Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Processor capabilities determination functions.
   4 *
   5 * Copyright (C) xxxx  the Anonymous
   6 * Copyright (C) 1994 - 2006 Ralf Baechle
   7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   9 */
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/smp.h>
  14#include <linux/stddef.h>
  15#include <linux/export.h>
  16
  17#include <asm/bugs.h>
  18#include <asm/cpu.h>
  19#include <asm/cpu-features.h>
  20#include <asm/cpu-type.h>
  21#include <asm/fpu.h>
  22#include <asm/mipsregs.h>
  23#include <asm/mipsmtregs.h>
  24#include <asm/msa.h>
  25#include <asm/watch.h>
  26#include <asm/elf.h>
  27#include <asm/pgtable-bits.h>
  28#include <asm/spram.h>
  29#include <asm/traps.h>
  30#include <linux/uaccess.h>
  31
  32#include "fpu-probe.h"
  33
  34#include <asm/mach-loongson64/cpucfg-emul.h>
  35
  36/* Hardware capabilities */
  37unsigned int elf_hwcap __read_mostly;
  38EXPORT_SYMBOL_GPL(elf_hwcap);
  39
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  40static inline unsigned long cpu_get_msa_id(void)
  41{
  42	unsigned long status, msa_id;
  43
  44	status = read_c0_status();
  45	__enable_fpu(FPU_64BIT);
  46	enable_msa();
  47	msa_id = read_msa_ir();
  48	disable_msa();
  49	write_c0_status(status);
  50	return msa_id;
  51}
  52
  53static int mips_dsp_disabled;
  54
  55static int __init dsp_disable(char *s)
  56{
  57	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
  58	mips_dsp_disabled = 1;
  59
  60	return 1;
  61}
  62
  63__setup("nodsp", dsp_disable);
  64
  65static int mips_htw_disabled;
  66
  67static int __init htw_disable(char *s)
  68{
  69	mips_htw_disabled = 1;
  70	cpu_data[0].options &= ~MIPS_CPU_HTW;
  71	write_c0_pwctl(read_c0_pwctl() &
  72		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
  73
  74	return 1;
  75}
  76
  77__setup("nohtw", htw_disable);
  78
  79static int mips_ftlb_disabled;
  80static int mips_has_ftlb_configured;
  81
  82enum ftlb_flags {
  83	FTLB_EN		= 1 << 0,
  84	FTLB_SET_PROB	= 1 << 1,
  85};
  86
  87static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
  88
  89static int __init ftlb_disable(char *s)
  90{
  91	unsigned int config4, mmuextdef;
  92
  93	/*
  94	 * If the core hasn't done any FTLB configuration, there is nothing
  95	 * for us to do here.
  96	 */
  97	if (!mips_has_ftlb_configured)
  98		return 1;
  99
 100	/* Disable it in the boot cpu */
 101	if (set_ftlb_enable(&cpu_data[0], 0)) {
 102		pr_warn("Can't turn FTLB off\n");
 103		return 1;
 104	}
 105
 106	config4 = read_c0_config4();
 107
 108	/* Check that FTLB has been disabled */
 109	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 110	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 111	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 112		/* This should never happen */
 113		pr_warn("FTLB could not be disabled!\n");
 114		return 1;
 115	}
 116
 117	mips_ftlb_disabled = 1;
 118	mips_has_ftlb_configured = 0;
 119
 120	/*
 121	 * noftlb is mainly used for debug purposes so print
 122	 * an informative message instead of using pr_debug()
 123	 */
 124	pr_info("FTLB has been disabled\n");
 125
 126	/*
 127	 * Some of these bits are duplicated in the decode_config4.
 128	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 129	 * once FTLB has been disabled so undo what decode_config4 did.
 130	 */
 131	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 132			       cpu_data[0].tlbsizeftlbsets;
 133	cpu_data[0].tlbsizeftlbsets = 0;
 134	cpu_data[0].tlbsizeftlbways = 0;
 135
 136	return 1;
 137}
 138
 139__setup("noftlb", ftlb_disable);
 140
 141/*
 142 * Check if the CPU has per tc perf counters
 143 */
 144static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
 145{
 146	if (read_c0_config7() & MTI_CONF7_PTC)
 147		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
 148}
 149
 150static inline void check_errata(void)
 151{
 152	struct cpuinfo_mips *c = &current_cpu_data;
 153
 154	switch (current_cpu_type()) {
 155	case CPU_34K:
 156		/*
 157		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 158		 * This code only handles VPE0, any SMP/RTOS code
 159		 * making use of VPE1 will be responsible for that VPE.
 160		 */
 161		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 162			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 163		break;
 164	default:
 165		break;
 166	}
 167}
 168
 169void __init check_bugs32(void)
 170{
 171	check_errata();
 172}
 173
 174/*
 175 * Probe whether cpu has config register by trying to play with
 176 * alternate cache bit and see whether it matters.
 177 * It's used by cpu_probe to distinguish between R3000A and R3081.
 178 */
 179static inline int cpu_has_confreg(void)
 180{
 181#ifdef CONFIG_CPU_R3000
 182	extern unsigned long r3k_cache_size(unsigned long);
 183	unsigned long size1, size2;
 184	unsigned long cfg = read_c0_conf();
 185
 186	size1 = r3k_cache_size(ST0_ISC);
 187	write_c0_conf(cfg ^ R30XX_CONF_AC);
 188	size2 = r3k_cache_size(ST0_ISC);
 189	write_c0_conf(cfg);
 190	return size1 != size2;
 191#else
 192	return 0;
 193#endif
 194}
 195
 196static inline void set_elf_platform(int cpu, const char *plat)
 197{
 198	if (cpu == 0)
 199		__elf_platform = plat;
 200}
 201
 202static inline void set_elf_base_platform(const char *plat)
 203{
 204	if (__elf_base_platform == NULL) {
 205		__elf_base_platform = plat;
 206	}
 207}
 208
 209static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 210{
 211#ifdef __NEED_VMBITS_PROBE
 212	write_c0_entryhi(0x3fffffffffffe000ULL);
 213	back_to_back_c0_hazard();
 214	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 215#endif
 216}
 217
 218static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 219{
 220	switch (isa) {
 221	case MIPS_CPU_ISA_M64R5:
 222		c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
 223		set_elf_base_platform("mips64r5");
 224		fallthrough;
 225	case MIPS_CPU_ISA_M64R2:
 226		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 227		set_elf_base_platform("mips64r2");
 228		fallthrough;
 229	case MIPS_CPU_ISA_M64R1:
 230		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 231		set_elf_base_platform("mips64");
 232		fallthrough;
 233	case MIPS_CPU_ISA_V:
 234		c->isa_level |= MIPS_CPU_ISA_V;
 235		set_elf_base_platform("mips5");
 236		fallthrough;
 237	case MIPS_CPU_ISA_IV:
 238		c->isa_level |= MIPS_CPU_ISA_IV;
 239		set_elf_base_platform("mips4");
 240		fallthrough;
 241	case MIPS_CPU_ISA_III:
 242		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 243		set_elf_base_platform("mips3");
 244		break;
 245
 246	/* R6 incompatible with everything else */
 247	case MIPS_CPU_ISA_M64R6:
 248		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 249		set_elf_base_platform("mips64r6");
 250		fallthrough;
 251	case MIPS_CPU_ISA_M32R6:
 252		c->isa_level |= MIPS_CPU_ISA_M32R6;
 253		set_elf_base_platform("mips32r6");
 254		/* Break here so we don't add incompatible ISAs */
 255		break;
 256	case MIPS_CPU_ISA_M32R5:
 257		c->isa_level |= MIPS_CPU_ISA_M32R5;
 258		set_elf_base_platform("mips32r5");
 259		fallthrough;
 260	case MIPS_CPU_ISA_M32R2:
 261		c->isa_level |= MIPS_CPU_ISA_M32R2;
 262		set_elf_base_platform("mips32r2");
 263		fallthrough;
 264	case MIPS_CPU_ISA_M32R1:
 265		c->isa_level |= MIPS_CPU_ISA_M32R1;
 266		set_elf_base_platform("mips32");
 267		fallthrough;
 268	case MIPS_CPU_ISA_II:
 269		c->isa_level |= MIPS_CPU_ISA_II;
 270		set_elf_base_platform("mips2");
 271		break;
 272	}
 273}
 274
 275static char unknown_isa[] = KERN_ERR \
 276	"Unsupported ISA type, c0.config0: %d.";
 277
 278static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 279{
 280
 281	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 282
 283	/*
 284	 * 0 = All TLBWR instructions go to FTLB
 285	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 286	 * FTLB and 1 goes to the VTLB.
 287	 * 2 = 7:1: As above with 7:1 ratio.
 288	 * 3 = 3:1: As above with 3:1 ratio.
 289	 *
 290	 * Use the linear midpoint as the probability threshold.
 291	 */
 292	if (probability >= 12)
 293		return 1;
 294	else if (probability >= 6)
 295		return 2;
 296	else
 297		/*
 298		 * So FTLB is less than 4 times bigger than VTLB.
 299		 * A 3:1 ratio can still be useful though.
 300		 */
 301		return 3;
 302}
 303
 304static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 305{
 306	unsigned int config;
 307
 308	/* It's implementation dependent how the FTLB can be enabled */
 309	switch (c->cputype) {
 310	case CPU_PROAPTIV:
 311	case CPU_P5600:
 312	case CPU_P6600:
 313		/* proAptiv & related cores use Config6 to enable the FTLB */
 314		config = read_c0_config6();
 315
 316		if (flags & FTLB_EN)
 317			config |= MTI_CONF6_FTLBEN;
 318		else
 319			config &= ~MTI_CONF6_FTLBEN;
 320
 321		if (flags & FTLB_SET_PROB) {
 322			config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
 323			config |= calculate_ftlb_probability(c)
 324				  << MTI_CONF6_FTLBP_SHIFT;
 325		}
 326
 327		write_c0_config6(config);
 328		back_to_back_c0_hazard();
 329		break;
 330	case CPU_I6400:
 331	case CPU_I6500:
 332		/* There's no way to disable the FTLB */
 333		if (!(flags & FTLB_EN))
 334			return 1;
 335		return 0;
 336	case CPU_LOONGSON64:
 337		/* Flush ITLB, DTLB, VTLB and FTLB */
 338		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 339			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 340		/* Loongson-3 cores use Config6 to enable the FTLB */
 341		config = read_c0_config6();
 342		if (flags & FTLB_EN)
 343			/* Enable FTLB */
 344			write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
 345		else
 346			/* Disable FTLB */
 347			write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
 348		break;
 349	default:
 350		return 1;
 351	}
 352
 353	return 0;
 354}
 355
 356static int mm_config(struct cpuinfo_mips *c)
 357{
 358	unsigned int config0, update, mm;
 359
 360	config0 = read_c0_config();
 361	mm = config0 & MIPS_CONF_MM;
 362
 363	/*
 364	 * It's implementation dependent what type of write-merge is supported
 365	 * and whether it can be enabled/disabled. If it is settable lets make
 366	 * the merging allowed by default. Some platforms might have
 367	 * write-through caching unsupported. In this case just ignore the
 368	 * CP0.Config.MM bit field value.
 369	 */
 370	switch (c->cputype) {
 371	case CPU_24K:
 372	case CPU_34K:
 373	case CPU_74K:
 374	case CPU_P5600:
 375	case CPU_P6600:
 376		c->options |= MIPS_CPU_MM_FULL;
 377		update = MIPS_CONF_MM_FULL;
 378		break;
 379	case CPU_1004K:
 380	case CPU_1074K:
 381	case CPU_INTERAPTIV:
 382	case CPU_PROAPTIV:
 383		mm = 0;
 384		fallthrough;
 385	default:
 386		update = 0;
 387		break;
 388	}
 389
 390	if (update) {
 391		config0 = (config0 & ~MIPS_CONF_MM) | update;
 392		write_c0_config(config0);
 393	} else if (mm == MIPS_CONF_MM_SYSAD) {
 394		c->options |= MIPS_CPU_MM_SYSAD;
 395	} else if (mm == MIPS_CONF_MM_FULL) {
 396		c->options |= MIPS_CPU_MM_FULL;
 397	}
 398
 399	return 0;
 400}
 401
 402static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 403{
 404	unsigned int config0;
 405	int isa, mt;
 406
 407	config0 = read_c0_config();
 408
 409	/*
 410	 * Look for Standard TLB or Dual VTLB and FTLB
 411	 */
 412	mt = config0 & MIPS_CONF_MT;
 413	if (mt == MIPS_CONF_MT_TLB)
 414		c->options |= MIPS_CPU_TLB;
 415	else if (mt == MIPS_CONF_MT_FTLB)
 416		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 417
 418	isa = (config0 & MIPS_CONF_AT) >> 13;
 419	switch (isa) {
 420	case 0:
 421		switch ((config0 & MIPS_CONF_AR) >> 10) {
 422		case 0:
 423			set_isa(c, MIPS_CPU_ISA_M32R1);
 424			break;
 425		case 1:
 426			set_isa(c, MIPS_CPU_ISA_M32R2);
 427			break;
 428		case 2:
 429			set_isa(c, MIPS_CPU_ISA_M32R6);
 430			break;
 431		default:
 432			goto unknown;
 433		}
 434		break;
 435	case 2:
 436		switch ((config0 & MIPS_CONF_AR) >> 10) {
 437		case 0:
 438			set_isa(c, MIPS_CPU_ISA_M64R1);
 439			break;
 440		case 1:
 441			set_isa(c, MIPS_CPU_ISA_M64R2);
 442			break;
 443		case 2:
 444			set_isa(c, MIPS_CPU_ISA_M64R6);
 445			break;
 446		default:
 447			goto unknown;
 448		}
 449		break;
 450	default:
 451		goto unknown;
 452	}
 453
 454	return config0 & MIPS_CONF_M;
 455
 456unknown:
 457	panic(unknown_isa, config0);
 458}
 459
 460static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 461{
 462	unsigned int config1;
 463
 464	config1 = read_c0_config1();
 465
 466	if (config1 & MIPS_CONF1_MD)
 467		c->ases |= MIPS_ASE_MDMX;
 468	if (config1 & MIPS_CONF1_PC)
 469		c->options |= MIPS_CPU_PERF;
 470	if (config1 & MIPS_CONF1_WR)
 471		c->options |= MIPS_CPU_WATCH;
 472	if (config1 & MIPS_CONF1_CA)
 473		c->ases |= MIPS_ASE_MIPS16;
 474	if (config1 & MIPS_CONF1_EP)
 475		c->options |= MIPS_CPU_EJTAG;
 476	if (config1 & MIPS_CONF1_FP) {
 477		c->options |= MIPS_CPU_FPU;
 478		c->options |= MIPS_CPU_32FPR;
 479	}
 480	if (cpu_has_tlb) {
 481		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 482		c->tlbsizevtlb = c->tlbsize;
 483		c->tlbsizeftlbsets = 0;
 484	}
 485
 486	return config1 & MIPS_CONF_M;
 487}
 488
 489static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 490{
 491	unsigned int config2;
 492
 493	config2 = read_c0_config2();
 494
 495	if (config2 & MIPS_CONF2_SL)
 496		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 497
 498	return config2 & MIPS_CONF_M;
 499}
 500
 501static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 502{
 503	unsigned int config3;
 504
 505	config3 = read_c0_config3();
 506
 507	if (config3 & MIPS_CONF3_SM) {
 508		c->ases |= MIPS_ASE_SMARTMIPS;
 509		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 510	}
 511	if (config3 & MIPS_CONF3_RXI)
 512		c->options |= MIPS_CPU_RIXI;
 513	if (config3 & MIPS_CONF3_CTXTC)
 514		c->options |= MIPS_CPU_CTXTC;
 515	if (config3 & MIPS_CONF3_DSP)
 516		c->ases |= MIPS_ASE_DSP;
 517	if (config3 & MIPS_CONF3_DSP2P) {
 518		c->ases |= MIPS_ASE_DSP2P;
 519		if (cpu_has_mips_r6)
 520			c->ases |= MIPS_ASE_DSP3;
 521	}
 522	if (config3 & MIPS_CONF3_VINT)
 523		c->options |= MIPS_CPU_VINT;
 524	if (config3 & MIPS_CONF3_VEIC)
 525		c->options |= MIPS_CPU_VEIC;
 526	if (config3 & MIPS_CONF3_LPA)
 527		c->options |= MIPS_CPU_LPA;
 528	if (config3 & MIPS_CONF3_MT)
 529		c->ases |= MIPS_ASE_MIPSMT;
 530	if (config3 & MIPS_CONF3_ULRI)
 531		c->options |= MIPS_CPU_ULRI;
 532	if (config3 & MIPS_CONF3_ISA)
 533		c->options |= MIPS_CPU_MICROMIPS;
 534	if (config3 & MIPS_CONF3_VZ)
 535		c->ases |= MIPS_ASE_VZ;
 536	if (config3 & MIPS_CONF3_SC)
 537		c->options |= MIPS_CPU_SEGMENTS;
 538	if (config3 & MIPS_CONF3_BI)
 539		c->options |= MIPS_CPU_BADINSTR;
 540	if (config3 & MIPS_CONF3_BP)
 541		c->options |= MIPS_CPU_BADINSTRP;
 542	if (config3 & MIPS_CONF3_MSA)
 543		c->ases |= MIPS_ASE_MSA;
 544	if (config3 & MIPS_CONF3_PW) {
 545		c->htw_seq = 0;
 546		c->options |= MIPS_CPU_HTW;
 547	}
 548	if (config3 & MIPS_CONF3_CDMM)
 549		c->options |= MIPS_CPU_CDMM;
 550	if (config3 & MIPS_CONF3_SP)
 551		c->options |= MIPS_CPU_SP;
 552
 553	return config3 & MIPS_CONF_M;
 554}
 555
 556static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 557{
 558	unsigned int config4;
 559	unsigned int newcf4;
 560	unsigned int mmuextdef;
 561	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 562	unsigned long asid_mask;
 563
 564	config4 = read_c0_config4();
 565
 566	if (cpu_has_tlb) {
 567		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 568			c->options |= MIPS_CPU_TLBINV;
 569
 570		/*
 571		 * R6 has dropped the MMUExtDef field from config4.
 572		 * On R6 the fields always describe the FTLB, and only if it is
 573		 * present according to Config.MT.
 574		 */
 575		if (!cpu_has_mips_r6)
 576			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 577		else if (cpu_has_ftlb)
 578			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 579		else
 580			mmuextdef = 0;
 581
 582		switch (mmuextdef) {
 583		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 584			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 585			c->tlbsizevtlb = c->tlbsize;
 586			break;
 587		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 588			c->tlbsizevtlb +=
 589				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 590				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 591			c->tlbsize = c->tlbsizevtlb;
 592			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 593			fallthrough;
 594		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 595			if (mips_ftlb_disabled)
 596				break;
 597			newcf4 = (config4 & ~ftlb_page) |
 598				(page_size_ftlb(mmuextdef) <<
 599				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 600			write_c0_config4(newcf4);
 601			back_to_back_c0_hazard();
 602			config4 = read_c0_config4();
 603			if (config4 != newcf4) {
 604				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 605				       PAGE_SIZE, config4);
 606				/* Switch FTLB off */
 607				set_ftlb_enable(c, 0);
 608				mips_ftlb_disabled = 1;
 609				break;
 610			}
 611			c->tlbsizeftlbsets = 1 <<
 612				((config4 & MIPS_CONF4_FTLBSETS) >>
 613				 MIPS_CONF4_FTLBSETS_SHIFT);
 614			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 615					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 616			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 617			mips_has_ftlb_configured = 1;
 618			break;
 619		}
 620	}
 621
 622	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 623				>> MIPS_CONF4_KSCREXIST_SHIFT;
 624
 625	asid_mask = MIPS_ENTRYHI_ASID;
 626	if (config4 & MIPS_CONF4_AE)
 627		asid_mask |= MIPS_ENTRYHI_ASIDX;
 628	set_cpu_asid_mask(c, asid_mask);
 629
 630	/*
 631	 * Warn if the computed ASID mask doesn't match the mask the kernel
 632	 * is built for. This may indicate either a serious problem or an
 633	 * easy optimisation opportunity, but either way should be addressed.
 634	 */
 635	WARN_ON(asid_mask != cpu_asid_mask(c));
 636
 637	return config4 & MIPS_CONF_M;
 638}
 639
 640static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 641{
 642	unsigned int config5, max_mmid_width;
 643	unsigned long asid_mask;
 644
 645	config5 = read_c0_config5();
 646	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 647
 648	if (cpu_has_mips_r6) {
 649		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
 650			config5 |= MIPS_CONF5_MI;
 651		else
 652			config5 &= ~MIPS_CONF5_MI;
 653	}
 654
 655	write_c0_config5(config5);
 656
 657	if (config5 & MIPS_CONF5_EVA)
 658		c->options |= MIPS_CPU_EVA;
 659	if (config5 & MIPS_CONF5_MRP)
 660		c->options |= MIPS_CPU_MAAR;
 661	if (config5 & MIPS_CONF5_LLB)
 662		c->options |= MIPS_CPU_RW_LLB;
 663	if (config5 & MIPS_CONF5_MVH)
 664		c->options |= MIPS_CPU_MVH;
 665	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 666		c->options |= MIPS_CPU_VP;
 667	if (config5 & MIPS_CONF5_CA2)
 668		c->ases |= MIPS_ASE_MIPS16E2;
 669
 670	if (config5 & MIPS_CONF5_CRCP)
 671		elf_hwcap |= HWCAP_MIPS_CRC32;
 672
 673	if (cpu_has_mips_r6) {
 674		/* Ensure the write to config5 above takes effect */
 675		back_to_back_c0_hazard();
 676
 677		/* Check whether we successfully enabled MMID support */
 678		config5 = read_c0_config5();
 679		if (config5 & MIPS_CONF5_MI)
 680			c->options |= MIPS_CPU_MMID;
 681
 682		/*
 683		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
 684		 * for the CPU we're running on, or if CPUs in an SMP system
 685		 * have inconsistent MMID support.
 686		 */
 687		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
 688
 689		if (cpu_has_mmid) {
 690			write_c0_memorymapid(~0ul);
 691			back_to_back_c0_hazard();
 692			asid_mask = read_c0_memorymapid();
 693
 694			/*
 695			 * We maintain a bitmap to track MMID allocation, and
 696			 * need a sensible upper bound on the size of that
 697			 * bitmap. The initial CPU with MMID support (I6500)
 698			 * supports 16 bit MMIDs, which gives us an 8KiB
 699			 * bitmap. The architecture recommends that hardware
 700			 * support 32 bit MMIDs, which would give us a 512MiB
 701			 * bitmap - that's too big in most cases.
 702			 *
 703			 * Cap MMID width at 16 bits for now & we can revisit
 704			 * this if & when hardware supports anything wider.
 705			 */
 706			max_mmid_width = 16;
 707			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
 708				pr_info("Capping MMID width at %d bits",
 709					max_mmid_width);
 710				asid_mask = GENMASK(max_mmid_width - 1, 0);
 711			}
 712
 713			set_cpu_asid_mask(c, asid_mask);
 714		}
 715	}
 716
 717	return config5 & MIPS_CONF_M;
 718}
 719
 720static void decode_configs(struct cpuinfo_mips *c)
 721{
 722	int ok;
 723
 724	/* MIPS32 or MIPS64 compliant CPU.  */
 725	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 726		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 727
 728	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 729
 730	/* Enable FTLB if present and not disabled */
 731	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
 732
 733	ok = decode_config0(c);			/* Read Config registers.  */
 734	BUG_ON(!ok);				/* Arch spec violation!	 */
 735	if (ok)
 736		ok = decode_config1(c);
 737	if (ok)
 738		ok = decode_config2(c);
 739	if (ok)
 740		ok = decode_config3(c);
 741	if (ok)
 742		ok = decode_config4(c);
 743	if (ok)
 744		ok = decode_config5(c);
 745
 746	/* Probe the EBase.WG bit */
 747	if (cpu_has_mips_r2_r6) {
 748		u64 ebase;
 749		unsigned int status;
 750
 751		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
 752		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
 753					 : (s32)read_c0_ebase();
 754		if (ebase & MIPS_EBASE_WG) {
 755			/* WG bit already set, we can avoid the clumsy probe */
 756			c->options |= MIPS_CPU_EBASE_WG;
 757		} else {
 758			/* Its UNDEFINED to change EBase while BEV=0 */
 759			status = read_c0_status();
 760			write_c0_status(status | ST0_BEV);
 761			irq_enable_hazard();
 762			/*
 763			 * On pre-r6 cores, this may well clobber the upper bits
 764			 * of EBase. This is hard to avoid without potentially
 765			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
 766			 */
 767			if (cpu_has_mips64r6)
 768				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
 769			else
 770				write_c0_ebase(ebase | MIPS_EBASE_WG);
 771			back_to_back_c0_hazard();
 772			/* Restore BEV */
 773			write_c0_status(status);
 774			if (read_c0_ebase() & MIPS_EBASE_WG) {
 775				c->options |= MIPS_CPU_EBASE_WG;
 776				write_c0_ebase(ebase);
 777			}
 778		}
 779	}
 780
 781	/* configure the FTLB write probability */
 782	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
 783
 784	mips_probe_watch_registers(c);
 785
 786#ifndef CONFIG_MIPS_CPS
 787	if (cpu_has_mips_r2_r6) {
 788		unsigned int core;
 789
 790		core = get_ebase_cpunum();
 791		if (cpu_has_mipsmt)
 792			core >>= fls(core_nvpes()) - 1;
 793		cpu_set_core(c, core);
 794	}
 795#endif
 796}
 797
 798/*
 799 * Probe for certain guest capabilities by writing config bits and reading back.
 800 * Finally write back the original value.
 801 */
 802#define probe_gc0_config(name, maxconf, bits)				\
 803do {									\
 804	unsigned int tmp;						\
 805	tmp = read_gc0_##name();					\
 806	write_gc0_##name(tmp | (bits));					\
 807	back_to_back_c0_hazard();					\
 808	maxconf = read_gc0_##name();					\
 809	write_gc0_##name(tmp);						\
 810} while (0)
 811
 812/*
 813 * Probe for dynamic guest capabilities by changing certain config bits and
 814 * reading back to see if they change. Finally write back the original value.
 815 */
 816#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
 817do {									\
 818	maxconf = read_gc0_##name();					\
 819	write_gc0_##name(maxconf ^ (bits));				\
 820	back_to_back_c0_hazard();					\
 821	dynconf = maxconf ^ read_gc0_##name();				\
 822	write_gc0_##name(maxconf);					\
 823	maxconf |= dynconf;						\
 824} while (0)
 825
 826static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
 827{
 828	unsigned int config0;
 829
 830	probe_gc0_config(config, config0, MIPS_CONF_M);
 831
 832	if (config0 & MIPS_CONF_M)
 833		c->guest.conf |= BIT(1);
 834	return config0 & MIPS_CONF_M;
 835}
 836
 837static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
 838{
 839	unsigned int config1, config1_dyn;
 840
 841	probe_gc0_config_dyn(config1, config1, config1_dyn,
 842			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
 843			     MIPS_CONF1_FP);
 844
 845	if (config1 & MIPS_CONF1_FP)
 846		c->guest.options |= MIPS_CPU_FPU;
 847	if (config1_dyn & MIPS_CONF1_FP)
 848		c->guest.options_dyn |= MIPS_CPU_FPU;
 849
 850	if (config1 & MIPS_CONF1_WR)
 851		c->guest.options |= MIPS_CPU_WATCH;
 852	if (config1_dyn & MIPS_CONF1_WR)
 853		c->guest.options_dyn |= MIPS_CPU_WATCH;
