Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Processor capabilities determination functions.
   4 *
   5 * Copyright (C) xxxx  the Anonymous
   6 * Copyright (C) 1994 - 2006 Ralf Baechle
   7 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   8 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
 
 
 
 
 
   9 */
  10#include <linux/init.h>
  11#include <linux/kernel.h>
  12#include <linux/ptrace.h>
  13#include <linux/smp.h>
  14#include <linux/stddef.h>
  15#include <linux/export.h>
  16
  17#include <asm/bugs.h>
  18#include <asm/cpu.h>
  19#include <asm/cpu-features.h>
  20#include <asm/cpu-type.h>
  21#include <asm/fpu.h>
  22#include <asm/mipsregs.h>
  23#include <asm/mipsmtregs.h>
  24#include <asm/msa.h>
  25#include <asm/watch.h>
  26#include <asm/elf.h>
  27#include <asm/pgtable-bits.h>
  28#include <asm/spram.h>
  29#include <asm/traps.h>
  30#include <linux/uaccess.h>
  31
  32#include "fpu-probe.h"
  33
  34#include <asm/mach-loongson64/cpucfg-emul.h>
  35
  36/* Hardware capabilities */
  37unsigned int elf_hwcap __read_mostly;
  38EXPORT_SYMBOL_GPL(elf_hwcap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39
  40static inline unsigned long cpu_get_msa_id(void)
  41{
  42	unsigned long status, msa_id;
  43
  44	status = read_c0_status();
  45	__enable_fpu(FPU_64BIT);
  46	enable_msa();
  47	msa_id = read_msa_ir();
  48	disable_msa();
  49	write_c0_status(status);
  50	return msa_id;
  51}
  52
  53static int mips_dsp_disabled;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  54
  55static int __init dsp_disable(char *s)
  56{
  57	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
  58	mips_dsp_disabled = 1;
  59
  60	return 1;
  61}
  62
  63__setup("nodsp", dsp_disable);
  64
  65static int mips_htw_disabled;
  66
  67static int __init htw_disable(char *s)
  68{
  69	mips_htw_disabled = 1;
  70	cpu_data[0].options &= ~MIPS_CPU_HTW;
  71	write_c0_pwctl(read_c0_pwctl() &
  72		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
  73
  74	return 1;
  75}
  76
  77__setup("nohtw", htw_disable);
  78
  79static int mips_ftlb_disabled;
  80static int mips_has_ftlb_configured;
  81
  82enum ftlb_flags {
  83	FTLB_EN		= 1 << 0,
  84	FTLB_SET_PROB	= 1 << 1,
  85};
  86
  87static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
  88
  89static int __init ftlb_disable(char *s)
  90{
  91	unsigned int config4, mmuextdef;
  92
  93	/*
  94	 * If the core hasn't done any FTLB configuration, there is nothing
  95	 * for us to do here.
  96	 */
  97	if (!mips_has_ftlb_configured)
  98		return 1;
  99
 100	/* Disable it in the boot cpu */
 101	if (set_ftlb_enable(&cpu_data[0], 0)) {
 102		pr_warn("Can't turn FTLB off\n");
 103		return 1;
 104	}
 105
 106	config4 = read_c0_config4();
 107
 108	/* Check that FTLB has been disabled */
 109	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 110	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 111	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 112		/* This should never happen */
 113		pr_warn("FTLB could not be disabled!\n");
 114		return 1;
 115	}
 116
 117	mips_ftlb_disabled = 1;
 118	mips_has_ftlb_configured = 0;
 119
 120	/*
 121	 * noftlb is mainly used for debug purposes so print
 122	 * an informative message instead of using pr_debug()
 123	 */
 124	pr_info("FTLB has been disabled\n");
 125
 126	/*
 127	 * Some of these bits are duplicated in the decode_config4.
 128	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 129	 * once FTLB has been disabled so undo what decode_config4 did.
 130	 */
 131	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 132			       cpu_data[0].tlbsizeftlbsets;
 133	cpu_data[0].tlbsizeftlbsets = 0;
 134	cpu_data[0].tlbsizeftlbways = 0;
 135
 136	return 1;
 137}
 138
 139__setup("noftlb", ftlb_disable);
 140
 141/*
 142 * Check if the CPU has per tc perf counters
 143 */
 144static inline void cpu_set_mt_per_tc_perf(struct cpuinfo_mips *c)
 145{
 146	if (read_c0_config7() & MTI_CONF7_PTC)
 147		c->options |= MIPS_CPU_MT_PER_TC_PERF_COUNTERS;
 148}
 149
 150static inline void check_errata(void)
 151{
 152	struct cpuinfo_mips *c = &current_cpu_data;
 153
 154	switch (current_cpu_type()) {
 155	case CPU_34K:
 156		/*
 157		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 158		 * This code only handles VPE0, any SMP/RTOS code
 159		 * making use of VPE1 will be responsible for that VPE.
 160		 */
 161		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 162			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 163		break;
 164	default:
 165		break;
 166	}
 167}
 168
 169void __init check_bugs32(void)
 170{
 171	check_errata();
 172}
 173
 174/*
 175 * Probe whether cpu has config register by trying to play with
 176 * alternate cache bit and see whether it matters.
 177 * It's used by cpu_probe to distinguish between R3000A and R3081.
 178 */
 179static inline int cpu_has_confreg(void)
 180{
 181#ifdef CONFIG_CPU_R3000
 182	extern unsigned long r3k_cache_size(unsigned long);
 183	unsigned long size1, size2;
 184	unsigned long cfg = read_c0_conf();
 185
 186	size1 = r3k_cache_size(ST0_ISC);
 187	write_c0_conf(cfg ^ R30XX_CONF_AC);
 188	size2 = r3k_cache_size(ST0_ISC);
 189	write_c0_conf(cfg);
 190	return size1 != size2;
 191#else
 192	return 0;
 193#endif
 194}
 195
 196static inline void set_elf_platform(int cpu, const char *plat)
 197{
 198	if (cpu == 0)
 199		__elf_platform = plat;
 200}
 201
 202static inline void set_elf_base_platform(const char *plat)
 203{
 204	if (__elf_base_platform == NULL) {
 205		__elf_base_platform = plat;
 206	}
 207}
 208
 209static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 210{
 211#ifdef __NEED_VMBITS_PROBE
 212	write_c0_entryhi(0x3fffffffffffe000ULL);
 213	back_to_back_c0_hazard();
 214	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 215#endif
 216}
 217
 218static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 219{
 220	switch (isa) {
 221	case MIPS_CPU_ISA_M64R5:
 222		c->isa_level |= MIPS_CPU_ISA_M32R5 | MIPS_CPU_ISA_M64R5;
 223		set_elf_base_platform("mips64r5");
 224		fallthrough;
 225	case MIPS_CPU_ISA_M64R2:
 226		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 227		set_elf_base_platform("mips64r2");
 228		fallthrough;
 229	case MIPS_CPU_ISA_M64R1:
 230		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 231		set_elf_base_platform("mips64");
 232		fallthrough;
 233	case MIPS_CPU_ISA_V:
 234		c->isa_level |= MIPS_CPU_ISA_V;
 235		set_elf_base_platform("mips5");
 236		fallthrough;
 237	case MIPS_CPU_ISA_IV:
 238		c->isa_level |= MIPS_CPU_ISA_IV;
 239		set_elf_base_platform("mips4");
 240		fallthrough;
 241	case MIPS_CPU_ISA_III:
 242		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 243		set_elf_base_platform("mips3");
 244		break;
 245
 246	/* R6 incompatible with everything else */
 247	case MIPS_CPU_ISA_M64R6:
 248		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 249		set_elf_base_platform("mips64r6");
 250		fallthrough;
 251	case MIPS_CPU_ISA_M32R6:
 252		c->isa_level |= MIPS_CPU_ISA_M32R6;
 253		set_elf_base_platform("mips32r6");
 254		/* Break here so we don't add incompatible ISAs */
 255		break;
 256	case MIPS_CPU_ISA_M32R5:
 257		c->isa_level |= MIPS_CPU_ISA_M32R5;
 258		set_elf_base_platform("mips32r5");
 259		fallthrough;
 260	case MIPS_CPU_ISA_M32R2:
 261		c->isa_level |= MIPS_CPU_ISA_M32R2;
 262		set_elf_base_platform("mips32r2");
 263		fallthrough;
 264	case MIPS_CPU_ISA_M32R1:
 265		c->isa_level |= MIPS_CPU_ISA_M32R1;
 266		set_elf_base_platform("mips32");
 267		fallthrough;
 268	case MIPS_CPU_ISA_II:
 269		c->isa_level |= MIPS_CPU_ISA_II;
 270		set_elf_base_platform("mips2");
 271		break;
 272	}
 273}
 274
 275static char unknown_isa[] = KERN_ERR \
 276	"Unsupported ISA type, c0.config0: %d.";
 277
 278static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 279{
 280
 281	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 282
 283	/*
 284	 * 0 = All TLBWR instructions go to FTLB
 285	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 286	 * FTLB and 1 goes to the VTLB.
 287	 * 2 = 7:1: As above with 7:1 ratio.
 288	 * 3 = 3:1: As above with 3:1 ratio.
 289	 *
 290	 * Use the linear midpoint as the probability threshold.
 291	 */
 292	if (probability >= 12)
 293		return 1;
 294	else if (probability >= 6)
 295		return 2;
 296	else
 297		/*
 298		 * So FTLB is less than 4 times bigger than VTLB.
 299		 * A 3:1 ratio can still be useful though.
 300		 */
 301		return 3;
 302}
 303
 304static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 305{
 306	unsigned int config;
 307
 308	/* It's implementation dependent how the FTLB can be enabled */
 309	switch (c->cputype) {
 310	case CPU_PROAPTIV:
 311	case CPU_P5600:
 312	case CPU_P6600:
 313		/* proAptiv & related cores use Config6 to enable the FTLB */
 314		config = read_c0_config6();
 315
 316		if (flags & FTLB_EN)
 317			config |= MTI_CONF6_FTLBEN;
 318		else
 319			config &= ~MTI_CONF6_FTLBEN;
 320
 321		if (flags & FTLB_SET_PROB) {
 322			config &= ~(3 << MTI_CONF6_FTLBP_SHIFT);
 323			config |= calculate_ftlb_probability(c)
 324				  << MTI_CONF6_FTLBP_SHIFT;
 325		}
 326
 327		write_c0_config6(config);
 328		back_to_back_c0_hazard();
 329		break;
 330	case CPU_I6400:
 331	case CPU_I6500:
 332		/* There's no way to disable the FTLB */
 333		if (!(flags & FTLB_EN))
 334			return 1;
 335		return 0;
 336	case CPU_LOONGSON64:
 337		/* Flush ITLB, DTLB, VTLB and FTLB */
 338		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 339			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 340		/* Loongson-3 cores use Config6 to enable the FTLB */
 341		config = read_c0_config6();
 342		if (flags & FTLB_EN)
 343			/* Enable FTLB */
 344			write_c0_config6(config & ~LOONGSON_CONF6_FTLBDIS);
 345		else
 346			/* Disable FTLB */
 347			write_c0_config6(config | LOONGSON_CONF6_FTLBDIS);
 348		break;
 349	default:
 350		return 1;
 351	}
 352
 353	return 0;
 354}
 355
 356static int mm_config(struct cpuinfo_mips *c)
 357{
 358	unsigned int config0, update, mm;
 359
 360	config0 = read_c0_config();
 361	mm = config0 & MIPS_CONF_MM;
 362
 363	/*
 364	 * It's implementation dependent what type of write-merge is supported
 365	 * and whether it can be enabled/disabled. If it is settable lets make
 366	 * the merging allowed by default. Some platforms might have
 367	 * write-through caching unsupported. In this case just ignore the
 368	 * CP0.Config.MM bit field value.
 369	 */
 370	switch (c->cputype) {
 371	case CPU_24K:
 372	case CPU_34K:
 373	case CPU_74K:
 374	case CPU_P5600:
 375	case CPU_P6600:
 376		c->options |= MIPS_CPU_MM_FULL;
 377		update = MIPS_CONF_MM_FULL;
 378		break;
 379	case CPU_1004K:
 380	case CPU_1074K:
 381	case CPU_INTERAPTIV:
 382	case CPU_PROAPTIV:
 383		mm = 0;
 384		fallthrough;
 385	default:
 386		update = 0;
 387		break;
 388	}
 389
 390	if (update) {
 391		config0 = (config0 & ~MIPS_CONF_MM) | update;
 392		write_c0_config(config0);
 393	} else if (mm == MIPS_CONF_MM_SYSAD) {
 394		c->options |= MIPS_CPU_MM_SYSAD;
 395	} else if (mm == MIPS_CONF_MM_FULL) {
 396		c->options |= MIPS_CPU_MM_FULL;
 397	}
 398
 399	return 0;
 400}
 401
 402static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 403{
 404	unsigned int config0;
 405	int isa, mt;
 406
 407	config0 = read_c0_config();
 408
 409	/*
 410	 * Look for Standard TLB or Dual VTLB and FTLB
 411	 */
 412	mt = config0 & MIPS_CONF_MT;
 413	if (mt == MIPS_CONF_MT_TLB)
 414		c->options |= MIPS_CPU_TLB;
 415	else if (mt == MIPS_CONF_MT_FTLB)
 416		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 417
 418	isa = (config0 & MIPS_CONF_AT) >> 13;
 419	switch (isa) {
 420	case 0:
 421		switch ((config0 & MIPS_CONF_AR) >> 10) {
 422		case 0:
 423			set_isa(c, MIPS_CPU_ISA_M32R1);
 424			break;
 425		case 1:
 426			set_isa(c, MIPS_CPU_ISA_M32R2);
 427			break;
 428		case 2:
 429			set_isa(c, MIPS_CPU_ISA_M32R6);
 430			break;
 431		default:
 432			goto unknown;
 433		}
 434		break;
 435	case 2:
 436		switch ((config0 & MIPS_CONF_AR) >> 10) {
 437		case 0:
 438			set_isa(c, MIPS_CPU_ISA_M64R1);
 439			break;
 440		case 1:
 441			set_isa(c, MIPS_CPU_ISA_M64R2);
 442			break;
 443		case 2:
 444			set_isa(c, MIPS_CPU_ISA_M64R6);
 445			break;
 446		default:
 447			goto unknown;
 448		}
 449		break;
 450	default:
 451		goto unknown;
 452	}
 453
 454	return config0 & MIPS_CONF_M;
 455
 456unknown:
 457	panic(unknown_isa, config0);
 458}
 459
 460static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 461{
 462	unsigned int config1;
 463
 464	config1 = read_c0_config1();
 465
 466	if (config1 & MIPS_CONF1_MD)
 467		c->ases |= MIPS_ASE_MDMX;
 468	if (config1 & MIPS_CONF1_PC)
 469		c->options |= MIPS_CPU_PERF;
 470	if (config1 & MIPS_CONF1_WR)
 471		c->options |= MIPS_CPU_WATCH;
 472	if (config1 & MIPS_CONF1_CA)
 473		c->ases |= MIPS_ASE_MIPS16;
 474	if (config1 & MIPS_CONF1_EP)
 475		c->options |= MIPS_CPU_EJTAG;
 476	if (config1 & MIPS_CONF1_FP) {
 477		c->options |= MIPS_CPU_FPU;
 478		c->options |= MIPS_CPU_32FPR;
 479	}
 480	if (cpu_has_tlb) {
 481		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 482		c->tlbsizevtlb = c->tlbsize;
 483		c->tlbsizeftlbsets = 0;
 484	}
 485
 486	return config1 & MIPS_CONF_M;
 487}
 488
 489static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 490{
 491	unsigned int config2;
 492
 493	config2 = read_c0_config2();
 494
 495	if (config2 & MIPS_CONF2_SL)
 496		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 497
 498	return config2 & MIPS_CONF_M;
 499}
 500
 501static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 502{
 503	unsigned int config3;
 504
 505	config3 = read_c0_config3();
 506
 507	if (config3 & MIPS_CONF3_SM) {
 508		c->ases |= MIPS_ASE_SMARTMIPS;
 509		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 510	}
 511	if (config3 & MIPS_CONF3_RXI)
 512		c->options |= MIPS_CPU_RIXI;
 513	if (config3 & MIPS_CONF3_CTXTC)
 514		c->options |= MIPS_CPU_CTXTC;
 515	if (config3 & MIPS_CONF3_DSP)
 516		c->ases |= MIPS_ASE_DSP;
 517	if (config3 & MIPS_CONF3_DSP2P) {
 518		c->ases |= MIPS_ASE_DSP2P;
 519		if (cpu_has_mips_r6)
 520			c->ases |= MIPS_ASE_DSP3;
 521	}
 522	if (config3 & MIPS_CONF3_VINT)
 523		c->options |= MIPS_CPU_VINT;
 524	if (config3 & MIPS_CONF3_VEIC)
 525		c->options |= MIPS_CPU_VEIC;
 526	if (config3 & MIPS_CONF3_LPA)
 527		c->options |= MIPS_CPU_LPA;
 528	if (config3 & MIPS_CONF3_MT)
 529		c->ases |= MIPS_ASE_MIPSMT;
 530	if (config3 & MIPS_CONF3_ULRI)
 531		c->options |= MIPS_CPU_ULRI;
 532	if (config3 & MIPS_CONF3_ISA)
 533		c->options |= MIPS_CPU_MICROMIPS;
 534	if (config3 & MIPS_CONF3_VZ)
 535		c->ases |= MIPS_ASE_VZ;
 536	if (config3 & MIPS_CONF3_SC)
 537		c->options |= MIPS_CPU_SEGMENTS;
 538	if (config3 & MIPS_CONF3_BI)
 539		c->options |= MIPS_CPU_BADINSTR;
 540	if (config3 & MIPS_CONF3_BP)
 541		c->options |= MIPS_CPU_BADINSTRP;
 542	if (config3 & MIPS_CONF3_MSA)
 543		c->ases |= MIPS_ASE_MSA;
 544	if (config3 & MIPS_CONF3_PW) {
 545		c->htw_seq = 0;
 546		c->options |= MIPS_CPU_HTW;
 547	}
 548	if (config3 & MIPS_CONF3_CDMM)
 549		c->options |= MIPS_CPU_CDMM;
 550	if (config3 & MIPS_CONF3_SP)
 551		c->options |= MIPS_CPU_SP;
 552
 553	return config3 & MIPS_CONF_M;
 554}
 555
 556static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 557{
 558	unsigned int config4;
 559	unsigned int newcf4;
 560	unsigned int mmuextdef;
 561	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 562	unsigned long asid_mask;
 563
 564	config4 = read_c0_config4();
 565
 566	if (cpu_has_tlb) {
 567		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 568			c->options |= MIPS_CPU_TLBINV;
 569
 570		/*
 571		 * R6 has dropped the MMUExtDef field from config4.
 572		 * On R6 the fields always describe the FTLB, and only if it is
 573		 * present according to Config.MT.
 574		 */
 575		if (!cpu_has_mips_r6)
 576			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 577		else if (cpu_has_ftlb)
 578			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 579		else
 580			mmuextdef = 0;
 581
 582		switch (mmuextdef) {
 583		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 584			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 585			c->tlbsizevtlb = c->tlbsize;
 586			break;
 587		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 588			c->tlbsizevtlb +=
 589				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 590				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 591			c->tlbsize = c->tlbsizevtlb;
 592			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 593			fallthrough;
 594		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 595			if (mips_ftlb_disabled)
 596				break;
 597			newcf4 = (config4 & ~ftlb_page) |
 598				(page_size_ftlb(mmuextdef) <<
 599				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 600			write_c0_config4(newcf4);
 601			back_to_back_c0_hazard();
 602			config4 = read_c0_config4();
 603			if (config4 != newcf4) {
 604				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 605				       PAGE_SIZE, config4);
 606				/* Switch FTLB off */
 607				set_ftlb_enable(c, 0);
 608				mips_ftlb_disabled = 1;
 609				break;
 610			}
 611			c->tlbsizeftlbsets = 1 <<
 612				((config4 & MIPS_CONF4_FTLBSETS) >>
 613				 MIPS_CONF4_FTLBSETS_SHIFT);
