Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11#include "dm-ima.h"
  12
  13#include <linux/init.h>
  14#include <linux/module.h>
  15#include <linux/mutex.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/signal.h>
  18#include <linux/blkpg.h>
  19#include <linux/bio.h>
  20#include <linux/mempool.h>
  21#include <linux/dax.h>
  22#include <linux/slab.h>
  23#include <linux/idr.h>
  24#include <linux/uio.h>
  25#include <linux/hdreg.h>
  26#include <linux/delay.h>
  27#include <linux/wait.h>
  28#include <linux/pr.h>
  29#include <linux/refcount.h>
  30#include <linux/part_stat.h>
  31#include <linux/blk-crypto.h>
  32#include <linux/blk-crypto-profile.h>
  33
  34#define DM_MSG_PREFIX "core"
  35
 
 
 
 
 
 
 
 
 
 
  36/*
  37 * Cookies are numeric values sent with CHANGE and REMOVE
  38 * uevents while resuming, removing or renaming the device.
  39 */
  40#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  41#define DM_COOKIE_LENGTH 24
  42
  43/*
  44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  46 * ending this fs bio, we will recover its ->bi_private.
  47 */
  48#define REQ_DM_POLL_LIST	REQ_DRV
  49
  50static const char *_name = DM_NAME;
  51
  52static unsigned int major = 0;
  53static unsigned int _major = 0;
  54
  55static DEFINE_IDR(_minor_idr);
  56
  57static DEFINE_SPINLOCK(_minor_lock);
  58
  59static void do_deferred_remove(struct work_struct *w);
  60
  61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  62
  63static struct workqueue_struct *deferred_remove_workqueue;
  64
  65atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  66DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
  67
  68void dm_issue_global_event(void)
  69{
  70	atomic_inc(&dm_global_event_nr);
  71	wake_up(&dm_global_eventq);
  72}
  73
  74DEFINE_STATIC_KEY_FALSE(stats_enabled);
  75DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  76DEFINE_STATIC_KEY_FALSE(zoned_enabled);
  77
  78/*
  79 * One of these is allocated (on-stack) per original bio.
  80 */
  81struct clone_info {
  82	struct dm_table *map;
 
 
  83	struct bio *bio;
  84	struct dm_io *io;
  85	sector_t sector;
  86	unsigned sector_count;
  87	bool is_abnormal_io:1;
  88	bool submit_as_polled:1;
  89};
  90
  91static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  92{
  93	return container_of(clone, struct dm_target_io, clone);
  94}
  95
  96void *dm_per_bio_data(struct bio *bio, size_t data_size)
  97{
  98	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
  99		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 100	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 101}
 102EXPORT_SYMBOL_GPL(dm_per_bio_data);
 103
 104struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 105{
 106	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 107	if (io->magic == DM_IO_MAGIC)
 108		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 109	BUG_ON(io->magic != DM_TIO_MAGIC);
 110	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 111}
 112EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 113
 114unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 115{
 116	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 117}
 118EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 119
 120#define MINOR_ALLOCED ((void *)-1)
 121
 
 
 
 
 
 
 
 
 
 
 
 
 122#define DM_NUMA_NODE NUMA_NO_NODE
 123static int dm_numa_node = DM_NUMA_NODE;
 124
 125#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 126static int swap_bios = DEFAULT_SWAP_BIOS;
 127static int get_swap_bios(void)
 128{
 129	int latch = READ_ONCE(swap_bios);
 130	if (unlikely(latch <= 0))
 131		latch = DEFAULT_SWAP_BIOS;
 132	return latch;
 133}
 134
 135struct table_device {
 136	struct list_head list;
 137	refcount_t count;
 138	struct dm_dev dm_dev;
 139};
 140
 
 
 
 
 141/*
 142 * Bio-based DM's mempools' reserved IOs set by the user.
 143 */
 144#define RESERVED_BIO_BASED_IOS		16
 145static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 146
 147static int __dm_get_module_param_int(int *module_param, int min, int max)
 148{
 149	int param = READ_ONCE(*module_param);
 150	int modified_param = 0;
 151	bool modified = true;
 152
 153	if (param < min)
 154		modified_param = min;
 155	else if (param > max)
 156		modified_param = max;
 157	else
 158		modified = false;
 159
 160	if (modified) {
 161		(void)cmpxchg(module_param, param, modified_param);
 162		param = modified_param;
 163	}
 164
 165	return param;
 166}
 167
 168unsigned __dm_get_module_param(unsigned *module_param,
 169			       unsigned def, unsigned max)
 170{
 171	unsigned param = READ_ONCE(*module_param);
 172	unsigned modified_param = 0;
 173
 174	if (!param)
 175		modified_param = def;
 176	else if (param > max)
 177		modified_param = max;
 178
 179	if (modified_param) {
 180		(void)cmpxchg(module_param, param, modified_param);
 181		param = modified_param;
 182	}
 183
 184	return param;
 185}
 186
 187unsigned dm_get_reserved_bio_based_ios(void)
 188{
 189	return __dm_get_module_param(&reserved_bio_based_ios,
 190				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 191}
 192EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 193
 194static unsigned dm_get_numa_node(void)
 195{
 196	return __dm_get_module_param_int(&dm_numa_node,
 197					 DM_NUMA_NODE, num_online_nodes() - 1);
 198}
 199
 200static int __init local_init(void)
 201{
 202	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 204	r = dm_uevent_init();
 205	if (r)
 206		return r;
 207
 208	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 209	if (!deferred_remove_workqueue) {
 210		r = -ENOMEM;
 211		goto out_uevent_exit;
 212	}
 213
 214	_major = major;
 215	r = register_blkdev(_major, _name);
 216	if (r < 0)
 217		goto out_free_workqueue;
 218
 219	if (!_major)
 220		_major = r;
 221
 222	return 0;
 223
 224out_free_workqueue:
 225	destroy_workqueue(deferred_remove_workqueue);
 226out_uevent_exit:
 227	dm_uevent_exit();
 
 
 
 
 
 
 228
 229	return r;
 230}
 231
 232static void local_exit(void)
 233{
 234	flush_scheduled_work();
 235	destroy_workqueue(deferred_remove_workqueue);
 236
 
 
 
 237	unregister_blkdev(_major, _name);
 238	dm_uevent_exit();
 239
 240	_major = 0;
 241
 242	DMINFO("cleaned up");
 243}
 244
 245static int (*_inits[])(void) __initdata = {
 246	local_init,
 247	dm_target_init,
 248	dm_linear_init,
 249	dm_stripe_init,
 250	dm_io_init,
 251	dm_kcopyd_init,
 252	dm_interface_init,
 253	dm_statistics_init,
 254};
 255
 256static void (*_exits[])(void) = {
 257	local_exit,
 258	dm_target_exit,
 259	dm_linear_exit,
 260	dm_stripe_exit,
 261	dm_io_exit,
 262	dm_kcopyd_exit,
 263	dm_interface_exit,
 264	dm_statistics_exit,
 265};
 266
 267static int __init dm_init(void)
 268{
 269	const int count = ARRAY_SIZE(_inits);
 270	int r, i;
 271
 272#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 273	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 274	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 275#endif
 276
 277	for (i = 0; i < count; i++) {
 278		r = _inits[i]();
 279		if (r)
 280			goto bad;
 281	}
 282
 283	return 0;
 284bad:
 
 285	while (i--)
 286		_exits[i]();
 287
 288	return r;
 289}
 290
 291static void __exit dm_exit(void)
 292{
 293	int i = ARRAY_SIZE(_exits);
 294
 295	while (i--)
 296		_exits[i]();
 297
 298	/*
 299	 * Should be empty by this point.
 300	 */
 301	idr_destroy(&_minor_idr);
 302}
 303
 304/*
 305 * Block device functions
 306 */
 307int dm_deleting_md(struct mapped_device *md)
 308{
 309	return test_bit(DMF_DELETING, &md->flags);
 310}
 311
 312static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 313{
 314	struct mapped_device *md;
 315
 316	spin_lock(&_minor_lock);
 317
 318	md = bdev->bd_disk->private_data;
 319	if (!md)
 320		goto out;
 321
 322	if (test_bit(DMF_FREEING, &md->flags) ||
 323	    dm_deleting_md(md)) {
 324		md = NULL;
 325		goto out;
 326	}
 327
 328	dm_get(md);
 329	atomic_inc(&md->open_count);
 330out:
 331	spin_unlock(&_minor_lock);
 332
 333	return md ? 0 : -ENXIO;
 334}
 335
 336static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 337{
 338	struct mapped_device *md;
 339
 340	spin_lock(&_minor_lock);
 341
 342	md = disk->private_data;
 343	if (WARN_ON(!md))
 344		goto out;
 345
 346	if (atomic_dec_and_test(&md->open_count) &&
 347	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 348		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 349
 350	dm_put(md);
 351out:
 352	spin_unlock(&_minor_lock);
 353}
 354
 355int dm_open_count(struct mapped_device *md)
 356{
 357	return atomic_read(&md->open_count);
 358}
 359
 360/*
 361 * Guarantees nothing is using the device before it's deleted.
 362 */
 363int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 364{
 365	int r = 0;
 366
 367	spin_lock(&_minor_lock);
 368
 369	if (dm_open_count(md)) {
 370		r = -EBUSY;
 371		if (mark_deferred)
 372			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 373	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 374		r = -EEXIST;
 375	else
 376		set_bit(DMF_DELETING, &md->flags);
 377
 378	spin_unlock(&_minor_lock);
 379
 380	return r;
 381}
 382
 383int dm_cancel_deferred_remove(struct mapped_device *md)
 384{
 385	int r = 0;
 386
 387	spin_lock(&_minor_lock);
 388
 389	if (test_bit(DMF_DELETING, &md->flags))
 390		r = -EBUSY;
 391	else
 392		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 393
 394	spin_unlock(&_minor_lock);
 395
 396	return r;
 397}
 398
 399static void do_deferred_remove(struct work_struct *w)
 400{
 401	dm_deferred_remove();
 402}
 403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 405{
 406	struct mapped_device *md = bdev->bd_disk->private_data;
 407
 408	return dm_get_geometry(md, geo);
 409}
 410
 411static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 412			    struct block_device **bdev)
 
 413{
 414	struct dm_target *ti;
 415	struct dm_table *map;
 416	int r;
 417
 418retry:
 419	r = -ENOTTY;
 420	map = dm_get_live_table(md, srcu_idx);
 421	if (!map || !dm_table_get_size(map))
 422		return r;
 423
 424	/* We only support devices that have a single target */
 425	if (map->num_targets != 1)
 426		return r;
 427
 428	ti = dm_table_get_target(map, 0);
 429	if (!ti->type->prepare_ioctl)
 430		return r;
 431
 432	if (dm_suspended_md(md))
 433		return -EAGAIN;
 
 
 434
 435	r = ti->type->prepare_ioctl(ti, bdev);
 
 
 
 
 
 
 
 
 
 436	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 437		dm_put_live_table(md, *srcu_idx);
 438		msleep(10);
 439		goto retry;
 440	}
 441
 442	return r;
 443}
 444
 445static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 446{
 447	dm_put_live_table(md, srcu_idx);
 448}
 449
 450static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 451			unsigned int cmd, unsigned long arg)
 452{
 453	struct mapped_device *md = bdev->bd_disk->private_data;
 454	int r, srcu_idx;
 455
 456	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 457	if (r < 0)
 458		goto out;
 459
 460	if (r > 0) {
 461		/*
 462		 * Target determined this ioctl is being issued against a
 463		 * subset of the parent bdev; require extra privileges.
 
 464		 */
 465		if (!capable(CAP_SYS_RAWIO)) {
 466			DMDEBUG_LIMIT(
 467	"%s: sending ioctl %x to DM device without required privilege.",
 468				current->comm, cmd);
 469			r = -ENOIOCTLCMD;
 470			goto out;
 471		}
 472	}
 473
 474	if (!bdev->bd_disk->fops->ioctl)
 475		r = -ENOTTY;
 476	else
 477		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 478out:
 479	dm_unprepare_ioctl(md, srcu_idx);
 480	return r;
 481}
 482
 483u64 dm_start_time_ns_from_clone(struct bio *bio)
 484{
 485	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 486}
 487EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 488
 489static bool bio_is_flush_with_data(struct bio *bio)
 490{
 491	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 492}
 493
 494static void dm_io_acct(struct dm_io *io, bool end)
 495{
 496	struct dm_stats_aux *stats_aux = &io->stats_aux;
 497	unsigned long start_time = io->start_time;
 498	struct mapped_device *md = io->md;
 499	struct bio *bio = io->orig_bio;
 500	unsigned int sectors;
 501
 502	/*
 503	 * If REQ_PREFLUSH set, don't account payload, it will be
 504	 * submitted (and accounted) after this flush completes.
 505	 */
 506	if (bio_is_flush_with_data(bio))
 507		sectors = 0;
 508	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
 509		sectors = bio_sectors(bio);
 510	else
 511		sectors = io->sectors;
 512
 513	if (!end)
 514		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
 515				   start_time);
 516	else
 517		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
 518
 519	if (static_branch_unlikely(&stats_enabled) &&
 520	    unlikely(dm_stats_used(&md->stats))) {
 521		sector_t sector;
 522
 523		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 524			sector = bio->bi_iter.bi_sector;
 525		else
 526			sector = bio_end_sector(bio) - io->sector_offset;
 527
 528		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 529				    sector, sectors,
 530				    end, start_time, stats_aux);
 531	}
 532}
 533
 534static void __dm_start_io_acct(struct dm_io *io)
 535{
 536	dm_io_acct(io, false);
 537}
 538
 539static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 540{
 541	/*
 542	 * Ensure IO accounting is only ever started once.
 543	 */
 544	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 545		return;
 546
 547	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 548	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 549		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 550	} else {
 551		unsigned long flags;
 552		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 553		spin_lock_irqsave(&io->lock, flags);
 554		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 555			spin_unlock_irqrestore(&io->lock, flags);
 556			return;
 557		}
 558		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 559		spin_unlock_irqrestore(&io->lock, flags);
 560	}
 561
 562	__dm_start_io_acct(io);
 563}
 564
 565static void dm_end_io_acct(struct dm_io *io)
 566{
 567	dm_io_acct(io, true);
 