 854
 855	if (config1 & MIPS_CONF1_PC)
 856		c->guest.options |= MIPS_CPU_PERF;
 857	if (config1_dyn & MIPS_CONF1_PC)
 858		c->guest.options_dyn |= MIPS_CPU_PERF;
 859
 860	if (config1 & MIPS_CONF_M)
 861		c->guest.conf |= BIT(2);
 862	return config1 & MIPS_CONF_M;
 863}
 864
 865static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
 866{
 867	unsigned int config2;
 868
 869	probe_gc0_config(config2, config2, MIPS_CONF_M);
 870
 871	if (config2 & MIPS_CONF_M)
 872		c->guest.conf |= BIT(3);
 873	return config2 & MIPS_CONF_M;
 874}
 875
 876static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
 877{
 878	unsigned int config3, config3_dyn;
 879
 880	probe_gc0_config_dyn(config3, config3, config3_dyn,
 881			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
 882			     MIPS_CONF3_CTXTC);
 883
 884	if (config3 & MIPS_CONF3_CTXTC)
 885		c->guest.options |= MIPS_CPU_CTXTC;
 886	if (config3_dyn & MIPS_CONF3_CTXTC)
 887		c->guest.options_dyn |= MIPS_CPU_CTXTC;
 888
 889	if (config3 & MIPS_CONF3_PW)
 890		c->guest.options |= MIPS_CPU_HTW;
 891
 892	if (config3 & MIPS_CONF3_ULRI)
 893		c->guest.options |= MIPS_CPU_ULRI;
 894
 895	if (config3 & MIPS_CONF3_SC)
 896		c->guest.options |= MIPS_CPU_SEGMENTS;
 897
 898	if (config3 & MIPS_CONF3_BI)
 899		c->guest.options |= MIPS_CPU_BADINSTR;
 900	if (config3 & MIPS_CONF3_BP)
 901		c->guest.options |= MIPS_CPU_BADINSTRP;
 902
 903	if (config3 & MIPS_CONF3_MSA)
 904		c->guest.ases |= MIPS_ASE_MSA;
 905	if (config3_dyn & MIPS_CONF3_MSA)
 906		c->guest.ases_dyn |= MIPS_ASE_MSA;
 907
 908	if (config3 & MIPS_CONF_M)
 909		c->guest.conf |= BIT(4);
 910	return config3 & MIPS_CONF_M;
 911}
 912
 913static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
 914{
 915	unsigned int config4;
 916
 917	probe_gc0_config(config4, config4,
 918			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
 919
 920	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 921				>> MIPS_CONF4_KSCREXIST_SHIFT;
 922
 923	if (config4 & MIPS_CONF_M)
 924		c->guest.conf |= BIT(5);
 925	return config4 & MIPS_CONF_M;
 926}
 927
 928static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
 929{
 930	unsigned int config5, config5_dyn;
 931
 932	probe_gc0_config_dyn(config5, config5, config5_dyn,
 933			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
 934
 935	if (config5 & MIPS_CONF5_MRP)
 936		c->guest.options |= MIPS_CPU_MAAR;
 937	if (config5_dyn & MIPS_CONF5_MRP)
 938		c->guest.options_dyn |= MIPS_CPU_MAAR;
 939
 940	if (config5 & MIPS_CONF5_LLB)
 941		c->guest.options |= MIPS_CPU_RW_LLB;
 942
 943	if (config5 & MIPS_CONF5_MVH)
 944		c->guest.options |= MIPS_CPU_MVH;
 945
 946	if (config5 & MIPS_CONF_M)
 947		c->guest.conf |= BIT(6);
 948	return config5 & MIPS_CONF_M;
 949}
 950
 951static inline void decode_guest_configs(struct cpuinfo_mips *c)
 952{
 953	unsigned int ok;
 954
 955	ok = decode_guest_config0(c);
 956	if (ok)
 957		ok = decode_guest_config1(c);
 958	if (ok)
 959		ok = decode_guest_config2(c);
 960	if (ok)
 961		ok = decode_guest_config3(c);
 962	if (ok)
 963		ok = decode_guest_config4(c);
 964	if (ok)
 965		decode_guest_config5(c);
 966}
 967
 968static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
 969{
 970	unsigned int guestctl0, temp;
 971
 972	guestctl0 = read_c0_guestctl0();
 973
 974	if (guestctl0 & MIPS_GCTL0_G0E)
 975		c->options |= MIPS_CPU_GUESTCTL0EXT;
 976	if (guestctl0 & MIPS_GCTL0_G1)
 977		c->options |= MIPS_CPU_GUESTCTL1;
 978	if (guestctl0 & MIPS_GCTL0_G2)
 979		c->options |= MIPS_CPU_GUESTCTL2;
 980	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
 981		c->options |= MIPS_CPU_GUESTID;
 982
 983		/*
 984		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
 985		 * first, otherwise all data accesses will be fully virtualised
 986		 * as if they were performed by guest mode.
 987		 */
 988		write_c0_guestctl1(0);
 989		tlbw_use_hazard();
 990
 991		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
 992		back_to_back_c0_hazard();
 993		temp = read_c0_guestctl0();
 994
 995		if (temp & MIPS_GCTL0_DRG) {
 996			write_c0_guestctl0(guestctl0);
 997			c->options |= MIPS_CPU_DRG;
 998		}
 999	}
1000}
1001
1002static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1003{
1004	if (cpu_has_guestid) {
1005		/* determine the number of bits of GuestID available */
1006		write_c0_guestctl1(MIPS_GCTL1_ID);
1007		back_to_back_c0_hazard();
1008		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1009						>> MIPS_GCTL1_ID_SHIFT;
1010		write_c0_guestctl1(0);
1011	}
1012}
1013
1014static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1015{
1016	/* determine the number of bits of GTOffset available */
1017	write_c0_gtoffset(0xffffffff);
1018	back_to_back_c0_hazard();
1019	c->gtoffset_mask = read_c0_gtoffset();
1020	write_c0_gtoffset(0);
1021}
1022
1023static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1024{
1025	cpu_probe_guestctl0(c);
1026	if (cpu_has_guestctl1)
1027		cpu_probe_guestctl1(c);
1028
1029	cpu_probe_gtoffset(c);
1030
1031	decode_guest_configs(c);
1032}
1033
1034#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1035		| MIPS_CPU_COUNTER)
1036
1037static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1038{
1039	switch (c->processor_id & PRID_IMP_MASK) {
1040	case PRID_IMP_R2000:
1041		c->cputype = CPU_R2000;
1042		__cpu_name[cpu] = "R2000";
1043		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1044		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1045			     MIPS_CPU_NOFPUEX;
1046		if (__cpu_has_fpu())
1047			c->options |= MIPS_CPU_FPU;
1048		c->tlbsize = 64;
1049		break;
1050	case PRID_IMP_R3000:
1051		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1052			if (cpu_has_confreg()) {
1053				c->cputype = CPU_R3081E;
1054				__cpu_name[cpu] = "R3081";
1055			} else {
1056				c->cputype = CPU_R3000A;
1057				__cpu_name[cpu] = "R3000A";
1058			}
1059		} else {
1060			c->cputype = CPU_R3000;
1061			__cpu_name[cpu] = "R3000";
1062		}
1063		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1064		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1065			     MIPS_CPU_NOFPUEX;
1066		if (__cpu_has_fpu())
1067			c->options |= MIPS_CPU_FPU;
1068		c->tlbsize = 64;
1069		break;
1070	case PRID_IMP_R4000:
1071		if (read_c0_config() & CONF_SC) {
1072			if ((c->processor_id & PRID_REV_MASK) >=
1073			    PRID_REV_R4400) {
1074				c->cputype = CPU_R4400PC;
1075				__cpu_name[cpu] = "R4400PC";
1076			} else {
1077				c->cputype = CPU_R4000PC;
1078				__cpu_name[cpu] = "R4000PC";
1079			}
1080		} else {
1081			int cca = read_c0_config() & CONF_CM_CMASK;
1082			int mc;
1083
1084			/*
1085			 * SC and MC versions can't be reliably told apart,
1086			 * but only the latter support coherent caching
1087			 * modes so assume the firmware has set the KSEG0
1088			 * coherency attribute reasonably (if uncached, we
1089			 * assume SC).
1090			 */
1091			switch (cca) {
1092			case CONF_CM_CACHABLE_CE:
1093			case CONF_CM_CACHABLE_COW:
1094			case CONF_CM_CACHABLE_CUW:
1095				mc = 1;
1096				break;
1097			default:
1098				mc = 0;
1099				break;
1100			}
1101			if ((c->processor_id & PRID_REV_MASK) >=
1102			    PRID_REV_R4400) {
1103				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1104				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1105			} else {
1106				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1107				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1108			}
1109		}
1110
1111		set_isa(c, MIPS_CPU_ISA_III);
1112		c->fpu_msk31 |= FPU_CSR_CONDX;
1113		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1114			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1115			     MIPS_CPU_LLSC;
1116		c->tlbsize = 48;
1117		break;
1118	case PRID_IMP_R4300:
1119		c->cputype = CPU_R4300;
1120		__cpu_name[cpu] = "R4300";
1121		set_isa(c, MIPS_CPU_ISA_III);
1122		c->fpu_msk31 |= FPU_CSR_CONDX;
1123		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1124			     MIPS_CPU_LLSC;
1125		c->tlbsize = 32;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126		break;
1127	case PRID_IMP_R4600:
1128		c->cputype = CPU_R4600;
1129		__cpu_name[cpu] = "R4600";
1130		set_isa(c, MIPS_CPU_ISA_III);
1131		c->fpu_msk31 |= FPU_CSR_CONDX;
1132		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1133			     MIPS_CPU_LLSC;
1134		c->tlbsize = 48;
1135		break;
1136	#if 0
1137	case PRID_IMP_R4650:
1138		/*
1139		 * This processor doesn't have an MMU, so it's not
1140		 * "real easy" to run Linux on it. It is left purely
1141		 * for documentation.  Commented out because it shares
1142		 * it's c0_prid id number with the TX3900.
1143		 */
1144		c->cputype = CPU_R4650;
1145		__cpu_name[cpu] = "R4650";
1146		set_isa(c, MIPS_CPU_ISA_III);
1147		c->fpu_msk31 |= FPU_CSR_CONDX;
1148		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1149		c->tlbsize = 48;
1150		break;
1151	#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152	case PRID_IMP_R4700:
1153		c->cputype = CPU_R4700;
1154		__cpu_name[cpu] = "R4700";
1155		set_isa(c, MIPS_CPU_ISA_III);
1156		c->fpu_msk31 |= FPU_CSR_CONDX;
1157		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1158			     MIPS_CPU_LLSC;
1159		c->tlbsize = 48;
1160		break;
1161	case PRID_IMP_TX49:
1162		c->cputype = CPU_TX49XX;
1163		__cpu_name[cpu] = "R49XX";
1164		set_isa(c, MIPS_CPU_ISA_III);
1165		c->fpu_msk31 |= FPU_CSR_CONDX;
1166		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1167		if (!(c->processor_id & 0x08))
1168			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1169		c->tlbsize = 48;
1170		break;
1171	case PRID_IMP_R5000:
1172		c->cputype = CPU_R5000;
1173		__cpu_name[cpu] = "R5000";
1174		set_isa(c, MIPS_CPU_ISA_IV);
1175		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1176			     MIPS_CPU_LLSC;
1177		c->tlbsize = 48;
1178		break;
1179	case PRID_IMP_R5500:
1180		c->cputype = CPU_R5500;
1181		__cpu_name[cpu] = "R5500";
1182		set_isa(c, MIPS_CPU_ISA_IV);
1183		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1184			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1185		c->tlbsize = 48;
1186		break;
1187	case PRID_IMP_NEVADA:
1188		c->cputype = CPU_NEVADA;
1189		__cpu_name[cpu] = "Nevada";
1190		set_isa(c, MIPS_CPU_ISA_IV);
1191		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1192			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1193		c->tlbsize = 48;
1194		break;
1195	case PRID_IMP_RM7000:
1196		c->cputype = CPU_RM7000;
1197		__cpu_name[cpu] = "RM7000";
1198		set_isa(c, MIPS_CPU_ISA_IV);
1199		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1200			     MIPS_CPU_LLSC;
1201		/*
1202		 * Undocumented RM7000:	 Bit 29 in the info register of
1203		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1204		 * entries.
1205		 *
1206		 * 29	   1 =>	   64 entry JTLB
1207		 *	   0 =>	   48 entry JTLB
1208		 */
1209		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1210		break;
1211	case PRID_IMP_R10000:
1212		c->cputype = CPU_R10000;
1213		__cpu_name[cpu] = "R10000";
1214		set_isa(c, MIPS_CPU_ISA_IV);
1215		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1216			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1217			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1218			     MIPS_CPU_LLSC;
1219		c->tlbsize = 64;
1220		break;
1221	case PRID_IMP_R12000:
1222		c->cputype = CPU_R12000;
1223		__cpu_name[cpu] = "R12000";
1224		set_isa(c, MIPS_CPU_ISA_IV);
1225		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1226			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1227			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1228			     MIPS_CPU_LLSC;
1229		c->tlbsize = 64;
1230		write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1231		break;
1232	case PRID_IMP_R14000:
1233		if (((c->processor_id >> 4) & 0x0f) > 2) {
1234			c->cputype = CPU_R16000;
1235			__cpu_name[cpu] = "R16000";
1236		} else {
1237			c->cputype = CPU_R14000;
1238			__cpu_name[cpu] = "R14000";
1239		}
1240		set_isa(c, MIPS_CPU_ISA_IV);
1241		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1242			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1243			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1244			     MIPS_CPU_LLSC;
1245		c->tlbsize = 64;
1246		write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1247		break;
1248	case PRID_IMP_LOONGSON_64C:  /* Loongson-2/3 */
1249		switch (c->processor_id & PRID_REV_MASK) {
1250		case PRID_REV_LOONGSON2E:
1251			c->cputype = CPU_LOONGSON2EF;
1252			__cpu_name[cpu] = "ICT Loongson-2";
1253			set_elf_platform(cpu, "loongson2e");
1254			set_isa(c, MIPS_CPU_ISA_III);
1255			c->fpu_msk31 |= FPU_CSR_CONDX;
1256			break;
1257		case PRID_REV_LOONGSON2F:
1258			c->cputype = CPU_LOONGSON2EF;
1259			__cpu_name[cpu] = "ICT Loongson-2";
1260			set_elf_platform(cpu, "loongson2f");
1261			set_isa(c, MIPS_CPU_ISA_III);
1262			c->fpu_msk31 |= FPU_CSR_CONDX;
1263			break;
1264		case PRID_REV_LOONGSON3A_R1:
1265			c->cputype = CPU_LOONGSON64;
1266			__cpu_name[cpu] = "ICT Loongson-3";
1267			set_elf_platform(cpu, "loongson3a");
1268			set_isa(c, MIPS_CPU_ISA_M64R1);
1269			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1270				MIPS_ASE_LOONGSON_EXT);
1271			break;
1272		case PRID_REV_LOONGSON3B_R1:
1273		case PRID_REV_LOONGSON3B_R2:
1274			c->cputype = CPU_LOONGSON64;
1275			__cpu_name[cpu] = "ICT Loongson-3";
1276			set_elf_platform(cpu, "loongson3b");
1277			set_isa(c, MIPS_CPU_ISA_M64R1);
1278			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1279				MIPS_ASE_LOONGSON_EXT);
1280			break;
1281		}
1282
1283		c->options = R4K_OPTS |
1284			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1285			     MIPS_CPU_32FPR;
1286		c->tlbsize = 64;
1287		set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1288		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1289		break;
1290	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1291		decode_configs(c);
1292
1293		c->cputype = CPU_LOONGSON32;
1294
1295		switch (c->processor_id & PRID_REV_MASK) {
1296		case PRID_REV_LOONGSON1B:
1297			__cpu_name[cpu] = "Loongson 1B";
1298			break;
1299		}
1300
1301		break;
1302	}
1303}
1304
1305static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1306{
1307	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1308	switch (c->processor_id & PRID_IMP_MASK) {
1309	case PRID_IMP_QEMU_GENERIC:
1310		c->writecombine = _CACHE_UNCACHED;
1311		c->cputype = CPU_QEMU_GENERIC;
1312		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1313		break;
1314	case PRID_IMP_4KC:
1315		c->cputype = CPU_4KC;
1316		c->writecombine = _CACHE_UNCACHED;
1317		__cpu_name[cpu] = "MIPS 4Kc";
1318		break;
1319	case PRID_IMP_4KEC:
1320	case PRID_IMP_4KECR2:
1321		c->cputype = CPU_4KEC;
1322		c->writecombine = _CACHE_UNCACHED;
1323		__cpu_name[cpu] = "MIPS 4KEc";
1324		break;
1325	case PRID_IMP_4KSC:
1326	case PRID_IMP_4KSD:
1327		c->cputype = CPU_4KSC;
1328		c->writecombine = _CACHE_UNCACHED;
1329		__cpu_name[cpu] = "MIPS 4KSc";
1330		break;
1331	case PRID_IMP_5KC:
1332		c->cputype = CPU_5KC;
1333		c->writecombine = _CACHE_UNCACHED;
1334		__cpu_name[cpu] = "MIPS 5Kc";
1335		break;
1336	case PRID_IMP_5KE:
1337		c->cputype = CPU_5KE;
1338		c->writecombine = _CACHE_UNCACHED;
1339		__cpu_name[cpu] = "MIPS 5KE";
1340		break;
1341	case PRID_IMP_20KC:
1342		c->cputype = CPU_20KC;
1343		c->writecombine = _CACHE_UNCACHED;
1344		__cpu_name[cpu] = "MIPS 20Kc";
1345		break;
1346	case PRID_IMP_24K:
1347		c->cputype = CPU_24K;
1348		c->writecombine = _CACHE_UNCACHED;
1349		__cpu_name[cpu] = "MIPS 24Kc";
1350		break;
1351	case PRID_IMP_24KE:
1352		c->cputype = CPU_24K;
1353		c->writecombine = _CACHE_UNCACHED;
1354		__cpu_name[cpu] = "MIPS 24KEc";
1355		break;
1356	case PRID_IMP_25KF:
1357		c->cputype = CPU_25KF;
1358		c->writecombine = _CACHE_UNCACHED;
1359		__cpu_name[cpu] = "MIPS 25Kc";
1360		break;
1361	case PRID_IMP_34K:
1362		c->cputype = CPU_34K;
1363		c->writecombine = _CACHE_UNCACHED;
1364		__cpu_name[cpu] = "MIPS 34Kc";
1365		cpu_set_mt_per_tc_perf(c);
1366		break;
1367	case PRID_IMP_74K:
1368		c->cputype = CPU_74K;
1369		c->writecombine = _CACHE_UNCACHED;
1370		__cpu_name[cpu] = "MIPS 74Kc";
1371		break;
1372	case PRID_IMP_M14KC:
1373		c->cputype = CPU_M14KC;
1374		c->writecombine = _CACHE_UNCACHED;
1375		__cpu_name[cpu] = "MIPS M14Kc";
1376		break;
1377	case PRID_IMP_M14KEC:
1378		c->cputype = CPU_M14KEC;
1379		c->writecombine = _CACHE_UNCACHED;
1380		__cpu_name[cpu] = "MIPS M14KEc";
1381		break;
1382	case PRID_IMP_1004K:
1383		c->cputype = CPU_1004K;
1384		c->writecombine = _CACHE_UNCACHED;
1385		__cpu_name[cpu] = "MIPS 1004Kc";
1386		cpu_set_mt_per_tc_perf(c);
1387		break;
1388	case PRID_IMP_1074K:
1389		c->cputype = CPU_1074K;
1390		c->writecombine = _CACHE_UNCACHED;
1391		__cpu_name[cpu] = "MIPS 1074Kc";
1392		break;
1393	case PRID_IMP_INTERAPTIV_UP:
1394		c->cputype = CPU_INTERAPTIV;
1395		__cpu_name[cpu] = "MIPS interAptiv";
1396		cpu_set_mt_per_tc_perf(c);
1397		break;
1398	case PRID_IMP_INTERAPTIV_MP:
1399		c->cputype = CPU_INTERAPTIV;
1400		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1401		cpu_set_mt_per_tc_perf(c);
1402		break;
1403	case PRID_IMP_PROAPTIV_UP:
1404		c->cputype = CPU_PROAPTIV;
1405		__cpu_name[cpu] = "MIPS proAptiv";
1406		break;
1407	case PRID_IMP_PROAPTIV_MP:
1408		c->cputype = CPU_PROAPTIV;
1409		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1410		break;
1411	case PRID_IMP_P5600:
1412		c->cputype = CPU_P5600;
1413		__cpu_name[cpu] = "MIPS P5600";
1414		break;
1415	case PRID_IMP_P6600:
1416		c->cputype = CPU_P6600;
1417		__cpu_name[cpu] = "MIPS P6600";
1418		break;
1419	case PRID_IMP_I6400:
1420		c->cputype = CPU_I6400;
1421		__cpu_name[cpu] = "MIPS I6400";
1422		break;
1423	case PRID_IMP_I6500:
1424		c->cputype = CPU_I6500;
1425		__cpu_name[cpu] = "MIPS I6500";
1426		break;
1427	case PRID_IMP_M5150:
1428		c->cputype = CPU_M5150;
1429		__cpu_name[cpu] = "MIPS M5150";
1430		break;
1431	case PRID_IMP_M6250:
1432		c->cputype = CPU_M6250;
1433		__cpu_name[cpu] = "MIPS M6250";
1434		break;
1435	}
1436
1437	decode_configs(c);
1438
1439	spram_config();
1440
1441	mm_config(c);
1442
1443	switch (__get_cpu_type(c->cputype)) {
1444	case CPU_M5150:
1445	case CPU_P5600:
1446		set_isa(c, MIPS_CPU_ISA_M32R5);
1447		break;
1448	case CPU_I6500:
1449		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1450		fallthrough;
1451	case CPU_I6400:
1452		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1453		fallthrough;
1454	default:
1455		break;
1456	}
1457
1458	/* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1459	 * cache/FTLB parity exceptions.
1460	 */
1461	switch (__get_cpu_type(c->cputype)) {
1462	case CPU_PROAPTIV:
1463	case CPU_P5600:
1464	case CPU_P6600:
1465	case CPU_I6400:
1466	case CPU_I6500:
1467		c->options |= MIPS_CPU_FTLBPAREX;
1468		break;
1469	}
1470}
1471
1472static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1473{
1474	decode_configs(c);
1475	switch (c->processor_id & PRID_IMP_MASK) {
1476	case PRID_IMP_AU1_REV1:
1477	case PRID_IMP_AU1_REV2:
1478		c->cputype = CPU_ALCHEMY;
1479		switch ((c->processor_id >> 24) & 0xff) {
1480		case 0:
1481			__cpu_name[cpu] = "Au1000";
1482			break;
1483		case 1:
1484			__cpu_name[cpu] = "Au1500";
1485			break;
1486		case 2:
1487			__cpu_name[cpu] = "Au1100";
1488			break;
1489		case 3:
1490			__cpu_name[cpu] = "Au1550";
1491			break;
1492		case 4:
1493			__cpu_name[cpu] = "Au1200";
1494			if ((c->processor_id & PRID_REV_MASK) == 2)
1495				__cpu_name[cpu] = "Au1250";
1496			break;
1497		case 5:
1498			__cpu_name[cpu] = "Au1210";
1499			break;
1500		default:
1501			__cpu_name[cpu] = "Au1xxx";
1502			break;
1503		}
1504		break;
1505	}
1506}
1507
1508static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1509{
1510	decode_configs(c);
1511
1512	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1513	switch (c->processor_id & PRID_IMP_MASK) {
1514	case PRID_IMP_SB1:
1515		c->cputype = CPU_SB1;
1516		__cpu_name[cpu] = "SiByte SB1";
1517		/* FPU in pass1 is known to have issues. */
1518		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1519			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1520		break;
1521	case PRID_IMP_SB1A:
1522		c->cputype = CPU_SB1A;
1523		__cpu_name[cpu] = "SiByte SB1A";
1524		break;
1525	}
1526}
1527
1528static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1529{
1530	decode_configs(c);
1531	switch (c->processor_id & PRID_IMP_MASK) {
1532	case PRID_IMP_SR71000:
1533		c->cputype = CPU_SR71000;
1534		__cpu_name[cpu] = "Sandcraft SR71000";
1535		c->scache.ways = 8;
1536		c->tlbsize = 64;
1537		break;
1538	}
1539}
1540
1541static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1542{
1543	decode_configs(c);
1544	switch (c->processor_id & PRID_IMP_MASK) {
1545	case PRID_IMP_PR4450:
1546		c->cputype = CPU_PR4450;
1547		__cpu_name[cpu] = "Philips PR4450";
1548		set_isa(c, MIPS_CPU_ISA_M32R1);
1549		break;
1550	}
1551}
1552
1553static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1554{
1555	decode_configs(c);
1556	switch (c->processor_id & PRID_IMP_MASK) {
1557	case PRID_IMP_BMIPS32_REV4:
1558	case PRID_IMP_BMIPS32_REV8:
1559		c->cputype = CPU_BMIPS32;
1560		__cpu_name[cpu] = "Broadcom BMIPS32";
1561		set_elf_platform(cpu, "bmips32");
1562		break;
1563	case PRID_IMP_BMIPS3300:
1564	case PRID_IMP_BMIPS3300_ALT:
1565	case PRID_IMP_BMIPS3300_BUG:
1566		c->cputype = CPU_BMIPS3300;
1567		__cpu_name[cpu] = "Broadcom BMIPS3300";
1568		set_elf_platform(cpu, "bmips3300");
1569		reserve_exception_space(0x400, VECTORSPACING * 64);
1570		break;
1571	case PRID_IMP_BMIPS43XX: {
1572		int rev = c->processor_id & PRID_REV_MASK;
1573
1574		if (rev >= PRID_REV_BMIPS4380_LO &&
1575				rev <= PRID_REV_BMIPS4380_HI) {
1576			c->cputype = CPU_BMIPS4380;
1577			__cpu_name[cpu] = "Broadcom BMIPS4380";
1578			set_elf_platform(cpu, "bmips4380");
1579			c->options |= MIPS_CPU_RIXI;
1580			reserve_exception_space(0x400, VECTORSPACING * 64);
1581		} else {
1582			c->cputype = CPU_BMIPS4350;
1583			__cpu_name[cpu] = "Broadcom BMIPS4350";
1584			set_elf_platform(cpu, "bmips4350");
1585		}
1586		break;
1587	}
1588	case PRID_IMP_BMIPS5000:
1589	case PRID_IMP_BMIPS5200:
1590		c->cputype = CPU_BMIPS5000;
1591		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1592			__cpu_name[cpu] = "Broadcom BMIPS5200";
1593		else
1594			__cpu_name[cpu] = "Broadcom BMIPS5000";
1595		set_elf_platform(cpu, "bmips5000");
1596		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1597		reserve_exception_space(0x1000, VECTORSPACING * 64);
1598		break;
1599	}
1600}
1601
1602static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1603{
1604	decode_configs(c);
1605	switch (c->processor_id & PRID_IMP_MASK) {
1606	case PRID_IMP_CAVIUM_CN38XX:
1607	case PRID_IMP_CAVIUM_CN31XX:
1608	case PRID_IMP_CAVIUM_CN30XX:
1609		c->cputype = CPU_CAVIUM_OCTEON;
1610		__cpu_name[cpu] = "Cavium Octeon";
1611		goto platform;
1612	case PRID_IMP_CAVIUM_CN58XX:
1613	case PRID_IMP_CAVIUM_CN56XX:
1614	case PRID_IMP_CAVIUM_CN50XX:
1615	case PRID_IMP_CAVIUM_CN52XX:
1616		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1617		__cpu_name[cpu] = "Cavium Octeon+";
1618platform:
1619		set_elf_platform(cpu, "octeon");
1620		break;
1621	case PRID_IMP_CAVIUM_CN61XX:
1622	case PRID_IMP_CAVIUM_CN63XX:
1623	case PRID_IMP_CAVIUM_CN66XX:
1624	case PRID_IMP_CAVIUM_CN68XX:
1625	case PRID_IMP_CAVIUM_CNF71XX:
1626		c->cputype = CPU_CAVIUM_OCTEON2;
1627		__cpu_name[cpu] = "Cavium Octeon II";
1628		set_elf_platform(cpu, "octeon2");
1629		break;
1630	case PRID_IMP_CAVIUM_CN70XX:
1631	case PRID_IMP_CAVIUM_CN73XX:
1632	case PRID_IMP_CAVIUM_CNF75XX:
1633	case PRID_IMP_CAVIUM_CN78XX:
1634		c->cputype = CPU_CAVIUM_OCTEON3;
1635		__cpu_name[cpu] = "Cavium Octeon III";
1636		set_elf_platform(cpu, "octeon3");
1637		break;
1638	default:
1639		printk(KERN_INFO "Unknown Octeon chip!\n");
1640		c->cputype = CPU_UNKNOWN;
1641		break;
1642	}
1643}
1644
1645#ifdef CONFIG_CPU_LOONGSON64
1646#include <loongson_regs.h>
1647
1648static inline void decode_cpucfg(struct cpuinfo_mips *c)
1649{
1650	u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
1651	u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
1652	u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
1653
1654	if (cfg1 & LOONGSON_CFG1_MMI)
1655		c->ases |= MIPS_ASE_LOONGSON_MMI;
1656
1657	if (cfg2 & LOONGSON_CFG2_LEXT1)
1658		c->ases |= MIPS_ASE_LOONGSON_EXT;
1659
1660	if (cfg2 & LOONGSON_CFG2_LEXT2)
1661		c->ases |= MIPS_ASE_LOONGSON_EXT2;
1662
1663	if (cfg2 & LOONGSON_CFG2_LSPW) {
1664		c->options |= MIPS_CPU_LDPTE;
1665		c->guest.options |= MIPS_CPU_LDPTE;
1666	}
1667
1668	if (cfg3 & LOONGSON_CFG3_LCAMP)
1669		c->ases |= MIPS_ASE_LOONGSON_CAM;
1670}
1671
1672static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1673{
 