 614			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 615					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 616			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 617			mips_has_ftlb_configured = 1;
 618			break;
 619		}
 620	}
 621
 622	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 623				>> MIPS_CONF4_KSCREXIST_SHIFT;
 624
 625	asid_mask = MIPS_ENTRYHI_ASID;
 626	if (config4 & MIPS_CONF4_AE)
 627		asid_mask |= MIPS_ENTRYHI_ASIDX;
 628	set_cpu_asid_mask(c, asid_mask);
 629
 630	/*
 631	 * Warn if the computed ASID mask doesn't match the mask the kernel
 632	 * is built for. This may indicate either a serious problem or an
 633	 * easy optimisation opportunity, but either way should be addressed.
 634	 */
 635	WARN_ON(asid_mask != cpu_asid_mask(c));
 636
 637	return config4 & MIPS_CONF_M;
 638}
 639
 640static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 641{
 642	unsigned int config5, max_mmid_width;
 643	unsigned long asid_mask;
 644
 645	config5 = read_c0_config5();
 646	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 647
 648	if (cpu_has_mips_r6) {
 649		if (!__builtin_constant_p(cpu_has_mmid) || cpu_has_mmid)
 650			config5 |= MIPS_CONF5_MI;
 651		else
 652			config5 &= ~MIPS_CONF5_MI;
 653	}
 654
 655	write_c0_config5(config5);
 656
 657	if (config5 & MIPS_CONF5_EVA)
 658		c->options |= MIPS_CPU_EVA;
 659	if (config5 & MIPS_CONF5_MRP)
 660		c->options |= MIPS_CPU_MAAR;
 661	if (config5 & MIPS_CONF5_LLB)
 662		c->options |= MIPS_CPU_RW_LLB;
 663	if (config5 & MIPS_CONF5_MVH)
 664		c->options |= MIPS_CPU_MVH;
 665	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 666		c->options |= MIPS_CPU_VP;
 667	if (config5 & MIPS_CONF5_CA2)
 668		c->ases |= MIPS_ASE_MIPS16E2;
 669
 670	if (config5 & MIPS_CONF5_CRCP)
 671		elf_hwcap |= HWCAP_MIPS_CRC32;
 672
 673	if (cpu_has_mips_r6) {
 674		/* Ensure the write to config5 above takes effect */
 675		back_to_back_c0_hazard();
 676
 677		/* Check whether we successfully enabled MMID support */
 678		config5 = read_c0_config5();
 679		if (config5 & MIPS_CONF5_MI)
 680			c->options |= MIPS_CPU_MMID;
 681
 682		/*
 683		 * Warn if we've hardcoded cpu_has_mmid to a value unsuitable
 684		 * for the CPU we're running on, or if CPUs in an SMP system
 685		 * have inconsistent MMID support.
 686		 */
 687		WARN_ON(!!cpu_has_mmid != !!(config5 & MIPS_CONF5_MI));
 688
 689		if (cpu_has_mmid) {
 690			write_c0_memorymapid(~0ul);
 691			back_to_back_c0_hazard();
 692			asid_mask = read_c0_memorymapid();
 693
 694			/*
 695			 * We maintain a bitmap to track MMID allocation, and
 696			 * need a sensible upper bound on the size of that
 697			 * bitmap. The initial CPU with MMID support (I6500)
 698			 * supports 16 bit MMIDs, which gives us an 8KiB
 699			 * bitmap. The architecture recommends that hardware
 700			 * support 32 bit MMIDs, which would give us a 512MiB
 701			 * bitmap - that's too big in most cases.
 702			 *
 703			 * Cap MMID width at 16 bits for now & we can revisit
 704			 * this if & when hardware supports anything wider.
 705			 */
 706			max_mmid_width = 16;
 707			if (asid_mask > GENMASK(max_mmid_width - 1, 0)) {
 708				pr_info("Capping MMID width at %d bits",
 709					max_mmid_width);
 710				asid_mask = GENMASK(max_mmid_width - 1, 0);
 711			}
 712
 713			set_cpu_asid_mask(c, asid_mask);
 714		}
 715	}
 716
 717	return config5 & MIPS_CONF_M;
 718}
 719
 720static void decode_configs(struct cpuinfo_mips *c)
 721{
 722	int ok;
 723
 724	/* MIPS32 or MIPS64 compliant CPU.  */
 725	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 726		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 727
 728	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 729
 730	/* Enable FTLB if present and not disabled */
 731	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
 732
 733	ok = decode_config0(c);			/* Read Config registers.  */
 734	BUG_ON(!ok);				/* Arch spec violation!	 */
 735	if (ok)
 736		ok = decode_config1(c);
 737	if (ok)
 738		ok = decode_config2(c);
 739	if (ok)
 740		ok = decode_config3(c);
 741	if (ok)
 742		ok = decode_config4(c);
 743	if (ok)
 744		ok = decode_config5(c);
 745
 746	/* Probe the EBase.WG bit */
 747	if (cpu_has_mips_r2_r6) {
 748		u64 ebase;
 749		unsigned int status;
 750
 751		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
 752		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
 753					 : (s32)read_c0_ebase();
 754		if (ebase & MIPS_EBASE_WG) {
 755			/* WG bit already set, we can avoid the clumsy probe */
 756			c->options |= MIPS_CPU_EBASE_WG;
 757		} else {
 758			/* Its UNDEFINED to change EBase while BEV=0 */
 759			status = read_c0_status();
 760			write_c0_status(status | ST0_BEV);
 761			irq_enable_hazard();
 762			/*
 763			 * On pre-r6 cores, this may well clobber the upper bits
 764			 * of EBase. This is hard to avoid without potentially
 765			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
 766			 */
 767			if (cpu_has_mips64r6)
 768				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
 769			else
 770				write_c0_ebase(ebase | MIPS_EBASE_WG);
 771			back_to_back_c0_hazard();
 772			/* Restore BEV */
 773			write_c0_status(status);
 774			if (read_c0_ebase() & MIPS_EBASE_WG) {
 775				c->options |= MIPS_CPU_EBASE_WG;
 776				write_c0_ebase(ebase);
 777			}
 778		}
 779	}
 780
 781	/* configure the FTLB write probability */
 782	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
 783
 784	mips_probe_watch_registers(c);
 785
 786#ifndef CONFIG_MIPS_CPS
 787	if (cpu_has_mips_r2_r6) {
 788		unsigned int core;
 789
 790		core = get_ebase_cpunum();
 791		if (cpu_has_mipsmt)
 792			core >>= fls(core_nvpes()) - 1;
 793		cpu_set_core(c, core);
 794	}
 795#endif
 796}
 797
 798/*
 799 * Probe for certain guest capabilities by writing config bits and reading back.
 800 * Finally write back the original value.
 801 */
 802#define probe_gc0_config(name, maxconf, bits)				\
 803do {									\
 804	unsigned int tmp;						\
 805	tmp = read_gc0_##name();					\
 806	write_gc0_##name(tmp | (bits));					\
 807	back_to_back_c0_hazard();					\
 808	maxconf = read_gc0_##name();					\
 809	write_gc0_##name(tmp);						\
 810} while (0)
 811
 812/*
 813 * Probe for dynamic guest capabilities by changing certain config bits and
 814 * reading back to see if they change. Finally write back the original value.
 815 */
 816#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
 817do {									\
 818	maxconf = read_gc0_##name();					\
 819	write_gc0_##name(maxconf ^ (bits));				\
 820	back_to_back_c0_hazard();					\
 821	dynconf = maxconf ^ read_gc0_##name();				\
 822	write_gc0_##name(maxconf);					\
 823	maxconf |= dynconf;						\
 824} while (0)
 825
 826static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
 827{
 828	unsigned int config0;
 829
 830	probe_gc0_config(config, config0, MIPS_CONF_M);
 831
 832	if (config0 & MIPS_CONF_M)
 833		c->guest.conf |= BIT(1);
 834	return config0 & MIPS_CONF_M;
 835}
 836
 837static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
 838{
 839	unsigned int config1, config1_dyn;
 840
 841	probe_gc0_config_dyn(config1, config1, config1_dyn,
 842			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
 843			     MIPS_CONF1_FP);
 844
 845	if (config1 & MIPS_CONF1_FP)
 846		c->guest.options |= MIPS_CPU_FPU;
 847	if (config1_dyn & MIPS_CONF1_FP)
 848		c->guest.options_dyn |= MIPS_CPU_FPU;
 849
 850	if (config1 & MIPS_CONF1_WR)
 851		c->guest.options |= MIPS_CPU_WATCH;
 852	if (config1_dyn & MIPS_CONF1_WR)
 853		c->guest.options_dyn |= MIPS_CPU_WATCH;
 854
 855	if (config1 & MIPS_CONF1_PC)
 856		c->guest.options |= MIPS_CPU_PERF;
 857	if (config1_dyn & MIPS_CONF1_PC)
 858		c->guest.options_dyn |= MIPS_CPU_PERF;
 859
 860	if (config1 & MIPS_CONF_M)
 861		c->guest.conf |= BIT(2);
 862	return config1 & MIPS_CONF_M;
 863}
 864
 865static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
 866{
 867	unsigned int config2;
 868
 869	probe_gc0_config(config2, config2, MIPS_CONF_M);
 870
 871	if (config2 & MIPS_CONF_M)
 872		c->guest.conf |= BIT(3);
 873	return config2 & MIPS_CONF_M;
 874}
 875
 876static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
 877{
 878	unsigned int config3, config3_dyn;
 879
 880	probe_gc0_config_dyn(config3, config3, config3_dyn,
 881			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_ULRI |
 882			     MIPS_CONF3_CTXTC);
 883
 884	if (config3 & MIPS_CONF3_CTXTC)
 885		c->guest.options |= MIPS_CPU_CTXTC;
 886	if (config3_dyn & MIPS_CONF3_CTXTC)
 887		c->guest.options_dyn |= MIPS_CPU_CTXTC;
 888
 889	if (config3 & MIPS_CONF3_PW)
 890		c->guest.options |= MIPS_CPU_HTW;
 891
 892	if (config3 & MIPS_CONF3_ULRI)
 893		c->guest.options |= MIPS_CPU_ULRI;
 894
 895	if (config3 & MIPS_CONF3_SC)
 896		c->guest.options |= MIPS_CPU_SEGMENTS;
 897
 898	if (config3 & MIPS_CONF3_BI)
 899		c->guest.options |= MIPS_CPU_BADINSTR;
 900	if (config3 & MIPS_CONF3_BP)
 901		c->guest.options |= MIPS_CPU_BADINSTRP;
 902
 903	if (config3 & MIPS_CONF3_MSA)
 904		c->guest.ases |= MIPS_ASE_MSA;
 905	if (config3_dyn & MIPS_CONF3_MSA)
 906		c->guest.ases_dyn |= MIPS_ASE_MSA;
 907
 908	if (config3 & MIPS_CONF_M)
 909		c->guest.conf |= BIT(4);
 910	return config3 & MIPS_CONF_M;
 911}
 912
 913static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
 914{
 915	unsigned int config4;
 916
 917	probe_gc0_config(config4, config4,
 918			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
 919
 920	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 921				>> MIPS_CONF4_KSCREXIST_SHIFT;
 922
 923	if (config4 & MIPS_CONF_M)
 924		c->guest.conf |= BIT(5);
 925	return config4 & MIPS_CONF_M;
 926}
 927
 928static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
 929{
 930	unsigned int config5, config5_dyn;
 931
 932	probe_gc0_config_dyn(config5, config5, config5_dyn,
 933			 MIPS_CONF_M | MIPS_CONF5_MVH | MIPS_CONF5_MRP);
 934
 935	if (config5 & MIPS_CONF5_MRP)
 936		c->guest.options |= MIPS_CPU_MAAR;
 937	if (config5_dyn & MIPS_CONF5_MRP)
 938		c->guest.options_dyn |= MIPS_CPU_MAAR;
 939
 940	if (config5 & MIPS_CONF5_LLB)
 941		c->guest.options |= MIPS_CPU_RW_LLB;
 942
 943	if (config5 & MIPS_CONF5_MVH)
 944		c->guest.options |= MIPS_CPU_MVH;
 945
 946	if (config5 & MIPS_CONF_M)
 947		c->guest.conf |= BIT(6);
 948	return config5 & MIPS_CONF_M;
 949}
 950
 951static inline void decode_guest_configs(struct cpuinfo_mips *c)
 952{
 953	unsigned int ok;
 954
 955	ok = decode_guest_config0(c);
 956	if (ok)
 957		ok = decode_guest_config1(c);
 958	if (ok)
 959		ok = decode_guest_config2(c);
 960	if (ok)
 961		ok = decode_guest_config3(c);
 962	if (ok)
 963		ok = decode_guest_config4(c);
 964	if (ok)
 965		decode_guest_config5(c);
 966}
 967
 968static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
 969{
 970	unsigned int guestctl0, temp;
 971
 972	guestctl0 = read_c0_guestctl0();
 973
 974	if (guestctl0 & MIPS_GCTL0_G0E)
 975		c->options |= MIPS_CPU_GUESTCTL0EXT;
 976	if (guestctl0 & MIPS_GCTL0_G1)
 977		c->options |= MIPS_CPU_GUESTCTL1;
 978	if (guestctl0 & MIPS_GCTL0_G2)
 979		c->options |= MIPS_CPU_GUESTCTL2;
 980	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
 981		c->options |= MIPS_CPU_GUESTID;
 982
 983		/*
 984		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
 985		 * first, otherwise all data accesses will be fully virtualised
 986		 * as if they were performed by guest mode.
 987		 */
 988		write_c0_guestctl1(0);
 989		tlbw_use_hazard();
 990
 991		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
 992		back_to_back_c0_hazard();
 993		temp = read_c0_guestctl0();
 994
 995		if (temp & MIPS_GCTL0_DRG) {
 996			write_c0_guestctl0(guestctl0);
 997			c->options |= MIPS_CPU_DRG;
 998		}
 999	}
1000}
1001
1002static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1003{
1004	if (cpu_has_guestid) {
1005		/* determine the number of bits of GuestID available */
1006		write_c0_guestctl1(MIPS_GCTL1_ID);
1007		back_to_back_c0_hazard();
1008		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1009						>> MIPS_GCTL1_ID_SHIFT;
1010		write_c0_guestctl1(0);
1011	}
1012}
1013
1014static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1015{
1016	/* determine the number of bits of GTOffset available */
1017	write_c0_gtoffset(0xffffffff);
1018	back_to_back_c0_hazard();
1019	c->gtoffset_mask = read_c0_gtoffset();
1020	write_c0_gtoffset(0);
1021}
1022
1023static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1024{
1025	cpu_probe_guestctl0(c);
1026	if (cpu_has_guestctl1)
1027		cpu_probe_guestctl1(c);
1028
1029	cpu_probe_gtoffset(c);
1030
1031	decode_guest_configs(c);
1032}
1033
1034#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1035		| MIPS_CPU_COUNTER)
1036
1037static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1038{
1039	switch (c->processor_id & PRID_IMP_MASK) {
1040	case PRID_IMP_R2000:
1041		c->cputype = CPU_R2000;
1042		__cpu_name[cpu] = "R2000";
1043		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1044		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1045			     MIPS_CPU_NOFPUEX;
1046		if (__cpu_has_fpu())
1047			c->options |= MIPS_CPU_FPU;
1048		c->tlbsize = 64;
1049		break;
1050	case PRID_IMP_R3000:
1051		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1052			if (cpu_has_confreg()) {
1053				c->cputype = CPU_R3081E;
1054				__cpu_name[cpu] = "R3081";
1055			} else {
1056				c->cputype = CPU_R3000A;
1057				__cpu_name[cpu] = "R3000A";
1058			}
1059		} else {
1060			c->cputype = CPU_R3000;
1061			__cpu_name[cpu] = "R3000";
1062		}
1063		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1064		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1065			     MIPS_CPU_NOFPUEX;
1066		if (__cpu_has_fpu())
1067			c->options |= MIPS_CPU_FPU;
1068		c->tlbsize = 64;
1069		break;
1070	case PRID_IMP_R4000:
1071		if (read_c0_config() & CONF_SC) {
1072			if ((c->processor_id & PRID_REV_MASK) >=
1073			    PRID_REV_R4400) {
1074				c->cputype = CPU_R4400PC;
1075				__cpu_name[cpu] = "R4400PC";
1076			} else {
1077				c->cputype = CPU_R4000PC;
1078				__cpu_name[cpu] = "R4000PC";
1079			}
1080		} else {
1081			int cca = read_c0_config() & CONF_CM_CMASK;
1082			int mc;
1083
1084			/*
1085			 * SC and MC versions can't be reliably told apart,
1086			 * but only the latter support coherent caching
1087			 * modes so assume the firmware has set the KSEG0
1088			 * coherency attribute reasonably (if uncached, we
1089			 * assume SC).
1090			 */
1091			switch (cca) {
1092			case CONF_CM_CACHABLE_CE:
1093			case CONF_CM_CACHABLE_COW:
1094			case CONF_CM_CACHABLE_CUW:
1095				mc = 1;
1096				break;
1097			default:
1098				mc = 0;
1099				break;
1100			}
1101			if ((c->processor_id & PRID_REV_MASK) >=
1102			    PRID_REV_R4400) {
1103				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1104				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1105			} else {
1106				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1107				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1108			}
1109		}
1110
1111		set_isa(c, MIPS_CPU_ISA_III);
1112		c->fpu_msk31 |= FPU_CSR_CONDX;
1113		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1114			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1115			     MIPS_CPU_LLSC;
1116		c->tlbsize = 48;
1117		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118	case PRID_IMP_R4300:
1119		c->cputype = CPU_R4300;
1120		__cpu_name[cpu] = "R4300";
1121		set_isa(c, MIPS_CPU_ISA_III);
1122		c->fpu_msk31 |= FPU_CSR_CONDX;
1123		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1124			     MIPS_CPU_LLSC;
1125		c->tlbsize = 32;
1126		break;
1127	case PRID_IMP_R4600:
1128		c->cputype = CPU_R4600;
1129		__cpu_name[cpu] = "R4600";
1130		set_isa(c, MIPS_CPU_ISA_III);
1131		c->fpu_msk31 |= FPU_CSR_CONDX;
1132		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1133			     MIPS_CPU_LLSC;
1134		c->tlbsize = 48;
1135		break;
1136	#if 0
1137	case PRID_IMP_R4650:
1138		/*
1139		 * This processor doesn't have an MMU, so it's not
1140		 * "real easy" to run Linux on it. It is left purely
1141		 * for documentation.  Commented out because it shares
1142		 * it's c0_prid id number with the TX3900.
1143		 */
1144		c->cputype = CPU_R4650;
1145		__cpu_name[cpu] = "R4650";
1146		set_isa(c, MIPS_CPU_ISA_III);
1147		c->fpu_msk31 |= FPU_CSR_CONDX;
1148		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1149		c->tlbsize = 48;
1150		break;
1151	#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1152	case PRID_IMP_R4700:
1153		c->cputype = CPU_R4700;
1154		__cpu_name[cpu] = "R4700";
1155		set_isa(c, MIPS_CPU_ISA_III);
1156		c->fpu_msk31 |= FPU_CSR_CONDX;
1157		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1158			     MIPS_CPU_LLSC;
1159		c->tlbsize = 48;
1160		break;
1161	case PRID_IMP_TX49:
1162		c->cputype = CPU_TX49XX;
1163		__cpu_name[cpu] = "R49XX";
1164		set_isa(c, MIPS_CPU_ISA_III);
1165		c->fpu_msk31 |= FPU_CSR_CONDX;
1166		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1167		if (!(c->processor_id & 0x08))
1168			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1169		c->tlbsize = 48;
1170		break;
1171	case PRID_IMP_R5000:
1172		c->cputype = CPU_R5000;
1173		__cpu_name[cpu] = "R5000";
1174		set_isa(c, MIPS_CPU_ISA_IV);
1175		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1176			     MIPS_CPU_LLSC;
1177		c->tlbsize = 48;
1178		break;
 
 
 
 
 
 
 