 568}
 569
 570static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 571{
 572	struct dm_io *io;
 573	struct dm_target_io *tio;
 574	struct bio *clone;
 
 575
 576	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
 577	tio = clone_to_tio(clone);
 578	tio->flags = 0;
 579	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 580	tio->io = NULL;
 581
 582	io = container_of(tio, struct dm_io, tio);
 583	io->magic = DM_IO_MAGIC;
 584	io->status = BLK_STS_OK;
 585
 586	/* one ref is for submission, the other is for completion */
 587	atomic_set(&io->io_count, 2);
 588	this_cpu_inc(*md->pending_io);
 589	io->orig_bio = bio;
 590	io->md = md;
 591	spin_lock_init(&io->lock);
 592	io->start_time = jiffies;
 593	io->flags = 0;
 594
 595	if (static_branch_unlikely(&stats_enabled))
 596		dm_stats_record_start(&md->stats, &io->stats_aux);
 597
 598	return io;
 599}
 600
 601static void free_io(struct dm_io *io)
 602{
 603	bio_put(&io->tio.clone);
 
 604}
 605
 606static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 607			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
 608{
 609	struct mapped_device *md = ci->io->md;
 610	struct dm_target_io *tio;
 611	struct bio *clone;
 612
 613	if (!ci->io->tio.io) {
 614		/* the dm_target_io embedded in ci->io is available */
 615		tio = &ci->io->tio;
 616		/* alloc_io() already initialized embedded clone */
 617		clone = &tio->clone;
 618	} else {
 619		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 620					&md->mempools->bs);
 621		if (!clone)
 622			return NULL;
 623
 624		/* REQ_DM_POLL_LIST shouldn't be inherited */
 625		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 626
 627		tio = clone_to_tio(clone);
 628		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 629	}
 630
 631	tio->magic = DM_TIO_MAGIC;
 632	tio->io = ci->io;
 633	tio->ti = ti;
 634	tio->target_bio_nr = target_bio_nr;
 635	tio->len_ptr = len;
 636	tio->old_sector = 0;
 637
 638	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 639	clone->bi_bdev = md->disk->part0;
 640	if (unlikely(ti->needs_bio_set_dev))
 641		bio_set_dev(clone, md->disk->part0);
 642
 643	if (len) {
 644		clone->bi_iter.bi_size = to_bytes(*len);
 645		if (bio_integrity(clone))
 646			bio_integrity_trim(clone);
 647	}
 648
 649	return clone;
 650}
 
 
 
 
 
 651
 652static void free_tio(struct bio *clone)
 653{
 654	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 655		return;
 656	bio_put(clone);
 657}
 658
 659/*
 660 * Add the bio to the list of deferred io.
 661 */
 662static void queue_io(struct mapped_device *md, struct bio *bio)
 663{
 664	unsigned long flags;
 665
 666	spin_lock_irqsave(&md->deferred_lock, flags);
 667	bio_list_add(&md->deferred, bio);
 668	spin_unlock_irqrestore(&md->deferred_lock, flags);
 669	queue_work(md->wq, &md->work);
 670}
 671
 672/*
 673 * Everyone (including functions in this file), should use this
 674 * function to access the md->map field, and make sure they call
 675 * dm_put_live_table() when finished.
 676 */
 677struct dm_table *dm_get_live_table(struct mapped_device *md,
 678				   int *srcu_idx) __acquires(md->io_barrier)
 679{
 680	*srcu_idx = srcu_read_lock(&md->io_barrier);
 681
 682	return srcu_dereference(md->map, &md->io_barrier);
 683}
 684
 685void dm_put_live_table(struct mapped_device *md,
 686		       int srcu_idx) __releases(md->io_barrier)
 687{
 688	srcu_read_unlock(&md->io_barrier, srcu_idx);
 689}
 690
 691void dm_sync_table(struct mapped_device *md)
 692{
 693	synchronize_srcu(&md->io_barrier);
 694	synchronize_rcu_expedited();
 695}
 696
 697/*
 698 * A fast alternative to dm_get_live_table/dm_put_live_table.
 699 * The caller must not block between these two functions.
 700 */
 701static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 702{
 703	rcu_read_lock();
 704	return rcu_dereference(md->map);
 705}
 706
 707static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 708{
 709	rcu_read_unlock();
 710}
 711
 712static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
 713					int *srcu_idx, blk_opf_t bio_opf)
 714{
 715	if (bio_opf & REQ_NOWAIT)
 716		return dm_get_live_table_fast(md);
 717	else
 718		return dm_get_live_table(md, srcu_idx);
 719}
 720
 721static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
 722					 blk_opf_t bio_opf)
 723{
 724	if (bio_opf & REQ_NOWAIT)
 725		dm_put_live_table_fast(md);
 726	else
 727		dm_put_live_table(md, srcu_idx);
 728}
 729
 730static char *_dm_claim_ptr = "I belong to device-mapper";
 731
 732/*
 733 * Open a table device so we can use it as a map destination.
 734 */
 735static struct table_device *open_table_device(struct mapped_device *md,
 736		dev_t dev, fmode_t mode)
 737{
 738	struct table_device *td;
 739	struct block_device *bdev;
 740	u64 part_off;
 741	int r;
 742
 743	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 744	if (!td)
 745		return ERR_PTR(-ENOMEM);
 746	refcount_set(&td->count, 1);
 747
 748	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
 749	if (IS_ERR(bdev)) {
 750		r = PTR_ERR(bdev);
 751		goto out_free_td;
 752	}
 753
 754	/*
 755	 * We can be called before the dm disk is added.  In that case we can't
 756	 * register the holder relation here.  It will be done once add_disk was
 757	 * called.
 758	 */
 759	if (md->disk->slave_dir) {
 760		r = bd_link_disk_holder(bdev, md->disk);
 761		if (r)
 762			goto out_blkdev_put;
 763	}
 764
 765	td->dm_dev.mode = mode;
 766	td->dm_dev.bdev = bdev;
 767	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
 768	format_dev_t(td->dm_dev.name, dev);
 769	list_add(&td->list, &md->table_devices);
 770	return td;
 771
 772out_blkdev_put:
 773	blkdev_put(bdev, mode | FMODE_EXCL);
 774out_free_td:
 775	kfree(td);
 776	return ERR_PTR(r);
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784	if (md->disk->slave_dir)
 785		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 
 
 786	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 787	put_dax(td->dm_dev.dax_dev);
 788	list_del(&td->list);
 789	kfree(td);
 790}
 791
 792static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 793					      fmode_t mode)
 794{
 795	struct table_device *td;
 796
 797	list_for_each_entry(td, l, list)
 798		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 799			return td;
 800
 801	return NULL;
 802}
 803
 804int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 805			struct dm_dev **result)
 806{
 807	struct table_device *td;
 808
 809	mutex_lock(&md->table_devices_lock);
 810	td = find_table_device(&md->table_devices, dev, mode);
 811	if (!td) {
 812		td = open_table_device(md, dev, mode);
 813		if (IS_ERR(td)) {
 814			mutex_unlock(&md->table_devices_lock);
 815			return PTR_ERR(td);
 816		}
 817	} else {
 818		refcount_inc(&td->count);
 
 
 
 
 
 
 
 
 
 
 
 
 819	}
 
 820	mutex_unlock(&md->table_devices_lock);
 821
 822	*result = &td->dm_dev;
 823	return 0;
 824}
 
 825
 826void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 827{
 828	struct table_device *td = container_of(d, struct table_device, dm_dev);
 829
 830	mutex_lock(&md->table_devices_lock);
 831	if (refcount_dec_and_test(&td->count))
 832		close_table_device(td, md);
 
 
 
 833	mutex_unlock(&md->table_devices_lock);
 834}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836/*
 837 * Get the geometry associated with a dm device
 838 */
 839int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 840{
 841	*geo = md->geometry;
 842
 843	return 0;
 844}
 845
 846/*
 847 * Set the geometry of a device.
 848 */
 849int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 850{
 851	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 852
 853	if (geo->start > sz) {
 854		DMERR("Start sector is beyond the geometry limits.");
 855		return -EINVAL;
 856	}
 857
 858	md->geometry = *geo;
 859
 860	return 0;
 861}
 862
 
 
 
 
 
 
 
 
 
 863static int __noflush_suspending(struct mapped_device *md)
 864{
 865	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 866}
 867
 868static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 869{
 870	struct mapped_device *md = io->md;
 871
 872	if (first_stage) {
 873		struct dm_io *next = md->requeue_list;
 874
 875		md->requeue_list = io;
 876		io->next = next;
 877	} else {
 878		bio_list_add_head(&md->deferred, io->orig_bio);
 879	}
 880}
 881
 882static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 883{
 884	if (first_stage)
 885		queue_work(md->wq, &md->requeue_work);
 886	else
 887		queue_work(md->wq, &md->work);
 888}
 889
 890/*
 891 * Return true if the dm_io's original bio is requeued.
 892 * io->status is updated with error if requeue disallowed.
 893 */
 894static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 895{
 896	struct bio *bio = io->orig_bio;
 897	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 898	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 899				     (bio->bi_opf & REQ_POLLED));
 900	struct mapped_device *md = io->md;
 901	bool requeued = false;
 902
 903	if (handle_requeue || handle_polled_eagain) {
 904		unsigned long flags;
 
 
 
 
 
 905
 906		if (bio->bi_opf & REQ_POLLED) {
 
 907			/*
 908			 * Upper layer won't help us poll split bio
 909			 * (io->orig_bio may only reflect a subset of the
 910			 * pre-split original) so clear REQ_POLLED.
 911			 */
 912			bio_clear_polled(bio);
 
 
 
 
 
 
 913		}
 914
 915		/*
 916		 * Target requested pushing back the I/O or
 917		 * polled IO hit BLK_STS_AGAIN.
 918		 */
 919		spin_lock_irqsave(&md->deferred_lock, flags);
 920		if ((__noflush_suspending(md) &&
 921		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 922		    handle_polled_eagain || first_stage) {
 923			dm_requeue_add_io(io, first_stage);
 924			requeued = true;
 925		} else {
 926			/*
 927			 * noflush suspend was interrupted or this is
 928			 * a write to a zoned target.
 929			 */
 930			io->status = BLK_STS_IOERR;
 
 
 
 
 
 
 931		}
 932		spin_unlock_irqrestore(&md->deferred_lock, flags);
 933	}
 934
 935	if (requeued)
 936		dm_kick_requeue(md, first_stage);
 937
 938	return requeued;
 939}
 940
 941static void __dm_io_complete(struct dm_io *io, bool first_stage)
 942{
 943	struct bio *bio = io->orig_bio;
 944	struct mapped_device *md = io->md;
 945	blk_status_t io_error;
 946	bool requeued;
 947
 948	requeued = dm_handle_requeue(io, first_stage);
 949	if (requeued && first_stage)
 950		return;
 951
 952	io_error = io->status;
 953	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 954		dm_end_io_acct(io);
 955	else if (!io_error) {
 956		/*
 957		 * Must handle target that DM_MAPIO_SUBMITTED only to
 958		 * then bio_endio() rather than dm_submit_bio_remap()
 959		 */
 960		__dm_start_io_acct(io);
 961		dm_end_io_acct(io);
 962	}
 963	free_io(io);
 964	smp_wmb();
 965	this_cpu_dec(*md->pending_io);
 966
 967	/* nudge anyone waiting on suspend queue */
 968	if (unlikely(wq_has_sleeper(&md->wait)))
 969		wake_up(&md->wait);
 970
 971	/* Return early if the original bio was requeued */
 972	if (requeued)
 973		return;
 974
 975	if (bio_is_flush_with_data(bio)) {
 976		/*
 977		 * Preflush done for flush with data, reissue
 978		 * without REQ_PREFLUSH.
 979		 */
 980		bio->bi_opf &= ~REQ_PREFLUSH;
 981		queue_io(md, bio);
 982	} else {
 983		/* done with normal IO or empty flush */
 984		if (io_error)
 985			bio->bi_status = io_error;
 986		bio_endio(bio);
 987	}
 988}
 989
 990static void dm_wq_requeue_work(struct work_struct *work)
 991{
 992	struct mapped_device *md = container_of(work, struct mapped_device,
 993						requeue_work);
 994	unsigned long flags;
 995	struct dm_io *io;
 996
 997	/* reuse deferred lock to simplify dm_handle_requeue */
 998	spin_lock_irqsave(&md->deferred_lock, flags);
 999	io = md->requeue_list;
1000	md->requeue_list = NULL;
1001	spin_unlock_irqrestore(&md->deferred_lock, flags);
1002
1003	while (io) {
1004		struct dm_io *next = io->next;
1005
1006		dm_io_rewind(io, &md->disk->bio_split);
1007
1008		io->next = NULL;
1009		__dm_io_complete(io, false);
1010		io = next;
1011	}
1012}
1013
1014/*
1015 * Two staged requeue:
1016 *
1017 * 1) io->orig_bio points to the real original bio, and the part mapped to
1018 *    this io must be requeued, instead of other parts of the original bio.
1019 *
1020 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1021 */
1022static void dm_io_complete(struct dm_io *io)
1023{
1024	bool first_requeue;
1025
1026	/*
1027	 * Only dm_io that has been split needs two stage requeue, otherwise
1028	 * we may run into long bio clone chain during suspend and OOM could
1029	 * be triggered.
1030	 *
1031	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1032	 * also aren't handled via the first stage requeue.
1033	 */
1034	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1035		first_requeue = true;
1036	else
1037		first_requeue = false;
1038
1039	__dm_io_complete(io, first_requeue);
1040}
1041
1042/*
1043 * Decrements the number of outstanding ios that a bio has been
1044 * cloned into, completing the original io if necc.
1045 */
1046static inline void __dm_io_dec_pending(struct dm_io *io)
1047{
1048	if (atomic_dec_and_test(&io->io_count))
1049		dm_io_complete(io);
1050}
1051
1052static void dm_io_set_error(struct dm_io *io, blk_status_t error)
1053{
1054	unsigned long flags;
1055
1056	/* Push-back supersedes any I/O errors */
1057	spin_lock_irqsave(&io->lock, flags);
1058	if (!(io->status == BLK_STS_DM_REQUEUE &&
1059	      __noflush_suspending(io->md))) {
1060		io->status = error;
1061	}
1062	spin_unlock_irqrestore(&io->lock, flags);
1063}
1064
1065static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1066{
1067	if (unlikely(error))
1068		dm_io_set_error(io, error);
1069
1070	__dm_io_dec_pending(io);
1071}
1072
1073void disable_discard(struct mapped_device *md)
1074{
1075	struct queue_limits *limits = dm_get_queue_limits(md);
1076
1077	/* device doesn't really support DISCARD, disable it */
1078	limits->max_discard_sectors = 0;
1079}
1080
1081void disable_write_zeroes(struct mapped_device *md)
1082{
1083	struct queue_limits *limits = dm_get_queue_limits(md);
1084
1085	/* device doesn't really support WRITE ZEROES, disable it */
1086	limits->max_write_zeroes_sectors = 0;
1087}
1088
1089static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
1090{
1091	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
1092}
1093
1094static void clone_endio(struct bio *bio)
1095{
1096	blk_status_t error = bio->bi_status;
1097	struct dm_target_io *tio = clone_to_tio(bio);
1098	struct dm_target *ti = tio->ti;
1099	dm_endio_fn endio = ti->type->end_io;
1100	struct dm_io *io = tio->io;
1101	struct mapped_device *md = io->md;
1102
1103	if (unlikely(error == BLK_STS_TARGET)) {
1104		if (bio_op(bio) == REQ_OP_DISCARD &&
1105		    !bdev_max_discard_sectors(bio->bi_bdev))
1106			disable_discard(md);
1107		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1108			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1109			disable_write_zeroes(md);
1110	}
1111
1112	if (static_branch_unlikely(&zoned_enabled) &&
1113	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1114		dm_zone_endio(io, bio);
1115
1116	if (endio) {
1117		int r = endio(ti, bio, &error);
1118		switch (r) {
1119		case DM_ENDIO_REQUEUE:
1120			if (static_branch_unlikely(&zoned_enabled)) {
1121				/*
1122				 * Requeuing writes to a sequential zone of a zoned
1123				 * target will break the sequential write pattern:
1124				 * fail such IO.
1125				 */
1126				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1127					error = BLK_STS_IOERR;
1128				else
1129					error = BLK_STS_DM_REQUEUE;
1130			} else
1131				error = BLK_STS_DM_REQUEUE;
1132			fallthrough;
1133		case DM_ENDIO_DONE:
1134			break;
1135		case DM_ENDIO_INCOMPLETE:
1136			/* The target will handle the io */
1137			return;
1138		default:
1139			DMCRIT("unimplemented target endio return value: %d", r);
1140			BUG();
1141		}
1142	}
1143
1144	if (static_branch_unlikely(&swap_bios_enabled) &&
1145	    unlikely(swap_bios_limit(ti, bio)))
1146		up(&md->swap_bios_semaphore);
1147
1148	free_tio(bio);
1149	dm_io_dec_pending(io, error);
1150}
1151
1152/*
1153 * Return maximum size of I/O possible at the supplied sector up to the current
1154 * target boundary.
1155 */
1156static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1157						  sector_t target_offset)
1158{
 