 
1674	/* All Loongson processors covered here define ExcCode 16 as GSExc. */
1675	c->options |= MIPS_CPU_GSEXCEX;
1676
1677	switch (c->processor_id & PRID_IMP_MASK) {
1678	case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
1679		switch (c->processor_id & PRID_REV_MASK) {
1680		case PRID_REV_LOONGSON2K_R1_0:
1681		case PRID_REV_LOONGSON2K_R1_1:
1682		case PRID_REV_LOONGSON2K_R1_2:
1683		case PRID_REV_LOONGSON2K_R1_3:
1684			c->cputype = CPU_LOONGSON64;
1685			__cpu_name[cpu] = "Loongson-2K";
1686			set_elf_platform(cpu, "gs264e");
1687			set_isa(c, MIPS_CPU_ISA_M64R2);
1688			break;
1689		}
 
1690		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
1691				MIPS_ASE_LOONGSON_EXT2);
1692		break;
1693	case PRID_IMP_LOONGSON_64C:  /* Loongson-3 Classic */
1694		switch (c->processor_id & PRID_REV_MASK) {
1695		case PRID_REV_LOONGSON3A_R2_0:
1696		case PRID_REV_LOONGSON3A_R2_1:
1697			c->cputype = CPU_LOONGSON64;
1698			__cpu_name[cpu] = "ICT Loongson-3";
1699			set_elf_platform(cpu, "loongson3a");
1700			set_isa(c, MIPS_CPU_ISA_M64R2);
1701			break;
1702		case PRID_REV_LOONGSON3A_R3_0:
1703		case PRID_REV_LOONGSON3A_R3_1:
1704			c->cputype = CPU_LOONGSON64;
1705			__cpu_name[cpu] = "ICT Loongson-3";
1706			set_elf_platform(cpu, "loongson3a");
1707			set_isa(c, MIPS_CPU_ISA_M64R2);
1708			break;
1709		}
1710		/*
1711		 * Loongson-3 Classic did not implement MIPS standard TLBINV
1712		 * but implemented TLBINVF and EHINV. As currently we're only
1713		 * using these two features, enable MIPS_CPU_TLBINV as well.
1714		 *
1715		 * Also some early Loongson-3A2000 had wrong TLB type in Config
1716		 * register, we correct it here.
1717		 */
1718		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
 
