Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Processor capabilities determination functions.
4 *
5 * Copyright (C) xxxx the Anonymous
6 * Copyright (C) 1994 - 2006 Ralf Baechle
7 * Copyright (C) 2003, 2004 Maciej W. Rozycki
8 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
9 */
10#include <linux/init.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/smp.h>
14#include <linux/stddef.h>
15#include <linux/export.h>
16
17#include <asm/bugs.h>
18#include <asm/cpu.h>
19#include <asm/cpu-features.h>
20#include <asm/cpu-type.h>
21#include <asm/fpu.h>
22#include <asm/mipsregs.h>
23#include <asm/mipsmtregs.h>
24#include <asm/msa.h>
25#include <asm/watch.h>
26#include <asm/elf.h>
27#include <asm/pgtable-bits.h>
28#include <asm/spram.h>
29#include <asm/traps.h>
30#include <linux/uaccess.h>
31
32#include "fpu-probe.h"
33
34#include <asm/mach-loongson64/cpucfg-emul.h>
35
36/* Hardware capabilities */
37unsigned int elf_hwcap __read_mostly;
38EXPORT_SYMBOL_GPL(elf_hwcap);
39
40static inline unsigned long cpu_get_msa_id(void)
41{
42 unsigned long status, msa_id;
43
44 status = read_c0_status();
45 __enable_fpu(FPU_64BIT);
46 enable_msa();
47 msa_id = read_msa_ir();
48 disable_msa();
49 write_c0_status(status);
50 return msa_id;
51}
52
53static int mips_dsp_disabled;
54
55static int __init dsp_disable(char *s)
56{
57 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
58 mips_dsp_disabled = 1;
59
60 return 1;
61}
62
63__setup("nodsp", dsp_disable);
64
65static int mips_htw_disabled;
66
67static int __init htw_disable(char *s)
68{
69 mips_htw_disabled = 1;
70 cpu_data[0].options &= ~MIPS_CPU_HTW;
71 write_c0_pwctl(read_c0_pwctl() &
72 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
73
74 return 1;
75}
76
77__setup("nohtw", htw_disable);
78
79static int mips_ftlb_disabled;
80static int mips_has_ftlb_configured;
81
82enum ftlb_flags {
83 FTLB_EN = 1 << 0,
84 FTLB_SET_PROB = 1 << 1,
85};
86
87static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
88
89static int __init ftlb_disable(char *s)
90{
91 unsigned int config4, mmuextdef;
92
93 /*
94 * If the core hasn't done any FTLB configuration, there is nothing
95 * for us to do here.
96 */
97 if (!mips_has_ftlb_configured)
98 return 1;
99
100 /* Disable it in the boot cpu */
101 if (set_ftlb_enable(&cpu_data[0], 0)) {
102 pr_warn("Can't turn FTLB off\n");
103 return 1;
104 }
105
106 config4 = read_c0_config4();
107
108 /* Check that FTLB has been disabled */
109 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
110 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
111 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
112 /* This should never happen */
113 pr_warn("FTLB could not be disabled!\n");
114 return 1;
115 }
116
117 mips_ftlb_disabled = 1;
118 mips_has_ftlb_configured = 0;
119
120 /*
121 * noftlb is mainly used for debug purposes so print
122 * an informative message instead of using pr_debug()
123 */
124 pr_info("FTLB has been disabled\n");
125
126 /*
127 * Some of these bits are duplicated in the decode_config4.
128 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
129 * once FTLB has been disabled so undo what decode_config4 did.
130 */
131 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
132 cpu_data[0].tlbsizeftlbsets;
133 cpu_data[0].tlbsizeftlbsets = 0;
134 cpu_data[0].tlbsizeftlbways = 0;
135
136 return 1;
137}
138
139__setup("noftlb", ftlb_disable);
140
141/*
142 * Check if the CPU has per tc perf counters
143 */
144static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
145{
146 if (read_c0_config7() & MTI_CONF7_PTC)
147 c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
148}
149
150static inline void check_errata(void)
151{
152 struct cpuinfo_mips *c = ¤t_cpu_data;
153
154 switch (current_cpu_type()) {
155 case CPU_34K:
156 /*
157 * Erratum "RPS May Cause Incorrect Instruction Execution"
158 * This code only handles VPE0, any SMP/RTOS code
159 * making use of VPE1 will be responsible for that VPE.
160 */
161 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
162 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
163 break;
164 default:
165 break;
166 }
167}
168
169void __init check_bugs32(void)
170{
171 check_errata();
172}
173
174/*
175 * Probe whether cpu has config register by trying to play with
176 * alternate cache bit and see whether it matters.
177 * It's used by cpu_probe to distinguish between R3000A and R3081.
178 */
179static inline int cpu_has_confreg(void)
180{
181#ifdef CONFIG_CPU_R3000
182 extern unsigned long r3k_cache_size(unsigned long);
183 unsigned long size1, size2;
184 unsigned long cfg = read_c0_conf();
185
186 size1 = r3k_cache_size(ST0_ISC);
187 write_c0_conf(cfg ^ R30XX_CONF_AC);
188 size2 = r3k_cache_size(ST0_ISC);
189 write_c0_conf(cfg);
190 return size1 != size2;
191#else
192 return 0;
193#endif
194}
195
196static inline void set_elf_platform(int cpu, const char *plat)
197{
198 if (cpu == 0)
199 __elf_platform = plat;
200}
201
202static inline void set_elf_base_platform(const char *plat)
203{
204 if (__elf_base_platform == NULL) {
205 __elf_base_platform = plat;
206 }
207}
208
209static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
210{
211#ifdef __NEED_VMBITS_PROBE
212 write_c0_entryhi(0x3fffffffffffe000ULL);
213 back_to_back_c0_hazard();
214 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
215#endif
216}
217
218static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
219{
220 switch (isa) {
221 case MIPS_CPU_ISA_M64R5:
222 c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
223 set_elf_base_platform("mips64r5");
224 fallthrough;
225 case MIPS_CPU_ISA_M64R2:
226 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
227 set_elf_base_platform("mips64r2");
228 fallthrough;
229 case MIPS_CPU_ISA_M64R1:
230 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
231 set_elf_base_platform("mips64");
232 fallthrough;
233 case MIPS_CPU_ISA_V:
234 c->isa_level |= MIPS_CPU_ISA_V;
235 set_elf_base_platform("mips5");
236 fallthrough;
237 case MIPS_CPU_ISA_IV:
238 c->isa_level |= MIPS_CPU_ISA_IV;
239 set_elf_base_platform("mips4");
240 fallthrough;
241 case MIPS_CPU_ISA_III:
242 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
243 set_elf_base_platform("mips3");
244 break;
245
246 /* R6 incompatible with everything else */
247 case MIPS_CPU_ISA_M64R6:
248 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
249 set_elf_base_platform("mips64r6");
250 fallthrough;
251 case MIPS_CPU_ISA_M32R6:
252 c->isa_level |= MIPS_CPU_ISA_M32R6;
253 set_elf_base_platform("mips32r6");
254 /* Break here so we don't add incompatible ISAs */
255 break;
256 case MIPS_CPU_ISA_M32R5:
257 c->isa_level |= MIPS_CPU_ISA_M32R5;
258 set_elf_base_platform("mips32r5");
259 fallthrough;
260 case MIPS_CPU_ISA_M32R2:
261 c->isa_level |= MIPS_CPU_ISA_M32R2;
262 set_elf_base_platform("mips32r2");
263 fallthrough;
264 case MIPS_CPU_ISA_M32R1:
265 c->isa_level |= MIPS_CPU_ISA_M32R1;
266 set_elf_base_platform("mips32");
267 fallthrough;
268 case MIPS_CPU_ISA_II:
269 c->isa_level |= MIPS_CPU_ISA_II;
270 set_elf_base_platform("mips2");
271 break;
272 }
273}
274
275static char unknown_isa[] = KERN_ERR \
276 "Unsupported ISA type, c0.config0: %d.";
277
278static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
279{
280
281 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
282
283 /*
284 * 0 = All TLBWR instructions go to FTLB
285 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
286 * FTLB and 1 goes to the VTLB.
287 * 2 = 7:1: As above with 7:1 ratio.
288 * 3 = 3:1: As above with 3:1 ratio.
289 *
290 * Use the linear midpoint as the probability threshold.
291 */
292 if (probability >= 12)
293 return 1;
294 else if (probability >= 6)
295 return 2;
296 else
297 /*
298 * So FTLB is less than 4 times bigger than VTLB.
299 * A 3:1 ratio can still be useful though.
300 */
301 return 3;
302}
303
304static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
305{
306 unsigned int config;
307
308 /* It's implementation dependent how the FTLB can be enabled */
309 switch (c->cputype) {
310 case CPU_PROAPTIV:
311 case CPU_P5600:
312 case CPU_P6600:
313 /* proAptiv & related cores use Config6 to enable the FTLB */
314 config = read_c0_config6();
315
316 if (flags & FTLB_EN)
317 config |= MTI_CONF6_FTLBEN;
318 else
319 config &= ~MTI_CONF6_FTLBEN;
320
321 if (flags & FTLB_SET_PROB) {
322 config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
323 config |= calculate_ftlb_probability(c)
324 << MTI_CONF6_FTLBP_SHIFT;
325 }
326
327 write_c0_config6(config);
328 back_to_back_c0_hazard();
329 break;
330 case CPU_I6400:
331 case CPU_I6500:
332 /* There's no way to disable the FTLB */
333 if (!(flags & FTLB_EN))
334 return 1;
335 return 0;
336 case CPU_LOONGSON64:
337 /* Flush ITLB, DTLB, VTLB and FTLB */
338 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
339 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
340 /* Loongson-3 cores use Config6 to enable the FTLB */
341 config = read_c0_config6();
342 if (flags & FTLB_EN)
343 /* Enable FTLB */
344 write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
345 else
346 /* Disable FTLB */
347 write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
348 break;
349 default:
350 return 1;
351 }
352
353 return 0;
354}
355
356static int mm_config(struct cpuinfo_mips *c)
357{
358 unsigned int config0, update, mm;
359
360 config0 = read_c0_config();
361 mm = config0 & MIPS_CONF_MM;
362
363 /*
364 * It's implementation dependent what type of write-merge is supported
365 * and whether it can be enabled/disabled. If it is settable lets make
366 * the merging allowed by default. Some platforms might have
367 * write-through caching unsupported. In this case just ignore the
368 * CP0.Config.MM bit field value.
369 */
370 switch (c->cputype) {
371 case CPU_24K:
372 case CPU_34K:
373 case CPU_74K:
374 case CPU_P5600:
375 case CPU_P6600:
376 c->options |= MIPS_CPU_MM_FULL;
377 update = MIPS_CONF_MM_FULL;
378 break;
379 case CPU_1004K:
380 case CPU_1074K:
381 case CPU_INTERAPTIV:
382 case CPU_PROAPTIV:
383 mm = 0;
384 fallthrough;
385 default:
386 update = 0;
387 break;
388 }
389
390 if (update) {
391 config0 = (config0 & ~MIPS_CONF_MM) | update;
392 write_c0_config(config0);
393 } else if (mm == MIPS_CONF_MM_SYSAD) {
394 c->options |= MIPS_CPU_MM_SYSAD;
395 } else if (mm == MIPS_CONF_MM_FULL) {
396 c->options |= MIPS_CPU_MM_FULL;
397 }
398
399 return 0;
400}
401
402static inline unsigned int decode_config0(struct cpuinfo_mips *c)
403{
404 unsigned int config0;
405 int isa, mt;
406
407 config0 = read_c0_config();
408
409 /*
410 * Look for Standard TLB or Dual VTLB and FTLB
411 */
412 mt = config0 & MIPS_CONF_MT;
413 if (mt == MIPS_CONF_MT_TLB)
414 c->options |= MIPS_CPU_TLB;
415 else if (mt == MIPS_CONF_MT_FTLB)
416 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
417
418 isa = (config0 & MIPS_CONF_AT) >> 13;
419 switch (isa) {
420 case 0:
421 switch ((config0 & MIPS_CONF_AR) >> 10) {
422 case 0:
423 set_isa(c, MIPS_CPU_ISA_M32R1);
424 break;
425 case 1:
426 set_isa(c, MIPS_CPU_ISA_M32R2);
427 break;
428 case 2:
429 set_isa(c, MIPS_CPU_ISA_M32R6);
430 break;
431 default:
432 goto unknown;
433 }
434 break;
435 case 2:
436 switch ((config0 & MIPS_CONF_AR) >> 10) {
437 case 0:
438 set_isa(c, MIPS_CPU_ISA_M64R1);
439 break;
440 case 1:
441 set_isa(c, MIPS_CPU_ISA_M64R2);
442 break;
443 case 2:
444 set_isa(c, MIPS_CPU_ISA_M64R6);
445 break;
446 default:
447 goto unknown;
448 }
449 break;
450 default:
451 goto unknown;
452 }
453
454 return config0 & MIPS_CONF_M;
455
456unknown:
457 panic(unknown_isa, config0);
458}
459
460static inline unsigned int decode_config1(struct cpuinfo_mips *c)
461{
462 unsigned int config1;
463
464 config1 = read_c0_config1();
465
466 if (config1 & MIPS_CONF1_MD)
467 c->ases |= MIPS_ASE_MDMX;
468 if (config1 & MIPS_CONF1_PC)
469 c->options |= MIPS_CPU_PERF;
470 if (config1 & MIPS_CONF1_WR)
471 c->options |= MIPS_CPU_WATCH;
472 if (config1 & MIPS_CONF1_CA)
473 c->ases |= MIPS_ASE_MIPS16;
474 if (config1 & MIPS_CONF1_EP)
475 c->options |= MIPS_CPU_EJTAG;
476 if (config1 & MIPS_CONF1_FP) {
477 c->options |= MIPS_CPU_FPU;
478 c->options |= MIPS_CPU_32FPR;
479 }
480 if (cpu_has_tlb) {
481 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
482 c->tlbsizevtlb = c->tlbsize;
483 c->tlbsizeftlbsets = 0;
484 }
485
486 return config1 & MIPS_CONF_M;
487}
488
489static inline unsigned int decode_config2(struct cpuinfo_mips *c)
490{
491 unsigned int config2;
492
493 config2 = read_c0_config2();
494
495 if (config2 & MIPS_CONF2_SL)
496 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
497
498 return config2 & MIPS_CONF_M;
499}
500
501static inline unsigned int decode_config3(struct cpuinfo_mips *c)
502{
503 unsigned int config3;
504
505 config3 = read_c0_config3();
506
507 if (config3 & MIPS_CONF3_SM) {
508 c->ases |= MIPS_ASE_SMARTMIPS;
509 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
510 }
511 if (config3 & MIPS_CONF3_RXI)
512 c->options |= MIPS_CPU_RIXI;
513 if (config3 & MIPS_CONF3_CTXTC)
514 c->options |= MIPS_CPU_CTXTC;
515 if (config3 & MIPS_CONF3_DSP)
516 c->ases |= MIPS_ASE_DSP;
517 if (config3 & MIPS_CONF3_DSP2P) {
518 c->ases |= MIPS_ASE_DSP2P;
519 if (cpu_has_mips_r6)
520 c->ases |= MIPS_ASE_DSP3;
521 }
522 if (config3 & MIPS_CONF3_VINT)
523 c->options |= MIPS_CPU_VINT;
524 if (config3 & MIPS_CONF3_VEIC)
525 c->options |= MIPS_CPU_VEIC;
526 if (config3 & MIPS_CONF3_LPA)
527 c->options |= MIPS_CPU_LPA;
528 if (config3 & MIPS_CONF3_MT)
529 c->ases |= MIPS_ASE_MIPSMT;
530 if (config3 & MIPS_CONF3_ULRI)
531 c->options |= MIPS_CPU_ULRI;
532 if (config3 & MIPS_CONF3_ISA)
533 c->options |= MIPS_CPU_MICROMIPS;
534 if (config3 & MIPS_CONF3_VZ)
535 c->ases |= MIPS_ASE_VZ;
536 if (config3 & MIPS_CONF3_SC)
537 c->options |= MIPS_CPU_SEGMENTS;
538 if (config3 & MIPS_CONF3_BI)
539 c->options |= MIPS_CPU_BADINSTR;
540 if (config3 & MIPS_CONF3_BP)
541 c->options |= MIPS_CPU_BADINSTRP;
542 if (config3 & MIPS_CONF3_MSA)
543 c->ases |= MIPS_ASE_MSA;
544 if (config3 & MIPS_CONF3_PW) {
545 c->htw_seq = 0;
546 c->options |= MIPS_CPU_HTW;
547 }
548 if (config3 & MIPS_CONF3_CDMM)
549 c->options |= MIPS_CPU_CDMM;
550 if (config3 & MIPS_CONF3_SP)
551 c->options |= MIPS_CPU_SP;
552
553 return config3 & MIPS_CONF_M;
554}
555
556static inline unsigned int decode_config4(struct cpuinfo_mips *c)
557{
558 unsigned int config4;
559 unsigned int newcf4;
560 unsigned int mmuextdef;
561 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
562 unsigned long asid_mask;
563
564 config4 = read_c0_config4();
565
566 if (cpu_has_tlb) {
567 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
568 c->options |= MIPS_CPU_TLBINV;
569
570 /*
571 * R6 has dropped the MMUExtDef field from config4.
572 * On R6 the fields always describe the FTLB, and only if it is
573 * present according to Config.MT.