 
1159	return ti->len - target_offset;
1160}
1161
1162static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1163{
1164	sector_t target_offset = dm_target_offset(ti, sector);
1165	sector_t len = max_io_len_target_boundary(ti, target_offset);
1166
1167	/*
1168	 * Does the target need to split IO even further?
1169	 * - varied (per target) IO splitting is a tenet of DM; this
1170	 *   explains why stacked chunk_sectors based splitting via
1171	 *   bio_split_to_limits() isn't possible here.
1172	 */
1173	if (!ti->max_io_len)
1174		return len;
1175	return min_t(sector_t, len,
1176		min(queue_max_sectors(ti->table->md->queue),
1177		    blk_chunk_sectors_left(target_offset, ti->max_io_len)));
 
 
 
 
 
1178}
1179
1180int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
1181{
1182	if (len > UINT_MAX) {
1183		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1184		      (unsigned long long)len, UINT_MAX);
1185		ti->error = "Maximum size of target IO is too large";
1186		return -EINVAL;
1187	}
1188
1189	ti->max_io_len = (uint32_t) len;
1190
1191	return 0;
1192}
1193EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1194
1195static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1196						sector_t sector, int *srcu_idx)
1197	__acquires(md->io_barrier)
1198{
 
1199	struct dm_table *map;
1200	struct dm_target *ti;
1201
1202	map = dm_get_live_table(md, srcu_idx);
1203	if (!map)
1204		return NULL;
1205
1206	ti = dm_table_find_target(map, sector);
1207	if (!ti)
1208		return NULL;
1209
1210	return ti;
1211}
1212
1213static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1214		long nr_pages, enum dax_access_mode mode, void **kaddr,
1215		pfn_t *pfn)
1216{
1217	struct mapped_device *md = dax_get_private(dax_dev);
1218	sector_t sector = pgoff * PAGE_SECTORS;
1219	struct dm_target *ti;
1220	long len, ret = -EIO;
1221	int srcu_idx;
 
1222
1223	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1224
1225	if (!ti)
1226		goto out;
1227	if (!ti->type->direct_access)
1228		goto out;
1229	len = max_io_len(ti, sector) / PAGE_SECTORS;
1230	if (len < 1)
1231		goto out;
1232	nr_pages = min(len, nr_pages);
1233	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
1234
1235 out:
1236	dm_put_live_table(md, srcu_idx);
1237
1238	return ret;
1239}
1240
1241static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1242				  size_t nr_pages)
1243{
1244	struct mapped_device *md = dax_get_private(dax_dev);
1245	sector_t sector = pgoff * PAGE_SECTORS;
1246	struct dm_target *ti;
1247	int ret = -EIO;
1248	int srcu_idx;
1249
1250	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1251
1252	if (!ti)
1253		goto out;
1254	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1255		/*
1256		 * ->zero_page_range() is mandatory dax operation. If we are
1257		 *  here, something is wrong.
1258		 */
1259		goto out;
1260	}
1261	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1262 out:
1263	dm_put_live_table(md, srcu_idx);
1264
1265	return ret;
1266}
1267
1268static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1269		void *addr, size_t bytes, struct iov_iter *i)
1270{
1271	struct mapped_device *md = dax_get_private(dax_dev);
1272	sector_t sector = pgoff * PAGE_SECTORS;
1273	struct dm_target *ti;
1274	int srcu_idx;
1275	long ret = 0;
1276
1277	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1278	if (!ti || !ti->type->dax_recovery_write)
1279		goto out;
1280
1281	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1282out:
1283	dm_put_live_table(md, srcu_idx);
1284	return ret;
1285}
1286
1287/*
1288 * A target may call dm_accept_partial_bio only from the map routine.  It is
1289 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1290 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1291 * __send_duplicate_bios().
1292 *
1293 * dm_accept_partial_bio informs the dm that the target only wants to process
1294 * additional n_sectors sectors of the bio and the rest of the data should be
1295 * sent in a next bio.
1296 *
1297 * A diagram that explains the arithmetics:
1298 * +--------------------+---------------+-------+
1299 * |         1          |       2       |   3   |
1300 * +--------------------+---------------+-------+
1301 *
1302 * <-------------- *tio->len_ptr --------------->
1303 *                      <----- bio_sectors ----->
1304 *                      <-- n_sectors -->
1305 *
1306 * Region 1 was already iterated over with bio_advance or similar function.
1307 *	(it may be empty if the target doesn't use bio_advance)
1308 * Region 2 is the remaining bio size that the target wants to process.
1309 *	(it may be empty if region 1 is non-empty, although there is no reason
1310 *	 to make it empty)
1311 * The target requires that region 3 is to be sent in the next bio.
1312 *
1313 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1314 * the partially processed part (the sum of regions 1+2) must be the same for all
1315 * copies of the bio.
1316 */
1317void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1318{
1319	struct dm_target_io *tio = clone_to_tio(bio);
1320	struct dm_io *io = tio->io;
1321	unsigned bio_sectors = bio_sectors(bio);
1322
1323	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1324	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1325	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1326	BUG_ON(bio_sectors > *tio->len_ptr);
1327	BUG_ON(n_sectors > bio_sectors);
1328
1329	*tio->len_ptr -= bio_sectors - n_sectors;
1330	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1331
1332	/*
1333	 * __split_and_process_bio() may have already saved mapped part
1334	 * for accounting but it is being reduced so update accordingly.
1335	 */
1336	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1337	io->sectors = n_sectors;
1338	io->sector_offset = bio_sectors(io->orig_bio);
1339}
1340EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1341
1342/*
1343 * @clone: clone bio that DM core passed to target's .map function
1344 * @tgt_clone: clone of @clone bio that target needs submitted
1345 *
1346 * Targets should use this interface to submit bios they take
1347 * ownership of when returning DM_MAPIO_SUBMITTED.
1348 *
1349 * Target should also enable ti->accounts_remapped_io
1350 */
1351void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
 
 
 
 
 
1352{
1353	struct dm_target_io *tio = clone_to_tio(clone);
1354	struct dm_io *io = tio->io;
 
 
1355
1356	/* establish bio that will get submitted */
1357	if (!tgt_clone)
1358		tgt_clone = clone;
1359
1360	/*
1361	 * Account io->origin_bio to DM dev on behalf of target
1362	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1363	 */
1364	dm_start_io_acct(io, clone);
 
 
 
 
 
 
 
 
1365
1366	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1367			      tio->old_sector);
1368	submit_bio_noacct(tgt_clone);
 
 
 
1369}
1370EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1371
1372static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
1373{
1374	mutex_lock(&md->swap_bios_lock);
1375	while (latch < md->swap_bios) {
1376		cond_resched();
1377		down(&md->swap_bios_semaphore);
1378		md->swap_bios--;
1379	}
1380	while (latch > md->swap_bios) {
1381		cond_resched();
1382		up(&md->swap_bios_semaphore);
1383		md->swap_bios++;
1384	}
1385	mutex_unlock(&md->swap_bios_lock);
1386}
1387
1388static void __map_bio(struct bio *clone)
 
 
 
 
 
 
1389{
1390	struct dm_target_io *tio = clone_to_tio(clone);
1391	struct dm_target *ti = tio->ti;
1392	struct dm_io *io = tio->io;
1393	struct mapped_device *md = io->md;
1394	int r;
 
 
 
 
1395
1396	clone->bi_end_io = clone_endio;
1397
1398	/*
1399	 * Map the clone.
1400	 */
1401	tio->old_sector = clone->bi_iter.bi_sector;
1402
1403	if (static_branch_unlikely(&swap_bios_enabled) &&
1404	    unlikely(swap_bios_limit(ti, clone))) {
1405		int latch = get_swap_bios();
1406		if (unlikely(latch != md->swap_bios))
1407			__set_swap_bios_limit(md, latch);
1408		down(&md->swap_bios_semaphore);
1409	}
1410
1411	if (static_branch_unlikely(&zoned_enabled)) {
1412		/*
1413		 * Check if the IO needs a special mapping due to zone append
1414		 * emulation on zoned target. In this case, dm_zone_map_bio()
1415		 * calls the target map operation.
1416		 */
1417		if (unlikely(dm_emulate_zone_append(md)))
1418			r = dm_zone_map_bio(tio);
1419		else
1420			r = ti->type->map(ti, clone);
1421	} else
1422		r = ti->type->map(ti, clone);
1423
1424	switch (r) {
1425	case DM_MAPIO_SUBMITTED:
1426		/* target has assumed ownership of this io */
1427		if (!ti->accounts_remapped_io)
1428			dm_start_io_acct(io, clone);
1429		break;
1430	case DM_MAPIO_REMAPPED:
1431		dm_submit_bio_remap(clone, NULL);
1432		break;
1433	case DM_MAPIO_KILL:
1434	case DM_MAPIO_REQUEUE:
1435		if (static_branch_unlikely(&swap_bios_enabled) &&
1436		    unlikely(swap_bios_limit(ti, clone)))
1437			up(&md->swap_bios_semaphore);
1438		free_tio(clone);
1439		if (r == DM_MAPIO_KILL)
1440			dm_io_dec_pending(io, BLK_STS_IOERR);
1441		else
1442			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1443		break;
1444	default:
1445		DMCRIT("unimplemented target map return value: %d", r);
1446		BUG();
1447	}
1448}
1449
1450static void setup_split_accounting(struct clone_info *ci, unsigned len)
1451{
1452	struct dm_io *io = ci->io;
 
 
 
 
 
1453
1454	if (ci->sector_count > len) {
1455		/*
1456		 * Split needed, save the mapped part for accounting.
1457		 * NOTE: dm_accept_partial_bio() will update accordingly.
1458		 */
1459		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1460		io->sectors = len;
1461		io->sector_offset = bio_sectors(ci->bio);
1462	}
1463}
1464
1465static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1466				struct dm_target *ti, unsigned num_bios)
 
 
 
1467{
1468	struct bio *bio;
1469	int try;
 
1470
1471	for (try = 0; try < 2; try++) {
1472		int bio_nr;
 
 
 
1473
1474		if (try)
1475			mutex_lock(&ci->io->md->table_devices_lock);
1476		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1477			bio = alloc_tio(ci, ti, bio_nr, NULL,
1478					try ? GFP_NOIO : GFP_NOWAIT);
1479			if (!bio)
1480				break;
1481
1482			bio_list_add(blist, bio);
1483		}
1484		if (try)
1485			mutex_unlock(&ci->io->md->table_devices_lock);
1486		if (bio_nr == num_bios)
1487			return;
1488
1489		while ((bio = bio_list_pop(blist)))
1490			free_tio(bio);
1491	}
1492}
1493
1494static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1495				 unsigned int num_bios, unsigned *len)
 
