Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11#include "dm-ima.h"
  12
  13#include <linux/init.h>
  14#include <linux/module.h>
  15#include <linux/mutex.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/signal.h>
  18#include <linux/blkpg.h>
  19#include <linux/bio.h>
  20#include <linux/mempool.h>
  21#include <linux/dax.h>
  22#include <linux/slab.h>
  23#include <linux/idr.h>
  24#include <linux/uio.h>
  25#include <linux/hdreg.h>
  26#include <linux/delay.h>
  27#include <linux/wait.h>
  28#include <linux/pr.h>
  29#include <linux/refcount.h>
  30#include <linux/part_stat.h>
  31#include <linux/blk-crypto.h>
  32#include <linux/blk-crypto-profile.h>
  33
  34#define DM_MSG_PREFIX "core"
  35
  36/*
  37 * Cookies are numeric values sent with CHANGE and REMOVE
  38 * uevents while resuming, removing or renaming the device.
  39 */
  40#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  41#define DM_COOKIE_LENGTH 24
  42
  43/*
  44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  46 * ending this fs bio, we will recover its ->bi_private.
  47 */
  48#define REQ_DM_POLL_LIST	REQ_DRV
  49
  50static const char *_name = DM_NAME;
  51
  52static unsigned int major = 0;
  53static unsigned int _major = 0;
  54
  55static DEFINE_IDR(_minor_idr);
  56
  57static DEFINE_SPINLOCK(_minor_lock);
  58
  59static void do_deferred_remove(struct work_struct *w);
  60
  61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  62
  63static struct workqueue_struct *deferred_remove_workqueue;
  64
  65atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  66DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  67
  68void dm_issue_global_event(void)
  69{
  70	atomic_inc(&dm_global_event_nr);
  71	wake_up(&dm_global_eventq);
  72}
  73
  74DEFINE_STATIC_KEY_FALSE(stats_enabled);
  75DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  76DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  77
  78/*
  79 * One of these is allocated (on-stack) per original bio.
  80 */
  81struct clone_info {
  82	struct dm_table *map;
  83	struct bio *bio;
  84	struct dm_io *io;
  85	sector_t sector;
  86	unsigned sector_count;
  87	bool is_abnormal_io:1;
  88	bool submit_as_polled:1;
  89};
  90
  91static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  92{
  93	return container_of(clone, struct dm_target_io, clone);
  94}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  95
  96void *dm_per_bio_data(struct bio *bio, size_t data_size)
  97{
  98	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
  99		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 100	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 
 101}
 102EXPORT_SYMBOL_GPL(dm_per_bio_data);
 103
 104struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 105{
 106	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 107	if (io->magic == DM_IO_MAGIC)
 108		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 109	BUG_ON(io->magic != DM_TIO_MAGIC);
 110	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 111}
 112EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 113
 114unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 115{
 116	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 117}
 118EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 119
 120#define MINOR_ALLOCED ((void *)-1)
 121
 
 
 
 
 
 
 
 
 
 
 
 
 122#define DM_NUMA_NODE NUMA_NO_NODE
 123static int dm_numa_node = DM_NUMA_NODE;
 124
 125#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 126static int swap_bios = DEFAULT_SWAP_BIOS;
 127static int get_swap_bios(void)
 128{
 129	int latch = READ_ONCE(swap_bios);
 130	if (unlikely(latch <= 0))
 131		latch = DEFAULT_SWAP_BIOS;
 132	return latch;
 133}
 134
 135struct table_device {
 136	struct list_head list;
 137	refcount_t count;
 138	struct dm_dev dm_dev;
 139};
 140
 141/*
 142 * Bio-based DM's mempools' reserved IOs set by the user.
 143 */
 144#define RESERVED_BIO_BASED_IOS		16
 145static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 146
 147static int __dm_get_module_param_int(int *module_param, int min, int max)
 148{
 149	int param = READ_ONCE(*module_param);
 150	int modified_param = 0;
 151	bool modified = true;
 152
 153	if (param < min)
 154		modified_param = min;
 155	else if (param > max)
 156		modified_param = max;
 157	else
 158		modified = false;
 159
 160	if (modified) {
 161		(void)cmpxchg(module_param, param, modified_param);
 162		param = modified_param;
 163	}
 164
 165	return param;
 166}
 167
 168unsigned __dm_get_module_param(unsigned *module_param,
 169			       unsigned def, unsigned max)
 170{
 171	unsigned param = READ_ONCE(*module_param);
 172	unsigned modified_param = 0;
 173
 174	if (!param)
 175		modified_param = def;
 176	else if (param > max)
 177		modified_param = max;
 178
 179	if (modified_param) {
 180		(void)cmpxchg(module_param, param, modified_param);
 181		param = modified_param;
 182	}
 183
 184	return param;
 185}
 186
 187unsigned dm_get_reserved_bio_based_ios(void)
 188{
 189	return __dm_get_module_param(&reserved_bio_based_ios,
 190				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 191}
 192EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 193
 194static unsigned dm_get_numa_node(void)
 195{
 196	return __dm_get_module_param_int(&dm_numa_node,
 197					 DM_NUMA_NODE, num_online_nodes() - 1);
 198}
 199
 200static int __init local_init(void)
 201{
 202	int r;
 203
 204	r = dm_uevent_init();
 205	if (r)
 206		return r;
 207
 208	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 209	if (!deferred_remove_workqueue) {
 210		r = -ENOMEM;
 211		goto out_uevent_exit;
 212	}
 213
 214	_major = major;
 215	r = register_blkdev(_major, _name);
 216	if (r < 0)
 217		goto out_free_workqueue;
 218
 219	if (!_major)
 220		_major = r;
 221
 222	return 0;
 223
 224out_free_workqueue:
 225	destroy_workqueue(deferred_remove_workqueue);
 226out_uevent_exit:
 227	dm_uevent_exit();
 228
 229	return r;
 230}
 231
 232static void local_exit(void)
 233{
 234	flush_scheduled_work();
 235	destroy_workqueue(deferred_remove_workqueue);
 236
 237	unregister_blkdev(_major, _name);
 238	dm_uevent_exit();
 239
 240	_major = 0;
 241
 242	DMINFO("cleaned up");
 243}
 244
 245static int (*_inits[])(void) __initdata = {
 246	local_init,
 247	dm_target_init,
 248	dm_linear_init,
 249	dm_stripe_init,
 250	dm_io_init,
 251	dm_kcopyd_init,
 252	dm_interface_init,
 253	dm_statistics_init,
 254};
 255
 256static void (*_exits[])(void) = {
 257	local_exit,
 258	dm_target_exit,
 259	dm_linear_exit,
 260	dm_stripe_exit,
 261	dm_io_exit,
 262	dm_kcopyd_exit,
 263	dm_interface_exit,
 264	dm_statistics_exit,
 265};
 266
 267static int __init dm_init(void)
 268{
 269	const int count = ARRAY_SIZE(_inits);
 270	int r, i;
 271
 272#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 273	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 274	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 275#endif
 276
 277	for (i = 0; i < count; i++) {
 278		r = _inits[i]();
 279		if (r)
 280			goto bad;
 281	}
 282
 283	return 0;
 284bad:
 
 285	while (i--)
 286		_exits[i]();
 287
 288	return r;
 289}
 290
 291static void __exit dm_exit(void)
 292{
 293	int i = ARRAY_SIZE(_exits);
 294
 295	while (i--)
 296		_exits[i]();
 297
 298	/*
 299	 * Should be empty by this point.
 300	 */
 301	idr_destroy(&_minor_idr);
 302}
 303
 304/*
 305 * Block device functions
 306 */
 307int dm_deleting_md(struct mapped_device *md)
 308{
 309	return test_bit(DMF_DELETING, &md->flags);
 310}
 311
 312static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 313{
 314	struct mapped_device *md;
 315
 316	spin_lock(&_minor_lock);
 317
 318	md = bdev->bd_disk->private_data;
 319	if (!md)
 320		goto out;
 321
 322	if (test_bit(DMF_FREEING, &md->flags) ||
 323	    dm_deleting_md(md)) {
 324		md = NULL;
 325		goto out;
 326	}
 327
 328	dm_get(md);
 329	atomic_inc(&md->open_count);
 330out:
 331	spin_unlock(&_minor_lock);
 332
 333	return md ? 0 : -ENXIO;
 334}
 335
 336static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 337{
 338	struct mapped_device *md;
 339
 340	spin_lock(&_minor_lock);
 341
 342	md = disk->private_data;
 343	if (WARN_ON(!md))
 344		goto out;
 345
 346	if (atomic_dec_and_test(&md->open_count) &&
 347	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 348		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 349
 350	dm_put(md);
 351out:
 352	spin_unlock(&_minor_lock);
 353}
 354
 355int dm_open_count(struct mapped_device *md)
 356{
 357	return atomic_read(&md->open_count);
 358}
 359
 360/*
 361 * Guarantees nothing is using the device before it's deleted.
 362 */
 363int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 364{
 365	int r = 0;
 366
 367	spin_lock(&_minor_lock);
 368
 369	if (dm_open_count(md)) {
 370		r = -EBUSY;
 371		if (mark_deferred)
 372			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 373	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 374		r = -EEXIST;
 375	else
 376		set_bit(DMF_DELETING, &md->flags);
 377
 378	spin_unlock(&_minor_lock);
 379
 380	return r;
 381}
 382
 383int dm_cancel_deferred_remove(struct mapped_device *md)
 384{
 385	int r = 0;
 386
 387	spin_lock(&_minor_lock);
 388
 389	if (test_bit(DMF_DELETING, &md->flags))
 390		r = -EBUSY;
 391	else
 392		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 393
 394	spin_unlock(&_minor_lock);
 395
 396	return r;
 397}
 398
 399static void do_deferred_remove(struct work_struct *w)
 400{
 401	dm_deferred_remove();
 402}
 403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 405{
 406	struct mapped_device *md = bdev->bd_disk->private_data;
 407
 408	return dm_get_geometry(md, geo);
 409}
 410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 412			    struct block_device **bdev)
 
 413{
 414	struct dm_target *ti;
 415	struct dm_table *map;
 416	int r;
 417
 418retry:
 419	r = -ENOTTY;
 420	map = dm_get_live_table(md, srcu_idx);
 421	if (!map || !dm_table_get_size(map))
 422		return r;
 423
 424	/* We only support devices that have a single target */
 425	if (map->num_targets != 1)
 426		return r;
 427
 428	ti = dm_table_get_target(map, 0);
 429	if (!ti->type->prepare_ioctl)
 430		return r;
 431
 432	if (dm_suspended_md(md))
 433		return -EAGAIN;
 434
 435	r = ti->type->prepare_ioctl(ti, bdev);
 436	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 437		dm_put_live_table(md, *srcu_idx);
 438		msleep(10);
 439		goto retry;
 440	}
 441
 442	return r;
 443}
 444
 445static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 
 446{
 447	dm_put_live_table(md, srcu_idx);
 448}
 449
 450static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 451			unsigned int cmd, unsigned long arg)
 452{
 453	struct mapped_device *md = bdev->bd_disk->private_data;
 454	int r, srcu_idx;
 455
 456	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 457	if (r < 0)
 458		goto out;
 459
 460	if (r > 0) {
 461		/*
 462		 * Target determined this ioctl is being issued against a
 463		 * subset of the parent bdev; require extra privileges.
 464		 */
 465		if (!capable(CAP_SYS_RAWIO)) {
 466			DMDEBUG_LIMIT(
 467	"%s: sending ioctl %x to DM device without required privilege.",
 468				current->comm, cmd);
 469			r = -ENOIOCTLCMD;
 470			goto out;
 471		}
 472	}
 473
 474	if (!bdev->bd_disk->fops->ioctl)
 475		r = -ENOTTY;
 476	else
 477		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 478out:
 479	dm_unprepare_ioctl(md, srcu_idx);
 480	return r;
 481}
 482
 483u64 dm_start_time_ns_from_clone(struct bio *bio)
 484{
 485	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 486}
 487EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 488
 489static bool bio_is_flush_with_data(struct bio *bio)
 490{
 491	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 492}
 493
 494static void dm_io_acct(struct dm_io *io, bool end)
 495{
 496	struct dm_stats_aux *stats_aux = &io->stats_aux;
 497	unsigned long start_time = io->start_time;
 498	struct mapped_device *md = io->md;
 499	struct bio *bio = io->orig_bio;
 500	unsigned int sectors;
 501
 502	/*
 503	 * If REQ_PREFLUSH set, don't account payload, it will be
 504	 * submitted (and accounted) after this flush completes.
 505	 */
 506	if (bio_is_flush_with_data(bio))
 507		sectors = 0;
 508	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
 509		sectors = bio_sectors(bio);
 510	else
 511		sectors = io->sectors;
 512
 513	if (!end)
 514		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
 515				   start_time);
 516	else
 517		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
 518
 519	if (static_branch_unlikely(&stats_enabled) &&
 520	    unlikely(dm_stats_used(&md->stats))) {
 521		sector_t sector;
 522
 523		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 524			sector = bio->bi_iter.bi_sector;
 525		else
 526			sector = bio_end_sector(bio) - io->sector_offset;
 527
 528		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 529				    sector, sectors,
 530				    end, start_time, stats_aux);
 531	}
 532}
 533
 534static void __dm_start_io_acct(struct dm_io *io)
 535{
 536	dm_io_acct(io, false);
 537}
 538
 539static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 540{
 541	/*
 542	 * Ensure IO accounting is only ever started once.
 543	 */
 544	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 545		return;
 546
 547	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 548	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 549		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 550	} else {
 551		unsigned long flags;
 552		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 553		spin_lock_irqsave(&io->lock, flags);
 554		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 555			spin_unlock_irqrestore(&io->lock, flags);
 556			return;
 557		}
 558		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 559		spin_unlock_irqrestore(&io->lock, flags);
 560	}
 561
 562	__dm_start_io_acct(io);
 563}
 564
 565static void dm_end_io_acct(struct dm_io *io)
 566{
 567	dm_io_acct(io, true);
 568}
 569
 570static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 571{
 572	struct dm_io *io;
 573	struct dm_target_io *tio;
 574	struct bio *clone;
 575
 576	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
 577	tio = clone_to_tio(clone);
 578	tio->flags = 0;
 579	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 
 
 580	tio->io = NULL;
 581
 582	io = container_of(tio, struct dm_io, tio);
 583	io->magic = DM_IO_MAGIC;
 584	io->status = BLK_STS_OK;
 585
 586	/* one ref is for submission, the other is for completion */
 587	atomic_set(&io->io_count, 2);
 588	this_cpu_inc(*md->pending_io);
 589	io->orig_bio = bio;
 590	io->md = md;
 591	spin_lock_init(&io->lock);
 592	io->start_time = jiffies;
 593	io->flags = 0;
 594
 595	if (static_branch_unlikely(&stats_enabled))
 596		dm_stats_record_start(&md->stats, &io->stats_aux);
 597
 598	return io;
 599}
 600
 601static void free_io(struct dm_io *io)
 602{
 603	bio_put(&io->tio.clone);
 604}
 605
 606static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 607			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
 608{
 609	struct mapped_device *md = ci->io->md;
 610	struct dm_target_io *tio;
 611	struct bio *clone;
 612
 613	if (!ci->io->tio.io) {
 614		/* the dm_target_io embedded in ci->io is available */
 615		tio = &ci->io->tio;
 616		/* alloc_io() already initialized embedded clone */
 617		clone = &tio->clone;
 618	} else {
 619		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 620					&md->mempools->bs);
 621		if (!clone)
 622			return NULL;
 623
 624		/* REQ_DM_POLL_LIST shouldn't be inherited */
 625		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 626
 627		tio = clone_to_tio(clone);
 628		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 629	}
 630
 631	tio->magic = DM_TIO_MAGIC;
 632	tio->io = ci->io;
 633	tio->ti = ti;
 634	tio->target_bio_nr = target_bio_nr;
 635	tio->len_ptr = len;
 636	tio->old_sector = 0;
 637
 638	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 639	clone->bi_bdev = md->disk->part0;
 640	if (unlikely(ti->needs_bio_set_dev))
 641		bio_set_dev(clone, md->disk->part0);
 
 
 
 
 
 642
 643	if (len) {
 644		clone->bi_iter.bi_size = to_bytes(*len);
 645		if (bio_integrity(clone))
 646			bio_integrity_trim(clone);
 
 
 
 
 
 647	}
 648
 649	return clone;
 650}
 651
 652static void free_tio(struct bio *clone)
 653{
 654	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 655		return;
 656	bio_put(clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657}
 658
 659/*
 660 * Add the bio to the list of deferred io.
 661 */
 662static void queue_io(struct mapped_device *md, struct bio *bio)
 663{
 664	unsigned long flags;
 665
 666	spin_lock_irqsave(&md->deferred_lock, flags);
 667	bio_list_add(&md->deferred, bio);
 668	spin_unlock_irqrestore(&md->deferred_lock, flags);
 669	queue_work(md->wq, &md->work);
 670}
 671
 672/*
 673 * Everyone (including functions in this file), should use this
 674 * function to access the md->map field, and make sure they call
 675 * dm_put_live_table() when finished.
 676 */
 677struct dm_table *dm_get_live_table(struct mapped_device *md,
 678				   int *srcu_idx) __acquires(md->io_barrier)
 679{
 680	*srcu_idx = srcu_read_lock(&md->io_barrier);
 681
 682	return srcu_dereference(md->map, &md->io_barrier);
 683}
 684
 685void dm_put_live_table(struct mapped_device *md,
 686		       int srcu_idx) __releases(md->io_barrier)
 687{
 688	srcu_read_unlock(&md->io_barrier, srcu_idx);
 689}
 690
 691void dm_sync_table(struct mapped_device *md)
 692{
 693	synchronize_srcu(&md->io_barrier);
 694	synchronize_rcu_expedited();
 695}
 696
 697/*
 698 * A fast alternative to dm_get_live_table/dm_put_live_table.
 699 * The caller must not block between these two functions.
 700 */
 701static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 702{
 703	rcu_read_lock();
 704	return rcu_dereference(md->map);
 705}
 706
 707static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 708{
 709	rcu_read_unlock();
 710}
 711
 712static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
 713					int *srcu_idx, blk_opf_t bio_opf)
 714{
 715	if (bio_opf & REQ_NOWAIT)
 716		return dm_get_live_table_fast(md);
 717	else
 718		return dm_get_live_table(md, srcu_idx);
 719}
 720
 721static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
 722					 blk_opf_t bio_opf)
 723{
 724	if (bio_opf & REQ_NOWAIT)
 725		dm_put_live_table_fast(md);
 726	else
 727		dm_put_live_table(md, srcu_idx);
 728}
 729
 730static char *_dm_claim_ptr = "I belong to device-mapper";
 731
 732/*
 733 * Open a table device so we can use it as a map destination.
 734 */
 735static struct table_device *open_table_device(struct mapped_device *md,
 736		dev_t dev, fmode_t mode)
 737{
 738	struct table_device *td;
 739	struct block_device *bdev;
 740	u64 part_off;
 741	int r;
 742
 743	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 744	if (!td)
 745		return ERR_PTR(-ENOMEM);
 746	refcount_set(&td->count, 1);
 747
 748	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
 749	if (IS_ERR(bdev)) {
 750		r = PTR_ERR(bdev);
 751		goto out_free_td;
 752	}
 753
 754	/*
 755	 * We can be called before the dm disk is added.  In that case we can't
 756	 * register the holder relation here.  It will be done once add_disk was
 757	 * called.
 758	 */
 759	if (md->disk->slave_dir) {
 760		r = bd_link_disk_holder(bdev, md->disk);
 761		if (r)
 762			goto out_blkdev_put;
 763	}
 764
 765	td->dm_dev.mode = mode;
 766	td->dm_dev.bdev = bdev;
 767	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
 768	format_dev_t(td->dm_dev.name, dev);
 769	list_add(&td->list, &md->table_devices);
 770	return td;
 771
 772out_blkdev_put:
 773	blkdev_put(bdev, mode | FMODE_EXCL);
 774out_free_td:
 775	kfree(td);
 776	return ERR_PTR(r);
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784	if (md->disk->slave_dir)
 785		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 
 
 786	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 787	put_dax(td->dm_dev.dax_dev);
 788	list_del(&td->list);
 789	kfree(td);
 790}
 791
 792static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 793					      fmode_t mode)
 794{
 795	struct table_device *td;
 796
 797	list_for_each_entry(td, l, list)
 798		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 799			return td;
 800
 801	return NULL;
 802}
 803
 804int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 805			struct dm_dev **result)
 806{
 
 807	struct table_device *td;
 808
 809	mutex_lock(&md->table_devices_lock);
 810	td = find_table_device(&md->table_devices, dev, mode);
 811	if (!td) {
 812		td = open_table_device(md, dev, mode);
 813		if (IS_ERR(td)) {
 
 
 
 
 
 
 
 
 814			mutex_unlock(&md->table_devices_lock);
 815			return PTR_ERR(td);
 
 816		}
 
 
 
 
 
 817	} else {
 818		refcount_inc(&td->count);
 819	}
 820	mutex_unlock(&md->table_devices_lock);
 821
 822	*result = &td->dm_dev;
 823	return 0;
 824}
 
 825
 826void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 827{
 828	struct table_device *td = container_of(d, struct table_device, dm_dev);
 829
 830	mutex_lock(&md->table_devices_lock);
 831	if (refcount_dec_and_test(&td->count))
 832		close_table_device(td, md);
 
 
 
 833	mutex_unlock(&md->table_devices_lock);
 834}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836/*
 837 * Get the geometry associated with a dm device
 838 */
 839int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 840{
 841	*geo = md->geometry;
 842
 843	return 0;
 844}
 845
 846/*
 847 * Set the geometry of a device.
 848 */
 849int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 850{
 851	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 852
 853	if (geo->start > sz) {
 854		DMERR("Start sector is beyond the geometry limits.");
 855		return -EINVAL;
 856	}
 857
 858	md->geometry = *geo;
 859
 860	return 0;
 861}
 862
 863static int __noflush_suspending(struct mapped_device *md)
 864{
 865	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 866}
 867
 868static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 869{
 870	struct mapped_device *md = io->md;
 871
 872	if (first_stage) {
 873		struct dm_io *next = md->requeue_list;
 874
 875		md->requeue_list = io;
 876		io->next = next;
 877	} else {
 878		bio_list_add_head(&md->deferred, io->orig_bio);
 879	}
 880}
 881
 882static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 883{
 884	if (first_stage)
 885		queue_work(md->wq, &md->requeue_work);
 886	else
 887		queue_work(md->wq, &md->work);
 888}
 889
 890/*
 891 * Return true if the dm_io's original bio is requeued.
 892 * io->status is updated with error if requeue disallowed.
 893 */
 894static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 895{
 896	struct bio *bio = io->orig_bio;
 897	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 898	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 899				     (bio->bi_opf & REQ_POLLED));
 900	struct mapped_device *md = io->md;
 901	bool requeued = false;
 902
 903	if (handle_requeue || handle_polled_eagain) {
 904		unsigned long flags;
 
 
 
 
 
 905
 906		if (bio->bi_opf & REQ_POLLED) {
 
 907			/*
 908			 * Upper layer won't help us poll split bio
 909			 * (io->orig_bio may only reflect a subset of the
 910			 * pre-split original) so clear REQ_POLLED.
 911			 */
 912			bio_clear_polled(bio);
 
 
 
 
 
 
 
 913		}
 914
 915		/*
 916		 * Target requested pushing back the I/O or
 917		 * polled IO hit BLK_STS_AGAIN.
 918		 */
 919		spin_lock_irqsave(&md->deferred_lock, flags);
 920		if ((__noflush_suspending(md) &&
 921		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 922		    handle_polled_eagain || first_stage) {
 923			dm_requeue_add_io(io, first_stage);
 924			requeued = true;
 925		} else {
 926			/*
 927			 * noflush suspend was interrupted or this is
 928			 * a write to a zoned target.
 929			 */
 930			io->status = BLK_STS_IOERR;
 