1719		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1720			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1721		c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
1722		break;
1723	case PRID_IMP_LOONGSON_64G:
1724		c->cputype = CPU_LOONGSON64;
1725		__cpu_name[cpu] = "ICT Loongson-3";
1726		set_elf_platform(cpu, "loongson3a");
1727		set_isa(c, MIPS_CPU_ISA_M64R2);
1728		decode_cpucfg(c);
 
1729		break;
1730	default:
1731		panic("Unknown Loongson Processor ID!");
1732		break;
1733	}
1734
1735	decode_configs(c);
1736}
1737#else
1738static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
1739#endif
1740
1741static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1742{
1743	decode_configs(c);
1744
1745	/*
1746	 * XBurst misses a config2 register, so config3 decode was skipped in
1747	 * decode_configs().
1748	 */
1749	decode_config3(c);
1750
1751	/* XBurst does not implement the CP0 counter. */
1752	c->options &= ~MIPS_CPU_COUNTER;
1753	BUG_ON(__builtin_constant_p(cpu_has_counter) && cpu_has_counter);
1754
1755	/* XBurst has virtually tagged icache */
1756	c->icache.flags |= MIPS_CACHE_VTAG;
1757
1758	switch (c->processor_id & PRID_IMP_MASK) {
1759
1760	/* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
1761	case PRID_IMP_XBURST_REV1:
1762
1763		/*
1764		 * The XBurst core by default attempts to avoid branch target
1765		 * buffer lookups by detecting & special casing loops. This
1766		 * feature will cause BogoMIPS and lpj calculate in error.
1767		 * Set cp0 config7 bit 4 to disable this feature.
1768		 */
1769		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1770
1771		switch (c->processor_id & PRID_COMP_MASK) {
1772
1773		/*
1774		 * The config0 register in the XBurst CPUs with a processor ID of
1775		 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1776		 * but they don't actually support this ISA.
1777		 */
1778		case PRID_COMP_INGENIC_D0:
1779			c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1780
1781			/* FPU is not properly detected on JZ4760(B). */
1782			if (c->processor_id == 0x2ed0024f)
1783				c->options |= MIPS_CPU_FPU;
1784
1785			fallthrough;
1786
1787		/*
1788		 * The config0 register in the XBurst CPUs with a processor ID of
1789		 * PRID_COMP_INGENIC_D0 or PRID_COMP_INGENIC_D1 has an abandoned
1790		 * huge page tlb mode, this mode is not compatible with the MIPS
1791		 * standard, it will cause tlbmiss and into an infinite loop
1792		 * (line 21 in the tlb-funcs.S) when starting the init process.
1793		 * After chip reset, the default is HPTLB mode, Write 0xa9000000
1794		 * to cp0 register 5 sel 4 to switch back to VTLB mode to prevent
1795		 * getting stuck.
1796		 */
1797		case PRID_COMP_INGENIC_D1:
1798			write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
1799			break;
1800
1801		default:
1802			break;
1803		}
1804		fallthrough;
1805
1806	/* XBurst®1 with MXU2.0 SIMD ISA */
1807	case PRID_IMP_XBURST_REV2:
1808		/* Ingenic uses the WA bit to achieve write-combine memory writes */
1809		c->writecombine = _CACHE_CACHABLE_WA;
1810		c->cputype = CPU_XBURST;
 
1811		__cpu_name[cpu] = "Ingenic XBurst";
1812		break;
1813
1814	/* XBurst®2 with MXU2.1 SIMD ISA */
1815	case PRID_IMP_XBURST2:
1816		c->cputype = CPU_XBURST;
1817		__cpu_name[cpu] = "Ingenic XBurst II";
1818		break;
1819
1820	default:
1821		panic("Unknown Ingenic Processor ID!");
1822		break;
1823	}
1824}
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826#ifdef CONFIG_64BIT
1827/* For use by uaccess.h */
1828u64 __ua_limit;
1829EXPORT_SYMBOL(__ua_limit);
1830#endif
1831
1832const char *__cpu_name[NR_CPUS];
1833const char *__elf_platform;
1834const char *__elf_base_platform;
1835
1836void cpu_probe(void)
1837{
1838	struct cpuinfo_mips *c = &current_cpu_data;
1839	unsigned int cpu = smp_processor_id();
1840
1841	/*
1842	 * Set a default elf platform, cpu probe may later
1843	 * overwrite it with a more precise value
1844	 */
1845	set_elf_platform(cpu, "mips");
1846
1847	c->processor_id = PRID_IMP_UNKNOWN;
1848	c->fpu_id	= FPIR_IMP_NONE;
1849	c->cputype	= CPU_UNKNOWN;
1850	c->writecombine = _CACHE_UNCACHED;
1851
1852	c->fpu_csr31	= FPU_CSR_RN;
1853	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1854
1855	c->processor_id = read_c0_prid();
1856	switch (c->processor_id & PRID_COMP_MASK) {
1857	case PRID_COMP_LEGACY:
1858		cpu_probe_legacy(c, cpu);
1859		break;
1860	case PRID_COMP_MIPS:
1861		cpu_probe_mips(c, cpu);
1862		break;
1863	case PRID_COMP_ALCHEMY:
1864		cpu_probe_alchemy(c, cpu);
1865		break;
1866	case PRID_COMP_SIBYTE:
1867		cpu_probe_sibyte(c, cpu);
1868		break;
1869	case PRID_COMP_BROADCOM:
1870		cpu_probe_broadcom(c, cpu);
1871		break;
1872	case PRID_COMP_SANDCRAFT:
1873		cpu_probe_sandcraft(c, cpu);
1874		break;
1875	case PRID_COMP_NXP:
1876		cpu_probe_nxp(c, cpu);
1877		break;
1878	case PRID_COMP_CAVIUM:
1879		cpu_probe_cavium(c, cpu);
1880		break;
1881	case PRID_COMP_LOONGSON:
1882		cpu_probe_loongson(c, cpu);
1883		break;
1884	case PRID_COMP_INGENIC_13:
1885	case PRID_COMP_INGENIC_D0:
1886	case PRID_COMP_INGENIC_D1:
1887	case PRID_COMP_INGENIC_E1:
1888		cpu_probe_ingenic(c, cpu);
1889		break;
 
 
 
1890	}
1891
1892	BUG_ON(!__cpu_name[cpu]);
1893	BUG_ON(c->cputype == CPU_UNKNOWN);
1894
1895	/*
1896	 * Platform code can force the cpu type to optimize code
1897	 * generation. In that case be sure the cpu type is correctly
1898	 * manually setup otherwise it could trigger some nasty bugs.
1899	 */
1900	BUG_ON(current_cpu_type() != c->cputype);
1901
1902	if (cpu_has_rixi) {
1903		/* Enable the RIXI exceptions */
1904		set_c0_pagegrain(PG_IEC);
1905		back_to_back_c0_hazard();
1906		/* Verify the IEC bit is set */
1907		if (read_c0_pagegrain() & PG_IEC)
1908			c->options |= MIPS_CPU_RIXIEX;
1909	}
1910
1911	if (mips_fpu_disabled)
1912		c->options &= ~MIPS_CPU_FPU;
1913
1914	if (mips_dsp_disabled)
1915		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
1916
1917	if (mips_htw_disabled) {
1918		c->options &= ~MIPS_CPU_HTW;
1919		write_c0_pwctl(read_c0_pwctl() &
1920			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
1921	}
1922
1923	if (c->options & MIPS_CPU_FPU)
1924		cpu_set_fpu_opts(c);
1925	else
1926		cpu_set_nofpu_opts(c);
1927
 
 
 
 
1928	if (cpu_has_mips_r2_r6) {
1929		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1930		/* R2 has Performance Counter Interrupt indicator */
1931		c->options |= MIPS_CPU_PCI;
1932	}
1933	else
1934		c->srsets = 1;
1935
1936	if (cpu_has_mips_r6)
1937		elf_hwcap |= HWCAP_MIPS_R6;
1938
1939	if (cpu_has_msa) {
1940		c->msa_id = cpu_get_msa_id();
1941		WARN(c->msa_id & MSA_IR_WRPF,
1942		     "Vector register partitioning unimplemented!");
1943		elf_hwcap |= HWCAP_MIPS_MSA;
1944	}
1945
1946	if (cpu_has_mips16)
1947		elf_hwcap |= HWCAP_MIPS_MIPS16;
1948
1949	if (cpu_has_mdmx)
1950		elf_hwcap |= HWCAP_MIPS_MDMX;
1951
1952	if (cpu_has_mips3d)
1953		elf_hwcap |= HWCAP_MIPS_MIPS3D;
1954
1955	if (cpu_has_smartmips)
1956		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
1957
1958	if (cpu_has_dsp)
1959		elf_hwcap |= HWCAP_MIPS_DSP;
1960
1961	if (cpu_has_dsp2)
1962		elf_hwcap |= HWCAP_MIPS_DSP2;
1963
1964	if (cpu_has_dsp3)
1965		elf_hwcap |= HWCAP_MIPS_DSP3;
1966
1967	if (cpu_has_mips16e2)
1968		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
1969
1970	if (cpu_has_loongson_mmi)
1971		elf_hwcap |= HWCAP_LOONGSON_MMI;
1972
1973	if (cpu_has_loongson_ext)
1974		elf_hwcap |= HWCAP_LOONGSON_EXT;
1975
1976	if (cpu_has_loongson_ext2)
1977		elf_hwcap |= HWCAP_LOONGSON_EXT2;
1978
1979	if (cpu_has_vz)
1980		cpu_probe_vz(c);
1981
1982	cpu_probe_vmbits(c);
1983
1984	/* Synthesize CPUCFG data if running on Loongson processors;
1985	 * no-op otherwise.
1986	 *
1987	 * This looks at previously probed features, so keep this at bottom.
1988	 */
1989	loongson3_cpucfg_synthesize_data(c);
1990
1991#ifdef CONFIG_64BIT
1992	if (cpu == 0)
1993		__ua_limit = ~((1ull << cpu_vmbits) - 1);
1994#endif
1995
1996	reserve_exception_space(0, 0x1000);
1997}
1998
1999void cpu_report(void)
2000{
2001	struct cpuinfo_mips *c = &current_cpu_data;
2002
2003	pr_info("CPU%d revision is: %08x (%s)\n",
2004		smp_processor_id(), c->processor_id, cpu_name_string());
2005	if (c->options & MIPS_CPU_FPU)
2006		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2007	if (cpu_has_msa)
2008		pr_info("MSA revision is: %08x\n", c->msa_id);
2009}
2010
2011void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2012{
2013	/* Ensure the core number fits in the field */
2014	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2015			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2016
2017	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2018	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2019}
2020
2021void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2022{
2023	/* Ensure the core number fits in the field */
2024	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2025
2026	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2027	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2028}
2029
2030void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2031{
2032	/* Ensure the VP(E) ID fits in the field */
2033	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2034
2035	/* Ensure we're not using VP(E)s without support */
2036	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2037		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2038
2039	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2040	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2041}
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Processor capabilities determination functions.
   4 *
   5 * Copyright (C) xxxx  the Anonymous
   6 * Copyright (C) 1994 - 2006 Ralf Baechle
   7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   9 */
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/smp.h>
  14#include <linux/stddef.h>
  15#include <linux/export.h>
  16
  17#include <asm/bugs.h>
  18#include <asm/cpu.h>
  19#include <asm/cpu-features.h>
  20#include <asm/cpu-type.h>
  21#include <asm/fpu.h>
  22#include <asm/mipsregs.h>
  23#include <asm/mipsmtregs.h>
  24#include <asm/msa.h>
  25#include <asm/watch.h>
  26#include <asm/elf.h>
  27#include <asm/pgtable-bits.h>
  28#include <asm/spram.h>
 