 
1179	case PRID_IMP_R5500:
1180		c->cputype = CPU_R5500;
1181		__cpu_name[cpu] = "R5500";
1182		set_isa(c, MIPS_CPU_ISA_IV);
1183		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1184			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1185		c->tlbsize = 48;
1186		break;
1187	case PRID_IMP_NEVADA:
1188		c->cputype = CPU_NEVADA;
1189		__cpu_name[cpu] = "Nevada";
1190		set_isa(c, MIPS_CPU_ISA_IV);
1191		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1192			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1193		c->tlbsize = 48;
1194		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195	case PRID_IMP_RM7000:
1196		c->cputype = CPU_RM7000;
1197		__cpu_name[cpu] = "RM7000";
1198		set_isa(c, MIPS_CPU_ISA_IV);
1199		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1200			     MIPS_CPU_LLSC;
1201		/*
1202		 * Undocumented RM7000:	 Bit 29 in the info register of
1203		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1204		 * entries.
1205		 *
1206		 * 29	   1 =>	   64 entry JTLB
1207		 *	   0 =>	   48 entry JTLB
1208		 */
1209		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1210		break;
 
 
 
 
 
 
 
 
 
1211	case PRID_IMP_R10000:
1212		c->cputype = CPU_R10000;
1213		__cpu_name[cpu] = "R10000";
1214		set_isa(c, MIPS_CPU_ISA_IV);
1215		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1216			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1217			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1218			     MIPS_CPU_LLSC;
1219		c->tlbsize = 64;
1220		break;
1221	case PRID_IMP_R12000:
1222		c->cputype = CPU_R12000;
1223		__cpu_name[cpu] = "R12000";
1224		set_isa(c, MIPS_CPU_ISA_IV);
1225		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1226			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1227			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1228			     MIPS_CPU_LLSC;
1229		c->tlbsize = 64;
1230		write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1231		break;
1232	case PRID_IMP_R14000:
1233		if (((c->processor_id >> 4) & 0x0f) > 2) {
1234			c->cputype = CPU_R16000;
1235			__cpu_name[cpu] = "R16000";
1236		} else {
1237			c->cputype = CPU_R14000;
1238			__cpu_name[cpu] = "R14000";
1239		}
1240		set_isa(c, MIPS_CPU_ISA_IV);
1241		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1242			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1243			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1244			     MIPS_CPU_LLSC;
1245		c->tlbsize = 64;
1246		write_c0_r10k_diag(read_c0_r10k_diag() | R10K_DIAG_E_GHIST);
1247		break;
1248	case PRID_IMP_LOONGSON_64C:  /* Loongson-2/3 */
1249		switch (c->processor_id & PRID_REV_MASK) {
1250		case PRID_REV_LOONGSON2E:
1251			c->cputype = CPU_LOONGSON2EF;
1252			__cpu_name[cpu] = "ICT Loongson-2";
1253			set_elf_platform(cpu, "loongson2e");
1254			set_isa(c, MIPS_CPU_ISA_III);
1255			c->fpu_msk31 |= FPU_CSR_CONDX;
1256			break;
1257		case PRID_REV_LOONGSON2F:
1258			c->cputype = CPU_LOONGSON2EF;
1259			__cpu_name[cpu] = "ICT Loongson-2";
1260			set_elf_platform(cpu, "loongson2f");
1261			set_isa(c, MIPS_CPU_ISA_III);
1262			c->fpu_msk31 |= FPU_CSR_CONDX;
1263			break;
1264		case PRID_REV_LOONGSON3A_R1:
1265			c->cputype = CPU_LOONGSON64;
1266			__cpu_name[cpu] = "ICT Loongson-3";
1267			set_elf_platform(cpu, "loongson3a");
1268			set_isa(c, MIPS_CPU_ISA_M64R1);
1269			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1270				MIPS_ASE_LOONGSON_EXT);
1271			break;
1272		case PRID_REV_LOONGSON3B_R1:
1273		case PRID_REV_LOONGSON3B_R2:
1274			c->cputype = CPU_LOONGSON64;
1275			__cpu_name[cpu] = "ICT Loongson-3";
1276			set_elf_platform(cpu, "loongson3b");
1277			set_isa(c, MIPS_CPU_ISA_M64R1);
1278			c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1279				MIPS_ASE_LOONGSON_EXT);
1280			break;
1281		}
1282
1283		c->options = R4K_OPTS |
1284			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1285			     MIPS_CPU_32FPR;
1286		c->tlbsize = 64;
1287		set_cpu_asid_mask(c, MIPS_ENTRYHI_ASID);
1288		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1289		break;
1290	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1291		decode_configs(c);
1292
1293		c->cputype = CPU_LOONGSON32;
1294
1295		switch (c->processor_id & PRID_REV_MASK) {
1296		case PRID_REV_LOONGSON1B:
1297			__cpu_name[cpu] = "Loongson 1B";
1298			break;
1299		}
1300
1301		break;
1302	}
1303}
1304
1305static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1306{
1307	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1308	switch (c->processor_id & PRID_IMP_MASK) {
1309	case PRID_IMP_QEMU_GENERIC:
1310		c->writecombine = _CACHE_UNCACHED;
1311		c->cputype = CPU_QEMU_GENERIC;
1312		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1313		break;
1314	case PRID_IMP_4KC:
1315		c->cputype = CPU_4KC;
1316		c->writecombine = _CACHE_UNCACHED;
1317		__cpu_name[cpu] = "MIPS 4Kc";
1318		break;
1319	case PRID_IMP_4KEC:
1320	case PRID_IMP_4KECR2:
1321		c->cputype = CPU_4KEC;
1322		c->writecombine = _CACHE_UNCACHED;
1323		__cpu_name[cpu] = "MIPS 4KEc";
1324		break;
1325	case PRID_IMP_4KSC:
1326	case PRID_IMP_4KSD:
1327		c->cputype = CPU_4KSC;
1328		c->writecombine = _CACHE_UNCACHED;
1329		__cpu_name[cpu] = "MIPS 4KSc";
1330		break;
1331	case PRID_IMP_5KC:
1332		c->cputype = CPU_5KC;
1333		c->writecombine = _CACHE_UNCACHED;
1334		__cpu_name[cpu] = "MIPS 5Kc";
1335		break;
1336	case PRID_IMP_5KE:
1337		c->cputype = CPU_5KE;
1338		c->writecombine = _CACHE_UNCACHED;
1339		__cpu_name[cpu] = "MIPS 5KE";
1340		break;
1341	case PRID_IMP_20KC:
1342		c->cputype = CPU_20KC;
1343		c->writecombine = _CACHE_UNCACHED;
1344		__cpu_name[cpu] = "MIPS 20Kc";
1345		break;
1346	case PRID_IMP_24K:
1347		c->cputype = CPU_24K;
1348		c->writecombine = _CACHE_UNCACHED;
1349		__cpu_name[cpu] = "MIPS 24Kc";
1350		break;
1351	case PRID_IMP_24KE:
1352		c->cputype = CPU_24K;
1353		c->writecombine = _CACHE_UNCACHED;
1354		__cpu_name[cpu] = "MIPS 24KEc";
1355		break;
1356	case PRID_IMP_25KF:
1357		c->cputype = CPU_25KF;
1358		c->writecombine = _CACHE_UNCACHED;
1359		__cpu_name[cpu] = "MIPS 25Kc";
1360		break;
1361	case PRID_IMP_34K:
1362		c->cputype = CPU_34K;
1363		c->writecombine = _CACHE_UNCACHED;
1364		__cpu_name[cpu] = "MIPS 34Kc";
1365		cpu_set_mt_per_tc_perf(c);
1366		break;
1367	case PRID_IMP_74K:
1368		c->cputype = CPU_74K;
1369		c->writecombine = _CACHE_UNCACHED;
1370		__cpu_name[cpu] = "MIPS 74Kc";
1371		break;
1372	case PRID_IMP_M14KC:
1373		c->cputype = CPU_M14KC;
1374		c->writecombine = _CACHE_UNCACHED;
1375		__cpu_name[cpu] = "MIPS M14Kc";
1376		break;
1377	case PRID_IMP_M14KEC:
1378		c->cputype = CPU_M14KEC;
1379		c->writecombine = _CACHE_UNCACHED;
1380		__cpu_name[cpu] = "MIPS M14KEc";
1381		break;
1382	case PRID_IMP_1004K:
1383		c->cputype = CPU_1004K;
1384		c->writecombine = _CACHE_UNCACHED;
1385		__cpu_name[cpu] = "MIPS 1004Kc";
1386		cpu_set_mt_per_tc_perf(c);
1387		break;
1388	case PRID_IMP_1074K:
1389		c->cputype = CPU_1074K;
1390		c->writecombine = _CACHE_UNCACHED;
1391		__cpu_name[cpu] = "MIPS 1074Kc";
1392		break;
1393	case PRID_IMP_INTERAPTIV_UP:
1394		c->cputype = CPU_INTERAPTIV;
1395		__cpu_name[cpu] = "MIPS interAptiv";
1396		cpu_set_mt_per_tc_perf(c);
1397		break;
1398	case PRID_IMP_INTERAPTIV_MP:
1399		c->cputype = CPU_INTERAPTIV;
1400		__cpu_name[cpu] = "MIPS interAptiv (multi)";
1401		cpu_set_mt_per_tc_perf(c);
1402		break;
1403	case PRID_IMP_PROAPTIV_UP:
1404		c->cputype = CPU_PROAPTIV;
1405		__cpu_name[cpu] = "MIPS proAptiv";
1406		break;
1407	case PRID_IMP_PROAPTIV_MP:
1408		c->cputype = CPU_PROAPTIV;
1409		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1410		break;
1411	case PRID_IMP_P5600:
1412		c->cputype = CPU_P5600;
1413		__cpu_name[cpu] = "MIPS P5600";
1414		break;
1415	case PRID_IMP_P6600:
1416		c->cputype = CPU_P6600;
1417		__cpu_name[cpu] = "MIPS P6600";
1418		break;
1419	case PRID_IMP_I6400:
1420		c->cputype = CPU_I6400;
1421		__cpu_name[cpu] = "MIPS I6400";
1422		break;
1423	case PRID_IMP_I6500:
1424		c->cputype = CPU_I6500;
1425		__cpu_name[cpu] = "MIPS I6500";
1426		break;
1427	case PRID_IMP_M5150:
1428		c->cputype = CPU_M5150;
1429		__cpu_name[cpu] = "MIPS M5150";
1430		break;
1431	case PRID_IMP_M6250:
1432		c->cputype = CPU_M6250;
1433		__cpu_name[cpu] = "MIPS M6250";
1434		break;
1435	}
1436
1437	decode_configs(c);
1438
1439	spram_config();
1440
1441	mm_config(c);
1442
1443	switch (__get_cpu_type(c->cputype)) {
1444	case CPU_M5150:
1445	case CPU_P5600:
1446		set_isa(c, MIPS_CPU_ISA_M32R5);
1447		break;
1448	case CPU_I6500:
1449		c->options |= MIPS_CPU_SHARED_FTLB_ENTRIES;
1450		fallthrough;
1451	case CPU_I6400:
1452		c->options |= MIPS_CPU_SHARED_FTLB_RAM;
1453		fallthrough;
1454	default:
1455		break;
1456	}
1457
1458	/* Recent MIPS cores use the implementation-dependent ExcCode 16 for
1459	 * cache/FTLB parity exceptions.
1460	 */
1461	switch (__get_cpu_type(c->cputype)) {
1462	case CPU_PROAPTIV:
1463	case CPU_P5600:
1464	case CPU_P6600:
1465	case CPU_I6400:
1466	case CPU_I6500:
1467		c->options |= MIPS_CPU_FTLBPAREX;
1468		break;
1469	}
1470}
1471
1472static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1473{
1474	decode_configs(c);
1475	switch (c->processor_id & PRID_IMP_MASK) {
1476	case PRID_IMP_AU1_REV1:
1477	case PRID_IMP_AU1_REV2:
1478		c->cputype = CPU_ALCHEMY;
1479		switch ((c->processor_id >> 24) & 0xff) {
1480		case 0:
1481			__cpu_name[cpu] = "Au1000";
1482			break;
1483		case 1:
1484			__cpu_name[cpu] = "Au1500";
1485			break;
1486		case 2:
1487			__cpu_name[cpu] = "Au1100";
1488			break;
1489		case 3:
1490			__cpu_name[cpu] = "Au1550";
1491			break;
1492		case 4:
1493			__cpu_name[cpu] = "Au1200";
1494			if ((c->processor_id & PRID_REV_MASK) == 2)
1495				__cpu_name[cpu] = "Au1250";
1496			break;
1497		case 5:
1498			__cpu_name[cpu] = "Au1210";
1499			break;
1500		default:
1501			__cpu_name[cpu] = "Au1xxx";
1502			break;
1503		}
1504		break;
1505	}
1506}
1507
1508static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1509{
1510	decode_configs(c);
1511
1512	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1513	switch (c->processor_id & PRID_IMP_MASK) {
1514	case PRID_IMP_SB1:
1515		c->cputype = CPU_SB1;
1516		__cpu_name[cpu] = "SiByte SB1";
1517		/* FPU in pass1 is known to have issues. */
1518		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1519			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1520		break;
1521	case PRID_IMP_SB1A:
1522		c->cputype = CPU_SB1A;
1523		__cpu_name[cpu] = "SiByte SB1A";
1524		break;
1525	}
1526}
1527
1528static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1529{
1530	decode_configs(c);
1531	switch (c->processor_id & PRID_IMP_MASK) {
1532	case PRID_IMP_SR71000:
1533		c->cputype = CPU_SR71000;
1534		__cpu_name[cpu] = "Sandcraft SR71000";
1535		c->scache.ways = 8;
1536		c->tlbsize = 64;
1537		break;
1538	}
1539}
1540
1541static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1542{
1543	decode_configs(c);
1544	switch (c->processor_id & PRID_IMP_MASK) {
1545	case PRID_IMP_PR4450:
1546		c->cputype = CPU_PR4450;
1547		__cpu_name[cpu] = "Philips PR4450";
1548		set_isa(c, MIPS_CPU_ISA_M32R1);
1549		break;
1550	}
1551}
1552
1553static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1554{
1555	decode_configs(c);
1556	switch (c->processor_id & PRID_IMP_MASK) {
1557	case PRID_IMP_BMIPS32_REV4:
1558	case PRID_IMP_BMIPS32_REV8:
1559		c->cputype = CPU_BMIPS32;
1560		__cpu_name[cpu] = "Broadcom BMIPS32";
1561		set_elf_platform(cpu, "bmips32");
1562		break;
1563	case PRID_IMP_BMIPS3300:
1564	case PRID_IMP_BMIPS3300_ALT:
1565	case PRID_IMP_BMIPS3300_BUG:
1566		c->cputype = CPU_BMIPS3300;
1567		__cpu_name[cpu] = "Broadcom BMIPS3300";
1568		set_elf_platform(cpu, "bmips3300");
1569		reserve_exception_space(0x400, VECTORSPACING * 64);
1570		break;
1571	case PRID_IMP_BMIPS43XX: {
1572		int rev = c->processor_id & PRID_REV_MASK;
1573
1574		if (rev >= PRID_REV_BMIPS4380_LO &&
1575				rev <= PRID_REV_BMIPS4380_HI) {
1576			c->cputype = CPU_BMIPS4380;
1577			__cpu_name[cpu] = "Broadcom BMIPS4380";
1578			set_elf_platform(cpu, "bmips4380");
1579			c->options |= MIPS_CPU_RIXI;
1580			reserve_exception_space(0x400, VECTORSPACING * 64);
1581		} else {
1582			c->cputype = CPU_BMIPS4350;
1583			__cpu_name[cpu] = "Broadcom BMIPS4350";
1584			set_elf_platform(cpu, "bmips4350");
1585		}
1586		break;
1587	}
1588	case PRID_IMP_BMIPS5000:
1589	case PRID_IMP_BMIPS5200:
1590		c->cputype = CPU_BMIPS5000;
1591		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1592			__cpu_name[cpu] = "Broadcom BMIPS5200";
1593		else
1594			__cpu_name[cpu] = "Broadcom BMIPS5000";
1595		set_elf_platform(cpu, "bmips5000");
1596		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
1597		reserve_exception_space(0x1000, VECTORSPACING * 64);
1598		break;
1599	}
1600}
1601
1602static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1603{
1604	decode_configs(c);
1605	switch (c->processor_id & PRID_IMP_MASK) {
1606	case PRID_IMP_CAVIUM_CN38XX:
1607	case PRID_IMP_CAVIUM_CN31XX:
1608	case PRID_IMP_CAVIUM_CN30XX:
1609		c->cputype = CPU_CAVIUM_OCTEON;
1610		__cpu_name[cpu] = "Cavium Octeon";
1611		goto platform;
1612	case PRID_IMP_CAVIUM_CN58XX:
1613	case PRID_IMP_CAVIUM_CN56XX:
1614	case PRID_IMP_CAVIUM_CN50XX:
1615	case PRID_IMP_CAVIUM_CN52XX:
1616		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1617		__cpu_name[cpu] = "Cavium Octeon+";
1618platform:
1619		set_elf_platform(cpu, "octeon");
1620		break;
1621	case PRID_IMP_CAVIUM_CN61XX:
1622	case PRID_IMP_CAVIUM_CN63XX:
1623	case PRID_IMP_CAVIUM_CN66XX:
1624	case PRID_IMP_CAVIUM_CN68XX:
1625	case PRID_IMP_CAVIUM_CNF71XX:
1626		c->cputype = CPU_CAVIUM_OCTEON2;
1627		__cpu_name[cpu] = "Cavium Octeon II";
1628		set_elf_platform(cpu, "octeon2");
1629		break;
1630	case PRID_IMP_CAVIUM_CN70XX:
1631	case PRID_IMP_CAVIUM_CN73XX:
1632	case PRID_IMP_CAVIUM_CNF75XX:
1633	case PRID_IMP_CAVIUM_CN78XX:
1634		c->cputype = CPU_CAVIUM_OCTEON3;
1635		__cpu_name[cpu] = "Cavium Octeon III";
1636		set_elf_platform(cpu, "octeon3");
1637		break;
1638	default:
1639		printk(KERN_INFO "Unknown Octeon chip!\n");
1640		c->cputype = CPU_UNKNOWN;
1641		break;
1642	}
1643}
1644
1645#ifdef CONFIG_CPU_LOONGSON64
1646#include <loongson_regs.h>
1647
1648static inline void decode_cpucfg(struct cpuinfo_mips *c)
1649{
1650	u32 cfg1 = read_cpucfg(LOONGSON_CFG1);
1651	u32 cfg2 = read_cpucfg(LOONGSON_CFG2);
1652	u32 cfg3 = read_cpucfg(LOONGSON_CFG3);
1653
1654	if (cfg1 & LOONGSON_CFG1_MMI)
1655		c->ases |= MIPS_ASE_LOONGSON_MMI;
1656
1657	if (cfg2 & LOONGSON_CFG2_LEXT1)
1658		c->ases |= MIPS_ASE_LOONGSON_EXT;
1659
1660	if (cfg2 & LOONGSON_CFG2_LEXT2)
1661		c->ases |= MIPS_ASE_LOONGSON_EXT2;
1662
1663	if (cfg2 & LOONGSON_CFG2_LSPW) {
1664		c->options |= MIPS_CPU_LDPTE;
1665		c->guest.options |= MIPS_CPU_LDPTE;
1666	}
1667
1668	if (cfg3 & LOONGSON_CFG3_LCAMP)
1669		c->ases |= MIPS_ASE_LOONGSON_CAM;
1670}
1671
1672static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1673{
1674	/* All Loongson processors covered here define ExcCode 16 as GSExc. */
1675	c->options |= MIPS_CPU_GSEXCEX;
1676
1677	switch (c->processor_id & PRID_IMP_MASK) {
1678	case PRID_IMP_LOONGSON_64R: /* Loongson-64 Reduced */
1679		switch (c->processor_id & PRID_REV_MASK) {
1680		case PRID_REV_LOONGSON2K_R1_0:
1681		case PRID_REV_LOONGSON2K_R1_1:
1682		case PRID_REV_LOONGSON2K_R1_2:
1683		case PRID_REV_LOONGSON2K_R1_3:
1684			c->cputype = CPU_LOONGSON64;
1685			__cpu_name[cpu] = "Loongson-2K";
1686			set_elf_platform(cpu, "gs264e");
1687			set_isa(c, MIPS_CPU_ISA_M64R2);
1688			break;
1689		}
1690		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_EXT |
1691				MIPS_ASE_LOONGSON_EXT2);
1692		break;
1693	case PRID_IMP_LOONGSON_64C:  /* Loongson-3 Classic */
1694		switch (c->processor_id & PRID_REV_MASK) {
1695		case PRID_REV_LOONGSON3A_R2_0:
1696		case PRID_REV_LOONGSON3A_R2_1:
1697			c->cputype = CPU_LOONGSON64;
1698			__cpu_name[cpu] = "ICT Loongson-3";
1699			set_elf_platform(cpu, "loongson3a");
1700			set_isa(c, MIPS_CPU_ISA_M64R2);
1701			break;
1702		case PRID_REV_LOONGSON3A_R3_0:
1703		case PRID_REV_LOONGSON3A_R3_1:
1704			c->cputype = CPU_LOONGSON64;
1705			__cpu_name[cpu] = "ICT Loongson-3";
1706			set_elf_platform(cpu, "loongson3a");
1707			set_isa(c, MIPS_CPU_ISA_M64R2);
1708			break;
1709		}
1710		/*
1711		 * Loongson-3 Classic did not implement MIPS standard TLBINV
1712		 * but implemented TLBINVF and EHINV. As currently we're only
1713		 * using these two features, enable MIPS_CPU_TLBINV as well.
1714		 *
1715		 * Also some early Loongson-3A2000 had wrong TLB type in Config
1716		 * register, we correct it here.
1717		 */
1718		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1719		c->ases |= (MIPS_ASE_LOONGSON_MMI | MIPS_ASE_LOONGSON_CAM |
1720			MIPS_ASE_LOONGSON_EXT | MIPS_ASE_LOONGSON_EXT2);
1721		c->ases &= ~MIPS_ASE_VZ; /* VZ of Loongson-3A2000/3000 is incomplete */
1722		break;
1723	case PRID_IMP_LOONGSON_64G:
1724		c->cputype = CPU_LOONGSON64;
1725		__cpu_name[cpu] = "ICT Loongson-3";
1726		set_elf_platform(cpu, "loongson3a");
1727		set_isa(c, MIPS_CPU_ISA_M64R2);
1728		decode_cpucfg(c);
1729		break;
1730	default:
1731		panic("Unknown Loongson Processor ID!");
1732		break;
1733	}
1734
1735	decode_configs(c);
1736}
1737#else
1738static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu) { }
1739#endif
1740
1741static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1742{
1743	decode_configs(c);
1744
1745	/*
1746	 * XBurst misses a config2 register, so config3 decode was skipped in
1747	 * decode_configs().
1748	 */
1749	decode_config3(c);
1750
1751	/* XBurst does not implement the CP0 counter. */
1752	c->options &= ~MIPS_CPU_COUNTER;
1753	BUG_ON(__builtin_constant_p(cpu_has_counter) && cpu_has_counter);
1754
1755	/* XBurst has virtually tagged icache */
1756	c->icache.flags |= MIPS_CACHE_VTAG;
1757
1758	switch (c->processor_id & PRID_IMP_MASK) {
 