 
 
 
 
 
 931		}
 932		spin_unlock_irqrestore(&md->deferred_lock, flags);
 933	}
 934
 935	if (requeued)
 936		dm_kick_requeue(md, first_stage);
 937
 938	return requeued;
 939}
 940
 941static void __dm_io_complete(struct dm_io *io, bool first_stage)
 942{
 943	struct bio *bio = io->orig_bio;
 944	struct mapped_device *md = io->md;
 945	blk_status_t io_error;
 946	bool requeued;
 947
 948	requeued = dm_handle_requeue(io, first_stage);
 949	if (requeued && first_stage)
 950		return;
 951
 952	io_error = io->status;
 953	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 954		dm_end_io_acct(io);
 955	else if (!io_error) {
 956		/*
 957		 * Must handle target that DM_MAPIO_SUBMITTED only to
 958		 * then bio_endio() rather than dm_submit_bio_remap()
 959		 */
 960		__dm_start_io_acct(io);
 961		dm_end_io_acct(io);
 962	}
 963	free_io(io);
 964	smp_wmb();
 965	this_cpu_dec(*md->pending_io);
 966
 967	/* nudge anyone waiting on suspend queue */
 968	if (unlikely(wq_has_sleeper(&md->wait)))
 969		wake_up(&md->wait);
 970
 971	/* Return early if the original bio was requeued */
 972	if (requeued)
 973		return;
 974
 975	if (bio_is_flush_with_data(bio)) {
 976		/*
 977		 * Preflush done for flush with data, reissue
 978		 * without REQ_PREFLUSH.
 979		 */
 980		bio->bi_opf &= ~REQ_PREFLUSH;
 981		queue_io(md, bio);
 982	} else {
 983		/* done with normal IO or empty flush */
 984		if (io_error)
 985			bio->bi_status = io_error;
 986		bio_endio(bio);
 987	}
 988}
 989
 990static void dm_wq_requeue_work(struct work_struct *work)
 991{
 992	struct mapped_device *md = container_of(work, struct mapped_device,
 993						requeue_work);
 994	unsigned long flags;
 995	struct dm_io *io;
 996
 997	/* reuse deferred lock to simplify dm_handle_requeue */
 998	spin_lock_irqsave(&md->deferred_lock, flags);
 999	io = md->requeue_list;
1000	md->requeue_list = NULL;
1001	spin_unlock_irqrestore(&md->deferred_lock, flags);
1002
1003	while (io) {
1004		struct dm_io *next = io->next;
1005
1006		dm_io_rewind(io, &md->disk->bio_split);
1007
1008		io->next = NULL;
1009		__dm_io_complete(io, false);
1010		io = next;
1011	}
1012}
1013
1014/*
1015 * Two staged requeue:
1016 *
1017 * 1) io->orig_bio points to the real original bio, and the part mapped to
1018 *    this io must be requeued, instead of other parts of the original bio.
1019 *
1020 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1021 */
1022static void dm_io_complete(struct dm_io *io)
1023{
1024	bool first_requeue;
1025
1026	/*
1027	 * Only dm_io that has been split needs two stage requeue, otherwise
1028	 * we may run into long bio clone chain during suspend and OOM could
1029	 * be triggered.
1030	 *
1031	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1032	 * also aren't handled via the first stage requeue.
1033	 */
1034	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1035		first_requeue = true;
1036	else
1037		first_requeue = false;
1038
1039	__dm_io_complete(io, first_requeue);
1040}
1041
1042/*
1043 * Decrements the number of outstanding ios that a bio has been
1044 * cloned into, completing the original io if necc.
1045 */
1046static inline void __dm_io_dec_pending(struct dm_io *io)
1047{
1048	if (atomic_dec_and_test(&io->io_count))
1049		dm_io_complete(io);
1050}
1051
1052static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1053{
1054	unsigned long flags;
1055
1056	/* Push-back supersedes any I/O errors */
1057	spin_lock_irqsave(&io->lock, flags);
1058	if (!(io->status == BLK_STS_DM_REQUEUE &&
1059	      __noflush_suspending(io->md))) {
1060		io->status = error;
1061	}
1062	spin_unlock_irqrestore(&io->lock, flags);
1063}
1064
1065static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1066{
1067	if (unlikely(error))
1068		dm_io_set_error(io, error);
1069
1070	__dm_io_dec_pending(io);
 
 
1071}
1072
1073void disable_discard(struct mapped_device *md)
1074{
1075	struct queue_limits *limits = dm_get_queue_limits(md);
1076
1077	/* device doesn't really support DISCARD, disable it */
1078	limits->max_discard_sectors = 0;
1079}
1080
1081void disable_write_zeroes(struct mapped_device *md)
1082{
1083	struct queue_limits *limits = dm_get_queue_limits(md);
1084
1085	/* device doesn't really support WRITE ZEROES, disable it */
1086	limits->max_write_zeroes_sectors = 0;
1087}
1088
1089static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1090{
1091	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1092}
1093
1094static void clone_endio(struct bio *bio)
1095{
1096	blk_status_t error = bio->bi_status;
1097	struct dm_target_io *tio = clone_to_tio(bio);
1098	struct dm_target *ti = tio->ti;
1099	dm_endio_fn endio = ti->type->end_io;
1100	struct dm_io *io = tio->io;
1101	struct mapped_device *md = io->md;
 
1102
1103	if (unlikely(error == BLK_STS_TARGET)) {
1104		if (bio_op(bio) == REQ_OP_DISCARD &&
1105		    !bdev_max_discard_sectors(bio->bi_bdev))
1106			disable_discard(md);
 
 
 
1107		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1108			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1109			disable_write_zeroes(md);
1110	}
1111
1112	if (static_branch_unlikely(&zoned_enabled) &&
1113	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1114		dm_zone_endio(io, bio);
1115
1116	if (endio) {
1117		int r = endio(ti, bio, &error);
1118		switch (r) {
1119		case DM_ENDIO_REQUEUE:
1120			if (static_branch_unlikely(&zoned_enabled)) {
1121				/*
1122				 * Requeuing writes to a sequential zone of a zoned
1123				 * target will break the sequential write pattern:
1124				 * fail such IO.
1125				 */
1126				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1127					error = BLK_STS_IOERR;
1128				else
1129					error = BLK_STS_DM_REQUEUE;
1130			} else
1131				error = BLK_STS_DM_REQUEUE;
1132			fallthrough;
1133		case DM_ENDIO_DONE:
1134			break;
1135		case DM_ENDIO_INCOMPLETE:
1136			/* The target will handle the io */
1137			return;
1138		default:
1139			DMCRIT("unimplemented target endio return value: %d", r);
1140			BUG();
1141		}
1142	}
1143
1144	if (static_branch_unlikely(&swap_bios_enabled) &&
1145	    unlikely(swap_bios_limit(ti, bio)))
1146		up(&md->swap_bios_semaphore);
1147
1148	free_tio(bio);
1149	dm_io_dec_pending(io, error);
1150}
1151
1152/*
1153 * Return maximum size of I/O possible at the supplied sector up to the current
1154 * target boundary.
1155 */
1156static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1157						  sector_t target_offset)
1158{
 
 
1159	return ti->len - target_offset;
1160}
1161
1162static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1163{
1164	sector_t target_offset = dm_target_offset(ti, sector);
1165	sector_t len = max_io_len_target_boundary(ti, target_offset);
1166
1167	/*
1168	 * Does the target need to split IO even further?
1169	 * - varied (per target) IO splitting is a tenet of DM; this
1170	 *   explains why stacked chunk_sectors based splitting via
1171	 *   bio_split_to_limits() isn't possible here.
1172	 */
1173	if (!ti->max_io_len)
1174		return len;
1175	return min_t(sector_t, len,
1176		min(queue_max_sectors(ti->table->md->queue),
1177		    blk_chunk_sectors_left(target_offset, ti->max_io_len)));
 
 
 
 
 
1178}
1179
1180int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1181{
1182	if (len > UINT_MAX) {
1183		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1184		      (unsigned long long)len, UINT_MAX);
1185		ti->error = "Maximum size of target IO is too large";
1186		return -EINVAL;
1187	}
1188
1189	ti->max_io_len = (uint32_t) len;
1190
1191	return 0;
1192}
1193EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1194
1195static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1196						sector_t sector, int *srcu_idx)
1197	__acquires(md->io_barrier)
1198{
1199	struct dm_table *map;
1200	struct dm_target *ti;
1201
1202	map = dm_get_live_table(md, srcu_idx);
1203	if (!map)
1204		return NULL;
1205
1206	ti = dm_table_find_target(map, sector);
1207	if (!ti)
1208		return NULL;
1209
1210	return ti;
1211}
1212
1213static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1214		long nr_pages, enum dax_access_mode mode, void **kaddr,
1215		pfn_t *pfn)
1216{
1217	struct mapped_device *md = dax_get_private(dax_dev);
1218	sector_t sector = pgoff * PAGE_SECTORS;
1219	struct dm_target *ti;
1220	long len, ret = -EIO;
1221	int srcu_idx;
1222
1223	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1224
1225	if (!ti)
1226		goto out;
1227	if (!ti->type->direct_access)
1228		goto out;
1229	len = max_io_len(ti, sector) / PAGE_SECTORS;
1230	if (len < 1)
1231		goto out;
1232	nr_pages = min(len, nr_pages);
1233	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1234
1235 out:
1236	dm_put_live_table(md, srcu_idx);
1237
1238	return ret;
1239}
1240
1241static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1242				  size_t nr_pages)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243{
1244	struct mapped_device *md = dax_get_private(dax_dev);
1245	sector_t sector = pgoff * PAGE_SECTORS;
1246	struct dm_target *ti;
1247	int ret = -EIO;
1248	int srcu_idx;
1249
1250	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1251
1252	if (!ti)
1253		goto out;
1254	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1255		/*
1256		 * ->zero_page_range() is mandatory dax operation. If we are
1257		 *  here, something is wrong.
1258		 */
1259		goto out;
1260	}
1261	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1262 out:
1263	dm_put_live_table(md, srcu_idx);
1264
1265	return ret;
1266}
1267
1268static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1269		void *addr, size_t bytes, struct iov_iter *i)
1270{
1271	struct mapped_device *md = dax_get_private(dax_dev);
1272	sector_t sector = pgoff * PAGE_SECTORS;
1273	struct dm_target *ti;
1274	int srcu_idx;
1275	long ret = 0;
 
1276
1277	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1278	if (!ti || !ti->type->dax_recovery_write)
1279		goto out;
1280
1281	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1282out:
 
 
 
 
 
 
1283	dm_put_live_table(md, srcu_idx);
 
1284	return ret;
1285}
1286
1287/*
1288 * A target may call dm_accept_partial_bio only from the map routine.  It is
1289 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1290 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1291 * __send_duplicate_bios().
1292 *
1293 * dm_accept_partial_bio informs the dm that the target only wants to process
1294 * additional n_sectors sectors of the bio and the rest of the data should be
1295 * sent in a next bio.
1296 *
1297 * A diagram that explains the arithmetics:
1298 * +--------------------+---------------+-------+
1299 * |         1          |       2       |   3   |
1300 * +--------------------+---------------+-------+
1301 *
1302 * <-------------- *tio->len_ptr --------------->
1303 *                      <----- bio_sectors ----->
1304 *                      <-- n_sectors -->
1305 *
1306 * Region 1 was already iterated over with bio_advance or similar function.
1307 *	(it may be empty if the target doesn't use bio_advance)
1308 * Region 2 is the remaining bio size that the target wants to process.
1309 *	(it may be empty if region 1 is non-empty, although there is no reason
1310 *	 to make it empty)
1311 * The target requires that region 3 is to be sent in the next bio.
1312 *
1313 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1314 * the partially processed part (the sum of regions 1+2) must be the same for all
1315 * copies of the bio.
1316 */
1317void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1318{
1319	struct dm_target_io *tio = clone_to_tio(bio);
1320	struct dm_io *io = tio->io;
1321	unsigned bio_sectors = bio_sectors(bio);
1322
1323	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1324	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1325	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1326	BUG_ON(bio_sectors > *tio->len_ptr);
1327	BUG_ON(n_sectors > bio_sectors);
1328
1329	*tio->len_ptr -= bio_sectors - n_sectors;
1330	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1331
1332	/*
1333	 * __split_and_process_bio() may have already saved mapped part
1334	 * for accounting but it is being reduced so update accordingly.
1335	 */
1336	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1337	io->sectors = n_sectors;
1338	io->sector_offset = bio_sectors(io->orig_bio);
1339}
1340EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1341
1342/*
1343 * @clone: clone bio that DM core passed to target's .map function
1344 * @tgt_clone: clone of @clone bio that target needs submitted
1345 *
1346 * Targets should use this interface to submit bios they take
1347 * ownership of when returning DM_MAPIO_SUBMITTED.
1348 *
1349 * Target should also enable ti->accounts_remapped_io
1350 */
1351void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
1352{
1353	struct dm_target_io *tio = clone_to_tio(clone);
1354	struct dm_io *io = tio->io;
1355
1356	/* establish bio that will get submitted */
1357	if (!tgt_clone)
1358		tgt_clone = clone;
1359
1360	/*
1361	 * Account io->origin_bio to DM dev on behalf of target
1362	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1363	 */
1364	dm_start_io_acct(io, clone);
1365
1366	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1367			      tio->old_sector);
1368	submit_bio_noacct(tgt_clone);
1369}
1370EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1371
1372static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1373{
1374	mutex_lock(&md->swap_bios_lock);
1375	while (latch < md->swap_bios) {
1376		cond_resched();
1377		down(&md->swap_bios_semaphore);
1378		md->swap_bios--;
1379	}
1380	while (latch > md->swap_bios) {
1381		cond_resched();
1382		up(&md->swap_bios_semaphore);
1383		md->swap_bios++;
1384	}
1385	mutex_unlock(&md->swap_bios_lock);
 
 
 
 
1386}
 
1387
1388static void __map_bio(struct bio *clone)
1389{
1390	struct dm_target_io *tio = clone_to_tio(clone);
1391	struct dm_target *ti = tio->ti;
 
1392	struct dm_io *io = tio->io;
1393	struct mapped_device *md = io->md;
1394	int r;
 
1395
1396	clone->bi_end_io = clone_endio;
1397
1398	/*
1399	 * Map the clone.
 
 
1400	 */
1401	tio->old_sector = clone->bi_iter.bi_sector;
1402
1403	if (static_branch_unlikely(&swap_bios_enabled) &&
1404	    unlikely(swap_bios_limit(ti, clone))) {
1405		int latch = get_swap_bios();
1406		if (unlikely(latch != md->swap_bios))
1407			__set_swap_bios_limit(md, latch);
1408		down(&md->swap_bios_semaphore);
1409	}
1410
1411	if (static_branch_unlikely(&zoned_enabled)) {
1412		/*
1413		 * Check if the IO needs a special mapping due to zone append
1414		 * emulation on zoned target. In this case, dm_zone_map_bio()
1415		 * calls the target map operation.
1416		 */
1417		if (unlikely(dm_emulate_zone_append(md)))
1418			r = dm_zone_map_bio(tio);
1419		else
1420			r = ti->type->map(ti, clone);
1421	} else
1422		r = ti->type->map(ti, clone);
1423
 
1424	switch (r) {
1425	case DM_MAPIO_SUBMITTED:
1426		/* target has assumed ownership of this io */
1427		if (!ti->accounts_remapped_io)
1428			dm_start_io_acct(io, clone);
1429		break;
1430	case DM_MAPIO_REMAPPED:
1431		dm_submit_bio_remap(clone, NULL);
 
 
 
 
 
 
1432		break;
1433	case DM_MAPIO_KILL:
 
 
 
1434	case DM_MAPIO_REQUEUE:
1435		if (static_branch_unlikely(&swap_bios_enabled) &&
1436		    unlikely(swap_bios_limit(ti, clone)))
1437			up(&md->swap_bios_semaphore);
1438		free_tio(clone);
1439		if (r == DM_MAPIO_KILL)
1440			dm_io_dec_pending(io, BLK_STS_IOERR);
1441		else
1442			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1443		break;
1444	default:
1445		DMCRIT("unimplemented target map return value: %d", r);
1446		BUG();
1447	}
 
 
1448}
1449
1450static void setup_split_accounting(struct clone_info *ci, unsigned len)
1451{
1452	struct dm_io *io = ci->io;
 
 
1453
1454	if (ci->sector_count > len) {
1455		/*
1456		 * Split needed, save the mapped part for accounting.
1457		 * NOTE: dm_accept_partial_bio() will update accordingly.
1458		 */
1459		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1460		io->sectors = len;
1461		io->sector_offset = bio_sectors(ci->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1462	}
 
 
 
 
 
 
 
 
1463}
1464
1465static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1466				struct dm_target *ti, unsigned num_bios)
1467{
1468	struct bio *bio;
1469	int try;
1470
 
 
 
 
 
 
 
 
 
1471	for (try = 0; try < 2; try++) {
1472		int bio_nr;
 
1473
1474		if (try)
1475			mutex_lock(&ci->io->md->table_devices_lock);
1476		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1477			bio = alloc_tio(ci, ti, bio_nr, NULL,
1478					try ? GFP_NOIO : GFP_NOWAIT);
1479			if (!bio)
1480				break;
1481
1482			bio_list_add(blist, bio);
1483		}
1484		if (try)
1485			mutex_unlock(&ci->io->md->table_devices_lock);
1486		if (bio_nr == num_bios)
1487			return;
1488
1489		while ((bio = bio_list_pop(blist)))
1490			free_tio(bio);
 
 
1491	}
1492}
1493
1494static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1495				 unsigned int num_bios, unsigned *len)
1496{
1497	struct bio_list blist = BIO_EMPTY_LIST;
1498	struct bio *clone;
1499	unsigned int ret = 0;
1500
1501	switch (num_bios) {
1502	case 0:
1503		break;
1504	case 1:
1505		if (len)
1506			setup_split_accounting(ci, *len);
1507		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1508		__map_bio(clone);
1509		ret = 1;
1510		break;
1511	default:
1512		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1513		alloc_multiple_bios(&blist, ci, ti, num_bios);
1514		while ((clone = bio_list_pop(&blist))) {
1515			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1516			__map_bio(clone);
1517			ret += 1;
1518		}
1519		break;
1520	}
1521
1522	return ret;
 
 
 
 
1523}
1524
1525static void __send_empty_flush(struct clone_info *ci)
 
1526{
1527	struct dm_table *t = ci->map;
1528	struct bio flush_bio;
1529
1530	/*
1531	 * Use an on-stack bio for this, it's safe since we don't
1532	 * need to reference it after submit. It's just used as
1533	 * the basis for the clone(s).
1534	 */
1535	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1536		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1537
1538	ci->bio = &flush_bio;
1539	ci->sector_count = 0;
1540	ci->io->tio.clone.bi_iter.bi_size = 0;
1541
1542	for (unsigned int i = 0; i < t->num_targets; i++) {
1543		unsigned int bios;
1544		struct dm_target *ti = dm_table_get_target(t, i);
1545
1546		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1547		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1548		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1549	}
 
 
 
 
 
 
1550
1551	/*
1552	 * alloc_io() takes one extra reference for submission, so the
1553	 * reference won't reach 0 without the following subtraction
1554	 */
1555	atomic_sub(1, &ci->io->io_count);
 
 
 
 
 
 
 
 
 
1556
1557	bio_uninit(ci->bio);
1558}
1559
1560static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1561					unsigned num_bios)
1562{
1563	unsigned len;
1564	unsigned int bios;
1565
1566	len = min_t(sector_t, ci->sector_count,
1567		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1568
1569	atomic_add(num_bios, &ci->io->io_count);
1570	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1571	/*
1572	 * alloc_io() takes one extra reference for submission, so the
1573	 * reference won't reach 0 without the following (+1) subtraction
1574	 */
1575	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
 
1576
1577	ci->sector += len;
1578	ci->sector_count -= len;
1579}
1580
1581static bool is_abnormal_io(struct bio *bio)
 
 
1582{
1583	enum req_op op = bio_op(bio);
 
1584
1585	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1586		switch (op) {
1587		case REQ_OP_DISCARD:
1588		case REQ_OP_SECURE_ERASE:
1589		case REQ_OP_WRITE_ZEROES:
1590			return true;
1591		default:
1592			break;
1593		}
1594	}
1595
1596	return false;
 
 
1597}
1598
1599static blk_status_t __process_abnormal_io(struct clone_info *ci,
1600					  struct dm_target *ti)
1601{
1602	unsigned num_bios = 0;
 
1603
1604	switch (bio_op(ci->bio)) {
1605	case REQ_OP_DISCARD:
1606		num_bios = ti->num_discard_bios;
1607		break;
1608	case REQ_OP_SECURE_ERASE:
1609		num_bios = ti->num_secure_erase_bios;
1610		break;
1611	case REQ_OP_WRITE_ZEROES:
1612		num_bios = ti->num_write_zeroes_bios;
1613		break;
1614	default:
1615		break;
1616	}
1617
1618	/*
1619	 * Even though the device advertised support for this type of
1620	 * request, that does not mean every target supports it, and
1621	 * reconfiguration might also have changed that since the
1622	 * check was performed.
1623	 */
1624	if (unlikely(!num_bios))
1625		return BLK_STS_NOTSUPP;
1626
1627	__send_changing_extent_only(ci, ti, num_bios);
1628	return BLK_STS_OK;
 
 
 
 
 
 
1629}
1630
1631/*
1632 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1633 * associated with this bio, and this bio's bi_private needs to be
1634 * stored in dm_io->data before the reuse.
1635 *
1636 * bio->bi_private is owned by fs or upper layer, so block layer won't
1637 * touch it after splitting. Meantime it won't be changed by anyone after
1638 * bio is submitted. So this reuse is safe.
1639 */
1640static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1641{
1642	return (struct dm_io **)&bio->bi_private;
1643}
1644
1645static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
1646{
1647	struct dm_io **head = dm_poll_list_head(bio);
 
1648
1649	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1650		bio->bi_opf |= REQ_DM_POLL_LIST;
1651		/*
1652		 * Save .bi_private into dm_io, so that we can reuse
1653		 * .bi_private as dm_io list head for storing dm_io list
1654		 */
1655		io->data = bio->bi_private;
 
 
1656
1657		/* tell block layer to poll for completion */
1658		bio->bi_cookie = ~BLK_QC_T_NONE;
 
1659
1660		io->next = NULL;
1661	} else {
1662		/*
1663		 * bio recursed due to split, reuse original poll list,
1664		 * and save bio->bi_private too.
1665		 */
1666		io->data = (*head)->data;
1667		io->next = *head;
1668	}
1669
1670	*head = io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1671}
1672
1673/*
1674 * Select the correct strategy for processing a non-flush bio.
1675 */
1676static blk_status_t __split_and_process_bio(struct clone_info *ci)
1677{
1678	struct bio *clone;
1679	struct dm_target *ti;
1680	unsigned len;
 
1681
1682	ti = dm_table_find_target(ci->map, ci->sector);
1683	if (unlikely(!ti))
1684		return BLK_STS_IOERR;
1685
1686	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1687	    unlikely(!dm_target_supports_nowait(ti->type)))
1688		return BLK_STS_NOTSUPP;
1689
1690	if (unlikely(ci->is_abnormal_io))
1691		return __process_abnormal_io(ci, ti);
1692
1693	/*
1694	 * Only support bio polling for normal IO, and the target io is
1695	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1696	 */
1697	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1698
1699	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1700	setup_split_accounting(ci, len);
1701	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1702	__map_bio(clone);
1703
1704	ci->sector += len;
1705	ci->sector_count -= len;
1706
1707	return BLK_STS_OK;
1708}
1709
1710static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1711			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1712{
1713	ci->map = map;
1714	ci->io = alloc_io(md, bio);
1715	ci->bio = bio;
1716	ci->is_abnormal_io = is_abnormal;
1717	ci->submit_as_polled = false;
1718	ci->sector = bio->bi_iter.bi_sector;
1719	ci->sector_count = bio_sectors(bio);
1720
1721	/* Shouldn't happen but sector_count was being set to 0 so... */
1722	if (static_branch_unlikely(&zoned_enabled) &&
1723	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1724		ci->sector_count = 0;
1725}
1726
 
 
 
1727/*
1728 * Entry point to split a bio into clones and submit them to the targets.
1729 */
1730static void dm_split_and_process_bio(struct mapped_device *md,
1731				     struct dm_table *map, struct bio *bio)
1732{
1733	struct clone_info ci;
1734	struct dm_io *io;
1735	blk_status_t error = BLK_STS_OK;
1736	bool is_abnormal;
 
 
 
 
1737
1738	is_abnormal = is_abnormal_io(bio);
1739	if (unlikely(is_abnormal)) {
1740		/*
1741		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1742		 * otherwise associated queue_limits won't be imposed.
 