1496{
1497	struct bio_list blist = BIO_EMPTY_LIST;
1498	struct bio *clone;
1499	unsigned int ret = 0;
1500
1501	switch (num_bios) {
1502	case 0:
1503		break;
1504	case 1:
1505		if (len)
1506			setup_split_accounting(ci, *len);
1507		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1508		__map_bio(clone);
1509		ret = 1;
1510		break;
1511	default:
1512		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1513		alloc_multiple_bios(&blist, ci, ti, num_bios);
1514		while ((clone = bio_list_pop(&blist))) {
1515			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1516			__map_bio(clone);
1517			ret += 1;
1518		}
1519		break;
1520	}
1521
1522	return ret;
 
 
 
 
1523}
1524
1525static void __send_empty_flush(struct clone_info *ci)
 
 
1526{
1527	struct dm_table *t = ci->map;
1528	struct bio flush_bio;
1529
1530	/*
1531	 * Use an on-stack bio for this, it's safe since we don't
1532	 * need to reference it after submit. It's just used as
1533	 * the basis for the clone(s).
1534	 */
1535	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1536		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1537
1538	ci->bio = &flush_bio;
1539	ci->sector_count = 0;
1540	ci->io->tio.clone.bi_iter.bi_size = 0;
1541
1542	for (unsigned int i = 0; i < t->num_targets; i++) {
1543		unsigned int bios;
1544		struct dm_target *ti = dm_table_get_target(t, i);
1545
1546		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1547		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1548		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
1549	}
1550
1551	/*
1552	 * alloc_io() takes one extra reference for submission, so the
1553	 * reference won't reach 0 without the following subtraction
1554	 */
1555	atomic_sub(1, &ci->io->io_count);
1556
1557	bio_uninit(ci->bio);
 
1558}
1559
1560static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1561					unsigned num_bios)
1562{
1563	unsigned len;
1564	unsigned int bios;
1565
1566	len = min_t(sector_t, ci->sector_count,
1567		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
1568
1569	atomic_add(num_bios, &ci->io->io_count);
1570	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1571	/*
1572	 * alloc_io() takes one extra reference for submission, so the
1573	 * reference won't reach 0 without the following (+1) subtraction
1574	 */
1575	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1576
1577	ci->sector += len;
1578	ci->sector_count -= len;
1579}
1580
1581static bool is_abnormal_io(struct bio *bio)
 
1582{
1583	enum req_op op = bio_op(bio);
 
 
 
 
 
 
 
 
 
 
1584
1585	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1586		switch (op) {
1587		case REQ_OP_DISCARD:
1588		case REQ_OP_SECURE_ERASE:
1589		case REQ_OP_WRITE_ZEROES:
1590			return true;
1591		default:
1592			break;
1593		}
 
1594	}
1595
1596	return false;
1597}
1598
1599static blk_status_t __process_abnormal_io(struct clone_info *ci,
1600					  struct dm_target *ti)
1601{
1602	unsigned num_bios = 0;
1603
1604	switch (bio_op(ci->bio)) {
1605	case REQ_OP_DISCARD:
1606		num_bios = ti->num_discard_bios;
1607		break;
1608	case REQ_OP_SECURE_ERASE:
1609		num_bios = ti->num_secure_erase_bios;
1610		break;
1611	case REQ_OP_WRITE_ZEROES:
1612		num_bios = ti->num_write_zeroes_bios;
1613		break;
1614	default:
1615		break;
1616	}
1617
1618	/*
1619	 * Even though the device advertised support for this type of
1620	 * request, that does not mean every target supports it, and
1621	 * reconfiguration might also have changed that since the
1622	 * check was performed.
1623	 */
1624	if (unlikely(!num_bios))
1625		return BLK_STS_NOTSUPP;
1626
1627	__send_changing_extent_only(ci, ti, num_bios);
1628	return BLK_STS_OK;
 
1629}
1630
1631/*
1632 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1633 * associated with this bio, and this bio's bi_private needs to be
1634 * stored in dm_io->data before the reuse.
1635 *
1636 * bio->bi_private is owned by fs or upper layer, so block layer won't
1637 * touch it after splitting. Meantime it won't be changed by anyone after
1638 * bio is submitted. So this reuse is safe.
1639 */
1640static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1641{
1642	return (struct dm_io **)&bio->bi_private;
1643}
1644
1645static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
 
 
1646{
1647	struct dm_io **head = dm_poll_list_head(bio);
 
 
 
 
 
 
 
1648
1649	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1650		bio->bi_opf |= REQ_DM_POLL_LIST;
1651		/*
1652		 * Save .bi_private into dm_io, so that we can reuse
1653		 * .bi_private as dm_io list head for storing dm_io list
 
 
1654		 */
1655		io->data = bio->bi_private;
 
 
1656
1657		/* tell block layer to poll for completion */
1658		bio->bi_cookie = ~BLK_QC_T_NONE;
 
 
1659
1660		io->next = NULL;
1661	} else {
1662		/*
1663		 * bio recursed due to split, reuse original poll list,
1664		 * and save bio->bi_private too.
1665		 */
1666		io->data = (*head)->data;
1667		io->next = *head;
1668	}
1669
1670	*head = io;
 
 
 
 
 
 
 
 
 
 
 
1671}
1672
1673/*
1674 * Select the correct strategy for processing a non-flush bio.
1675 */
1676static blk_status_t __split_and_process_bio(struct clone_info *ci)
1677{
1678	struct bio *clone;
1679	struct dm_target *ti;
1680	unsigned len;
 
1681
1682	ti = dm_table_find_target(ci->map, ci->sector);
1683	if (unlikely(!ti))
1684		return BLK_STS_IOERR;
1685
1686	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1687	    unlikely(!dm_target_supports_nowait(ti->type)))
1688		return BLK_STS_NOTSUPP;
1689
1690	if (unlikely(ci->is_abnormal_io))
1691		return __process_abnormal_io(ci, ti);
 
1692
1693	/*
1694	 * Only support bio polling for normal IO, and the target io is
1695	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1696	 */
1697	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1698
1699	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1700	setup_split_accounting(ci, len);
1701	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1702	__map_bio(clone);
1703
1704	ci->sector += len;
1705	ci->sector_count -= len;
1706
1707	return BLK_STS_OK;
1708}
1709
1710static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1711			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1712{
1713	ci->map = map;
1714	ci->io = alloc_io(md, bio);
1715	ci->bio = bio;
1716	ci->is_abnormal_io = is_abnormal;
1717	ci->submit_as_polled = false;
1718	ci->sector = bio->bi_iter.bi_sector;
1719	ci->sector_count = bio_sectors(bio);
1720
1721	/* Shouldn't happen but sector_count was being set to 0 so... */
1722	if (static_branch_unlikely(&zoned_enabled) &&
1723	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1724		ci->sector_count = 0;
1725}
1726
1727/*
1728 * Entry point to split a bio into clones and submit them to the targets.
1729 */
1730static void dm_split_and_process_bio(struct mapped_device *md,
1731				     struct dm_table *map, struct bio *bio)
1732{
1733	struct clone_info ci;
1734	struct dm_io *io;
1735	blk_status_t error = BLK_STS_OK;
1736	bool is_abnormal;
1737
1738	is_abnormal = is_abnormal_io(bio);
1739	if (unlikely(is_abnormal)) {
1740		/*
1741		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1742		 * otherwise associated queue_limits won't be imposed.
1743		 */
1744		bio = bio_split_to_limits(bio);
1745		if (!bio)
1746			return;
1747	}
1748
1749	init_clone_info(&ci, md, map, bio, is_abnormal);
1750	io = ci.io;
 
 
 
 
 
 
 
 
 
1751
1752	if (bio->bi_opf & REQ_PREFLUSH) {
1753		__send_empty_flush(&ci);
1754		/* dm_io_complete submits any data associated with flush */
1755		goto out;
 
 
 
 
 
 
1756	}
1757
1758	error = __split_and_process_bio(&ci);
1759	if (error || !ci.sector_count)
1760		goto out;
1761	/*
1762	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1763	 * *after* bios already submitted have been completely processed.
1764	 */
1765	bio_trim(bio, io->sectors, ci.sector_count);
1766	trace_block_split(bio, bio->bi_iter.bi_sector);
1767	bio_inc_remaining(bio);
1768	submit_bio_noacct(bio);
1769out:
1770	/*
1771	 * Drop the extra reference count for non-POLLED bio, and hold one
1772	 * reference for POLLED bio, which will be released in dm_poll_bio
1773	 *
1774	 * Add every dm_io instance into the dm_io list head which is stored
1775	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1776	 */
1777	if (error || !ci.submit_as_polled) {
1778		/*
1779		 * In case of submission failure, the extra reference for
1780		 * submitting io isn't consumed yet
1781		 */
1782		if (error)
1783			atomic_dec(&io->io_count);
1784		dm_io_dec_pending(io, error);
1785	} else
1786		dm_queue_poll_io(bio, io);
1787}
 
 
 
1788
1789static void dm_submit_bio(struct bio *bio)
 
 
 
 
1790{
1791	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
 
1792	int srcu_idx;
1793	struct dm_table *map;
1794	blk_opf_t bio_opf = bio->bi_opf;
1795
1796	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
1797
1798	/* If suspended, or map not yet available, queue this IO for later */
1799	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1800	    unlikely(!map)) {
1801		if (bio->bi_opf & REQ_NOWAIT)
1802			bio_wouldblock_error(bio);
1803		else if (bio->bi_opf & REQ_RAHEAD)
1804			bio_io_error(bio);
1805		else
1806			queue_io(md, bio);
1807		goto out;
1808	}
1809
1810	dm_split_and_process_bio(md, map, bio);
1811out:
1812	dm_put_live_table_bio(md, srcu_idx, bio_opf);
1813}
1814
1815static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1816			  unsigned int flags)
1817{
1818	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1819
1820	/* don't poll if the mapped io is done */
1821	if (atomic_read(&io->io_count) > 1)
1822		bio_poll(&io->tio.clone, iob, flags);
 
 
 
1823
1824	/* bio_poll holds the last reference */
1825	return atomic_read(&io->io_count) == 1;
 
1826}
1827
1828static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1829		       unsigned int flags)
1830{
1831	struct dm_io **head = dm_poll_list_head(bio);
1832	struct dm_io *list = *head;
1833	struct dm_io *tmp = NULL;
1834	struct dm_io *curr, *next;
1835
1836	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1837	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1838		return 0;
1839
1840	WARN_ON_ONCE(!list);
1841
1842	/*
1843	 * Restore .bi_private before possibly completing dm_io.
1844	 *
1845	 * bio_poll() is only possible once @bio has been completely
1846	 * submitted via submit_bio_noacct()'s depth-first submission.
1847	 * So there is no dm_queue_poll_io() race associated with
1848	 * clearing REQ_DM_POLL_LIST here.
1849	 */
1850	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1851	bio->bi_private = list->data;
1852
1853	for (curr = list, next = curr->next; curr; curr = next, next =
1854			curr ? curr->next : NULL) {
1855		if (dm_poll_dm_io(curr, iob, flags)) {
1856			/*
1857			 * clone_endio() has already occurred, so no
1858			 * error handling is needed here.
1859			 */
1860			__dm_io_dec_pending(curr);
1861		} else {
1862			curr->next = tmp;
1863			tmp = curr;
 
 
1864		}
1865	}
1866
1867	/* Not done? */
1868	if (tmp) {
1869		bio->bi_opf |= REQ_DM_POLL_LIST;
1870		/* Reset bio->bi_private to dm_io list head */
1871		*head = tmp;
1872		return 0;
1873	}
1874	return 1;
1875}
1876
1877/*-----------------------------------------------------------------
1878 * An IDR is used to keep track of allocated minor numbers.
1879 *---------------------------------------------------------------*/
1880static void free_minor(int minor)
1881{
1882	spin_lock(&_minor_lock);
1883	idr_remove(&_minor_idr, minor);
1884	spin_unlock(&_minor_lock);
1885}
1886
1887/*
1888 * See if the device with a specific minor # is free.
1889 */
1890static int specific_minor(int minor)
1891{
1892	int r;
1893
1894	if (minor >= (1 << MINORBITS))
1895		return -EINVAL;
1896
1897	idr_preload(GFP_KERNEL);
1898	spin_lock(&_minor_lock);
1899
1900	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1901
1902	spin_unlock(&_minor_lock);
1903	idr_preload_end();
1904	if (r < 0)
1905		return r == -ENOSPC ? -EBUSY : r;
1906	return 0;
1907}
1908
1909static int next_free_minor(int *minor)
1910{
1911	int r;
1912
1913	idr_preload(GFP_KERNEL);
1914	spin_lock(&_minor_lock);
1915
1916	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1917
1918	spin_unlock(&_minor_lock);
1919	idr_preload_end();
1920	if (r < 0)
1921		return r;
1922	*minor = r;
1923	return 0;
1924}
1925
1926static const struct block_device_operations dm_blk_dops;
1927static const struct block_device_operations dm_rq_blk_dops;
1928static const struct dax_operations dm_dax_ops;
1929
1930static void dm_wq_work(struct work_struct *work);
1931
1932#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1933static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1934{
1935	dm_destroy_crypto_profile(q->crypto_profile);
1936}
 
 
 
 
 
 
 
 
1937
1938#else /* CONFIG_BLK_INLINE_ENCRYPTION */
 
 
 
 
 
 
1939
1940static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1941{
 
 
 
 
 
 
 
 
1942}
1943#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1944
1945static void cleanup_mapped_device(struct mapped_device *md)
1946{
1947	if (md->wq)
1948		destroy_workqueue(md->wq);
1949	dm_free_md_mempools(md->mempools);
 
 
 
 
 