 
 
 
 
 
 
 
 
 
1759
1760	/* XBurst®1 with MXU1.0/MXU1.1 SIMD ISA */
1761	case PRID_IMP_XBURST_REV1:
1762
1763		/*
1764		 * The XBurst core by default attempts to avoid branch target
1765		 * buffer lookups by detecting & special casing loops. This
1766		 * feature will cause BogoMIPS and lpj calculate in error.
1767		 * Set cp0 config7 bit 4 to disable this feature.
1768		 */
1769		set_c0_config7(MIPS_CONF7_BTB_LOOP_EN);
1770
1771		switch (c->processor_id & PRID_COMP_MASK) {
1772
1773		/*
1774		 * The config0 register in the XBurst CPUs with a processor ID of
1775		 * PRID_COMP_INGENIC_D0 report themselves as MIPS32r2 compatible,
1776		 * but they don't actually support this ISA.
1777		 */
1778		case PRID_COMP_INGENIC_D0:
1779			c->isa_level &= ~MIPS_CPU_ISA_M32R2;
1780
1781			/* FPU is not properly detected on JZ4760(B). */
1782			if (c->processor_id == 0x2ed0024f)
1783				c->options |= MIPS_CPU_FPU;
1784
1785			fallthrough;
1786
1787		/*
1788		 * The config0 register in the XBurst CPUs with a processor ID of
1789		 * PRID_COMP_INGENIC_D0 or PRID_COMP_INGENIC_D1 has an abandoned
1790		 * huge page tlb mode, this mode is not compatible with the MIPS
1791		 * standard, it will cause tlbmiss and into an infinite loop
1792		 * (line 21 in the tlb-funcs.S) when starting the init process.
1793		 * After chip reset, the default is HPTLB mode, Write 0xa9000000
1794		 * to cp0 register 5 sel 4 to switch back to VTLB mode to prevent
1795		 * getting stuck.
1796		 */
1797		case PRID_COMP_INGENIC_D1:
1798			write_c0_page_ctrl(XBURST_PAGECTRL_HPTLB_DIS);
1799			break;
1800
1801		default:
1802			break;
1803		}
1804		fallthrough;
 
 
 
1805
1806	/* XBurst®1 with MXU2.0 SIMD ISA */
1807	case PRID_IMP_XBURST_REV2:
1808		/* Ingenic uses the WA bit to achieve write-combine memory writes */
1809		c->writecombine = _CACHE_CACHABLE_WA;
1810		c->cputype = CPU_XBURST;
1811		__cpu_name[cpu] = "Ingenic XBurst";
1812		break;
1813
1814	/* XBurst®2 with MXU2.1 SIMD ISA */
1815	case PRID_IMP_XBURST2:
1816		c->cputype = CPU_XBURST;
1817		__cpu_name[cpu] = "Ingenic XBurst II";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818		break;
1819
1820	default:
1821		panic("Unknown Ingenic Processor ID!");
 
 
1822		break;
1823	}
 
 
 
 
 
 
 
 
 
 
 
1824}
1825
1826#ifdef CONFIG_64BIT
1827/* For use by uaccess.h */
1828u64 __ua_limit;
1829EXPORT_SYMBOL(__ua_limit);
1830#endif
1831
1832const char *__cpu_name[NR_CPUS];
1833const char *__elf_platform;
1834const char *__elf_base_platform;
1835
1836void cpu_probe(void)
1837{
1838	struct cpuinfo_mips *c = &current_cpu_data;
1839	unsigned int cpu = smp_processor_id();
1840
1841	/*
1842	 * Set a default elf platform, cpu probe may later
1843	 * overwrite it with a more precise value
1844	 */
1845	set_elf_platform(cpu, "mips");
1846
1847	c->processor_id = PRID_IMP_UNKNOWN;
1848	c->fpu_id	= FPIR_IMP_NONE;
1849	c->cputype	= CPU_UNKNOWN;
1850	c->writecombine = _CACHE_UNCACHED;
1851
1852	c->fpu_csr31	= FPU_CSR_RN;
1853	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1854
1855	c->processor_id = read_c0_prid();
1856	switch (c->processor_id & PRID_COMP_MASK) {
1857	case PRID_COMP_LEGACY:
1858		cpu_probe_legacy(c, cpu);
1859		break;
1860	case PRID_COMP_MIPS:
1861		cpu_probe_mips(c, cpu);
1862		break;
1863	case PRID_COMP_ALCHEMY:
1864		cpu_probe_alchemy(c, cpu);
1865		break;
1866	case PRID_COMP_SIBYTE:
1867		cpu_probe_sibyte(c, cpu);
1868		break;
1869	case PRID_COMP_BROADCOM:
1870		cpu_probe_broadcom(c, cpu);
1871		break;
1872	case PRID_COMP_SANDCRAFT:
1873		cpu_probe_sandcraft(c, cpu);
1874		break;
1875	case PRID_COMP_NXP:
1876		cpu_probe_nxp(c, cpu);
1877		break;
1878	case PRID_COMP_CAVIUM:
1879		cpu_probe_cavium(c, cpu);
1880		break;
1881	case PRID_COMP_LOONGSON:
1882		cpu_probe_loongson(c, cpu);
1883		break;
1884	case PRID_COMP_INGENIC_13:
1885	case PRID_COMP_INGENIC_D0:
1886	case PRID_COMP_INGENIC_D1:
1887	case PRID_COMP_INGENIC_E1:
1888		cpu_probe_ingenic(c, cpu);
1889		break;
 
 
 
1890	}
1891
1892	BUG_ON(!__cpu_name[cpu]);
1893	BUG_ON(c->cputype == CPU_UNKNOWN);
1894
1895	/*
1896	 * Platform code can force the cpu type to optimize code
1897	 * generation. In that case be sure the cpu type is correctly
1898	 * manually setup otherwise it could trigger some nasty bugs.
1899	 */
1900	BUG_ON(current_cpu_type() != c->cputype);
1901
1902	if (cpu_has_rixi) {
1903		/* Enable the RIXI exceptions */
1904		set_c0_pagegrain(PG_IEC);
1905		back_to_back_c0_hazard();
1906		/* Verify the IEC bit is set */
1907		if (read_c0_pagegrain() & PG_IEC)
1908			c->options |= MIPS_CPU_RIXIEX;
1909	}
1910
1911	if (mips_fpu_disabled)
1912		c->options &= ~MIPS_CPU_FPU;
1913
1914	if (mips_dsp_disabled)
1915		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
1916
1917	if (mips_htw_disabled) {
1918		c->options &= ~MIPS_CPU_HTW;
1919		write_c0_pwctl(read_c0_pwctl() &
1920			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
1921	}
1922
1923	if (c->options & MIPS_CPU_FPU)
1924		cpu_set_fpu_opts(c);
1925	else
1926		cpu_set_nofpu_opts(c);
1927
 
 
 
 
1928	if (cpu_has_mips_r2_r6) {
1929		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
1930		/* R2 has Performance Counter Interrupt indicator */
1931		c->options |= MIPS_CPU_PCI;
1932	}
1933	else
1934		c->srsets = 1;
1935
1936	if (cpu_has_mips_r6)
1937		elf_hwcap |= HWCAP_MIPS_R6;
1938
1939	if (cpu_has_msa) {
1940		c->msa_id = cpu_get_msa_id();
1941		WARN(c->msa_id & MSA_IR_WRPF,
1942		     "Vector register partitioning unimplemented!");
1943		elf_hwcap |= HWCAP_MIPS_MSA;
1944	}
1945
1946	if (cpu_has_mips16)
1947		elf_hwcap |= HWCAP_MIPS_MIPS16;
1948
1949	if (cpu_has_mdmx)
1950		elf_hwcap |= HWCAP_MIPS_MDMX;
1951
1952	if (cpu_has_mips3d)
1953		elf_hwcap |= HWCAP_MIPS_MIPS3D;
1954
1955	if (cpu_has_smartmips)
1956		elf_hwcap |= HWCAP_MIPS_SMARTMIPS;
1957
1958	if (cpu_has_dsp)
1959		elf_hwcap |= HWCAP_MIPS_DSP;
1960
1961	if (cpu_has_dsp2)
1962		elf_hwcap |= HWCAP_MIPS_DSP2;
1963
1964	if (cpu_has_dsp3)
1965		elf_hwcap |= HWCAP_MIPS_DSP3;
1966
1967	if (cpu_has_mips16e2)
1968		elf_hwcap |= HWCAP_MIPS_MIPS16E2;
1969
1970	if (cpu_has_loongson_mmi)
1971		elf_hwcap |= HWCAP_LOONGSON_MMI;
1972
1973	if (cpu_has_loongson_ext)
1974		elf_hwcap |= HWCAP_LOONGSON_EXT;
1975
1976	if (cpu_has_loongson_ext2)
1977		elf_hwcap |= HWCAP_LOONGSON_EXT2;
1978
1979	if (cpu_has_vz)
1980		cpu_probe_vz(c);
1981
1982	cpu_probe_vmbits(c);
1983
1984	/* Synthesize CPUCFG data if running on Loongson processors;
1985	 * no-op otherwise.
1986	 *
1987	 * This looks at previously probed features, so keep this at bottom.
1988	 */
1989	loongson3_cpucfg_synthesize_data(c);
1990
1991#ifdef CONFIG_64BIT
1992	if (cpu == 0)
1993		__ua_limit = ~((1ull << cpu_vmbits) - 1);
1994#endif
1995
1996	reserve_exception_space(0, 0x1000);
1997}
1998
1999void cpu_report(void)
2000{
2001	struct cpuinfo_mips *c = &current_cpu_data;
2002
2003	pr_info("CPU%d revision is: %08x (%s)\n",
2004		smp_processor_id(), c->processor_id, cpu_name_string());
2005	if (c->options & MIPS_CPU_FPU)
2006		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2007	if (cpu_has_msa)
2008		pr_info("MSA revision is: %08x\n", c->msa_id);
2009}
2010
2011void cpu_set_cluster(struct cpuinfo_mips *cpuinfo, unsigned int cluster)
2012{
2013	/* Ensure the core number fits in the field */
2014	WARN_ON(cluster > (MIPS_GLOBALNUMBER_CLUSTER >>
2015			   MIPS_GLOBALNUMBER_CLUSTER_SHF));
2016
2017	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CLUSTER;
2018	cpuinfo->globalnumber |= cluster << MIPS_GLOBALNUMBER_CLUSTER_SHF;
2019}
2020
2021void cpu_set_core(struct cpuinfo_mips *cpuinfo, unsigned int core)
2022{
2023	/* Ensure the core number fits in the field */
2024	WARN_ON(core > (MIPS_GLOBALNUMBER_CORE >> MIPS_GLOBALNUMBER_CORE_SHF));
2025
2026	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_CORE;
2027	cpuinfo->globalnumber |= core << MIPS_GLOBALNUMBER_CORE_SHF;
2028}
2029
2030void cpu_set_vpe_id(struct cpuinfo_mips *cpuinfo, unsigned int vpe)
2031{
2032	/* Ensure the VP(E) ID fits in the field */
2033	WARN_ON(vpe > (MIPS_GLOBALNUMBER_VP >> MIPS_GLOBALNUMBER_VP_SHF));
2034
2035	/* Ensure we're not using VP(E)s without support */
2036	WARN_ON(vpe && !IS_ENABLED(CONFIG_MIPS_MT_SMP) &&
2037		!IS_ENABLED(CONFIG_CPU_MIPSR6));
2038
2039	cpuinfo->globalnumber &= ~MIPS_GLOBALNUMBER_VP;
2040	cpuinfo->globalnumber |= vpe << MIPS_GLOBALNUMBER_VP_SHF;
2041}
v4.10.11
 
   1/*
   2 * Processor capabilities determination functions.
   3 *
   4 * Copyright (C) xxxx  the Anonymous
   5 * Copyright (C) 1994 - 2006 Ralf Baechle
   6 * Copyright (C) 2003, 2004  Maciej W. Rozycki
   7 * Copyright (C) 2001, 2004, 2011, 2012	 MIPS Technologies, Inc.
   8 *
   9 * This program is free software; you can redistribute it and/or
  10 * modify it under the terms of the GNU General Public License
  11 * as published by the Free Software Foundation; either version
  12 * 2 of the License, or (at your option) any later version.
  13 */
  14#include <linux/init.h>
  15#include <linux/kernel.h>
  16#include <linux/ptrace.h>
  17#include <linux/smp.h>
  18#include <linux/stddef.h>
  19#include <linux/export.h>
  20
  21#include <asm/bugs.h>
  22#include <asm/cpu.h>
  23#include <asm/cpu-features.h>
  24#include <asm/cpu-type.h>
  25#include <asm/fpu.h>
  26#include <asm/mipsregs.h>
  27#include <asm/mipsmtregs.h>
  28#include <asm/msa.h>
  29#include <asm/watch.h>
  30#include <asm/elf.h>
  31#include <asm/pgtable-bits.h>
  32#include <asm/spram.h>
 
  33#include <linux/uaccess.h>
  34
 
 
 