  29#include <linux/uaccess.h>
  30
 
 
  31#include <asm/mach-loongson64/cpucfg-emul.h>
  32
  33/* Hardware capabilities */
  34unsigned int elf_hwcap __read_mostly;
  35EXPORT_SYMBOL_GPL(elf_hwcap);
  36
  37#ifdef CONFIG_MIPS_FP_SUPPORT
  38
  39/*
  40 * Get the FPU Implementation/Revision.
  41 */
  42static inline unsigned long cpu_get_fpu_id(void)
  43{
  44	unsigned long tmp, fpu_id;
  45
  46	tmp = read_c0_status();
  47	__enable_fpu(FPU_AS_IS);
  48	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  49	write_c0_status(tmp);
  50	return fpu_id;
  51}
  52
  53/*
  54 * Check if the CPU has an external FPU.
  55 */
  56static inline int __cpu_has_fpu(void)
  57{
  58	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  59}
  60
  61/*
  62 * Determine the FCSR mask for FPU hardware.
  63 */
  64static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  65{
  66	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  67
  68	fcsr = c->fpu_csr31;
  69	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  70
  71	sr = read_c0_status();
  72	__enable_fpu(FPU_AS_IS);
  73
  74	fcsr0 = fcsr & mask;
  75	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  76	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  77
  78	fcsr1 = fcsr | ~mask;
  79	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  80	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  81
  82	write_32bit_cp1_register(CP1_STATUS, fcsr);
  83
  84	write_c0_status(sr);
  85
  86	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
  87}
  88
  89/*
  90 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
  91 * supported by FPU hardware.
  92 */
  93static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
  94{
  95	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
  96			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
  97			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
  98			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
  99		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
 100
 101		sr = read_c0_status();
 102		__enable_fpu(FPU_AS_IS);
 103
 104		fir = read_32bit_cp1_register(CP1_REVISION);
 105		if (fir & MIPS_FPIR_HAS2008) {
 106			fcsr = read_32bit_cp1_register(CP1_STATUS);
 107
 108			/*
 109			 * MAC2008 toolchain never landed in real world, so we're only
 110			 * testing wether it can be disabled and don't try to enabled
 111			 * it.
 112			 */
 113			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008 | FPU_CSR_MAC2008);
 114			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 115			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 116
 117			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 118			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 119			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 120
 121			write_32bit_cp1_register(CP1_STATUS, fcsr);
 122
 123			if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2)) {
 124				/*
 125				 * The bit for MAC2008 might be reused by R6 in future,
 126				 * so we only test for R2-R5.
 127				 */
 128				if (fcsr0 & FPU_CSR_MAC2008)
 129					c->options |= MIPS_CPU_MAC_2008_ONLY;
 130			}
 131
 132			if (!(fcsr0 & FPU_CSR_NAN2008))
 133				c->options |= MIPS_CPU_NAN_LEGACY;
 134			if (fcsr1 & FPU_CSR_NAN2008)
 135				c->options |= MIPS_CPU_NAN_2008;
 136
 137			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 138				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 139			else
 140				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 141
 142			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 143				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 144			else
 145				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 146		} else {
 147			c->options |= MIPS_CPU_NAN_LEGACY;
 148		}
 149
 150		write_c0_status(sr);
 151	} else {
 152		c->options |= MIPS_CPU_NAN_LEGACY;
 153	}
 154}
 155
 156/*
 157 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 158 * ABS.fmt/NEG.fmt execution mode.
 159 */
 160static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 161
 162/*
 163 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 164 * to support by the FPU emulator according to the IEEE 754 conformance
 165 * mode selected.  Note that "relaxed" straps the emulator so that it
 166 * allows 2008-NaN binaries even for legacy processors.
 167 */
 168static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 169{
 170	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 171	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 172	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 173
 174	switch (ieee754) {
 175	case STRICT:
 176		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 177				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 178				    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 179				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 180			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 181		} else {
 182			c->options |= MIPS_CPU_NAN_LEGACY;
 183			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 184		}
 185		break;
 186	case LEGACY:
 187		c->options |= MIPS_CPU_NAN_LEGACY;
 188		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 189		break;
 190	case STD2008:
 191		c->options |= MIPS_CPU_NAN_2008;
 192		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 193		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 194		break;
 195	case RELAXED:
 196		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 197		break;
 198	}
 199}
 200
 201/*
 202 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 203 * according to the "ieee754=" parameter.
 204 */
 205static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 206{
 207	switch (ieee754) {
 208	case STRICT:
 209		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 210		mips_use_nan_2008 = !!cpu_has_nan_2008;
 211		break;
 212	case LEGACY:
 213		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 214		mips_use_nan_2008 = !cpu_has_nan_legacy;
 215		break;
 216	case STD2008:
 217		mips_use_nan_legacy = !cpu_has_nan_2008;
 218		mips_use_nan_2008 = !!cpu_has_nan_2008;
 219		break;
 220	case RELAXED:
 221		mips_use_nan_legacy = true;
 222		mips_use_nan_2008 = true;
 223		break;
 224	}
 225}
 226
 227/*
 228 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 229 * settings:
 230 *
 231 * strict:  accept binaries that request a NaN encoding supported by the FPU
 232 * legacy:  only accept legacy-NaN binaries
 233 * 2008:    only accept 2008-NaN binaries
 234 * relaxed: accept any binaries regardless of whether supported by the FPU
 235 */
 236static int __init ieee754_setup(char *s)
 237{
 238	if (!s)
 239		return -1;
 240	else if (!strcmp(s, "strict"))
 241		ieee754 = STRICT;
 242	else if (!strcmp(s, "legacy"))
 243		ieee754 = LEGACY;
 244	else if (!strcmp(s, "2008"))
 245		ieee754 = STD2008;
 246	else if (!strcmp(s, "relaxed"))
 247		ieee754 = RELAXED;
 248	else
 249		return -1;
 250
 251	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 252		cpu_set_nofpu_2008(&boot_cpu_data);
 253	cpu_set_nan_2008(&boot_cpu_data);
 254
 255	return 0;
 256}
 257
 258early_param("ieee754", ieee754_setup);
 259
 260/*
 261 * Set the FIR feature flags for the FPU emulator.
 262 */
 263static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 264{
 265	u32 value;
 266
 267	value = 0;
 268	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 269			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 270			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 271			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 272		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 273	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 274			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 275			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 276		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 277	if (c->options & MIPS_CPU_NAN_2008)
 278		value |= MIPS_FPIR_HAS2008;
 279	c->fpu_id = value;
 280}
 281
 282/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 283static unsigned int mips_nofpu_msk31;
 284
 285/*
 286 * Set options for FPU hardware.
 287 */
 288static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 289{
 290	c->fpu_id = cpu_get_fpu_id();
 291	mips_nofpu_msk31 = c->fpu_msk31;
 292
 293	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 294			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 295			    MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5 |
 296			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 297		if (c->fpu_id & MIPS_FPIR_3D)
 298			c->ases |= MIPS_ASE_MIPS3D;
 299		if (c->fpu_id & MIPS_FPIR_UFRP)
 300			c->options |= MIPS_CPU_UFR;
 301		if (c->fpu_id & MIPS_FPIR_FREP)
 302			c->options |= MIPS_CPU_FRE;
 303	}
 304
 305	cpu_set_fpu_fcsr_mask(c);
 306	cpu_set_fpu_2008(c);
 307	cpu_set_nan_2008(c);
 308}
 309
 310/*
 311 * Set options for the FPU emulator.
 312 */
 313static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 314{
 315	c->options &= ~MIPS_CPU_FPU;
 316	c->fpu_msk31 = mips_nofpu_msk31;
 317
 318	cpu_set_nofpu_2008(c);
 319	cpu_set_nan_2008(c);
 320	cpu_set_nofpu_id(c);
 321}
 322
 323static int mips_fpu_disabled;
 324
 325static int __init fpu_disable(char *s)
 326{
 327	cpu_set_nofpu_opts(&boot_cpu_data);
 328	mips_fpu_disabled = 1;
 329
 330	return 1;
 331}
 332
 333__setup("nofpu", fpu_disable);
 334
 335#else /* !CONFIG_MIPS_FP_SUPPORT */
 336
 337#define mips_fpu_disabled 1
 338
 339static inline unsigned long cpu_get_fpu_id(void)
 340{
 341	return FPIR_IMP_NONE;
 342}
 343
 344static inline int __cpu_has_fpu(void)
 345{
 346	return 0;
 347}
 348
 349static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 350{
 351	/* no-op */
 352}
 353
 354static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 355{
 356	/* no-op */
 357}
 358
 359#endif /* CONFIG_MIPS_FP_SUPPORT */
 360
 361static inline unsigned long cpu_get_msa_id(void)
 362{
 363	unsigned long status, msa_id;
 364
 365	status = read_c0_status();
 366	__enable_fpu(FPU_64BIT);
 367	enable_msa();
 368	msa_id = read_msa_ir();
 369	disable_msa();
 370	write_c0_status(status);
 371	return msa_id;
 372}
 373
 374static int mips_dsp_disabled;
 375
 376static int __init dsp_disable(char *s)
 377{
 378	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 379	mips_dsp_disabled = 1;
 380
 381	return 1;
 382}
 383
 384__setup("nodsp", dsp_disable);
 385
 386static int mips_htw_disabled;
 387
 388static int __init htw_disable(char *s)
 389{
 390	mips_htw_disabled = 1;
 391	cpu_data[0].options &= ~MIPS_CPU_HTW;
 392	write_c0_pwctl(read_c0_pwctl() &
 393		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 394
 395	return 1;
 396}
 397
 398__setup("nohtw", htw_disable);
 399
 400static int mips_ftlb_disabled;
 401static int mips_has_ftlb_configured;
 402
 403enum ftlb_flags {
 404	FTLB_EN		= 1 << 0,
 405	FTLB_SET_PROB	= 1 << 1,
 406};
 407
 408static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
 409
 410static int __init ftlb_disable(char *s)
 411{
 412	unsigned int config4, mmuextdef;
 413
 414	/*
 415	 * If the core hasn't done any FTLB configuration, there is nothing
 416	 * for us to do here.
 417	 */
 418	if (!mips_has_ftlb_configured)
 419		return 1;
 420
 421	/* Disable it in the boot cpu */
 422	if (set_ftlb_enable(&cpu_data[0], 0)) {
 423		pr_warn("Can't turn FTLB off\n");
 424		return 1;
 425	}
 426
 427	config4 = read_c0_config4();
 428
 429	/* Check that FTLB has been disabled */
 430	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 431	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 432	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 433		/* This should never happen */
 434		pr_warn("FTLB could not be disabled!\n");
 435		return 1;
 436	}
 437
 438	mips_ftlb_disabled = 1;
 439	mips_has_ftlb_configured = 0;
 440
 441	/*
 442	 * noftlb is mainly used for debug purposes so print
 443	 * an informative message instead of using pr_debug()
 444	 */
 445	pr_info("FTLB has been disabled\n");
 446
 447	/*
 448	 * Some of these bits are duplicated in the decode_config4.
 449	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 450	 * once FTLB has been disabled so undo what decode_config4 did.
 451	 */
 452	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 453			       cpu_data[0].tlbsizeftlbsets;
 454	cpu_data[0].tlbsizeftlbsets = 0;
 455	cpu_data[0].tlbsizeftlbways = 0;
 456
 457	return 1;
 458}
 459
 460__setup("noftlb", ftlb_disable);
 461
 462/*
 463 * Check if the CPU has per tc perf counters
 464 */
 465static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
 466{
 467	if (read_c0_config7() & MTI_CONF7_PTC)
 468		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
 469}
 470
 471static inline void check_errata(void)
 472{
 473	struct cpuinfo_mips *c = &current_cpu_data;
 474
 475	switch (current_cpu_type()) {
 476	case CPU_34K:
 477		/*
 478		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 479		 * This code only handles VPE0, any SMP/RTOS code
 480		 * making use of VPE1 will be responsable for that VPE.
 481		 */
 482		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 483			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 484		break;
 485	default:
 486		break;
 487	}
 488}
 489
 490void __init check_bugs32(void)
 491{
 492	check_errata();
 493}
 494
 495/*
 496 * Probe whether cpu has config register by trying to play with
 497 * alternate cache bit and see whether it matters.
 498 * It's used by cpu_probe to distinguish between R3000A and R3081.
 499 */
 500static inline int cpu_has_confreg(void)
 501{
 502#ifdef CONFIG_CPU_R3000
 503	extern unsigned long r3k_cache_size(unsigned long);
 504	unsigned long size1, size2;
 505	unsigned long cfg = read_c0_conf();
 506
 507	size1 = r3k_cache_size(ST0_ISC);
 508	write_c0_conf(cfg ^ R30XX_CONF_AC);
 509	size2 = r3k_cache_size(ST0_ISC);
 510	write_c0_conf(cfg);
 511	return size1 != size2;
 512#else
 513	return 0;
 514#endif
 515}
 516
 517static inline void set_elf_platform(int cpu, const char *plat)
 518{
 519	if (cpu == 0)
 520		__elf_platform = plat;
 521}
 522
 523static inline void set_elf_base_platform(const char *plat)
 524{
 525	if (__elf_base_platform == NULL) {
 526		__elf_base_platform = plat;
 527	}
 528}
 529
 530static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 531{
 532#ifdef __NEED_VMBITS_PROBE
 533	write_c0_entryhi(0x3fffffffffffe000ULL);
 534	back_to_back_c0_hazard();
 535	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 536#endif
 537}
 538
 539static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 540{
 541	switch (isa) {
 542	case MIPS_CPU_ISA_M64R5:
 543		c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
 544		set_elf_base_platform("mips64r5");
 545		fallthrough;
 546	case MIPS_CPU_ISA_M64R2:
 547		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 548		set_elf_base_platform("mips64r2");
 549		fallthrough;
 550	case MIPS_CPU_ISA_M64R1:
 551		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 552		set_elf_base_platform("mips64");
 553		fallthrough;
 554	case MIPS_CPU_ISA_V:
 555		c->isa_level |= MIPS_CPU_ISA_V;
 556		set_elf_base_platform("mips5");
 557		fallthrough;
 558	case MIPS_CPU_ISA_IV:
 559		c->isa_level |= MIPS_CPU_ISA_IV;
 560		set_elf_base_platform("mips4");
 561		fallthrough;
 562	case MIPS_CPU_ISA_III:
 563		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 564		set_elf_base_platform("mips3");
 565		break;
 566
 567	/* R6 incompatible with everything else */
 568	case MIPS_CPU_ISA_M64R6:
 569		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 570		set_elf_base_platform("mips64r6");
 571		fallthrough;
 572	case MIPS_CPU_ISA_M32R6:
 573		c->isa_level |= MIPS_CPU_ISA_M32R6;
 574		set_elf_base_platform("mips32r6");
 575		/* Break here so we don't add incompatible ISAs */
 576		break;
 577	case MIPS_CPU_ISA_M32R5:
 578		c->isa_level |= MIPS_CPU_ISA_M32R5;
 579		set_elf_base_platform("mips32r5");
 580		fallthrough;
 581	case MIPS_CPU_ISA_M32R2:
 582		c->isa_level |= MIPS_CPU_ISA_M32R2;
 583		set_elf_base_platform("mips32r2");
 584		fallthrough;
 585	case MIPS_CPU_ISA_M32R1:
 586		c->isa_level |= MIPS_CPU_ISA_M32R1;
 587		set_elf_base_platform("mips32");
 588		fallthrough;
 589	case MIPS_CPU_ISA_II:
 590		c->isa_level |= MIPS_CPU_ISA_II;
 591		set_elf_base_platform("mips2");
 592		break;
 593	}
 594}
 595
 596static char unknown_isa[] = KERN_ERR \
 597	"Unsupported ISA type, c0.config0: %d.";
 598
 599static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 600{
 601
 602	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 603
 604	/*
 605	 * 0 = All TLBWR instructions go to FTLB
 606	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 607	 * FTLB and 1 goes to the VTLB.
 608	 * 2 = 7:1: As above with 7:1 ratio.
 609	 * 3 = 3:1: As above with 3:1 ratio.
 610	 *
 611	 * Use the linear midpoint as the probability threshold.
 612	 */
 613	if (probability >= 12)
 614		return 1;
 615	else if (probability >= 6)
 616		return 2;
 617	else
 618		/*
 619		 * So FTLB is less than 4 times bigger than VTLB.
 620		 * A 3:1 ratio can still be useful though.
 621		 */
 622		return 3;
 623}
 624
 625static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 626{
 627	unsigned int config;
 628
 629	/* It's implementation dependent how the FTLB can be enabled */
 630	switch (c->cputype) {
 631	case CPU_PROAPTIV:
 632	case CPU_P5600:
 633	case CPU_P6600:
 634		/* proAptiv & related cores use Config6 to enable the FTLB */
 635		config = read_c0_config6();
 636
 637		if (flags & FTLB_EN)
 638			config |= MTI_CONF6_FTLBEN;
 639		else
 640			config &= ~MTI_CONF6_FTLBEN;
 641
 642		if (flags & FTLB_SET_PROB) {
 643			config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
 644			config |= calculate_ftlb_probability(c)
 645				  << MTI_CONF6_FTLBP_SHIFT;
 646		}
 647
 648		write_c0_config6(config);
 649		back_to_back_c0_hazard();
 650		break;
 651	case CPU_I6400:
 652	case CPU_I6500:
 653		/* There's no way to disable the FTLB */
 654		if (!(flags & FTLB_EN))
 655			return 1;
 656		return 0;
 657	case CPU_LOONGSON64:
 658		/* Flush ITLB, DTLB, VTLB and FTLB */
 659		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 660			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 661		/* Loongson-3 cores use Config6 to enable the FTLB */
 662		config = read_c0_config6();
 663		if (flags & FTLB_EN)
 664			/* Enable FTLB */
 665			write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
 666		else
 667			/* Disable FTLB */
 668			write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
 669		break;
 670	default:
 671		return 1;
 672	}
 673
 674	return 0;
 675}
 676
 677static int mm_config(struct cpuinfo_mips *c)
 678{
 679	unsigned int config0, update, mm;
 680
 681	config0 = read_c0_config();
 682	mm = config0 & MIPS_CONF_MM;
 683
 684	/*
 685	 * It's implementation dependent what type of write-merge is supported
 686	 * and whether it can be enabled/disabled. If it is settable lets make
 687	 * the merging allowed by default. Some platforms might have
 688	 * write-through caching unsupported. In this case just ignore the
 689	 * CP0.Config.MM bit field value.
 690	 */
 691	switch (c->cputype) {
 692	case CPU_24K:
 693	case CPU_34K:
 694	case CPU_74K:
 695	case CPU_P5600:
 696	case CPU_P6600:
 697		c->options |= MIPS_CPU_MM_FULL;
 698		update = MIPS_CONF_MM_FULL;
 699		break;
 700	case CPU_1004K:
 701	case CPU_1074K:
 702	case CPU_INTERAPTIV:
 703	case CPU_PROAPTIV:
 704		mm = 0;
 705		fallthrough;
 706	default:
 707		update = 0;
 708		break;
 709	}
 710
 711	if (update) {
 712		config0 = (config0 & ~MIPS_CONF_MM) | update;
 713		write_c0_config(config0);
 714	} else if (mm == MIPS_CONF_MM_SYSAD) {
 715		c->options |= MIPS_CPU_MM_SYSAD;
 716	} else if (mm == MIPS_CONF_MM_FULL) {
 717		c->options |= MIPS_CPU_MM_FULL;
 718	}
 719
 720	return 0;
 721}
 722
 723static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 724{
 725	unsigned int config0;
 726	int isa, mt;
 727
 728	config0 = read_c0_config();
 729
 730	/*
 731	 * Look for Standard TLB or Dual VTLB and FTLB
 732	 */
 733	mt = config0 & MIPS_CONF_MT;
 734	if (mt == MIPS_CONF_MT_TLB)
 735		c->options |= MIPS_CPU_TLB;
 736	else if (mt == MIPS_CONF_MT_FTLB)
 737		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 738
 739	isa = (config0 & MIPS_CONF_AT) >> 13;
 740	switch (isa) {
 741	case 0:
 742		switch ((config0 & MIPS_CONF_AR) >> 10) {
 743		case 0:
 744			set_isa(c, MIPS_CPU_ISA_M32R1);
 745			break;
 746		case 1:
 747			set_isa(c, MIPS_CPU_ISA_M32R2);
 748			break;
 749		case 2:
 750			set_isa(c, MIPS_CPU_ISA_M32R6);
 751			break;
 752		default:
 753			goto unknown;
 754		}
 755		break;
 756	case 2:
 757		switch ((config0 & MIPS_CONF_AR) >> 10) {
 758		case 0:
 759			set_isa(c, MIPS_CPU_ISA_M64R1);
 760			break;
 761		case 1:
 762			set_isa(c, MIPS_CPU_ISA_M64R2);
 763			break;
 764		case 2:
 765			set_isa(c, MIPS_CPU_ISA_M64R6);
 766			break;
 767		default:
 768			goto unknown;
 769		}
 770		break;
 771	default:
 772		goto unknown;
 773	}
 774
 775	return config0 & MIPS_CONF_M;
 776
 777unknown:
 778	panic(unknown_isa, config0);
 779}
 780
 781static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 782{
 783	unsigned int config1;
 784
 785	config1 = read_c0_config1();
 786
 787	if (config1 & MIPS_CONF1_MD)
 788		c->ases |= MIPS_ASE_MDMX;
 789	if (config1 & MIPS_CONF1_PC)
 790		c->options |= MIPS_CPU_PERF;
 791	if (config1 & MIPS_CONF1_WR)
 792		c->options |= MIPS_CPU_WATCH;
 793	if (config1 & MIPS_CONF1_CA)
 794		c->ases |= MIPS_ASE_MIPS16;
 795	if (config1 & MIPS_CONF1_EP)
 796		c->options |= MIPS_CPU_EJTAG;
 797	if (config1 & MIPS_CONF1_FP) {
 798		c->options |= MIPS_CPU_FPU;
 799		c->options |= MIPS_CPU_32FPR;
 800	}
 801	if (cpu_has_tlb) {
 802		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 803		c->tlbsizevtlb = c->tlbsize;
 804		c->tlbsizeftlbsets = 0;
 805	}
 806
 807	return config1 & MIPS_CONF_M;
 808}
 809
 810static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 811{
 812	unsigned int config2;
 813
 814	config2 = read_c0_config2();
 815
 816	if (config2 & MIPS_CONF2_SL)
 817		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 818
 819	return config2 & MIPS_CONF_M;
 820}
 821
 822static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 823{
 824	unsigned int config3;
 825
 826	config3 = read_c0_config3();
 827
 828	if (config3 & MIPS_CONF3_SM) {
 829		c->ases |= MIPS_ASE_SMARTMIPS;
 830		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 831	}
 832	if (config3 & MIPS_CONF3_RXI)
 833		c->options |= MIPS_CPU_RIXI;
 834	if (config3 & MIPS_CONF3_CTXTC)
 835		c->options |= MIPS_CPU_CTXTC;
 836	if (config3 & MIPS_CONF3_DSP)
 837		c->ases |= MIPS_ASE_DSP;
 838	if (config3 & MIPS_CONF3_DSP2P) {
 839		c->ases |= MIPS_ASE_DSP2P;
 840		if (cpu_has_mips_r6)
 841			c->ases |= MIPS_ASE_DSP3;
 842	}
 843	if (config3 & MIPS_CONF3_VINT)
 844		c->options |= MIPS_CPU_VINT;
 845	if (config3 & MIPS_CONF3_VEIC)
 846		c->options |= MIPS_CPU_VEIC;
 847	if (config3 & MIPS_CONF3_LPA)
 848		c->options |= MIPS_CPU_LPA;
 849	if (config3 & MIPS_CONF3_MT)
 850		c->ases |= MIPS_ASE_MIPSMT;
 851	if (config3 & MIPS_CONF3_ULRI)
 852		c->options |= MIPS_CPU_ULRI;
 853	if (config3 & MIPS_CONF3_ISA)
 854		c->options |= MIPS_CPU_MICROMIPS;
 855	if (config3 & MIPS_CONF3_VZ)
 856		c->ases |= MIPS_ASE_VZ;
 857	if (config3 & MIPS_CONF3_SC)
 858		c->options |= MIPS_CPU_SEGMENTS;
 859	if (config3 & MIPS_CONF3_BI)
 860		c->options |= MIPS_CPU_BADINSTR;
 861	if (config3 & MIPS_CONF3_BP)
 862		c->options |= MIPS_CPU_BADINSTRP;
 863	if (config3 & MIPS_CONF3_MSA)
 864		c->ases |= MIPS_ASE_MSA;
 865	if (config3 & MIPS_CONF3_PW) {
 866		c->htw_seq = 0;
 867		c->options |= MIPS_CPU_HTW;
 868	}
 869	if (config3 & MIPS_CONF3_CDMM)
 870		c->options |= MIPS_CPU_CDMM;
 871	if (config3 & MIPS_CONF3_SP)
 872		c->options |= MIPS_CPU_SP;
 873
 874	return config3 & MIPS_CONF_M;
 875}
 876
 877static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 878{
 879	unsigned int config4;
 880	unsigned int newcf4;
 881	unsigned int mmuextdef;
 882	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 883	unsigned long asid_mask;
 884
 885	config4 = read_c0_config4();
 886
 887	if (cpu_has_tlb) {
 888		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 889			c->options |= MIPS_CPU_TLBINV;
 890
 891		/*
 892		 * R6 has dropped the MMUExtDef field from config4.
 893		 * On R6 the fields always describe the FTLB, and only if it is
 894		 * present according to Config.MT.
 895		 */
 896		if (!cpu_has_mips_r6)
 897			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 898		else if (cpu_has_ftlb)
 899			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 900		else
 901			mmuextdef = 0;
 902
 903		switch (mmuextdef) {
 904		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 905			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 906			c->tlbsizevtlb = c->tlbsize;
 907			break;
 908		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 909			c->tlbsizevtlb +=
 910				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 911				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 912			c->tlbsize = c->tlbsizevtlb;
 913			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 914			fallthrough;
 915		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 916			if (mips_ftlb_disabled)
 917				break;
 918			newcf4 = (config4 & ~ftlb_page) |
 919				(page_size_ftlb(mmuextdef) <<
 920				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 921			write_c0_config4(newcf4);
 922			back_to_back_c0_hazard();
 923			config4 = read_c0_config4();
 924			if (config4 != newcf4) {
 925				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 926				       PAGE_SIZE, config4);
 927				/* Switch FTLB off */
 928				set_ftlb_enable(c, 0);
 929				mips_ftlb_disabled = 1;
 930				break;
 931			}
 932			c->tlbsizeftlbsets = 1 <<
 933				((config4 & MIPS_CONF4_FTLBSETS) >>
 934				 MIPS_CONF4_FTLBSETS_SHIFT);
 935			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 936					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 937			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 938			mips_has_ftlb_configured = 1;
 939			break;
 940		}
 941	}
 942
 943	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 944				>> MIPS_CONF4_KSCREXIST_SHIFT;
 945
 946	asid_mask = MIPS_ENTRYHI_ASID;
 947	if (config4 & MIPS_CONF4_AE)
 948		asid_mask |= MIPS_ENTRYHI_ASIDX;
 949	set_cpu_asid_mask(c, asid_mask);
 950
 951	/*
 952	 * Warn if the computed ASID mask doesn't match the mask the kernel
 953	 * is built for. This may indicate either a serious problem or an
 954	 * easy optimisation opportunity, but either way should be addressed.
 955	 */
 956	WARN_ON(asid_mask != cpu_asid_mask(c));
 957
 958	return config4 & MIPS_CONF_M;
 959}
 960
 961static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 962{
 963	unsigned int config5, max_mmid_width;
 964	unsigned long asid_mask;
 965
 966	config5 = read_c0_config5();
 967	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 968
 969	if (cpu_has_mips_r6) {
 970		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
 971			config5 |= MIPS_CONF5_MI;
 972		else
 973			config5 &= ~MIPS_CONF5_MI;
 974	}
 975
 976	write_c0_config5(config5);
 977
 978	if (config5 & MIPS_CONF5_EVA)
 979		c->options |= MIPS_CPU_EVA;
 980	if (config5 & MIPS_CONF5_MRP)
 981		c->options |= MIPS_CPU_MAAR;
 982	if (config5 & MIPS_CONF5_LLB)
 983		c->options |= MIPS_CPU_RW_LLB;
 984	if (config5 & MIPS_CONF5_MVH)
 985		c->options |= MIPS_CPU_MVH;
 986	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 987		c->options |= MIPS_CPU_VP;
 988	if (config5 & MIPS_CONF5_CA2)
 989		c->ases |= MIPS_ASE_MIPS16E2;
 990
 991	if (config5 & MIPS_CONF5_CRCP)
 992		elf_hwcap |= HWCAP_MIPS_CRC32;
 993
 994	if (cpu_has_mips_r6) {
 995		/* Ensure the write to config5 above takes effect */
 996		back_to_back_c0_hazard();
 997
 998		/* Check whether we successfully enabled MMID support */
 999		config5 = read_c0_config5();
1000		if (config5 & MIPS_CONF5_MI)
1001			c->options |= MIPS_CPU_MMID;
1002
1003		/*
1004		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
1005		 * for the CPU we're running on, or if CPUs in an SMP system
1006		 * have inconsistent MMID support.
1007		 */
1008		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
1009
1010		if (cpu_has_mmid) {
1011			write_c0_memorymapid(~0ul);
1012			back_to_back_c0_hazard();
1013			asid_mask = read_c0_memorymapid();
1014
1015			/*
1016			 * We maintain a bitmap to track MMID allocation, and
1017			 * need a sensible upper bound on the size of that
1018			 * bitmap. The initial CPU with MMID support (I6500)
1019			 * supports 16 bit MMIDs, which gives us an 8KiB
1020			 * bitmap. The architecture recommends that hardware
1021			 * support 32 bit MMIDs, which would give us a 512MiB
1022			 * bitmap - that's too big in most cases.
1023			 *
1024			 * Cap MMID width at 16 bits for now & we can revisit
1025			 * this if & when hardware supports anything wider.
1026			 */
1027			max_mmid_width = 16;
1028			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
1029				pr_info("Capping MMID width at %d bits",
1030					max_mmid_width);
1031				asid_mask = GENMASK(max_mmid_width - 1, 0);
1032			}
1033
1034			set_cpu_asid_mask(c, asid_mask);
1035		}
1036	}
1037
1038	return config5 & MIPS_CONF_M;
1039}
1040
1041static void decode_configs(struct cpuinfo_mips *c)
1042{
1043	int ok;
1044
1045	/* MIPS32 or MIPS64 compliant CPU.  */
1046	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
1047		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
1048
1049	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
1050
1051	/* Enable FTLB if present and not disabled */
1052	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
1053
1054	ok = decode_config0(c);			/* Read Config registers.  */
1055	BUG_ON(!ok);				/* Arch spec violation!	 */
1056	if (ok)
1057		ok = decode_config1(c);
1058	if (ok)
1059		ok = decode_config2(c);
1060	if (ok)
1061		ok = decode_config3(c);
1062	if (ok)
1063		ok = decode_config4(c);
1064	if (ok)
1065		ok = decode_config5(c);
1066
1067	/* Probe the EBase.WG bit */
1068	if (cpu_has_mips_r2_r6) {
1069		u64 ebase;
1070		unsigned int status;
1071
1072		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
1073		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
1074					 : (s32)read_c0_ebase();
1075		if (ebase & MIPS_EBASE_WG) {
1076			/* WG bit already set, we can avoid the clumsy probe */
1077			c->options |= MIPS_CPU_EBASE_WG;
1078		} else {
1079			/* Its UNDEFINED to change EBase while BEV=0 */
1080			status = read_c0_status();
1081			write_c0_status(status | ST0_BEV);
1082			irq_enable_hazard();
1083			/*
1084			 * On pre-r6 cores, this may well clobber the upper bits
1085			 * of EBase. This is hard to avoid without potentially
1086			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
1087			 */
1088			if (cpu_has_mips64r6)
1089				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
1090			else
1091				write_c0_ebase(ebase | MIPS_EBASE_WG);
1092			back_to_back_c0_hazard();
1093			/* Restore BEV */
1094			write_c0_status(status);
1095			if (read_c0_ebase() & MIPS_EBASE_WG) {
1096				c->options |= MIPS_CPU_EBASE_WG;
1097				write_c0_ebase(ebase);
1098			}
1099		}
1100	}
1101
1102	/* configure the FTLB write probability */
1103	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
1104
1105	mips_probe_watch_registers(c);
1106
1107#ifndef CONFIG_MIPS_CPS
1108	if (cpu_has_mips_r2_r6) {
1109		unsigned int core;
1110
1111		core = get_ebase_cpunum();
1112		if (cpu_has_mipsmt)
1113			core >>= fls(core_nvpes()) - 1;
1114		cpu_set_core(c, core);
1115	}
1116#endif
1117}
1118
1119/*
1120 * Probe for certain guest capabilities by writing config bits and reading back.
1121 * Finally write back the original value.
1122 */
1123#define probe_gc0_config(name, maxconf, bits)				\
1124do {									\
1125	unsigned int tmp;						\
1126	tmp = read_gc0_##name();					\
1127	write_gc0_##name(tmp | (bits));					\
1128	back_to_back_c0_hazard();					\
1129	maxconf = read_gc0_##name();					\
1130	write_gc0_##name(tmp);						\
1131} while (0)
1132
1133/*
1134 * Probe for dynamic guest capabilities by changing certain config bits and
1135 * reading back to see if they change. Finally write back the original value.
1136 */
1137#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
1138do {									\
1139	maxconf = read_gc0_##name();					\
1140	write_gc0_##name(maxconf ^ (bits));				\
1141	back_to_back_c0_hazard();					\
1142	dynconf = maxconf ^ read_gc0_##name();				\
1143	write_gc0_##name(maxconf);					\
1144	maxconf |= dynconf;						\
1145} while (0)
1146
1147static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
1148{
1149	unsigned int config0;
1150
1151	probe_gc0_config(config, config0, MIPS_CONF_M);
1152
1153	if (config0 & MIPS_CONF_M)
1154		c->guest.conf |= BIT(1);
1155	return config0 & MIPS_CONF_M;
1156}
1157
1158static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
1159{
1160	unsigned int config1, config1_dyn;
1161
1162	probe_gc0_config_dyn(config1, config1, config1_dyn,
1163			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
1164			     MIPS_CONF1_FP);
1165
1166	if (config1 & MIPS_CONF1_FP)
1167		c->guest.options |= MIPS_CPU_FPU;
1168	if (config1_dyn & MIPS_CONF1_FP)
1169		c->guest.options_dyn |= MIPS_CPU_FPU;
1170
1171	if (config1 & MIPS_CONF1_WR)
1172		c->guest.options |= MIPS_CPU_WATCH;
1173	if (config1_dyn & MIPS_CONF1_WR)
1174		c->guest.options_dyn |= MIPS_CPU_WATCH;
1175
1176	if (config1 & MIPS_CONF1_PC)
1177		c->guest.options |= MIPS_CPU_PERF;
1178	if (config1_dyn & MIPS_CONF1_PC)
1179		c->guest.options_dyn |= MIPS_CPU_PERF;
1180
1181	if (config1 & MIPS_CONF_M)
1182		c->guest.conf |= BIT(2);
1183	return config1 & MIPS_CONF_M;
1184}
1185
1186static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
1187{
1188	unsigned int config2;
1189
1190	probe_gc0_config(config2, config2, MIPS_CONF_M);
1191
1192	if (config2 & MIPS_CONF_M)
1193		c->guest.conf |= BIT(3);
1194	return config2 & MIPS_CONF_M;
1195}
1196
1197static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1198{
1199	unsigned int config3, config3_dyn;
1200
1201	probe_gc0_config_dyn(config3, config3, config3_dyn,
1202			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
1203			     MIPS_CONF3_CTXTC);
1204
1205	if (config3 & MIPS_CONF3_CTXTC)
1206		c->guest.options |= MIPS_CPU_CTXTC;
1207	if (config3_dyn & MIPS_CONF3_CTXTC)
1208		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1209
1210	if (config3 & MIPS_CONF3_PW)
1211		c->guest.options |= MIPS_CPU_HTW;
1212
1213	if (config3 & MIPS_CONF3_ULRI)
1214		c->guest.options |= MIPS_CPU_ULRI;
1215
1216	if (config3 & MIPS_CONF3_SC)
1217		c->guest.options |= MIPS_CPU_SEGMENTS;
1218
1219	if (config3 & MIPS_CONF3_BI)
1220		c->guest.options |= MIPS_CPU_BADINSTR;
1221	if (config3 & MIPS_CONF3_BP)
1222		c->guest.options |= MIPS_CPU_BADINSTRP;
1223
1224	if (config3 & MIPS_CONF3_MSA)
1225		c->guest.ases |= MIPS_ASE_MSA;
1226	if (config3_dyn & MIPS_CONF3_MSA)
1227		c->guest.ases_dyn |= MIPS_ASE_MSA;
1228
1229	if (config3 & MIPS_CONF_M)
1230		c->guest.conf |= BIT(4);
1231	return config3 & MIPS_CONF_M;
1232}
1233
1234static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1235{
1236	unsigned int config4;
1237
1238	probe_gc0_config(config4, config4,
1239			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1240
1241	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1242				>> MIPS_CONF4_KSCREXIST_SHIFT;
1243
1244	if (config4 & MIPS_CONF_M)
1245		c->guest.conf |= BIT(5);
1246	return config4 & MIPS_CONF_M;
1247}
1248
1249static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1250{
1251	unsigned int config5, config5_dyn;
1252
1253	probe_gc0_config_dyn(config5, config5, config5_dyn,
1254			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
1255
1256	if (config5 & MIPS_CONF5_MRP)
1257		c->guest.options |= MIPS_CPU_MAAR;
1258	if (config5_dyn & MIPS_CONF5_MRP)
1259		c->guest.options_dyn |= MIPS_CPU_MAAR;
1260
1261	if (config5 & MIPS_CONF5_LLB)
1262		c->guest.options |= MIPS_CPU_RW_LLB;
1263
1264	if (config5 & MIPS_CONF5_MVH)
1265		c->guest.options |= MIPS_CPU_MVH;
1266
1267	if (config5 & MIPS_CONF_M)
1268		c->guest.conf |= BIT(6);
1269	return config5 & MIPS_CONF_M;
1270}
1271
1272static inline void decode_guest_configs(struct cpuinfo_mips *c)
1273{
1274	unsigned int ok;
1275
1276	ok = decode_guest_config0(c);
1277	if (ok)
1278		ok = decode_guest_config1(c);
1279	if (ok)
1280		ok = decode_guest_config2(c);
1281	if (ok)
1282		ok = decode_guest_config3(c);
1283	if (ok)
1284		ok = decode_guest_config4(c);
1285	if (ok)
1286		decode_guest_config5(c);
1287}
1288
1289static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1290{
1291	unsigned int guestctl0, temp;
1292
1293	guestctl0 = read_c0_guestctl0();
1294
1295	if (guestctl0 & MIPS_GCTL0_G0E)
1296		c->options |= MIPS_CPU_GUESTCTL0EXT;
1297	if (guestctl0 & MIPS_GCTL0_G1)
1298		c->options |= MIPS_CPU_GUESTCTL1;
1299	if (guestctl0 & MIPS_GCTL0_G2)
1300		c->options |= MIPS_CPU_GUESTCTL2;
1301	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1302		c->options |= MIPS_CPU_GUESTID;
1303
1304		/*
1305		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1306		 * first, otherwise all data accesses will be fully virtualised
1307		 * as if they were performed by guest mode.
1308		 */
1309		write_c0_guestctl1(0);
1310		tlbw_use_hazard();
1311
1312		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1313		back_to_back_c0_hazard();
1314		temp = read_c0_guestctl0();
1315
1316		if (temp & MIPS_GCTL0_DRG) {
1317			write_c0_guestctl0(guestctl0);
1318			c->options |= MIPS_CPU_DRG;
1319		}
1320	}
1321}
1322
1323static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1324{
1325	if (cpu_has_guestid) {
1326		/* determine the number of bits of GuestID available */
1327		write_c0_guestctl1(MIPS_GCTL1_ID);
1328		back_to_back_c0_hazard();
1329		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1330						>> MIPS_GCTL1_ID_SHIFT;
1331		write_c0_guestctl1(0);
1332	}
1333}
1334
1335static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1336{
1337	/* determine the number of bits of GTOffset available */
1338	write_c0_gtoffset(0xffffffff);
1339	back_to_back_c0_hazard();
1340	c->gtoffset_mask = read_c0_gtoffset();
1341	write_c0_gtoffset(0);
1342}
1343
1344static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1345{
1346	cpu_probe_guestctl0(c);
1347	if (cpu_has_guestctl1)
1348		cpu_probe_guestctl1(c);
1349
1350	cpu_probe_gtoffset(c);
1351
1352	decode_guest_configs(c);
1353}
1354
1355#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1356		| MIPS_CPU_COUNTER)
1357
1358static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1359{
1360	switch (c->processor_id & PRID_IMP_MASK) {
1361	case PRID_IMP_R2000:
1362		c->cputype = CPU_R2000;
1363		__cpu_name[cpu] = "R2000";
1364		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1365		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1366			     MIPS_CPU_NOFPUEX;
1367		if (__cpu_has_fpu())
1368			c->options |= MIPS_CPU_FPU;
1369		c->tlbsize = 64;
1370		break;
1371	case PRID_IMP_R3000:
1372		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1373			if (cpu_has_confreg()) {
1374				c->cputype = CPU_R3081E;
1375				__cpu_name[cpu] = "R3081";
1376			} else {
1377				c->cputype = CPU_R3000A;
1378				__cpu_name[cpu] = "R3000A";
1379			}
1380		} else {
1381			c->cputype = CPU_R3000;
1382			__cpu_name[cpu] = "R3000";
1383		}
1384		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1385		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1386			     MIPS_CPU_NOFPUEX;
1387		if (__cpu_has_fpu())
1388			c->options |= MIPS_CPU_FPU;
1389		c->tlbsize = 64;
1390		break;
1391	case PRID_IMP_R4000:
1392		if (read_c0_config() & CONF_SC) {
1393			if ((c->processor_id & PRID_REV_MASK) >=
1394			    PRID_REV_R4400) {
1395				c->cputype = CPU_R4400PC;
1396				__cpu_name[cpu] = "R4400PC";
1397			} else {
1398				c->cputype = CPU_R4000PC;
1399				__cpu_name[cpu] = "R4000PC";
1400			}
1401		} else {
1402			int cca = read_c0_config() & CONF_CM_CMASK;
1403			int mc;
1404
1405			/*
1406			 * SC and MC versions can't be reliably told apart,
1407			 * but only the latter support coherent caching
1408			 * modes so assume the firmware has set the KSEG0
1409			 * coherency attribute reasonably (if uncached, we
1410			 * assume SC).
1411			 */
1412			switch (cca) {
1413			case CONF_CM_CACHABLE_CE:
1414			case CONF_CM_CACHABLE_COW:
1415			case CONF_CM_CACHABLE_CUW:
1416				mc = 1;
1417				break;
1418			default:
1419				mc = 0;
1420				break;
1421			}
1422			if ((c->processor_id & PRID_REV_MASK) >=
1423			    PRID_REV_R4400) {
1424				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1425				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1426			} else {
1427				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1428				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1429			}
1430		}
1431
1432		set_isa(c, MIPS_CPU_ISA_III);
1433		c->fpu_msk31 |= FPU_CSR_CONDX;
1434		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1435			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1436			     MIPS_CPU_LLSC;
1437		c->tlbsize = 48;
1438		break;
1439	case PRID_IMP_VR41XX:
 