1743		 */
1744		bio = bio_split_to_limits(bio);
1745		if (!bio)
1746			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1747	}
1748
1749	init_clone_info(&ci, md, map, bio, is_abnormal);
1750	io = ci.io;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1751
1752	if (bio->bi_opf & REQ_PREFLUSH) {
1753		__send_empty_flush(&ci);
1754		/* dm_io_complete submits any data associated with flush */
1755		goto out;
1756	}
1757
1758	error = __split_and_process_bio(&ci);
1759	if (error || !ci.sector_count)
1760		goto out;
1761	/*
1762	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1763	 * *after* bios already submitted have been completely processed.
1764	 */
1765	bio_trim(bio, io->sectors, ci.sector_count);
1766	trace_block_split(bio, bio->bi_iter.bi_sector);
1767	bio_inc_remaining(bio);
1768	submit_bio_noacct(bio);
1769out:
1770	/*
1771	 * Drop the extra reference count for non-POLLED bio, and hold one
1772	 * reference for POLLED bio, which will be released in dm_poll_bio
1773	 *
1774	 * Add every dm_io instance into the dm_io list head which is stored
1775	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1776	 */
1777	if (error || !ci.submit_as_polled) {
1778		/*
1779		 * In case of submission failure, the extra reference for
1780		 * submitting io isn't consumed yet
 
1781		 */
1782		if (error)
1783			atomic_dec(&io->io_count);
1784		dm_io_dec_pending(io, error);
1785	} else
1786		dm_queue_poll_io(bio, io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1787}
1788
1789static void dm_submit_bio(struct bio *bio)
1790{
1791	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1792	int srcu_idx;
1793	struct dm_table *map;
1794	blk_opf_t bio_opf = bio->bi_opf;
1795
1796	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
 
1797
1798	/* If suspended, or map not yet available, queue this IO for later */
1799	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1800	    unlikely(!map)) {
1801		if (bio->bi_opf & REQ_NOWAIT)
1802			bio_wouldblock_error(bio);
1803		else if (bio->bi_opf & REQ_RAHEAD)
1804			bio_io_error(bio);
1805		else
1806			queue_io(md, bio);
1807		goto out;
1808	}
1809
1810	dm_split_and_process_bio(md, map, bio);
1811out:
1812	dm_put_live_table_bio(md, srcu_idx, bio_opf);
 
 
1813}
1814
1815static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1816			  unsigned int flags)
1817{
1818	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1819
1820	/* don't poll if the mapped io is done */
1821	if (atomic_read(&io->io_count) > 1)
1822		bio_poll(&io->tio.clone, iob, flags);
 
 
 
 
 
 
 
1823
1824	/* bio_poll holds the last reference */
1825	return atomic_read(&io->io_count) == 1;
 
 
1826}
1827
1828static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1829		       unsigned int flags)
1830{
1831	struct dm_io **head = dm_poll_list_head(bio);
1832	struct dm_io *list = *head;
1833	struct dm_io *tmp = NULL;
1834	struct dm_io *curr, *next;
1835
1836	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1837	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1838		return 0;
1839
1840	WARN_ON_ONCE(!list);
 
 
1841
1842	/*
1843	 * Restore .bi_private before possibly completing dm_io.
1844	 *
1845	 * bio_poll() is only possible once @bio has been completely
1846	 * submitted via submit_bio_noacct()'s depth-first submission.
1847	 * So there is no dm_queue_poll_io() race associated with
1848	 * clearing REQ_DM_POLL_LIST here.
1849	 */
1850	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1851	bio->bi_private = list->data;
1852
1853	for (curr = list, next = curr->next; curr; curr = next, next =
1854			curr ? curr->next : NULL) {
1855		if (dm_poll_dm_io(curr, iob, flags)) {
 
 
 
 
 
 
 
1856			/*
1857			 * clone_endio() has already occurred, so no
1858			 * error handling is needed here.
1859			 */
1860			__dm_io_dec_pending(curr);
1861		} else {
1862			curr->next = tmp;
1863			tmp = curr;
 
 
1864		}
1865	}
1866
1867	/* Not done? */
1868	if (tmp) {
1869		bio->bi_opf |= REQ_DM_POLL_LIST;
1870		/* Reset bio->bi_private to dm_io list head */
1871		*head = tmp;
1872		return 0;
1873	}
1874	return 1;
1875}
1876
1877/*-----------------------------------------------------------------
1878 * An IDR is used to keep track of allocated minor numbers.
1879 *---------------------------------------------------------------*/
1880static void free_minor(int minor)
1881{
1882	spin_lock(&_minor_lock);
1883	idr_remove(&_minor_idr, minor);
1884	spin_unlock(&_minor_lock);
1885}
1886
1887/*
1888 * See if the device with a specific minor # is free.
1889 */
1890static int specific_minor(int minor)
1891{
1892	int r;
1893
1894	if (minor >= (1 << MINORBITS))
1895		return -EINVAL;
1896
1897	idr_preload(GFP_KERNEL);
1898	spin_lock(&_minor_lock);
1899
1900	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1901
1902	spin_unlock(&_minor_lock);
1903	idr_preload_end();
1904	if (r < 0)
1905		return r == -ENOSPC ? -EBUSY : r;
1906	return 0;
1907}
1908
1909static int next_free_minor(int *minor)
1910{
1911	int r;
1912
1913	idr_preload(GFP_KERNEL);
1914	spin_lock(&_minor_lock);
1915
1916	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1917
1918	spin_unlock(&_minor_lock);
1919	idr_preload_end();
1920	if (r < 0)
1921		return r;
1922	*minor = r;
1923	return 0;
1924}
1925
1926static const struct block_device_operations dm_blk_dops;
1927static const struct block_device_operations dm_rq_blk_dops;
1928static const struct dax_operations dm_dax_ops;
1929
1930static void dm_wq_work(struct work_struct *work);
1931
1932#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1933static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1934{
1935	dm_destroy_crypto_profile(q->crypto_profile);
1936}
1937
1938#else /* CONFIG_BLK_INLINE_ENCRYPTION */
1939
1940static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1941{
 
 
 
 
1942}
1943#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1944
1945static void cleanup_mapped_device(struct mapped_device *md)
1946{
1947	if (md->wq)
1948		destroy_workqueue(md->wq);
1949	dm_free_md_mempools(md->mempools);
 
1950
1951	if (md->dax_dev) {
1952		dax_remove_host(md->disk);
1953		kill_dax(md->dax_dev);
1954		put_dax(md->dax_dev);
1955		md->dax_dev = NULL;
1956	}
1957
1958	dm_cleanup_zoned_dev(md);
1959	if (md->disk) {
1960		spin_lock(&_minor_lock);
1961		md->disk->private_data = NULL;
1962		spin_unlock(&_minor_lock);
1963		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1964			struct table_device *td;
1965
1966			dm_sysfs_exit(md);
1967			list_for_each_entry(td, &md->table_devices, list) {
1968				bd_unlink_disk_holder(td->dm_dev.bdev,
1969						      md->disk);
1970			}
1971
1972			/*
1973			 * Hold lock to make sure del_gendisk() won't concurrent
1974			 * with open/close_table_device().
1975			 */
1976			mutex_lock(&md->table_devices_lock);
1977			del_gendisk(md->disk);
1978			mutex_unlock(&md->table_devices_lock);
1979		}
1980		dm_queue_destroy_crypto_profile(md->queue);
1981		put_disk(md->disk);
1982	}
1983
1984	if (md->pending_io) {
1985		free_percpu(md->pending_io);
1986		md->pending_io = NULL;
1987	}
1988
1989	cleanup_srcu_struct(&md->io_barrier);
1990
 
 
 
 
 
1991	mutex_destroy(&md->suspend_lock);
1992	mutex_destroy(&md->type_lock);
1993	mutex_destroy(&md->table_devices_lock);
1994	mutex_destroy(&md->swap_bios_lock);
1995
1996	dm_mq_cleanup_mapped_device(md);
1997}
1998
1999/*
2000 * Allocate and initialise a blank device with a given minor.
2001 */
2002static struct mapped_device *alloc_dev(int minor)
2003{
2004	int r, numa_node_id = dm_get_numa_node();
2005	struct mapped_device *md;
2006	void *old_md;
2007
2008	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2009	if (!md) {
2010		DMERR("unable to allocate device, out of memory.");
2011		return NULL;
2012	}
2013
2014	if (!try_module_get(THIS_MODULE))
2015		goto bad_module_get;
2016
2017	/* get a minor number for the dev */
2018	if (minor == DM_ANY_MINOR)
2019		r = next_free_minor(&minor);
2020	else
2021		r = specific_minor(minor);
2022	if (r < 0)
2023		goto bad_minor;
2024
2025	r = init_srcu_struct(&md->io_barrier);
2026	if (r < 0)
2027		goto bad_io_barrier;
2028
2029	md->numa_node_id = numa_node_id;
2030	md->init_tio_pdu = false;
2031	md->type = DM_TYPE_NONE;
2032	mutex_init(&md->suspend_lock);
2033	mutex_init(&md->type_lock);
2034	mutex_init(&md->table_devices_lock);
2035	spin_lock_init(&md->deferred_lock);
2036	atomic_set(&md->holders, 1);
2037	atomic_set(&md->open_count, 0);
2038	atomic_set(&md->event_nr, 0);
2039	atomic_set(&md->uevent_seq, 0);
2040	INIT_LIST_HEAD(&md->uevent_list);
2041	INIT_LIST_HEAD(&md->table_devices);
2042	spin_lock_init(&md->uevent_lock);
2043
2044	/*
2045	 * default to bio-based until DM table is loaded and md->type
2046	 * established. If request-based table is loaded: blk-mq will
2047	 * override accordingly.
2048	 */
2049	md->disk = blk_alloc_disk(md->numa_node_id);
 
2050	if (!md->disk)
2051		goto bad;
2052	md->queue = md->disk->queue;
2053
2054	init_waitqueue_head(&md->wait);
2055	INIT_WORK(&md->work, dm_wq_work);
2056	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2057	init_waitqueue_head(&md->eventq);
2058	init_completion(&md->kobj_holder.completion);
2059
2060	md->requeue_list = NULL;
2061	md->swap_bios = get_swap_bios();
2062	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2063	mutex_init(&md->swap_bios_lock);
2064
2065	md->disk->major = _major;
2066	md->disk->first_minor = minor;
2067	md->disk->minors = 1;
2068	md->disk->flags |= GENHD_FL_NO_PART;
2069	md->disk->fops = &dm_blk_dops;
 
2070	md->disk->private_data = md;
2071	sprintf(md->disk->disk_name, "dm-%d", minor);
2072
2073	if (IS_ENABLED(CONFIG_FS_DAX)) {
2074		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2075		if (IS_ERR(md->dax_dev)) {
2076			md->dax_dev = NULL;
2077			goto bad;
2078		}
2079		set_dax_nocache(md->dax_dev);
2080		set_dax_nomc(md->dax_dev);
2081		if (dax_add_host(md->dax_dev, md->disk))
2082			goto bad;
2083	}
2084
 
2085	format_dev_t(md->name, MKDEV(_major, minor));
2086
2087	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2088	if (!md->wq)
2089		goto bad;
2090
2091	md->pending_io = alloc_percpu(unsigned long);
2092	if (!md->pending_io)
2093		goto bad;
2094
2095	dm_stats_init(&md->stats);
2096
2097	/* Populate the mapping, nobody knows we exist yet */
2098	spin_lock(&_minor_lock);
2099	old_md = idr_replace(&_minor_idr, md, minor);
2100	spin_unlock(&_minor_lock);
2101
2102	BUG_ON(old_md != MINOR_ALLOCED);
2103
2104	return md;
2105
2106bad:
2107	cleanup_mapped_device(md);
2108bad_io_barrier:
2109	free_minor(minor);
2110bad_minor:
2111	module_put(THIS_MODULE);
2112bad_module_get:
2113	kvfree(md);
2114	return NULL;
2115}
2116
2117static void unlock_fs(struct mapped_device *md);
2118
2119static void free_dev(struct mapped_device *md)
2120{
2121	int minor = MINOR(disk_devt(md->disk));
2122
2123	unlock_fs(md);
2124
2125	cleanup_mapped_device(md);
2126
2127	WARN_ON_ONCE(!list_empty(&md->table_devices));
2128	dm_stats_cleanup(&md->stats);
2129	free_minor(minor);
2130
2131	module_put(THIS_MODULE);
2132	kvfree(md);
2133}
2134
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2135/*
2136 * Bind a table to the device.
2137 */
2138static void event_callback(void *context)
2139{
2140	unsigned long flags;
2141	LIST_HEAD(uevents);
2142	struct mapped_device *md = (struct mapped_device *) context;
2143
2144	spin_lock_irqsave(&md->uevent_lock, flags);
2145	list_splice_init(&md->uevent_list, &uevents);
2146	spin_unlock_irqrestore(&md->uevent_lock, flags);
2147
2148	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2149
2150	atomic_inc(&md->event_nr);
2151	wake_up(&md->eventq);
2152	dm_issue_global_event();
2153}
2154
2155/*
 
 
 
 
 
 
 
 
 
 
 
 
2156 * Returns old map, which caller must destroy.
2157 */
2158static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2159			       struct queue_limits *limits)
2160{
2161	struct dm_table *old_map;
 
 
2162	sector_t size;
2163	int ret;
2164
2165	lockdep_assert_held(&md->suspend_lock);
2166
2167	size = dm_table_get_size(t);
2168
2169	/*
2170	 * Wipe any geometry if the size of the table changed.
2171	 */
2172	if (size != dm_get_size(md))
2173		memset(&md->geometry, 0, sizeof(md->geometry));
2174
2175	if (!get_capacity(md->disk))
2176		set_capacity(md->disk, size);
2177	else
2178		set_capacity_and_notify(md->disk, size);
2179
2180	dm_table_event_callback(t, event_callback, md);
2181
2182	if (dm_table_request_based(t)) {
2183		/*
2184		 * Leverage the fact that request-based DM targets are
2185		 * immutable singletons - used to optimize dm_mq_queue_rq.
2186		 */
2187		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
2188
 
2189		/*
2190		 * There is no need to reload with request-based dm because the
2191		 * size of front_pad doesn't change.
2192		 *
2193		 * Note for future: If you are to reload bioset, prep-ed
2194		 * requests in the queue may refer to bio from the old bioset,
2195		 * so you must walk through the queue to unprep.
2196		 */
2197		if (!md->mempools) {
2198			md->mempools = t->mempools;
2199			t->mempools = NULL;
2200		}
2201	} else {
2202		/*
2203		 * The md may already have mempools that need changing.
2204		 * If so, reload bioset because front_pad may have changed
2205		 * because a different table was loaded.
2206		 */
2207		dm_free_md_mempools(md->mempools);
2208		md->mempools = t->mempools;
2209		t->mempools = NULL;
2210	}
2211
2212	ret = dm_table_set_restrictions(t, md->queue, limits);
2213	if (ret) {
2214		old_map = ERR_PTR(ret);
2215		goto out;
2216	}
2217
2218	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2219	rcu_assign_pointer(md->map, (void *)t);
2220	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2221
 
2222	if (old_map)
2223		dm_sync_table(md);
 
2224out:
2225	return old_map;
2226}
2227
2228/*
2229 * Returns unbound table for the caller to free.
2230 */
2231static struct dm_table *__unbind(struct mapped_device *md)
2232{
2233	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2234
2235	if (!map)
2236		return NULL;
2237
2238	dm_table_event_callback(map, NULL, NULL);
2239	RCU_INIT_POINTER(md->map, NULL);
2240	dm_sync_table(md);
2241
2242	return map;
2243}
2244
2245/*
2246 * Constructor for a new device.
2247 */
2248int dm_create(int minor, struct mapped_device **result)
2249{
 
2250	struct mapped_device *md;
2251
2252	md = alloc_dev(minor);
2253	if (!md)
2254		return -ENXIO;
2255
2256	dm_ima_reset_data(md);
 
 
 
 
2257
2258	*result = md;
2259	return 0;
2260}
2261
2262/*
2263 * Functions to manage md->type.
2264 * All are required to hold md->type_lock.
2265 */
2266void dm_lock_md_type(struct mapped_device *md)
2267{
2268	mutex_lock(&md->type_lock);
2269}
2270
2271void dm_unlock_md_type(struct mapped_device *md)
2272{
2273	mutex_unlock(&md->type_lock);
2274}
2275
2276void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2277{
2278	BUG_ON(!mutex_is_locked(&md->type_lock));
2279	md->type = type;
2280}
2281
2282enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2283{
2284	return md->type;
2285}
2286
2287struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2288{
2289	return md->immutable_target_type;
2290}
2291
2292/*
2293 * The queue_limits are only valid as long as you have a reference
2294 * count on 'md'.
2295 */
2296struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2297{
2298	BUG_ON(!atomic_read(&md->holders));
2299	return &md->queue->limits;
2300}
2301EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2302
2303/*
2304 * Setup the DM device's queue based on md's type
2305 */
2306int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2307{
2308	enum dm_queue_mode type = dm_table_get_type(t);
2309	struct queue_limits limits;
2310	struct table_device *td;
2311	int r;
 
 
2312
2313	switch (type) {
2314	case DM_TYPE_REQUEST_BASED:
2315		md->disk->fops = &dm_rq_blk_dops;
2316		r = dm_mq_init_request_queue(md, t);
2317		if (r) {
2318			DMERR("Cannot initialize queue for request-based dm mapped device");
2319			return r;
2320		}
2321		break;
2322	case DM_TYPE_BIO_BASED:
2323	case DM_TYPE_DAX_BIO_BASED:
 
 
 
2324		break;
2325	case DM_TYPE_NONE:
2326		WARN_ON_ONCE(true);
2327		break;
2328	}
2329
2330	r = dm_calculate_queue_limits(t, &limits);
2331	if (r) {
2332		DMERR("Cannot calculate initial queue limits");
2333		return r;
2334	}
2335	r = dm_table_set_restrictions(t, md->queue, &limits);
2336	if (r)
2337		return r;
2338
2339	/*
2340	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2341	 * with open_table_device() and close_table_device().
2342	 */
2343	mutex_lock(&md->table_devices_lock);
2344	r = add_disk(md->disk);
2345	mutex_unlock(&md->table_devices_lock);
2346	if (r)
2347		return r;
2348
2349	/*
2350	 * Register the holder relationship for devices added before the disk
2351	 * was live.
2352	 */
2353	list_for_each_entry(td, &md->table_devices, list) {
2354		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2355		if (r)
2356			goto out_undo_holders;
2357	}
2358
2359	r = dm_sysfs_init(md);
2360	if (r)
2361		goto out_undo_holders;
2362
2363	md->type = type;
2364	return 0;
2365
2366out_undo_holders:
2367	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2368		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2369	mutex_lock(&md->table_devices_lock);
2370	del_gendisk(md->disk);
2371	mutex_unlock(&md->table_devices_lock);
2372	return r;
2373}
2374
2375struct mapped_device *dm_get_md(dev_t dev)
2376{
2377	struct mapped_device *md;
2378	unsigned minor = MINOR(dev);
2379
2380	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2381		return NULL;
2382
2383	spin_lock(&_minor_lock);
2384
2385	md = idr_find(&_minor_idr, minor);
2386	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2387	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2388		md = NULL;
2389		goto out;
2390	}
2391	dm_get(md);
2392out:
2393	spin_unlock(&_minor_lock);
2394
2395	return md;
2396}
2397EXPORT_SYMBOL_GPL(dm_get_md);
2398
2399void *dm_get_mdptr(struct mapped_device *md)
2400{
2401	return md->interface_ptr;
2402}
2403
2404void dm_set_mdptr(struct mapped_device *md, void *ptr)
2405{
2406	md->interface_ptr = ptr;
2407}
2408
2409void dm_get(struct mapped_device *md)
2410{
2411	atomic_inc(&md->holders);
2412	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2413}
2414
2415int dm_hold(struct mapped_device *md)
2416{
2417	spin_lock(&_minor_lock);
2418	if (test_bit(DMF_FREEING, &md->flags)) {
2419		spin_unlock(&_minor_lock);
2420		return -EBUSY;
2421	}
2422	dm_get(md);
2423	spin_unlock(&_minor_lock);
2424	return 0;
2425}
2426EXPORT_SYMBOL_GPL(dm_hold);
2427
2428const char *dm_device_name(struct mapped_device *md)
2429{
2430	return md->name;
2431}
2432EXPORT_SYMBOL_GPL(dm_device_name);
2433
2434static void __dm_destroy(struct mapped_device *md, bool wait)
2435{
2436	struct dm_table *map;
2437	int srcu_idx;
2438
2439	might_sleep();
2440
2441	spin_lock(&_minor_lock);
2442	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2443	set_bit(DMF_FREEING, &md->flags);
2444	spin_unlock(&_minor_lock);
2445
2446	blk_mark_disk_dead(md->disk);
2447
2448	/*
2449	 * Take suspend_lock so that presuspend and postsuspend methods
2450	 * do not race with internal suspend.
2451	 */
2452	mutex_lock(&md->suspend_lock);
2453	map = dm_get_live_table(md, &srcu_idx);
2454	if (!dm_suspended_md(md)) {
2455		dm_table_presuspend_targets(map);
2456		set_bit(DMF_SUSPENDED, &md->flags);
2457		set_bit(DMF_POST_SUSPENDING, &md->flags);
2458		dm_table_postsuspend_targets(map);
2459	}
2460	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2461	dm_put_live_table(md, srcu_idx);
2462	mutex_unlock(&md->suspend_lock);
2463
2464	/*
2465	 * Rare, but there may be I/O requests still going to complete,
2466	 * for example.  Wait for all references to disappear.
2467	 * No one should increment the reference count of the mapped_device,
2468	 * after the mapped_device state becomes DMF_FREEING.
2469	 */
2470	if (wait)
2471		while (atomic_read(&md->holders))
2472			msleep(1);
2473	else if (atomic_read(&md->holders))
2474		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2475		       dm_device_name(md), atomic_read(&md->holders));
2476
 