574 */
575 if (!cpu_has_mips_r6)
576 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
577 else if (cpu_has_ftlb)
578 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
579 else
580 mmuextdef = 0;
581
582 switch (mmuextdef) {
583 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
584 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
585 c->tlbsizevtlb = c->tlbsize;
586 break;
587 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
588 c->tlbsizevtlb +=
589 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
590 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
591 c->tlbsize = c->tlbsizevtlb;
592 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
593 fallthrough;
594 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
595 if (mips_ftlb_disabled)
596 break;
597 newcf4 = (config4 & ~ftlb_page) |
598 (page_size_ftlb(mmuextdef) <<
599 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
600 write_c0_config4(newcf4);
601 back_to_back_c0_hazard();
602 config4 = read_c0_config4();
603 if (config4 != newcf4) {
604 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
605 PAGE_SIZE, config4);
606 /* Switch FTLB off */
607 set_ftlb_enable(c, 0);
608 mips_ftlb_disabled = 1;
609 break;
610 }
611 c->tlbsizeftlbsets = 1 <<
612 ((config4 & MIPS_CONF4_FTLBSETS) >>
613 MIPS_CONF4_FTLBSETS_SHIFT);
614 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
615 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
616 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
617 mips_has_ftlb_configured = 1;
618 break;
619 }
620 }
621
622 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
623 >> MIPS_CONF4_KSCREXIST_SHIFT;
624
625 asid_mask = MIPS_ENTRYHI_ASID;
626 if (config4 & MIPS_CONF4_AE)
627 asid_mask |= MIPS_ENTRYHI_ASIDX;
628 set_cpu_asid_mask(c, asid_mask);
629
630 /*
631 * Warn if the computed ASID mask doesn't match the mask the kernel
632 * is built for. This may indicate either a serious problem or an
633 * easy optimisation opportunity, but either way should be addressed.
634 */
635 WARN_ON(asid_mask != cpu_asid_mask(c));
636
637 return config4 & MIPS_CONF_M;
638}
639
640static inline unsigned int decode_config5(struct cpuinfo_mips *c)
641{
642 unsigned int config5, max_mmid_width;
643 unsigned long asid_mask;
644
645 config5 = read_c0_config5();
646 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
647
648 if (cpu_has_mips_r6) {
649 if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
650 config5 |= MIPS_CONF5_MI;
651 else
652 config5 &= ~MIPS_CONF5_MI;
653 }
654
655 write_c0_config5(config5);
656
657 if (config5 & MIPS_CONF5_EVA)
658 c->options |= MIPS_CPU_EVA;
659 if (config5 & MIPS_CONF5_MRP)
660 c->options |= MIPS_CPU_MAAR;
661 if (config5 & MIPS_CONF5_LLB)
662 c->options |= MIPS_CPU_RW_LLB;
663 if (config5 & MIPS_CONF5_MVH)
664 c->options |= MIPS_CPU_MVH;
665 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
666 c->options |= MIPS_CPU_VP;
667 if (config5 & MIPS_CONF5_CA2)
668 c->ases |= MIPS_ASE_MIPS16E2;
669
670 if (config5 & MIPS_CONF5_CRCP)
671 elf_hwcap |= HWCAP_MIPS_CRC32;
672
673 if (cpu_has_mips_r6) {
674 /* Ensure the write to config5 above takes effect */
675 back_to_back_c0_hazard();
676
677 /* Check whether we successfully enabled MMID support */
678 config5 = read_c0_config5();
679 if (config5 & MIPS_CONF5_MI)
680 c->options |= MIPS_CPU_MMID;
681
682 /*
683 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
684 * for the CPU we're running on, or if CPUs in an SMP system
685 * have inconsistent MMID support.
686 */
687 WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
688
689 if (cpu_has_mmid) {
690 write_c0_memorymapid(~0ul);
691 back_to_back_c0_hazard();
692 asid_mask = read_c0_memorymapid();
693
694 /*
695 * We maintain a bitmap to track MMID allocation, and
696 * need a sensible upper bound on the size of that
697 * bitmap. The initial CPU with MMID support (I6500)
698 * supports 16 bit MMIDs, which gives us an 8KiB
699 * bitmap. The architecture recommends that hardware
700 * support 32 bit MMIDs, which would give us a 512MiB
701 * bitmap - that's too big in most cases.
702 *
703 * Cap MMID width at 16 bits for now & we can revisit
704 * this if & when hardware supports anything wider.
705 */
706 max_mmid_width = 16;
707 if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
708 pr_info("Capping MMID width at %d bits",
709 max_mmid_width);
710 asid_mask = GENMASK(max_mmid_width - 1, 0);
711 }
712
713 set_cpu_asid_mask(c, asid_mask);
714 }
715 }
716
717 return config5 & MIPS_CONF_M;
718}
719
720static void decode_configs(struct cpuinfo_mips *c)
721{
722 int ok;
723
724 /* MIPS32 or MIPS64 compliant CPU. */
725 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
726 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
727
728 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
729
730 /* Enable FTLB if present and not disabled */
731 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
732
733 ok = decode_config0(c); /* Read Config registers. */
734 BUG_ON(!ok); /* Arch spec violation! */
735 if (ok)
736 ok = decode_config1(c);
737 if (ok)
738 ok = decode_config2(c);
739 if (ok)
740 ok = decode_config3(c);
741 if (ok)
742 ok = decode_config4(c);
743 if (ok)
744 ok = decode_config5(c);
745
746 /* Probe the EBase.WG bit */
747 if (cpu_has_mips_r2_r6) {
748 u64 ebase;
749 unsigned int status;
750
751 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
752 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
753 : (s32)read_c0_ebase();
754 if (ebase & MIPS_EBASE_WG) {
755 /* WG bit already set, we can avoid the clumsy probe */
756 c->options |= MIPS_CPU_EBASE_WG;
757 } else {
758 /* Its UNDEFINED to change EBase while BEV=0 */
759 status = read_c0_status();
760 write_c0_status(status | ST0_BEV);
761 irq_enable_hazard();
762 /*
763 * On pre-r6 cores, this may well clobber the upper bits
764 * of EBase. This is hard to avoid without potentially
765 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
766 */
767 if (cpu_has_mips64r6)
768 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
769 else
770 write_c0_ebase(ebase | MIPS_EBASE_WG);
771 back_to_back_c0_hazard();
772 /* Restore BEV */
773 write_c0_status(status);
774 if (read_c0_ebase() & MIPS_EBASE_WG) {
775 c->options |= MIPS_CPU_EBASE_WG;
776 write_c0_ebase(ebase);
777 }
778 }
779 }
780
781 /* configure the FTLB write probability */
782 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
783
784 mips_probe_watch_registers(c);
785
786#ifndef CONFIG_MIPS_CPS
787 if (cpu_has_mips_r2_r6) {
788 unsigned int core;
789
790 core = get_ebase_cpunum();
791 if (cpu_has_mipsmt)
792 core >>= fls(core_nvpes()) - 1;
793 cpu_set_core(c, core);
794 }
795#endif
796}
797
798/*
799 * Probe for certain guest capabilities by writing config bits and reading back.
800 * Finally write back the original value.
801 */
802#define probe_gc0_config(name, maxconf, bits) \
803do { \
804 unsigned int tmp; \
805 tmp = read_gc0_##name(); \
806 write_gc0_##name(tmp | (bits)); \
807 back_to_back_c0_hazard(); \
808 maxconf = read_gc0_##name(); \
809 write_gc0_##name(tmp); \
810} while (0)
811
812/*
813 * Probe for dynamic guest capabilities by changing certain config bits and
814 * reading back to see if they change. Finally write back the original value.
815 */
816#define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
817do { \
818 maxconf = read_gc0_##name(); \
819 write_gc0_##name(maxconf ^ (bits)); \
820 back_to_back_c0_hazard(); \
821 dynconf = maxconf ^ read_gc0_##name(); \
822 write_gc0_##name(maxconf); \
823 maxconf |= dynconf; \
824} while (0)
825
826static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
827{
828 unsigned int config0;
829
830 probe_gc0_config(config, config0, MIPS_CONF_M);
831
832 if (config0 & MIPS_CONF_M)
833 c->guest.conf |= BIT(1);
834 return config0 & MIPS_CONF_M;
835}
836
837static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
838{
839 unsigned int config1, config1_dyn;
840
841 probe_gc0_config_dyn(config1, config1, config1_dyn,
842 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
843 MIPS_CONF1_FP);
844
845 if (config1 & MIPS_CONF1_FP)
846 c->guest.options |= MIPS_CPU_FPU;
847 if (config1_dyn & MIPS_CONF1_FP)
848 c->guest.options_dyn |= MIPS_CPU_FPU;
849
850 if (config1 & MIPS_CONF1_WR)
851 c->guest.options |= MIPS_CPU_WATCH;
852 if (config1_dyn & MIPS_CONF1_WR)
853 c->guest.options_dyn |= MIPS_CPU_WATCH;
854
855 if (config1 & MIPS_CONF1_PC)
856 c->guest.options |= MIPS_CPU_PERF;
857 if (config1_dyn & MIPS_CONF1_PC)
858 c->guest.options_dyn |= MIPS_CPU_PERF;
859
860 if (config1 & MIPS_CONF_M)
861 c->guest.conf |= BIT(2);
862 return config1 & MIPS_CONF_M;
863}
864
865static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
866{
867 unsigned int config2;
868
869 probe_gc0_config(config2, config2, MIPS_CONF_M);
870
871 if (config2 & MIPS_CONF_M)
872 c->guest.conf |= BIT(3);
873 return config2 & MIPS_CONF_M;
874}
875
876static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
877{
878 unsigned int config3, config3_dyn;
879
880 probe_gc0_config_dyn(config3, config3, config3_dyn,
881 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
882 MIPS_CONF3_CTXTC);
883
884 if (config3 & MIPS_CONF3_CTXTC)
885 c->guest.options |= MIPS_CPU_CTXTC;
886 if (config3_dyn & MIPS_CONF3_CTXTC)
887 c->guest.options_dyn |= MIPS_CPU_CTXTC;
888
889 if (config3 & MIPS_CONF3_PW)
890 c->guest.options |= MIPS_CPU_HTW;
891
892 if (config3 & MIPS_CONF3_ULRI)
893 c->guest.options |= MIPS_CPU_ULRI;
894
895 if (config3 & MIPS_CONF3_SC)
896 c->guest.options |= MIPS_CPU_SEGMENTS;
897
898 if (config3 & MIPS_CONF3_BI)
899 c->guest.options |= MIPS_CPU_BADINSTR;
900 if (config3 & MIPS_CONF3_BP)
901 c->guest.options |= MIPS_CPU_BADINSTRP;
902
903 if (config3 & MIPS_CONF3_MSA)
904 c->guest.ases |= MIPS_ASE_MSA;
905 if (config3_dyn & MIPS_CONF3_MSA)
906 c->guest.ases_dyn |= MIPS_ASE_MSA;
907
908 if (config3 & MIPS_CONF_M)
909 c->guest.conf |= BIT(4);
910 return config3 & MIPS_CONF_M;
911}
912
913static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
914{
915 unsigned int config4;
916
917 probe_gc0_config(config4, config4,
918 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
919
920 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
921 >> MIPS_CONF4_KSCREXIST_SHIFT;
922
923 if (config4 & MIPS_CONF_M)
924 c->guest.conf |= BIT(5);
925 return config4 & MIPS_CONF_M;
926}
927
928static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
929{
930 unsigned int config5, config5_dyn;
931
932 probe_gc0_config_dyn(config5, config5, config5_dyn,
933 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
934
935 if (config5 & MIPS_CONF5_MRP)
936 c->guest.options |= MIPS_CPU_MAAR;
937 if (config5_dyn & MIPS_CONF5_MRP)
938 c->guest.options_dyn |= MIPS_CPU_MAAR;
939
940 if (config5 & MIPS_CONF5_LLB)
941 c->guest.options |= MIPS_CPU_RW_LLB;
942
943 if (config5 & MIPS_CONF5_MVH)
944 c->guest.options |= MIPS_CPU_MVH;
945
946 if (config5 & MIPS_CONF_M)
947 c->guest.conf |= BIT(6);
948 return config5 & MIPS_CONF_M;
949}
950
951static inline void decode_guest_configs(struct cpuinfo_mips *c)
952{
953 unsigned int ok;
954
955 ok = decode_guest_config0(c);
956 if (ok)
957 ok = decode_guest_config1(c);
958 if (ok)
959 ok = decode_guest_config2(c);
960 if (ok)
961 ok = decode_guest_config3(c);
962 if (ok)
963 ok = decode_guest_config4(c);
964 if (ok)
965 decode_guest_config5(c);
966}
967
968static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
969{
970 unsigned int guestctl0, temp;
971
972 guestctl0 = read_c0_guestctl0();
973
974 if (guestctl0 & MIPS_GCTL0_G0E)
975 c->options |= MIPS_CPU_GUESTCTL0EXT;
976 if (guestctl0 & MIPS_GCTL0_G1)
977 c->options |= MIPS_CPU_GUESTCTL1;
978 if (guestctl0 & MIPS_GCTL0_G2)
979 c->options |= MIPS_CPU_GUESTCTL2;
980 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
981 c->options |= MIPS_CPU_GUESTID;
982
983 /*
984 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
985 * first, otherwise all data accesses will be fully virtualised
986 * as if they were performed by guest mode.
987 */
988 write_c0_guestctl1(0);
989 tlbw_use_hazard();
990
991 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
992 back_to_back_c0_hazard();
993 temp = read_c0_guestctl0();
994
995 if (temp & MIPS_GCTL0_DRG) {
996 write_c0_guestctl0(guestctl0);
997 c->options |= MIPS_CPU_DRG;
998 }
999 }
1000}
1001
1002static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1003{
1004 if (cpu_has_guestid) {
1005 /* determine the number of bits of GuestID available */
1006 write_c0_guestctl1(MIPS_GCTL1_ID);
1007 back_to_back_c0_hazard();
1008 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1009 >> MIPS_GCTL1_ID_SHIFT;
1010 write_c0_guestctl1(0);
1011 }
1012}
1013
1014static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1015{
1016 /* determine the number of bits of GTOffset available */
1017 write_c0_gtoffset(0xffffffff);
1018 back_to_back_c0_hazard();
1019 c->gtoffset_mask = read_c0_gtoffset();
1020 write_c0_gtoffset(0);
1021}
1022
1023static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1024{
1025 cpu_probe_guestctl0(c);
1026 if (cpu_has_guestctl1)
1027 cpu_probe_guestctl1(c);
1028
1029 cpu_probe_gtoffset(c);
1030
1031 decode_guest_configs(c);
1032}
1033
1034#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1035 | MIPS_CPU_COUNTER)
1036
1037static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1038{
1039 switch (c->processor_id & PRID_IMP_MASK) {
1040 case PRID_IMP_R2000:
1041 c->cputype = CPU_R2000;
1042 __cpu_name[cpu] = "R2000";
1043 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1044 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1045 MIPS_CPU_NOFPUEX;
1046 if (__cpu_has_fpu())
1047 c->options |= MIPS_CPU_FPU;
1048 c->tlbsize = 64;
1049 break;
1050 case PRID_IMP_R3000:
1051 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1052 if (cpu_has_confreg()) {
1053 c->cputype = CPU_R3081E;
1054 __cpu_name[cpu] = "R3081";
1055 } else {
1056 c->cputype = CPU_R3000A;
1057 __cpu_name[cpu] = "R3000A";
1058 }
1059 } else {
1060 c->cputype = CPU_R3000;
1061 __cpu_name[cpu] = "R3000";
1062 }
1063 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1064 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1065 MIPS_CPU_NOFPUEX;
1066 if (__cpu_has_fpu())
1067 c->options |= MIPS_CPU_FPU;
1068 c->tlbsize = 64;
1069 break;
1070 case PRID_IMP_R4000:
1071 if (read_c0_config() & CONF_SC) {
1072 if ((c->processor_id & PRID_REV_MASK) >=
1073 PRID_REV_R4400) {
1074 c->cputype = CPU_R4400PC;
1075 __cpu_name[cpu] = "R4400PC";
1076 } else {
1077 c->cputype = CPU_R4000PC;
1078 __cpu_name[cpu] = "R4000PC";
1079 }
1080 } else {
1081 int cca = read_c0_config() & CONF_CM_CMASK;
1082 int mc;
1083
1084 /*
1085 * SC and MC versions can't be reliably told apart,
1086 * but only the latter support coherent caching
1087 * modes so assume the firmware has set the KSEG0
1088 * coherency attribute reasonably (if uncached, we
1089 * assume SC).
1090 */
1091 switch (cca) {
1092 case CONF_CM_CACHABLE_CE:
1093 case CONF_CM_CACHABLE_COW:
1094 case CONF_CM_CACHABLE_CUW:
1095 mc = 1;
1096 break;
1097 default:
1098 mc = 0;
1099 break;
1100 }
1101 if ((c->processor_id & PRID_REV_MASK) >=
1102 PRID_REV_R4400) {
1103 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1104 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1105 } else {
1106 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1107 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1108 }
1109 }
1110
1111 set_isa(c, MIPS_CPU_ISA_III);
1112 c->fpu_msk31 |= FPU_CSR_CONDX;
1113 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1114 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1115 MIPS_CPU_LLSC;
1116 c->tlbsize = 48;
1117 break;
1118 case PRID_IMP_R4300:
1119 c->cputype = CPU_R4300;
1120 __cpu_name[cpu] = "R4300";
1121 set_isa(c, MIPS_CPU_ISA_III);
1122 c->fpu_msk31 |= FPU_CSR_CONDX;
1123 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1124 MIPS_CPU_LLSC;
1125 c->tlbsize = 32;
1126 break;
1127 case PRID_IMP_R4600:
1128 c->cputype = CPU_R4600;
1129 __cpu_name[cpu] = "R4600";
1130 set_isa(c, MIPS_CPU_ISA_III);
1131 c->fpu_msk31 |= FPU_CSR_CONDX;
1132 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1133 MIPS_CPU_LLSC;
1134 c->tlbsize = 48;
1135 break;
1136 #if 0
1137 case PRID_IMP_R4650:
1138 /*
1139 * This processor doesn't have an MMU, so it's not
1140 * "real easy" to run Linux on it. It is left purely
1141 * for documentation. Commented out because it shares
1142 * it's c0_prid id number with the TX3900.