 
  35/* Hardware capabilities */
  36unsigned int elf_hwcap __read_mostly;
  37
  38/*
  39 * Get the FPU Implementation/Revision.
  40 */
  41static inline unsigned long cpu_get_fpu_id(void)
  42{
  43	unsigned long tmp, fpu_id;
  44
  45	tmp = read_c0_status();
  46	__enable_fpu(FPU_AS_IS);
  47	fpu_id = read_32bit_cp1_register(CP1_REVISION);
  48	write_c0_status(tmp);
  49	return fpu_id;
  50}
  51
  52/*
  53 * Check if the CPU has an external FPU.
  54 */
  55static inline int __cpu_has_fpu(void)
  56{
  57	return (cpu_get_fpu_id() & FPIR_IMP_MASK) != FPIR_IMP_NONE;
  58}
  59
  60static inline unsigned long cpu_get_msa_id(void)
  61{
  62	unsigned long status, msa_id;
  63
  64	status = read_c0_status();
  65	__enable_fpu(FPU_64BIT);
  66	enable_msa();
  67	msa_id = read_msa_ir();
  68	disable_msa();
  69	write_c0_status(status);
  70	return msa_id;
  71}
  72
  73/*
  74 * Determine the FCSR mask for FPU hardware.
  75 */
  76static inline void cpu_set_fpu_fcsr_mask(struct cpuinfo_mips *c)
  77{
  78	unsigned long sr, mask, fcsr, fcsr0, fcsr1;
  79
  80	fcsr = c->fpu_csr31;
  81	mask = FPU_CSR_ALL_X | FPU_CSR_ALL_E | FPU_CSR_ALL_S | FPU_CSR_RM;
  82
  83	sr = read_c0_status();
  84	__enable_fpu(FPU_AS_IS);
  85
  86	fcsr0 = fcsr & mask;
  87	write_32bit_cp1_register(CP1_STATUS, fcsr0);
  88	fcsr0 = read_32bit_cp1_register(CP1_STATUS);
  89
  90	fcsr1 = fcsr | ~mask;
  91	write_32bit_cp1_register(CP1_STATUS, fcsr1);
  92	fcsr1 = read_32bit_cp1_register(CP1_STATUS);
  93
  94	write_32bit_cp1_register(CP1_STATUS, fcsr);
  95
  96	write_c0_status(sr);
  97
  98	c->fpu_msk31 = ~(fcsr0 ^ fcsr1) & ~mask;
  99}
 100
 101/*
 102 * Determine the IEEE 754 NaN encodings and ABS.fmt/NEG.fmt execution modes
 103 * supported by FPU hardware.
 104 */
 105static void cpu_set_fpu_2008(struct cpuinfo_mips *c)
 106{
 107	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 108			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 109			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 110		unsigned long sr, fir, fcsr, fcsr0, fcsr1;
 111
 112		sr = read_c0_status();
 113		__enable_fpu(FPU_AS_IS);
 114
 115		fir = read_32bit_cp1_register(CP1_REVISION);
 116		if (fir & MIPS_FPIR_HAS2008) {
 117			fcsr = read_32bit_cp1_register(CP1_STATUS);
 118
 119			fcsr0 = fcsr & ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 120			write_32bit_cp1_register(CP1_STATUS, fcsr0);
 121			fcsr0 = read_32bit_cp1_register(CP1_STATUS);
 122
 123			fcsr1 = fcsr | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 124			write_32bit_cp1_register(CP1_STATUS, fcsr1);
 125			fcsr1 = read_32bit_cp1_register(CP1_STATUS);
 126
 127			write_32bit_cp1_register(CP1_STATUS, fcsr);
 128
 129			if (!(fcsr0 & FPU_CSR_NAN2008))
 130				c->options |= MIPS_CPU_NAN_LEGACY;
 131			if (fcsr1 & FPU_CSR_NAN2008)
 132				c->options |= MIPS_CPU_NAN_2008;
 133
 134			if ((fcsr0 ^ fcsr1) & FPU_CSR_ABS2008)
 135				c->fpu_msk31 &= ~FPU_CSR_ABS2008;
 136			else
 137				c->fpu_csr31 |= fcsr & FPU_CSR_ABS2008;
 138
 139			if ((fcsr0 ^ fcsr1) & FPU_CSR_NAN2008)
 140				c->fpu_msk31 &= ~FPU_CSR_NAN2008;
 141			else
 142				c->fpu_csr31 |= fcsr & FPU_CSR_NAN2008;
 143		} else {
 144			c->options |= MIPS_CPU_NAN_LEGACY;
 145		}
 146
 147		write_c0_status(sr);
 148	} else {
 149		c->options |= MIPS_CPU_NAN_LEGACY;
 150	}
 151}
 152
 153/*
 154 * IEEE 754 conformance mode to use.  Affects the NaN encoding and the
 155 * ABS.fmt/NEG.fmt execution mode.
 156 */
 157static enum { STRICT, LEGACY, STD2008, RELAXED } ieee754 = STRICT;
 158
 159/*
 160 * Set the IEEE 754 NaN encodings and the ABS.fmt/NEG.fmt execution modes
 161 * to support by the FPU emulator according to the IEEE 754 conformance
 162 * mode selected.  Note that "relaxed" straps the emulator so that it
 163 * allows 2008-NaN binaries even for legacy processors.
 164 */
 165static void cpu_set_nofpu_2008(struct cpuinfo_mips *c)
 166{
 167	c->options &= ~(MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY);
 168	c->fpu_csr31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 169	c->fpu_msk31 &= ~(FPU_CSR_ABS2008 | FPU_CSR_NAN2008);
 170
 171	switch (ieee754) {
 172	case STRICT:
 173		if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 174				    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 175				    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 176			c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 177		} else {
 178			c->options |= MIPS_CPU_NAN_LEGACY;
 179			c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 180		}
 181		break;
 182	case LEGACY:
 183		c->options |= MIPS_CPU_NAN_LEGACY;
 184		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 185		break;
 186	case STD2008:
 187		c->options |= MIPS_CPU_NAN_2008;
 188		c->fpu_csr31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 189		c->fpu_msk31 |= FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
 190		break;
 191	case RELAXED:
 192		c->options |= MIPS_CPU_NAN_2008 | MIPS_CPU_NAN_LEGACY;
 193		break;
 194	}
 195}
 196
 197/*
 198 * Override the IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode
 199 * according to the "ieee754=" parameter.
 200 */
 201static void cpu_set_nan_2008(struct cpuinfo_mips *c)
 202{
 203	switch (ieee754) {
 204	case STRICT:
 205		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 206		mips_use_nan_2008 = !!cpu_has_nan_2008;
 207		break;
 208	case LEGACY:
 209		mips_use_nan_legacy = !!cpu_has_nan_legacy;
 210		mips_use_nan_2008 = !cpu_has_nan_legacy;
 211		break;
 212	case STD2008:
 213		mips_use_nan_legacy = !cpu_has_nan_2008;
 214		mips_use_nan_2008 = !!cpu_has_nan_2008;
 215		break;
 216	case RELAXED:
 217		mips_use_nan_legacy = true;
 218		mips_use_nan_2008 = true;
 219		break;
 220	}
 221}
 222
 223/*
 224 * IEEE 754 NaN encoding and ABS.fmt/NEG.fmt execution mode override
 225 * settings:
 226 *
 227 * strict:  accept binaries that request a NaN encoding supported by the FPU
 228 * legacy:  only accept legacy-NaN binaries
 229 * 2008:    only accept 2008-NaN binaries
 230 * relaxed: accept any binaries regardless of whether supported by the FPU
 231 */
 232static int __init ieee754_setup(char *s)
 233{
 234	if (!s)
 235		return -1;
 236	else if (!strcmp(s, "strict"))
 237		ieee754 = STRICT;
 238	else if (!strcmp(s, "legacy"))
 239		ieee754 = LEGACY;
 240	else if (!strcmp(s, "2008"))
 241		ieee754 = STD2008;
 242	else if (!strcmp(s, "relaxed"))
 243		ieee754 = RELAXED;
 244	else
 245		return -1;
 246
 247	if (!(boot_cpu_data.options & MIPS_CPU_FPU))
 248		cpu_set_nofpu_2008(&boot_cpu_data);
 249	cpu_set_nan_2008(&boot_cpu_data);
 250
 251	return 0;
 252}
 253
 254early_param("ieee754", ieee754_setup);
 255
 256/*
 257 * Set the FIR feature flags for the FPU emulator.
 258 */
 259static void cpu_set_nofpu_id(struct cpuinfo_mips *c)
 260{
 261	u32 value;
 262
 263	value = 0;
 264	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 265			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 266			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 267		value |= MIPS_FPIR_D | MIPS_FPIR_S;
 268	if (c->isa_level & (MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 269			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6))
 270		value |= MIPS_FPIR_F64 | MIPS_FPIR_L | MIPS_FPIR_W;
 271	if (c->options & MIPS_CPU_NAN_2008)
 272		value |= MIPS_FPIR_HAS2008;
 273	c->fpu_id = value;
 274}
 275
 276/* Determined FPU emulator mask to use for the boot CPU with "nofpu".  */
 277static unsigned int mips_nofpu_msk31;
 278
 279/*
 280 * Set options for FPU hardware.
 281 */
 282static void cpu_set_fpu_opts(struct cpuinfo_mips *c)
 283{
 284	c->fpu_id = cpu_get_fpu_id();
 285	mips_nofpu_msk31 = c->fpu_msk31;
 286
 287	if (c->isa_level & (MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1 |
 288			    MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2 |
 289			    MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6)) {
 290		if (c->fpu_id & MIPS_FPIR_3D)
 291			c->ases |= MIPS_ASE_MIPS3D;
 292		if (c->fpu_id & MIPS_FPIR_FREP)
 293			c->options |= MIPS_CPU_FRE;
 294	}
 295
 296	cpu_set_fpu_fcsr_mask(c);
 297	cpu_set_fpu_2008(c);
 298	cpu_set_nan_2008(c);
 299}
 300
 301/*
 302 * Set options for the FPU emulator.
 303 */
 304static void cpu_set_nofpu_opts(struct cpuinfo_mips *c)
 305{
 306	c->options &= ~MIPS_CPU_FPU;
 307	c->fpu_msk31 = mips_nofpu_msk31;
 308
 309	cpu_set_nofpu_2008(c);
 310	cpu_set_nan_2008(c);
 311	cpu_set_nofpu_id(c);
 312}
 313
 314static int mips_fpu_disabled;
 315
 316static int __init fpu_disable(char *s)
 317{
 318	cpu_set_nofpu_opts(&boot_cpu_data);
 319	mips_fpu_disabled = 1;
 320
 321	return 1;
 322}
 323
 324__setup("nofpu", fpu_disable);
 325
 326int mips_dsp_disabled;
 327
 328static int __init dsp_disable(char *s)
 329{
 330	cpu_data[0].ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
 331	mips_dsp_disabled = 1;
 332
 333	return 1;
 334}
 335
 336__setup("nodsp", dsp_disable);
 337
 338static int mips_htw_disabled;
 339
 340static int __init htw_disable(char *s)
 341{
 342	mips_htw_disabled = 1;
 343	cpu_data[0].options &= ~MIPS_CPU_HTW;
 344	write_c0_pwctl(read_c0_pwctl() &
 345		       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
 346
 347	return 1;
 348}
 349
 350__setup("nohtw", htw_disable);
 351
 352static int mips_ftlb_disabled;
 353static int mips_has_ftlb_configured;
 354
 355enum ftlb_flags {
 356	FTLB_EN		= 1 << 0,
 357	FTLB_SET_PROB	= 1 << 1,
 358};
 359
 360static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags);
 361
 362static int __init ftlb_disable(char *s)
 363{
 364	unsigned int config4, mmuextdef;
 365
 366	/*
 367	 * If the core hasn't done any FTLB configuration, there is nothing
 368	 * for us to do here.
 369	 */
 370	if (!mips_has_ftlb_configured)
 371		return 1;
 372
 373	/* Disable it in the boot cpu */
 374	if (set_ftlb_enable(&cpu_data[0], 0)) {
 375		pr_warn("Can't turn FTLB off\n");
 376		return 1;
 377	}
 378
 379	config4 = read_c0_config4();
 380
 381	/* Check that FTLB has been disabled */
 382	mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 383	/* MMUSIZEEXT == VTLB ON, FTLB OFF */
 384	if (mmuextdef == MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT) {
 385		/* This should never happen */
 386		pr_warn("FTLB could not be disabled!\n");
 387		return 1;
 388	}
 389
 390	mips_ftlb_disabled = 1;
 391	mips_has_ftlb_configured = 0;
 392
 393	/*
 394	 * noftlb is mainly used for debug purposes so print
 395	 * an informative message instead of using pr_debug()
 396	 */
 397	pr_info("FTLB has been disabled\n");
 398
 399	/*
 400	 * Some of these bits are duplicated in the decode_config4.
 401	 * MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT is the only possible case
 402	 * once FTLB has been disabled so undo what decode_config4 did.
 403	 */
 404	cpu_data[0].tlbsize -= cpu_data[0].tlbsizeftlbways *
 405			       cpu_data[0].tlbsizeftlbsets;
 406	cpu_data[0].tlbsizeftlbsets = 0;
 407	cpu_data[0].tlbsizeftlbways = 0;
 408
 409	return 1;
 410}
 411
 412__setup("noftlb", ftlb_disable);
 413
 
 
 
 
 
 
 
 
 414
 415static inline void check_errata(void)
 416{
 417	struct cpuinfo_mips *c = &current_cpu_data;
 418
 419	switch (current_cpu_type()) {
 420	case CPU_34K:
 421		/*
 422		 * Erratum "RPS May Cause Incorrect Instruction Execution"
 423		 * This code only handles VPE0, any SMP/RTOS code
 424		 * making use of VPE1 will be responsable for that VPE.
 425		 */
 426		if ((c->processor_id & PRID_REV_MASK) <= PRID_REV_34K_V1_0_2)
 427			write_c0_config7(read_c0_config7() | MIPS_CONF7_RPS);
 428		break;
 429	default:
 430		break;
 431	}
 432}
 433
 434void __init check_bugs32(void)
 435{
 436	check_errata();
 437}
 438
 439/*
 440 * Probe whether cpu has config register by trying to play with
 441 * alternate cache bit and see whether it matters.
 442 * It's used by cpu_probe to distinguish between R3000A and R3081.
 443 */
 444static inline int cpu_has_confreg(void)
 445{
 446#ifdef CONFIG_CPU_R3000
 447	extern unsigned long r3k_cache_size(unsigned long);
 448	unsigned long size1, size2;
 449	unsigned long cfg = read_c0_conf();
 450
 451	size1 = r3k_cache_size(ST0_ISC);
 452	write_c0_conf(cfg ^ R30XX_CONF_AC);
 453	size2 = r3k_cache_size(ST0_ISC);
 454	write_c0_conf(cfg);
 455	return size1 != size2;
 456#else
 457	return 0;
 458#endif
 459}
 460
 461static inline void set_elf_platform(int cpu, const char *plat)
 462{
 463	if (cpu == 0)
 464		__elf_platform = plat;
 465}
 466
 
 
 
 
 
 
 
 467static inline void cpu_probe_vmbits(struct cpuinfo_mips *c)
 468{
 469#ifdef __NEED_VMBITS_PROBE
 470	write_c0_entryhi(0x3fffffffffffe000ULL);
 471	back_to_back_c0_hazard();
 472	c->vmbits = fls64(read_c0_entryhi() & 0x3fffffffffffe000ULL);
 473#endif
 474}
 475
 476static void set_isa(struct cpuinfo_mips *c, unsigned int isa)
 477{
 478	switch (isa) {
 
 
 
 
 479	case MIPS_CPU_ISA_M64R2:
 480		c->isa_level |= MIPS_CPU_ISA_M32R2 | MIPS_CPU_ISA_M64R2;
 
 
 481	case MIPS_CPU_ISA_M64R1:
 482		c->isa_level |= MIPS_CPU_ISA_M32R1 | MIPS_CPU_ISA_M64R1;
 
 
 483	case MIPS_CPU_ISA_V:
 484		c->isa_level |= MIPS_CPU_ISA_V;
 
 
 485	case MIPS_CPU_ISA_IV:
 486		c->isa_level |= MIPS_CPU_ISA_IV;
 
 
 487	case MIPS_CPU_ISA_III:
 488		c->isa_level |= MIPS_CPU_ISA_II | MIPS_CPU_ISA_III;
 
 489		break;
 490
 491	/* R6 incompatible with everything else */
 492	case MIPS_CPU_ISA_M64R6:
 493		c->isa_level |= MIPS_CPU_ISA_M32R6 | MIPS_CPU_ISA_M64R6;
 
 
 494	case MIPS_CPU_ISA_M32R6:
 495		c->isa_level |= MIPS_CPU_ISA_M32R6;
 
 496		/* Break here so we don't add incompatible ISAs */
 497		break;
 
 
 
 
 498	case MIPS_CPU_ISA_M32R2:
 499		c->isa_level |= MIPS_CPU_ISA_M32R2;
 
 
 500	case MIPS_CPU_ISA_M32R1:
 501		c->isa_level |= MIPS_CPU_ISA_M32R1;
 
 
 502	case MIPS_CPU_ISA_II:
 503		c->isa_level |= MIPS_CPU_ISA_II;
 
 504		break;
 505	}
 506}
 507
 508static char unknown_isa[] = KERN_ERR \
 509	"Unsupported ISA type, c0.config0: %d.";
 510
 511static unsigned int calculate_ftlb_probability(struct cpuinfo_mips *c)
 512{
 513
 514	unsigned int probability = c->tlbsize / c->tlbsizevtlb;
 515
 516	/*
 517	 * 0 = All TLBWR instructions go to FTLB
 518	 * 1 = 15:1: For every 16 TBLWR instructions, 15 go to the
 519	 * FTLB and 1 goes to the VTLB.
 520	 * 2 = 7:1: As above with 7:1 ratio.
 521	 * 3 = 3:1: As above with 3:1 ratio.
 522	 *
 523	 * Use the linear midpoint as the probability threshold.
 524	 */
 525	if (probability >= 12)
 526		return 1;
 527	else if (probability >= 6)
 528		return 2;
 529	else
 530		/*
 531		 * So FTLB is less than 4 times bigger than VTLB.
 532		 * A 3:1 ratio can still be useful though.
 533		 */
 534		return 3;
 535}
 536
 537static int set_ftlb_enable(struct cpuinfo_mips *c, enum ftlb_flags flags)
 538{
 539	unsigned int config;
 540
 541	/* It's implementation dependent how the FTLB can be enabled */
 542	switch (c->cputype) {
 543	case CPU_PROAPTIV:
 544	case CPU_P5600:
 545	case CPU_P6600:
 546		/* proAptiv & related cores use Config6 to enable the FTLB */
 547		config = read_c0_config6();
 548
 549		if (flags & FTLB_EN)
 550			config |= MIPS_CONF6_FTLBEN;
 551		else
 552			config &= ~MIPS_CONF6_FTLBEN;
 553
 554		if (flags & FTLB_SET_PROB) {
 555			config &= ~(3 << MIPS_CONF6_FTLBP_SHIFT);
 556			config |= calculate_ftlb_probability(c)
 557				  << MIPS_CONF6_FTLBP_SHIFT;
 558		}
 559
 560		write_c0_config6(config);
 561		back_to_back_c0_hazard();
 562		break;
 563	case CPU_I6400:
 