1950
1951	if (md->dax_dev) {
1952		dax_remove_host(md->disk);
1953		kill_dax(md->dax_dev);
1954		put_dax(md->dax_dev);
1955		md->dax_dev = NULL;
1956	}
1957
1958	dm_cleanup_zoned_dev(md);
1959	if (md->disk) {
1960		spin_lock(&_minor_lock);
1961		md->disk->private_data = NULL;
1962		spin_unlock(&_minor_lock);
1963		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1964			struct table_device *td;
1965
1966			dm_sysfs_exit(md);
1967			list_for_each_entry(td, &md->table_devices, list) {
1968				bd_unlink_disk_holder(td->dm_dev.bdev,
1969						      md->disk);
1970			}
1971
1972			/*
1973			 * Hold lock to make sure del_gendisk() won't concurrent
1974			 * with open/close_table_device().
1975			 */
1976			mutex_lock(&md->table_devices_lock);
1977			del_gendisk(md->disk);
1978			mutex_unlock(&md->table_devices_lock);
1979		}
1980		dm_queue_destroy_crypto_profile(md->queue);
1981		put_disk(md->disk);
1982	}
1983
1984	if (md->pending_io) {
1985		free_percpu(md->pending_io);
1986		md->pending_io = NULL;
1987	}
1988
1989	cleanup_srcu_struct(&md->io_barrier);
1990
1991	mutex_destroy(&md->suspend_lock);
1992	mutex_destroy(&md->type_lock);
1993	mutex_destroy(&md->table_devices_lock);
1994	mutex_destroy(&md->swap_bios_lock);
1995
1996	dm_mq_cleanup_mapped_device(md);
1997}
1998
1999/*
2000 * Allocate and initialise a blank device with a given minor.
2001 */
2002static struct mapped_device *alloc_dev(int minor)
2003{
2004	int r, numa_node_id = dm_get_numa_node();
2005	struct mapped_device *md;
2006	void *old_md;
2007
2008	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2009	if (!md) {
2010		DMERR("unable to allocate device, out of memory.");
2011		return NULL;
2012	}
2013
2014	if (!try_module_get(THIS_MODULE))
2015		goto bad_module_get;
2016
2017	/* get a minor number for the dev */
2018	if (minor == DM_ANY_MINOR)
2019		r = next_free_minor(&minor);
2020	else
2021		r = specific_minor(minor);
2022	if (r < 0)
2023		goto bad_minor;
2024
2025	r = init_srcu_struct(&md->io_barrier);
2026	if (r < 0)
2027		goto bad_io_barrier;
2028
2029	md->numa_node_id = numa_node_id;
 
2030	md->init_tio_pdu = false;
2031	md->type = DM_TYPE_NONE;
2032	mutex_init(&md->suspend_lock);
2033	mutex_init(&md->type_lock);
2034	mutex_init(&md->table_devices_lock);
2035	spin_lock_init(&md->deferred_lock);
2036	atomic_set(&md->holders, 1);
2037	atomic_set(&md->open_count, 0);
2038	atomic_set(&md->event_nr, 0);
2039	atomic_set(&md->uevent_seq, 0);
2040	INIT_LIST_HEAD(&md->uevent_list);
2041	INIT_LIST_HEAD(&md->table_devices);
2042	spin_lock_init(&md->uevent_lock);
2043
2044	/*
2045	 * default to bio-based until DM table is loaded and md->type
2046	 * established. If request-based table is loaded: blk-mq will
2047	 * override accordingly.
2048	 */
2049	md->disk = blk_alloc_disk(md->numa_node_id);
 
2050	if (!md->disk)
2051		goto bad;
2052	md->queue = md->disk->queue;
2053
 
 
2054	init_waitqueue_head(&md->wait);
2055	INIT_WORK(&md->work, dm_wq_work);
2056	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2057	init_waitqueue_head(&md->eventq);
2058	init_completion(&md->kobj_holder.completion);
2059
2060	md->requeue_list = NULL;
2061	md->swap_bios = get_swap_bios();
2062	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2063	mutex_init(&md->swap_bios_lock);
2064
2065	md->disk->major = _major;
2066	md->disk->first_minor = minor;
2067	md->disk->minors = 1;
2068	md->disk->flags |= GENHD_FL_NO_PART;
2069	md->disk->fops = &dm_blk_dops;
 
2070	md->disk->private_data = md;
2071	sprintf(md->disk->disk_name, "dm-%d", minor);
2072
2073	if (IS_ENABLED(CONFIG_FS_DAX)) {
2074		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2075		if (IS_ERR(md->dax_dev)) {
2076			md->dax_dev = NULL;
2077			goto bad;
2078		}
2079		set_dax_nocache(md->dax_dev);
2080		set_dax_nomc(md->dax_dev);
2081		if (dax_add_host(md->dax_dev, md->disk))
2082			goto bad;
2083	}
2084
2085	format_dev_t(md->name, MKDEV(_major, minor));
2086
2087	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2088	if (!md->wq)
2089		goto bad;
2090
2091	md->pending_io = alloc_percpu(unsigned long);
2092	if (!md->pending_io)
2093		goto bad;
2094
 
 
 
 
2095	dm_stats_init(&md->stats);
2096
2097	/* Populate the mapping, nobody knows we exist yet */
2098	spin_lock(&_minor_lock);
2099	old_md = idr_replace(&_minor_idr, md, minor);
2100	spin_unlock(&_minor_lock);
2101
2102	BUG_ON(old_md != MINOR_ALLOCED);
2103
2104	return md;
2105
2106bad:
2107	cleanup_mapped_device(md);
2108bad_io_barrier:
2109	free_minor(minor);
2110bad_minor:
2111	module_put(THIS_MODULE);
2112bad_module_get:
2113	kvfree(md);
2114	return NULL;
2115}
2116
2117static void unlock_fs(struct mapped_device *md);
2118
2119static void free_dev(struct mapped_device *md)
2120{
2121	int minor = MINOR(disk_devt(md->disk));
2122
2123	unlock_fs(md);
2124
2125	cleanup_mapped_device(md);
2126
2127	WARN_ON_ONCE(!list_empty(&md->table_devices));
2128	dm_stats_cleanup(&md->stats);
2129	free_minor(minor);
2130
2131	module_put(THIS_MODULE);
2132	kvfree(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133}
2134
2135/*
2136 * Bind a table to the device.
2137 */
2138static void event_callback(void *context)
2139{
2140	unsigned long flags;
2141	LIST_HEAD(uevents);
2142	struct mapped_device *md = (struct mapped_device *) context;
2143
2144	spin_lock_irqsave(&md->uevent_lock, flags);
2145	list_splice_init(&md->uevent_list, &uevents);
2146	spin_unlock_irqrestore(&md->uevent_lock, flags);
2147
2148	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2149
2150	atomic_inc(&md->event_nr);
2151	wake_up(&md->eventq);
2152	dm_issue_global_event();
 
 
 
 
 
 
 
 
 
2153}
2154
2155/*
2156 * Returns old map, which caller must destroy.
2157 */
2158static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2159			       struct queue_limits *limits)
2160{
2161	struct dm_table *old_map;
 
2162	sector_t size;
2163	int ret;
2164
2165	lockdep_assert_held(&md->suspend_lock);
2166
2167	size = dm_table_get_size(t);
2168
2169	/*
2170	 * Wipe any geometry if the size of the table changed.
2171	 */
2172	if (size != dm_get_size(md))
2173		memset(&md->geometry, 0, sizeof(md->geometry));
2174
2175	if (!get_capacity(md->disk))
2176		set_capacity(md->disk, size);
2177	else
2178		set_capacity_and_notify(md->disk, size);
2179
2180	dm_table_event_callback(t, event_callback, md);
2181
 
 
 
 
 
 
 
2182	if (dm_table_request_based(t)) {
 
2183		/*
2184		 * Leverage the fact that request-based DM targets are
2185		 * immutable singletons - used to optimize dm_mq_queue_rq.
 
2186		 */
2187		md->immutable_target = dm_table_get_immutable_target(t);
2188
2189		/*
2190		 * There is no need to reload with request-based dm because the
2191		 * size of front_pad doesn't change.
2192		 *
2193		 * Note for future: If you are to reload bioset, prep-ed
2194		 * requests in the queue may refer to bio from the old bioset,
2195		 * so you must walk through the queue to unprep.
2196		 */
2197		if (!md->mempools) {
2198			md->mempools = t->mempools;
2199			t->mempools = NULL;
2200		}
2201	} else {
2202		/*
2203		 * The md may already have mempools that need changing.
2204		 * If so, reload bioset because front_pad may have changed
2205		 * because a different table was loaded.
2206		 */
2207		dm_free_md_mempools(md->mempools);
2208		md->mempools = t->mempools;
2209		t->mempools = NULL;
2210	}
2211
2212	ret = dm_table_set_restrictions(t, md->queue, limits);
2213	if (ret) {
2214		old_map = ERR_PTR(ret);
2215		goto out;
2216	}
2217
2218	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2219	rcu_assign_pointer(md->map, (void *)t);
2220	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2221
 
2222	if (old_map)
2223		dm_sync_table(md);
2224out:
2225	return old_map;
2226}
2227
2228/*
2229 * Returns unbound table for the caller to free.
2230 */
2231static struct dm_table *__unbind(struct mapped_device *md)
2232{
2233	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2234
2235	if (!map)
2236		return NULL;
2237
2238	dm_table_event_callback(map, NULL, NULL);
2239	RCU_INIT_POINTER(md->map, NULL);
2240	dm_sync_table(md);
2241
2242	return map;
2243}
2244
2245/*
2246 * Constructor for a new device.
2247 */
2248int dm_create(int minor, struct mapped_device **result)
2249{
2250	struct mapped_device *md;
2251
2252	md = alloc_dev(minor);
2253	if (!md)
2254		return -ENXIO;
2255
2256	dm_ima_reset_data(md);
2257
2258	*result = md;
2259	return 0;
2260}
2261
2262/*
2263 * Functions to manage md->type.
2264 * All are required to hold md->type_lock.
2265 */
2266void dm_lock_md_type(struct mapped_device *md)
2267{
2268	mutex_lock(&md->type_lock);
2269}
2270
2271void dm_unlock_md_type(struct mapped_device *md)
2272{
2273	mutex_unlock(&md->type_lock);
2274}
2275
2276void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2277{
2278	BUG_ON(!mutex_is_locked(&md->type_lock));
2279	md->type = type;
2280}
2281
2282enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2283{
2284	return md->type;
2285}
2286
2287struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2288{
2289	return md->immutable_target_type;
2290}
2291
2292/*
2293 * The queue_limits are only valid as long as you have a reference
2294 * count on 'md'.
2295 */
2296struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2297{
2298	BUG_ON(!atomic_read(&md->holders));
2299	return &md->queue->limits;
2300}
2301EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2302
2303/*
2304 * Setup the DM device's queue based on md's type
2305 */
2306int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2307{
2308	enum dm_queue_mode type = dm_table_get_type(t);
2309	struct queue_limits limits;
2310	struct table_device *td;
2311	int r;
 
2312
2313	switch (type) {
2314	case DM_TYPE_REQUEST_BASED:
2315		md->disk->fops = &dm_rq_blk_dops;
 
 
 
 
 
 
2316		r = dm_mq_init_request_queue(md, t);
2317		if (r) {
2318			DMERR("Cannot initialize queue for request-based dm mapped device");
2319			return r;
2320		}
2321		break;
2322	case DM_TYPE_BIO_BASED:
2323	case DM_TYPE_DAX_BIO_BASED:
2324		break;
2325	case DM_TYPE_NONE:
2326		WARN_ON_ONCE(true);
2327		break;
2328	}
2329
2330	r = dm_calculate_queue_limits(t, &limits);
2331	if (r) {
2332		DMERR("Cannot calculate initial queue limits");
2333		return r;
2334	}
2335	r = dm_table_set_restrictions(t, md->queue, &limits);
2336	if (r)
2337		return r;
2338
2339	/*
2340	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2341	 * with open_table_device() and close_table_device().
2342	 */
2343	mutex_lock(&md->table_devices_lock);
2344	r = add_disk(md->disk);
2345	mutex_unlock(&md->table_devices_lock);
2346	if (r)
2347		return r;
2348
2349	/*
2350	 * Register the holder relationship for devices added before the disk
2351	 * was live.
2352	 */
2353	list_for_each_entry(td, &md->table_devices, list) {
2354		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2355		if (r)
2356			goto out_undo_holders;
2357	}
2358
2359	r = dm_sysfs_init(md);
2360	if (r)
2361		goto out_undo_holders;
2362
2363	md->type = type;
2364	return 0;
2365
2366out_undo_holders:
2367	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2368		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2369	mutex_lock(&md->table_devices_lock);
2370	del_gendisk(md->disk);
2371	mutex_unlock(&md->table_devices_lock);
2372	return r;
2373}
2374
2375struct mapped_device *dm_get_md(dev_t dev)
2376{
2377	struct mapped_device *md;
2378	unsigned minor = MINOR(dev);
2379
2380	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2381		return NULL;
2382
2383	spin_lock(&_minor_lock);
2384
2385	md = idr_find(&_minor_idr, minor);
2386	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2387	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2388		md = NULL;
2389		goto out;
 
 
 
 
 
2390	}
2391	dm_get(md);
2392out:
2393	spin_unlock(&_minor_lock);
2394
2395	return md;
2396}
2397EXPORT_SYMBOL_GPL(dm_get_md);
2398
2399void *dm_get_mdptr(struct mapped_device *md)
2400{
2401	return md->interface_ptr;
2402}
2403
2404void dm_set_mdptr(struct mapped_device *md, void *ptr)
2405{
2406	md->interface_ptr = ptr;
2407}
2408
2409void dm_get(struct mapped_device *md)
2410{
2411	atomic_inc(&md->holders);
2412	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2413}
2414
2415int dm_hold(struct mapped_device *md)
2416{
2417	spin_lock(&_minor_lock);
2418	if (test_bit(DMF_FREEING, &md->flags)) {
2419		spin_unlock(&_minor_lock);
2420		return -EBUSY;
2421	}
2422	dm_get(md);
2423	spin_unlock(&_minor_lock);
2424	return 0;
2425}
2426EXPORT_SYMBOL_GPL(dm_hold);
2427
2428const char *dm_device_name(struct mapped_device *md)
2429{
2430	return md->name;
2431}
2432EXPORT_SYMBOL_GPL(dm_device_name);
2433
2434static void __dm_destroy(struct mapped_device *md, bool wait)
2435{
 
2436	struct dm_table *map;
2437	int srcu_idx;
2438
2439	might_sleep();
2440
2441	spin_lock(&_minor_lock);
2442	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2443	set_bit(DMF_FREEING, &md->flags);
2444	spin_unlock(&_minor_lock);
2445
2446	blk_mark_disk_dead(md->disk);
 