1143 */
1144 c->cputype = CPU_R4650;
1145 __cpu_name[cpu] = "R4650";
1146 set_isa(c, MIPS_CPU_ISA_III);
1147 c->fpu_msk31 |= FPU_CSR_CONDX;
1148 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1149 c->tlbsize = 48;
1150 break;
1151 #endif
1152 case PRID_IMP_R4700:
1153 c->cputype = CPU_R4700;
1154 __cpu_name[cpu] = "R4700";
1155 set_isa(c, MIPS_CPU_ISA_III);
1156 c->fpu_msk31 |= FPU_CSR_CONDX;
1157 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1158 MIPS_CPU_LLSC;
1159 c->tlbsize = 48;
1160 break;
1161 case PRID_IMP_TX49:
1162 c->cputype = CPU_TX49XX;
1163 __cpu_name[cpu] = "R49XX";
1164 set_isa(c, MIPS_CPU_ISA_III);
1165 c->fpu_msk31 |= FPU_CSR_CONDX;
1166 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1167 if (!(c->processor_id & 0x08))
1168 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1169 c->tlbsize = 48;
1170 break;
1171 case PRID_IMP_R5000:
1172 c->cputype = CPU_R5000;
1173 __cpu_name[cpu] = "R5000";
1174 set_isa(c, MIPS_CPU_ISA_IV);
1175 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1176 MIPS_CPU_LLSC;
1177 c->tlbsize = 48;
1178 break;
1179 case PRID_IMP_R5500:
1180 c->cputype = CPU_R5500;
1181 __cpu_name[cpu] = "R5500";
1182 set_isa(c, MIPS_CPU_ISA_IV);
1183 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1184 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1185 c->tlbsize = 48;
1186 break;
1187 case PRID_IMP_NEVADA:
1188 c->cputype = CPU_NEVADA;
1189 __cpu_name[cpu] = "Nevada";
1190 set_isa(c, MIPS_CPU_ISA_IV);
1191 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1192 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1193 c->tlbsize = 48;
1194 break;
1195 case PRID_IMP_RM7000:
1196 c->cputype = CPU_RM7000;
1197 __cpu_name[cpu] = "RM7000";
1198 set_isa(c, MIPS_CPU_ISA_IV);
1199 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1200 MIPS_CPU_LLSC;
1201 /*
1202 * Undocumented RM7000: Bit 29 in the info register of
1203 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1204 * entries.
1205 *
1206 * 29 1 => 64 entry JTLB
1207 * 0 => 48 entry JTLB
1208 */
1209 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1210 break;
1211 case PRID_IMP_R10000:
1212 c->cputype = CPU_R10000;
1213 __cpu_name[cpu] = "R10000";
1214 set_isa(c, MIPS_CPU_ISA_IV);
1215 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1216 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1217 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1218 MIPS_CPU_LLSC;
1219 c->tlbsize = 64;
1220 break;
1221 case PRID_IMP_R12000:
1222 c->cputype = CPU_R12000;
1223 __cpu_name[cpu] = "R12000";
1224 set_isa(c, MIPS_CPU_ISA_IV);
1225 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1226 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1227 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1228 MIPS_CPU_LLSC;
1229 c->tlbsize = 64;
1230 write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1231 break;
1232 case PRID_IMP_R14000:
1233 if (((c->processor_id >> 4) & 0x0f) > 2) {
1234 c->cputype = CPU_R16000;
1235 __cpu_name[cpu] = "R16000";
1236 } else {
1237 c->cputype = CPU_R14000;
1238 __cpu_name[cpu] = "R14000";
1239 }
1240 set_isa(c, MIPS_CPU_ISA_IV);
1241 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1242 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1243 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1244 MIPS_CPU_LLSC;
1245 c->tlbsize = 64;
1246 write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1247 break;
1248 case PRID_IMP_LOONGSON_64C: /* Loongson-2/3 */
1249 switch (c->processor_id & PRID_REV_MASK) {
1250 case PRID_REV_LOONGSON2E:
1251 c->cputype = CPU_LOONGSON2EF;
1252 __cpu_name[cpu] = "ICT Loongson-2";
1253 set_elf_platform(cpu, "loongson2e");
1254 set_isa(c, MIPS_CPU_ISA_III);
1255 c->fpu_msk31 |= FPU_CSR_CONDX;
1256 break;
1257 case PRID_REV_LOONGSON2F:
1258 c->cputype = CPU_LOONGSON2EF;
1259 __cpu_name[cpu] = "ICT Loongson-2";
1260 set_elf_platform(cpu, "loongson2f");
1261 set_isa(c, MIPS_CPU_ISA_III);
1262 c->fpu_msk31 |= FPU_CSR_CONDX;
1263 break;
1264 case PRID_REV_LOONGSON3A_R1:
1265 c->cputype = CPU_LOONGSON64;
1266 __cpu_name[cpu] = "ICT Loongson-3";
1267 set_elf_platform(cpu, "loongson3a");
1268 set_isa(c, MIPS_CPU_ISA_M64R1);
1269 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1270 MIPS_ASE_LOONGSON_EXT);
1271 break;
1272 case PRID_REV_LOONGSON3B_R1:
1273 case PRID_REV_LOONGSON3B_R2:
1274 c->cputype = CPU_LOONGSON64;
1275 __cpu_name[cpu] = "ICT Loongson-3";
1276 set_elf_platform(cpu, "loongson3b");
1277 set_isa(c, MIPS_CPU_ISA_M64R1);
1278 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1279 MIPS_ASE_LOONGSON_EXT);
1280 break;
1281 }
1282
1283 c->options = R4K_OPTS |
1284 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1285 MIPS_CPU_32FPR;
1286 c->tlbsize = 64;
1287 set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1288 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1289 break;
1290 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1291 decode_configs(c);
1292
1293 c->cputype = CPU_LOONGSON32;
1294
1295 switch (c->processor_id & PRID_REV_MASK) {
1296 case PRID_REV_LOONGSON1B:
1297 __cpu_name[cpu] = "Loongson 1B";
1298 break;
1299 }
1300
1301 break;
1302 }
1303}
1304
1305static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1306{
1307 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1308 switch (c->processor_id & PRID_IMP_MASK) {
1309 case PRID_IMP_QEMU_GENERIC:
1310 c->writecombine = _CACHE_UNCACHED;
1311 c->cputype = CPU_QEMU_GENERIC;
1312 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1313 break;
1314 case PRID_IMP_4KC:
1315 c->cputype = CPU_4KC;
1316 c->writecombine = _CACHE_UNCACHED;
1317 __cpu_name[cpu] = "MIPS 4Kc";
1318 break;
1319 case PRID_IMP_4KEC:
1320 case PRID_IMP_4KECR2:
1321 c->cputype = CPU_4KEC;
1322 c->writecombine = _CACHE_UNCACHED;
1323 __cpu_name[cpu] = "MIPS 4KEc";
1324 break;
1325 case PRID_IMP_4KSC:
1326 case PRID_IMP_4KSD:
1327 c->cputype = CPU_4KSC;
1328 c->writecombine = _CACHE_UNCACHED;
1329 __cpu_name[cpu] = "MIPS 4KSc";
1330 break;
1331 case PRID_IMP_5KC:
1332 c->cputype = CPU_5KC;
1333 c->writecombine = _CACHE_UNCACHED;
1334 __cpu_name[cpu] = "MIPS 5Kc";
1335 break;
1336 case PRID_IMP_5KE:
1337 c->cputype = CPU_5KE;
1338 c->writecombine = _CACHE_UNCACHED;
1339 __cpu_name[cpu] = "MIPS 5KE";
1340 break;
1341 case PRID_IMP_20KC:
1342 c->cputype = CPU_20KC;
1343 c->writecombine = _CACHE_UNCACHED;
1344 __cpu_name[cpu] = "MIPS 20Kc";
1345 break;
1346 case PRID_IMP_24K:
1347 c->cputype = CPU_24K;
1348 c->writecombine = _CACHE_UNCACHED;
1349 __cpu_name[cpu] = "MIPS 24Kc";
1350 break;
1351 case PRID_IMP_24KE:
1352 c->cputype = CPU_24K;
1353 c->writecombine = _CACHE_UNCACHED;
1354 __cpu_name[cpu] = "MIPS 24KEc";
1355 break;
1356 case PRID_IMP_25KF:
1357 c->cputype = CPU_25KF;
1358 c->writecombine = _CACHE_UNCACHED;
1359 __cpu_name[cpu] = "MIPS 25Kc";
1360 break;
1361 case PRID_IMP_34K:
1362 c->cputype = CPU_34K;
1363 c->writecombine = _CACHE_UNCACHED;
1364 __cpu_name[cpu] = "MIPS 34Kc";
1365 cpu_set_mt_per_tc_perf(c);
1366 break;
1367 case PRID_IMP_74K:
1368 c->cputype = CPU_74K;
1369 c->writecombine = _CACHE_UNCACHED;
1370 __cpu_name[cpu] = "MIPS 74Kc";
1371 break;
1372 case PRID_IMP_M14KC:
1373 c->cputype = CPU_M14KC;
1374 c->writecombine = _CACHE_UNCACHED;
1375 __cpu_name[cpu] = "MIPS M14Kc";
1376 break;
1377 case PRID_IMP_M14KEC:
1378 c->cputype = CPU_M14KEC;
1379 c->writecombine = _CACHE_UNCACHED;
1380 __cpu_name[cpu] = "MIPS M14KEc";
1381 break;
1382 case PRID_IMP_1004K:
1383 c->cputype = CPU_1004K;
1384 c->writecombine = _CACHE_UNCACHED;
1385 __cpu_name[cpu] = "MIPS 1004Kc";
1386 cpu_set_mt_per_tc_perf(c);
1387 break;
1388 case PRID_IMP_1074K:
1389 c->cputype = CPU_1074K;
1390 c->writecombine = _CACHE_UNCACHED;
1391 __cpu_name[cpu] = "MIPS 1074Kc";
1392 break;
1393 case PRID_IMP_INTERAPTIV_UP:
1394 c->cputype = CPU_INTERAPTIV;
1395 __cpu_name[cpu] = "MIPS interAptiv";
1396 cpu_set_mt_per_tc_perf(c);
1397 break;
1398 case PRID_IMP_INTERAPTIV_MP:
1399 c->cputype = CPU_INTERAPTIV;
1400 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1401 cpu_set_mt_per_tc_perf(c);
1402 break;
1403 case PRID_IMP_PROAPTIV_UP:
1404 c->cputype = CPU_PROAPTIV;
1405 __cpu_name[cpu] = "MIPS proAptiv";
1406 break;
1407 case PRID_IMP_PROAPTIV_MP:
1408 c->cputype = CPU_PROAPTIV;
1409 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1410 break;
1411 case PRID_IMP_P5600:
1412 c->cputype = CPU_P5600;
1413 __cpu_name[cpu] = "MIPS P5600";
1414 break;
1415 case PRID_IMP_P6600:
1416 c->cputype = CPU_P6600;
1417 __cpu_name[cpu] = "MIPS P6600";
1418 break;
1419 case PRID_IMP_I6400:
1420 c->cputype = CPU_I6400;
1421 __cpu_name[cpu] = "MIPS I6400";
1422 break;
1423 case PRID_IMP_I6500:
1424 c->cputype = CPU_I6500;
1425 __cpu_name[cpu] = "MIPS I6500";
1426 break;
1427 case PRID_IMP_M5150:
1428 c->cputype = CPU_M5150;
1429 __cpu_name[cpu] = "MIPS M5150";
1430 break;
1431 case PRID_IMP_M6250:
1432 c->cputype = CPU_M6250;
1433 __cpu_name[cpu] = "MIPS M6250";
1434 break;
1435 }
1436
1437 decode_configs(c);
1438
1439 spram_config();
1440
1441 mm_config(c);
1442
1443 switch (__get_cpu_type(c->cputype)) {
1444 case CPU_M5150:
1445 case CPU_P5600:
1446 set_isa(c, MIPS_CPU_ISA_M32R5);
1447 break;
1448 case CPU_I6500:
1449 c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1450 fallthrough;
1451 case CPU_I6400:
1452 c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1453 fallthrough;
1454 default:
1455 break;
1456 }
1457
1458 /* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1459 * cache/FTLB parity exceptions.