2477	dm_table_destroy(__unbind(md));
2478	free_dev(md);
2479}
2480
2481void dm_destroy(struct mapped_device *md)
2482{
2483	__dm_destroy(md, true);
2484}
2485
2486void dm_destroy_immediate(struct mapped_device *md)
2487{
2488	__dm_destroy(md, false);
2489}
2490
2491void dm_put(struct mapped_device *md)
2492{
2493	atomic_dec(&md->holders);
2494}
2495EXPORT_SYMBOL_GPL(dm_put);
2496
2497static bool dm_in_flight_bios(struct mapped_device *md)
2498{
2499	int cpu;
2500	unsigned long sum = 0;
2501
2502	for_each_possible_cpu(cpu)
2503		sum += *per_cpu_ptr(md->pending_io, cpu);
2504
2505	return sum != 0;
2506}
2507
2508static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2509{
2510	int r = 0;
2511	DEFINE_WAIT(wait);
2512
2513	while (true) {
2514		prepare_to_wait(&md->wait, &wait, task_state);
2515
2516		if (!dm_in_flight_bios(md))
2517			break;
2518
2519		if (signal_pending_state(task_state, current)) {
2520			r = -EINTR;
2521			break;
2522		}
2523
2524		io_schedule();
2525	}
2526	finish_wait(&md->wait, &wait);
2527
2528	smp_rmb();
2529
2530	return r;
2531}
2532
2533static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2534{
2535	int r = 0;
2536
2537	if (!queue_is_mq(md->queue))
2538		return dm_wait_for_bios_completion(md, task_state);
2539
2540	while (true) {
2541		if (!blk_mq_queue_inflight(md->queue))
2542			break;
2543
2544		if (signal_pending_state(task_state, current)) {
2545			r = -EINTR;
2546			break;
2547		}
2548
2549		msleep(5);
2550	}
2551
2552	return r;
2553}
2554
2555/*
2556 * Process the deferred bios
2557 */
2558static void dm_wq_work(struct work_struct *work)
2559{
2560	struct mapped_device *md = container_of(work, struct mapped_device, work);
2561	struct bio *bio;
 
 
 
 
 
2562
2563	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2564		spin_lock_irq(&md->deferred_lock);
2565		bio = bio_list_pop(&md->deferred);
2566		spin_unlock_irq(&md->deferred_lock);
2567
2568		if (!bio)
2569			break;
2570
2571		submit_bio_noacct(bio);
 
 
 
2572	}
 
 
2573}
2574
2575static void dm_queue_flush(struct mapped_device *md)
2576{
2577	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2578	smp_mb__after_atomic();
2579	queue_work(md->wq, &md->work);
2580}
2581
2582/*
2583 * Swap in a new table, returning the old one for the caller to destroy.
2584 */
2585struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2586{
2587	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2588	struct queue_limits limits;
2589	int r;
2590
2591	mutex_lock(&md->suspend_lock);
2592
2593	/* device must be suspended */
2594	if (!dm_suspended_md(md))
2595		goto out;
2596
2597	/*
2598	 * If the new table has no data devices, retain the existing limits.
2599	 * This helps multipath with queue_if_no_path if all paths disappear,
2600	 * then new I/O is queued based on these limits, and then some paths
2601	 * reappear.
2602	 */
2603	if (dm_table_has_no_data_devices(table)) {
2604		live_map = dm_get_live_table_fast(md);
2605		if (live_map)
2606			limits = md->queue->limits;
2607		dm_put_live_table_fast(md);
2608	}
2609
2610	if (!live_map) {
2611		r = dm_calculate_queue_limits(table, &limits);
2612		if (r) {
2613			map = ERR_PTR(r);
2614			goto out;
2615		}
2616	}
2617
2618	map = __bind(md, table, &limits);
2619	dm_issue_global_event();
2620
2621out:
2622	mutex_unlock(&md->suspend_lock);
2623	return map;
2624}
2625
2626/*
2627 * Functions to lock and unlock any filesystem running on the
2628 * device.
2629 */
2630static int lock_fs(struct mapped_device *md)
2631{
2632	int r;
2633
2634	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2635
2636	r = freeze_bdev(md->disk->part0);
2637	if (!r)
2638		set_bit(DMF_FROZEN, &md->flags);
2639	return r;
 
 
 
 
 
 
2640}
2641
2642static void unlock_fs(struct mapped_device *md)
2643{
2644	if (!test_bit(DMF_FROZEN, &md->flags))
2645		return;
2646	thaw_bdev(md->disk->part0);
 
 
2647	clear_bit(DMF_FROZEN, &md->flags);
2648}
2649
2650/*
2651 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2652 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2653 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2654 *
2655 * If __dm_suspend returns 0, the device is completely quiescent
2656 * now. There is no request-processing activity. All new requests
2657 * are being added to md->deferred list.
2658 */
2659static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2660			unsigned suspend_flags, unsigned int task_state,
2661			int dmf_suspended_flag)
2662{
2663	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2664	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2665	int r;
2666
2667	lockdep_assert_held(&md->suspend_lock);
2668
2669	/*
2670	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2671	 * This flag is cleared before dm_suspend returns.
2672	 */
2673	if (noflush)
2674		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2675	else
2676		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2677
2678	/*
2679	 * This gets reverted if there's an error later and the targets
2680	 * provide the .presuspend_undo hook.
2681	 */
2682	dm_table_presuspend_targets(map);
2683
2684	/*
2685	 * Flush I/O to the device.
2686	 * Any I/O submitted after lock_fs() may not be flushed.
2687	 * noflush takes precedence over do_lockfs.
2688	 * (lock_fs() flushes I/Os and waits for them to complete.)
2689	 */
2690	if (!noflush && do_lockfs) {
2691		r = lock_fs(md);
2692		if (r) {
2693			dm_table_presuspend_undo_targets(map);
2694			return r;
2695		}
2696	}
2697
2698	/*
2699	 * Here we must make sure that no processes are submitting requests
2700	 * to target drivers i.e. no one may be executing
2701	 * dm_split_and_process_bio from dm_submit_bio.
 
2702	 *
2703	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2704	 * we take the write lock. To prevent any process from reentering
2705	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2706	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2707	 * flush_workqueue(md->wq).
2708	 */
2709	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2710	if (map)
2711		synchronize_srcu(&md->io_barrier);
2712
2713	/*
2714	 * Stop md->queue before flushing md->wq in case request-based
2715	 * dm defers requests to md->wq from md->queue.
2716	 */
2717	if (dm_request_based(md))
2718		dm_stop_queue(md->queue);
2719
2720	flush_workqueue(md->wq);
2721
2722	/*
2723	 * At this point no more requests are entering target request routines.
2724	 * We call dm_wait_for_completion to wait for all existing requests
2725	 * to finish.
2726	 */
2727	r = dm_wait_for_completion(md, task_state);
2728	if (!r)
2729		set_bit(dmf_suspended_flag, &md->flags);
2730
2731	if (noflush)
2732		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2733	if (map)
2734		synchronize_srcu(&md->io_barrier);
2735
2736	/* were we interrupted ? */
2737	if (r < 0) {
2738		dm_queue_flush(md);
2739
2740		if (dm_request_based(md))
2741			dm_start_queue(md->queue);
2742
2743		unlock_fs(md);
2744		dm_table_presuspend_undo_targets(map);
2745		/* pushback list is already flushed, so skip flush */
2746	}
2747
2748	return r;
2749}
2750
2751/*
2752 * We need to be able to change a mapping table under a mounted
2753 * filesystem.  For example we might want to move some data in
2754 * the background.  Before the table can be swapped with
2755 * dm_bind_table, dm_suspend must be called to flush any in
2756 * flight bios and ensure that any further io gets deferred.
2757 */
2758/*
2759 * Suspend mechanism in request-based dm.
2760 *
2761 * 1. Flush all I/Os by lock_fs() if needed.
2762 * 2. Stop dispatching any I/O by stopping the request_queue.
2763 * 3. Wait for all in-flight I/Os to be completed or requeued.
2764 *
2765 * To abort suspend, start the request_queue.
2766 */
2767int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2768{
2769	struct dm_table *map = NULL;
2770	int r = 0;
2771
2772retry:
2773	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2774
2775	if (dm_suspended_md(md)) {
2776		r = -EINVAL;
2777		goto out_unlock;
2778	}
2779
2780	if (dm_suspended_internally_md(md)) {
2781		/* already internally suspended, wait for internal resume */
2782		mutex_unlock(&md->suspend_lock);
2783		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2784		if (r)
2785			return r;
2786		goto retry;
2787	}
2788
2789	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2790
2791	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2792	if (r)
2793		goto out_unlock;
2794
2795	set_bit(DMF_POST_SUSPENDING, &md->flags);
2796	dm_table_postsuspend_targets(map);
2797	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2798
2799out_unlock:
2800	mutex_unlock(&md->suspend_lock);
2801	return r;
2802}
2803
2804static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2805{
2806	if (map) {
2807		int r = dm_table_resume_targets(map);
2808		if (r)
2809			return r;
2810	}
2811
2812	dm_queue_flush(md);
2813
2814	/*
2815	 * Flushing deferred I/Os must be done after targets are resumed
2816	 * so that mapping of targets can work correctly.
2817	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2818	 */
2819	if (dm_request_based(md))
2820		dm_start_queue(md->queue);
2821
2822	unlock_fs(md);
2823
2824	return 0;
2825}
2826
2827int dm_resume(struct mapped_device *md)
2828{
2829	int r;
2830	struct dm_table *map = NULL;
2831
2832retry:
2833	r = -EINVAL;
2834	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2835
2836	if (!dm_suspended_md(md))
2837		goto out;
2838
2839	if (dm_suspended_internally_md(md)) {
2840		/* already internally suspended, wait for internal resume */
2841		mutex_unlock(&md->suspend_lock);
2842		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2843		if (r)
2844			return r;
2845		goto retry;
2846	}
2847
2848	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2849	if (!map || !dm_table_get_size(map))
2850		goto out;
2851
2852	r = __dm_resume(md, map);
2853	if (r)
2854		goto out;
2855
2856	clear_bit(DMF_SUSPENDED, &md->flags);
2857out:
2858	mutex_unlock(&md->suspend_lock);
2859
2860	return r;
2861}
2862
2863/*
2864 * Internal suspend/resume works like userspace-driven suspend. It waits
2865 * until all bios finish and prevents issuing new bios to the target drivers.
2866 * It may be used only from the kernel.
2867 */
2868
2869static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2870{
2871	struct dm_table *map = NULL;
2872
2873	lockdep_assert_held(&md->suspend_lock);
2874
2875	if (md->internal_suspend_count++)
2876		return; /* nested internal suspend */
2877
2878	if (dm_suspended_md(md)) {
2879		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2880		return; /* nest suspend */
2881	}
2882
2883	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2884
2885	/*
2886	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2887	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2888	 * would require changing .presuspend to return an error -- avoid this
2889	 * until there is a need for more elaborate variants of internal suspend.
2890	 */
2891	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2892			    DMF_SUSPENDED_INTERNALLY);
2893
2894	set_bit(DMF_POST_SUSPENDING, &md->flags);
2895	dm_table_postsuspend_targets(map);
2896	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2897}
2898
2899static void __dm_internal_resume(struct mapped_device *md)
2900{
2901	BUG_ON(!md->internal_suspend_count);
2902
2903	if (--md->internal_suspend_count)
2904		return; /* resume from nested internal suspend */
2905
2906	if (dm_suspended_md(md))
2907		goto done; /* resume from nested suspend */
2908
2909	/*
2910	 * NOTE: existing callers don't need to call dm_table_resume_targets
2911	 * (which may fail -- so best to avoid it for now by passing NULL map)
2912	 */
2913	(void) __dm_resume(md, NULL);
2914
2915done:
2916	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2917	smp_mb__after_atomic();
2918	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2919}
2920
2921void dm_internal_suspend_noflush(struct mapped_device *md)
2922{
2923	mutex_lock(&md->suspend_lock);
2924	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2925	mutex_unlock(&md->suspend_lock);
2926}
2927EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2928
2929void dm_internal_resume(struct mapped_device *md)
2930{
2931	mutex_lock(&md->suspend_lock);
2932	__dm_internal_resume(md);
2933	mutex_unlock(&md->suspend_lock);
2934}
2935EXPORT_SYMBOL_GPL(dm_internal_resume);
2936
2937/*
2938 * Fast variants of internal suspend/resume hold md->suspend_lock,
2939 * which prevents interaction with userspace-driven suspend.
2940 */
2941
2942void dm_internal_suspend_fast(struct mapped_device *md)
2943{
2944	mutex_lock(&md->suspend_lock);
2945	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2946		return;
2947
2948	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2949	synchronize_srcu(&md->io_barrier);
2950	flush_workqueue(md->wq);
2951	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2952}
2953EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2954
2955void dm_internal_resume_fast(struct mapped_device *md)
2956{
2957	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2958		goto done;
2959
2960	dm_queue_flush(md);
2961
2962done:
2963	mutex_unlock(&md->suspend_lock);
2964}
2965EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2966
2967/*-----------------------------------------------------------------
2968 * Event notification.
2969 *---------------------------------------------------------------*/
2970int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2971		       unsigned cookie)
2972{
2973	int r;
2974	unsigned noio_flag;
2975	char udev_cookie[DM_COOKIE_LENGTH];
2976	char *envp[] = { udev_cookie, NULL };
2977
2978	noio_flag = memalloc_noio_save();
2979
2980	if (!cookie)
2981		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2982	else {
2983		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2984			 DM_COOKIE_ENV_VAR_NAME, cookie);
2985		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2986				       action, envp);
2987	}
2988
2989	memalloc_noio_restore(noio_flag);
2990
2991	return r;
2992}
2993
2994uint32_t dm_next_uevent_seq(struct mapped_device *md)
2995{
2996	return atomic_add_return(1, &md->uevent_seq);
2997}
2998
2999uint32_t dm_get_event_nr(struct mapped_device *md)
3000{
3001	return atomic_read(&md->event_nr);
3002}
3003
3004int dm_wait_event(struct mapped_device *md, int event_nr)
3005{
3006	return wait_event_interruptible(md->eventq,
3007			(event_nr != atomic_read(&md->event_nr)));
3008}
3009
3010void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3011{
3012	unsigned long flags;
3013
3014	spin_lock_irqsave(&md->uevent_lock, flags);
3015	list_add(elist, &md->uevent_list);
3016	spin_unlock_irqrestore(&md->uevent_lock, flags);
3017}
3018
3019/*
3020 * The gendisk is only valid as long as you have a reference
3021 * count on 'md'.
3022 */
3023struct gendisk *dm_disk(struct mapped_device *md)
3024{
3025	return md->disk;
3026}
3027EXPORT_SYMBOL_GPL(dm_disk);
3028
3029struct kobject *dm_kobject(struct mapped_device *md)
3030{
3031	return &md->kobj_holder.kobj;
3032}
3033
3034struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3035{
3036	struct mapped_device *md;
3037
3038	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3039
3040	spin_lock(&_minor_lock);
3041	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3042		md = NULL;
3043		goto out;
3044	}
3045	dm_get(md);
3046out:
3047	spin_unlock(&_minor_lock);
3048
3049	return md;
3050}
3051
3052int dm_suspended_md(struct mapped_device *md)
3053{
3054	return test_bit(DMF_SUSPENDED, &md->flags);
3055}
3056
3057static int dm_post_suspending_md(struct mapped_device *md)
3058{
3059	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3060}
3061
3062int dm_suspended_internally_md(struct mapped_device *md)
3063{
3064	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3065}
3066
3067int dm_test_deferred_remove_flag(struct mapped_device *md)
3068{
3069	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3070}
3071
3072int dm_suspended(struct dm_target *ti)
3073{
3074	return dm_suspended_md(ti->table->md);
3075}
3076EXPORT_SYMBOL_GPL(dm_suspended);
3077
3078int dm_post_suspending(struct dm_target *ti)
3079{
3080	return dm_post_suspending_md(ti->table->md);
3081}
3082EXPORT_SYMBOL_GPL(dm_post_suspending);
3083
3084int dm_noflush_suspending(struct dm_target *ti)
3085{
3086	return __noflush_suspending(ti->table->md);
3087}
3088EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3089
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3090void dm_free_md_mempools(struct dm_md_mempools *pools)
3091{
3092	if (!pools)
3093		return;
3094
3095	bioset_exit(&pools->bs);
3096	bioset_exit(&pools->io_bs);
3097
3098	kfree(pools);
3099}
3100
3101struct dm_pr {
3102	u64	old_key;
3103	u64	new_key;
3104	u32	flags;
3105	bool	abort;
3106	bool	fail_early;
3107	int	ret;
3108	enum pr_type type;
3109};
3110
3111static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3112		      struct dm_pr *pr)
3113{
3114	struct mapped_device *md = bdev->bd_disk->private_data;
3115	struct dm_table *table;
3116	struct dm_target *ti;
3117	int ret = -ENOTTY, srcu_idx;
3118
3119	table = dm_get_live_table(md, &srcu_idx);
3120	if (!table || !dm_table_get_size(table))
3121		goto out;
3122
3123	/* We only support devices that have a single target */
3124	if (table->num_targets != 1)
3125		goto out;
3126	ti = dm_table_get_target(table, 0);
3127
3128	if (dm_suspended_md(md)) {
3129		ret = -EAGAIN;
3130		goto out;
3131	}
3132
3133	ret = -EINVAL;
3134	if (!ti->type->iterate_devices)
3135		goto out;
3136
3137	ti->type->iterate_devices(ti, fn, pr);
3138	ret = 0;
3139out:
3140	dm_put_live_table(md, srcu_idx);
3141	return ret;
3142}
3143
3144/*
3145 * For register / unregister we need to manually call out to every path.
3146 */
3147static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3148			    sector_t start, sector_t len, void *data)
3149{
3150	struct dm_pr *pr = data;
3151	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3152	int ret;
3153
3154	if (!ops || !ops->pr_register) {
3155		pr->ret = -EOPNOTSUPP;
3156		return -1;
3157	}
3158
3159	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3160	if (!ret)
3161		return 0;
3162
3163	if (!pr->ret)
3164		pr->ret = ret;
3165
3166	if (pr->fail_early)
3167		return -1;
3168
3169	return 0;
3170}
3171
3172static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3173			  u32 flags)
3174{
3175	struct dm_pr pr = {
3176		.old_key	= old_key,
3177		.new_key	= new_key,
3178		.flags		= flags,
3179		.fail_early	= true,
3180		.ret		= 0,
3181	};
3182	int ret;
3183
3184	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3185	if (ret) {
3186		/* Didn't even get to register a path */
3187		return ret;
 
 
 
 
3188	}
3189
3190	if (!pr.ret)
3191		return 0;
3192	ret = pr.ret;
3193
3194	if (!new_key)
3195		return ret;
3196
3197	/* unregister all paths if we failed to register any path */
3198	pr.old_key = new_key;
3199	pr.new_key = 0;
3200	pr.flags = 0;
3201	pr.fail_early = false;
3202	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3203	return ret;
3204}
3205
3206
3207static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3208			   sector_t start, sector_t len, void *data)
3209{
3210	struct dm_pr *pr = data;
3211	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3212
3213	if (!ops || !ops->pr_reserve) {
3214		pr->ret = -EOPNOTSUPP;
3215		return -1;
3216	}
3217
3218	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3219	if (!pr->ret)
3220		return -1;
3221
3222	return 0;
3223}
3224
3225static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3226			 u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= key,
3230		.flags		= flags,
3231		.type		= type,
3232		.fail_early	= false,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3238	if (ret)
3239		return ret;
3240
3241	return pr.ret;
3242}
3243
3244/*
3245 * If there is a non-All Registrants type of reservation, the release must be
3246 * sent down the holding path. For the cases where there is no reservation or
3247 * the path is not the holder the device will also return success, so we must
3248 * try each path to make sure we got the correct path.
3249 */
3250static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3251			   sector_t start, sector_t len, void *data)
3252{
3253	struct dm_pr *pr = data;
3254	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3255
3256	if (!ops || !ops->pr_release) {
3257		pr->ret = -EOPNOTSUPP;
3258		return -1;
3259	}
3260
3261	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3262	if (pr->ret)
3263		return -1;
3264
3265	return 0;
 
 
 
 
 
 
 
3266}
3267
3268static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3269{
3270	struct dm_pr pr = {
3271		.old_key	= key,
3272		.type		= type,
3273		.fail_early	= false,
3274	};
3275	int ret;
3276
3277	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3278	if (ret)
3279		return ret;
3280
3281	return pr.ret;
3282}
3283
3284static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3285			   sector_t start, sector_t len, void *data)
3286{
3287	struct dm_pr *pr = data;
3288	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3289
3290	if (!ops || !ops->pr_preempt) {
3291		pr->ret = -EOPNOTSUPP;
3292		return -1;
3293	}
3294
3295	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3296				  pr->abort);
3297	if (!pr->ret)
3298		return -1;
3299
3300	return 0;
 
 
 
 
 
 
 
3301}
3302
3303static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3304			 enum pr_type type, bool abort)
3305{
3306	struct dm_pr pr = {
3307		.new_key	= new_key,
3308		.old_key	= old_key,
3309		.type		= type,
3310		.fail_early	= false,
3311	};
3312	int ret;
3313
3314	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3315	if (ret)
3316		return ret;
3317
3318	return pr.ret;
 
 
 
 
 
 
 
3319}
3320
3321static int dm_pr_clear(struct block_device *bdev, u64 key)
3322{
3323	struct mapped_device *md = bdev->bd_disk->private_data;
3324	const struct pr_ops *ops;
3325	int r, srcu_idx;
3326
3327	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3328	if (r < 0)
3329		goto out;
3330
3331	ops = bdev->bd_disk->fops->pr_ops;
3332	if (ops && ops->pr_clear)
3333		r = ops->pr_clear(bdev, key);
3334	else
3335		r = -EOPNOTSUPP;
3336out:
3337	dm_unprepare_ioctl(md, srcu_idx);
3338	return r;
3339}
3340
3341static const struct pr_ops dm_pr_ops = {
3342	.pr_register	= dm_pr_register,
3343	.pr_reserve	= dm_pr_reserve,
3344	.pr_release	= dm_pr_release,
3345	.pr_preempt	= dm_pr_preempt,
3346	.pr_clear	= dm_pr_clear,
3347};
3348
3349static const struct block_device_operations dm_blk_dops = {
3350	.submit_bio = dm_submit_bio,
3351	.poll_bio = dm_poll_bio,
3352	.open = dm_blk_open,
3353	.release = dm_blk_close,
3354	.ioctl = dm_blk_ioctl,
3355	.getgeo = dm_blk_getgeo,
3356	.report_zones = dm_blk_report_zones,
3357	.pr_ops = &dm_pr_ops,
3358	.owner = THIS_MODULE
3359};
3360
3361static const struct block_device_operations dm_rq_blk_dops = {
3362	.open = dm_blk_open,
3363	.release = dm_blk_close,
3364	.ioctl = dm_blk_ioctl,
3365	.getgeo = dm_blk_getgeo,
3366	.pr_ops = &dm_pr_ops,
3367	.owner = THIS_MODULE
3368};
3369
3370static const struct dax_operations dm_dax_ops = {
3371	.direct_access = dm_dax_direct_access,
3372	.zero_page_range = dm_dax_zero_page_range,
3373	.recovery_write = dm_dax_recovery_write,
 
3374};
3375
3376/*
3377 * module hooks
3378 */
3379module_init(dm_init);
3380module_exit(dm_exit);
3381
3382module_param(major, uint, 0);
3383MODULE_PARM_DESC(major, "The major number of the device mapper");
3384
3385module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3386MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3387
3388module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3389MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3390
3391module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3392MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3393
3394MODULE_DESCRIPTION(DM_NAME " driver");
3395MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3396MODULE_LICENSE("GPL");
v5.4
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
 
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
 
  15#include <linux/sched/signal.h>
  16#include <linux/blkpg.h>
  17#include <linux/bio.h>
  18#include <linux/mempool.h>
  19#include <linux/dax.h>
  20#include <linux/slab.h>
  21#include <linux/idr.h>
  22#include <linux/uio.h>
  23#include <linux/hdreg.h>
  24#include <linux/delay.h>
  25#include <linux/wait.h>
  26#include <linux/pr.h>
  27#include <linux/refcount.h>
 
 
 
  28
  29#define DM_MSG_PREFIX "core"
  30
  31/*
  32 * Cookies are numeric values sent with CHANGE and REMOVE
  33 * uevents while resuming, removing or renaming the device.
  34 */
  35#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  36#define DM_COOKIE_LENGTH 24
  37
 
 
 
 
 
 
 