 
1440		set_isa(c, MIPS_CPU_ISA_III);
1441		c->fpu_msk31 |= FPU_CSR_CONDX;
1442		c->options = R4K_OPTS;
 
1443		c->tlbsize = 32;
1444		switch (c->processor_id & 0xf0) {
1445		case PRID_REV_VR4111:
1446			c->cputype = CPU_VR4111;
1447			__cpu_name[cpu] = "NEC VR4111";
1448			break;
1449		case PRID_REV_VR4121:
1450			c->cputype = CPU_VR4121;
1451			__cpu_name[cpu] = "NEC VR4121";
1452			break;
1453		case PRID_REV_VR4122:
1454			if ((c->processor_id & 0xf) < 0x3) {
1455				c->cputype = CPU_VR4122;
1456				__cpu_name[cpu] = "NEC VR4122";
1457			} else {
1458				c->cputype = CPU_VR4181A;
1459				__cpu_name[cpu] = "NEC VR4181A";
1460			}
1461			break;
1462		case PRID_REV_VR4130:
1463			if ((c->processor_id & 0xf) < 0x4) {
1464				c->cputype = CPU_VR4131;
1465				__cpu_name[cpu] = "NEC VR4131";
1466			} else {
1467				c->cputype = CPU_VR4133;
1468				c->options |= MIPS_CPU_LLSC;
1469				__cpu_name[cpu] = "NEC VR4133";
1470			}
1471			break;
1472		default:
1473			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1474			c->cputype = CPU_VR41XX;
1475			__cpu_name[cpu] = "NEC Vr41xx";
1476			break;
1477		}
1478		break;
1479	case PRID_IMP_R4600:
1480		c->cputype = CPU_R4600;
1481		__cpu_name[cpu] = "R4600";
1482		set_isa(c, MIPS_CPU_ISA_III);
1483		c->fpu_msk31 |= FPU_CSR_CONDX;
1484		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1485			     MIPS_CPU_LLSC;
1486		c->tlbsize = 48;
1487		break;
1488	#if 0
1489	case PRID_IMP_R4650:
1490		/*
1491		 * This processor doesn't have an MMU, so it's not
1492		 * "real easy" to run Linux on it. It is left purely
1493		 * for documentation.  Commented out because it shares
1494		 * it's c0_prid id number with the TX3900.
1495		 */
1496		c->cputype = CPU_R4650;
1497		__cpu_name[cpu] = "R4650";
1498		set_isa(c, MIPS_CPU_ISA_III);
1499		c->fpu_msk31 |= FPU_CSR_CONDX;
1500		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1501		c->tlbsize = 48;
1502		break;
1503	#endif
1504	case PRID_IMP_TX39:
1505		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1506		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1507
1508		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1509			c->cputype = CPU_TX3927;
1510			__cpu_name[cpu] = "TX3927";
1511			c->tlbsize = 64;
1512		} else {
1513			switch (c->processor_id & PRID_REV_MASK) {
1514			case PRID_REV_TX3912:
1515				c->cputype = CPU_TX3912;
1516				__cpu_name[cpu] = "TX3912";
1517				c->tlbsize = 32;
1518				break;
1519			case PRID_REV_TX3922:
1520				c->cputype = CPU_TX3922;
1521				__cpu_name[cpu] = "TX3922";
1522				c->tlbsize = 64;
1523				break;
1524			}
1525		}
1526		break;
1527	case PRID_IMP_R4700:
1528		c->cputype = CPU_R4700;
1529		__cpu_name[cpu] = "R4700";
1530		set_isa(c, MIPS_CPU_ISA_III);
1531		c->fpu_msk31 |= FPU_CSR_CONDX;
1532		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1533			     MIPS_CPU_LLSC;
1534		c->tlbsize = 48;
1535		break;
1536	case PRID_IMP_TX49:
1537		c->cputype = CPU_TX49XX;
1538		__cpu_name[cpu] = "R49XX";
1539		set_isa(c, MIPS_CPU_ISA_III);
1540		c->fpu_msk31 |= FPU_CSR_CONDX;
1541		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1542		if (!(c->processor_id & 0x08))
1543			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1544		c->tlbsize = 48;
1545		break;
1546	case PRID_IMP_R5000:
1547		c->cputype = CPU_R5000;
1548		__cpu_name[cpu] = "R5000";
1549		set_isa(c, MIPS_CPU_ISA_IV);
1550		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1551			     MIPS_CPU_LLSC;
1552		c->tlbsize = 48;
1553		break;
1554	case PRID_IMP_R5500:
1555		c->cputype = CPU_R5500;
1556		__cpu_name[cpu] = "R5500";
1557		set_isa(c, MIPS_CPU_ISA_IV);
1558		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1559			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1560		c->tlbsize = 48;
1561		break;
1562	case PRID_IMP_NEVADA:
1563		c->cputype = CPU_NEVADA;
1564		__cpu_name[cpu] = "Nevada";
1565		set_isa(c, MIPS_CPU_ISA_IV);
1566		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1567			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1568		c->tlbsize = 48;
1569		break;
1570	case PRID_IMP_RM7000:
1571		c->cputype = CPU_RM7000;
1572		__cpu_name[cpu] = "RM7000";
1573		set_isa(c, MIPS_CPU_ISA_IV);
1574		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1575			     MIPS_CPU_LLSC;
1576		/*
1577		 * Undocumented RM7000:	 Bit 29 in the info register of
1578		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1579		 * entries.
1580		 *
1581		 * 29	   1 =>	   64 entry JTLB
1582		 *	   0 =>	   48 entry JTLB
1583		 */
1584		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1585		break;
1586	case PRID_IMP_R10000:
1587		c->cputype = CPU_R10000;
1588		__cpu_name[cpu] = "R10000";
1589		set_isa(c, MIPS_CPU_ISA_IV);
1590		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1591			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1592			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1593			     MIPS_CPU_LLSC;
1594		c->tlbsize = 64;
1595		break;
1596	case PRID_IMP_R12000:
1597		c->cputype = CPU_R12000;
1598		__cpu_name[cpu] = "R12000";
1599		set_isa(c, MIPS_CPU_ISA_IV);
1600		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1601			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1602			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1603			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1604		c->tlbsize = 64;
 
1605		break;
1606	case PRID_IMP_R14000:
1607		if (((c->processor_id >> 4) & 0x0f) > 2) {
1608			c->cputype = CPU_R16000;
1609			__cpu_name[cpu] = "R16000";
1610		} else {
1611			c->cputype = CPU_R14000;
1612			__cpu_name[cpu] = "R14000";
1613		}
1614		set_isa(c, MIPS_CPU_ISA_IV);
1615		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1616			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1617			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1618			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1619		c->tlbsize = 64;
 
1620		break;
1621	case PRID_IMP_LOONGSON_64C:  /* Loongson-2/3 */
1622		switch (c->processor_id & PRID_REV_MASK) {
1623		case PRID_REV_LOONGSON2E:
1624			c->cputype = CPU_LOONGSON2EF;
1625			__cpu_name[cpu] = "ICT Loongson-2";
1626			set_elf_platform(cpu, "loongson2e");
1627			set_isa(c, MIPS_CPU_ISA_III);
1628			c->fpu_msk31 |= FPU_CSR_CONDX;
1629			break;
1630		case PRID_REV_LOONGSON2F:
1631			c->cputype = CPU_LOONGSON2EF;
1632			__cpu_name[cpu] = "ICT Loongson-2";
1633			set_elf_platform(cpu, "loongson2f");
1634			set_isa(c, MIPS_CPU_ISA_III);
1635			c->fpu_msk31 |= FPU_CSR_CONDX;
1636			break;
1637		case PRID_REV_LOONGSON3A_R1:
1638			c->cputype = CPU_LOONGSON64;
1639			__cpu_name[cpu] = "ICT Loongson-3";
1640			set_elf_platform(cpu, "loongson3a");
1641			set_isa(c, MIPS_CPU_ISA_M64R1);
1642			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1643				MIPS_ASE_LOONGSON_EXT);
1644			break;
1645		case PRID_REV_LOONGSON3B_R1:
1646		case PRID_REV_LOONGSON3B_R2:
1647			c->cputype = CPU_LOONGSON64;
1648			__cpu_name[cpu] = "ICT Loongson-3";
1649			set_elf_platform(cpu, "loongson3b");
1650			set_isa(c, MIPS_CPU_ISA_M64R1);
1651			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1652				MIPS_ASE_LOONGSON_EXT);
1653			break;
1654		}
1655
1656		c->options = R4K_OPTS |
1657			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1658			     MIPS_CPU_32FPR;
1659		c->tlbsize = 64;
1660		set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1661		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1662		break;
1663	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1664		decode_configs(c);
1665
1666		c->cputype = CPU_LOONGSON32;
1667
1668		switch (c->processor_id & PRID_REV_MASK) {
1669		case PRID_REV_LOONGSON1B:
1670			__cpu_name[cpu] = "Loongson 1B";
1671			break;
1672		}
1673
1674		break;
1675	}
1676}
1677
1678static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1679{
1680	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1681	switch (c->processor_id & PRID_IMP_MASK) {
1682	case PRID_IMP_QEMU_GENERIC:
1683		c->writecombine = _CACHE_UNCACHED;
1684		c->cputype = CPU_QEMU_GENERIC;
1685		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1686		break;
1687	case PRID_IMP_4KC:
1688		c->cputype = CPU_4KC;
1689		c->writecombine = _CACHE_UNCACHED;
1690		__cpu_name[cpu] = "MIPS 4Kc";
1691		break;
1692	case PRID_IMP_4KEC:
1693	case PRID_IMP_4KECR2:
1694		c->cputype = CPU_4KEC;
1695		c->writecombine = _CACHE_UNCACHED;
1696		__cpu_name[cpu] = "MIPS 4KEc";
1697		break;
1698	case PRID_IMP_4KSC:
1699	case PRID_IMP_4KSD:
1700		c->cputype = CPU_4KSC;
1701		c->writecombine = _CACHE_UNCACHED;
1702		__cpu_name[cpu] = "MIPS 4KSc";
1703		break;
1704	case PRID_IMP_5KC:
1705		c->cputype = CPU_5KC;
1706		c->writecombine = _CACHE_UNCACHED;
1707		__cpu_name[cpu] = "MIPS 5Kc";
1708		break;
1709	case PRID_IMP_5KE:
1710		c->cputype = CPU_5KE;
1711		c->writecombine = _CACHE_UNCACHED;
1712		__cpu_name[cpu] = "MIPS 5KE";
1713		break;
1714	case PRID_IMP_20KC:
1715		c->cputype = CPU_20KC;
1716		c->writecombine = _CACHE_UNCACHED;
1717		__cpu_name[cpu] = "MIPS 20Kc";
1718		break;
1719	case PRID_IMP_24K:
1720		c->cputype = CPU_24K;
1721		c->writecombine = _CACHE_UNCACHED;
1722		__cpu_name[cpu] = "MIPS 24Kc";
1723		break;
1724	case PRID_IMP_24KE:
1725		c->cputype = CPU_24K;
1726		c->writecombine = _CACHE_UNCACHED;
1727		__cpu_name[cpu] = "MIPS 24KEc";
1728		break;
1729	case PRID_IMP_25KF:
1730		c->cputype = CPU_25KF;
1731		c->writecombine = _CACHE_UNCACHED;
1732		__cpu_name[cpu] = "MIPS 25Kc";
1733		break;
1734	case PRID_IMP_34K:
1735		c->cputype = CPU_34K;
1736		c->writecombine = _CACHE_UNCACHED;
1737		__cpu_name[cpu] = "MIPS 34Kc";
1738		cpu_set_mt_per_tc_perf(c);
1739		break;
1740	case PRID_IMP_74K:
1741		c->cputype = CPU_74K;
1742		c->writecombine = _CACHE_UNCACHED;
1743		__cpu_name[cpu] = "MIPS 74Kc";
1744		break;
1745	case PRID_IMP_M14KC:
1746		c->cputype = CPU_M14KC;
1747		c->writecombine = _CACHE_UNCACHED;
1748		__cpu_name[cpu] = "MIPS M14Kc";
1749		break;
1750	case PRID_IMP_M14KEC:
1751		c->cputype = CPU_M14KEC;
1752		c->writecombine = _CACHE_UNCACHED;
1753		__cpu_name[cpu] = "MIPS M14KEc";
1754		break;
1755	case PRID_IMP_1004K:
1756		c->cputype = CPU_1004K;
1757		c->writecombine = _CACHE_UNCACHED;
1758		__cpu_name[cpu] = "MIPS 1004Kc";
1759		cpu_set_mt_per_tc_perf(c);
1760		break;
1761	case PRID_IMP_1074K:
1762		c->cputype = CPU_1074K;
1763		c->writecombine = _CACHE_UNCACHED;
1764		__cpu_name[cpu] = "MIPS 1074Kc";
1765		break;
1766	case PRID_IMP_INTERAPTIV_UP:
1767		c->cputype = CPU_INTERAPTIV;
1768		__cpu_name[cpu] = "MIPS interAptiv";
1769		cpu_set_mt_per_tc_perf(c);
1770		break;
1771	case PRID_IMP_INTERAPTIV_MP:
1772		c->cputype = CPU_INTERAPTIV;
1773		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1774		cpu_set_mt_per_tc_perf(c);
1775		break;
1776	case PRID_IMP_PROAPTIV_UP:
1777		c->cputype = CPU_PROAPTIV;
1778		__cpu_name[cpu] = "MIPS proAptiv";
1779		break;
1780	case PRID_IMP_PROAPTIV_MP:
1781		c->cputype = CPU_PROAPTIV;
1782		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1783		break;
1784	case PRID_IMP_P5600:
1785		c->cputype = CPU_P5600;
1786		__cpu_name[cpu] = "MIPS P5600";
1787		break;
1788	case PRID_IMP_P6600:
1789		c->cputype = CPU_P6600;
1790		__cpu_name[cpu] = "MIPS P6600";
1791		break;
1792	case PRID_IMP_I6400:
1793		c->cputype = CPU_I6400;
1794		__cpu_name[cpu] = "MIPS I6400";
1795		break;
1796	case PRID_IMP_I6500:
1797		c->cputype = CPU_I6500;
1798		__cpu_name[cpu] = "MIPS I6500";
1799		break;
1800	case PRID_IMP_M5150:
1801		c->cputype = CPU_M5150;
1802		__cpu_name[cpu] = "MIPS M5150";
1803		break;
1804	case PRID_IMP_M6250:
1805		c->cputype = CPU_M6250;
1806		__cpu_name[cpu] = "MIPS M6250";
1807		break;
1808	}
1809
1810	decode_configs(c);
1811
1812	spram_config();
1813
1814	mm_config(c);
1815
1816	switch (__get_cpu_type(c->cputype)) {
1817	case CPU_M5150:
1818	case CPU_P5600:
1819		set_isa(c, MIPS_CPU_ISA_M32R5);
1820		break;
1821	case CPU_I6500:
1822		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1823		fallthrough;
1824	case CPU_I6400:
1825		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1826		fallthrough;
1827	default:
1828		break;
1829	}
1830
1831	/* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1832	 * cache/FTLB parity exceptions.
1833	 */
1834	switch (__get_cpu_type(c->cputype)) {
1835	case CPU_PROAPTIV:
1836	case CPU_P5600:
1837	case CPU_P6600:
1838	case CPU_I6400:
1839	case CPU_I6500:
1840		c->options |= MIPS_CPU_FTLBPAREX;
1841		break;
1842	}
1843}
1844
1845static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1846{
1847	decode_configs(c);
1848	switch (c->processor_id & PRID_IMP_MASK) {
1849	case PRID_IMP_AU1_REV1:
1850	case PRID_IMP_AU1_REV2:
1851		c->cputype = CPU_ALCHEMY;
1852		switch ((c->processor_id >> 24) & 0xff) {
1853		case 0:
1854			__cpu_name[cpu] = "Au1000";
1855			break;
1856		case 1:
1857			__cpu_name[cpu] = "Au1500";
1858			break;
1859		case 2:
1860			__cpu_name[cpu] = "Au1100";
1861			break;
1862		case 3:
1863			__cpu_name[cpu] = "Au1550";
1864			break;
1865		case 4:
1866			__cpu_name[cpu] = "Au1200";
1867			if ((c->processor_id & PRID_REV_MASK) == 2)
1868				__cpu_name[cpu] = "Au1250";
1869			break;
1870		case 5:
1871			__cpu_name[cpu] = "Au1210";
1872			break;
1873		default:
1874			__cpu_name[cpu] = "Au1xxx";
1875			break;
1876		}
1877		break;
1878	}
1879}
1880
1881static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1882{
1883	decode_configs(c);
1884
1885	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1886	switch (c->processor_id & PRID_IMP_MASK) {
1887	case PRID_IMP_SB1:
1888		c->cputype = CPU_SB1;
1889		__cpu_name[cpu] = "SiByte SB1";
1890		/* FPU in pass1 is known to have issues. */
1891		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1892			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1893		break;
1894	case PRID_IMP_SB1A:
1895		c->cputype = CPU_SB1A;
1896		__cpu_name[cpu] = "SiByte SB1A";
1897		break;
1898	}
1899}
1900
1901static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1902{
1903	decode_configs(c);
1904	switch (c->processor_id & PRID_IMP_MASK) {
1905	case PRID_IMP_SR71000:
1906		c->cputype = CPU_SR71000;
1907		__cpu_name[cpu] = "Sandcraft SR71000";
1908		c->scache.ways = 8;
1909		c->tlbsize = 64;
1910		break;
1911	}
1912}
1913
1914static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1915{
1916	decode_configs(c);
1917	switch (c->processor_id & PRID_IMP_MASK) {
1918	case PRID_IMP_PR4450:
1919		c->cputype = CPU_PR4450;
1920		__cpu_name[cpu] = "Philips PR4450";
1921		set_isa(c, MIPS_CPU_ISA_M32R1);
1922		break;
1923	}
1924}
1925
1926static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1927{
1928	decode_configs(c);
1929	switch (c->processor_id & PRID_IMP_MASK) {
1930	case PRID_IMP_BMIPS32_REV4:
1931	case PRID_IMP_BMIPS32_REV8:
1932		c->cputype = CPU_BMIPS32;
1933		__cpu_name[cpu] = "Broadcom BMIPS32";
1934		set_elf_platform(cpu, "bmips32");
1935		break;
1936	case PRID_IMP_BMIPS3300:
1937	case PRID_IMP_BMIPS3300_ALT:
1938	case PRID_IMP_BMIPS3300_BUG:
1939		c->cputype = CPU_BMIPS3300;
1940		__cpu_name[cpu] = "Broadcom BMIPS3300";
1941		set_elf_platform(cpu, "bmips3300");
 
1942		break;
1943	case PRID_IMP_BMIPS43XX: {
1944		int rev = c->processor_id & PRID_REV_MASK;
1945
1946		if (rev >= PRID_REV_BMIPS4380_LO &&
1947				rev <= PRID_REV_BMIPS4380_HI) {
1948			c->cputype = CPU_BMIPS4380;
1949			__cpu_name[cpu] = "Broadcom BMIPS4380";
1950			set_elf_platform(cpu, "bmips4380");
1951			c->options |= MIPS_CPU_RIXI;
 
1952		} else {
1953			c->cputype = CPU_BMIPS4350;
1954			__cpu_name[cpu] = "Broadcom BMIPS4350";
1955			set_elf_platform(cpu, "bmips4350");
1956		}
1957		break;
1958	}
1959	case PRID_IMP_BMIPS5000:
1960	case PRID_IMP_BMIPS5200:
1961		c->cputype = CPU_BMIPS5000;
1962		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1963			__cpu_name[cpu] = "Broadcom BMIPS5200";
1964		else
1965			__cpu_name[cpu] = "Broadcom BMIPS5000";
1966		set_elf_platform(cpu, "bmips5000");
1967		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
 