1460 */
1461 switch (__get_cpu_type(c->cputype)) {
1462 case CPU_PROAPTIV:
1463 case CPU_P5600:
1464 case CPU_P6600:
1465 case CPU_I6400:
1466 case CPU_I6500:
1467 c->options |= MIPS_CPU_FTLBPAREX;
1468 break;
1469 }
1470}
1471
1472static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1473{
1474 decode_configs(c);
1475 switch (c->processor_id & PRID_IMP_MASK) {
1476 case PRID_IMP_AU1_REV1:
1477 case PRID_IMP_AU1_REV2:
1478 c->cputype = CPU_ALCHEMY;
1479 switch ((c->processor_id >> 24) & 0xff) {
1480 case 0:
1481 __cpu_name[cpu] = "Au1000";
1482 break;
1483 case 1:
1484 __cpu_name[cpu] = "Au1500";
1485 break;
1486 case 2:
1487 __cpu_name[cpu] = "Au1100";
1488 break;
1489 case 3:
1490 __cpu_name[cpu] = "Au1550";
1491 break;
1492 case 4:
1493 __cpu_name[cpu] = "Au1200";
1494 if ((c->processor_id & PRID_REV_MASK) == 2)
1495 __cpu_name[cpu] = "Au1250";
1496 break;
1497 case 5:
1498 __cpu_name[cpu] = "Au1210";
1499 break;
1500 default:
1501 __cpu_name[cpu] = "Au1xxx";
1502 break;
1503 }
1504 break;
1505 }
1506}
1507
1508static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1509{
1510 decode_configs(c);
1511
1512 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1513 switch (c->processor_id & PRID_IMP_MASK) {
1514 case PRID_IMP_SB1:
1515 c->cputype = CPU_SB1;
1516 __cpu_name[cpu] = "SiByte SB1";
1517 /* FPU in pass1 is known to have issues. */
1518 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1519 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1520 break;
1521 case PRID_IMP_SB1A:
1522 c->cputype = CPU_SB1A;
1523 __cpu_name[cpu] = "SiByte SB1A";
1524 break;
1525 }
1526}
1527
1528static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1529{
1530 decode_configs(c);
1531 switch (c->processor_id & PRID_IMP_MASK) {
1532 case PRID_IMP_SR71000:
1533 c->cputype = CPU_SR71000;
1534 __cpu_name[cpu] = "Sandcraft SR71000";
1535 c->scache.ways = 8;
1536 c->tlbsize = 64;
1537 break;
1538 }
1539}
1540
1541static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1542{
1543 decode_configs(c);
1544 switch (c->processor_id & PRID_IMP_MASK) {
1545 case PRID_IMP_PR4450:
1546 c->cputype = CPU_PR4450;
1547 __cpu_name[cpu] = "Philips PR4450";
1548 set_isa(c, MIPS_CPU_ISA_M32R1);
1549 break;
1550 }
1551}
1552
1553static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1554{
1555 decode_configs(c);
1556 switch (c->processor_id & PRID_IMP_MASK) {
1557 case PRID_IMP_BMIPS32_REV4:
1558 case PRID_IMP_BMIPS32_REV8:
1559 c->cputype = CPU_BMIPS32;
1560 __cpu_name[cpu] = "Broadcom BMIPS32";
1561 set_elf_platform(cpu, "bmips32");
1562 break;
1563 case PRID_IMP_BMIPS3300:
1564 case PRID_IMP_BMIPS3300_ALT:
1565 case PRID_IMP_BMIPS3300_BUG:
1566 c->cputype = CPU_BMIPS3300;
1567 __cpu_name[cpu] = "Broadcom BMIPS3300";
1568 set_elf_platform(cpu, "bmips3300");
1569 reserve_exception_space(0x400, VECTORSPACING * 64);
1570 break;
1571 case PRID_IMP_BMIPS43XX: {
1572 int rev = c->processor_id & PRID_REV_MASK;
1573
1574 if (rev >= PRID_REV_BMIPS4380_LO &&
1575 rev <= PRID_REV_BMIPS4380_HI) {
1576 c->cputype = CPU_BMIPS4380;
1577 __cpu_name[cpu] = "Broadcom BMIPS4380";
1578 set_elf_platform(cpu, "bmips4380");
1579 c->options |= MIPS_CPU_RIXI;
1580 reserve_exception_space(0x400, VECTORSPACING * 64);
1581 } else {
1582 c->cputype = CPU_BMIPS4350;
1583 __cpu_name[cpu] = "Broadcom BMIPS4350";
1584 set_elf_platform(cpu, "bmips4350");
1585 }
1586 break;
1587 }
1588 case PRID_IMP_BMIPS5000:
1589 case PRID_IMP_BMIPS5200:
1590 c->cputype = CPU_BMIPS5000;
1591 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1592 __cpu_name[cpu] = "Broadcom BMIPS5200";
1593 else
1594 __cpu_name[cpu] = "Broadcom BMIPS5000";
1595 set_elf_platform(cpu, "bmips5000");
1596 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1597 reserve_exception_space(0x1000, VECTORSPACING * 64);
1598 break;
1599 }
1600}
1601
1602static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1603{
1604 decode_configs(c);
1605 switch (c->processor_id & PRID_IMP_MASK) {
1606 case PRID_IMP_CAVIUM_CN38XX:
1607 case PRID_IMP_CAVIUM_CN31XX:
1608 case PRID_IMP_CAVIUM_CN30XX:
1609 c->cputype = CPU_CAVIUM_OCTEON;
1610 __cpu_name[cpu] = "Cavium Octeon";
1611 goto platform;
1612 case PRID_IMP_CAVIUM_CN58XX:
1613 case PRID_IMP_CAVIUM_CN56XX:
1614 case PRID_IMP_CAVIUM_CN50XX:
1615 case PRID_IMP_CAVIUM_CN52XX:
1616 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1617 __cpu_name[cpu] = "Cavium Octeon+";
1618platform:
1619 set_elf_platform(cpu, "octeon");
1620 break;
1621 case PRID_IMP_CAVIUM_CN61XX:
1622 case PRID_IMP_CAVIUM_CN63XX:
1623 case PRID_IMP_CAVIUM_CN66XX:
1624 case PRID_IMP_CAVIUM_CN68XX:
1625 case PRID_IMP_CAVIUM_CNF71XX:
1626 c->cputype = CPU_CAVIUM_OCTEON2;
1627 __cpu_name[cpu] = "Cavium Octeon II";
1628 set_elf_platform(cpu, "octeon2");
1629 break;
1630 case PRID_IMP_CAVIUM_CN70XX:
1631 case PRID_IMP_CAVIUM_CN73XX:
1632 case PRID_IMP_CAVIUM_CNF75XX:
1633 case PRID_IMP_CAVIUM_CN78XX:
1634 c->cputype = CPU_CAVIUM_OCTEON3;
1635 __cpu_name[cpu] = "Cavium Octeon III";
1636 set_elf_platform(cpu, "octeon3");
1637 break;
1638 default:
1639 printk(KERN_INFO "Unknown Octeon chip!\n");
1640 c->cputype = CPU_UNKNOWN;
1641 break;
1642 }
1643}
1644
1645#ifdef CONFIG_CPU_LOONGSON64
1646#include <loongson_regs.h>
1647
1648static inline void decode_cpucfg(struct cpuinfo_mips *c)
1649{
1650 u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
1651 u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
1652 u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
1653
1654 if (cfg1 & LOONGSON_CFG1_MMI)
1655 c->ases |= MIPS_ASE_LOONGSON_MMI;
1656
1657 if (cfg2 & LOONGSON_CFG2_LEXT1)
1658 c->ases |= MIPS_ASE_LOONGSON_EXT;
1659
1660 if (cfg2 & LOONGSON_CFG2_LEXT2)
1661 c->ases |= MIPS_ASE_LOONGSON_EXT2;
1662
1663 if (cfg2 & LOONGSON_CFG2_LSPW) {
1664 c->options |= MIPS_CPU_LDPTE;
1665 c->guest.options |= MIPS_CPU_LDPTE;
1666 }
1667
1668 if (cfg3 & LOONGSON_CFG3_LCAMP)
1669 c->ases |= MIPS_ASE_LOONGSON_CAM;
1670}
1671
1672static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1673{
1674 /* All Loongson processors covered here define ExcCode 16 as GSExc. */
1675 c->options |= MIPS_CPU_GSEXCEX;
1676
1677 switch (c->processor_id & PRID_IMP_MASK) {
1678 case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
1679 switch (c->processor_id & PRID_REV_MASK) {
1680 case PRID_REV_LOONGSON2K_R1_0:
1681 case PRID_REV_LOONGSON2K_R1_1:
1682 case PRID_REV_LOONGSON2K_R1_2:
1683 case PRID_REV_LOONGSON2K_R1_3:
1684 c->cputype = CPU_LOONGSON64;
1685 __cpu_name[cpu] = "Loongson-2K";
1686 set_elf_platform(cpu, "gs264e");
1687 set_isa(c, MIPS_CPU_ISA_M64R2);
1688 break;
1689 }
1690 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
1691 MIPS_ASE_LOONGSON_EXT2);
1692 break;
1693 case PRID_IMP_LOONGSON_64C: /* Loongson-3 Classic */
1694 switch (c->processor_id & PRID_REV_MASK) {
1695 case PRID_REV_LOONGSON3A_R2_0:
1696 case PRID_REV_LOONGSON3A_R2_1:
1697 c->cputype = CPU_LOONGSON64;
1698 __cpu_name[cpu] = "ICT Loongson-3";
1699 set_elf_platform(cpu, "loongson3a");
1700 set_isa(c, MIPS_CPU_ISA_M64R2);
1701 break;
1702 case PRID_REV_LOONGSON3A_R3_0:
1703 case PRID_REV_LOONGSON3A_R3_1:
1704 c->cputype = CPU_LOONGSON64;
1705 __cpu_name[cpu] = "ICT Loongson-3";
1706 set_elf_platform(cpu, "loongson3a");
1707 set_isa(c, MIPS_CPU_ISA_M64R2);
1708 break;
1709 }
1710 /*
1711 * Loongson-3 Classic did not implement MIPS standard TLBINV
1712 * but implemented TLBINVF and EHINV. As currently we're only
1713 * using these two features, enable MIPS_CPU_TLBINV as well.
1714 *
1715 * Also some early Loongson-3A2000 had wrong TLB type in Config
1716 * register, we correct it here.
1717 */
1718 c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1719 c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1720 MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1721 c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
1722 break;
1723 case PRID_IMP_LOONGSON_64G:
1724 c->cputype = CPU_LOONGSON64;
1725 __cpu_name[cpu] = "ICT Loongson-3";
1726 set_elf_platform(cpu, "loongson3a");
1727 set_isa(c, MIPS_CPU_ISA_M64R2);
1728 decode_cpucfg(c);
1729 break;
1730 default:
1731 panic("Unknown Loongson Processor ID!");
1732 break;
1733 }
1734
1735 decode_configs(c);
1736}
1737#else
1738static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
1739#endif
1740
1741static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1742{
1743 decode_configs(c);
1744
1745 /*
1746 * XBurst misses a config2 register, so config3 decode was skipped in
1747 * decode_configs().
1748 */
1749 decode_config3(c);
1750
1751 /* XBurst does not implement the CP0 counter. */
1752 c->options &= ~MIPS_CPU_COUNTER;
1753 BUG_ON(__builtin_constant_p(cpu_has_counter) && cpu_has_counter);
1754
1755 /* XBurst has virtually tagged icache */
1756 c->icache.flags |= MIPS_CACHE_VTAG;
1757
1758 switch (c->processor_id & PRID_IMP_MASK) {
1759
1760 /* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
1761 case PRID_IMP_XBURST_REV1:
1762
1763 /*
1764 * The XBurst core by default attempts to avoid branch target
1765 * buffer lookups by detecting & special casing loops. This
1766 * feature will cause BogoMIPS and lpj calculate in error.
1767 * Set cp0 config7 bit 4 to disable this feature.
1768 */
1769 set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1770
1771 switch (c->processor_id & PRID_COMP_MASK) {
1772
1773 /*
1774 * The config0 register in the XBurst CPUs with a processor ID of
1775 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1776 * but they don't actually support this ISA.
1777 */
1778 case PRID_COMP_INGENIC_D0:
1779 c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1780
1781 /* FPU is not properly detected on JZ4760(B). */
1782 if (c->processor_id == 0x2ed0024f)
1783 c->options |= MIPS_CPU_FPU;
1784
1785 fallthrough;
1786
1787 /*
1788 * The config0 register in the XBurst CPUs with a processor ID of
1789 * PRID_COMP_INGENIC_D0 or PRID_COMP_INGENIC_D1 has an abandoned
1790 * huge page tlb mode, this mode is not compatible with the MIPS
1791 * standard, it will cause tlbmiss and into an infinite loop
1792 * (line 21 in the tlb-funcs.S) when starting the init process.
1793 * After chip reset, the default is HPTLB mode, Write 0xa9000000
1794 * to cp0 register 5 sel 4 to switch back to VTLB mode to prevent
1795 * getting stuck.
1796 */
1797 case PRID_COMP_INGENIC_D1:
1798 write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
1799 break;
1800
1801 default:
1802 break;
1803 }
1804 fallthrough;
1805
1806 /* XBurst®1 with MXU2.0 SIMD ISA */
1807 case PRID_IMP_XBURST_REV2:
1808 /* Ingenic uses the WA bit to achieve write-combine memory writes */
1809 c->writecombine = _CACHE_CACHABLE_WA;
1810 c->cputype = CPU_XBURST;
1811 __cpu_name[cpu] = "Ingenic XBurst";
1812 break;
1813
1814 /* XBurst®2 with MXU2.1 SIMD ISA */
1815 case PRID_IMP_XBURST2:
1816 c->cputype = CPU_XBURST;
1817 __cpu_name[cpu] = "Ingenic XBurst II";
1818 break;
1819
1820 default:
1821 panic("Unknown Ingenic Processor ID!");
1822 break;
1823 }
1824}
1825
1826#ifdef CONFIG_64BIT
1827/* For use by uaccess.h */
1828u64 __ua_limit;
1829EXPORT_SYMBOL(__ua_limit);
1830#endif
1831
1832const char *__cpu_name[NR_CPUS];
1833const char *__elf_platform;
1834const char *__elf_base_platform;
1835
1836void cpu_probe(void)
1837{
1838 struct cpuinfo_mips *c = ¤t_cpu_data;
1839 unsigned int cpu = smp_processor_id();
1840
1841 /*
1842 * Set a default elf platform, cpu probe may later
1843 * overwrite it with a more precise value
1844 */
1845 set_elf_platform(cpu, "mips");
1846
1847 c->processor_id = PRID_IMP_UNKNOWN;
1848 c->fpu_id = FPIR_IMP_NONE;
1849 c->cputype = CPU_UNKNOWN;
1850 c->writecombine = _CACHE_UNCACHED;
1851
1852 c->fpu_csr31 = FPU_CSR_RN;
1853 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1854
1855 c->processor_id = read_c0_prid();
1856 switch (c->processor_id & PRID_COMP_MASK) {
1857 case PRID_COMP_LEGACY:
1858 cpu_probe_legacy(c, cpu);
1859 break;
1860 case PRID_COMP_MIPS:
1861 cpu_probe_mips(c, cpu);
1862 break;
1863 case PRID_COMP_ALCHEMY:
1864 cpu_probe_alchemy(c, cpu);
1865 break;
1866 case PRID_COMP_SIBYTE:
1867 cpu_probe_sibyte(c, cpu);
1868 break;
1869 case PRID_COMP_BROADCOM:
1870 cpu_probe_broadcom(c, cpu);
1871 break;
1872 case PRID_COMP_SANDCRAFT:
1873 cpu_probe_sandcraft(c, cpu);
1874 break;
1875 case PRID_COMP_NXP:
1876 cpu_probe_nxp(c, cpu);
1877 break;
1878 case PRID_COMP_CAVIUM:
1879 cpu_probe_cavium(c, cpu);
1880 break;
1881 case PRID_COMP_LOONGSON:
1882 cpu_probe_loongson(c, cpu);
1883 break;
1884 case PRID_COMP_INGENIC_13:
1885 case PRID_COMP_INGENIC_D0:
1886 case PRID_COMP_INGENIC_D1:
1887 case PRID_COMP_INGENIC_E1:
1888 cpu_probe_ingenic(c, cpu);
1889 break;
1890 }
1891
1892 BUG_ON(!__cpu_name[cpu]);
1893 BUG_ON(c->cputype == CPU_UNKNOWN);
1894
1895 /*
1896 * Platform code can force the cpu type to optimize code
1897 * generation. In that case be sure the cpu type is correctly
1898 * manually setup otherwise it could trigger some nasty bugs.
1899 */
1900 BUG_ON(current_cpu_type() != c->cputype);
1901
1902 if (cpu_has_rixi) {
1903 /* Enable the RIXI exceptions */
1904 set_c0_pagegrain(PG_IEC);
1905 back_to_back_c0_hazard();
1906 /* Verify the IEC bit is set */
1907 if (read_c0_pagegrain() & PG_IEC)
1908 c->options |= MIPS_CPU_RIXIEX;
1909 }
1910
1911 if (mips_fpu_disabled)
1912 c->options &= ~MIPS_CPU_FPU;
1913
1914 if (mips_dsp_disabled)
1915 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
1916
1917 if (mips_htw_disabled) {
1918 c->options &= ~MIPS_CPU_HTW;
1919 write_c0_pwctl(read_c0_pwctl() &
1920 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
1921 }
1922
1923 if (c->options & MIPS_CPU_FPU)
1924 cpu_set_fpu_opts(c);
1925 else
1926 cpu_set_nofpu_opts(c);
1927
1928 if (cpu_has_mips_r2_r6) {
1929 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1930 /* R2 has Performance Counter Interrupt indicator */
1931 c->options |= MIPS_CPU_PCI;
1932 }
1933 else
1934 c->srsets = 1;
1935
1936 if (cpu_has_mips_r6)
1937 elf_hwcap |= HWCAP_MIPS_R6;
1938
1939 if (cpu_has_msa) {
1940 c->msa_id = cpu_get_msa_id();
1941 WARN(c->msa_id & MSA_IR_WRPF,
1942 "Vector register partitioning unimplemented!");
1943 elf_hwcap |= HWCAP_MIPS_MSA;
1944 }
1945
1946 if (cpu_has_mips16)
1947 elf_hwcap |= HWCAP_MIPS_MIPS16;
1948
1949 if (cpu_has_mdmx)
1950 elf_hwcap |= HWCAP_MIPS_MDMX;
1951
1952 if (cpu_has_mips3d)
1953 elf_hwcap |= HWCAP_MIPS_MIPS3D;
1954
1955 if (cpu_has_smartmips)
1956 elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
1957
1958 if (cpu_has_dsp)
1959 elf_hwcap |= HWCAP_MIPS_DSP;
1960
1961 if (cpu_has_dsp2)
1962 elf_hwcap |= HWCAP_MIPS_DSP2;
1963
1964 if (cpu_has_dsp3)
1965 elf_hwcap |= HWCAP_MIPS_DSP3;
1966
1967 if (cpu_has_mips16e2)
1968 elf_hwcap |= HWCAP_MIPS_MIPS16E2;
1969
1970 if (cpu_has_loongson_mmi)
1971 elf_hwcap |= HWCAP_LOONGSON_MMI;
1972
1973 if (cpu_has_loongson_ext)
1974 elf_hwcap |= HWCAP_LOONGSON_EXT;
1975
1976 if (cpu_has_loongson_ext2)
1977 elf_hwcap |= HWCAP_LOONGSON_EXT2;
1978
1979 if (cpu_has_vz)
1980 cpu_probe_vz(c);
1981
1982 cpu_probe_vmbits(c);
1983
1984 /* Synthesize CPUCFG data if running on Loongson processors;
1985 * no-op otherwise.
1986 *
1987 * This looks at previously probed features, so keep this at bottom.
1988 */
1989 loongson3_cpucfg_synthesize_data(c);
1990
1991#ifdef CONFIG_64BIT
1992 if (cpu == 0)
1993 __ua_limit = ~((1ull << cpu_vmbits) - 1);
1994#endif
1995
1996 reserve_exception_space(0, 0x1000);
1997}
1998
1999void cpu_report(void)
2000{
2001 struct cpuinfo_mips *c = ¤t_cpu_data;
2002
2003 pr_info("CPU%d revision is: %08x (%s)\n",
2004 smp_processor_id(), c->processor_id, cpu_name_string());
2005 if (c->options & MIPS_CPU_FPU)
2006 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2007 if (cpu_has_msa)
2008 pr_info("MSA revision is: %08x\n", c->msa_id);
2009}
2010
2011void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2012{
2013 /* Ensure the core number fits in the field */
2014 WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2015 MIPS_GLOBALNUMBER_CLUSTER_SHF));
2016
2017 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2018 cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2019}
2020
2021void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2022{
2023 /* Ensure the core number fits in the field */
2024 WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2025
2026 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2027 cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2028}
2029
2030void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2031{
2032 /* Ensure the VP(E) ID fits in the field */
2033 WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2034
2035 /* Ensure we're not using VP(E)s without support */
2036 WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2037 !IS_ENABLED(CONFIG_CPU_MIPSR6));
2038
2039 cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2040 cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2041}
1/*
2 * Processor capabilities determination functions.
3 *
4 * Copyright (C) xxxx the Anonymous
5 * Copyright (C) 1994 - 2006 Ralf Baechle
6 * Copyright (C) 2003, 2004 Maciej W. Rozycki
7 * Copyright (C) 2001, 2004, 2011, 2012 MIPS Technologies, Inc.
