfn of the start of the section. */
166	return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
167}
168
169/*
170 * Check if this vmemmap page is already initialised.  If any section
171 * which overlaps this vmemmap page is initialised then this page is
172 * initialised already.
173 */
174static int __meminit vmemmap_populated(unsigned long start, int page_size)
175{
176	unsigned long end = start + page_size;
177
178	for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
179		if (pfn_valid(vmemmap_section_start(start)))
180			return 1;
181
182	return 0;
183}
184
185/* On hash-based CPUs, the vmemmap is bolted in the hash table.
186 *
187 * On Book3E CPUs, the vmemmap is currently mapped in the top half of
188 * the vmalloc space using normal page tables, though the size of
189 * pages encoded in the PTEs can be different
190 */
191
192#ifdef CONFIG_PPC_BOOK3E
193static void __meminit vmemmap_create_mapping(unsigned long start,
194					     unsigned long page_size,
195					     unsigned long phys)
196{
197	/* Create a PTE encoding without page size */
198	unsigned long i, flags = _PAGE_PRESENT | _PAGE_ACCESSED |
199		_PAGE_KERNEL_RW;
200
201	/* PTEs only contain page size encodings up to 32M */
202	BUG_ON(mmu_psize_defs[mmu_vmemmap_psize].enc > 0xf);
203
204	/* Encode the size in the PTE */
205	flags |= mmu_psize_defs[mmu_vmemmap_psize].enc << 8;
206
207	/* For each PTE for that area, map things. Note that we don't
208	 * increment phys because all PTEs are of the large size and
209	 * thus must have the low bits clear
210	 */
211	for (i = 0; i < page_size; i += PAGE_SIZE)
212		BUG_ON(map_kernel_page(start + i, phys, flags));
213}
214#else /* CONFIG_PPC_BOOK3E */
215static void __meminit vmemmap_create_mapping(unsigned long start,
216					     unsigned long page_size,
217					     unsigned long phys)
218{
219	int  mapped = htab_bolt_mapping(start, start + page_size, phys,
220					PAGE_KERNEL, mmu_vmemmap_psize,
221					mmu_kernel_ssize);
222	BUG_ON(mapped < 0);
223}
224#endif /* CONFIG_PPC_BOOK3E */
225
226struct vmemmap_backing *vmemmap_list;
227
228static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
229{
230	static struct vmemmap_backing *next;
231	static int num_left;
232
233	/* allocate a page when required and hand out chunks */
234	if (!next || !num_left) {
235		next = vmemmap_alloc_block(PAGE_SIZE, node);
236		if (unlikely(!next)) {
237			WARN_ON(1);
238			return NULL;
239		}
240		num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
241	}
242
243	num_left--;
244
245	return next++;
246}
247
248static __meminit void vmemmap_list_populate(unsigned long phys,
249					    unsigned long start,
250					    int node)
251{
252	struct vmemmap_backing *vmem_back;
253
254	vmem_back = vmemmap_list_alloc(node);
255	if (unlikely(!vmem_back)) {
256		WARN_ON(1);
257		return;
258	}
259
260	vmem_back->phys = phys;
261	vmem_back->virt_addr = start;
262	vmem_back->list = vmemmap_list;
263
264	vmemmap_list = vmem_back;
265}
266
267int __meminit vmemmap_populate(struct page *start_page,
268			       unsigned long nr_pages, int node)
269{
270	unsigned long start = (unsigned long)start_page;
271	unsigned long end = (unsigned long)(start_page + nr_pages);
272	unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
273
274	/* Align to the page size of the linear mapping. */
275	start = _ALIGN_DOWN(start, page_size);
276
277	pr_debug("vmemmap_populate page %p, %ld pages, node %d\n",
278		 start_page, nr_pages, node);
279	pr_debug(" -> map %lx..%lx\n", start, end);
280
281	for (; start < end; start += page_size) {
282		void *p;
283
284		if (vmemmap_populated(start, page_size))
285			continue;
286
287		p = vmemmap_alloc_block(page_size, node);
288		if (!p)
289			return -ENOMEM;
290
291		vmemmap_list_populate(__pa(p), start, node);
292
293		pr_debug("      * %016lx..%016lx allocated at %p\n",
294			 start, start + page_size, p);
295
296		vmemmap_create_mapping(start, page_size, __pa(p));
297	}
298
299	return 0;
300}
301#endif /* CONFIG_SPARSEMEM_VMEMMAP */
302