1968		break;
1969	}
1970}
1971
1972static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1973{
1974	decode_configs(c);
1975	switch (c->processor_id & PRID_IMP_MASK) {
1976	case PRID_IMP_CAVIUM_CN38XX:
1977	case PRID_IMP_CAVIUM_CN31XX:
1978	case PRID_IMP_CAVIUM_CN30XX:
1979		c->cputype = CPU_CAVIUM_OCTEON;
1980		__cpu_name[cpu] = "Cavium Octeon";
1981		goto platform;
1982	case PRID_IMP_CAVIUM_CN58XX:
1983	case PRID_IMP_CAVIUM_CN56XX:
1984	case PRID_IMP_CAVIUM_CN50XX:
1985	case PRID_IMP_CAVIUM_CN52XX:
1986		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1987		__cpu_name[cpu] = "Cavium Octeon+";
1988platform:
1989		set_elf_platform(cpu, "octeon");
1990		break;
1991	case PRID_IMP_CAVIUM_CN61XX:
1992	case PRID_IMP_CAVIUM_CN63XX:
1993	case PRID_IMP_CAVIUM_CN66XX:
1994	case PRID_IMP_CAVIUM_CN68XX:
1995	case PRID_IMP_CAVIUM_CNF71XX:
1996		c->cputype = CPU_CAVIUM_OCTEON2;
1997		__cpu_name[cpu] = "Cavium Octeon II";
1998		set_elf_platform(cpu, "octeon2");
1999		break;
2000	case PRID_IMP_CAVIUM_CN70XX:
2001	case PRID_IMP_CAVIUM_CN73XX:
2002	case PRID_IMP_CAVIUM_CNF75XX:
2003	case PRID_IMP_CAVIUM_CN78XX:
2004		c->cputype = CPU_CAVIUM_OCTEON3;
2005		__cpu_name[cpu] = "Cavium Octeon III";
2006		set_elf_platform(cpu, "octeon3");
2007		break;
2008	default:
2009		printk(KERN_INFO "Unknown Octeon chip!\n");
2010		c->cputype = CPU_UNKNOWN;
2011		break;
2012	}
2013}
2014
2015#ifdef CONFIG_CPU_LOONGSON64
2016#include <loongson_regs.h>
2017
2018static inline void decode_cpucfg(struct cpuinfo_mips *c)
2019{
2020	u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
2021	u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
2022	u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
2023
2024	if (cfg1 & LOONGSON_CFG1_MMI)
2025		c->ases |= MIPS_ASE_LOONGSON_MMI;
2026
2027	if (cfg2 & LOONGSON_CFG2_LEXT1)
2028		c->ases |= MIPS_ASE_LOONGSON_EXT;
2029
2030	if (cfg2 & LOONGSON_CFG2_LEXT2)
2031		c->ases |= MIPS_ASE_LOONGSON_EXT2;
2032
2033	if (cfg2 & LOONGSON_CFG2_LSPW) {
2034		c->options |= MIPS_CPU_LDPTE;
2035		c->guest.options |= MIPS_CPU_LDPTE;
2036	}
2037
2038	if (cfg3 & LOONGSON_CFG3_LCAMP)
2039		c->ases |= MIPS_ASE_LOONGSON_CAM;
2040}
2041
2042static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
2043{
2044	decode_configs(c);
2045
2046	/* All Loongson processors covered here define ExcCode 16 as GSExc. */
2047	c->options |= MIPS_CPU_GSEXCEX;
2048
2049	switch (c->processor_id & PRID_IMP_MASK) {
2050	case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
2051		switch (c->processor_id & PRID_REV_MASK) {
2052		case PRID_REV_LOONGSON2K_R1_0:
2053		case PRID_REV_LOONGSON2K_R1_1:
2054		case PRID_REV_LOONGSON2K_R1_2:
2055		case PRID_REV_LOONGSON2K_R1_3:
2056			c->cputype = CPU_LOONGSON64;
2057			__cpu_name[cpu] = "Loongson-2K";
2058			set_elf_platform(cpu, "gs264e");
2059			set_isa(c, MIPS_CPU_ISA_M64R2);
2060			break;
2061		}
2062		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2063		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
2064				MIPS_ASE_LOONGSON_EXT2);
2065		break;
2066	case PRID_IMP_LOONGSON_64C:  /* Loongson-3 Classic */
2067		switch (c->processor_id & PRID_REV_MASK) {
2068		case PRID_REV_LOONGSON3A_R2_0:
2069		case PRID_REV_LOONGSON3A_R2_1:
2070			c->cputype = CPU_LOONGSON64;
2071			__cpu_name[cpu] = "ICT Loongson-3";
2072			set_elf_platform(cpu, "loongson3a");
2073			set_isa(c, MIPS_CPU_ISA_M64R2);
2074			break;
2075		case PRID_REV_LOONGSON3A_R3_0:
2076		case PRID_REV_LOONGSON3A_R3_1:
2077			c->cputype = CPU_LOONGSON64;
2078			__cpu_name[cpu] = "ICT Loongson-3";
2079			set_elf_platform(cpu, "loongson3a");
2080			set_isa(c, MIPS_CPU_ISA_M64R2);
2081			break;
2082		}
2083		/*
2084		 * Loongson-3 Classic did not implement MIPS standard TLBINV
2085		 * but implemented TLBINVF and EHINV. As currently we're only
2086		 * using these two features, enable MIPS_CPU_TLBINV as well.
2087		 *
2088		 * Also some early Loongson-3A2000 had wrong TLB type in Config
2089		 * register, we correct it here.
2090		 */
2091		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
2092		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2093		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
2094			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
2095		c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
2096		break;
2097	case PRID_IMP_LOONGSON_64G:
2098		c->cputype = CPU_LOONGSON64;
2099		__cpu_name[cpu] = "ICT Loongson-3";
2100		set_elf_platform(cpu, "loongson3a");
2101		set_isa(c, MIPS_CPU_ISA_M64R2);
2102		decode_cpucfg(c);
2103		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2104		break;
2105	default:
2106		panic("Unknown Loongson Processor ID!");
2107		break;
2108	}
 
 
2109}
2110#else
2111static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
2112#endif
2113
2114static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
2115{
2116	decode_configs(c);
2117
2118	/*
2119	 * XBurst misses a config2 register, so config3 decode was skipped in
2120	 * decode_configs().
2121	 */
2122	decode_config3(c);
2123
2124	/* XBurst does not implement the CP0 counter. */
2125	c->options &= ~MIPS_CPU_COUNTER;
2126	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
 
 
 
2127
2128	switch (c->processor_id & PRID_IMP_MASK) {
2129
2130	/* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
2131	case PRID_IMP_XBURST_REV1:
2132
2133		/*
2134		 * The XBurst core by default attempts to avoid branch target
2135		 * buffer lookups by detecting & special casing loops. This
2136		 * feature will cause BogoMIPS and lpj calculate in error.
2137		 * Set cp0 config7 bit 4 to disable this feature.
2138		 */
2139		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
2140
2141		switch (c->processor_id & PRID_COMP_MASK) {
2142
2143		/*
2144		 * The config0 register in the XBurst CPUs with a processor ID of
2145		 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
2146		 * but they don't actually support this ISA.
2147		 */
2148		case PRID_COMP_INGENIC_D0:
2149			c->isa_level &= ~MIPS_CPU_ISA_M32R2;
2150			break;
 
 
 
 
 
2151
2152		/*
2153		 * The config0 register in the XBurst CPUs with a processor ID of
2154		 * PRID_COMP_INGENIC_D1 has an abandoned huge page tlb mode, this
2155		 * mode is not compatible with the MIPS standard, it will cause
2156		 * tlbmiss and into an infinite loop (line 21 in the tlb-funcs.S)
2157		 * when starting the init process. After chip reset, the default
2158		 * is HPTLB mode, Write 0xa9000000 to cp0 register 5 sel 4 to
2159		 * switch back to VTLB mode to prevent getting stuck.
 
2160		 */
2161		case PRID_COMP_INGENIC_D1:
2162			write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
2163			break;
2164
2165		default:
2166			break;
2167		}
2168		fallthrough;
2169
2170	/* XBurst®1 with MXU2.0 SIMD ISA */
2171	case PRID_IMP_XBURST_REV2:
 
 
2172		c->cputype = CPU_XBURST;
2173		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
2174		__cpu_name[cpu] = "Ingenic XBurst";
2175		break;
2176
2177	/* XBurst®2 with MXU2.1 SIMD ISA */
2178	case PRID_IMP_XBURST2:
2179		c->cputype = CPU_XBURST;
2180		__cpu_name[cpu] = "Ingenic XBurst II";
2181		break;
2182
2183	default:
2184		panic("Unknown Ingenic Processor ID!");
2185		break;
2186	}
2187}
2188
2189static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
2190{
2191	decode_configs(c);
2192
2193	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
2194		c->cputype = CPU_ALCHEMY;
2195		__cpu_name[cpu] = "Au1300";
2196		/* following stuff is not for Alchemy */
2197		return;
2198	}
2199
2200	c->options = (MIPS_CPU_TLB	 |
2201			MIPS_CPU_4KEX	 |
2202			MIPS_CPU_COUNTER |
2203			MIPS_CPU_DIVEC	 |
2204			MIPS_CPU_WATCH	 |
2205			MIPS_CPU_EJTAG	 |
2206			MIPS_CPU_LLSC);
2207
2208	switch (c->processor_id & PRID_IMP_MASK) {
2209	case PRID_IMP_NETLOGIC_XLP2XX:
2210	case PRID_IMP_NETLOGIC_XLP9XX:
2211	case PRID_IMP_NETLOGIC_XLP5XX:
2212		c->cputype = CPU_XLP;
2213		__cpu_name[cpu] = "Broadcom XLPII";
2214		break;
2215
2216	case PRID_IMP_NETLOGIC_XLP8XX:
2217	case PRID_IMP_NETLOGIC_XLP3XX:
2218		c->cputype = CPU_XLP;
2219		__cpu_name[cpu] = "Netlogic XLP";
2220		break;
2221
2222	case PRID_IMP_NETLOGIC_XLR732:
2223	case PRID_IMP_NETLOGIC_XLR716:
2224	case PRID_IMP_NETLOGIC_XLR532:
2225	case PRID_IMP_NETLOGIC_XLR308:
2226	case PRID_IMP_NETLOGIC_XLR532C:
2227	case PRID_IMP_NETLOGIC_XLR516C:
2228	case PRID_IMP_NETLOGIC_XLR508C:
2229	case PRID_IMP_NETLOGIC_XLR308C:
2230		c->cputype = CPU_XLR;
2231		__cpu_name[cpu] = "Netlogic XLR";
2232		break;
2233
2234	case PRID_IMP_NETLOGIC_XLS608:
2235	case PRID_IMP_NETLOGIC_XLS408:
2236	case PRID_IMP_NETLOGIC_XLS404:
2237	case PRID_IMP_NETLOGIC_XLS208:
2238	case PRID_IMP_NETLOGIC_XLS204:
2239	case PRID_IMP_NETLOGIC_XLS108:
2240	case PRID_IMP_NETLOGIC_XLS104:
2241	case PRID_IMP_NETLOGIC_XLS616B:
2242	case PRID_IMP_NETLOGIC_XLS608B:
2243	case PRID_IMP_NETLOGIC_XLS416B:
2244	case PRID_IMP_NETLOGIC_XLS412B:
2245	case PRID_IMP_NETLOGIC_XLS408B:
2246	case PRID_IMP_NETLOGIC_XLS404B:
2247		c->cputype = CPU_XLR;
2248		__cpu_name[cpu] = "Netlogic XLS";
2249		break;
2250
2251	default:
2252		pr_info("Unknown Netlogic chip id [%02x]!\n",
2253		       c->processor_id);
2254		c->cputype = CPU_XLR;
2255		break;
2256	}
2257
2258	if (c->cputype == CPU_XLP) {
2259		set_isa(c, MIPS_CPU_ISA_M64R2);
2260		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
2261		/* This will be updated again after all threads are woken up */
2262		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
2263	} else {
2264		set_isa(c, MIPS_CPU_ISA_M64R1);
2265		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
2266	}
2267	c->kscratch_mask = 0xf;
2268}
2269
2270#ifdef CONFIG_64BIT
2271/* For use by uaccess.h */
2272u64 __ua_limit;
2273EXPORT_SYMBOL(__ua_limit);
2274#endif
2275
2276const char *__cpu_name[NR_CPUS];
2277const char *__elf_platform;
2278const char *__elf_base_platform;
2279
2280void cpu_probe(void)
2281{
2282	struct cpuinfo_mips *c = &current_cpu_data;
2283	unsigned int cpu = smp_processor_id();
2284
2285	/*
2286	 * Set a default elf platform, cpu probe may later
2287	 * overwrite it with a more precise value
2288	 */
2289	set_elf_platform(cpu, "mips");
2290
2291	c->processor_id = PRID_IMP_UNKNOWN;
2292	c->fpu_id	= FPIR_IMP_NONE;
2293	c->cputype	= CPU_UNKNOWN;
2294	c->writecombine = _CACHE_UNCACHED;
2295
2296	c->fpu_csr31	= FPU_CSR_RN;
2297	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
2298
2299	c->processor_id = read_c0_prid();
2300	switch (c->processor_id & PRID_COMP_MASK) {
2301	case PRID_COMP_LEGACY:
2302		cpu_probe_legacy(c, cpu);
2303		break;
2304	case PRID_COMP_MIPS:
2305		cpu_probe_mips(c, cpu);
2306		break;
2307	case PRID_COMP_ALCHEMY:
2308		cpu_probe_alchemy(c, cpu);
2309		break;
2310	case PRID_COMP_SIBYTE:
2311		cpu_probe_sibyte(c, cpu);
2312		break;
2313	case PRID_COMP_BROADCOM:
2314		cpu_probe_broadcom(c, cpu);
2315		break;
2316	case PRID_COMP_SANDCRAFT:
2317		cpu_probe_sandcraft(c, cpu);
2318		break;
2319	case PRID_COMP_NXP:
2320		cpu_probe_nxp(c, cpu);
2321		break;
2322	case PRID_COMP_CAVIUM:
2323		cpu_probe_cavium(c, cpu);
2324		break;
2325	case PRID_COMP_LOONGSON:
2326		cpu_probe_loongson(c, cpu);
2327		break;
2328	case PRID_COMP_INGENIC_13:
2329	case PRID_COMP_INGENIC_D0:
2330	case PRID_COMP_INGENIC_D1:
2331	case PRID_COMP_INGENIC_E1:
2332		cpu_probe_ingenic(c, cpu);
2333		break;
2334	case PRID_COMP_NETLOGIC:
2335		cpu_probe_netlogic(c, cpu);
2336		break;
2337	}
2338
2339	BUG_ON(!__cpu_name[cpu]);
2340	BUG_ON(c->cputype == CPU_UNKNOWN);
2341
2342	/*
2343	 * Platform code can force the cpu type to optimize code
2344	 * generation. In that case be sure the cpu type is correctly
2345	 * manually setup otherwise it could trigger some nasty bugs.
2346	 */
2347	BUG_ON(current_cpu_type() != c->cputype);
2348
2349	if (cpu_has_rixi) {
2350		/* Enable the RIXI exceptions */
2351		set_c0_pagegrain(PG_IEC);
2352		back_to_back_c0_hazard();
2353		/* Verify the IEC bit is set */
2354		if (read_c0_pagegrain() & PG_IEC)
2355			c->options |= MIPS_CPU_RIXIEX;
2356	}
2357
2358	if (mips_fpu_disabled)
2359		c->options &= ~MIPS_CPU_FPU;
2360
2361	if (mips_dsp_disabled)
2362		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2363
2364	if (mips_htw_disabled) {
2365		c->options &= ~MIPS_CPU_HTW;
2366		write_c0_pwctl(read_c0_pwctl() &
2367			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2368	}
2369
2370	if (c->options & MIPS_CPU_FPU)
2371		cpu_set_fpu_opts(c);
2372	else
2373		cpu_set_nofpu_opts(c);
2374
2375	if (cpu_has_bp_ghist)
2376		write_c0_r10k_diag(read_c0_r10k_diag() |
2377				   R10K_DIAG_E_GHIST);
2378
2379	if (cpu_has_mips_r2_r6) {
2380		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2381		/* R2 has Performance Counter Interrupt indicator */
2382		c->options |= MIPS_CPU_PCI;
2383	}
2384	else
2385		c->srsets = 1;
2386
2387	if (cpu_has_mips_r6)
2388		elf_hwcap |= HWCAP_MIPS_R6;
2389
2390	if (cpu_has_msa) {
2391		c->msa_id = cpu_get_msa_id();
2392		WARN(c->msa_id & MSA_IR_WRPF,
2393		     "Vector register partitioning unimplemented!");
2394		elf_hwcap |= HWCAP_MIPS_MSA;
2395	}
2396
2397	if (cpu_has_mips16)
2398		elf_hwcap |= HWCAP_MIPS_MIPS16;
2399
2400	if (cpu_has_mdmx)
2401		elf_hwcap |= HWCAP_MIPS_MDMX;
2402
2403	if (cpu_has_mips3d)
2404		elf_hwcap |= HWCAP_MIPS_MIPS3D;
2405
2406	if (cpu_has_smartmips)
2407		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
2408
2409	if (cpu_has_dsp)
2410		elf_hwcap |= HWCAP_MIPS_DSP;
2411
2412	if (cpu_has_dsp2)
2413		elf_hwcap |= HWCAP_MIPS_DSP2;
2414
2415	if (cpu_has_dsp3)
2416		elf_hwcap |= HWCAP_MIPS_DSP3;
2417
2418	if (cpu_has_mips16e2)
2419		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
2420
2421	if (cpu_has_loongson_mmi)
2422		elf_hwcap |= HWCAP_LOONGSON_MMI;
2423
2424	if (cpu_has_loongson_ext)
2425		elf_hwcap |= HWCAP_LOONGSON_EXT;
2426
2427	if (cpu_has_loongson_ext2)
2428		elf_hwcap |= HWCAP_LOONGSON_EXT2;
2429
2430	if (cpu_has_vz)
2431		cpu_probe_vz(c);
2432
2433	cpu_probe_vmbits(c);
2434
2435	/* Synthesize CPUCFG data if running on Loongson processors;
2436	 * no-op otherwise.
2437	 *
2438	 * This looks at previously probed features, so keep this at bottom.
2439	 */
2440	loongson3_cpucfg_synthesize_data(c);
2441
2442#ifdef CONFIG_64BIT
2443	if (cpu == 0)
2444		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2445#endif
 
 
2446}
2447
2448void cpu_report(void)
2449{
2450	struct cpuinfo_mips *c = &current_cpu_data;
2451
2452	pr_info("CPU%d revision is: %08x (%s)\n",
2453		smp_processor_id(), c->processor_id, cpu_name_string());
2454	if (c->options & MIPS_CPU_FPU)
2455		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2456	if (cpu_has_msa)
2457		pr_info("MSA revision is: %08x\n", c->msa_id);
2458}
2459
2460void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2461{
2462	/* Ensure the core number fits in the field */
2463	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2464			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2465
2466	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2467	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2468}
2469
2470void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2471{
2472	/* Ensure the core number fits in the field */
2473	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2474
2475	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2476	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2477}
2478
2479void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2480{
2481	/* Ensure the VP(E) ID fits in the field */
2482	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2483
2484	/* Ensure we're not using VP(E)s without support */
2485	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2486		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2487
2488	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2489	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2490}