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
13 */
14#include <linux/init.h>
15#include <linux/kernel.h>
16#include <linux/ptrace.h>
17#include <linux/smp.h>
18#include <linux/stddef.h>
19#include <linux/export.h>
20
21#include <asm/bugs.h>
22#include <asm/cpu.h>
23#include <asm/cpu-features.h>
24#include <asm/cpu-type.h>
25#include <asm/fpu.h>
26#include <asm/mipsregs.h>
27#include <asm/mipsmtregs.h>
28#include <asm/msa.h>
29#include <asm/watch.h>
30#include <asm/elf.h>
31#include <asm/pgtable-bits.h>
32#include <asm/spram.h>
33#include <linux/uaccess.h>
34
35/* Hardware capabilities */
36unsigned int elf_hwcap __read_mostly;
37
38/*
39 * Get the FPU Implementation/Revision.
40 */
41static inline unsigned long cpu_get_fpu_id(void)
42{
43 unsigned long tmp, fpu_id;
44
45 tmp = read_c0_status();
46 __enable_fpu(FPU_AS_IS);
47 fpu_id = read_32bit_cp1_register(CP1_REVISION);
48 write_c0_status(tmp);
49 return fpu_id;
50}
51
52/*
53 * Check if the CPU has an external FPU.
54 */
55static inline int __cpu_has_fpu(void)
56{
57 return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
58}
59
60static inline unsigned long cpu_get_msa_id(void)
61{
62 unsigned long status, msa_id;
63
64 status = read_c0_status();
65 __enable_fpu(FPU_64BIT);
66 enable_msa();
67 msa_id = read_msa_ir();
68 disable_msa();
69 write_c0_status(status);
70 return msa_id;
71}
72
73/*
74 * Determine the FCSR mask for FPU hardware.
75 */
76static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
77{
78 unsigned long sr, mask, fcsr, fcsr0, fcsr1;
79
80 fcsr = c->fpu_csr31;
81 mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
82
83 sr = read_c0_status();
84 __enable_fpu(FPU_AS_IS);
85
86 fcsr0 = fcsr & mask;
87 write_32bit_cp1_register(CP1_STATUS, fcsr0);
88 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
89
90 fcsr1 = fcsr | ~mask;
91 write_32bit_cp1_register(CP1_STATUS, fcsr1);
92 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
93
94 write_32bit_cp1_register(CP1_STATUS, fcsr);
95
96 write_c0_status(sr);
97
98 c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
99}
100
101/*
102 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
103 * supported by FPU hardware.
104 */
105static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
106{
107 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
108 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
109 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
110 unsigned long sr, fir, fcsr, fcsr0, fcsr1;
111
112 sr = read_c0_status();
113 __enable_fpu(FPU_AS_IS);
114
115 fir = read_32bit_cp1_register(CP1_REVISION);
116 if (fir & MIPS_FPIR_HAS2008) {
117 fcsr = read_32bit_cp1_register(CP1_STATUS);
118
119 fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
120 write_32bit_cp1_register(CP1_STATUS, fcsr0);
121 fcsr0 = read_32bit_cp1_register(CP1_STATUS);
122
123 fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
124 write_32bit_cp1_register(CP1_STATUS, fcsr1);
125 fcsr1 = read_32bit_cp1_register(CP1_STATUS);
126
127 write_32bit_cp1_register(CP1_STATUS, fcsr);
128
129 if (!(fcsr0 & FPU_CSR_NAN2008))
130 c->options |= MIPS_CPU_NAN_LEGACY;
131 if (fcsr1 & FPU_CSR_NAN2008)
132 c->options |= MIPS_CPU_NAN_2008;
133
134 if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
135 c->fpu_msk31 &= ~FPU_CSR_ABS2008;
136 else
137 c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
138
139 if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
140 c->fpu_msk31 &= ~FPU_CSR_NAN2008;
141 else
142 c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
143 } else {
144 c->options |= MIPS_CPU_NAN_LEGACY;
145 }
146
147 write_c0_status(sr);
148 } else {
149 c->options |= MIPS_CPU_NAN_LEGACY;
150 }
151}
152
153/*
154 * IEEE 754 conformance mode to use. Affects the NaN encoding and the
155 * ABS.fmt/NEG.fmt execution mode.
156 */
157static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
158
159/*
160 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
161 * to support by the FPU emulator according to the IEEE 754 conformance
162 * mode selected. Note that "relaxed" straps the emulator so that it
163 * allows 2008-NaN binaries even for legacy processors.
164 */
165static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
166{
167 c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
168 c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
169 c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
170
171 switch (ieee754) {
172 case STRICT:
173 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
174 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
175 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
176 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
177 } else {
178 c->options |= MIPS_CPU_NAN_LEGACY;
179 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
180 }
181 break;
182 case LEGACY:
183 c->options |= MIPS_CPU_NAN_LEGACY;
184 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
185 break;
186 case STD2008:
187 c->options |= MIPS_CPU_NAN_2008;
188 c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
189 c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
190 break;
191 case RELAXED:
192 c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
193 break;
194 }
195}
196
197/*
198 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
199 * according to the "ieee754=" parameter.
200 */
201static void cpu_set_nan_2008(struct cpuinfo_mips *c)
202{
203 switch (ieee754) {
204 case STRICT:
205 mips_use_nan_legacy = !!cpu_has_nan_legacy;
206 mips_use_nan_2008 = !!cpu_has_nan_2008;
207 break;
208 case LEGACY:
209 mips_use_nan_legacy = !!cpu_has_nan_legacy;
210 mips_use_nan_2008 = !cpu_has_nan_legacy;
211 break;
212 case STD2008:
213 mips_use_nan_legacy = !cpu_has_nan_2008;
214 mips_use_nan_2008 = !!cpu_has_nan_2008;
215 break;
216 case RELAXED:
217 mips_use_nan_legacy = true;
218 mips_use_nan_2008 = true;
219 break;
220 }
221}
222
223/*
224 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
225 * settings:
226 *
227 * strict: accept binaries that request a NaN encoding supported by the FPU
228 * legacy: only accept legacy-NaN binaries
229 * 2008: only accept 2008-NaN binaries
230 * relaxed: accept any binaries regardless of whether supported by the FPU
231 */
232static int __init ieee754_setup(char *s)
233{
234 if (!s)
235 return -1;
236 else if (!strcmp(s, "strict"))
237 ieee754 = STRICT;
238 else if (!strcmp(s, "legacy"))
239 ieee754 = LEGACY;
240 else if (!strcmp(s, "2008"))
241 ieee754 = STD2008;
242 else if (!strcmp(s, "relaxed"))
243 ieee754 = RELAXED;
244 else
245 return -1;
246
247 if (!(boot_cpu_data.options & MIPS_CPU_FPU))
248 cpu_set_nofpu_2008(&boot_cpu_data);
249 cpu_set_nan_2008(&boot_cpu_data);
250
251 return 0;
252}
253
254early_param("ieee754", ieee754_setup);
255
256/*
257 * Set the FIR feature flags for the FPU emulator.
258 */
259static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
260{
261 u32 value;
262
263 value = 0;
264 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
265 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
266 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
267 value |= MIPS_FPIR_D | MIPS_FPIR_S;
268 if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
269 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
270 value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
271 if (c->options & MIPS_CPU_NAN_2008)
272 value |= MIPS_FPIR_HAS2008;
273 c->fpu_id = value;
274}
275
276/* Determined FPU emulator mask to use for the boot CPU with "nofpu". */
277static unsigned int mips_nofpu_msk31;
278
279/*
280 * Set options for FPU hardware.
281 */
282static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
283{
284 c->fpu_id = cpu_get_fpu_id();
285 mips_nofpu_msk31 = c->fpu_msk31;
286
287 if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
288 MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
289 MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
290 if (c->fpu_id & MIPS_FPIR_3D)
291 c->ases |= MIPS_ASE_MIPS3D;
292 if (c->fpu_id & MIPS_FPIR_FREP)
293 c->options |= MIPS_CPU_FRE;
294 }
295
296 cpu_set_fpu_fcsr_mask(c);
297 cpu_set_fpu_2008(c);
298 cpu_set_nan_2008(c);
299}
300
301/*
302 * Set options for the FPU emulator.
303 */
304static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
305{
306 c->options &= ~MIPS_CPU_FPU;
307 c->fpu_msk31 = mips_nofpu_msk31;
308
309 cpu_set_nofpu_2008(c);
310 cpu_set_nan_2008(c);
311 cpu_set_nofpu_id(c);
312}
313
314static int mips_fpu_disabled;
315
316static int __init fpu_disable(char *s)
317{
318 cpu_set_nofpu_opts(&boot_cpu_data);
319 mips_fpu_disabled = 1;
320
321 return 1;
322}
323
324__setup("nofpu", fpu_disable);
325
326int mips_dsp_disabled;
327
328static int __init dsp_disable(char *s)
329{
330 cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
331 mips_dsp_disabled = 1;
332
333 return 1;
334}
335
336__setup("nodsp", dsp_disable);
337
338static int mips_htw_disabled;
339
340static int __init htw_disable(char *s)
341{
342 mips_htw_disabled = 1;
343 cpu_data[0].options &= ~MIPS_CPU_HTW;
344 write_c0_pwctl(read_c0_pwctl() &
345 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
346
347 return 1;
348}
349
350__setup("nohtw", htw_disable);
351
352static int mips_ftlb_disabled;
353static int mips_has_ftlb_configured;
354
355enum ftlb_flags {
356 FTLB_EN = 1 << 0,
357 FTLB_SET_PROB = 1 << 1,
358};
359
360static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
361
362static int __init ftlb_disable(char *s)
363{
364 unsigned int config4, mmuextdef;
365
366 /*
367 * If the core hasn't done any FTLB configuration, there is nothing
368 * for us to do here.
369 */
370 if (!mips_has_ftlb_configured)
371 return 1;
372
373 /* Disable it in the boot cpu */
374 if (set_ftlb_enable(&cpu_data[0], 0)) {
375 pr_warn("Can't turn FTLB off\n");
376 return 1;
377 }
378
379 config4 = read_c0_config4();
380
381 /* Check that FTLB has been disabled */
382 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
383 /* MMUSIZEEXT == VTLB ON, FTLB OFF */
384 if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
385 /* This should never happen */
386 pr_warn("FTLB could not be disabled!\n");
387 return 1;
388 }
389
390 mips_ftlb_disabled = 1;
391 mips_has_ftlb_configured = 0;
392
393 /*
394 * noftlb is mainly used for debug purposes so print
395 * an informative message instead of using pr_debug()
396 */
397 pr_info("FTLB has been disabled\n");
398
399 /*
400 * Some of these bits are duplicated in the decode_config4.
401 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
402 * once FTLB has been disabled so undo what decode_config4 did.
403 */
404 cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
405 cpu_data[0].tlbsizeftlbsets;
406 cpu_data[0].tlbsizeftlbsets = 0;
407 cpu_data[0].tlbsizeftlbways = 0;
408
409 return 1;
410}
411
412__setup("noftlb", ftlb_disable);
413
414
415static inline void check_errata(void)
416{
417 struct cpuinfo_mips *c = ¤t_cpu_data;
418
419 switch (current_cpu_type()) {
420 case CPU_34K:
421 /*
422 * Erratum "RPS May Cause Incorrect Instruction Execution"
423 * This code only handles VPE0, any SMP/RTOS code
424 * making use of VPE1 will be responsable for that VPE.
425 */
426 if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
427 write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
428 break;
429 default:
430 break;
431 }
432}
433
434void __init check_bugs32(void)
435{
436 check_errata();
437}
438
439/*
440 * Probe whether cpu has config register by trying to play with
441 * alternate cache bit and see whether it matters.
442 * It's used by cpu_probe to distinguish between R3000A and R3081.
443 */
444static inline int cpu_has_confreg(void)
445{
446#ifdef CONFIG_CPU_R3000
447 extern unsigned long r3k_cache_size(unsigned long);
448 unsigned long size1, size2;
449 unsigned long cfg = read_c0_conf();
450
451 size1 = r3k_cache_size(ST0_ISC);
452 write_c0_conf(cfg ^ R30XX_CONF_AC);
453 size2 = r3k_cache_size(ST0_ISC);
454 write_c0_conf(cfg);
455 return size1 != size2;
456#else
457 return 0;
458#endif
459}
460
461static inline void set_elf_platform(int cpu, const char *plat)
462{
463 if (cpu == 0)
464 __elf_platform = plat;
465}
466
467static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
468{
469#ifdef __NEED_VMBITS_PROBE
470 write_c0_entryhi(0x3fffffffffffe000ULL);
471 back_to_back_c0_hazard();
472 c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
473#endif
474}
475
476static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
477{
478 switch (isa) {
479 case MIPS_CPU_ISA_M64R2:
480 c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
481 case MIPS_CPU_ISA_M64R1:
482 c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
483 case MIPS_CPU_ISA_V:
484 c->isa_level |= MIPS_CPU_ISA_V;
485 case MIPS_CPU_ISA_IV:
486 c->isa_level |= MIPS_CPU_ISA_IV;
487 case MIPS_CPU_ISA_III:
488 c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
489 break;
490
491 /* R6 incompatible with everything else */
492 case MIPS_CPU_ISA_M64R6:
493 c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
494 case MIPS_CPU_ISA_M32R6:
495 c->isa_level |= MIPS_CPU_ISA_M32R6;
496 /* Break here so we don't add incompatible ISAs */
497 break;
498 case MIPS_CPU_ISA_M32R2:
499 c->isa_level |= MIPS_CPU_ISA_M32R2;
500 case MIPS_CPU_ISA_M32R1:
501 c->isa_level |= MIPS_CPU_ISA_M32R1;
502 case MIPS_CPU_ISA_II:
503 c->isa_level |= MIPS_CPU_ISA_II;
504 break;
505 }
506}
507
508static char unknown_isa[] = KERN_ERR \
509 "Unsupported ISA type, c0.config0: %d.";
510
511static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
512{
513
514 unsigned int probability = c->tlbsize / c->tlbsizevtlb;
515
516 /*
517 * 0 = All TLBWR instructions go to FTLB
518 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
519 * FTLB and 1 goes to the VTLB.
520 * 2 = 7:1: As above with 7:1 ratio.
521 * 3 = 3:1: As above with 3:1 ratio.
522 *
523 * Use the linear midpoint as the probability threshold.
524 */
525 if (probability >= 12)
526 return 1;
527 else if (probability >= 6)
528 return 2;
529 else
530 /*
531 * So FTLB is less than 4 times bigger than VTLB.
532 * A 3:1 ratio can still be useful though.