 
 
2447
2448	/*
2449	 * Take suspend_lock so that presuspend and postsuspend methods
2450	 * do not race with internal suspend.
2451	 */
2452	mutex_lock(&md->suspend_lock);
2453	map = dm_get_live_table(md, &srcu_idx);
2454	if (!dm_suspended_md(md)) {
2455		dm_table_presuspend_targets(map);
2456		set_bit(DMF_SUSPENDED, &md->flags);
2457		set_bit(DMF_POST_SUSPENDING, &md->flags);
2458		dm_table_postsuspend_targets(map);
2459	}
2460	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2461	dm_put_live_table(md, srcu_idx);
2462	mutex_unlock(&md->suspend_lock);
2463
2464	/*
2465	 * Rare, but there may be I/O requests still going to complete,
2466	 * for example.  Wait for all references to disappear.
2467	 * No one should increment the reference count of the mapped_device,
2468	 * after the mapped_device state becomes DMF_FREEING.
2469	 */
2470	if (wait)
2471		while (atomic_read(&md->holders))
2472			msleep(1);
2473	else if (atomic_read(&md->holders))
2474		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2475		       dm_device_name(md), atomic_read(&md->holders));
2476
 
2477	dm_table_destroy(__unbind(md));
2478	free_dev(md);
2479}
2480
2481void dm_destroy(struct mapped_device *md)
2482{
2483	__dm_destroy(md, true);
2484}
2485
2486void dm_destroy_immediate(struct mapped_device *md)
2487{
2488	__dm_destroy(md, false);
2489}
2490
2491void dm_put(struct mapped_device *md)
2492{
2493	atomic_dec(&md->holders);
2494}
2495EXPORT_SYMBOL_GPL(dm_put);
2496
2497static bool dm_in_flight_bios(struct mapped_device *md)
2498{
2499	int cpu;
2500	unsigned long sum = 0;
2501
2502	for_each_possible_cpu(cpu)
2503		sum += *per_cpu_ptr(md->pending_io, cpu);
2504
2505	return sum != 0;
2506}
2507
2508static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2509{
2510	int r = 0;
2511	DEFINE_WAIT(wait);
2512
2513	while (true) {
2514		prepare_to_wait(&md->wait, &wait, task_state);
2515
2516		if (!dm_in_flight_bios(md))
2517			break;
2518
2519		if (signal_pending_state(task_state, current)) {
2520			r = -EINTR;
2521			break;
2522		}
2523
2524		io_schedule();
2525	}
2526	finish_wait(&md->wait, &wait);
2527
2528	smp_rmb();
2529
2530	return r;
2531}
2532
2533static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2534{
2535	int r = 0;
2536
2537	if (!queue_is_mq(md->queue))
2538		return dm_wait_for_bios_completion(md, task_state);
2539
2540	while (true) {
2541		if (!blk_mq_queue_inflight(md->queue))
2542			break;
2543
2544		if (signal_pending_state(task_state, current)) {
2545			r = -EINTR;
2546			break;
2547		}
2548
2549		msleep(5);
2550	}
2551
2552	return r;
2553}
2554
2555/*
2556 * Process the deferred bios
2557 */
2558static void dm_wq_work(struct work_struct *work)
2559{
2560	struct mapped_device *md = container_of(work, struct mapped_device, work);
2561	struct bio *bio;
 
 
 
 
 
2562
2563	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2564		spin_lock_irq(&md->deferred_lock);
2565		bio = bio_list_pop(&md->deferred);
2566		spin_unlock_irq(&md->deferred_lock);
2567
2568		if (!bio)
2569			break;
2570
2571		submit_bio_noacct(bio);
 
 
 
2572	}
 
 
2573}
2574
2575static void dm_queue_flush(struct mapped_device *md)
2576{
2577	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2578	smp_mb__after_atomic();
2579	queue_work(md->wq, &md->work);
2580}
2581
2582/*
2583 * Swap in a new table, returning the old one for the caller to destroy.
2584 */
2585struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2586{
2587	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2588	struct queue_limits limits;
2589	int r;
2590
2591	mutex_lock(&md->suspend_lock);
2592
2593	/* device must be suspended */
2594	if (!dm_suspended_md(md))
2595		goto out;
2596
2597	/*
2598	 * If the new table has no data devices, retain the existing limits.
2599	 * This helps multipath with queue_if_no_path if all paths disappear,
2600	 * then new I/O is queued based on these limits, and then some paths
2601	 * reappear.
2602	 */
2603	if (dm_table_has_no_data_devices(table)) {
2604		live_map = dm_get_live_table_fast(md);
2605		if (live_map)
2606			limits = md->queue->limits;
2607		dm_put_live_table_fast(md);
2608	}
2609
2610	if (!live_map) {
2611		r = dm_calculate_queue_limits(table, &limits);
2612		if (r) {
2613			map = ERR_PTR(r);
2614			goto out;
2615		}
2616	}
2617
2618	map = __bind(md, table, &limits);
2619	dm_issue_global_event();
2620
2621out:
2622	mutex_unlock(&md->suspend_lock);
2623	return map;
2624}
2625
2626/*
2627 * Functions to lock and unlock any filesystem running on the
2628 * device.
2629 */
2630static int lock_fs(struct mapped_device *md)
2631{
2632	int r;
2633
2634	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2635
2636	r = freeze_bdev(md->disk->part0);
2637	if (!r)
2638		set_bit(DMF_FROZEN, &md->flags);
2639	return r;
 
 
 
 
 
 
2640}
2641
2642static void unlock_fs(struct mapped_device *md)
2643{
2644	if (!test_bit(DMF_FROZEN, &md->flags))
2645		return;
2646	thaw_bdev(md->disk->part0);
 
 
2647	clear_bit(DMF_FROZEN, &md->flags);
2648}
2649
2650/*
2651 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2652 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2653 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2654 *
2655 * If __dm_suspend returns 0, the device is completely quiescent
2656 * now. There is no request-processing activity. All new requests
2657 * are being added to md->deferred list.
 
 
2658 */
2659static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2660			unsigned suspend_flags, unsigned int task_state,
2661			int dmf_suspended_flag)
2662{
2663	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2664	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2665	int r;
2666
2667	lockdep_assert_held(&md->suspend_lock);
2668
2669	/*
2670	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2671	 * This flag is cleared before dm_suspend returns.
2672	 */
2673	if (noflush)
2674		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2675	else
2676		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2677
2678	/*
2679	 * This gets reverted if there's an error later and the targets
2680	 * provide the .presuspend_undo hook.
2681	 */
2682	dm_table_presuspend_targets(map);
2683
2684	/*
2685	 * Flush I/O to the device.
2686	 * Any I/O submitted after lock_fs() may not be flushed.
2687	 * noflush takes precedence over do_lockfs.
2688	 * (lock_fs() flushes I/Os and waits for them to complete.)
2689	 */
2690	if (!noflush && do_lockfs) {
2691		r = lock_fs(md);
2692		if (r) {
2693			dm_table_presuspend_undo_targets(map);
2694			return r;
2695		}
2696	}
2697
2698	/*
2699	 * Here we must make sure that no processes are submitting requests
2700	 * to target drivers i.e. no one may be executing
2701	 * dm_split_and_process_bio from dm_submit_bio.
 
2702	 *
2703	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2704	 * we take the write lock. To prevent any process from reentering
2705	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2706	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2707	 * flush_workqueue(md->wq).
2708	 */
2709	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2710	if (map)
2711		synchronize_srcu(&md->io_barrier);
2712
2713	/*
2714	 * Stop md->queue before flushing md->wq in case request-based
2715	 * dm defers requests to md->wq from md->queue.
2716	 */
2717	if (dm_request_based(md))
2718		dm_stop_queue(md->queue);
 
 
 
2719
2720	flush_workqueue(md->wq);
2721
2722	/*
2723	 * At this point no more requests are entering target request routines.
2724	 * We call dm_wait_for_completion to wait for all existing requests
2725	 * to finish.
2726	 */
2727	r = dm_wait_for_completion(md, task_state);
2728	if (!r)
2729		set_bit(dmf_suspended_flag, &md->flags);
2730
2731	if (noflush)
2732		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2733	if (map)
2734		synchronize_srcu(&md->io_barrier);
2735
2736	/* were we interrupted ? */
2737	if (r < 0) {
2738		dm_queue_flush(md);
2739
2740		if (dm_request_based(md))
2741			dm_start_queue(md->queue);
2742
2743		unlock_fs(md);
2744		dm_table_presuspend_undo_targets(map);
2745		/* pushback list is already flushed, so skip flush */
2746	}
2747
2748	return r;
2749}
2750
2751/*
2752 * We need to be able to change a mapping table under a mounted
2753 * filesystem.  For example we might want to move some data in
2754 * the background.  Before the table can be swapped with
2755 * dm_bind_table, dm_suspend must be called to flush any in
2756 * flight bios and ensure that any further io gets deferred.
2757 */
2758/*
2759 * Suspend mechanism in request-based dm.
2760 *
2761 * 1. Flush all I/Os by lock_fs() if needed.
2762 * 2. Stop dispatching any I/O by stopping the request_queue.
2763 * 3. Wait for all in-flight I/Os to be completed or requeued.
2764 *
2765 * To abort suspend, start the request_queue.
2766 */
2767int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2768{
2769	struct dm_table *map = NULL;
2770	int r = 0;
2771
2772retry:
2773	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2774
2775	if (dm_suspended_md(md)) {
2776		r = -EINVAL;
2777		goto out_unlock;
2778	}
2779
2780	if (dm_suspended_internally_md(md)) {
2781		/* already internally suspended, wait for internal resume */
2782		mutex_unlock(&md->suspend_lock);
2783		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2784		if (r)
2785			return r;
2786		goto retry;
2787	}
2788
2789	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2790
2791	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2792	if (r)
2793		goto out_unlock;
2794
2795	set_bit(DMF_POST_SUSPENDING, &md->flags);
2796	dm_table_postsuspend_targets(map);
2797	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2798
2799out_unlock:
2800	mutex_unlock(&md->suspend_lock);
2801	return r;
2802}
2803
2804static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2805{
2806	if (map) {
2807		int r = dm_table_resume_targets(map);
2808		if (r)
2809			return r;
2810	}
2811
2812	dm_queue_flush(md);
2813
2814	/*
2815	 * Flushing deferred I/Os must be done after targets are resumed
2816	 * so that mapping of targets can work correctly.
2817	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2818	 */
2819	if (dm_request_based(md))
2820		dm_start_queue(md->queue);
2821
2822	unlock_fs(md);
2823
2824	return 0;
2825}
2826
2827int dm_resume(struct mapped_device *md)
2828{
2829	int r;
2830	struct dm_table *map = NULL;
2831
2832retry:
2833	r = -EINVAL;
2834	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2835
2836	if (!dm_suspended_md(md))
2837		goto out;
2838
2839	if (dm_suspended_internally_md(md)) {
2840		/* already internally suspended, wait for internal resume */
2841		mutex_unlock(&md->suspend_lock);
2842		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2843		if (r)
2844			return r;
2845		goto retry;
2846	}
2847
2848	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2849	if (!map || !dm_table_get_size(map))
2850		goto out;
2851
2852	r = __dm_resume(md, map);
2853	if (r)
2854		goto out;
2855
2856	clear_bit(DMF_SUSPENDED, &md->flags);
2857out:
2858	mutex_unlock(&md->suspend_lock);
2859
2860	return r;
2861}
2862
2863/*
2864 * Internal suspend/resume works like userspace-driven suspend. It waits
2865 * until all bios finish and prevents issuing new bios to the target drivers.
2866 * It may be used only from the kernel.
2867 */
2868
2869static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2870{
2871	struct dm_table *map = NULL;
2872
2873	lockdep_assert_held(&md->suspend_lock);
2874
2875	if (md->internal_suspend_count++)
2876		return; /* nested internal suspend */
2877
2878	if (dm_suspended_md(md)) {
2879		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2880		return; /* nest suspend */
2881	}
2882
2883	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2884
2885	/*
2886	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2887	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2888	 * would require changing .presuspend to return an error -- avoid this
2889	 * until there is a need for more elaborate variants of internal suspend.
2890	 */
2891	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2892			    DMF_SUSPENDED_INTERNALLY);
2893
2894	set_bit(DMF_POST_SUSPENDING, &md->flags);
2895	dm_table_postsuspend_targets(map);
2896	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2897}
2898
2899static void __dm_internal_resume(struct mapped_device *md)
2900{
2901	BUG_ON(!md->internal_suspend_count);
2902
2903	if (--md->internal_suspend_count)
2904		return; /* resume from nested internal suspend */
2905
2906	if (dm_suspended_md(md))
2907		goto done; /* resume from nested suspend */
2908
2909	/*
2910	 * NOTE: existing callers don't need to call dm_table_resume_targets
2911	 * (which may fail -- so best to avoid it for now by passing NULL map)
2912	 */
2913	(void) __dm_resume(md, NULL);
2914
2915done:
2916	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2917	smp_mb__after_atomic();
2918	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2919}
2920
2921void dm_internal_suspend_noflush(struct mapped_device *md)
2922{
2923	mutex_lock(&md->suspend_lock);
2924	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2925	mutex_unlock(&md->suspend_lock);
2926}
2927EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2928
2929void dm_internal_resume(struct mapped_device *md)
2930{
2931	mutex_lock(&md->suspend_lock);
2932	__dm_internal_resume(md);
2933	mutex_unlock(&md->suspend_lock);
2934}
2935EXPORT_SYMBOL_GPL(dm_internal_resume);
2936
2937/*
2938 * Fast variants of internal suspend/resume hold md->suspend_lock,
2939 * which prevents interaction with userspace-driven suspend.
2940 */
2941
2942void dm_internal_suspend_fast(struct mapped_device *md)
2943{
2944	mutex_lock(&md->suspend_lock);
2945	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2946		return;
2947
2948	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2949	synchronize_srcu(&md->io_barrier);
2950	flush_workqueue(md->wq);
2951	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2952}
2953EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2954
2955void dm_internal_resume_fast(struct mapped_device *md)
2956{
2957	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2958		goto done;
2959
2960	dm_queue_flush(md);
2961
2962done:
2963	mutex_unlock(&md->suspend_lock);
2964}
2965EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2966
2967/*-----------------------------------------------------------------
2968 * Event notification.
2969 *---------------------------------------------------------------*/
2970int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2971		       unsigned cookie)
2972{
2973	int r;
2974	unsigned noio_flag;
2975	char udev_cookie[DM_COOKIE_LENGTH];
2976	char *envp[] = { udev_cookie, NULL };
2977
2978	noio_flag = memalloc_noio_save();
2979
2980	if (!cookie)
2981		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2982	else {
2983		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2984			 DM_COOKIE_ENV_VAR_NAME, cookie);
2985		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2986				       action, envp);
2987	}
2988
2989	memalloc_noio_restore(noio_flag);
2990
2991	return r;
2992}
2993
2994uint32_t dm_next_uevent_seq(struct mapped_device *md)
2995{
2996	return atomic_add_return(1, &md->uevent_seq);
2997}
2998
2999uint32_t dm_get_event_nr(struct mapped_device *md)
3000{
3001	return atomic_read(&md->event_nr);
3002}
3003
3004int dm_wait_event(struct mapped_device *md, int event_nr)
3005{
3006	return wait_event_interruptible(md->eventq,
3007			(event_nr != atomic_read(&md->event_nr)));
3008}
3009
3010void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3011{
3012	unsigned long flags;
3013
3014	spin_lock_irqsave(&md->uevent_lock, flags);
3015	list_add(elist, &md->uevent_list);
3016	spin_unlock_irqrestore(&md->uevent_lock, flags);
3017}
3018
3019/*
3020 * The gendisk is only valid as long as you have a reference
3021 * count on 'md'.
3022 */
3023struct gendisk *dm_disk(struct mapped_device *md)
3024{
3025	return md->disk;
3026}
3027EXPORT_SYMBOL_GPL(dm_disk);
3028
3029struct kobject *dm_kobject(struct mapped_device *md)
3030{
3031	return &md->kobj_holder.kobj;
3032}
3033
3034struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3035{
3036	struct mapped_device *md;
3037
3038	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3039
3040	spin_lock(&_minor_lock);
3041	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3042		md = NULL;
3043		goto out;
3044	}
3045	dm_get(md);
3046out:
3047	spin_unlock(&_minor_lock);
3048
 