  38static const char *_name = DM_NAME;
  39
  40static unsigned int major = 0;
  41static unsigned int _major = 0;
  42
  43static DEFINE_IDR(_minor_idr);
  44
  45static DEFINE_SPINLOCK(_minor_lock);
  46
  47static void do_deferred_remove(struct work_struct *w);
  48
  49static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  50
  51static struct workqueue_struct *deferred_remove_workqueue;
  52
  53atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  54DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  55
  56void dm_issue_global_event(void)
  57{
  58	atomic_inc(&dm_global_event_nr);
  59	wake_up(&dm_global_eventq);
  60}
  61
 
 
 
 
  62/*
  63 * One of these is allocated (on-stack) per original bio.
  64 */
  65struct clone_info {
  66	struct dm_table *map;
  67	struct bio *bio;
  68	struct dm_io *io;
  69	sector_t sector;
  70	unsigned sector_count;
 
 
  71};
  72
  73/*
  74 * One of these is allocated per clone bio.
  75 */
  76#define DM_TIO_MAGIC 7282014
  77struct dm_target_io {
  78	unsigned magic;
  79	struct dm_io *io;
  80	struct dm_target *ti;
  81	unsigned target_bio_nr;
  82	unsigned *len_ptr;
  83	bool inside_dm_io;
  84	struct bio clone;
  85};
  86
  87/*
  88 * One of these is allocated per original bio.
  89 * It contains the first clone used for that original.
  90 */
  91#define DM_IO_MAGIC 5191977
  92struct dm_io {
  93	unsigned magic;
  94	struct mapped_device *md;
  95	blk_status_t status;
  96	atomic_t io_count;
  97	struct bio *orig_bio;
  98	unsigned long start_time;
  99	spinlock_t endio_lock;
 100	struct dm_stats_aux stats_aux;
 101	/* last member of dm_target_io is 'struct bio' */
 102	struct dm_target_io tio;
 103};
 104
 105void *dm_per_bio_data(struct bio *bio, size_t data_size)
 106{
 107	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 108	if (!tio->inside_dm_io)
 109		return (char *)bio - offsetof(struct dm_target_io, clone) - data_size;
 110	return (char *)bio - offsetof(struct dm_target_io, clone) - offsetof(struct dm_io, tio) - data_size;
 111}
 112EXPORT_SYMBOL_GPL(dm_per_bio_data);
 113
 114struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 115{
 116	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 117	if (io->magic == DM_IO_MAGIC)
 118		return (struct bio *)((char *)io + offsetof(struct dm_io, tio) + offsetof(struct dm_target_io, clone));
 119	BUG_ON(io->magic != DM_TIO_MAGIC);
 120	return (struct bio *)((char *)io + offsetof(struct dm_target_io, clone));
 121}
 122EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 123
 124unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 125{
 126	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 127}
 128EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 129
 130#define MINOR_ALLOCED ((void *)-1)
 131
 132/*
 133 * Bits for the md->flags field.
 134 */
 135#define DMF_BLOCK_IO_FOR_SUSPEND 0
 136#define DMF_SUSPENDED 1
 137#define DMF_FROZEN 2
 138#define DMF_FREEING 3
 139#define DMF_DELETING 4
 140#define DMF_NOFLUSH_SUSPENDING 5
 141#define DMF_DEFERRED_REMOVE 6
 142#define DMF_SUSPENDED_INTERNALLY 7
 143
 144#define DM_NUMA_NODE NUMA_NO_NODE
 145static int dm_numa_node = DM_NUMA_NODE;
 146
 147/*
 148 * For mempools pre-allocation at the table loading time.
 149 */
 150struct dm_md_mempools {
 151	struct bio_set bs;
 152	struct bio_set io_bs;
 153};
 
 
 154
 155struct table_device {
 156	struct list_head list;
 157	refcount_t count;
 158	struct dm_dev dm_dev;
 159};
 160
 161/*
 162 * Bio-based DM's mempools' reserved IOs set by the user.
 163 */
 164#define RESERVED_BIO_BASED_IOS		16
 165static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 166
 167static int __dm_get_module_param_int(int *module_param, int min, int max)
 168{
 169	int param = READ_ONCE(*module_param);
 170	int modified_param = 0;
 171	bool modified = true;
 172
 173	if (param < min)
 174		modified_param = min;
 175	else if (param > max)
 176		modified_param = max;
 177	else
 178		modified = false;
 179
 180	if (modified) {
 181		(void)cmpxchg(module_param, param, modified_param);
 182		param = modified_param;
 183	}
 184
 185	return param;
 186}
 187
 188unsigned __dm_get_module_param(unsigned *module_param,
 189			       unsigned def, unsigned max)
 190{
 191	unsigned param = READ_ONCE(*module_param);
 192	unsigned modified_param = 0;
 193
 194	if (!param)
 195		modified_param = def;
 196	else if (param > max)
 197		modified_param = max;
 198
 199	if (modified_param) {
 200		(void)cmpxchg(module_param, param, modified_param);
 201		param = modified_param;
 202	}
 203
 204	return param;
 205}
 206
 207unsigned dm_get_reserved_bio_based_ios(void)
 208{
 209	return __dm_get_module_param(&reserved_bio_based_ios,
 210				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 211}
 212EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 213
 214static unsigned dm_get_numa_node(void)
 215{
 216	return __dm_get_module_param_int(&dm_numa_node,
 217					 DM_NUMA_NODE, num_online_nodes() - 1);
 218}
 219
 220static int __init local_init(void)
 221{
 222	int r;
 223
 224	r = dm_uevent_init();
 225	if (r)
 226		return r;
 227
 228	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 229	if (!deferred_remove_workqueue) {
 230		r = -ENOMEM;
 231		goto out_uevent_exit;
 232	}
 233
 234	_major = major;
 235	r = register_blkdev(_major, _name);
 236	if (r < 0)
 237		goto out_free_workqueue;
 238
 239	if (!_major)
 240		_major = r;
 241
 242	return 0;
 243
 244out_free_workqueue:
 245	destroy_workqueue(deferred_remove_workqueue);
 246out_uevent_exit:
 247	dm_uevent_exit();
 248
 249	return r;
 250}
 251
 252static void local_exit(void)
 253{
 254	flush_scheduled_work();
 255	destroy_workqueue(deferred_remove_workqueue);
 256
 257	unregister_blkdev(_major, _name);
 258	dm_uevent_exit();
 259
 260	_major = 0;
 261
 262	DMINFO("cleaned up");
 263}
 264
 265static int (*_inits[])(void) __initdata = {
 266	local_init,
 267	dm_target_init,
 268	dm_linear_init,
 269	dm_stripe_init,
 270	dm_io_init,
 271	dm_kcopyd_init,
 272	dm_interface_init,
 273	dm_statistics_init,
 274};
 275
 276static void (*_exits[])(void) = {
 277	local_exit,
 278	dm_target_exit,
 279	dm_linear_exit,
 280	dm_stripe_exit,
 281	dm_io_exit,
 282	dm_kcopyd_exit,
 283	dm_interface_exit,
 284	dm_statistics_exit,
 285};
 286
 287static int __init dm_init(void)
 288{
 289	const int count = ARRAY_SIZE(_inits);
 
 290
 291	int r, i;
 
 
 
 292
 293	for (i = 0; i < count; i++) {
 294		r = _inits[i]();
 295		if (r)
 296			goto bad;
 297	}
 298
 299	return 0;
 300
 301      bad:
 302	while (i--)
 303		_exits[i]();
 304
 305	return r;
 306}
 307
 308static void __exit dm_exit(void)
 309{
 310	int i = ARRAY_SIZE(_exits);
 311
 312	while (i--)
 313		_exits[i]();
 314
 315	/*
 316	 * Should be empty by this point.
 317	 */
 318	idr_destroy(&_minor_idr);
 319}
 320
 321/*
 322 * Block device functions
 323 */
 324int dm_deleting_md(struct mapped_device *md)
 325{
 326	return test_bit(DMF_DELETING, &md->flags);
 327}
 328
 329static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 330{
 331	struct mapped_device *md;
 332
 333	spin_lock(&_minor_lock);
 334
 335	md = bdev->bd_disk->private_data;
 336	if (!md)
 337		goto out;
 338
 339	if (test_bit(DMF_FREEING, &md->flags) ||
 340	    dm_deleting_md(md)) {
 341		md = NULL;
 342		goto out;
 343	}
 344
 345	dm_get(md);
 346	atomic_inc(&md->open_count);
 347out:
 348	spin_unlock(&_minor_lock);
 349
 350	return md ? 0 : -ENXIO;
 351}
 352
 353static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 354{
 355	struct mapped_device *md;
 356
 357	spin_lock(&_minor_lock);
 358
 359	md = disk->private_data;
 360	if (WARN_ON(!md))
 361		goto out;
 362
 363	if (atomic_dec_and_test(&md->open_count) &&
 364	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 365		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 366
 367	dm_put(md);
 368out:
 369	spin_unlock(&_minor_lock);
 370}
 371
 372int dm_open_count(struct mapped_device *md)
 373{
 374	return atomic_read(&md->open_count);
 375}
 376
 377/*
 378 * Guarantees nothing is using the device before it's deleted.
 379 */
 380int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 381{
 382	int r = 0;
 383
 384	spin_lock(&_minor_lock);
 385
 386	if (dm_open_count(md)) {
 387		r = -EBUSY;
 388		if (mark_deferred)
 389			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 390	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 391		r = -EEXIST;
 392	else
 393		set_bit(DMF_DELETING, &md->flags);
 394
 395	spin_unlock(&_minor_lock);
 396
 397	return r;
 398}
 399
 400int dm_cancel_deferred_remove(struct mapped_device *md)
 401{
 402	int r = 0;
 403
 404	spin_lock(&_minor_lock);
 405
 406	if (test_bit(DMF_DELETING, &md->flags))
 407		r = -EBUSY;
 408	else
 409		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 410
 411	spin_unlock(&_minor_lock);
 412
 413	return r;
 414}
 415
 416static void do_deferred_remove(struct work_struct *w)
 417{
 418	dm_deferred_remove();
 419}
 420
 421sector_t dm_get_size(struct mapped_device *md)
 422{
 423	return get_capacity(md->disk);
 424}
 425
 426struct request_queue *dm_get_md_queue(struct mapped_device *md)
 427{
 428	return md->queue;
 429}
 430
 431struct dm_stats *dm_get_stats(struct mapped_device *md)
 432{
 433	return &md->stats;
 434}
 435
 436static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 437{
 438	struct mapped_device *md = bdev->bd_disk->private_data;
 439
 440	return dm_get_geometry(md, geo);
 441}
 442
 443static int dm_blk_report_zones(struct gendisk *disk, sector_t sector,
 444			       struct blk_zone *zones, unsigned int *nr_zones)
 445{
 446#ifdef CONFIG_BLK_DEV_ZONED
 447	struct mapped_device *md = disk->private_data;
 448	struct dm_target *tgt;
 449	struct dm_table *map;
 450	int srcu_idx, ret;
 451
 452	if (dm_suspended_md(md))
 453		return -EAGAIN;
 454
 455	map = dm_get_live_table(md, &srcu_idx);
 456	if (!map)
 457		return -EIO;
 458
 459	tgt = dm_table_find_target(map, sector);
 460	if (!tgt) {
 461		ret = -EIO;
 462		goto out;
 463	}
 464
 465	/*
 466	 * If we are executing this, we already know that the block device
 467	 * is a zoned device and so each target should have support for that
 468	 * type of drive. A missing report_zones method means that the target
 469	 * driver has a problem.
 470	 */
 471	if (WARN_ON(!tgt->type->report_zones)) {
 472		ret = -EIO;
 473		goto out;
 474	}
 475
 476	/*
 477	 * blkdev_report_zones() will loop and call this again to cover all the
 478	 * zones of the target, eventually moving on to the next target.
 479	 * So there is no need to loop here trying to fill the entire array
 480	 * of zones.
 481	 */
 482	ret = tgt->type->report_zones(tgt, sector, zones, nr_zones);
 483
 484out:
 485	dm_put_live_table(md, srcu_idx);
 486	return ret;
 487#else
 488	return -ENOTSUPP;
 489#endif
 490}
 491
 492static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 493			    struct block_device **bdev)
 494	__acquires(md->io_barrier)
 495{
 496	struct dm_target *tgt;
 497	struct dm_table *map;
 498	int r;
 499
 500retry:
 501	r = -ENOTTY;
 502	map = dm_get_live_table(md, srcu_idx);
 503	if (!map || !dm_table_get_size(map))
 504		return r;
 505
 506	/* We only support devices that have a single target */
 507	if (dm_table_get_num_targets(map) != 1)
 508		return r;
 509
 510	tgt = dm_table_get_target(map, 0);
 511	if (!tgt->type->prepare_ioctl)
 512		return r;
 513
 514	if (dm_suspended_md(md))
 515		return -EAGAIN;
 516
 517	r = tgt->type->prepare_ioctl(tgt, bdev);
 518	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 519		dm_put_live_table(md, *srcu_idx);
 520		msleep(10);
 521		goto retry;
 522	}
 523
 524	return r;
 525}
 526
 527static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 528	__releases(md->io_barrier)
 529{
 530	dm_put_live_table(md, srcu_idx);
 531}
 532
 533static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 534			unsigned int cmd, unsigned long arg)
 535{
 536	struct mapped_device *md = bdev->bd_disk->private_data;
 537	int r, srcu_idx;
 538
 539	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 540	if (r < 0)
 541		goto out;
 542
 543	if (r > 0) {
 544		/*
 545		 * Target determined this ioctl is being issued against a
 546		 * subset of the parent bdev; require extra privileges.
 547		 */
 548		if (!capable(CAP_SYS_RAWIO)) {
 549			DMWARN_LIMIT(
 550	"%s: sending ioctl %x to DM device without required privilege.",
 551				current->comm, cmd);
 552			r = -ENOIOCTLCMD;
 553			goto out;
 554		}
 555	}
 556
 557	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 558out:
 559	dm_unprepare_ioctl(md, srcu_idx);
 560	return r;
 561}
 562
 563static void start_io_acct(struct dm_io *io);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 564
 565static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 566{
 567	struct dm_io *io;
 568	struct dm_target_io *tio;
 569	struct bio *clone;
 570
 571	clone = bio_alloc_bioset(GFP_NOIO, 0, &md->io_bs);
 572	if (!clone)
 573		return NULL;
 574
 575	tio = container_of(clone, struct dm_target_io, clone);
 576	tio->inside_dm_io = true;
 577	tio->io = NULL;
 578
 579	io = container_of(tio, struct dm_io, tio);
 580	io->magic = DM_IO_MAGIC;
 581	io->status = 0;
 582	atomic_set(&io->io_count, 1);
 
 
 
 583	io->orig_bio = bio;
 584	io->md = md;
 585	spin_lock_init(&io->endio_lock);
 
 
 586
 587	start_io_acct(io);
 
 588
 589	return io;
 590}
 591
 592static void free_io(struct mapped_device *md, struct dm_io *io)
 593{
 594	bio_put(&io->tio.clone);
 595}
 596
 597static struct dm_target_io *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 598				      unsigned target_bio_nr, gfp_t gfp_mask)
 599{
 
 600	struct dm_target_io *tio;
 
 601
 602	if (!ci->io->tio.io) {
 603		/* the dm_target_io embedded in ci->io is available */
 604		tio = &ci->io->tio;
 
 
 605	} else {
 606		struct bio *clone = bio_alloc_bioset(gfp_mask, 0, &ci->io->md->bs);
 
 607		if (!clone)
 608			return NULL;
 609
 610		tio = container_of(clone, struct dm_target_io, clone);
 611		tio->inside_dm_io = false;
 
 
 
 612	}
 613
 614	tio->magic = DM_TIO_MAGIC;
 615	tio->io = ci->io;
 616	tio->ti = ti;
 617	tio->target_bio_nr = target_bio_nr;
 
 
 618
 619	return tio;
 620}
 621
 622static void free_tio(struct dm_target_io *tio)
 623{
 624	if (tio->inside_dm_io)
 625		return;
 626	bio_put(&tio->clone);
 627}
 628
 629static bool md_in_flight_bios(struct mapped_device *md)
 630{
 631	int cpu;
 632	struct hd_struct *part = &dm_disk(md)->part0;
 633	long sum = 0;
 634
 635	for_each_possible_cpu(cpu) {
 636		sum += part_stat_local_read_cpu(part, in_flight[0], cpu);
 637		sum += part_stat_local_read_cpu(part, in_flight[1], cpu);
 638	}
 639
 640	return sum != 0;
 641}
 642
 643static bool md_in_flight(struct mapped_device *md)
 644{
 645	if (queue_is_mq(md->queue))
 646		return blk_mq_queue_inflight(md->queue);
 647	else
 648		return md_in_flight_bios(md);
 649}
 650
 651static void start_io_acct(struct dm_io *io)
 652{
 653	struct mapped_device *md = io->md;
 654	struct bio *bio = io->orig_bio;
 655
 656	io->start_time = jiffies;
 657
 658	generic_start_io_acct(md->queue, bio_op(bio), bio_sectors(bio),
 659			      &dm_disk(md)->part0);
 660
 661	if (unlikely(dm_stats_used(&md->stats)))
 662		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 663				    bio->bi_iter.bi_sector, bio_sectors(bio),
 664				    false, 0, &io->stats_aux);
 665}
 666
 667static void end_io_acct(struct dm_io *io)
 668{
 669	struct mapped_device *md = io->md;
 670	struct bio *bio = io->orig_bio;
 671	unsigned long duration = jiffies - io->start_time;
 672
 673	generic_end_io_acct(md->queue, bio_op(bio), &dm_disk(md)->part0,
 674			    io->start_time);
 675
 676	if (unlikely(dm_stats_used(&md->stats)))
 677		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 678				    bio->bi_iter.bi_sector, bio_sectors(bio),
 679				    true, duration, &io->stats_aux);
 680
 681	/* nudge anyone waiting on suspend queue */
 682	if (unlikely(wq_has_sleeper(&md->wait)))
 683		wake_up(&md->wait);
 684}
 685
 686/*
 687 * Add the bio to the list of deferred io.
 688 */
 689static void queue_io(struct mapped_device *md, struct bio *bio)
 690{
 691	unsigned long flags;
 692
 693	spin_lock_irqsave(&md->deferred_lock, flags);
 694	bio_list_add(&md->deferred, bio);
 695	spin_unlock_irqrestore(&md->deferred_lock, flags);
 696	queue_work(md->wq, &md->work);
 697}
 698
 699/*
 700 * Everyone (including functions in this file), should use this
 701 * function to access the md->map field, and make sure they call
 702 * dm_put_live_table() when finished.
 703 */
 704struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 
 705{
 706	*srcu_idx = srcu_read_lock(&md->io_barrier);
 707
 708	return srcu_dereference(md->map, &md->io_barrier);
 709}
 710
 711void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 
 712{
 713	srcu_read_unlock(&md->io_barrier, srcu_idx);
 714}
 715
 716void dm_sync_table(struct mapped_device *md)
 717{
 718	synchronize_srcu(&md->io_barrier);
 719	synchronize_rcu_expedited();
 720}
 721
 722/*
 723 * A fast alternative to dm_get_live_table/dm_put_live_table.
 724 * The caller must not block between these two functions.
 725 */
 726static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 727{
 728	rcu_read_lock();
 729	return rcu_dereference(md->map);
 730}
 731
 732static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 733{
 734	rcu_read_unlock();
 735}
 736
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 737static char *_dm_claim_ptr = "I belong to device-mapper";
 738
 739/*
 740 * Open a table device so we can use it as a map destination.
 741 */
 742static int open_table_device(struct table_device *td, dev_t dev,
 743			     struct mapped_device *md)
 744{
 
 745	struct block_device *bdev;
 746
 747	int r;
 748
 749	BUG_ON(td->dm_dev.bdev);
 
 
 
 750
 751	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _dm_claim_ptr);
 752	if (IS_ERR(bdev))
 753		return PTR_ERR(bdev);
 
 
 754
 755	r = bd_link_disk_holder(bdev, dm_disk(md));
 756	if (r) {
 757		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 758		return r;
 
 
 
 
 
 759	}
 760
 
 761	td->dm_dev.bdev = bdev;
 762	td->dm_dev.dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
 763	return 0;
 
 
 
 
 
 
 
 
 764}
 765
 766/*
 767 * Close a table device that we've been using.
 768 */
 769static void close_table_device(struct table_device *td, struct mapped_device *md)
 770{
 771	if (!td->dm_dev.bdev)
 772		return;
 773
 774	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 775	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 776	put_dax(td->dm_dev.dax_dev);
 777	td->dm_dev.bdev = NULL;
 778	td->dm_dev.dax_dev = NULL;
 779}
 780
 781static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 782					      fmode_t mode)
 783{
 784	struct table_device *td;
 785
 786	list_for_each_entry(td, l, list)
 787		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 788			return td;
 789
 790	return NULL;
 791}
 792
 793int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 794			struct dm_dev **result)
 795{
 796	int r;
 797	struct table_device *td;
 798
 799	mutex_lock(&md->table_devices_lock);
 800	td = find_table_device(&md->table_devices, dev, mode);
 801	if (!td) {
 802		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 803		if (!td) {
 804			mutex_unlock(&md->table_devices_lock);
 805			return -ENOMEM;
 806		}
 807
 808		td->dm_dev.mode = mode;
 809		td->dm_dev.bdev = NULL;
 810
 811		if ((r = open_table_device(td, dev, md))) {
 812			mutex_unlock(&md->table_devices_lock);
 813			kfree(td);
 814			return r;
 815		}
 816
 817		format_dev_t(td->dm_dev.name, dev);
 818
 819		refcount_set(&td->count, 1);
 820		list_add(&td->list, &md->table_devices);
 821	} else {
 822		refcount_inc(&td->count);
 823	}
 824	mutex_unlock(&md->table_devices_lock);
 825
 826	*result = &td->dm_dev;
 827	return 0;
 828}
 829EXPORT_SYMBOL_GPL(dm_get_table_device);
 830
 831void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 832{
 833	struct table_device *td = container_of(d, struct table_device, dm_dev);
 834
 835	mutex_lock(&md->table_devices_lock);
 836	if (refcount_dec_and_test(&td->count)) {
 837		close_table_device(td, md);
 838		list_del(&td->list);
 839		kfree(td);
 840	}
 841	mutex_unlock(&md->table_devices_lock);
 842}
 843EXPORT_SYMBOL(dm_put_table_device);
 844
 845static void free_table_devices(struct list_head *devices)
 846{
 847	struct list_head *tmp, *next;
 848
 849	list_for_each_safe(tmp, next, devices) {
 850		struct table_device *td = list_entry(tmp, struct table_device, list);
 851
 852		DMWARN("dm_destroy: %s still exists with %d references",
 853		       td->dm_dev.name, refcount_read(&td->count));
 854		kfree(td);
 855	}
 856}
 857
 858/*
 859 * Get the geometry associated with a dm device
 860 */
 861int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 862{
 863	*geo = md->geometry;
 864
 865	return 0;
 866}
 867
 868/*
 869 * Set the geometry of a device.
 870 */
 871int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 872{
 873	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 874
 875	if (geo->start > sz) {
 876		DMWARN("Start sector is beyond the geometry limits.");
 877		return -EINVAL;
 878	}
 879
 880	md->geometry = *geo;
 881
 882	return 0;
 883}
 884
 885static int __noflush_suspending(struct mapped_device *md)
 886{
 887	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 888}
 889
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 890/*
 891 * Decrements the number of outstanding ios that a bio has been
 892 * cloned into, completing the original io if necc.
 893 */
 894static void dec_pending(struct dm_io *io, blk_status_t error)
 895{
 896	unsigned long flags;
 897	blk_status_t io_error;
 898	struct bio *bio;
 
 899	struct mapped_device *md = io->md;
 
 900
 901	/* Push-back supersedes any I/O errors */
 902	if (unlikely(error)) {
 903		spin_lock_irqsave(&io->endio_lock, flags);
 904		if (!(io->status == BLK_STS_DM_REQUEUE && __noflush_suspending(md)))
 905			io->status = error;
 906		spin_unlock_irqrestore(&io->endio_lock, flags);
 907	}
 908
 909	if (atomic_dec_and_test(&io->io_count)) {
 910		if (io->status == BLK_STS_DM_REQUEUE) {
 911			/*
 912			 * Target requested pushing back the I/O.
 