533 */
534 return 3;
535}
536
537static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
538{
539 unsigned int config;
540
541 /* It's implementation dependent how the FTLB can be enabled */
542 switch (c->cputype) {
543 case CPU_PROAPTIV:
544 case CPU_P5600:
545 case CPU_P6600:
546 /* proAptiv & related cores use Config6 to enable the FTLB */
547 config = read_c0_config6();
548
549 if (flags & FTLB_EN)
550 config |= MIPS_CONF6_FTLBEN;
551 else
552 config &= ~MIPS_CONF6_FTLBEN;
553
554 if (flags & FTLB_SET_PROB) {
555 config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
556 config |= calculate_ftlb_probability(c)
557 << MIPS_CONF6_FTLBP_SHIFT;
558 }
559
560 write_c0_config6(config);
561 back_to_back_c0_hazard();
562 break;
563 case CPU_I6400:
564 /* There's no way to disable the FTLB */
565 if (!(flags & FTLB_EN))
566 return 1;
567 return 0;
568 case CPU_LOONGSON3:
569 /* Flush ITLB, DTLB, VTLB and FTLB */
570 write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
571 LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
572 /* Loongson-3 cores use Config6 to enable the FTLB */
573 config = read_c0_config6();
574 if (flags & FTLB_EN)
575 /* Enable FTLB */
576 write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
577 else
578 /* Disable FTLB */
579 write_c0_config6(config | MIPS_CONF6_FTLBDIS);
580 break;
581 default:
582 return 1;
583 }
584
585 return 0;
586}
587
588static inline unsigned int decode_config0(struct cpuinfo_mips *c)
589{
590 unsigned int config0;
591 int isa, mt;
592
593 config0 = read_c0_config();
594
595 /*
596 * Look for Standard TLB or Dual VTLB and FTLB
597 */
598 mt = config0 & MIPS_CONF_MT;
599 if (mt == MIPS_CONF_MT_TLB)
600 c->options |= MIPS_CPU_TLB;
601 else if (mt == MIPS_CONF_MT_FTLB)
602 c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
603
604 isa = (config0 & MIPS_CONF_AT) >> 13;
605 switch (isa) {
606 case 0:
607 switch ((config0 & MIPS_CONF_AR) >> 10) {
608 case 0:
609 set_isa(c, MIPS_CPU_ISA_M32R1);
610 break;
611 case 1:
612 set_isa(c, MIPS_CPU_ISA_M32R2);
613 break;
614 case 2:
615 set_isa(c, MIPS_CPU_ISA_M32R6);
616 break;
617 default:
618 goto unknown;
619 }
620 break;
621 case 2:
622 switch ((config0 & MIPS_CONF_AR) >> 10) {
623 case 0:
624 set_isa(c, MIPS_CPU_ISA_M64R1);
625 break;
626 case 1:
627 set_isa(c, MIPS_CPU_ISA_M64R2);
628 break;
629 case 2:
630 set_isa(c, MIPS_CPU_ISA_M64R6);
631 break;
632 default:
633 goto unknown;
634 }
635 break;
636 default:
637 goto unknown;
638 }
639
640 return config0 & MIPS_CONF_M;
641
642unknown:
643 panic(unknown_isa, config0);
644}
645
646static inline unsigned int decode_config1(struct cpuinfo_mips *c)
647{
648 unsigned int config1;
649
650 config1 = read_c0_config1();
651
652 if (config1 & MIPS_CONF1_MD)
653 c->ases |= MIPS_ASE_MDMX;
654 if (config1 & MIPS_CONF1_PC)
655 c->options |= MIPS_CPU_PERF;
656 if (config1 & MIPS_CONF1_WR)
657 c->options |= MIPS_CPU_WATCH;
658 if (config1 & MIPS_CONF1_CA)
659 c->ases |= MIPS_ASE_MIPS16;
660 if (config1 & MIPS_CONF1_EP)
661 c->options |= MIPS_CPU_EJTAG;
662 if (config1 & MIPS_CONF1_FP) {
663 c->options |= MIPS_CPU_FPU;
664 c->options |= MIPS_CPU_32FPR;
665 }
666 if (cpu_has_tlb) {
667 c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
668 c->tlbsizevtlb = c->tlbsize;
669 c->tlbsizeftlbsets = 0;
670 }
671
672 return config1 & MIPS_CONF_M;
673}
674
675static inline unsigned int decode_config2(struct cpuinfo_mips *c)
676{
677 unsigned int config2;
678
679 config2 = read_c0_config2();
680
681 if (config2 & MIPS_CONF2_SL)
682 c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
683
684 return config2 & MIPS_CONF_M;
685}
686
687static inline unsigned int decode_config3(struct cpuinfo_mips *c)
688{
689 unsigned int config3;
690
691 config3 = read_c0_config3();
692
693 if (config3 & MIPS_CONF3_SM) {
694 c->ases |= MIPS_ASE_SMARTMIPS;
695 c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
696 }
697 if (config3 & MIPS_CONF3_RXI)
698 c->options |= MIPS_CPU_RIXI;
699 if (config3 & MIPS_CONF3_CTXTC)
700 c->options |= MIPS_CPU_CTXTC;
701 if (config3 & MIPS_CONF3_DSP)
702 c->ases |= MIPS_ASE_DSP;
703 if (config3 & MIPS_CONF3_DSP2P) {
704 c->ases |= MIPS_ASE_DSP2P;
705 if (cpu_has_mips_r6)
706 c->ases |= MIPS_ASE_DSP3;
707 }
708 if (config3 & MIPS_CONF3_VINT)
709 c->options |= MIPS_CPU_VINT;
710 if (config3 & MIPS_CONF3_VEIC)
711 c->options |= MIPS_CPU_VEIC;
712 if (config3 & MIPS_CONF3_LPA)
713 c->options |= MIPS_CPU_LPA;
714 if (config3 & MIPS_CONF3_MT)
715 c->ases |= MIPS_ASE_MIPSMT;
716 if (config3 & MIPS_CONF3_ULRI)
717 c->options |= MIPS_CPU_ULRI;
718 if (config3 & MIPS_CONF3_ISA)
719 c->options |= MIPS_CPU_MICROMIPS;
720 if (config3 & MIPS_CONF3_VZ)
721 c->ases |= MIPS_ASE_VZ;
722 if (config3 & MIPS_CONF3_SC)
723 c->options |= MIPS_CPU_SEGMENTS;
724 if (config3 & MIPS_CONF3_BI)
725 c->options |= MIPS_CPU_BADINSTR;
726 if (config3 & MIPS_CONF3_BP)
727 c->options |= MIPS_CPU_BADINSTRP;
728 if (config3 & MIPS_CONF3_MSA)
729 c->ases |= MIPS_ASE_MSA;
730 if (config3 & MIPS_CONF3_PW) {
731 c->htw_seq = 0;
732 c->options |= MIPS_CPU_HTW;
733 }
734 if (config3 & MIPS_CONF3_CDMM)
735 c->options |= MIPS_CPU_CDMM;
736 if (config3 & MIPS_CONF3_SP)
737 c->options |= MIPS_CPU_SP;
738
739 return config3 & MIPS_CONF_M;
740}
741
742static inline unsigned int decode_config4(struct cpuinfo_mips *c)
743{
744 unsigned int config4;
745 unsigned int newcf4;
746 unsigned int mmuextdef;
747 unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
748 unsigned long asid_mask;
749
750 config4 = read_c0_config4();
751
752 if (cpu_has_tlb) {
753 if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
754 c->options |= MIPS_CPU_TLBINV;
755
756 /*
757 * R6 has dropped the MMUExtDef field from config4.
758 * On R6 the fields always describe the FTLB, and only if it is
759 * present according to Config.MT.
760 */
761 if (!cpu_has_mips_r6)
762 mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
763 else if (cpu_has_ftlb)
764 mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
765 else
766 mmuextdef = 0;
767
768 switch (mmuextdef) {
769 case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
770 c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
771 c->tlbsizevtlb = c->tlbsize;
772 break;
773 case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
774 c->tlbsizevtlb +=
775 ((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
776 MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
777 c->tlbsize = c->tlbsizevtlb;
778 ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
779 /* fall through */
780 case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
781 if (mips_ftlb_disabled)
782 break;
783 newcf4 = (config4 & ~ftlb_page) |
784 (page_size_ftlb(mmuextdef) <<
785 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
786 write_c0_config4(newcf4);
787 back_to_back_c0_hazard();
788 config4 = read_c0_config4();
789 if (config4 != newcf4) {
790 pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
791 PAGE_SIZE, config4);
792 /* Switch FTLB off */
793 set_ftlb_enable(c, 0);
794 mips_ftlb_disabled = 1;
795 break;
796 }
797 c->tlbsizeftlbsets = 1 <<
798 ((config4 & MIPS_CONF4_FTLBSETS) >>
799 MIPS_CONF4_FTLBSETS_SHIFT);
800 c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
801 MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
802 c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
803 mips_has_ftlb_configured = 1;
804 break;
805 }
806 }
807
808 c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
809 >> MIPS_CONF4_KSCREXIST_SHIFT;
810
811 asid_mask = MIPS_ENTRYHI_ASID;
812 if (config4 & MIPS_CONF4_AE)
813 asid_mask |= MIPS_ENTRYHI_ASIDX;
814 set_cpu_asid_mask(c, asid_mask);
815
816 /*
817 * Warn if the computed ASID mask doesn't match the mask the kernel
818 * is built for. This may indicate either a serious problem or an
819 * easy optimisation opportunity, but either way should be addressed.
820 */
821 WARN_ON(asid_mask != cpu_asid_mask(c));
822
823 return config4 & MIPS_CONF_M;
824}
825
826static inline unsigned int decode_config5(struct cpuinfo_mips *c)
827{
828 unsigned int config5;
829
830 config5 = read_c0_config5();
831 config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
832 write_c0_config5(config5);
833
834 if (config5 & MIPS_CONF5_EVA)
835 c->options |= MIPS_CPU_EVA;
836 if (config5 & MIPS_CONF5_MRP)
837 c->options |= MIPS_CPU_MAAR;
838 if (config5 & MIPS_CONF5_LLB)
839 c->options |= MIPS_CPU_RW_LLB;
840 if (config5 & MIPS_CONF5_MVH)
841 c->options |= MIPS_CPU_MVH;
842 if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
843 c->options |= MIPS_CPU_VP;
844
845 return config5 & MIPS_CONF_M;
846}
847
848static void decode_configs(struct cpuinfo_mips *c)
849{
850 int ok;
851
852 /* MIPS32 or MIPS64 compliant CPU. */
853 c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
854 MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
855
856 c->scache.flags = MIPS_CACHE_NOT_PRESENT;
857
858 /* Enable FTLB if present and not disabled */
859 set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
860
861 ok = decode_config0(c); /* Read Config registers. */
862 BUG_ON(!ok); /* Arch spec violation! */
863 if (ok)
864 ok = decode_config1(c);
865 if (ok)
866 ok = decode_config2(c);
867 if (ok)
868 ok = decode_config3(c);
869 if (ok)
870 ok = decode_config4(c);
871 if (ok)
872 ok = decode_config5(c);
873
874 /* Probe the EBase.WG bit */
875 if (cpu_has_mips_r2_r6) {
876 u64 ebase;
877 unsigned int status;
878
879 /* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
880 ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
881 : (s32)read_c0_ebase();
882 if (ebase & MIPS_EBASE_WG) {
883 /* WG bit already set, we can avoid the clumsy probe */
884 c->options |= MIPS_CPU_EBASE_WG;
885 } else {
886 /* Its UNDEFINED to change EBase while BEV=0 */
887 status = read_c0_status();
888 write_c0_status(status | ST0_BEV);
889 irq_enable_hazard();
890 /*
891 * On pre-r6 cores, this may well clobber the upper bits
892 * of EBase. This is hard to avoid without potentially
893 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
894 */
895 if (cpu_has_mips64r6)
896 write_c0_ebase_64(ebase | MIPS_EBASE_WG);
897 else
898 write_c0_ebase(ebase | MIPS_EBASE_WG);
899 back_to_back_c0_hazard();
900 /* Restore BEV */
901 write_c0_status(status);
902 if (read_c0_ebase() & MIPS_EBASE_WG) {
903 c->options |= MIPS_CPU_EBASE_WG;
904 write_c0_ebase(ebase);
905 }
906 }
907 }
908
909 /* configure the FTLB write probability */
910 set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
911
912 mips_probe_watch_registers(c);
913
914#ifndef CONFIG_MIPS_CPS
915 if (cpu_has_mips_r2_r6) {
916 c->core = get_ebase_cpunum();
917 if (cpu_has_mipsmt)
918 c->core >>= fls(core_nvpes()) - 1;
919 }
920#endif
921}
922
923/*
924 * Probe for certain guest capabilities by writing config bits and reading back.
925 * Finally write back the original value.
926 */
927#define probe_gc0_config(name, maxconf, bits) \
928do { \
929 unsigned int tmp; \
930 tmp = read_gc0_##name(); \
931 write_gc0_##name(tmp | (bits)); \
932 back_to_back_c0_hazard(); \
933 maxconf = read_gc0_##name(); \
934 write_gc0_##name(tmp); \
935} while (0)
936
937/*
938 * Probe for dynamic guest capabilities by changing certain config bits and
939 * reading back to see if they change. Finally write back the original value.
940 */
941#define probe_gc0_config_dyn(name, maxconf, dynconf, bits) \
942do { \
943 maxconf = read_gc0_##name(); \
944 write_gc0_##name(maxconf ^ (bits)); \
945 back_to_back_c0_hazard(); \
946 dynconf = maxconf ^ read_gc0_##name(); \
947 write_gc0_##name(maxconf); \
948 maxconf |= dynconf; \
949} while (0)
950
951static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
952{
953 unsigned int config0;
954
955 probe_gc0_config(config, config0, MIPS_CONF_M);
956
957 if (config0 & MIPS_CONF_M)
958 c->guest.conf |= BIT(1);
959 return config0 & MIPS_CONF_M;
960}
961
962static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
963{
964 unsigned int config1, config1_dyn;
965
966 probe_gc0_config_dyn(config1, config1, config1_dyn,
967 MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
968 MIPS_CONF1_FP);
969
970 if (config1 & MIPS_CONF1_FP)
971 c->guest.options |= MIPS_CPU_FPU;
972 if (config1_dyn & MIPS_CONF1_FP)
973 c->guest.options_dyn |= MIPS_CPU_FPU;
974
975 if (config1 & MIPS_CONF1_WR)
976 c->guest.options |= MIPS_CPU_WATCH;
977 if (config1_dyn & MIPS_CONF1_WR)
978 c->guest.options_dyn |= MIPS_CPU_WATCH;
979
980 if (config1 & MIPS_CONF1_PC)
981 c->guest.options |= MIPS_CPU_PERF;
982 if (config1_dyn & MIPS_CONF1_PC)
983 c->guest.options_dyn |= MIPS_CPU_PERF;
984
985 if (config1 & MIPS_CONF_M)
986 c->guest.conf |= BIT(2);
987 return config1 & MIPS_CONF_M;
988}
989
990static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
991{
992 unsigned int config2;
993
994 probe_gc0_config(config2, config2, MIPS_CONF_M);
995
996 if (config2 & MIPS_CONF_M)
997 c->guest.conf |= BIT(3);
998 return config2 & MIPS_CONF_M;
999}
1000
1001static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1002{
1003 unsigned int config3, config3_dyn;
1004
1005 probe_gc0_config_dyn(config3, config3, config3_dyn,
1006 MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_CTXTC);
1007
1008 if (config3 & MIPS_CONF3_CTXTC)
1009 c->guest.options |= MIPS_CPU_CTXTC;
1010 if (config3_dyn & MIPS_CONF3_CTXTC)
1011 c->guest.options_dyn |= MIPS_CPU_CTXTC;
1012
1013 if (config3 & MIPS_CONF3_PW)
1014 c->guest.options |= MIPS_CPU_HTW;
1015
1016 if (config3 & MIPS_CONF3_SC)
1017 c->guest.options |= MIPS_CPU_SEGMENTS;
1018
1019 if (config3 & MIPS_CONF3_BI)
1020 c->guest.options |= MIPS_CPU_BADINSTR;
1021 if (config3 & MIPS_CONF3_BP)
1022 c->guest.options |= MIPS_CPU_BADINSTRP;
1023
1024 if (config3 & MIPS_CONF3_MSA)
1025 c->guest.ases |= MIPS_ASE_MSA;
1026 if (config3_dyn & MIPS_CONF3_MSA)
1027 c->guest.ases_dyn |= MIPS_ASE_MSA;
1028
1029 if (config3 & MIPS_CONF_M)
1030 c->guest.conf |= BIT(4);
1031 return config3 & MIPS_CONF_M;
1032}
1033
1034static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1035{
1036 unsigned int config4;
1037
1038 probe_gc0_config(config4, config4,
1039 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1040
1041 c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1042 >> MIPS_CONF4_KSCREXIST_SHIFT;
1043
1044 if (config4 & MIPS_CONF_M)
1045 c->guest.conf |= BIT(5);
1046 return config4 & MIPS_CONF_M;
1047}
1048
1049static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1050{
1051 unsigned int config5, config5_dyn;
1052
1053 probe_gc0_config_dyn(config5, config5, config5_dyn,
1054 MIPS_CONF_M | MIPS_CONF5_MRP);
1055
1056 if (config5 & MIPS_CONF5_MRP)
1057 c->guest.options |= MIPS_CPU_MAAR;
1058 if (config5_dyn & MIPS_CONF5_MRP)
1059 c->guest.options_dyn |= MIPS_CPU_MAAR;
1060
1061 if (config5 & MIPS_CONF5_LLB)
1062 c->guest.options |= MIPS_CPU_RW_LLB;
1063
1064 if (config5 & MIPS_CONF_M)
1065 c->guest.conf |= BIT(6);
1066 return config5 & MIPS_CONF_M;
1067}
1068
1069static inline void decode_guest_configs(struct cpuinfo_mips *c)
1070{
1071 unsigned int ok;
1072
1073 ok = decode_guest_config0(c);
1074 if (ok)
1075 ok = decode_guest_config1(c);
1076 if (ok)
1077 ok = decode_guest_config2(c);
1078 if (ok)
1079 ok = decode_guest_config3(c);
1080 if (ok)
1081 ok = decode_guest_config4(c);
1082 if (ok)
1083 decode_guest_config5(c);
1084}
1085
1086static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1087{
1088 unsigned int guestctl0, temp;
1089
1090 guestctl0 = read_c0_guestctl0();
1091
1092 if (guestctl0 & MIPS_GCTL0_G0E)
1093 c->options |= MIPS_CPU_GUESTCTL0EXT;
1094 if (guestctl0 & MIPS_GCTL0_G1)
1095 c->options |= MIPS_CPU_GUESTCTL1;
1096 if (guestctl0 & MIPS_GCTL0_G2)
1097 c->options |= MIPS_CPU_GUESTCTL2;
1098 if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1099 c->options |= MIPS_CPU_GUESTID;
1100
1101 /*
1102 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1103 * first, otherwise all data accesses will be fully virtualised
1104 * as if they were performed by guest mode.
1105 */
1106 write_c0_guestctl1(0);
1107 tlbw_use_hazard();
1108
1109 write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1110 back_to_back_c0_hazard();
1111 temp = read_c0_guestctl0();
1112
1113 if (temp & MIPS_GCTL0_DRG) {
1114 write_c0_guestctl0(guestctl0);
1115 c->options |= MIPS_CPU_DRG;
1116 }
1117 }
1118}
1119
1120static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1121{
1122 if (cpu_has_guestid) {
1123 /* determine the number of bits of GuestID available */
1124 write_c0_guestctl1(MIPS_GCTL1_ID);
1125 back_to_back_c0_hazard();
1126 c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1127 >> MIPS_GCTL1_ID_SHIFT;
1128 write_c0_guestctl1(0);
1129 }
1130}
1131
1132static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1133{
1134 /* determine the number of bits of GTOffset available */
1135 write_c0_gtoffset(0xffffffff);
1136 back_to_back_c0_hazard();
1137 c->gtoffset_mask = read_c0_gtoffset();
1138 write_c0_gtoffset(0);
1139}
1140
1141static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1142{
1143 cpu_probe_guestctl0(c);
1144 if (cpu_has_guestctl1)
1145 cpu_probe_guestctl1(c);
1146
1147 cpu_probe_gtoffset(c);
1148
1149 decode_guest_configs(c);
1150}
1151
1152#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1153 | MIPS_CPU_COUNTER)
1154
1155static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1156{
1157 switch (c->processor_id & PRID_IMP_MASK) {
1158 case PRID_IMP_R2000:
1159 c->cputype = CPU_R2000;
1160 __cpu_name[cpu] = "R2000";
1161 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1162 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1163 MIPS_CPU_NOFPUEX;
1164 if (__cpu_has_fpu())
1165 c->options |= MIPS_CPU_FPU;
1166 c->tlbsize = 64;
1167 break;
1168 case PRID_IMP_R3000:
1169 if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1170 if (cpu_has_confreg()) {
1171 c->cputype = CPU_R3081E;
1172 __cpu_name[cpu] = "R3081";
1173 } else {
1174 c->cputype = CPU_R3000A;
1175 __cpu_name[cpu] = "R3000A";
1176 }
1177 } else {
1178 c->cputype = CPU_R3000;
1179 __cpu_name[cpu] = "R3000";
1180 }
1181 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1182 c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1183 MIPS_CPU_NOFPUEX;
1184 if (__cpu_has_fpu())
1185 c->options |= MIPS_CPU_FPU;
1186 c->tlbsize = 64;
1187 break;
1188 case PRID_IMP_R4000:
1189 if (read_c0_config() & CONF_SC) {
1190 if ((c->processor_id & PRID_REV_MASK) >=
1191 PRID_REV_R4400) {
1192 c->cputype = CPU_R4400PC;
1193 __cpu_name[cpu] = "R4400PC";
1194 } else {
1195 c->cputype = CPU_R4000PC;
1196 __cpu_name[cpu] = "R4000PC";
1197 }
1198 } else {
1199 int cca = read_c0_config() & CONF_CM_CMASK;
1200 int mc;
1201
1202 /*
1203 * SC and MC versions can't be reliably told apart,
1204 * but only the latter support coherent caching
1205 * modes so assume the firmware has set the KSEG0
1206 * coherency attribute reasonably (if uncached, we
1207 * assume SC).