3049	return md;
3050}
3051
3052int dm_suspended_md(struct mapped_device *md)
3053{
3054	return test_bit(DMF_SUSPENDED, &md->flags);
3055}
3056
3057static int dm_post_suspending_md(struct mapped_device *md)
3058{
3059	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3060}
3061
3062int dm_suspended_internally_md(struct mapped_device *md)
3063{
3064	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3065}
3066
3067int dm_test_deferred_remove_flag(struct mapped_device *md)
3068{
3069	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3070}
3071
3072int dm_suspended(struct dm_target *ti)
3073{
3074	return dm_suspended_md(ti->table->md);
3075}
3076EXPORT_SYMBOL_GPL(dm_suspended);
3077
3078int dm_post_suspending(struct dm_target *ti)
3079{
3080	return dm_post_suspending_md(ti->table->md);
3081}
3082EXPORT_SYMBOL_GPL(dm_post_suspending);
3083
3084int dm_noflush_suspending(struct dm_target *ti)
 
3085{
3086	return __noflush_suspending(ti->table->md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3087}
3088EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3089
3090void dm_free_md_mempools(struct dm_md_mempools *pools)
3091{
3092	if (!pools)
3093		return;
3094
3095	bioset_exit(&pools->bs);
3096	bioset_exit(&pools->io_bs);
 
 
 
3097
3098	kfree(pools);
3099}
3100
3101struct dm_pr {
3102	u64	old_key;
3103	u64	new_key;
3104	u32	flags;
3105	bool	abort;
3106	bool	fail_early;
3107	int	ret;
3108	enum pr_type type;
3109};
3110
3111static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3112		      struct dm_pr *pr)
3113{
3114	struct mapped_device *md = bdev->bd_disk->private_data;
3115	struct dm_table *table;
3116	struct dm_target *ti;
3117	int ret = -ENOTTY, srcu_idx;
3118
3119	table = dm_get_live_table(md, &srcu_idx);
3120	if (!table || !dm_table_get_size(table))
3121		goto out;
3122
3123	/* We only support devices that have a single target */
3124	if (table->num_targets != 1)
3125		goto out;
3126	ti = dm_table_get_target(table, 0);
3127
3128	if (dm_suspended_md(md)) {
3129		ret = -EAGAIN;
3130		goto out;
3131	}
3132
3133	ret = -EINVAL;
3134	if (!ti->type->iterate_devices)
3135		goto out;
3136
3137	ti->type->iterate_devices(ti, fn, pr);
3138	ret = 0;
3139out:
3140	dm_put_live_table(md, srcu_idx);
3141	return ret;
3142}
3143
3144/*
3145 * For register / unregister we need to manually call out to every path.
3146 */
3147static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3148			    sector_t start, sector_t len, void *data)
3149{
3150	struct dm_pr *pr = data;
3151	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3152	int ret;
3153
3154	if (!ops || !ops->pr_register) {
3155		pr->ret = -EOPNOTSUPP;
3156		return -1;
3157	}
3158
3159	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3160	if (!ret)
3161		return 0;
3162
3163	if (!pr->ret)
3164		pr->ret = ret;
3165
3166	if (pr->fail_early)
3167		return -1;
3168
3169	return 0;
3170}
3171
3172static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3173			  u32 flags)
3174{
3175	struct dm_pr pr = {
3176		.old_key	= old_key,
3177		.new_key	= new_key,
3178		.flags		= flags,
3179		.fail_early	= true,
3180		.ret		= 0,
3181	};
3182	int ret;
3183
3184	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3185	if (ret) {
3186		/* Didn't even get to register a path */
3187		return ret;
3188	}
3189
3190	if (!pr.ret)
3191		return 0;
3192	ret = pr.ret;
3193
3194	if (!new_key)
3195		return ret;
3196
3197	/* unregister all paths if we failed to register any path */
3198	pr.old_key = new_key;
3199	pr.new_key = 0;
3200	pr.flags = 0;
3201	pr.fail_early = false;
3202	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3203	return ret;
3204}
3205
3206
3207static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3208			   sector_t start, sector_t len, void *data)
3209{
3210	struct dm_pr *pr = data;
3211	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3212
3213	if (!ops || !ops->pr_reserve) {
3214		pr->ret = -EOPNOTSUPP;
3215		return -1;
3216	}
3217
3218	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3219	if (!pr->ret)
3220		return -1;
3221
3222	return 0;
3223}
3224
3225static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3226			 u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= key,
3230		.flags		= flags,
3231		.type		= type,
3232		.fail_early	= false,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3238	if (ret)
3239		return ret;
3240
3241	return pr.ret;
3242}
3243
3244/*
3245 * If there is a non-All Registrants type of reservation, the release must be
3246 * sent down the holding path. For the cases where there is no reservation or
3247 * the path is not the holder the device will also return success, so we must
3248 * try each path to make sure we got the correct path.
3249 */
3250static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3251			   sector_t start, sector_t len, void *data)
3252{
3253	struct dm_pr *pr = data;
3254	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3255
3256	if (!ops || !ops->pr_release) {
3257		pr->ret = -EOPNOTSUPP;
3258		return -1;
3259	}
3260
3261	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3262	if (pr->ret)
3263		return -1;
 
 
3264
3265	return 0;
 
3266}
3267
3268static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3269{
3270	struct dm_pr pr = {
3271		.old_key	= key,
3272		.type		= type,
3273		.fail_early	= false,
3274	};
3275	int ret;
3276
3277	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3278	if (ret)
3279		return ret;
3280
3281	return pr.ret;
3282}
3283
3284static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3285			   sector_t start, sector_t len, void *data)
3286{
3287	struct dm_pr *pr = data;
3288	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3289
3290	if (!ops || !ops->pr_preempt) {
3291		pr->ret = -EOPNOTSUPP;
3292		return -1;
3293	}
3294
3295	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3296				  pr->abort);
3297	if (!pr->ret)
3298		return -1;
 
3299
3300	return 0;
 
3301}
3302
3303static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3304			 enum pr_type type, bool abort)
3305{
3306	struct dm_pr pr = {
3307		.new_key	= new_key,
3308		.old_key	= old_key,
3309		.type		= type,
3310		.fail_early	= false,
3311	};
3312	int ret;
3313
3314	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3315	if (ret)
3316		return ret;
3317
3318	return pr.ret;
 
 
 
 
 
 
 
3319}
3320
3321static int dm_pr_clear(struct block_device *bdev, u64 key)
3322{
3323	struct mapped_device *md = bdev->bd_disk->private_data;
3324	const struct pr_ops *ops;
3325	int r, srcu_idx;
 
3326
3327	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3328	if (r < 0)
3329		goto out;
3330
3331	ops = bdev->bd_disk->fops->pr_ops;
3332	if (ops && ops->pr_clear)
3333		r = ops->pr_clear(bdev, key);
3334	else
3335		r = -EOPNOTSUPP;
3336out:
3337	dm_unprepare_ioctl(md, srcu_idx);
3338	return r;
3339}
3340
3341static const struct pr_ops dm_pr_ops = {
3342	.pr_register	= dm_pr_register,
3343	.pr_reserve	= dm_pr_reserve,
3344	.pr_release	= dm_pr_release,
3345	.pr_preempt	= dm_pr_preempt,
3346	.pr_clear	= dm_pr_clear,
3347};
3348
3349static const struct block_device_operations dm_blk_dops = {
3350	.submit_bio = dm_submit_bio,
3351	.poll_bio = dm_poll_bio,
3352	.open = dm_blk_open,
3353	.release = dm_blk_close,
3354	.ioctl = dm_blk_ioctl,
 
3355	.getgeo = dm_blk_getgeo,
3356	.report_zones = dm_blk_report_zones,
3357	.pr_ops = &dm_pr_ops,
3358	.owner = THIS_MODULE
3359};
3360
3361static const struct block_device_operations dm_rq_blk_dops = {
3362	.open = dm_blk_open,
3363	.release = dm_blk_close,
3364	.ioctl = dm_blk_ioctl,
3365	.getgeo = dm_blk_getgeo,
3366	.pr_ops = &dm_pr_ops,
3367	.owner = THIS_MODULE
3368};
3369
3370static const struct dax_operations dm_dax_ops = {
3371	.direct_access = dm_dax_direct_access,
3372	.zero_page_range = dm_dax_zero_page_range,
3373	.recovery_write = dm_dax_recovery_write,
3374};
3375
3376/*
3377 * module hooks
3378 */
3379module_init(dm_init);
3380module_exit(dm_exit);
3381
3382module_param(major, uint, 0);
3383MODULE_PARM_DESC(major, "The major number of the device mapper");
3384
3385module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3386MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3387
3388module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3389MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3390
3391module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3392MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3393
3394MODULE_DESCRIPTION(DM_NAME " driver");
3395MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3396MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
 
  11
  12#include <linux/init.h>
  13#include <linux/module.h>
  14#include <linux/mutex.h>
 
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/pr.h>
 
 
 
 
  24
  25#define DM_MSG_PREFIX "core"
  26
  27#ifdef CONFIG_PRINTK
  28/*
  29 * ratelimit state to be used in DMXXX_LIMIT().
  30 */
  31DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  32		       DEFAULT_RATELIMIT_INTERVAL,
  33		       DEFAULT_RATELIMIT_BURST);
  34EXPORT_SYMBOL(dm_ratelimit_state);
  35#endif
  36
  37/*
  38 * Cookies are numeric values sent with CHANGE and REMOVE
  39 * uevents while resuming, removing or renaming the device.
  40 */
  41#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  42#define DM_COOKIE_LENGTH 24
  43
 
 
 
 
 
 
 
  44static const char *_name = DM_NAME;
  45
  46static unsigned int major = 0;
  47static unsigned int _major = 0;
  48
  49static DEFINE_IDR(_minor_idr);
  50
  51static DEFINE_SPINLOCK(_minor_lock);
  52
  53static void do_deferred_remove(struct work_struct *w);
  54
  55static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  56
  57static struct workqueue_struct *deferred_remove_workqueue;
  58
 
 
 
 
 
 
 
 
 
 
 
 
 
  59/*
  60 * One of these is allocated per bio.
  61 */
  62struct dm_io {
  63	struct mapped_device *md;
  64	int error;
  65	atomic_t io_count;
  66	struct bio *bio;
  67	unsigned long start_time;
  68	spinlock_t endio_lock;
  69	struct dm_stats_aux stats_aux;
 
 
  70};
  71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72#define MINOR_ALLOCED ((void *)-1)
  73
  74/*
  75 * Bits for the md->flags field.
  76 */
  77#define DMF_BLOCK_IO_FOR_SUSPEND 0
  78#define DMF_SUSPENDED 1
  79#define DMF_FROZEN 2
  80#define DMF_FREEING 3
  81#define DMF_DELETING 4
  82#define DMF_NOFLUSH_SUSPENDING 5
  83#define DMF_DEFERRED_REMOVE 6
  84#define DMF_SUSPENDED_INTERNALLY 7
  85
  86#define DM_NUMA_NODE NUMA_NO_NODE
  87static int dm_numa_node = DM_NUMA_NODE;
  88
  89/*
  90 * For mempools pre-allocation at the table loading time.
  91 */
  92struct dm_md_mempools {
  93	mempool_t *io_pool;
  94	mempool_t *rq_pool;
  95	struct bio_set *bs;
  96};
 