 
 913			 */
 914			spin_lock_irqsave(&md->deferred_lock, flags);
 915			if (__noflush_suspending(md))
 916				/* NOTE early return due to BLK_STS_DM_REQUEUE below */
 917				bio_list_add_head(&md->deferred, io->orig_bio);
 918			else
 919				/* noflush suspend was interrupted. */
 920				io->status = BLK_STS_IOERR;
 921			spin_unlock_irqrestore(&md->deferred_lock, flags);
 922		}
 923
 924		io_error = io->status;
 925		bio = io->orig_bio;
 926		end_io_acct(io);
 927		free_io(md, io);
 928
 929		if (io_error == BLK_STS_DM_REQUEUE)
 930			return;
 931
 932		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 
 
 933			/*
 934			 * Preflush done for flush with data, reissue
 935			 * without REQ_PREFLUSH.
 936			 */
 937			bio->bi_opf &= ~REQ_PREFLUSH;
 938			queue_io(md, bio);
 939		} else {
 940			/* done with normal IO or empty flush */
 941			if (io_error)
 942				bio->bi_status = io_error;
 943			bio_endio(bio);
 944		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 945	}
 
 946}
 947
 948void disable_discard(struct mapped_device *md)
 949{
 950	struct queue_limits *limits = dm_get_queue_limits(md);
 
 951
 952	/* device doesn't really support DISCARD, disable it */
 953	limits->max_discard_sectors = 0;
 954	blk_queue_flag_clear(QUEUE_FLAG_DISCARD, md->queue);
 955}
 956
 957void disable_write_same(struct mapped_device *md)
 958{
 959	struct queue_limits *limits = dm_get_queue_limits(md);
 960
 961	/* device doesn't really support WRITE SAME, disable it */
 962	limits->max_write_same_sectors = 0;
 963}
 964
 965void disable_write_zeroes(struct mapped_device *md)
 966{
 967	struct queue_limits *limits = dm_get_queue_limits(md);
 968
 969	/* device doesn't really support WRITE ZEROES, disable it */
 970	limits->max_write_zeroes_sectors = 0;
 971}
 972
 
 
 
 
 
 973static void clone_endio(struct bio *bio)
 974{
 975	blk_status_t error = bio->bi_status;
 976	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 
 
 977	struct dm_io *io = tio->io;
 978	struct mapped_device *md = tio->io->md;
 979	dm_endio_fn endio = tio->ti->type->end_io;
 980
 981	if (unlikely(error == BLK_STS_TARGET) && md->type != DM_TYPE_NVME_BIO_BASED) {
 982		if (bio_op(bio) == REQ_OP_DISCARD &&
 983		    !bio->bi_disk->queue->limits.max_discard_sectors)
 984			disable_discard(md);
 985		else if (bio_op(bio) == REQ_OP_WRITE_SAME &&
 986			 !bio->bi_disk->queue->limits.max_write_same_sectors)
 987			disable_write_same(md);
 988		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
 989			 !bio->bi_disk->queue->limits.max_write_zeroes_sectors)
 990			disable_write_zeroes(md);
 991	}
 992
 
 
 
 
 993	if (endio) {
 994		int r = endio(tio->ti, bio, &error);
 995		switch (r) {
 996		case DM_ENDIO_REQUEUE:
 997			error = BLK_STS_DM_REQUEUE;
 998			/*FALLTHRU*/
 
 
 
 
 
 
 
 
 
 
 
 999		case DM_ENDIO_DONE:
1000			break;
1001		case DM_ENDIO_INCOMPLETE:
1002			/* The target will handle the io */
1003			return;
1004		default:
1005			DMWARN("unimplemented target endio return value: %d", r);
1006			BUG();
1007		}
1008	}
1009
1010	free_tio(tio);
1011	dec_pending(io, error);
 
 
 
 
1012}
1013
1014/*
1015 * Return maximum size of I/O possible at the supplied sector up to the current
1016 * target boundary.
1017 */
1018static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 
1019{
1020	sector_t target_offset = dm_target_offset(ti, sector);
1021
1022	return ti->len - target_offset;
1023}
1024
1025static sector_t max_io_len(sector_t sector, struct dm_target *ti)
1026{
1027	sector_t len = max_io_len_target_boundary(sector, ti);
1028	sector_t offset, max_len;
1029
1030	/*
1031	 * Does the target need to split even further?
1032	 */
1033	if (ti->max_io_len) {
1034		offset = dm_target_offset(ti, sector);
1035		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1036			max_len = sector_div(offset, ti->max_io_len);
1037		else
1038			max_len = offset & (ti->max_io_len - 1);
1039		max_len = ti->max_io_len - max_len;
1040
1041		if (len > max_len)
1042			len = max_len;
1043	}
1044
1045	return len;
1046}
1047
1048int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1049{
1050	if (len > UINT_MAX) {
1051		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1052		      (unsigned long long)len, UINT_MAX);
1053		ti->error = "Maximum size of target IO is too large";
1054		return -EINVAL;
1055	}
1056
1057	ti->max_io_len = (uint32_t) len;
1058
1059	return 0;
1060}
1061EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1062
1063static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1064						sector_t sector, int *srcu_idx)
1065	__acquires(md->io_barrier)
1066{
1067	struct dm_table *map;
1068	struct dm_target *ti;
1069
1070	map = dm_get_live_table(md, srcu_idx);
1071	if (!map)
1072		return NULL;
1073
1074	ti = dm_table_find_target(map, sector);
1075	if (!ti)
1076		return NULL;
1077
1078	return ti;
1079}
1080
1081static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1082				 long nr_pages, void **kaddr, pfn_t *pfn)
 
1083{
1084	struct mapped_device *md = dax_get_private(dax_dev);
1085	sector_t sector = pgoff * PAGE_SECTORS;
1086	struct dm_target *ti;
1087	long len, ret = -EIO;
1088	int srcu_idx;
1089
1090	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1091
1092	if (!ti)
1093		goto out;
1094	if (!ti->type->direct_access)
1095		goto out;
1096	len = max_io_len(sector, ti) / PAGE_SECTORS;
1097	if (len < 1)
1098		goto out;
1099	nr_pages = min(len, nr_pages);
1100	ret = ti->type->direct_access(ti, pgoff, nr_pages, kaddr, pfn);
1101
1102 out:
1103	dm_put_live_table(md, srcu_idx);
1104
1105	return ret;
1106}
1107
1108static bool dm_dax_supported(struct dax_device *dax_dev, struct block_device *bdev,
1109		int blocksize, sector_t start, sector_t len)
1110{
1111	struct mapped_device *md = dax_get_private(dax_dev);
1112	struct dm_table *map;
1113	int srcu_idx;
1114	bool ret;
1115
1116	map = dm_get_live_table(md, &srcu_idx);
1117	if (!map)
1118		return false;
1119
1120	ret = dm_table_supports_dax(map, device_supports_dax, &blocksize);
1121
1122	dm_put_live_table(md, srcu_idx);
1123
1124	return ret;
1125}
1126
1127static size_t dm_dax_copy_from_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1128				    void *addr, size_t bytes, struct iov_iter *i)
1129{
1130	struct mapped_device *md = dax_get_private(dax_dev);
1131	sector_t sector = pgoff * PAGE_SECTORS;
1132	struct dm_target *ti;
1133	long ret = 0;
1134	int srcu_idx;
1135
1136	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1137
1138	if (!ti)
1139		goto out;
1140	if (!ti->type->dax_copy_from_iter) {
1141		ret = copy_from_iter(addr, bytes, i);
 
 
 
1142		goto out;
1143	}
1144	ret = ti->type->dax_copy_from_iter(ti, pgoff, addr, bytes, i);
1145 out:
1146	dm_put_live_table(md, srcu_idx);
1147
1148	return ret;
1149}
1150
1151static size_t dm_dax_copy_to_iter(struct dax_device *dax_dev, pgoff_t pgoff,
1152		void *addr, size_t bytes, struct iov_iter *i)
1153{
1154	struct mapped_device *md = dax_get_private(dax_dev);
1155	sector_t sector = pgoff * PAGE_SECTORS;
1156	struct dm_target *ti;
 
1157	long ret = 0;
1158	int srcu_idx;
1159
1160	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
1161
1162	if (!ti)
1163		goto out;
1164	if (!ti->type->dax_copy_to_iter) {
1165		ret = copy_to_iter(addr, bytes, i);
1166		goto out;
1167	}
1168	ret = ti->type->dax_copy_to_iter(ti, pgoff, addr, bytes, i);
1169 out:
1170	dm_put_live_table(md, srcu_idx);
1171
1172	return ret;
1173}
1174
1175/*
1176 * A target may call dm_accept_partial_bio only from the map routine.  It is
1177 * allowed for all bio types except REQ_PREFLUSH and REQ_OP_ZONE_RESET.
 
 
1178 *
1179 * dm_accept_partial_bio informs the dm that the target only wants to process
1180 * additional n_sectors sectors of the bio and the rest of the data should be
1181 * sent in a next bio.
1182 *
1183 * A diagram that explains the arithmetics:
1184 * +--------------------+---------------+-------+
1185 * |         1          |       2       |   3   |
1186 * +--------------------+---------------+-------+
1187 *
1188 * <-------------- *tio->len_ptr --------------->
1189 *                      <------- bi_size ------->
1190 *                      <-- n_sectors -->
1191 *
1192 * Region 1 was already iterated over with bio_advance or similar function.
1193 *	(it may be empty if the target doesn't use bio_advance)
1194 * Region 2 is the remaining bio size that the target wants to process.
1195 *	(it may be empty if region 1 is non-empty, although there is no reason
1196 *	 to make it empty)
1197 * The target requires that region 3 is to be sent in the next bio.
1198 *
1199 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1200 * the partially processed part (the sum of regions 1+2) must be the same for all
1201 * copies of the bio.
1202 */
1203void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1204{
1205	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1206	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1207	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
1208	BUG_ON(bi_size > *tio->len_ptr);
1209	BUG_ON(n_sectors > bi_size);
1210	*tio->len_ptr -= bi_size - n_sectors;
 
 
 
 
 
1211	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
1212}
1213EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1214
1215/*
1216 * The zone descriptors obtained with a zone report indicate
1217 * zone positions within the underlying device of the target. The zone
1218 * descriptors must be remapped to match their position within the dm device.
1219 * The caller target should obtain the zones information using
1220 * blkdev_report_zones() to ensure that remapping for partition offset is
1221 * already handled.
1222 */
1223void dm_remap_zone_report(struct dm_target *ti, sector_t start,
1224			  struct blk_zone *zones, unsigned int *nr_zones)
1225{
1226#ifdef CONFIG_BLK_DEV_ZONED
1227	struct blk_zone *zone;
1228	unsigned int nrz = *nr_zones;
1229	int i;
1230
1231	/*
1232	 * Remap the start sector and write pointer position of the zones in
1233	 * the array. Since we may have obtained from the target underlying
1234	 * device more zones that the target size, also adjust the number
1235	 * of zones.
1236	 */
1237	for (i = 0; i < nrz; i++) {
1238		zone = zones + i;
1239		if (zone->start >= start + ti->len) {
1240			memset(zone, 0, sizeof(struct blk_zone) * (nrz - i));
1241			break;
1242		}
 
1243
1244		zone->start = zone->start + ti->begin - start;
1245		if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
1246			continue;
1247
1248		if (zone->cond == BLK_ZONE_COND_FULL)
1249			zone->wp = zone->start + zone->len;
1250		else if (zone->cond == BLK_ZONE_COND_EMPTY)
1251			zone->wp = zone->start;
1252		else
1253			zone->wp = zone->wp + ti->begin - start;
 
 
1254	}
1255
1256	*nr_zones = i;
1257#else /* !CONFIG_BLK_DEV_ZONED */
1258	*nr_zones = 0;
1259#endif
1260}
1261EXPORT_SYMBOL_GPL(dm_remap_zone_report);
1262
1263static blk_qc_t __map_bio(struct dm_target_io *tio)
1264{
1265	int r;
1266	sector_t sector;
1267	struct bio *clone = &tio->clone;
1268	struct dm_io *io = tio->io;
1269	struct mapped_device *md = io->md;
1270	struct dm_target *ti = tio->ti;
1271	blk_qc_t ret = BLK_QC_T_NONE;
1272
1273	clone->bi_end_io = clone_endio;
1274
1275	/*
1276	 * Map the clone.  If r == 0 we don't need to do
1277	 * anything, the target has assumed ownership of
1278	 * this io.
1279	 */
1280	atomic_inc(&io->io_count);
1281	sector = clone->bi_iter.bi_sector;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1282
1283	r = ti->type->map(ti, clone);
1284	switch (r) {
1285	case DM_MAPIO_SUBMITTED:
 
 
 
1286		break;
1287	case DM_MAPIO_REMAPPED:
1288		/* the bio has been remapped so dispatch it */
1289		trace_block_bio_remap(clone->bi_disk->queue, clone,
1290				      bio_dev(io->orig_bio), sector);
1291		if (md->type == DM_TYPE_NVME_BIO_BASED)
1292			ret = direct_make_request(clone);
1293		else
1294			ret = generic_make_request(clone);
1295		break;
1296	case DM_MAPIO_KILL:
1297		free_tio(tio);
1298		dec_pending(io, BLK_STS_IOERR);
1299		break;
1300	case DM_MAPIO_REQUEUE:
1301		free_tio(tio);
1302		dec_pending(io, BLK_STS_DM_REQUEUE);
 
 
 
 
 
 
1303		break;
1304	default:
1305		DMWARN("unimplemented target map return value: %d", r);
1306		BUG();
1307	}
1308
1309	return ret;
1310}
1311
1312static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1313{
1314	bio->bi_iter.bi_sector = sector;
1315	bio->bi_iter.bi_size = to_bytes(len);
1316}
1317
1318/*
1319 * Creates a bio that consists of range of complete bvecs.
1320 */
1321static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1322		     sector_t sector, unsigned len)
1323{
1324	struct bio *clone = &tio->clone;
1325
1326	__bio_clone_fast(clone, bio);
1327
1328	if (bio_integrity(bio)) {
1329		int r;
1330
1331		if (unlikely(!dm_target_has_integrity(tio->ti->type) &&
1332			     !dm_target_passes_integrity(tio->ti->type))) {
1333			DMWARN("%s: the target %s doesn't support integrity data.",
1334				dm_device_name(tio->io->md),
1335				tio->ti->type->name);
1336			return -EIO;
1337		}
1338
1339		r = bio_integrity_clone(clone, bio, GFP_NOIO);
1340		if (r < 0)
1341			return r;
1342	}
1343
1344	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1345	clone->bi_iter.bi_size = to_bytes(len);
1346
1347	if (bio_integrity(bio))
1348		bio_integrity_trim(clone);
1349
1350	return 0;
1351}
1352
1353static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1354				struct dm_target *ti, unsigned num_bios)
1355{
1356	struct dm_target_io *tio;
1357	int try;
1358
1359	if (!num_bios)
1360		return;
1361
1362	if (num_bios == 1) {
1363		tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1364		bio_list_add(blist, &tio->clone);
1365		return;
1366	}
1367
1368	for (try = 0; try < 2; try++) {
1369		int bio_nr;
1370		struct bio *bio;
1371
1372		if (try)
1373			mutex_lock(&ci->io->md->table_devices_lock);
1374		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1375			tio = alloc_tio(ci, ti, bio_nr, try ? GFP_NOIO : GFP_NOWAIT);
1376			if (!tio)
 
1377				break;
1378
1379			bio_list_add(blist, &tio->clone);
1380		}
1381		if (try)
1382			mutex_unlock(&ci->io->md->table_devices_lock);
1383		if (bio_nr == num_bios)
1384			return;
1385
1386		while ((bio = bio_list_pop(blist))) {
1387			tio = container_of(bio, struct dm_target_io, clone);
1388			free_tio(tio);
1389		}
1390	}
1391}
1392
1393static blk_qc_t __clone_and_map_simple_bio(struct clone_info *ci,
1394					   struct dm_target_io *tio, unsigned *len)
1395{
1396	struct bio *clone = &tio->clone;
 
 
1397
1398	tio->len_ptr = len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399
1400	__bio_clone_fast(clone, ci->bio);
1401	if (len)
1402		bio_setup_sector(clone, ci->sector, *len);
1403
1404	return __map_bio(tio);
1405}
1406
1407static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1408				  unsigned num_bios, unsigned *len)
1409{
1410	struct bio_list blist = BIO_EMPTY_LIST;
1411	struct bio *bio;
1412	struct dm_target_io *tio;
 
 
 
 
 
 
 
 
 
 
 
1413
1414	alloc_multiple_bios(&blist, ci, ti, num_bios);
 
 
1415
1416	while ((bio = bio_list_pop(&blist))) {
1417		tio = container_of(bio, struct dm_target_io, clone);
1418		(void) __clone_and_map_simple_bio(ci, tio, len);
1419	}
1420}
1421
1422static int __send_empty_flush(struct clone_info *ci)
1423{
1424	unsigned target_nr = 0;
1425	struct dm_target *ti;
1426
1427	/*
1428	 * Empty flush uses a statically initialized bio, as the base for
1429	 * cloning.  However, blkg association requires that a bdev is
1430	 * associated with a gendisk, which doesn't happen until the bdev is
1431	 * opened.  So, blkg association is done at issue time of the flush
1432	 * rather than when the device is created in alloc_dev().
1433	 */
1434	bio_set_dev(ci->bio, ci->io->md->bdev);
1435
1436	BUG_ON(bio_has_data(ci->bio));
1437	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1438		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1439
1440	bio_disassociate_blkg(ci->bio);
1441
1442	return 0;
1443}
1444
1445static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1446				    sector_t sector, unsigned *len)
1447{
1448	struct bio *bio = ci->bio;
1449	struct dm_target_io *tio;
1450	int r;
 
 
1451
1452	tio = alloc_tio(ci, ti, 0, GFP_NOIO);
1453	tio->len_ptr = len;
1454	r = clone_bio(tio, bio, sector, *len);
1455	if (r < 0) {
1456		free_tio(tio);
1457		return r;
1458	}
1459	(void) __map_bio(tio);
1460
1461	return 0;
 
1462}
1463
1464typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1465
1466static unsigned get_num_discard_bios(struct dm_target *ti)
1467{
1468	return ti->num_discard_bios;
1469}
1470
1471static unsigned get_num_secure_erase_bios(struct dm_target *ti)
1472{
1473	return ti->num_secure_erase_bios;
1474}
 
 
 
 
 
 
1475
1476static unsigned get_num_write_same_bios(struct dm_target *ti)
1477{
1478	return ti->num_write_same_bios;
1479}
1480
1481static unsigned get_num_write_zeroes_bios(struct dm_target *ti)
 
1482{
1483	return ti->num_write_zeroes_bios;
1484}
1485
1486static int __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1487				       unsigned num_bios)
1488{
1489	unsigned len;
 
 
 
 
 
 
 
 
 
1490
1491	/*
1492	 * Even though the device advertised support for this type of
1493	 * request, that does not mean every target supports it, and
1494	 * reconfiguration might also have changed that since the
1495	 * check was performed.
1496	 */
1497	if (!num_bios)
1498		return -EOPNOTSUPP;
1499
1500	len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1501
1502	__send_duplicate_bios(ci, ti, num_bios, &len);
1503
1504	ci->sector += len;
1505	ci->sector_count -= len;
1506
1507	return 0;
1508}
1509
1510static int __send_discard(struct clone_info *ci, struct dm_target *ti)
 
 
 
 
 
 
 
 
 
1511{
1512	return __send_changing_extent_only(ci, ti, get_num_discard_bios(ti));
1513}
1514
1515static int __send_secure_erase(struct clone_info *ci, struct dm_target *ti)
1516{
1517	return __send_changing_extent_only(ci, ti, get_num_secure_erase_bios(ti));
1518}
1519
1520static int __send_write_same(struct clone_info *ci, struct dm_target *ti)
1521{
1522	return __send_changing_extent_only(ci, ti, get_num_write_same_bios(ti));
1523}
1524
1525static int __send_write_zeroes(struct clone_info *ci, struct dm_target *ti)
1526{
1527	return __send_changing_extent_only(ci, ti, get_num_write_zeroes_bios(ti));
1528}
1529
1530static bool is_abnormal_io(struct bio *bio)
1531{
1532	bool r = false;
1533
1534	switch (bio_op(bio)) {
1535	case REQ_OP_DISCARD:
1536	case REQ_OP_SECURE_ERASE:
1537	case REQ_OP_WRITE_SAME:
1538	case REQ_OP_WRITE_ZEROES:
1539		r = true;
1540		break;
 
1541	}
1542
1543	return r;
1544}
1545
1546static bool __process_abnormal_io(struct clone_info *ci, struct dm_target *ti,
1547				  int *result)
1548{
1549	struct bio *bio = ci->bio;
1550
1551	if (bio_op(bio) == REQ_OP_DISCARD)
1552		*result = __send_discard(ci, ti);
1553	else if (bio_op(bio) == REQ_OP_SECURE_ERASE)
1554		*result = __send_secure_erase(ci, ti);
1555	else if (bio_op(bio) == REQ_OP_WRITE_SAME)
1556		*result = __send_write_same(ci, ti);
1557	else if (bio_op(bio) == REQ_OP_WRITE_ZEROES)
1558		*result = __send_write_zeroes(ci, ti);
1559	else
1560		return false;
1561
1562	return true;
1563}
1564
1565/*
1566 * Select the correct strategy for processing a non-flush bio.
1567 */
1568static int __split_and_process_non_flush(struct clone_info *ci)
1569{
 
1570	struct dm_target *ti;
1571	unsigned len;
1572	int r;
1573
1574	ti = dm_table_find_target(ci->map, ci->sector);
1575	if (!ti)
1576		return -EIO;
 
 
 
 
1577
1578	if (__process_abnormal_io(ci, ti, &r))
1579		return r;
1580
1581	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
 
 
1582
1583	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1584	if (r < 0)
1585		return r;
 
1586
1587	ci->sector += len;
1588	ci->sector_count -= len;
1589
1590	return 0;
1591}
1592
1593static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1594			    struct dm_table *map, struct bio *bio)
1595{
1596	ci->map = map;
1597	ci->io = alloc_io(md, bio);
 
 
 
1598	ci->sector = bio->bi_iter.bi_sector;
 
 
 
 
 
 
1599}
1600
1601#define __dm_part_stat_sub(part, field, subnd)	\
1602	(part_stat_get(part, field) -= (subnd))
1603
1604/*
1605 * Entry point to split a bio into clones and submit them to the targets.
1606 */
1607static blk_qc_t __split_and_process_bio(struct mapped_device *md,
1608					struct dm_table *map, struct bio *bio)
1609{
1610	struct clone_info ci;
1611	blk_qc_t ret = BLK_QC_T_NONE;
1612	int error = 0;
1613
1614	init_clone_info(&ci, md, map, bio);
1615
1616	if (bio->bi_opf & REQ_PREFLUSH) {
1617		struct bio flush_bio;
1618
 