1208 */
1209 switch (cca) {
1210 case CONF_CM_CACHABLE_CE:
1211 case CONF_CM_CACHABLE_COW:
1212 case CONF_CM_CACHABLE_CUW:
1213 mc = 1;
1214 break;
1215 default:
1216 mc = 0;
1217 break;
1218 }
1219 if ((c->processor_id & PRID_REV_MASK) >=
1220 PRID_REV_R4400) {
1221 c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1222 __cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1223 } else {
1224 c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1225 __cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1226 }
1227 }
1228
1229 set_isa(c, MIPS_CPU_ISA_III);
1230 c->fpu_msk31 |= FPU_CSR_CONDX;
1231 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1232 MIPS_CPU_WATCH | MIPS_CPU_VCE |
1233 MIPS_CPU_LLSC;
1234 c->tlbsize = 48;
1235 break;
1236 case PRID_IMP_VR41XX:
1237 set_isa(c, MIPS_CPU_ISA_III);
1238 c->fpu_msk31 |= FPU_CSR_CONDX;
1239 c->options = R4K_OPTS;
1240 c->tlbsize = 32;
1241 switch (c->processor_id & 0xf0) {
1242 case PRID_REV_VR4111:
1243 c->cputype = CPU_VR4111;
1244 __cpu_name[cpu] = "NEC VR4111";
1245 break;
1246 case PRID_REV_VR4121:
1247 c->cputype = CPU_VR4121;
1248 __cpu_name[cpu] = "NEC VR4121";
1249 break;
1250 case PRID_REV_VR4122:
1251 if ((c->processor_id & 0xf) < 0x3) {
1252 c->cputype = CPU_VR4122;
1253 __cpu_name[cpu] = "NEC VR4122";
1254 } else {
1255 c->cputype = CPU_VR4181A;
1256 __cpu_name[cpu] = "NEC VR4181A";
1257 }
1258 break;
1259 case PRID_REV_VR4130:
1260 if ((c->processor_id & 0xf) < 0x4) {
1261 c->cputype = CPU_VR4131;
1262 __cpu_name[cpu] = "NEC VR4131";
1263 } else {
1264 c->cputype = CPU_VR4133;
1265 c->options |= MIPS_CPU_LLSC;
1266 __cpu_name[cpu] = "NEC VR4133";
1267 }
1268 break;
1269 default:
1270 printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1271 c->cputype = CPU_VR41XX;
1272 __cpu_name[cpu] = "NEC Vr41xx";
1273 break;
1274 }
1275 break;
1276 case PRID_IMP_R4300:
1277 c->cputype = CPU_R4300;
1278 __cpu_name[cpu] = "R4300";
1279 set_isa(c, MIPS_CPU_ISA_III);
1280 c->fpu_msk31 |= FPU_CSR_CONDX;
1281 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1282 MIPS_CPU_LLSC;
1283 c->tlbsize = 32;
1284 break;
1285 case PRID_IMP_R4600:
1286 c->cputype = CPU_R4600;
1287 __cpu_name[cpu] = "R4600";
1288 set_isa(c, MIPS_CPU_ISA_III);
1289 c->fpu_msk31 |= FPU_CSR_CONDX;
1290 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1291 MIPS_CPU_LLSC;
1292 c->tlbsize = 48;
1293 break;
1294 #if 0
1295 case PRID_IMP_R4650:
1296 /*
1297 * This processor doesn't have an MMU, so it's not
1298 * "real easy" to run Linux on it. It is left purely
1299 * for documentation. Commented out because it shares
1300 * it's c0_prid id number with the TX3900.
1301 */
1302 c->cputype = CPU_R4650;
1303 __cpu_name[cpu] = "R4650";
1304 set_isa(c, MIPS_CPU_ISA_III);
1305 c->fpu_msk31 |= FPU_CSR_CONDX;
1306 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1307 c->tlbsize = 48;
1308 break;
1309 #endif
1310 case PRID_IMP_TX39:
1311 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1312 c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1313
1314 if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1315 c->cputype = CPU_TX3927;
1316 __cpu_name[cpu] = "TX3927";
1317 c->tlbsize = 64;
1318 } else {
1319 switch (c->processor_id & PRID_REV_MASK) {
1320 case PRID_REV_TX3912:
1321 c->cputype = CPU_TX3912;
1322 __cpu_name[cpu] = "TX3912";
1323 c->tlbsize = 32;
1324 break;
1325 case PRID_REV_TX3922:
1326 c->cputype = CPU_TX3922;
1327 __cpu_name[cpu] = "TX3922";
1328 c->tlbsize = 64;
1329 break;
1330 }
1331 }
1332 break;
1333 case PRID_IMP_R4700:
1334 c->cputype = CPU_R4700;
1335 __cpu_name[cpu] = "R4700";
1336 set_isa(c, MIPS_CPU_ISA_III);
1337 c->fpu_msk31 |= FPU_CSR_CONDX;
1338 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1339 MIPS_CPU_LLSC;
1340 c->tlbsize = 48;
1341 break;
1342 case PRID_IMP_TX49:
1343 c->cputype = CPU_TX49XX;
1344 __cpu_name[cpu] = "R49XX";
1345 set_isa(c, MIPS_CPU_ISA_III);
1346 c->fpu_msk31 |= FPU_CSR_CONDX;
1347 c->options = R4K_OPTS | MIPS_CPU_LLSC;
1348 if (!(c->processor_id & 0x08))
1349 c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1350 c->tlbsize = 48;
1351 break;
1352 case PRID_IMP_R5000:
1353 c->cputype = CPU_R5000;
1354 __cpu_name[cpu] = "R5000";
1355 set_isa(c, MIPS_CPU_ISA_IV);
1356 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1357 MIPS_CPU_LLSC;
1358 c->tlbsize = 48;
1359 break;
1360 case PRID_IMP_R5432:
1361 c->cputype = CPU_R5432;
1362 __cpu_name[cpu] = "R5432";
1363 set_isa(c, MIPS_CPU_ISA_IV);
1364 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1365 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1366 c->tlbsize = 48;
1367 break;
1368 case PRID_IMP_R5500:
1369 c->cputype = CPU_R5500;
1370 __cpu_name[cpu] = "R5500";
1371 set_isa(c, MIPS_CPU_ISA_IV);
1372 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1373 MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1374 c->tlbsize = 48;
1375 break;
1376 case PRID_IMP_NEVADA:
1377 c->cputype = CPU_NEVADA;
1378 __cpu_name[cpu] = "Nevada";
1379 set_isa(c, MIPS_CPU_ISA_IV);
1380 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1381 MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1382 c->tlbsize = 48;
1383 break;
1384 case PRID_IMP_R6000:
1385 c->cputype = CPU_R6000;
1386 __cpu_name[cpu] = "R6000";
1387 set_isa(c, MIPS_CPU_ISA_II);
1388 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1389 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1390 MIPS_CPU_LLSC;
1391 c->tlbsize = 32;
1392 break;
1393 case PRID_IMP_R6000A:
1394 c->cputype = CPU_R6000A;
1395 __cpu_name[cpu] = "R6000A";
1396 set_isa(c, MIPS_CPU_ISA_II);
1397 c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1398 c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1399 MIPS_CPU_LLSC;
1400 c->tlbsize = 32;
1401 break;
1402 case PRID_IMP_RM7000:
1403 c->cputype = CPU_RM7000;
1404 __cpu_name[cpu] = "RM7000";
1405 set_isa(c, MIPS_CPU_ISA_IV);
1406 c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1407 MIPS_CPU_LLSC;
1408 /*
1409 * Undocumented RM7000: Bit 29 in the info register of
1410 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1411 * entries.
1412 *
1413 * 29 1 => 64 entry JTLB
1414 * 0 => 48 entry JTLB
1415 */
1416 c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1417 break;
1418 case PRID_IMP_R8000:
1419 c->cputype = CPU_R8000;
1420 __cpu_name[cpu] = "RM8000";
1421 set_isa(c, MIPS_CPU_ISA_IV);
1422 c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1423 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1424 MIPS_CPU_LLSC;
1425 c->tlbsize = 384; /* has weird TLB: 3-way x 128 */
1426 break;
1427 case PRID_IMP_R10000:
1428 c->cputype = CPU_R10000;
1429 __cpu_name[cpu] = "R10000";
1430 set_isa(c, MIPS_CPU_ISA_IV);
1431 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1432 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1433 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1434 MIPS_CPU_LLSC;
1435 c->tlbsize = 64;
1436 break;
1437 case PRID_IMP_R12000:
1438 c->cputype = CPU_R12000;
1439 __cpu_name[cpu] = "R12000";
1440 set_isa(c, MIPS_CPU_ISA_IV);
1441 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1442 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1443 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1444 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1445 c->tlbsize = 64;
1446 break;
1447 case PRID_IMP_R14000:
1448 if (((c->processor_id >> 4) & 0x0f) > 2) {
1449 c->cputype = CPU_R16000;
1450 __cpu_name[cpu] = "R16000";
1451 } else {
1452 c->cputype = CPU_R14000;
1453 __cpu_name[cpu] = "R14000";
1454 }
1455 set_isa(c, MIPS_CPU_ISA_IV);
1456 c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1457 MIPS_CPU_FPU | MIPS_CPU_32FPR |
1458 MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1459 MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1460 c->tlbsize = 64;
1461 break;
1462 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1463 switch (c->processor_id & PRID_REV_MASK) {
1464 case PRID_REV_LOONGSON2E:
1465 c->cputype = CPU_LOONGSON2;
1466 __cpu_name[cpu] = "ICT Loongson-2";
1467 set_elf_platform(cpu, "loongson2e");
1468 set_isa(c, MIPS_CPU_ISA_III);
1469 c->fpu_msk31 |= FPU_CSR_CONDX;
1470 break;
1471 case PRID_REV_LOONGSON2F:
1472 c->cputype = CPU_LOONGSON2;
1473 __cpu_name[cpu] = "ICT Loongson-2";
1474 set_elf_platform(cpu, "loongson2f");
1475 set_isa(c, MIPS_CPU_ISA_III);
1476 c->fpu_msk31 |= FPU_CSR_CONDX;
1477 break;
1478 case PRID_REV_LOONGSON3A_R1:
1479 c->cputype = CPU_LOONGSON3;
1480 __cpu_name[cpu] = "ICT Loongson-3";
1481 set_elf_platform(cpu, "loongson3a");
1482 set_isa(c, MIPS_CPU_ISA_M64R1);
1483 break;
1484 case PRID_REV_LOONGSON3B_R1:
1485 case PRID_REV_LOONGSON3B_R2:
1486 c->cputype = CPU_LOONGSON3;
1487 __cpu_name[cpu] = "ICT Loongson-3";
1488 set_elf_platform(cpu, "loongson3b");
1489 set_isa(c, MIPS_CPU_ISA_M64R1);
1490 break;
1491 }
1492
1493 c->options = R4K_OPTS |
1494 MIPS_CPU_FPU | MIPS_CPU_LLSC |
1495 MIPS_CPU_32FPR;
1496 c->tlbsize = 64;
1497 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1498 break;
1499 case PRID_IMP_LOONGSON_32: /* Loongson-1 */
1500 decode_configs(c);
1501
1502 c->cputype = CPU_LOONGSON1;
1503
1504 switch (c->processor_id & PRID_REV_MASK) {
1505 case PRID_REV_LOONGSON1B:
1506 __cpu_name[cpu] = "Loongson 1B";
1507 break;
1508 }
1509
1510 break;
1511 }
1512}
1513
1514static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1515{
1516 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1517 switch (c->processor_id & PRID_IMP_MASK) {
1518 case PRID_IMP_QEMU_GENERIC:
1519 c->writecombine = _CACHE_UNCACHED;
1520 c->cputype = CPU_QEMU_GENERIC;
1521 __cpu_name[cpu] = "MIPS GENERIC QEMU";
1522 break;
1523 case PRID_IMP_4KC:
1524 c->cputype = CPU_4KC;
1525 c->writecombine = _CACHE_UNCACHED;
1526 __cpu_name[cpu] = "MIPS 4Kc";
1527 break;
1528 case PRID_IMP_4KEC:
1529 case PRID_IMP_4KECR2:
1530 c->cputype = CPU_4KEC;
1531 c->writecombine = _CACHE_UNCACHED;
1532 __cpu_name[cpu] = "MIPS 4KEc";
1533 break;
1534 case PRID_IMP_4KSC:
1535 case PRID_IMP_4KSD:
1536 c->cputype = CPU_4KSC;
1537 c->writecombine = _CACHE_UNCACHED;
1538 __cpu_name[cpu] = "MIPS 4KSc";
1539 break;
1540 case PRID_IMP_5KC:
1541 c->cputype = CPU_5KC;
1542 c->writecombine = _CACHE_UNCACHED;
1543 __cpu_name[cpu] = "MIPS 5Kc";
1544 break;
1545 case PRID_IMP_5KE:
1546 c->cputype = CPU_5KE;
1547 c->writecombine = _CACHE_UNCACHED;
1548 __cpu_name[cpu] = "MIPS 5KE";
1549 break;
1550 case PRID_IMP_20KC:
1551 c->cputype = CPU_20KC;
1552 c->writecombine = _CACHE_UNCACHED;
1553 __cpu_name[cpu] = "MIPS 20Kc";
1554 break;
1555 case PRID_IMP_24K:
1556 c->cputype = CPU_24K;
1557 c->writecombine = _CACHE_UNCACHED;
1558 __cpu_name[cpu] = "MIPS 24Kc";
1559 break;
1560 case PRID_IMP_24KE:
1561 c->cputype = CPU_24K;
1562 c->writecombine = _CACHE_UNCACHED;
1563 __cpu_name[cpu] = "MIPS 24KEc";
1564 break;
1565 case PRID_IMP_25KF:
1566 c->cputype = CPU_25KF;
1567 c->writecombine = _CACHE_UNCACHED;
1568 __cpu_name[cpu] = "MIPS 25Kc";
1569 break;
1570 case PRID_IMP_34K:
1571 c->cputype = CPU_34K;
1572 c->writecombine = _CACHE_UNCACHED;
1573 __cpu_name[cpu] = "MIPS 34Kc";
1574 break;
1575 case PRID_IMP_74K:
1576 c->cputype = CPU_74K;
1577 c->writecombine = _CACHE_UNCACHED;
1578 __cpu_name[cpu] = "MIPS 74Kc";
1579 break;
1580 case PRID_IMP_M14KC:
1581 c->cputype = CPU_M14KC;
1582 c->writecombine = _CACHE_UNCACHED;
1583 __cpu_name[cpu] = "MIPS M14Kc";
1584 break;
1585 case PRID_IMP_M14KEC:
1586 c->cputype = CPU_M14KEC;
1587 c->writecombine = _CACHE_UNCACHED;
1588 __cpu_name[cpu] = "MIPS M14KEc";
1589 break;
1590 case PRID_IMP_1004K:
1591 c->cputype = CPU_1004K;
1592 c->writecombine = _CACHE_UNCACHED;
1593 __cpu_name[cpu] = "MIPS 1004Kc";
1594 break;
1595 case PRID_IMP_1074K:
1596 c->cputype = CPU_1074K;
1597 c->writecombine = _CACHE_UNCACHED;
1598 __cpu_name[cpu] = "MIPS 1074Kc";
1599 break;
1600 case PRID_IMP_INTERAPTIV_UP:
1601 c->cputype = CPU_INTERAPTIV;
1602 __cpu_name[cpu] = "MIPS interAptiv";
1603 break;
1604 case PRID_IMP_INTERAPTIV_MP:
1605 c->cputype = CPU_INTERAPTIV;
1606 __cpu_name[cpu] = "MIPS interAptiv (multi)";
1607 break;
1608 case PRID_IMP_PROAPTIV_UP:
1609 c->cputype = CPU_PROAPTIV;
1610 __cpu_name[cpu] = "MIPS proAptiv";
1611 break;
1612 case PRID_IMP_PROAPTIV_MP:
1613 c->cputype = CPU_PROAPTIV;
1614 __cpu_name[cpu] = "MIPS proAptiv (multi)";
1615 break;
1616 case PRID_IMP_P5600:
1617 c->cputype = CPU_P5600;
1618 __cpu_name[cpu] = "MIPS P5600";
1619 break;
1620 case PRID_IMP_P6600:
1621 c->cputype = CPU_P6600;