 564		/* There's no way to disable the FTLB */
 565		if (!(flags & FTLB_EN))
 566			return 1;
 567		return 0;
 568	case CPU_LOONGSON3:
 569		/* Flush ITLB, DTLB, VTLB and FTLB */
 570		write_c0_diag(LOONGSON_DIAG_ITLB | LOONGSON_DIAG_DTLB |
 571			      LOONGSON_DIAG_VTLB | LOONGSON_DIAG_FTLB);
 572		/* Loongson-3 cores use Config6 to enable the FTLB */
 573		config = read_c0_config6();
 574		if (flags & FTLB_EN)
 575			/* Enable FTLB */
 576			write_c0_config6(config & ~MIPS_CONF6_FTLBDIS);
 577		else
 578			/* Disable FTLB */
 579			write_c0_config6(config | MIPS_CONF6_FTLBDIS);
 580		break;
 581	default:
 582		return 1;
 583	}
 584
 585	return 0;
 586}
 587
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 588static inline unsigned int decode_config0(struct cpuinfo_mips *c)
 589{
 590	unsigned int config0;
 591	int isa, mt;
 592
 593	config0 = read_c0_config();
 594
 595	/*
 596	 * Look for Standard TLB or Dual VTLB and FTLB
 597	 */
 598	mt = config0 & MIPS_CONF_MT;
 599	if (mt == MIPS_CONF_MT_TLB)
 600		c->options |= MIPS_CPU_TLB;
 601	else if (mt == MIPS_CONF_MT_FTLB)
 602		c->options |= MIPS_CPU_TLB | MIPS_CPU_FTLB;
 603
 604	isa = (config0 & MIPS_CONF_AT) >> 13;
 605	switch (isa) {
 606	case 0:
 607		switch ((config0 & MIPS_CONF_AR) >> 10) {
 608		case 0:
 609			set_isa(c, MIPS_CPU_ISA_M32R1);
 610			break;
 611		case 1:
 612			set_isa(c, MIPS_CPU_ISA_M32R2);
 613			break;
 614		case 2:
 615			set_isa(c, MIPS_CPU_ISA_M32R6);
 616			break;
 617		default:
 618			goto unknown;
 619		}
 620		break;
 621	case 2:
 622		switch ((config0 & MIPS_CONF_AR) >> 10) {
 623		case 0:
 624			set_isa(c, MIPS_CPU_ISA_M64R1);
 625			break;
 626		case 1:
 627			set_isa(c, MIPS_CPU_ISA_M64R2);
 628			break;
 629		case 2:
 630			set_isa(c, MIPS_CPU_ISA_M64R6);
 631			break;
 632		default:
 633			goto unknown;
 634		}
 635		break;
 636	default:
 637		goto unknown;
 638	}
 639
 640	return config0 & MIPS_CONF_M;
 641
 642unknown:
 643	panic(unknown_isa, config0);
 644}
 645
 646static inline unsigned int decode_config1(struct cpuinfo_mips *c)
 647{
 648	unsigned int config1;
 649
 650	config1 = read_c0_config1();
 651
 652	if (config1 & MIPS_CONF1_MD)
 653		c->ases |= MIPS_ASE_MDMX;
 654	if (config1 & MIPS_CONF1_PC)
 655		c->options |= MIPS_CPU_PERF;
 656	if (config1 & MIPS_CONF1_WR)
 657		c->options |= MIPS_CPU_WATCH;
 658	if (config1 & MIPS_CONF1_CA)
 659		c->ases |= MIPS_ASE_MIPS16;
 660	if (config1 & MIPS_CONF1_EP)
 661		c->options |= MIPS_CPU_EJTAG;
 662	if (config1 & MIPS_CONF1_FP) {
 663		c->options |= MIPS_CPU_FPU;
 664		c->options |= MIPS_CPU_32FPR;
 665	}
 666	if (cpu_has_tlb) {
 667		c->tlbsize = ((config1 & MIPS_CONF1_TLBS) >> 25) + 1;
 668		c->tlbsizevtlb = c->tlbsize;
 669		c->tlbsizeftlbsets = 0;
 670	}
 671
 672	return config1 & MIPS_CONF_M;
 673}
 674
 675static inline unsigned int decode_config2(struct cpuinfo_mips *c)
 676{
 677	unsigned int config2;
 678
 679	config2 = read_c0_config2();
 680
 681	if (config2 & MIPS_CONF2_SL)
 682		c->scache.flags &= ~MIPS_CACHE_NOT_PRESENT;
 683
 684	return config2 & MIPS_CONF_M;
 685}
 686
 687static inline unsigned int decode_config3(struct cpuinfo_mips *c)
 688{
 689	unsigned int config3;
 690
 691	config3 = read_c0_config3();
 692
 693	if (config3 & MIPS_CONF3_SM) {
 694		c->ases |= MIPS_ASE_SMARTMIPS;
 695		c->options |= MIPS_CPU_RIXI | MIPS_CPU_CTXTC;
 696	}
 697	if (config3 & MIPS_CONF3_RXI)
 698		c->options |= MIPS_CPU_RIXI;
 699	if (config3 & MIPS_CONF3_CTXTC)
 700		c->options |= MIPS_CPU_CTXTC;
 701	if (config3 & MIPS_CONF3_DSP)
 702		c->ases |= MIPS_ASE_DSP;
 703	if (config3 & MIPS_CONF3_DSP2P) {
 704		c->ases |= MIPS_ASE_DSP2P;
 705		if (cpu_has_mips_r6)
 706			c->ases |= MIPS_ASE_DSP3;
 707	}
 708	if (config3 & MIPS_CONF3_VINT)
 709		c->options |= MIPS_CPU_VINT;
 710	if (config3 & MIPS_CONF3_VEIC)
 711		c->options |= MIPS_CPU_VEIC;
 712	if (config3 & MIPS_CONF3_LPA)
 713		c->options |= MIPS_CPU_LPA;
 714	if (config3 & MIPS_CONF3_MT)
 715		c->ases |= MIPS_ASE_MIPSMT;
 716	if (config3 & MIPS_CONF3_ULRI)
 717		c->options |= MIPS_CPU_ULRI;
 718	if (config3 & MIPS_CONF3_ISA)
 719		c->options |= MIPS_CPU_MICROMIPS;
 720	if (config3 & MIPS_CONF3_VZ)
 721		c->ases |= MIPS_ASE_VZ;
 722	if (config3 & MIPS_CONF3_SC)
 723		c->options |= MIPS_CPU_SEGMENTS;
 724	if (config3 & MIPS_CONF3_BI)
 725		c->options |= MIPS_CPU_BADINSTR;
 726	if (config3 & MIPS_CONF3_BP)
 727		c->options |= MIPS_CPU_BADINSTRP;
 728	if (config3 & MIPS_CONF3_MSA)
 729		c->ases |= MIPS_ASE_MSA;
 730	if (config3 & MIPS_CONF3_PW) {
 731		c->htw_seq = 0;
 732		c->options |= MIPS_CPU_HTW;
 733	}
 734	if (config3 & MIPS_CONF3_CDMM)
 735		c->options |= MIPS_CPU_CDMM;
 736	if (config3 & MIPS_CONF3_SP)
 737		c->options |= MIPS_CPU_SP;
 738
 739	return config3 & MIPS_CONF_M;
 740}
 741
 742static inline unsigned int decode_config4(struct cpuinfo_mips *c)
 743{
 744	unsigned int config4;
 745	unsigned int newcf4;
 746	unsigned int mmuextdef;
 747	unsigned int ftlb_page = MIPS_CONF4_FTLBPAGESIZE;
 748	unsigned long asid_mask;
 749
 750	config4 = read_c0_config4();
 751
 752	if (cpu_has_tlb) {
 753		if (((config4 & MIPS_CONF4_IE) >> 29) == 2)
 754			c->options |= MIPS_CPU_TLBINV;
 755
 756		/*
 757		 * R6 has dropped the MMUExtDef field from config4.
 758		 * On R6 the fields always describe the FTLB, and only if it is
 759		 * present according to Config.MT.
 760		 */
 761		if (!cpu_has_mips_r6)
 762			mmuextdef = config4 & MIPS_CONF4_MMUEXTDEF;
 763		else if (cpu_has_ftlb)
 764			mmuextdef = MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT;
 765		else
 766			mmuextdef = 0;
 767
 768		switch (mmuextdef) {
 769		case MIPS_CONF4_MMUEXTDEF_MMUSIZEEXT:
 770			c->tlbsize += (config4 & MIPS_CONF4_MMUSIZEEXT) * 0x40;
 771			c->tlbsizevtlb = c->tlbsize;
 772			break;
 773		case MIPS_CONF4_MMUEXTDEF_VTLBSIZEEXT:
 774			c->tlbsizevtlb +=
 775				((config4 & MIPS_CONF4_VTLBSIZEEXT) >>
 776				  MIPS_CONF4_VTLBSIZEEXT_SHIFT) * 0x40;
 777			c->tlbsize = c->tlbsizevtlb;
 778			ftlb_page = MIPS_CONF4_VFTLBPAGESIZE;
 779			/* fall through */
 780		case MIPS_CONF4_MMUEXTDEF_FTLBSIZEEXT:
 781			if (mips_ftlb_disabled)
 782				break;
 783			newcf4 = (config4 & ~ftlb_page) |
 784				(page_size_ftlb(mmuextdef) <<
 785				 MIPS_CONF4_FTLBPAGESIZE_SHIFT);
 786			write_c0_config4(newcf4);
 787			back_to_back_c0_hazard();
 788			config4 = read_c0_config4();
 789			if (config4 != newcf4) {
 790				pr_err("PAGE_SIZE 0x%lx is not supported by FTLB (config4=0x%x)\n",
 791				       PAGE_SIZE, config4);
 792				/* Switch FTLB off */
 793				set_ftlb_enable(c, 0);
 794				mips_ftlb_disabled = 1;
 795				break;
 796			}
 797			c->tlbsizeftlbsets = 1 <<
 798				((config4 & MIPS_CONF4_FTLBSETS) >>
 799				 MIPS_CONF4_FTLBSETS_SHIFT);
 800			c->tlbsizeftlbways = ((config4 & MIPS_CONF4_FTLBWAYS) >>
 801					      MIPS_CONF4_FTLBWAYS_SHIFT) + 2;
 802			c->tlbsize += c->tlbsizeftlbways * c->tlbsizeftlbsets;
 803			mips_has_ftlb_configured = 1;
 804			break;
 805		}
 806	}
 807
 808	c->kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
 809				>> MIPS_CONF4_KSCREXIST_SHIFT;
 810
 811	asid_mask = MIPS_ENTRYHI_ASID;
 812	if (config4 & MIPS_CONF4_AE)
 813		asid_mask |= MIPS_ENTRYHI_ASIDX;
 814	set_cpu_asid_mask(c, asid_mask);
 815
 816	/*
 817	 * Warn if the computed ASID mask doesn't match the mask the kernel
 818	 * is built for. This may indicate either a serious problem or an
 819	 * easy optimisation opportunity, but either way should be addressed.
 820	 */
 821	WARN_ON(asid_mask != cpu_asid_mask(c));
 822
 823	return config4 & MIPS_CONF_M;
 824}
 825
 826static inline unsigned int decode_config5(struct cpuinfo_mips *c)
 827{
 828	unsigned int config5;
 
 829
 830	config5 = read_c0_config5();
 831	config5 &= ~(MIPS_CONF5_UFR | MIPS_CONF5_UFE);
 
 
 
 
 
 
 
 
 832	write_c0_config5(config5);
 833
 834	if (config5 & MIPS_CONF5_EVA)
 835		c->options |= MIPS_CPU_EVA;
 836	if (config5 & MIPS_CONF5_MRP)
 837		c->options |= MIPS_CPU_MAAR;
 838	if (config5 & MIPS_CONF5_LLB)
 839		c->options |= MIPS_CPU_RW_LLB;
 840	if (config5 & MIPS_CONF5_MVH)
 841		c->options |= MIPS_CPU_MVH;
 842	if (cpu_has_mips_r6 && (config5 & MIPS_CONF5_VP))
 843		c->options |= MIPS_CPU_VP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844
 845	return config5 & MIPS_CONF_M;
 846}
 847
 848static void decode_configs(struct cpuinfo_mips *c)
 849{
 850	int ok;
 851
 852	/* MIPS32 or MIPS64 compliant CPU.  */
 853	c->options = MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE | MIPS_CPU_COUNTER |
 854		     MIPS_CPU_DIVEC | MIPS_CPU_LLSC | MIPS_CPU_MCHECK;
 855
 856	c->scache.flags = MIPS_CACHE_NOT_PRESENT;
 857
 858	/* Enable FTLB if present and not disabled */
 859	set_ftlb_enable(c, mips_ftlb_disabled ? 0 : FTLB_EN);
 860
 861	ok = decode_config0(c);			/* Read Config registers.  */
 862	BUG_ON(!ok);				/* Arch spec violation!	 */
 863	if (ok)
 864		ok = decode_config1(c);
 865	if (ok)
 866		ok = decode_config2(c);
 867	if (ok)
 868		ok = decode_config3(c);
 869	if (ok)
 870		ok = decode_config4(c);
 871	if (ok)
 872		ok = decode_config5(c);
 873
 874	/* Probe the EBase.WG bit */
 875	if (cpu_has_mips_r2_r6) {
 876		u64 ebase;
 877		unsigned int status;
 878
 879		/* {read,write}_c0_ebase_64() may be UNDEFINED prior to r6 */
 880		ebase = cpu_has_mips64r6 ? read_c0_ebase_64()
 881					 : (s32)read_c0_ebase();
 882		if (ebase & MIPS_EBASE_WG) {
 883			/* WG bit already set, we can avoid the clumsy probe */
 884			c->options |= MIPS_CPU_EBASE_WG;
 885		} else {
 886			/* Its UNDEFINED to change EBase while BEV=0 */
 887			status = read_c0_status();
 888			write_c0_status(status | ST0_BEV);
 889			irq_enable_hazard();
 890			/*
 891			 * On pre-r6 cores, this may well clobber the upper bits
 892			 * of EBase. This is hard to avoid without potentially
 893			 * hitting UNDEFINED dm*c0 behaviour if EBase is 32-bit.
 894			 */
 895			if (cpu_has_mips64r6)
 896				write_c0_ebase_64(ebase | MIPS_EBASE_WG);
 897			else
 898				write_c0_ebase(ebase | MIPS_EBASE_WG);
 899			back_to_back_c0_hazard();
 900			/* Restore BEV */
 901			write_c0_status(status);
 902			if (read_c0_ebase() & MIPS_EBASE_WG) {
 903				c->options |= MIPS_CPU_EBASE_WG;
 904				write_c0_ebase(ebase);
 905			}
 906		}
 907	}
 908
 909	/* configure the FTLB write probability */
 910	set_ftlb_enable(c, (mips_ftlb_disabled ? 0 : FTLB_EN) | FTLB_SET_PROB);
 911
 912	mips_probe_watch_registers(c);
 913
 914#ifndef CONFIG_MIPS_CPS
 915	if (cpu_has_mips_r2_r6) {
 916		c->core = get_ebase_cpunum();
 
 
 917		if (cpu_has_mipsmt)
 918			c->core >>= fls(core_nvpes()) - 1;
 
 919	}
 920#endif
 921}
 922
 923/*
 924 * Probe for certain guest capabilities by writing config bits and reading back.
 925 * Finally write back the original value.
 926 */
 927#define probe_gc0_config(name, maxconf, bits)				\
 928do {									\
 929	unsigned int tmp;						\
 930	tmp = read_gc0_##name();					\
 931	write_gc0_##name(tmp | (bits));					\
 932	back_to_back_c0_hazard();					\
 933	maxconf = read_gc0_##name();					\
 934	write_gc0_##name(tmp);						\
 935} while (0)
 936
 937/*
 938 * Probe for dynamic guest capabilities by changing certain config bits and
 939 * reading back to see if they change. Finally write back the original value.
 940 */
 941#define probe_gc0_config_dyn(name, maxconf, dynconf, bits)		\
 942do {									\
 943	maxconf = read_gc0_##name();					\
 944	write_gc0_##name(maxconf ^ (bits));				\
 945	back_to_back_c0_hazard();					\
 946	dynconf = maxconf ^ read_gc0_##name();				\
 947	write_gc0_##name(maxconf);					\
 948	maxconf |= dynconf;						\
 949} while (0)
 950
 951static inline unsigned int decode_guest_config0(struct cpuinfo_mips *c)
 952{
 953	unsigned int config0;
 954
 955	probe_gc0_config(config, config0, MIPS_CONF_M);
 956
 957	if (config0 & MIPS_CONF_M)
 958		c->guest.conf |= BIT(1);
 959	return config0 & MIPS_CONF_M;
 960}
 961
 962static inline unsigned int decode_guest_config1(struct cpuinfo_mips *c)
 963{
 964	unsigned int config1, config1_dyn;
 965
 966	probe_gc0_config_dyn(config1, config1, config1_dyn,
 967			     MIPS_CONF_M | MIPS_CONF1_PC | MIPS_CONF1_WR |
 968			     MIPS_CONF1_FP);
 969
 970	if (config1 & MIPS_CONF1_FP)
 971		c->guest.options |= MIPS_CPU_FPU;
 972	if (config1_dyn & MIPS_CONF1_FP)
 973		c->guest.options_dyn |= MIPS_CPU_FPU;
 974
 975	if (config1 & MIPS_CONF1_WR)
 976		c->guest.options |= MIPS_CPU_WATCH;
 977	if (config1_dyn & MIPS_CONF1_WR)
 978		c->guest.options_dyn |= MIPS_CPU_WATCH;
 979
 980	if (config1 & MIPS_CONF1_PC)
 981		c->guest.options |= MIPS_CPU_PERF;
 982	if (config1_dyn & MIPS_CONF1_PC)
 983		c->guest.options_dyn |= MIPS_CPU_PERF;
 984
 985	if (config1 & MIPS_CONF_M)
 986		c->guest.conf |= BIT(2);
 987	return config1 & MIPS_CONF_M;
 988}
 989
 990static inline unsigned int decode_guest_config2(struct cpuinfo_mips *c)
 991{
 992	unsigned int config2;
 993
 994	probe_gc0_config(config2, config2, MIPS_CONF_M);
 995
 996	if (config2 & MIPS_CONF_M)
 997		c->guest.conf |= BIT(3);
 998	return config2 & MIPS_CONF_M;
 999}
1000
1001static inline unsigned int decode_guest_config3(struct cpuinfo_mips *c)
1002{
1003	unsigned int config3, config3_dyn;
1004
1005	probe_gc0_config_dyn(config3, config3, config3_dyn,
1006			     MIPS_CONF_M | MIPS_CONF3_MSA | MIPS_CONF3_CTXTC);
 
1007
1008	if (config3 & MIPS_CONF3_CTXTC)
1009		c->guest.options |= MIPS_CPU_CTXTC;
1010	if (config3_dyn & MIPS_CONF3_CTXTC)
1011		c->guest.options_dyn |= MIPS_CPU_CTXTC;
1012
1013	if (config3 & MIPS_CONF3_PW)
1014		c->guest.options |= MIPS_CPU_HTW;
1015
 
 
 
1016	if (config3 & MIPS_CONF3_SC)
1017		c->guest.options |= MIPS_CPU_SEGMENTS;
1018
1019	if (config3 & MIPS_CONF3_BI)
1020		c->guest.options |= MIPS_CPU_BADINSTR;
1021	if (config3 & MIPS_CONF3_BP)
1022		c->guest.options |= MIPS_CPU_BADINSTRP;
1023
1024	if (config3 & MIPS_CONF3_MSA)
1025		c->guest.ases |= MIPS_ASE_MSA;
1026	if (config3_dyn & MIPS_CONF3_MSA)
1027		c->guest.ases_dyn |= MIPS_ASE_MSA;
1028
1029	if (config3 & MIPS_CONF_M)
1030		c->guest.conf |= BIT(4);
1031	return config3 & MIPS_CONF_M;
1032}
1033
1034static inline unsigned int decode_guest_config4(struct cpuinfo_mips *c)
1035{
1036	unsigned int config4;
1037
1038	probe_gc0_config(config4, config4,
1039			 MIPS_CONF_M | MIPS_CONF4_KSCREXIST);
1040
1041	c->guest.kscratch_mask = (config4 & MIPS_CONF4_KSCREXIST)
1042				>> MIPS_CONF4_KSCREXIST_SHIFT;
1043
1044	if (config4 & MIPS_CONF_M)
1045		c->guest.conf |= BIT(5);
1046	return config4 & MIPS_CONF_M;
1047}
1048
1049static inline unsigned int decode_guest_config5(struct cpuinfo_mips *c)
1050{
1051	unsigned int config5, config5_dyn;
1052
1053	probe_gc0_config_dyn(config5, config5, config5_dyn,
1054			 MIPS_CONF_M | MIPS_CONF5_MRP);
1055
1056	if (config5 & MIPS_CONF5_MRP)
1057		c->guest.options |= MIPS_CPU_MAAR;
1058	if (config5_dyn & MIPS_CONF5_MRP)
1059		c->guest.options_dyn |= MIPS_CPU_MAAR;
1060
1061	if (config5 & MIPS_CONF5_LLB)
1062		c->guest.options |= MIPS_CPU_RW_LLB;
1063
 
 
 