 
1619		/*
1620		 * Use an on-stack bio for this, it's safe since we don't
1621		 * need to reference it after submit. It's just used as
1622		 * the basis for the clone(s).
1623		 */
1624		bio_init(&flush_bio, NULL, 0);
1625		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1626		ci.bio = &flush_bio;
1627		ci.sector_count = 0;
1628		error = __send_empty_flush(&ci);
1629		/* dec_pending submits any data associated with flush */
1630	} else if (bio_op(bio) == REQ_OP_ZONE_RESET) {
1631		ci.bio = bio;
1632		ci.sector_count = 0;
1633		error = __split_and_process_non_flush(&ci);
1634	} else {
1635		ci.bio = bio;
1636		ci.sector_count = bio_sectors(bio);
1637		while (ci.sector_count && !error) {
1638			error = __split_and_process_non_flush(&ci);
1639			if (current->bio_list && ci.sector_count && !error) {
1640				/*
1641				 * Remainder must be passed to generic_make_request()
1642				 * so that it gets handled *after* bios already submitted
1643				 * have been completely processed.
1644				 * We take a clone of the original to store in
1645				 * ci.io->orig_bio to be used by end_io_acct() and
1646				 * for dec_pending to use for completion handling.
1647				 */
1648				struct bio *b = bio_split(bio, bio_sectors(bio) - ci.sector_count,
1649							  GFP_NOIO, &md->queue->bio_split);
1650				ci.io->orig_bio = b;
1651
1652				/*
1653				 * Adjust IO stats for each split, otherwise upon queue
1654				 * reentry there will be redundant IO accounting.
1655				 * NOTE: this is a stop-gap fix, a proper fix involves
1656				 * significant refactoring of DM core's bio splitting
1657				 * (by eliminating DM's splitting and just using bio_split)
1658				 */
1659				part_stat_lock();
1660				__dm_part_stat_sub(&dm_disk(md)->part0,
1661						   sectors[op_stat_group(bio_op(bio))], ci.sector_count);
1662				part_stat_unlock();
1663
1664				bio_chain(b, bio);
1665				trace_block_split(md->queue, b, bio->bi_iter.bi_sector);
1666				ret = generic_make_request(bio);
1667				break;
1668			}
1669		}
1670	}
1671
1672	/* drop the extra reference count */
1673	dec_pending(ci.io, errno_to_blk_status(error));
1674	return ret;
1675}
1676
1677/*
1678 * Optimized variant of __split_and_process_bio that leverages the
1679 * fact that targets that use it do _not_ have a need to split bios.
1680 */
1681static blk_qc_t __process_bio(struct mapped_device *md, struct dm_table *map,
1682			      struct bio *bio, struct dm_target *ti)
1683{
1684	struct clone_info ci;
1685	blk_qc_t ret = BLK_QC_T_NONE;
1686	int error = 0;
1687
1688	init_clone_info(&ci, md, map, bio);
1689
1690	if (bio->bi_opf & REQ_PREFLUSH) {
1691		struct bio flush_bio;
 
 
 
1692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1693		/*
1694		 * Use an on-stack bio for this, it's safe since we don't
1695		 * need to reference it after submit. It's just used as
1696		 * the basis for the clone(s).
1697		 */
1698		bio_init(&flush_bio, NULL, 0);
1699		flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC;
1700		ci.bio = &flush_bio;
1701		ci.sector_count = 0;
1702		error = __send_empty_flush(&ci);
1703		/* dec_pending submits any data associated with flush */
1704	} else {
1705		struct dm_target_io *tio;
1706
1707		ci.bio = bio;
1708		ci.sector_count = bio_sectors(bio);
1709		if (__process_abnormal_io(&ci, ti, &error))
1710			goto out;
1711
1712		tio = alloc_tio(&ci, ti, 0, GFP_NOIO);
1713		ret = __clone_and_map_simple_bio(&ci, tio, NULL);
1714	}
1715out:
1716	/* drop the extra reference count */
1717	dec_pending(ci.io, errno_to_blk_status(error));
1718	return ret;
1719}
1720
1721static void dm_queue_split(struct mapped_device *md, struct dm_target *ti, struct bio **bio)
1722{
1723	unsigned len, sector_count;
 
 
 
1724
1725	sector_count = bio_sectors(*bio);
1726	len = min_t(sector_t, max_io_len((*bio)->bi_iter.bi_sector, ti), sector_count);
1727
1728	if (sector_count > len) {
1729		struct bio *split = bio_split(*bio, len, GFP_NOIO, &md->queue->bio_split);
 
 
 
 
 
 
 
 
 
1730
1731		bio_chain(split, *bio);
1732		trace_block_split(md->queue, split, (*bio)->bi_iter.bi_sector);
1733		generic_make_request(*bio);
1734		*bio = split;
1735	}
1736}
1737
1738static blk_qc_t dm_process_bio(struct mapped_device *md,
1739			       struct dm_table *map, struct bio *bio)
1740{
1741	blk_qc_t ret = BLK_QC_T_NONE;
1742	struct dm_target *ti = md->immutable_target;
1743
1744	if (unlikely(!map)) {
1745		bio_io_error(bio);
1746		return ret;
1747	}
1748
1749	if (!ti) {
1750		ti = dm_table_find_target(map, bio->bi_iter.bi_sector);
1751		if (unlikely(!ti)) {
1752			bio_io_error(bio);
1753			return ret;
1754		}
1755	}
1756
1757	/*
1758	 * If in ->make_request_fn we need to use blk_queue_split(), otherwise
1759	 * queue_limits for abnormal requests (e.g. discard, writesame, etc)
1760	 * won't be imposed.
1761	 */
1762	if (current->bio_list) {
1763		blk_queue_split(md->queue, &bio);
1764		if (!is_abnormal_io(bio))
1765			dm_queue_split(md, ti, &bio);
1766	}
1767
1768	if (dm_get_md_type(md) == DM_TYPE_NVME_BIO_BASED)
1769		return __process_bio(md, map, bio, ti);
1770	else
1771		return __split_and_process_bio(md, map, bio);
1772}
1773
1774static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
 
1775{
1776	struct mapped_device *md = q->queuedata;
1777	blk_qc_t ret = BLK_QC_T_NONE;
1778	int srcu_idx;
1779	struct dm_table *map;
1780
1781	map = dm_get_live_table(md, &srcu_idx);
 
 
1782
1783	/* if we're suspended, we have to queue this io for later */
1784	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1785		dm_put_live_table(md, srcu_idx);
1786
1787		if (!(bio->bi_opf & REQ_RAHEAD))
1788			queue_io(md, bio);
1789		else
1790			bio_io_error(bio);
1791		return ret;
1792	}
1793
1794	ret = dm_process_bio(md, map, bio);
1795
1796	dm_put_live_table(md, srcu_idx);
1797	return ret;
1798}
1799
1800static int dm_any_congested(void *congested_data, int bdi_bits)
1801{
1802	int r = bdi_bits;
1803	struct mapped_device *md = congested_data;
1804	struct dm_table *map;
1805
1806	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1807		if (dm_request_based(md)) {
1808			/*
1809			 * With request-based DM we only need to check the
1810			 * top-level queue for congestion.
1811			 */
1812			r = md->queue->backing_dev_info->wb.state & bdi_bits;
1813		} else {
1814			map = dm_get_live_table_fast(md);
1815			if (map)
1816				r = dm_table_any_congested(map, bdi_bits);
1817			dm_put_live_table_fast(md);
1818		}
1819	}
1820
1821	return r;
 
 
 
 
 
 
 
1822}
1823
1824/*-----------------------------------------------------------------
1825 * An IDR is used to keep track of allocated minor numbers.
1826 *---------------------------------------------------------------*/
1827static void free_minor(int minor)
1828{
1829	spin_lock(&_minor_lock);
1830	idr_remove(&_minor_idr, minor);
1831	spin_unlock(&_minor_lock);
1832}
1833
1834/*
1835 * See if the device with a specific minor # is free.
1836 */
1837static int specific_minor(int minor)
1838{
1839	int r;
1840
1841	if (minor >= (1 << MINORBITS))
1842		return -EINVAL;
1843
1844	idr_preload(GFP_KERNEL);
1845	spin_lock(&_minor_lock);
1846
1847	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1848
1849	spin_unlock(&_minor_lock);
1850	idr_preload_end();
1851	if (r < 0)
1852		return r == -ENOSPC ? -EBUSY : r;
1853	return 0;
1854}
1855
1856static int next_free_minor(int *minor)
1857{
1858	int r;
1859
1860	idr_preload(GFP_KERNEL);
1861	spin_lock(&_minor_lock);
1862
1863	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1864
1865	spin_unlock(&_minor_lock);
1866	idr_preload_end();
1867	if (r < 0)
1868		return r;
1869	*minor = r;
1870	return 0;
1871}
1872
1873static const struct block_device_operations dm_blk_dops;
 
1874static const struct dax_operations dm_dax_ops;
1875
1876static void dm_wq_work(struct work_struct *work);
1877
1878static void dm_init_normal_md_queue(struct mapped_device *md)
 
 
 
 
 
 
 
 
1879{
1880	/*
1881	 * Initialize aspects of queue that aren't relevant for blk-mq
1882	 */
1883	md->queue->backing_dev_info->congested_fn = dm_any_congested;
1884}
 
1885
1886static void cleanup_mapped_device(struct mapped_device *md)
1887{
1888	if (md->wq)
1889		destroy_workqueue(md->wq);
1890	bioset_exit(&md->bs);
1891	bioset_exit(&md->io_bs);
1892
1893	if (md->dax_dev) {
 
1894		kill_dax(md->dax_dev);
1895		put_dax(md->dax_dev);
1896		md->dax_dev = NULL;
1897	}
1898
 
1899	if (md->disk) {
1900		spin_lock(&_minor_lock);
1901		md->disk->private_data = NULL;
1902		spin_unlock(&_minor_lock);
1903		del_gendisk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904		put_disk(md->disk);
1905	}
1906
1907	if (md->queue)
1908		blk_cleanup_queue(md->queue);
 
 
1909
1910	cleanup_srcu_struct(&md->io_barrier);
1911
1912	if (md->bdev) {
1913		bdput(md->bdev);
1914		md->bdev = NULL;
1915	}
1916
1917	mutex_destroy(&md->suspend_lock);
1918	mutex_destroy(&md->type_lock);
1919	mutex_destroy(&md->table_devices_lock);
 
1920
1921	dm_mq_cleanup_mapped_device(md);
1922}
1923
1924/*
1925 * Allocate and initialise a blank device with a given minor.
1926 */
1927static struct mapped_device *alloc_dev(int minor)
1928{
1929	int r, numa_node_id = dm_get_numa_node();
1930	struct mapped_device *md;
1931	void *old_md;
1932
1933	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1934	if (!md) {
1935		DMWARN("unable to allocate device, out of memory.");
1936		return NULL;
1937	}
1938
1939	if (!try_module_get(THIS_MODULE))
1940		goto bad_module_get;
1941
1942	/* get a minor number for the dev */
1943	if (minor == DM_ANY_MINOR)
1944		r = next_free_minor(&minor);
1945	else
1946		r = specific_minor(minor);
1947	if (r < 0)
1948		goto bad_minor;
1949
1950	r = init_srcu_struct(&md->io_barrier);
1951	if (r < 0)
1952		goto bad_io_barrier;
1953
1954	md->numa_node_id = numa_node_id;
1955	md->init_tio_pdu = false;
1956	md->type = DM_TYPE_NONE;
1957	mutex_init(&md->suspend_lock);
1958	mutex_init(&md->type_lock);
1959	mutex_init(&md->table_devices_lock);
1960	spin_lock_init(&md->deferred_lock);
1961	atomic_set(&md->holders, 1);
1962	atomic_set(&md->open_count, 0);
1963	atomic_set(&md->event_nr, 0);
1964	atomic_set(&md->uevent_seq, 0);
1965	INIT_LIST_HEAD(&md->uevent_list);
1966	INIT_LIST_HEAD(&md->table_devices);
1967	spin_lock_init(&md->uevent_lock);
1968
1969	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1970	if (!md->queue)
1971		goto bad;
1972	md->queue->queuedata = md;
1973	md->queue->backing_dev_info->congested_data = md;
1974
1975	md->disk = alloc_disk_node(1, md->numa_node_id);
1976	if (!md->disk)
1977		goto bad;
 
1978
1979	init_waitqueue_head(&md->wait);
1980	INIT_WORK(&md->work, dm_wq_work);
 
1981	init_waitqueue_head(&md->eventq);
1982	init_completion(&md->kobj_holder.completion);
1983
 
 
 
 
 
1984	md->disk->major = _major;
1985	md->disk->first_minor = minor;
 
 
1986	md->disk->fops = &dm_blk_dops;
1987	md->disk->queue = md->queue;
1988	md->disk->private_data = md;
1989	sprintf(md->disk->disk_name, "dm-%d", minor);
1990
1991	if (IS_ENABLED(CONFIG_DAX_DRIVER)) {
1992		md->dax_dev = alloc_dax(md, md->disk->disk_name,
1993					&dm_dax_ops, 0);
1994		if (!md->dax_dev)
 
 
 
 
 
1995			goto bad;
1996	}
1997
1998	add_disk_no_queue_reg(md->disk);
1999	format_dev_t(md->name, MKDEV(_major, minor));
2000
2001	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2002	if (!md->wq)
2003		goto bad;
2004
2005	md->bdev = bdget_disk(md->disk, 0);
2006	if (!md->bdev)
2007		goto bad;
2008
2009	dm_stats_init(&md->stats);
2010
2011	/* Populate the mapping, nobody knows we exist yet */
2012	spin_lock(&_minor_lock);
2013	old_md = idr_replace(&_minor_idr, md, minor);
2014	spin_unlock(&_minor_lock);
2015
2016	BUG_ON(old_md != MINOR_ALLOCED);
2017
2018	return md;
2019
2020bad:
2021	cleanup_mapped_device(md);
2022bad_io_barrier:
2023	free_minor(minor);
2024bad_minor:
2025	module_put(THIS_MODULE);
2026bad_module_get:
2027	kvfree(md);
2028	return NULL;
2029}
2030
2031static void unlock_fs(struct mapped_device *md);
2032
2033static void free_dev(struct mapped_device *md)
2034{
2035	int minor = MINOR(disk_devt(md->disk));
2036
2037	unlock_fs(md);
2038
2039	cleanup_mapped_device(md);
2040
2041	free_table_devices(&md->table_devices);
2042	dm_stats_cleanup(&md->stats);
2043	free_minor(minor);
2044
2045	module_put(THIS_MODULE);
2046	kvfree(md);
2047}
2048
2049static int __bind_mempools(struct mapped_device *md, struct dm_table *t)
2050{
2051	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2052	int ret = 0;
2053
2054	if (dm_table_bio_based(t)) {
2055		/*
2056		 * The md may already have mempools that need changing.
2057		 * If so, reload bioset because front_pad may have changed
2058		 * because a different table was loaded.
2059		 */
2060		bioset_exit(&md->bs);
2061		bioset_exit(&md->io_bs);
2062
2063	} else if (bioset_initialized(&md->bs)) {
2064		/*
2065		 * There's no need to reload with request-based dm
2066		 * because the size of front_pad doesn't change.
2067		 * Note for future: If you are to reload bioset,
2068		 * prep-ed requests in the queue may refer
2069		 * to bio from the old bioset, so you must walk
2070		 * through the queue to unprep.
2071		 */
2072		goto out;
2073	}
2074
2075	BUG_ON(!p ||
2076	       bioset_initialized(&md->bs) ||
2077	       bioset_initialized(&md->io_bs));
2078
2079	ret = bioset_init_from_src(&md->bs, &p->bs);
2080	if (ret)
2081		goto out;
2082	ret = bioset_init_from_src(&md->io_bs, &p->io_bs);
2083	if (ret)
2084		bioset_exit(&md->bs);
2085out:
2086	/* mempool bind completed, no longer need any mempools in the table */
2087	dm_table_free_md_mempools(t);
2088	return ret;
2089}
2090
2091/*
2092 * Bind a table to the device.
2093 */
2094static void event_callback(void *context)
2095{
2096	unsigned long flags;
2097	LIST_HEAD(uevents);
2098	struct mapped_device *md = (struct mapped_device *) context;
2099
2100	spin_lock_irqsave(&md->uevent_lock, flags);
2101	list_splice_init(&md->uevent_list, &uevents);
2102	spin_unlock_irqrestore(&md->uevent_lock, flags);
2103
2104	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2105
2106	atomic_inc(&md->event_nr);
2107	wake_up(&md->eventq);
2108	dm_issue_global_event();
2109}
2110
2111/*
2112 * Protected by md->suspend_lock obtained by dm_swap_table().
2113 */
2114static void __set_size(struct mapped_device *md, sector_t size)
2115{
2116	lockdep_assert_held(&md->suspend_lock);
2117
2118	set_capacity(md->disk, size);
2119
2120	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2121}
2122
2123/*
2124 * Returns old map, which caller must destroy.
2125 */
2126static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2127			       struct queue_limits *limits)
2128{
2129	struct dm_table *old_map;
2130	struct request_queue *q = md->queue;
2131	bool request_based = dm_table_request_based(t);
2132	sector_t size;
2133	int ret;
2134
2135	lockdep_assert_held(&md->suspend_lock);
2136
2137	size = dm_table_get_size(t);
2138
2139	/*
2140	 * Wipe any geometry if the size of the table changed.
2141	 */
2142	if (size != dm_get_size(md))
2143		memset(&md->geometry, 0, sizeof(md->geometry));
2144
2145	__set_size(md, size);
 
 
 
2146
2147	dm_table_event_callback(t, event_callback, md);
2148
2149	/*
2150	 * The queue hasn't been stopped yet, if the old table type wasn't
2151	 * for request-based during suspension.  So stop it to prevent
2152	 * I/O mapping before resume.
2153	 * This must be done before setting the queue restrictions,
2154	 * because request-based dm may be run just after the setting.
2155	 */
2156	if (request_based)
2157		dm_stop_queue(q);
2158
2159	if (request_based || md->type == DM_TYPE_NVME_BIO_BASED) {
2160		/*
2161		 * Leverage the fact that request-based DM targets and
2162		 * NVMe bio based targets are immutable singletons
2163		 * - used to optimize both dm_request_fn and dm_mq_queue_rq;
2164		 *   and __process_bio.
 
 
2165		 */
2166		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
 
 
 
 
 
 
 
 
 
2167	}
2168
2169	ret = __bind_mempools(md, t);
2170	if (ret) {
2171		old_map = ERR_PTR(ret);
2172		goto out;
2173	}
2174
2175	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2176	rcu_assign_pointer(md->map, (void *)t);
2177	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2178
2179	dm_table_set_restrictions(t, q, limits);
2180	if (old_map)
2181		dm_sync_table(md);
2182
2183out:
2184	return old_map;
2185}
2186
2187/*
2188 * Returns unbound table for the caller to free.
2189 */
2190static struct dm_table *__unbind(struct mapped_device *md)
2191{
2192	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2193
2194	if (!map)
2195		return NULL;
2196
2197	dm_table_event_callback(map, NULL, NULL);
2198	RCU_INIT_POINTER(md->map, NULL);
2199	dm_sync_table(md);
2200
2201	return map;
2202}
2203
2204/*
2205 * Constructor for a new device.
2206 */
2207int dm_create(int minor, struct mapped_device **result)
2208{
2209	int r;
2210	struct mapped_device *md;
2211
2212	md = alloc_dev(minor);
2213	if (!md)
2214		return -ENXIO;
2215
2216	r = dm_sysfs_init(md);
2217	if (r) {
2218		free_dev(md);
2219		return r;
2220	}
2221
2222	*result = md;
2223	return 0;
2224}
2225
2226/*
2227 * Functions to manage md->type.
2228 * All are required to hold md->type_lock.
2229 */
2230void dm_lock_md_type(struct mapped_device *md)
2231{
2232	mutex_lock(&md->type_lock);
2233}
2234
2235void dm_unlock_md_type(struct mapped_device *md)
2236{
2237	mutex_unlock(&md->type_lock);
2238}
2239
2240void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2241{
2242	BUG_ON(!mutex_is_locked(&md->type_lock));
2243	md->type = type;
2244}
2245
2246enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2247{
2248	return md->type;
2249}
2250
2251struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2252{
2253	return md->immutable_target_type;
2254}
2255
2256/*
2257 * The queue_limits are only valid as long as you have a reference
2258 * count on 'md'.
2259 */
2260struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2261{
2262	BUG_ON(!atomic_read(&md->holders));
2263	return &md->queue->limits;
2264}
2265EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2266
2267/*
2268 * Setup the DM device's queue based on md's type
2269 */
2270int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2271{
 
 
 
2272	int r;
2273	struct queue_limits limits;
2274	enum dm_queue_mode type = dm_get_md_type(md);
2275
2276	switch (type) {
2277	case DM_TYPE_REQUEST_BASED:
 
2278		r = dm_mq_init_request_queue(md, t);
2279		if (r) {
2280			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2281			return r;
2282		}
2283		break;
2284	case DM_TYPE_BIO_BASED:
2285	case DM_TYPE_DAX_BIO_BASED:
2286	case DM_TYPE_NVME_BIO_BASED:
2287		dm_init_normal_md_queue(md);
2288		blk_queue_make_request(md->queue, dm_make_request);
2289		break;
2290	case DM_TYPE_NONE:
2291		WARN_ON_ONCE(true);
2292		break;
2293	}
2294
2295	r = dm_calculate_queue_limits(t, &limits);
2296	if (r) {
2297		DMERR("Cannot calculate initial queue limits");
2298		return r;
2299	}
2300	dm_table_set_restrictions(t, md->queue, &limits);
2301	blk_register_queue(md->disk);
 
 
 
 
 
 
 
 
 
 
 
2302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2303	return 0;
 
 
 
 
 
 
 
 
2304}
2305
2306struct mapped_device *dm_get_md(dev_t dev)
2307{
2308	struct mapped_device *md;
2309	unsigned minor = MINOR(dev);
2310
2311	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2312		return NULL;
2313
2314	spin_lock(&_minor_lock);
2315
2316	md = idr_find(&_minor_idr, minor);
2317	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2318	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2319		md = NULL;
2320		goto out;
2321	}
2322	dm_get(md);
2323out:
2324	spin_unlock(&_minor_lock);
2325
2326	return md;
2327}
2328EXPORT_SYMBOL_GPL(dm_get_md);
2329
2330void *dm_get_mdptr(struct mapped_device *md)
2331{
2332	return md->interface_ptr;
2333}
2334
2335void dm_set_mdptr(struct mapped_device *md, void *ptr)
2336{
2337	md->interface_ptr = ptr;
2338}
2339
2340void dm_get(struct mapped_device *md)
2341{
2342	atomic_inc(&md->holders);
2343	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2344}
2345
2346int dm_hold(struct mapped_device *md)
2347{
2348	spin_lock(&_minor_lock);
2349	if (test_bit(DMF_FREEING, &md->flags)) {
2350		spin_unlock(&_minor_lock);
2351		return -EBUSY;
2352	}
2353	dm_get(md);
2354	spin_unlock(&_minor_lock);
2355	return 0;
2356}
2357EXPORT_SYMBOL_GPL(dm_hold);
2358
2359const char *dm_device_name(struct mapped_device *md)
2360{
2361	return md->name;
2362}
2363EXPORT_SYMBOL_GPL(dm_device_name);
2364
2365static void __dm_destroy(struct mapped_device *md, bool wait)
2366{
2367	struct dm_table *map;
2368	int srcu_idx;
2369
2370	might_sleep();
2371
2372	spin_lock(&_minor_lock);
2373	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2374	set_bit(DMF_FREEING, &md->flags);
2375	spin_unlock(&_minor_lock);
2376
2377	blk_set_queue_dying(md->queue);
2378
2379	/*
2380	 * Take suspend_lock so that presuspend and postsuspend methods
2381	 * do not race with internal suspend.
2382	 */
2383	mutex_lock(&md->suspend_lock);
2384	map = dm_get_live_table(md, &srcu_idx);
2385	if (!dm_suspended_md(md)) {
2386		dm_table_presuspend_targets(map);
 