1622 __cpu_name[cpu] = "MIPS P6600";
1623 break;
1624 case PRID_IMP_I6400:
1625 c->cputype = CPU_I6400;
1626 __cpu_name[cpu] = "MIPS I6400";
1627 break;
1628 case PRID_IMP_M5150:
1629 c->cputype = CPU_M5150;
1630 __cpu_name[cpu] = "MIPS M5150";
1631 break;
1632 case PRID_IMP_M6250:
1633 c->cputype = CPU_M6250;
1634 __cpu_name[cpu] = "MIPS M6250";
1635 break;
1636 }
1637
1638 decode_configs(c);
1639
1640 spram_config();
1641}
1642
1643static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1644{
1645 decode_configs(c);
1646 switch (c->processor_id & PRID_IMP_MASK) {
1647 case PRID_IMP_AU1_REV1:
1648 case PRID_IMP_AU1_REV2:
1649 c->cputype = CPU_ALCHEMY;
1650 switch ((c->processor_id >> 24) & 0xff) {
1651 case 0:
1652 __cpu_name[cpu] = "Au1000";
1653 break;
1654 case 1:
1655 __cpu_name[cpu] = "Au1500";
1656 break;
1657 case 2:
1658 __cpu_name[cpu] = "Au1100";
1659 break;
1660 case 3:
1661 __cpu_name[cpu] = "Au1550";
1662 break;
1663 case 4:
1664 __cpu_name[cpu] = "Au1200";
1665 if ((c->processor_id & PRID_REV_MASK) == 2)
1666 __cpu_name[cpu] = "Au1250";
1667 break;
1668 case 5:
1669 __cpu_name[cpu] = "Au1210";
1670 break;
1671 default:
1672 __cpu_name[cpu] = "Au1xxx";
1673 break;
1674 }
1675 break;
1676 }
1677}
1678
1679static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1680{
1681 decode_configs(c);
1682
1683 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1684 switch (c->processor_id & PRID_IMP_MASK) {
1685 case PRID_IMP_SB1:
1686 c->cputype = CPU_SB1;
1687 __cpu_name[cpu] = "SiByte SB1";
1688 /* FPU in pass1 is known to have issues. */
1689 if ((c->processor_id & PRID_REV_MASK) < 0x02)
1690 c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1691 break;
1692 case PRID_IMP_SB1A:
1693 c->cputype = CPU_SB1A;
1694 __cpu_name[cpu] = "SiByte SB1A";
1695 break;
1696 }
1697}
1698
1699static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1700{
1701 decode_configs(c);
1702 switch (c->processor_id & PRID_IMP_MASK) {
1703 case PRID_IMP_SR71000:
1704 c->cputype = CPU_SR71000;
1705 __cpu_name[cpu] = "Sandcraft SR71000";
1706 c->scache.ways = 8;
1707 c->tlbsize = 64;
1708 break;
1709 }
1710}
1711
1712static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1713{
1714 decode_configs(c);
1715 switch (c->processor_id & PRID_IMP_MASK) {
1716 case PRID_IMP_PR4450:
1717 c->cputype = CPU_PR4450;
1718 __cpu_name[cpu] = "Philips PR4450";
1719 set_isa(c, MIPS_CPU_ISA_M32R1);
1720 break;
1721 }
1722}
1723
1724static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1725{
1726 decode_configs(c);
1727 switch (c->processor_id & PRID_IMP_MASK) {
1728 case PRID_IMP_BMIPS32_REV4:
1729 case PRID_IMP_BMIPS32_REV8:
1730 c->cputype = CPU_BMIPS32;
1731 __cpu_name[cpu] = "Broadcom BMIPS32";
1732 set_elf_platform(cpu, "bmips32");
1733 break;
1734 case PRID_IMP_BMIPS3300:
1735 case PRID_IMP_BMIPS3300_ALT:
1736 case PRID_IMP_BMIPS3300_BUG:
1737 c->cputype = CPU_BMIPS3300;
1738 __cpu_name[cpu] = "Broadcom BMIPS3300";
1739 set_elf_platform(cpu, "bmips3300");
1740 break;
1741 case PRID_IMP_BMIPS43XX: {
1742 int rev = c->processor_id & PRID_REV_MASK;
1743
1744 if (rev >= PRID_REV_BMIPS4380_LO &&
1745 rev <= PRID_REV_BMIPS4380_HI) {
1746 c->cputype = CPU_BMIPS4380;
1747 __cpu_name[cpu] = "Broadcom BMIPS4380";
1748 set_elf_platform(cpu, "bmips4380");
1749 c->options |= MIPS_CPU_RIXI;
1750 } else {
1751 c->cputype = CPU_BMIPS4350;
1752 __cpu_name[cpu] = "Broadcom BMIPS4350";
1753 set_elf_platform(cpu, "bmips4350");
1754 }
1755 break;
1756 }
1757 case PRID_IMP_BMIPS5000:
1758 case PRID_IMP_BMIPS5200:
1759 c->cputype = CPU_BMIPS5000;
1760 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1761 __cpu_name[cpu] = "Broadcom BMIPS5200";
1762 else
1763 __cpu_name[cpu] = "Broadcom BMIPS5000";
1764 set_elf_platform(cpu, "bmips5000");
1765 c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1766 break;
1767 }
1768}
1769
1770static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1771{
1772 decode_configs(c);
1773 switch (c->processor_id & PRID_IMP_MASK) {
1774 case PRID_IMP_CAVIUM_CN38XX:
1775 case PRID_IMP_CAVIUM_CN31XX:
1776 case PRID_IMP_CAVIUM_CN30XX:
1777 c->cputype = CPU_CAVIUM_OCTEON;
1778 __cpu_name[cpu] = "Cavium Octeon";
1779 goto platform;
1780 case PRID_IMP_CAVIUM_CN58XX:
1781 case PRID_IMP_CAVIUM_CN56XX:
1782 case PRID_IMP_CAVIUM_CN50XX:
1783 case PRID_IMP_CAVIUM_CN52XX:
1784 c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1785 __cpu_name[cpu] = "Cavium Octeon+";
1786platform:
1787 set_elf_platform(cpu, "octeon");
1788 break;
1789 case PRID_IMP_CAVIUM_CN61XX:
1790 case PRID_IMP_CAVIUM_CN63XX:
1791 case PRID_IMP_CAVIUM_CN66XX:
1792 case PRID_IMP_CAVIUM_CN68XX:
1793 case PRID_IMP_CAVIUM_CNF71XX:
1794 c->cputype = CPU_CAVIUM_OCTEON2;
1795 __cpu_name[cpu] = "Cavium Octeon II";
1796 set_elf_platform(cpu, "octeon2");
1797 break;
1798 case PRID_IMP_CAVIUM_CN70XX:
1799 case PRID_IMP_CAVIUM_CN73XX:
1800 case PRID_IMP_CAVIUM_CNF75XX:
1801 case PRID_IMP_CAVIUM_CN78XX:
1802 c->cputype = CPU_CAVIUM_OCTEON3;
1803 __cpu_name[cpu] = "Cavium Octeon III";
1804 set_elf_platform(cpu, "octeon3");
1805 break;
1806 default:
1807 printk(KERN_INFO "Unknown Octeon chip!\n");
1808 c->cputype = CPU_UNKNOWN;
1809 break;
1810 }
1811}
1812
1813static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1814{
1815 switch (c->processor_id & PRID_IMP_MASK) {
1816 case PRID_IMP_LOONGSON_64: /* Loongson-2/3 */
1817 switch (c->processor_id & PRID_REV_MASK) {
1818 case PRID_REV_LOONGSON3A_R2:
1819 c->cputype = CPU_LOONGSON3;
1820 __cpu_name[cpu] = "ICT Loongson-3";
1821 set_elf_platform(cpu, "loongson3a");
1822 set_isa(c, MIPS_CPU_ISA_M64R2);
1823 break;
1824 }
1825
1826 decode_configs(c);
1827 c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1828 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1829 break;
1830 default:
1831 panic("Unknown Loongson Processor ID!");
1832 break;
1833 }
1834}
1835
1836static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1837{
1838 decode_configs(c);
1839 /* JZRISC does not implement the CP0 counter. */
1840 c->options &= ~MIPS_CPU_COUNTER;
1841 BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
1842 switch (c->processor_id & PRID_IMP_MASK) {
1843 case PRID_IMP_JZRISC:
1844 c->cputype = CPU_JZRISC;
1845 c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1846 __cpu_name[cpu] = "Ingenic JZRISC";
1847 break;
1848 default:
1849 panic("Unknown Ingenic Processor ID!");
1850 break;
1851 }
1852}
1853
1854static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1855{
1856 decode_configs(c);
1857
1858 if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1859 c->cputype = CPU_ALCHEMY;
1860 __cpu_name[cpu] = "Au1300";
1861 /* following stuff is not for Alchemy */
1862 return;
1863 }
1864
1865 c->options = (MIPS_CPU_TLB |
1866 MIPS_CPU_4KEX |
1867 MIPS_CPU_COUNTER |
1868 MIPS_CPU_DIVEC |
1869 MIPS_CPU_WATCH |
1870 MIPS_CPU_EJTAG |
1871 MIPS_CPU_LLSC);
1872
1873 switch (c->processor_id & PRID_IMP_MASK) {
1874 case PRID_IMP_NETLOGIC_XLP2XX:
1875 case PRID_IMP_NETLOGIC_XLP9XX:
1876 case PRID_IMP_NETLOGIC_XLP5XX:
1877 c->cputype = CPU_XLP;
1878 __cpu_name[cpu] = "Broadcom XLPII";
1879 break;
1880
1881 case PRID_IMP_NETLOGIC_XLP8XX:
1882 case PRID_IMP_NETLOGIC_XLP3XX:
1883 c->cputype = CPU_XLP;
1884 __cpu_name[cpu] = "Netlogic XLP";
1885 break;
1886
1887 case PRID_IMP_NETLOGIC_XLR732:
1888 case PRID_IMP_NETLOGIC_XLR716:
1889 case PRID_IMP_NETLOGIC_XLR532:
1890 case PRID_IMP_NETLOGIC_XLR308:
1891 case PRID_IMP_NETLOGIC_XLR532C:
1892 case PRID_IMP_NETLOGIC_XLR516C:
1893 case PRID_IMP_NETLOGIC_XLR508C:
1894 case PRID_IMP_NETLOGIC_XLR308C:
1895 c->cputype = CPU_XLR;
1896 __cpu_name[cpu] = "Netlogic XLR";
1897 break;
1898
1899 case PRID_IMP_NETLOGIC_XLS608:
1900 case PRID_IMP_NETLOGIC_XLS408:
1901 case PRID_IMP_NETLOGIC_XLS404:
1902 case PRID_IMP_NETLOGIC_XLS208:
1903 case PRID_IMP_NETLOGIC_XLS204:
1904 case PRID_IMP_NETLOGIC_XLS108:
1905 case PRID_IMP_NETLOGIC_XLS104:
1906 case PRID_IMP_NETLOGIC_XLS616B:
1907 case PRID_IMP_NETLOGIC_XLS608B:
1908 case PRID_IMP_NETLOGIC_XLS416B:
1909 case PRID_IMP_NETLOGIC_XLS412B:
1910 case PRID_IMP_NETLOGIC_XLS408B:
1911 case PRID_IMP_NETLOGIC_XLS404B:
1912 c->cputype = CPU_XLR;
1913 __cpu_name[cpu] = "Netlogic XLS";
1914 break;
1915
1916 default:
1917 pr_info("Unknown Netlogic chip id [%02x]!\n",
1918 c->processor_id);
1919 c->cputype = CPU_XLR;
1920 break;
1921 }
1922
1923 if (c->cputype == CPU_XLP) {
1924 set_isa(c, MIPS_CPU_ISA_M64R2);
1925 c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1926 /* This will be updated again after all threads are woken up */
1927 c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1928 } else {
1929 set_isa(c, MIPS_CPU_ISA_M64R1);
1930 c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1931 }
1932 c->kscratch_mask = 0xf;
1933}
1934
1935#ifdef CONFIG_64BIT
1936/* For use by uaccess.h */
1937u64 __ua_limit;
1938EXPORT_SYMBOL(__ua_limit);
1939#endif
1940
1941const char *__cpu_name[NR_CPUS];
1942const char *__elf_platform;
1943
1944void cpu_probe(void)
1945{
1946 struct cpuinfo_mips *c = ¤t_cpu_data;
1947 unsigned int cpu = smp_processor_id();
1948
1949 c->processor_id = PRID_IMP_UNKNOWN;
1950 c->fpu_id = FPIR_IMP_NONE;
1951 c->cputype = CPU_UNKNOWN;
1952 c->writecombine = _CACHE_UNCACHED;
1953
1954 c->fpu_csr31 = FPU_CSR_RN;
1955 c->fpu_msk31 = FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1956
1957 c->processor_id = read_c0_prid();
1958 switch (c->processor_id & PRID_COMP_MASK) {
1959 case PRID_COMP_LEGACY:
1960 cpu_probe_legacy(c, cpu);
1961 break;
1962 case PRID_COMP_MIPS:
1963 cpu_probe_mips(c, cpu);
1964 break;
1965 case PRID_COMP_ALCHEMY:
1966 cpu_probe_alchemy(c, cpu);
1967 break;
1968 case PRID_COMP_SIBYTE:
1969 cpu_probe_sibyte(c, cpu);
1970 break;
1971 case PRID_COMP_BROADCOM:
1972 cpu_probe_broadcom(c, cpu);
1973 break;
1974 case PRID_COMP_SANDCRAFT:
1975 cpu_probe_sandcraft(c, cpu);
1976 break;
1977 case PRID_COMP_NXP:
1978 cpu_probe_nxp(c, cpu);
1979 break;
1980 case PRID_COMP_CAVIUM:
1981 cpu_probe_cavium(c, cpu);
1982 break;
1983 case PRID_COMP_LOONGSON:
1984 cpu_probe_loongson(c, cpu);
1985 break;
1986 case PRID_COMP_INGENIC_D0:
1987 case PRID_COMP_INGENIC_D1:
1988 case PRID_COMP_INGENIC_E1:
1989 cpu_probe_ingenic(c, cpu);
1990 break;
1991 case PRID_COMP_NETLOGIC:
1992 cpu_probe_netlogic(c, cpu);
1993 break;
1994 }
1995
1996 BUG_ON(!__cpu_name[cpu]);
1997 BUG_ON(c->cputype == CPU_UNKNOWN);
1998
1999 /*
2000 * Platform code can force the cpu type to optimize code
2001 * generation. In that case be sure the cpu type is correctly
2002 * manually setup otherwise it could trigger some nasty bugs.
2003 */
2004 BUG_ON(current_cpu_type() != c->cputype);
2005
2006 if (cpu_has_rixi) {
2007 /* Enable the RIXI exceptions */
2008 set_c0_pagegrain(PG_IEC);
2009 back_to_back_c0_hazard();
2010 /* Verify the IEC bit is set */
2011 if (read_c0_pagegrain() & PG_IEC)
2012 c->options |= MIPS_CPU_RIXIEX;
2013 }
2014
2015 if (mips_fpu_disabled)
2016 c->options &= ~MIPS_CPU_FPU;
2017
2018 if (mips_dsp_disabled)
2019 c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2020
2021 if (mips_htw_disabled) {
2022 c->options &= ~MIPS_CPU_HTW;
2023 write_c0_pwctl(read_c0_pwctl() &
2024 ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2025 }
2026
2027 if (c->options & MIPS_CPU_FPU)
2028 cpu_set_fpu_opts(c);
2029 else
2030 cpu_set_nofpu_opts(c);
2031
2032 if (cpu_has_bp_ghist)
2033 write_c0_r10k_diag(read_c0_r10k_diag() |
2034 R10K_DIAG_E_GHIST);
2035
2036 if (cpu_has_mips_r2_r6) {
2037 c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2038 /* R2 has Performance Counter Interrupt indicator */
2039 c->options |= MIPS_CPU_PCI;
2040 }
2041 else
2042 c->srsets = 1;
2043
2044 if (cpu_has_mips_r6)
2045 elf_hwcap |= HWCAP_MIPS_R6;
2046
2047 if (cpu_has_msa) {
2048 c->msa_id = cpu_get_msa_id();
2049 WARN(c->msa_id & MSA_IR_WRPF,
2050 "Vector register partitioning unimplemented!");
2051 elf_hwcap |= HWCAP_MIPS_MSA;
2052 }
2053
2054 if (cpu_has_vz)
2055 cpu_probe_vz(c);
2056
2057 cpu_probe_vmbits(c);
2058
2059#ifdef CONFIG_64BIT
2060 if (cpu == 0)
2061 __ua_limit = ~((1ull << cpu_vmbits) - 1);
2062#endif
2063}
2064
2065void cpu_report(void)
2066{
2067 struct cpuinfo_mips *c = ¤t_cpu_data;
2068
2069 pr_info("CPU%d revision is: %08x (%s)\n",
2070 smp_processor_id(), c->processor_id, cpu_name_string());
2071 if (c->options & MIPS_CPU_FPU)
2072 printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2073 if (cpu_has_msa)
2074 pr_info("MSA revision is: %08x\n", c->msa_id);
2075}