1064	if (config5 & MIPS_CONF_M)
1065		c->guest.conf |= BIT(6);
1066	return config5 & MIPS_CONF_M;
1067}
1068
1069static inline void decode_guest_configs(struct cpuinfo_mips *c)
1070{
1071	unsigned int ok;
1072
1073	ok = decode_guest_config0(c);
1074	if (ok)
1075		ok = decode_guest_config1(c);
1076	if (ok)
1077		ok = decode_guest_config2(c);
1078	if (ok)
1079		ok = decode_guest_config3(c);
1080	if (ok)
1081		ok = decode_guest_config4(c);
1082	if (ok)
1083		decode_guest_config5(c);
1084}
1085
1086static inline void cpu_probe_guestctl0(struct cpuinfo_mips *c)
1087{
1088	unsigned int guestctl0, temp;
1089
1090	guestctl0 = read_c0_guestctl0();
1091
1092	if (guestctl0 & MIPS_GCTL0_G0E)
1093		c->options |= MIPS_CPU_GUESTCTL0EXT;
1094	if (guestctl0 & MIPS_GCTL0_G1)
1095		c->options |= MIPS_CPU_GUESTCTL1;
1096	if (guestctl0 & MIPS_GCTL0_G2)
1097		c->options |= MIPS_CPU_GUESTCTL2;
1098	if (!(guestctl0 & MIPS_GCTL0_RAD)) {
1099		c->options |= MIPS_CPU_GUESTID;
1100
1101		/*
1102		 * Probe for Direct Root to Guest (DRG). Set GuestCtl1.RID = 0
1103		 * first, otherwise all data accesses will be fully virtualised
1104		 * as if they were performed by guest mode.
1105		 */
1106		write_c0_guestctl1(0);
1107		tlbw_use_hazard();
1108
1109		write_c0_guestctl0(guestctl0 | MIPS_GCTL0_DRG);
1110		back_to_back_c0_hazard();
1111		temp = read_c0_guestctl0();
1112
1113		if (temp & MIPS_GCTL0_DRG) {
1114			write_c0_guestctl0(guestctl0);
1115			c->options |= MIPS_CPU_DRG;
1116		}
1117	}
1118}
1119
1120static inline void cpu_probe_guestctl1(struct cpuinfo_mips *c)
1121{
1122	if (cpu_has_guestid) {
1123		/* determine the number of bits of GuestID available */
1124		write_c0_guestctl1(MIPS_GCTL1_ID);
1125		back_to_back_c0_hazard();
1126		c->guestid_mask = (read_c0_guestctl1() & MIPS_GCTL1_ID)
1127						>> MIPS_GCTL1_ID_SHIFT;
1128		write_c0_guestctl1(0);
1129	}
1130}
1131
1132static inline void cpu_probe_gtoffset(struct cpuinfo_mips *c)
1133{
1134	/* determine the number of bits of GTOffset available */
1135	write_c0_gtoffset(0xffffffff);
1136	back_to_back_c0_hazard();
1137	c->gtoffset_mask = read_c0_gtoffset();
1138	write_c0_gtoffset(0);
1139}
1140
1141static inline void cpu_probe_vz(struct cpuinfo_mips *c)
1142{
1143	cpu_probe_guestctl0(c);
1144	if (cpu_has_guestctl1)
1145		cpu_probe_guestctl1(c);
1146
1147	cpu_probe_gtoffset(c);
1148
1149	decode_guest_configs(c);
1150}
1151
1152#define R4K_OPTS (MIPS_CPU_TLB | MIPS_CPU_4KEX | MIPS_CPU_4K_CACHE \
1153		| MIPS_CPU_COUNTER)
1154
1155static inline void cpu_probe_legacy(struct cpuinfo_mips *c, unsigned int cpu)
1156{
1157	switch (c->processor_id & PRID_IMP_MASK) {
1158	case PRID_IMP_R2000:
1159		c->cputype = CPU_R2000;
1160		__cpu_name[cpu] = "R2000";
1161		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1162		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1163			     MIPS_CPU_NOFPUEX;
1164		if (__cpu_has_fpu())
1165			c->options |= MIPS_CPU_FPU;
1166		c->tlbsize = 64;
1167		break;
1168	case PRID_IMP_R3000:
1169		if ((c->processor_id & PRID_REV_MASK) == PRID_REV_R3000A) {
1170			if (cpu_has_confreg()) {
1171				c->cputype = CPU_R3081E;
1172				__cpu_name[cpu] = "R3081";
1173			} else {
1174				c->cputype = CPU_R3000A;
1175				__cpu_name[cpu] = "R3000A";
1176			}
1177		} else {
1178			c->cputype = CPU_R3000;
1179			__cpu_name[cpu] = "R3000";
1180		}
1181		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1182		c->options = MIPS_CPU_TLB | MIPS_CPU_3K_CACHE |
1183			     MIPS_CPU_NOFPUEX;
1184		if (__cpu_has_fpu())
1185			c->options |= MIPS_CPU_FPU;
1186		c->tlbsize = 64;
1187		break;
1188	case PRID_IMP_R4000:
1189		if (read_c0_config() & CONF_SC) {
1190			if ((c->processor_id & PRID_REV_MASK) >=
1191			    PRID_REV_R4400) {
1192				c->cputype = CPU_R4400PC;
1193				__cpu_name[cpu] = "R4400PC";
1194			} else {
1195				c->cputype = CPU_R4000PC;
1196				__cpu_name[cpu] = "R4000PC";
1197			}
1198		} else {
1199			int cca = read_c0_config() & CONF_CM_CMASK;
1200			int mc;
1201
1202			/*
1203			 * SC and MC versions can't be reliably told apart,
1204			 * but only the latter support coherent caching
1205			 * modes so assume the firmware has set the KSEG0
1206			 * coherency attribute reasonably (if uncached, we
1207			 * assume SC).
1208			 */
1209			switch (cca) {
1210			case CONF_CM_CACHABLE_CE:
1211			case CONF_CM_CACHABLE_COW:
1212			case CONF_CM_CACHABLE_CUW:
1213				mc = 1;
1214				break;
1215			default:
1216				mc = 0;
1217				break;
1218			}
1219			if ((c->processor_id & PRID_REV_MASK) >=
1220			    PRID_REV_R4400) {
1221				c->cputype = mc ? CPU_R4400MC : CPU_R4400SC;
1222				__cpu_name[cpu] = mc ? "R4400MC" : "R4400SC";
1223			} else {
1224				c->cputype = mc ? CPU_R4000MC : CPU_R4000SC;
1225				__cpu_name[cpu] = mc ? "R4000MC" : "R4000SC";
1226			}
1227		}
1228
1229		set_isa(c, MIPS_CPU_ISA_III);
1230		c->fpu_msk31 |= FPU_CSR_CONDX;
1231		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1232			     MIPS_CPU_WATCH | MIPS_CPU_VCE |
1233			     MIPS_CPU_LLSC;
1234		c->tlbsize = 48;
1235		break;
1236	case PRID_IMP_VR41XX:
1237		set_isa(c, MIPS_CPU_ISA_III);
1238		c->fpu_msk31 |= FPU_CSR_CONDX;
1239		c->options = R4K_OPTS;
1240		c->tlbsize = 32;
1241		switch (c->processor_id & 0xf0) {
1242		case PRID_REV_VR4111:
1243			c->cputype = CPU_VR4111;
1244			__cpu_name[cpu] = "NEC VR4111";
1245			break;
1246		case PRID_REV_VR4121:
1247			c->cputype = CPU_VR4121;
1248			__cpu_name[cpu] = "NEC VR4121";
1249			break;
1250		case PRID_REV_VR4122:
1251			if ((c->processor_id & 0xf) < 0x3) {
1252				c->cputype = CPU_VR4122;
1253				__cpu_name[cpu] = "NEC VR4122";
1254			} else {
1255				c->cputype = CPU_VR4181A;
1256				__cpu_name[cpu] = "NEC VR4181A";
1257			}
1258			break;
1259		case PRID_REV_VR4130:
1260			if ((c->processor_id & 0xf) < 0x4) {
1261				c->cputype = CPU_VR4131;
1262				__cpu_name[cpu] = "NEC VR4131";
1263			} else {
1264				c->cputype = CPU_VR4133;
1265				c->options |= MIPS_CPU_LLSC;
1266				__cpu_name[cpu] = "NEC VR4133";
1267			}
1268			break;
1269		default:
1270			printk(KERN_INFO "Unexpected CPU of NEC VR4100 series\n");
1271			c->cputype = CPU_VR41XX;
1272			__cpu_name[cpu] = "NEC Vr41xx";
1273			break;
1274		}
1275		break;
1276	case PRID_IMP_R4300:
1277		c->cputype = CPU_R4300;
1278		__cpu_name[cpu] = "R4300";
1279		set_isa(c, MIPS_CPU_ISA_III);
1280		c->fpu_msk31 |= FPU_CSR_CONDX;
1281		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1282			     MIPS_CPU_LLSC;
1283		c->tlbsize = 32;
1284		break;
1285	case PRID_IMP_R4600:
1286		c->cputype = CPU_R4600;
1287		__cpu_name[cpu] = "R4600";
1288		set_isa(c, MIPS_CPU_ISA_III);
1289		c->fpu_msk31 |= FPU_CSR_CONDX;
1290		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1291			     MIPS_CPU_LLSC;
1292		c->tlbsize = 48;
1293		break;
1294	#if 0
1295	case PRID_IMP_R4650:
1296		/*
1297		 * This processor doesn't have an MMU, so it's not
1298		 * "real easy" to run Linux on it. It is left purely
1299		 * for documentation.  Commented out because it shares
1300		 * it's c0_prid id number with the TX3900.
1301		 */
1302		c->cputype = CPU_R4650;
1303		__cpu_name[cpu] = "R4650";
1304		set_isa(c, MIPS_CPU_ISA_III);
1305		c->fpu_msk31 |= FPU_CSR_CONDX;
1306		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_LLSC;
1307		c->tlbsize = 48;
1308		break;
1309	#endif
1310	case PRID_IMP_TX39:
1311		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1312		c->options = MIPS_CPU_TLB | MIPS_CPU_TX39_CACHE;
1313
1314		if ((c->processor_id & 0xf0) == (PRID_REV_TX3927 & 0xf0)) {
1315			c->cputype = CPU_TX3927;
1316			__cpu_name[cpu] = "TX3927";
1317			c->tlbsize = 64;
1318		} else {
1319			switch (c->processor_id & PRID_REV_MASK) {
1320			case PRID_REV_TX3912:
1321				c->cputype = CPU_TX3912;
1322				__cpu_name[cpu] = "TX3912";
1323				c->tlbsize = 32;
1324				break;
1325			case PRID_REV_TX3922:
1326				c->cputype = CPU_TX3922;
1327				__cpu_name[cpu] = "TX3922";
1328				c->tlbsize = 64;
1329				break;
1330			}
1331		}
1332		break;
1333	case PRID_IMP_R4700:
1334		c->cputype = CPU_R4700;
1335		__cpu_name[cpu] = "R4700";
1336		set_isa(c, MIPS_CPU_ISA_III);
1337		c->fpu_msk31 |= FPU_CSR_CONDX;
1338		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1339			     MIPS_CPU_LLSC;
1340		c->tlbsize = 48;
1341		break;
1342	case PRID_IMP_TX49:
1343		c->cputype = CPU_TX49XX;
1344		__cpu_name[cpu] = "R49XX";
1345		set_isa(c, MIPS_CPU_ISA_III);
1346		c->fpu_msk31 |= FPU_CSR_CONDX;
1347		c->options = R4K_OPTS | MIPS_CPU_LLSC;
1348		if (!(c->processor_id & 0x08))
1349			c->options |= MIPS_CPU_FPU | MIPS_CPU_32FPR;
1350		c->tlbsize = 48;
1351		break;
1352	case PRID_IMP_R5000:
1353		c->cputype = CPU_R5000;
1354		__cpu_name[cpu] = "R5000";
1355		set_isa(c, MIPS_CPU_ISA_IV);
1356		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1357			     MIPS_CPU_LLSC;
1358		c->tlbsize = 48;
1359		break;
1360	case PRID_IMP_R5432:
1361		c->cputype = CPU_R5432;
1362		__cpu_name[cpu] = "R5432";
1363		set_isa(c, MIPS_CPU_ISA_IV);
1364		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1365			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1366		c->tlbsize = 48;
1367		break;
1368	case PRID_IMP_R5500:
1369		c->cputype = CPU_R5500;
1370		__cpu_name[cpu] = "R5500";
1371		set_isa(c, MIPS_CPU_ISA_IV);
1372		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1373			     MIPS_CPU_WATCH | MIPS_CPU_LLSC;
1374		c->tlbsize = 48;
1375		break;
1376	case PRID_IMP_NEVADA:
1377		c->cputype = CPU_NEVADA;
1378		__cpu_name[cpu] = "Nevada";
1379		set_isa(c, MIPS_CPU_ISA_IV);
1380		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1381			     MIPS_CPU_DIVEC | MIPS_CPU_LLSC;
1382		c->tlbsize = 48;
1383		break;
1384	case PRID_IMP_R6000:
1385		c->cputype = CPU_R6000;
1386		__cpu_name[cpu] = "R6000";
1387		set_isa(c, MIPS_CPU_ISA_II);
1388		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1389		c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1390			     MIPS_CPU_LLSC;
1391		c->tlbsize = 32;
1392		break;
1393	case PRID_IMP_R6000A:
1394		c->cputype = CPU_R6000A;
1395		__cpu_name[cpu] = "R6000A";
1396		set_isa(c, MIPS_CPU_ISA_II);
1397		c->fpu_msk31 |= FPU_CSR_CONDX | FPU_CSR_FS;
1398		c->options = MIPS_CPU_TLB | MIPS_CPU_FPU |
1399			     MIPS_CPU_LLSC;
1400		c->tlbsize = 32;
1401		break;
1402	case PRID_IMP_RM7000:
1403		c->cputype = CPU_RM7000;
1404		__cpu_name[cpu] = "RM7000";
1405		set_isa(c, MIPS_CPU_ISA_IV);
1406		c->options = R4K_OPTS | MIPS_CPU_FPU | MIPS_CPU_32FPR |
1407			     MIPS_CPU_LLSC;
1408		/*
1409		 * Undocumented RM7000:	 Bit 29 in the info register of
1410		 * the RM7000 v2.0 indicates if the TLB has 48 or 64
1411		 * entries.
1412		 *
1413		 * 29	   1 =>	   64 entry JTLB
1414		 *	   0 =>	   48 entry JTLB
1415		 */
1416		c->tlbsize = (read_c0_info() & (1 << 29)) ? 64 : 48;
1417		break;
1418	case PRID_IMP_R8000:
1419		c->cputype = CPU_R8000;
1420		__cpu_name[cpu] = "RM8000";
1421		set_isa(c, MIPS_CPU_ISA_IV);
1422		c->options = MIPS_CPU_TLB | MIPS_CPU_4KEX |
1423			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1424			     MIPS_CPU_LLSC;
1425		c->tlbsize = 384;      /* has weird TLB: 3-way x 128 */
1426		break;
1427	case PRID_IMP_R10000:
1428		c->cputype = CPU_R10000;
1429		__cpu_name[cpu] = "R10000";
1430		set_isa(c, MIPS_CPU_ISA_IV);
1431		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1432			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1433			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1434			     MIPS_CPU_LLSC;
1435		c->tlbsize = 64;
1436		break;
1437	case PRID_IMP_R12000:
1438		c->cputype = CPU_R12000;
1439		__cpu_name[cpu] = "R12000";
1440		set_isa(c, MIPS_CPU_ISA_IV);
1441		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1442			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1443			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1444			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1445		c->tlbsize = 64;
 
1446		break;
1447	case PRID_IMP_R14000:
1448		if (((c->processor_id >> 4) & 0x0f) > 2) {
1449			c->cputype = CPU_R16000;
1450			__cpu_name[cpu] = "R16000";
1451		} else {
1452			c->cputype = CPU_R14000;
1453			__cpu_name[cpu] = "R14000";
1454		}
1455		set_isa(c, MIPS_CPU_ISA_IV);
1456		c->options = MIPS_CPU_TLB | MIPS_CPU_4K_CACHE | MIPS_CPU_4KEX |
1457			     MIPS_CPU_FPU | MIPS_CPU_32FPR |
1458			     MIPS_CPU_COUNTER | MIPS_CPU_WATCH |
1459			     MIPS_CPU_LLSC | MIPS_CPU_BP_GHIST;
1460		c->tlbsize = 64;
 
1461		break;
1462	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
1463		switch (c->processor_id & PRID_REV_MASK) {
1464		case PRID_REV_LOONGSON2E:
1465			c->cputype = CPU_LOONGSON2;
1466			__cpu_name[cpu] = "ICT Loongson-2";
1467			set_elf_platform(cpu, "loongson2e");
1468			set_isa(c, MIPS_CPU_ISA_III);
1469			c->fpu_msk31 |= FPU_CSR_CONDX;
1470			break;
1471		case PRID_REV_LOONGSON2F:
1472			c->cputype = CPU_LOONGSON2;
1473			__cpu_name[cpu] = "ICT Loongson-2";
1474			set_elf_platform(cpu, "loongson2f");
1475			set_isa(c, MIPS_CPU_ISA_III);
1476			c->fpu_msk31 |= FPU_CSR_CONDX;
1477			break;
1478		case PRID_REV_LOONGSON3A_R1:
1479			c->cputype = CPU_LOONGSON3;
1480			__cpu_name[cpu] = "ICT Loongson-3";
1481			set_elf_platform(cpu, "loongson3a");
1482			set_isa(c, MIPS_CPU_ISA_M64R1);
 
 
1483			break;
1484		case PRID_REV_LOONGSON3B_R1:
1485		case PRID_REV_LOONGSON3B_R2:
1486			c->cputype = CPU_LOONGSON3;
1487			__cpu_name[cpu] = "ICT Loongson-3";
1488			set_elf_platform(cpu, "loongson3b");
1489			set_isa(c, MIPS_CPU_ISA_M64R1);
 
 
1490			break;
1491		}
1492
1493		c->options = R4K_OPTS |
1494			     MIPS_CPU_FPU | MIPS_CPU_LLSC |
1495			     MIPS_CPU_32FPR;
1496		c->tlbsize = 64;
 
1497		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1498		break;
1499	case PRID_IMP_LOONGSON_32:  /* Loongson-1 */
1500		decode_configs(c);
1501
1502		c->cputype = CPU_LOONGSON1;
1503
1504		switch (c->processor_id & PRID_REV_MASK) {
1505		case PRID_REV_LOONGSON1B:
1506			__cpu_name[cpu] = "Loongson 1B";
1507			break;
1508		}
1509
1510		break;
1511	}
1512}
1513
1514static inline void cpu_probe_mips(struct cpuinfo_mips *c, unsigned int cpu)
1515{
1516	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1517	switch (c->processor_id & PRID_IMP_MASK) {
1518	case PRID_IMP_QEMU_GENERIC:
1519		c->writecombine = _CACHE_UNCACHED;
1520		c->cputype = CPU_QEMU_GENERIC;
1521		__cpu_name[cpu] = "MIPS GENERIC QEMU";
1522		break;
1523	case PRID_IMP_4KC:
1524		c->cputype = CPU_4KC;
1525		c->writecombine = _CACHE_UNCACHED;
1526		__cpu_name[cpu] = "MIPS 4Kc";
1527		break;
1528	case PRID_IMP_4KEC:
1529	case PRID_IMP_4KECR2:
1530		c->cputype = CPU_4KEC;
1531		c->writecombine = _CACHE_UNCACHED;
1532		__cpu_name[cpu] = "MIPS 4KEc";
1533		break;
1534	case PRID_IMP_4KSC:
1535	case PRID_IMP_4KSD:
1536		c->cputype = CPU_4KSC;
1537		c->writecombine = _CACHE_UNCACHED;
1538		__cpu_name[cpu] = "MIPS 4KSc";
1539		break;
1540	case PRID_IMP_5KC:
1541		c->cputype = CPU_5KC;
1542		c->writecombine = _CACHE_UNCACHED;
1543		__cpu_name[cpu] = "MIPS 5Kc";
1544		break;
1545	case PRID_IMP_5KE:
1546		c->cputype = CPU_5KE;
1547		c->writecombine = _CACHE_UNCACHED;
1548		__cpu_name[cpu] = "MIPS 5KE";
1549		break;
1550	case PRID_IMP_20KC:
1551		c->cputype = CPU_20KC;
1552		c->writecombine = _CACHE_UNCACHED;
1553		__cpu_name[cpu] = "MIPS 20Kc";
1554		break;
1555	case PRID_IMP_24K:
1556		c->cputype = CPU_24K;
1557		c->writecombine = _CACHE_UNCACHED;
1558		__cpu_name[cpu] = "MIPS 24Kc";
1559		break;
1560	case PRID_IMP_24KE:
1561		c->cputype = CPU_24K;
1562		c->writecombine = _CACHE_UNCACHED;
1563		__cpu_name[cpu] = "MIPS 24KEc";
1564		break;
1565	case PRID_IMP_25KF:
1566		c->cputype = CPU_25KF;
1567		c->writecombine = _CACHE_UNCACHED;
1568		__cpu_name[cpu] = "MIPS 25Kc";
1569		break;
1570	case PRID_IMP_34K:
1571		c->cputype = CPU_34K;
1572		c->writecombine = _CACHE_UNCACHED;
1573		__cpu_name[cpu] = "MIPS 34Kc";
 
1574		break;
1575	case PRID_IMP_74K:
1576		c->cputype = CPU_74K;
1577		c->writecombine = _CACHE_UNCACHED;
1578		__cpu_name[cpu] = "MIPS 74Kc";
1579		break;
1580	case PRID_IMP_M14KC:
1581		c->cputype = CPU_M14KC;
1582		c->writecombine = _CACHE_UNCACHED;
1583		__cpu_name[cpu] = "MIPS M14Kc";
1584		break;
1585	case PRID_IMP_M14KEC:
1586		c->cputype = CPU_M14KEC;
1587		c->writecombine = _CACHE_UNCACHED;
1588		__cpu_name[cpu] = "MIPS M14KEc";
1589		break;
1590	case PRID_IMP_1004K:
1591		c->cputype = CPU_1004K;
1592		c->writecombine = _CACHE_UNCACHED;
1593		__cpu_name[cpu] = "MIPS 1004Kc";
 
1594		break;
1595	case PRID_IMP_1074K:
1596		c->cputype = CPU_1074K;
1597		c->writecombine = _CACHE_UNCACHED;
1598		__cpu_name[cpu] = "MIPS 1074Kc";
1599		break;
1600	case PRID_IMP_INTERAPTIV_UP:
1601		c->cputype = CPU_INTERAPTIV;
1602		__cpu_name[cpu] = "MIPS interAptiv";
 
1603		break;
1604	case PRID_IMP_INTERAPTIV_MP:
1605		c->cputype = CPU_INTERAPTIV;
1606		__cpu_name[cpu] = "MIPS interAptiv (multi)";
 