 
2387		dm_table_postsuspend_targets(map);
2388	}
2389	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2390	dm_put_live_table(md, srcu_idx);
2391	mutex_unlock(&md->suspend_lock);
2392
2393	/*
2394	 * Rare, but there may be I/O requests still going to complete,
2395	 * for example.  Wait for all references to disappear.
2396	 * No one should increment the reference count of the mapped_device,
2397	 * after the mapped_device state becomes DMF_FREEING.
2398	 */
2399	if (wait)
2400		while (atomic_read(&md->holders))
2401			msleep(1);
2402	else if (atomic_read(&md->holders))
2403		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2404		       dm_device_name(md), atomic_read(&md->holders));
2405
2406	dm_sysfs_exit(md);
2407	dm_table_destroy(__unbind(md));
2408	free_dev(md);
2409}
2410
2411void dm_destroy(struct mapped_device *md)
2412{
2413	__dm_destroy(md, true);
2414}
2415
2416void dm_destroy_immediate(struct mapped_device *md)
2417{
2418	__dm_destroy(md, false);
2419}
2420
2421void dm_put(struct mapped_device *md)
2422{
2423	atomic_dec(&md->holders);
2424}
2425EXPORT_SYMBOL_GPL(dm_put);
2426
2427static int dm_wait_for_completion(struct mapped_device *md, long task_state)
 
 
 
 
 
 
 
 
 
 
 
2428{
2429	int r = 0;
2430	DEFINE_WAIT(wait);
2431
2432	while (1) {
2433		prepare_to_wait(&md->wait, &wait, task_state);
2434
2435		if (!md_in_flight(md))
2436			break;
2437
2438		if (signal_pending_state(task_state, current)) {
2439			r = -EINTR;
2440			break;
2441		}
2442
2443		io_schedule();
2444	}
2445	finish_wait(&md->wait, &wait);
2446
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2447	return r;
2448}
2449
2450/*
2451 * Process the deferred bios
2452 */
2453static void dm_wq_work(struct work_struct *work)
2454{
2455	struct mapped_device *md = container_of(work, struct mapped_device,
2456						work);
2457	struct bio *c;
2458	int srcu_idx;
2459	struct dm_table *map;
2460
2461	map = dm_get_live_table(md, &srcu_idx);
2462
2463	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2464		spin_lock_irq(&md->deferred_lock);
2465		c = bio_list_pop(&md->deferred);
2466		spin_unlock_irq(&md->deferred_lock);
2467
2468		if (!c)
2469			break;
2470
2471		if (dm_request_based(md))
2472			(void) generic_make_request(c);
2473		else
2474			(void) dm_process_bio(md, map, c);
2475	}
2476
2477	dm_put_live_table(md, srcu_idx);
2478}
2479
2480static void dm_queue_flush(struct mapped_device *md)
2481{
2482	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2483	smp_mb__after_atomic();
2484	queue_work(md->wq, &md->work);
2485}
2486
2487/*
2488 * Swap in a new table, returning the old one for the caller to destroy.
2489 */
2490struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2491{
2492	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2493	struct queue_limits limits;
2494	int r;
2495
2496	mutex_lock(&md->suspend_lock);
2497
2498	/* device must be suspended */
2499	if (!dm_suspended_md(md))
2500		goto out;
2501
2502	/*
2503	 * If the new table has no data devices, retain the existing limits.
2504	 * This helps multipath with queue_if_no_path if all paths disappear,
2505	 * then new I/O is queued based on these limits, and then some paths
2506	 * reappear.
2507	 */
2508	if (dm_table_has_no_data_devices(table)) {
2509		live_map = dm_get_live_table_fast(md);
2510		if (live_map)
2511			limits = md->queue->limits;
2512		dm_put_live_table_fast(md);
2513	}
2514
2515	if (!live_map) {
2516		r = dm_calculate_queue_limits(table, &limits);
2517		if (r) {
2518			map = ERR_PTR(r);
2519			goto out;
2520		}
2521	}
2522
2523	map = __bind(md, table, &limits);
2524	dm_issue_global_event();
2525
2526out:
2527	mutex_unlock(&md->suspend_lock);
2528	return map;
2529}
2530
2531/*
2532 * Functions to lock and unlock any filesystem running on the
2533 * device.
2534 */
2535static int lock_fs(struct mapped_device *md)
2536{
2537	int r;
2538
2539	WARN_ON(md->frozen_sb);
2540
2541	md->frozen_sb = freeze_bdev(md->bdev);
2542	if (IS_ERR(md->frozen_sb)) {
2543		r = PTR_ERR(md->frozen_sb);
2544		md->frozen_sb = NULL;
2545		return r;
2546	}
2547
2548	set_bit(DMF_FROZEN, &md->flags);
2549
2550	return 0;
2551}
2552
2553static void unlock_fs(struct mapped_device *md)
2554{
2555	if (!test_bit(DMF_FROZEN, &md->flags))
2556		return;
2557
2558	thaw_bdev(md->bdev, md->frozen_sb);
2559	md->frozen_sb = NULL;
2560	clear_bit(DMF_FROZEN, &md->flags);
2561}
2562
2563/*
2564 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2565 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2566 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2567 *
2568 * If __dm_suspend returns 0, the device is completely quiescent
2569 * now. There is no request-processing activity. All new requests
2570 * are being added to md->deferred list.
2571 */
2572static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2573			unsigned suspend_flags, long task_state,
2574			int dmf_suspended_flag)
2575{
2576	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2577	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2578	int r;
2579
2580	lockdep_assert_held(&md->suspend_lock);
2581
2582	/*
2583	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2584	 * This flag is cleared before dm_suspend returns.
2585	 */
2586	if (noflush)
2587		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2588	else
2589		pr_debug("%s: suspending with flush\n", dm_device_name(md));
2590
2591	/*
2592	 * This gets reverted if there's an error later and the targets
2593	 * provide the .presuspend_undo hook.
2594	 */
2595	dm_table_presuspend_targets(map);
2596
2597	/*
2598	 * Flush I/O to the device.
2599	 * Any I/O submitted after lock_fs() may not be flushed.
2600	 * noflush takes precedence over do_lockfs.
2601	 * (lock_fs() flushes I/Os and waits for them to complete.)
2602	 */
2603	if (!noflush && do_lockfs) {
2604		r = lock_fs(md);
2605		if (r) {
2606			dm_table_presuspend_undo_targets(map);
2607			return r;
2608		}
2609	}
2610
2611	/*
2612	 * Here we must make sure that no processes are submitting requests
2613	 * to target drivers i.e. no one may be executing
2614	 * __split_and_process_bio. This is called from dm_request and
2615	 * dm_wq_work.
2616	 *
2617	 * To get all processes out of __split_and_process_bio in dm_request,
2618	 * we take the write lock. To prevent any process from reentering
2619	 * __split_and_process_bio from dm_request and quiesce the thread
2620	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2621	 * flush_workqueue(md->wq).
2622	 */
2623	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2624	if (map)
2625		synchronize_srcu(&md->io_barrier);
2626
2627	/*
2628	 * Stop md->queue before flushing md->wq in case request-based
2629	 * dm defers requests to md->wq from md->queue.
2630	 */
2631	if (dm_request_based(md))
2632		dm_stop_queue(md->queue);
2633
2634	flush_workqueue(md->wq);
2635
2636	/*
2637	 * At this point no more requests are entering target request routines.
2638	 * We call dm_wait_for_completion to wait for all existing requests
2639	 * to finish.
2640	 */
2641	r = dm_wait_for_completion(md, task_state);
2642	if (!r)
2643		set_bit(dmf_suspended_flag, &md->flags);
2644
2645	if (noflush)
2646		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2647	if (map)
2648		synchronize_srcu(&md->io_barrier);
2649
2650	/* were we interrupted ? */
2651	if (r < 0) {
2652		dm_queue_flush(md);
2653
2654		if (dm_request_based(md))
2655			dm_start_queue(md->queue);
2656
2657		unlock_fs(md);
2658		dm_table_presuspend_undo_targets(map);
2659		/* pushback list is already flushed, so skip flush */
2660	}
2661
2662	return r;
2663}
2664
2665/*
2666 * We need to be able to change a mapping table under a mounted
2667 * filesystem.  For example we might want to move some data in
2668 * the background.  Before the table can be swapped with
2669 * dm_bind_table, dm_suspend must be called to flush any in
2670 * flight bios and ensure that any further io gets deferred.
2671 */
2672/*
2673 * Suspend mechanism in request-based dm.
2674 *
2675 * 1. Flush all I/Os by lock_fs() if needed.
2676 * 2. Stop dispatching any I/O by stopping the request_queue.
2677 * 3. Wait for all in-flight I/Os to be completed or requeued.
2678 *
2679 * To abort suspend, start the request_queue.
2680 */
2681int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2682{
2683	struct dm_table *map = NULL;
2684	int r = 0;
2685
2686retry:
2687	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2688
2689	if (dm_suspended_md(md)) {
2690		r = -EINVAL;
2691		goto out_unlock;
2692	}
2693
2694	if (dm_suspended_internally_md(md)) {
2695		/* already internally suspended, wait for internal resume */
2696		mutex_unlock(&md->suspend_lock);
2697		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2698		if (r)
2699			return r;
2700		goto retry;
2701	}
2702
2703	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2704
2705	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2706	if (r)
2707		goto out_unlock;
2708
 
2709	dm_table_postsuspend_targets(map);
 
2710
2711out_unlock:
2712	mutex_unlock(&md->suspend_lock);
2713	return r;
2714}
2715
2716static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2717{
2718	if (map) {
2719		int r = dm_table_resume_targets(map);
2720		if (r)
2721			return r;
2722	}
2723
2724	dm_queue_flush(md);
2725
2726	/*
2727	 * Flushing deferred I/Os must be done after targets are resumed
2728	 * so that mapping of targets can work correctly.
2729	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2730	 */
2731	if (dm_request_based(md))
2732		dm_start_queue(md->queue);
2733
2734	unlock_fs(md);
2735
2736	return 0;
2737}
2738
2739int dm_resume(struct mapped_device *md)
2740{
2741	int r;
2742	struct dm_table *map = NULL;
2743
2744retry:
2745	r = -EINVAL;
2746	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2747
2748	if (!dm_suspended_md(md))
2749		goto out;
2750
2751	if (dm_suspended_internally_md(md)) {
2752		/* already internally suspended, wait for internal resume */
2753		mutex_unlock(&md->suspend_lock);
2754		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2755		if (r)
2756			return r;
2757		goto retry;
2758	}
2759
2760	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2761	if (!map || !dm_table_get_size(map))
2762		goto out;
2763
2764	r = __dm_resume(md, map);
2765	if (r)
2766		goto out;
2767
2768	clear_bit(DMF_SUSPENDED, &md->flags);
2769out:
2770	mutex_unlock(&md->suspend_lock);
2771
2772	return r;
2773}
2774
2775/*
2776 * Internal suspend/resume works like userspace-driven suspend. It waits
2777 * until all bios finish and prevents issuing new bios to the target drivers.
2778 * It may be used only from the kernel.
2779 */
2780
2781static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2782{
2783	struct dm_table *map = NULL;
2784
2785	lockdep_assert_held(&md->suspend_lock);
2786
2787	if (md->internal_suspend_count++)
2788		return; /* nested internal suspend */
2789
2790	if (dm_suspended_md(md)) {
2791		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2792		return; /* nest suspend */
2793	}
2794
2795	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2796
2797	/*
2798	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2799	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2800	 * would require changing .presuspend to return an error -- avoid this
2801	 * until there is a need for more elaborate variants of internal suspend.
2802	 */
2803	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2804			    DMF_SUSPENDED_INTERNALLY);
2805
 
2806	dm_table_postsuspend_targets(map);
 
2807}
2808
2809static void __dm_internal_resume(struct mapped_device *md)
2810{
2811	BUG_ON(!md->internal_suspend_count);
2812
2813	if (--md->internal_suspend_count)
2814		return; /* resume from nested internal suspend */
2815
2816	if (dm_suspended_md(md))
2817		goto done; /* resume from nested suspend */
2818
2819	/*
2820	 * NOTE: existing callers don't need to call dm_table_resume_targets
2821	 * (which may fail -- so best to avoid it for now by passing NULL map)
2822	 */
2823	(void) __dm_resume(md, NULL);
2824
2825done:
2826	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2827	smp_mb__after_atomic();
2828	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2829}
2830
2831void dm_internal_suspend_noflush(struct mapped_device *md)
2832{
2833	mutex_lock(&md->suspend_lock);
2834	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2835	mutex_unlock(&md->suspend_lock);
2836}
2837EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2838
2839void dm_internal_resume(struct mapped_device *md)
2840{
2841	mutex_lock(&md->suspend_lock);
2842	__dm_internal_resume(md);
2843	mutex_unlock(&md->suspend_lock);
2844}
2845EXPORT_SYMBOL_GPL(dm_internal_resume);
2846
2847/*
2848 * Fast variants of internal suspend/resume hold md->suspend_lock,
2849 * which prevents interaction with userspace-driven suspend.
2850 */
2851
2852void dm_internal_suspend_fast(struct mapped_device *md)
2853{
2854	mutex_lock(&md->suspend_lock);
2855	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2856		return;
2857
2858	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2859	synchronize_srcu(&md->io_barrier);
2860	flush_workqueue(md->wq);
2861	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2862}
2863EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2864
2865void dm_internal_resume_fast(struct mapped_device *md)
2866{
2867	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2868		goto done;
2869
2870	dm_queue_flush(md);
2871
2872done:
2873	mutex_unlock(&md->suspend_lock);
2874}
2875EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2876
2877/*-----------------------------------------------------------------
2878 * Event notification.
2879 *---------------------------------------------------------------*/
2880int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2881		       unsigned cookie)
2882{
 
 
2883	char udev_cookie[DM_COOKIE_LENGTH];
2884	char *envp[] = { udev_cookie, NULL };
2885
 
 
2886	if (!cookie)
2887		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2888	else {
2889		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2890			 DM_COOKIE_ENV_VAR_NAME, cookie);
2891		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2892					  action, envp);
2893	}
 
 
 
 
2894}
2895
2896uint32_t dm_next_uevent_seq(struct mapped_device *md)
2897{
2898	return atomic_add_return(1, &md->uevent_seq);
2899}
2900
2901uint32_t dm_get_event_nr(struct mapped_device *md)
2902{
2903	return atomic_read(&md->event_nr);
2904}
2905
2906int dm_wait_event(struct mapped_device *md, int event_nr)
2907{
2908	return wait_event_interruptible(md->eventq,
2909			(event_nr != atomic_read(&md->event_nr)));
2910}
2911
2912void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2913{
2914	unsigned long flags;
2915
2916	spin_lock_irqsave(&md->uevent_lock, flags);
2917	list_add(elist, &md->uevent_list);
2918	spin_unlock_irqrestore(&md->uevent_lock, flags);
2919}
2920
2921/*
2922 * The gendisk is only valid as long as you have a reference
2923 * count on 'md'.
2924 */
2925struct gendisk *dm_disk(struct mapped_device *md)
2926{
2927	return md->disk;
2928}
2929EXPORT_SYMBOL_GPL(dm_disk);
2930
2931struct kobject *dm_kobject(struct mapped_device *md)
2932{
2933	return &md->kobj_holder.kobj;
2934}
2935
2936struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2937{
2938	struct mapped_device *md;
2939
2940	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2941
2942	spin_lock(&_minor_lock);
2943	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2944		md = NULL;
2945		goto out;
2946	}
2947	dm_get(md);
2948out:
2949	spin_unlock(&_minor_lock);
2950
2951	return md;
2952}
2953
2954int dm_suspended_md(struct mapped_device *md)
2955{
2956	return test_bit(DMF_SUSPENDED, &md->flags);
2957}
2958
 
 
 
 
 
2959int dm_suspended_internally_md(struct mapped_device *md)
2960{
2961	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2962}
2963
2964int dm_test_deferred_remove_flag(struct mapped_device *md)
2965{
2966	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2967}
2968
2969int dm_suspended(struct dm_target *ti)
2970{
2971	return dm_suspended_md(dm_table_get_md(ti->table));
2972}
2973EXPORT_SYMBOL_GPL(dm_suspended);
2974
 
 
 
 
 
 
2975int dm_noflush_suspending(struct dm_target *ti)
2976{
2977	return __noflush_suspending(dm_table_get_md(ti->table));
2978}
2979EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2980
2981struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, enum dm_queue_mode type,
2982					    unsigned integrity, unsigned per_io_data_size,
2983					    unsigned min_pool_size)
2984{
2985	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2986	unsigned int pool_size = 0;
2987	unsigned int front_pad, io_front_pad;
2988	int ret;
2989
2990	if (!pools)
2991		return NULL;
2992
2993	switch (type) {
2994	case DM_TYPE_BIO_BASED:
2995	case DM_TYPE_DAX_BIO_BASED:
2996	case DM_TYPE_NVME_BIO_BASED:
2997		pool_size = max(dm_get_reserved_bio_based_ios(), min_pool_size);
2998		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2999		io_front_pad = roundup(front_pad,  __alignof__(struct dm_io)) + offsetof(struct dm_io, tio);
3000		ret = bioset_init(&pools->io_bs, pool_size, io_front_pad, 0);
3001		if (ret)
3002			goto out;
3003		if (integrity && bioset_integrity_create(&pools->io_bs, pool_size))
3004			goto out;
3005		break;
3006	case DM_TYPE_REQUEST_BASED:
3007		pool_size = max(dm_get_reserved_rq_based_ios(), min_pool_size);
3008		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3009		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3010		break;
3011	default:
3012		BUG();
3013	}
3014
3015	ret = bioset_init(&pools->bs, pool_size, front_pad, 0);
3016	if (ret)
3017		goto out;
3018
3019	if (integrity && bioset_integrity_create(&pools->bs, pool_size))
3020		goto out;
3021
3022	return pools;
3023
3024out:
3025	dm_free_md_mempools(pools);
3026
3027	return NULL;
3028}
3029
3030void dm_free_md_mempools(struct dm_md_mempools *pools)
3031{
3032	if (!pools)
3033		return;
3034
3035	bioset_exit(&pools->bs);
3036	bioset_exit(&pools->io_bs);
3037
3038	kfree(pools);
3039}
3040
3041struct dm_pr {
3042	u64	old_key;
3043	u64	new_key;
3044	u32	flags;
 
3045	bool	fail_early;
 
 
3046};
3047
3048static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3049		      void *data)
3050{
3051	struct mapped_device *md = bdev->bd_disk->private_data;
3052	struct dm_table *table;
3053	struct dm_target *ti;
3054	int ret = -ENOTTY, srcu_idx;
3055
3056	table = dm_get_live_table(md, &srcu_idx);
3057	if (!table || !dm_table_get_size(table))
3058		goto out;
3059
3060	/* We only support devices that have a single target */
3061	if (dm_table_get_num_targets(table) != 1)
3062		goto out;
3063	ti = dm_table_get_target(table, 0);
3064
 
 
 
 
 
3065	ret = -EINVAL;
3066	if (!ti->type->iterate_devices)
3067		goto out;
3068
3069	ret = ti->type->iterate_devices(ti, fn, data);
 
3070out:
3071	dm_put_live_table(md, srcu_idx);
3072	return ret;
3073}
3074
3075/*
3076 * For register / unregister we need to manually call out to every path.
3077 */
3078static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3079			    sector_t start, sector_t len, void *data)
3080{
3081	struct dm_pr *pr = data;
3082	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 
 
 
 
 
 
 
 
 
 
3083
3084	if (!ops || !ops->pr_register)
3085		return -EOPNOTSUPP;
3086	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
 
 
 
 
3087}
3088
3089static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3090			  u32 flags)
3091{
3092	struct dm_pr pr = {
3093		.old_key	= old_key,
3094		.new_key	= new_key,
3095		.flags		= flags,
3096		.fail_early	= true,
 
3097	};
3098	int ret;
3099
3100	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3101	if (ret && new_key) {
3102		/* unregister all paths if we failed to register any path */
3103		pr.old_key = new_key;
3104		pr.new_key = 0;
3105		pr.flags = 0;
3106		pr.fail_early = false;
3107		dm_call_pr(bdev, __dm_pr_register, &pr);
3108	}
3109
 
 
 
 
 
 
 
 
 
 
 
 
 
3110	return ret;
3111}
3112
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3113static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3114			 u32 flags)
3115{
3116	struct mapped_device *md = bdev->bd_disk->private_data;
3117	const struct pr_ops *ops;
3118	int r, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3119
3120	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3121	if (r < 0)
3122		goto out;
3123
3124	ops = bdev->bd_disk->fops->pr_ops;
3125	if (ops && ops->pr_reserve)
3126		r = ops->pr_reserve(bdev, key, type, flags);
3127	else
3128		r = -EOPNOTSUPP;
3129out:
3130	dm_unprepare_ioctl(md, srcu_idx);
3131	return r;
3132}
3133
3134static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3135{
3136	struct mapped_device *md = bdev->bd_disk->private_data;
3137	const struct pr_ops *ops;
3138	int r, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3139
3140	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3141	if (r < 0)
3142		goto out;
 
3143
3144	ops = bdev->bd_disk->fops->pr_ops;
3145	if (ops && ops->pr_release)
3146		r = ops->pr_release(bdev, key, type);
3147	else
3148		r = -EOPNOTSUPP;
3149out:
3150	dm_unprepare_ioctl(md, srcu_idx);
3151	return r;
3152}
3153
3154static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3155			 enum pr_type type, bool abort)
3156{
3157	struct mapped_device *md = bdev->bd_disk->private_data;
3158	const struct pr_ops *ops;
3159	int r, srcu_idx;
 
 
 
 
3160
3161	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3162	if (r < 0)
3163		goto out;
3164
3165	ops = bdev->bd_disk->fops->pr_ops;
3166	if (ops && ops->pr_preempt)
3167		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3168	else
3169		r = -EOPNOTSUPP;
3170out:
3171	dm_unprepare_ioctl(md, srcu_idx);
3172	return r;
3173}
3174
3175static int dm_pr_clear(struct block_device *bdev, u64 key)
3176{
3177	struct mapped_device *md = bdev->bd_disk->private_data;
3178	const struct pr_ops *ops;
3179	int r, srcu_idx;
3180
3181	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3182	if (r < 0)
3183		goto out;
3184
3185	ops = bdev->bd_disk->fops->pr_ops;
3186	if (ops && ops->pr_clear)
3187		r = ops->pr_clear(bdev, key);
3188	else
3189		r = -EOPNOTSUPP;
3190out:
3191	dm_unprepare_ioctl(md, srcu_idx);
3192	return r;
3193}
3194
3195static const struct pr_ops dm_pr_ops = {
3196	.pr_register	= dm_pr_register,
3197	.pr_reserve	= dm_pr_reserve,
3198	.pr_release	= dm_pr_release,
3199	.pr_preempt	= dm_pr_preempt,
3200	.pr_clear	= dm_pr_clear,
3201};
3202
3203static const struct block_device_operations dm_blk_dops = {
 
 
3204	.open = dm_blk_open,
3205	.release = dm_blk_close,
3206	.ioctl = dm_blk_ioctl,
3207	.getgeo = dm_blk_getgeo,
3208	.report_zones = dm_blk_report_zones,
3209	.pr_ops = &dm_pr_ops,
3210	.owner = THIS_MODULE
3211};
3212
 
 
 
 
 
 
 
 
 
3213static const struct dax_operations dm_dax_ops = {
3214	.direct_access = dm_dax_direct_access,
3215	.dax_supported = dm_dax_supported,
3216	.copy_from_iter = dm_dax_copy_from_iter,
3217	.copy_to_iter = dm_dax_copy_to_iter,
3218};
3219
3220/*
3221 * module hooks
3222 */
3223module_init(dm_init);
3224module_exit(dm_exit);
3225
3226module_param(major, uint, 0);
3227MODULE_PARM_DESC(major, "The major number of the device mapper");
3228
3229module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3230MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3231
3232module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3233MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 
 
 
3234
3235MODULE_DESCRIPTION(DM_NAME " driver");
3236MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3237MODULE_LICENSE("GPL");