1607		break;
1608	case PRID_IMP_PROAPTIV_UP:
1609		c->cputype = CPU_PROAPTIV;
1610		__cpu_name[cpu] = "MIPS proAptiv";
1611		break;
1612	case PRID_IMP_PROAPTIV_MP:
1613		c->cputype = CPU_PROAPTIV;
1614		__cpu_name[cpu] = "MIPS proAptiv (multi)";
1615		break;
1616	case PRID_IMP_P5600:
1617		c->cputype = CPU_P5600;
1618		__cpu_name[cpu] = "MIPS P5600";
1619		break;
1620	case PRID_IMP_P6600:
1621		c->cputype = CPU_P6600;
1622		__cpu_name[cpu] = "MIPS P6600";
1623		break;
1624	case PRID_IMP_I6400:
1625		c->cputype = CPU_I6400;
1626		__cpu_name[cpu] = "MIPS I6400";
1627		break;
 
 
 
 
1628	case PRID_IMP_M5150:
1629		c->cputype = CPU_M5150;
1630		__cpu_name[cpu] = "MIPS M5150";
1631		break;
1632	case PRID_IMP_M6250:
1633		c->cputype = CPU_M6250;
1634		__cpu_name[cpu] = "MIPS M6250";
1635		break;
1636	}
1637
1638	decode_configs(c);
1639
1640	spram_config();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1641}
1642
1643static inline void cpu_probe_alchemy(struct cpuinfo_mips *c, unsigned int cpu)
1644{
1645	decode_configs(c);
1646	switch (c->processor_id & PRID_IMP_MASK) {
1647	case PRID_IMP_AU1_REV1:
1648	case PRID_IMP_AU1_REV2:
1649		c->cputype = CPU_ALCHEMY;
1650		switch ((c->processor_id >> 24) & 0xff) {
1651		case 0:
1652			__cpu_name[cpu] = "Au1000";
1653			break;
1654		case 1:
1655			__cpu_name[cpu] = "Au1500";
1656			break;
1657		case 2:
1658			__cpu_name[cpu] = "Au1100";
1659			break;
1660		case 3:
1661			__cpu_name[cpu] = "Au1550";
1662			break;
1663		case 4:
1664			__cpu_name[cpu] = "Au1200";
1665			if ((c->processor_id & PRID_REV_MASK) == 2)
1666				__cpu_name[cpu] = "Au1250";
1667			break;
1668		case 5:
1669			__cpu_name[cpu] = "Au1210";
1670			break;
1671		default:
1672			__cpu_name[cpu] = "Au1xxx";
1673			break;
1674		}
1675		break;
1676	}
1677}
1678
1679static inline void cpu_probe_sibyte(struct cpuinfo_mips *c, unsigned int cpu)
1680{
1681	decode_configs(c);
1682
1683	c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1684	switch (c->processor_id & PRID_IMP_MASK) {
1685	case PRID_IMP_SB1:
1686		c->cputype = CPU_SB1;
1687		__cpu_name[cpu] = "SiByte SB1";
1688		/* FPU in pass1 is known to have issues. */
1689		if ((c->processor_id & PRID_REV_MASK) < 0x02)
1690			c->options &= ~(MIPS_CPU_FPU | MIPS_CPU_32FPR);
1691		break;
1692	case PRID_IMP_SB1A:
1693		c->cputype = CPU_SB1A;
1694		__cpu_name[cpu] = "SiByte SB1A";
1695		break;
1696	}
1697}
1698
1699static inline void cpu_probe_sandcraft(struct cpuinfo_mips *c, unsigned int cpu)
1700{
1701	decode_configs(c);
1702	switch (c->processor_id & PRID_IMP_MASK) {
1703	case PRID_IMP_SR71000:
1704		c->cputype = CPU_SR71000;
1705		__cpu_name[cpu] = "Sandcraft SR71000";
1706		c->scache.ways = 8;
1707		c->tlbsize = 64;
1708		break;
1709	}
1710}
1711
1712static inline void cpu_probe_nxp(struct cpuinfo_mips *c, unsigned int cpu)
1713{
1714	decode_configs(c);
1715	switch (c->processor_id & PRID_IMP_MASK) {
1716	case PRID_IMP_PR4450:
1717		c->cputype = CPU_PR4450;
1718		__cpu_name[cpu] = "Philips PR4450";
1719		set_isa(c, MIPS_CPU_ISA_M32R1);
1720		break;
1721	}
1722}
1723
1724static inline void cpu_probe_broadcom(struct cpuinfo_mips *c, unsigned int cpu)
1725{
1726	decode_configs(c);
1727	switch (c->processor_id & PRID_IMP_MASK) {
1728	case PRID_IMP_BMIPS32_REV4:
1729	case PRID_IMP_BMIPS32_REV8:
1730		c->cputype = CPU_BMIPS32;
1731		__cpu_name[cpu] = "Broadcom BMIPS32";
1732		set_elf_platform(cpu, "bmips32");
1733		break;
1734	case PRID_IMP_BMIPS3300:
1735	case PRID_IMP_BMIPS3300_ALT:
1736	case PRID_IMP_BMIPS3300_BUG:
1737		c->cputype = CPU_BMIPS3300;
1738		__cpu_name[cpu] = "Broadcom BMIPS3300";
1739		set_elf_platform(cpu, "bmips3300");
 
1740		break;
1741	case PRID_IMP_BMIPS43XX: {
1742		int rev = c->processor_id & PRID_REV_MASK;
1743
1744		if (rev >= PRID_REV_BMIPS4380_LO &&
1745				rev <= PRID_REV_BMIPS4380_HI) {
1746			c->cputype = CPU_BMIPS4380;
1747			__cpu_name[cpu] = "Broadcom BMIPS4380";
1748			set_elf_platform(cpu, "bmips4380");
1749			c->options |= MIPS_CPU_RIXI;
 
1750		} else {
1751			c->cputype = CPU_BMIPS4350;
1752			__cpu_name[cpu] = "Broadcom BMIPS4350";
1753			set_elf_platform(cpu, "bmips4350");
1754		}
1755		break;
1756	}
1757	case PRID_IMP_BMIPS5000:
1758	case PRID_IMP_BMIPS5200:
1759		c->cputype = CPU_BMIPS5000;
1760		if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_BMIPS5200)
1761			__cpu_name[cpu] = "Broadcom BMIPS5200";
1762		else
1763			__cpu_name[cpu] = "Broadcom BMIPS5000";
1764		set_elf_platform(cpu, "bmips5000");
1765		c->options |= MIPS_CPU_ULRI | MIPS_CPU_RIXI;
 
1766		break;
1767	}
1768}
1769
1770static inline void cpu_probe_cavium(struct cpuinfo_mips *c, unsigned int cpu)
1771{
1772	decode_configs(c);
1773	switch (c->processor_id & PRID_IMP_MASK) {
1774	case PRID_IMP_CAVIUM_CN38XX:
1775	case PRID_IMP_CAVIUM_CN31XX:
1776	case PRID_IMP_CAVIUM_CN30XX:
1777		c->cputype = CPU_CAVIUM_OCTEON;
1778		__cpu_name[cpu] = "Cavium Octeon";
1779		goto platform;
1780	case PRID_IMP_CAVIUM_CN58XX:
1781	case PRID_IMP_CAVIUM_CN56XX:
1782	case PRID_IMP_CAVIUM_CN50XX:
1783	case PRID_IMP_CAVIUM_CN52XX:
1784		c->cputype = CPU_CAVIUM_OCTEON_PLUS;
1785		__cpu_name[cpu] = "Cavium Octeon+";
1786platform:
1787		set_elf_platform(cpu, "octeon");
1788		break;
1789	case PRID_IMP_CAVIUM_CN61XX:
1790	case PRID_IMP_CAVIUM_CN63XX:
1791	case PRID_IMP_CAVIUM_CN66XX:
1792	case PRID_IMP_CAVIUM_CN68XX:
1793	case PRID_IMP_CAVIUM_CNF71XX:
1794		c->cputype = CPU_CAVIUM_OCTEON2;
1795		__cpu_name[cpu] = "Cavium Octeon II";
1796		set_elf_platform(cpu, "octeon2");
1797		break;
1798	case PRID_IMP_CAVIUM_CN70XX:
1799	case PRID_IMP_CAVIUM_CN73XX:
1800	case PRID_IMP_CAVIUM_CNF75XX:
1801	case PRID_IMP_CAVIUM_CN78XX:
1802		c->cputype = CPU_CAVIUM_OCTEON3;
1803		__cpu_name[cpu] = "Cavium Octeon III";
1804		set_elf_platform(cpu, "octeon3");
1805		break;
1806	default:
1807		printk(KERN_INFO "Unknown Octeon chip!\n");
1808		c->cputype = CPU_UNKNOWN;
1809		break;
1810	}
1811}
1812
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813static inline void cpu_probe_loongson(struct cpuinfo_mips *c, unsigned int cpu)
1814{
 
 
 
1815	switch (c->processor_id & PRID_IMP_MASK) {
1816	case PRID_IMP_LOONGSON_64:  /* Loongson-2/3 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1817		switch (c->processor_id & PRID_REV_MASK) {
1818		case PRID_REV_LOONGSON3A_R2:
1819			c->cputype = CPU_LOONGSON3;
 
 
 
 
 
 
 
 
1820			__cpu_name[cpu] = "ICT Loongson-3";
1821			set_elf_platform(cpu, "loongson3a");
1822			set_isa(c, MIPS_CPU_ISA_M64R2);
1823			break;
1824		}
1825
1826		decode_configs(c);
 
 
 
 
 
 
1827		c->options |= MIPS_CPU_FTLB | MIPS_CPU_TLBINV | MIPS_CPU_LDPTE;
1828		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
 
 
 
 
 
 
 
 
 
1829		break;
1830	default:
1831		panic("Unknown Loongson Processor ID!");
1832		break;
1833	}
 
 
1834}
 
 
 
1835
1836static inline void cpu_probe_ingenic(struct cpuinfo_mips *c, unsigned int cpu)
1837{
1838	decode_configs(c);
1839	/* JZRISC does not implement the CP0 counter. */
 
 
 
 
 
 
 
1840	c->options &= ~MIPS_CPU_COUNTER;
1841	BUG_ON(!__builtin_constant_p(cpu_has_counter) || cpu_has_counter);
 
 
 
 
1842	switch (c->processor_id & PRID_IMP_MASK) {
1843	case PRID_IMP_JZRISC:
1844		c->cputype = CPU_JZRISC;
1845		c->writecombine = _CACHE_UNCACHED_ACCELERATED;
1846		__cpu_name[cpu] = "Ingenic JZRISC";
1847		break;
1848	default:
1849		panic("Unknown Ingenic Processor ID!");
1850		break;
1851	}
1852}
1853
1854static inline void cpu_probe_netlogic(struct cpuinfo_mips *c, int cpu)
1855{
1856	decode_configs(c);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857
1858	if ((c->processor_id & PRID_IMP_MASK) == PRID_IMP_NETLOGIC_AU13XX) {
1859		c->cputype = CPU_ALCHEMY;
1860		__cpu_name[cpu] = "Au1300";
1861		/* following stuff is not for Alchemy */
1862		return;
1863	}
 
 
 
 
 
 
 
1864
1865	c->options = (MIPS_CPU_TLB	 |
1866			MIPS_CPU_4KEX	 |
1867			MIPS_CPU_COUNTER |
1868			MIPS_CPU_DIVEC	 |
1869			MIPS_CPU_WATCH	 |
1870			MIPS_CPU_EJTAG	 |
1871			MIPS_CPU_LLSC);
1872
1873	switch (c->processor_id & PRID_IMP_MASK) {
1874	case PRID_IMP_NETLOGIC_XLP2XX:
1875	case PRID_IMP_NETLOGIC_XLP9XX:
1876	case PRID_IMP_NETLOGIC_XLP5XX:
1877		c->cputype = CPU_XLP;
1878		__cpu_name[cpu] = "Broadcom XLPII";
1879		break;
1880
1881	case PRID_IMP_NETLOGIC_XLP8XX:
1882	case PRID_IMP_NETLOGIC_XLP3XX:
1883		c->cputype = CPU_XLP;
1884		__cpu_name[cpu] = "Netlogic XLP";
1885		break;
1886
1887	case PRID_IMP_NETLOGIC_XLR732:
1888	case PRID_IMP_NETLOGIC_XLR716:
1889	case PRID_IMP_NETLOGIC_XLR532:
1890	case PRID_IMP_NETLOGIC_XLR308:
1891	case PRID_IMP_NETLOGIC_XLR532C:
1892	case PRID_IMP_NETLOGIC_XLR516C:
1893	case PRID_IMP_NETLOGIC_XLR508C:
1894	case PRID_IMP_NETLOGIC_XLR308C:
1895		c->cputype = CPU_XLR;
1896		__cpu_name[cpu] = "Netlogic XLR";
1897		break;
1898
1899	case PRID_IMP_NETLOGIC_XLS608:
1900	case PRID_IMP_NETLOGIC_XLS408:
1901	case PRID_IMP_NETLOGIC_XLS404:
1902	case PRID_IMP_NETLOGIC_XLS208:
1903	case PRID_IMP_NETLOGIC_XLS204:
1904	case PRID_IMP_NETLOGIC_XLS108:
1905	case PRID_IMP_NETLOGIC_XLS104:
1906	case PRID_IMP_NETLOGIC_XLS616B:
1907	case PRID_IMP_NETLOGIC_XLS608B:
1908	case PRID_IMP_NETLOGIC_XLS416B:
1909	case PRID_IMP_NETLOGIC_XLS412B:
1910	case PRID_IMP_NETLOGIC_XLS408B:
1911	case PRID_IMP_NETLOGIC_XLS404B:
1912		c->cputype = CPU_XLR;
1913		__cpu_name[cpu] = "Netlogic XLS";
1914		break;
1915
1916	default:
1917		pr_info("Unknown Netlogic chip id [%02x]!\n",
1918		       c->processor_id);
1919		c->cputype = CPU_XLR;
1920		break;
1921	}
1922
1923	if (c->cputype == CPU_XLP) {
1924		set_isa(c, MIPS_CPU_ISA_M64R2);
1925		c->options |= (MIPS_CPU_FPU | MIPS_CPU_ULRI | MIPS_CPU_MCHECK);
1926		/* This will be updated again after all threads are woken up */
1927		c->tlbsize = ((read_c0_config6() >> 16) & 0xffff) + 1;
1928	} else {
1929		set_isa(c, MIPS_CPU_ISA_M64R1);
1930		c->tlbsize = ((read_c0_config1() >> 25) & 0x3f) + 1;
1931	}
1932	c->kscratch_mask = 0xf;
1933}
1934
1935#ifdef CONFIG_64BIT
1936/* For use by uaccess.h */
1937u64 __ua_limit;
1938EXPORT_SYMBOL(__ua_limit);
1939#endif
1940
1941const char *__cpu_name[NR_CPUS];
1942const char *__elf_platform;
 
1943
1944void cpu_probe(void)
1945{
1946	struct cpuinfo_mips *c = &current_cpu_data;
1947	unsigned int cpu = smp_processor_id();
1948
 
 
 
 
 
 
1949	c->processor_id = PRID_IMP_UNKNOWN;
1950	c->fpu_id	= FPIR_IMP_NONE;
1951	c->cputype	= CPU_UNKNOWN;
1952	c->writecombine = _CACHE_UNCACHED;
1953
1954	c->fpu_csr31	= FPU_CSR_RN;
1955	c->fpu_msk31	= FPU_CSR_RSVD | FPU_CSR_ABS2008 | FPU_CSR_NAN2008;
1956
1957	c->processor_id = read_c0_prid();
1958	switch (c->processor_id & PRID_COMP_MASK) {
1959	case PRID_COMP_LEGACY:
1960		cpu_probe_legacy(c, cpu);
1961		break;
1962	case PRID_COMP_MIPS:
1963		cpu_probe_mips(c, cpu);
1964		break;
1965	case PRID_COMP_ALCHEMY:
1966		cpu_probe_alchemy(c, cpu);
1967		break;
1968	case PRID_COMP_SIBYTE:
1969		cpu_probe_sibyte(c, cpu);
1970		break;
1971	case PRID_COMP_BROADCOM:
1972		cpu_probe_broadcom(c, cpu);
1973		break;
1974	case PRID_COMP_SANDCRAFT:
1975		cpu_probe_sandcraft(c, cpu);
1976		break;
1977	case PRID_COMP_NXP:
1978		cpu_probe_nxp(c, cpu);
1979		break;
1980	case PRID_COMP_CAVIUM:
1981		cpu_probe_cavium(c, cpu);
1982		break;
1983	case PRID_COMP_LOONGSON:
1984		cpu_probe_loongson(c, cpu);
1985		break;
 
1986	case PRID_COMP_INGENIC_D0:
1987	case PRID_COMP_INGENIC_D1:
1988	case PRID_COMP_INGENIC_E1:
1989		cpu_probe_ingenic(c, cpu);
1990		break;
1991	case PRID_COMP_NETLOGIC:
1992		cpu_probe_netlogic(c, cpu);
1993		break;
1994	}
1995
1996	BUG_ON(!__cpu_name[cpu]);
1997	BUG_ON(c->cputype == CPU_UNKNOWN);
1998
1999	/*
2000	 * Platform code can force the cpu type to optimize code
2001	 * generation. In that case be sure the cpu type is correctly
2002	 * manually setup otherwise it could trigger some nasty bugs.
2003	 */
2004	BUG_ON(current_cpu_type() != c->cputype);
2005
2006	if (cpu_has_rixi) {
2007		/* Enable the RIXI exceptions */
2008		set_c0_pagegrain(PG_IEC);
2009		back_to_back_c0_hazard();
2010		/* Verify the IEC bit is set */
2011		if (read_c0_pagegrain() & PG_IEC)
2012			c->options |= MIPS_CPU_RIXIEX;
2013	}
2014
2015	if (mips_fpu_disabled)
2016		c->options &= ~MIPS_CPU_FPU;
2017
2018	if (mips_dsp_disabled)
2019		c->ases &= ~(MIPS_ASE_DSP | MIPS_ASE_DSP2P);
2020
2021	if (mips_htw_disabled) {
2022		c->options &= ~MIPS_CPU_HTW;
2023		write_c0_pwctl(read_c0_pwctl() &
2024			       ~(1 << MIPS_PWCTL_PWEN_SHIFT));
2025	}
2026
2027	if (c->options & MIPS_CPU_FPU)
2028		cpu_set_fpu_opts(c);
2029	else
2030		cpu_set_nofpu_opts(c);
2031
2032	if (cpu_has_bp_ghist)
2033		write_c0_r10k_diag(read_c0_r10k_diag() |
2034				   R10K_DIAG_E_GHIST);
2035
2036	if (cpu_has_mips_r2_r6) {
2037		c->srsets = ((read_c0_srsctl() >> 26) & 0x0f) + 1;
2038		/* R2 has Performance Counter Interrupt indicator */
2039		c->options |= MIPS_CPU_PCI;
2040	}
2041	else
2042		c->srsets = 1;
2043
2044	if (cpu_has_mips_r6)
2045		elf_hwcap |= HWCAP_MIPS_R6;
2046
2047	if (cpu_has_msa) {
2048		c->msa_id = cpu_get_msa_id();
2049		WARN(c->msa_id & MSA_IR_WRPF,
2050		     "Vector register partitioning unimplemented!");
2051		elf_hwcap |= HWCAP_MIPS_MSA;
2052	}
2053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2054	if (cpu_has_vz)
2055		cpu_probe_vz(c);
2056
2057	cpu_probe_vmbits(c);
2058
 
 
 
 
 
 
 
2059#ifdef CONFIG_64BIT
2060	if (cpu == 0)
2061		__ua_limit = ~((1ull << cpu_vmbits) - 1);
2062#endif
 
 
2063}
2064
2065void cpu_report(void)
2066{
2067	struct cpuinfo_mips *c = &current_cpu_data;
2068
2069	pr_info("CPU%d revision is: %08x (%s)\n",
2070		smp_processor_id(), c->processor_id, cpu_name_string());
2071	if (c->options & MIPS_CPU_FPU)
2072		printk(KERN_INFO "FPU revision is: %08x\n", c->fpu_id);
2073	if (cpu_has_msa)
2074		pr_info("MSA revision is: %08x\n", c->msa_id);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075}