  97
  98struct table_device {
  99	struct list_head list;
 100	atomic_t count;
 101	struct dm_dev dm_dev;
 102};
 103
 104static struct kmem_cache *_io_cache;
 105static struct kmem_cache *_rq_tio_cache;
 106static struct kmem_cache *_rq_cache;
 107
 108/*
 109 * Bio-based DM's mempools' reserved IOs set by the user.
 110 */
 111#define RESERVED_BIO_BASED_IOS		16
 112static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 113
 114static int __dm_get_module_param_int(int *module_param, int min, int max)
 115{
 116	int param = ACCESS_ONCE(*module_param);
 117	int modified_param = 0;
 118	bool modified = true;
 119
 120	if (param < min)
 121		modified_param = min;
 122	else if (param > max)
 123		modified_param = max;
 124	else
 125		modified = false;
 126
 127	if (modified) {
 128		(void)cmpxchg(module_param, param, modified_param);
 129		param = modified_param;
 130	}
 131
 132	return param;
 133}
 134
 135unsigned __dm_get_module_param(unsigned *module_param,
 136			       unsigned def, unsigned max)
 137{
 138	unsigned param = ACCESS_ONCE(*module_param);
 139	unsigned modified_param = 0;
 140
 141	if (!param)
 142		modified_param = def;
 143	else if (param > max)
 144		modified_param = max;
 145
 146	if (modified_param) {
 147		(void)cmpxchg(module_param, param, modified_param);
 148		param = modified_param;
 149	}
 150
 151	return param;
 152}
 153
 154unsigned dm_get_reserved_bio_based_ios(void)
 155{
 156	return __dm_get_module_param(&reserved_bio_based_ios,
 157				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 158}
 159EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 160
 161static unsigned dm_get_numa_node(void)
 162{
 163	return __dm_get_module_param_int(&dm_numa_node,
 164					 DM_NUMA_NODE, num_online_nodes() - 1);
 165}
 166
 167static int __init local_init(void)
 168{
 169	int r = -ENOMEM;
 170
 171	/* allocate a slab for the dm_ios */
 172	_io_cache = KMEM_CACHE(dm_io, 0);
 173	if (!_io_cache)
 174		return r;
 175
 176	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 177	if (!_rq_tio_cache)
 178		goto out_free_io_cache;
 179
 180	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 181				      __alignof__(struct request), 0, NULL);
 182	if (!_rq_cache)
 183		goto out_free_rq_tio_cache;
 184
 185	r = dm_uevent_init();
 186	if (r)
 187		goto out_free_rq_cache;
 188
 189	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 190	if (!deferred_remove_workqueue) {
 191		r = -ENOMEM;
 192		goto out_uevent_exit;
 193	}
 194
 195	_major = major;
 196	r = register_blkdev(_major, _name);
 197	if (r < 0)
 198		goto out_free_workqueue;
 199
 200	if (!_major)
 201		_major = r;
 202
 203	return 0;
 204
 205out_free_workqueue:
 206	destroy_workqueue(deferred_remove_workqueue);
 207out_uevent_exit:
 208	dm_uevent_exit();
 209out_free_rq_cache:
 210	kmem_cache_destroy(_rq_cache);
 211out_free_rq_tio_cache:
 212	kmem_cache_destroy(_rq_tio_cache);
 213out_free_io_cache:
 214	kmem_cache_destroy(_io_cache);
 215
 216	return r;
 217}
 218
 219static void local_exit(void)
 220{
 221	flush_scheduled_work();
 222	destroy_workqueue(deferred_remove_workqueue);
 223
 224	kmem_cache_destroy(_rq_cache);
 225	kmem_cache_destroy(_rq_tio_cache);
 226	kmem_cache_destroy(_io_cache);
 227	unregister_blkdev(_major, _name);
 228	dm_uevent_exit();
 229
 230	_major = 0;
 231
 232	DMINFO("cleaned up");
 233}
 234
 235static int (*_inits[])(void) __initdata = {
 236	local_init,
 237	dm_target_init,
 238	dm_linear_init,
 239	dm_stripe_init,
 240	dm_io_init,
 241	dm_kcopyd_init,
 242	dm_interface_init,
 243	dm_statistics_init,
 244};
 245
 246static void (*_exits[])(void) = {
 247	local_exit,
 248	dm_target_exit,
 249	dm_linear_exit,
 250	dm_stripe_exit,
 251	dm_io_exit,
 252	dm_kcopyd_exit,
 253	dm_interface_exit,
 254	dm_statistics_exit,
 255};
 256
 257static int __init dm_init(void)
 258{
 259	const int count = ARRAY_SIZE(_inits);
 
 260
 261	int r, i;
 
 
 
 262
 263	for (i = 0; i < count; i++) {
 264		r = _inits[i]();
 265		if (r)
 266			goto bad;
 267	}
 268
 269	return 0;
 270
 271      bad:
 272	while (i--)
 273		_exits[i]();
 274
 275	return r;
 276}
 277
 278static void __exit dm_exit(void)
 279{
 280	int i = ARRAY_SIZE(_exits);
 281
 282	while (i--)
 283		_exits[i]();
 284
 285	/*
 286	 * Should be empty by this point.
 287	 */
 288	idr_destroy(&_minor_idr);
 289}
 290
 291/*
 292 * Block device functions
 293 */
 294int dm_deleting_md(struct mapped_device *md)
 295{
 296	return test_bit(DMF_DELETING, &md->flags);
 297}
 298
 299static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 300{
 301	struct mapped_device *md;
 302
 303	spin_lock(&_minor_lock);
 304
 305	md = bdev->bd_disk->private_data;
 306	if (!md)
 307		goto out;
 308
 309	if (test_bit(DMF_FREEING, &md->flags) ||
 310	    dm_deleting_md(md)) {
 311		md = NULL;
 312		goto out;
 313	}
 314
 315	dm_get(md);
 316	atomic_inc(&md->open_count);
 317out:
 318	spin_unlock(&_minor_lock);
 319
 320	return md ? 0 : -ENXIO;
 321}
 322
 323static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 324{
 325	struct mapped_device *md;
 326
 327	spin_lock(&_minor_lock);
 328
 329	md = disk->private_data;
 330	if (WARN_ON(!md))
 331		goto out;
 332
 333	if (atomic_dec_and_test(&md->open_count) &&
 334	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 335		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 336
 337	dm_put(md);
 338out:
 339	spin_unlock(&_minor_lock);
 340}
 341
 342int dm_open_count(struct mapped_device *md)
 343{
 344	return atomic_read(&md->open_count);
 345}
 346
 347/*
 348 * Guarantees nothing is using the device before it's deleted.
 349 */
 350int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 351{
 352	int r = 0;
 353
 354	spin_lock(&_minor_lock);
 355
 356	if (dm_open_count(md)) {
 357		r = -EBUSY;
 358		if (mark_deferred)
 359			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 360	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 361		r = -EEXIST;
 362	else
 363		set_bit(DMF_DELETING, &md->flags);
 364
 365	spin_unlock(&_minor_lock);
 366
 367	return r;
 368}
 369
 370int dm_cancel_deferred_remove(struct mapped_device *md)
 371{
 372	int r = 0;
 373
 374	spin_lock(&_minor_lock);
 375
 376	if (test_bit(DMF_DELETING, &md->flags))
 377		r = -EBUSY;
 378	else
 379		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 380
 381	spin_unlock(&_minor_lock);
 382
 383	return r;
 384}
 385
 386static void do_deferred_remove(struct work_struct *w)
 387{
 388	dm_deferred_remove();
 389}
 390
 391sector_t dm_get_size(struct mapped_device *md)
 392{
 393	return get_capacity(md->disk);
 394}
 395
 396struct request_queue *dm_get_md_queue(struct mapped_device *md)
 397{
 398	return md->queue;
 399}
 400
 401struct dm_stats *dm_get_stats(struct mapped_device *md)
 402{
 403	return &md->stats;
 404}
 405
 406static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 407{
 408	struct mapped_device *md = bdev->bd_disk->private_data;
 409
 410	return dm_get_geometry(md, geo);
 411}
 412
 413static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 414				  struct block_device **bdev,
 415				  fmode_t *mode)
 416{
 417	struct dm_target *tgt;
 418	struct dm_table *map;
 419	int srcu_idx, r;
 420
 421retry:
 422	r = -ENOTTY;
 423	map = dm_get_live_table(md, &srcu_idx);
 424	if (!map || !dm_table_get_size(map))
 425		goto out;
 426
 427	/* We only support devices that have a single target */
 428	if (dm_table_get_num_targets(map) != 1)
 429		goto out;
 430
 431	tgt = dm_table_get_target(map, 0);
 432	if (!tgt->type->prepare_ioctl)
 433		goto out;
 434
 435	if (dm_suspended_md(md)) {
 436		r = -EAGAIN;
 437		goto out;
 438	}
 439
 440	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 441	if (r < 0)
 442		goto out;
 443
 444	bdgrab(*bdev);
 445	dm_put_live_table(md, srcu_idx);
 446	return r;
 447
 448out:
 449	dm_put_live_table(md, srcu_idx);
 450	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 
 451		msleep(10);
 452		goto retry;
 453	}
 
 454	return r;
 455}
 456
 
 
 
 
 
 457static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 458			unsigned int cmd, unsigned long arg)
 459{
 460	struct mapped_device *md = bdev->bd_disk->private_data;
 461	int r;
 462
 463	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 464	if (r < 0)
 465		return r;
 466
 467	if (r > 0) {
 468		/*
 469		 * Target determined this ioctl is being issued against
 470		 * a logical partition of the parent bdev; so extra
 471		 * validation is needed.
 472		 */
 473		r = scsi_verify_blk_ioctl(NULL, cmd);
 474		if (r)
 
 
 
 475			goto out;
 
 476	}
 477
 478	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 479out:
 480	bdput(bdev);
 481	return r;
 482}
 483
 484static struct dm_io *alloc_io(struct mapped_device *md)
 
 
 
 
 
 
 
 
 
 
 
 485{
 486	return mempool_alloc(md->io_pool, GFP_NOIO);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 487}
 488
 489static void free_io(struct mapped_device *md, struct dm_io *io)
 490{
 491	mempool_free(io, md->io_pool);
 492}
 493
 494static void free_tio(struct dm_target_io *tio)
 495{
 496	bio_put(&tio->clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 497}
 498
 499int md_in_flight(struct mapped_device *md)
 500{
 501	return atomic_read(&md->pending[READ]) +
 502	       atomic_read(&md->pending[WRITE]);
 503}
 504
 505static void start_io_acct(struct dm_io *io)
 506{
 507	struct mapped_device *md = io->md;
 508	struct bio *bio = io->bio;
 509	int cpu;
 510	int rw = bio_data_dir(bio);
 511
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 512	io->start_time = jiffies;
 
 513
 514	cpu = part_stat_lock();
 515	part_round_stats(cpu, &dm_disk(md)->part0);
 516	part_stat_unlock();
 517	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 518		atomic_inc_return(&md->pending[rw]));
 519
 520	if (unlikely(dm_stats_used(&md->stats)))
 521		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 522				    bio->bi_iter.bi_sector, bio_sectors(bio),
 523				    false, 0, &io->stats_aux);
 524}
 525
 526static void end_io_acct(struct dm_io *io)
 
 527{
 528	struct mapped_device *md = io->md;
 529	struct bio *bio = io->bio;
 530	unsigned long duration = jiffies - io->start_time;
 531	int pending;
 532	int rw = bio_data_dir(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 533
 534	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 
 
 
 535
 536	if (unlikely(dm_stats_used(&md->stats)))
 537		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 538				    bio->bi_iter.bi_sector, bio_sectors(bio),
 539				    true, duration, &io->stats_aux);
 
 540
 541	/*
 542	 * After this is decremented the bio must not be touched if it is
 543	 * a flush.
 544	 */
 545	pending = atomic_dec_return(&md->pending[rw]);
 546	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 547	pending += atomic_read(&md->pending[rw^0x1]);
 548
 549	/* nudge anyone waiting on suspend queue */
 550	if (!pending)
 551		wake_up(&md->wait);
 
 
 552}
 553
 554/*
 555 * Add the bio to the list of deferred io.
 556 */
 557static void queue_io(struct mapped_device *md, struct bio *bio)
 558{
 559	unsigned long flags;
 560
 561	spin_lock_irqsave(&md->deferred_lock, flags);
 562	bio_list_add(&md->deferred, bio);
 563	spin_unlock_irqrestore(&md->deferred_lock, flags);
 564	queue_work(md->wq, &md->work);
 565}
 566
 567/*
 568 * Everyone (including functions in this file), should use this
 569 * function to access the md->map field, and make sure they call
 570 * dm_put_live_table() when finished.
 571 */
 572struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 
 573{
 574	*srcu_idx = srcu_read_lock(&md->io_barrier);
 575
 576	return srcu_dereference(md->map, &md->io_barrier);
 577}
 578
 579void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 
 580{
 581	srcu_read_unlock(&md->io_barrier, srcu_idx);
 582}
 583
 584void dm_sync_table(struct mapped_device *md)
 585{
 586	synchronize_srcu(&md->io_barrier);
 587	synchronize_rcu_expedited();
 588}
 589
 590/*
 591 * A fast alternative to dm_get_live_table/dm_put_live_table.
 592 * The caller must not block between these two functions.
 593 */
 594static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 595{
 596	rcu_read_lock();
 597	return rcu_dereference(md->map);
 598}
 599
 600static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 601{
 602	rcu_read_unlock();
 603}
 604
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 605/*
 606 * Open a table device so we can use it as a map destination.
 607 */
 608static int open_table_device(struct table_device *td, dev_t dev,
 609			     struct mapped_device *md)
 610{
 611	static char *_claim_ptr = "I belong to device-mapper";
 612	struct block_device *bdev;
 613
 614	int r;
 615
 616	BUG_ON(td->dm_dev.bdev);
 
 
 
 617
 618	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 619	if (IS_ERR(bdev))
 620		return PTR_ERR(bdev);
 
 
 621
 622	r = bd_link_disk_holder(bdev, dm_disk(md));
 623	if (r) {
 624		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 625		return r;
 
 
 
 
 
 626	}
 627
 
 628	td->dm_dev.bdev = bdev;
 629	return 0;
 
 
 
 
 
 
 
 
 
 630}
 631
 632/*
 633 * Close a table device that we've been using.
 634 */
 635static void close_table_device(struct table_device *td, struct mapped_device *md)
 636{
 637	if (!td->dm_dev.bdev)
 638		return;
 639
 640	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 641	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 642	td->dm_dev.bdev = NULL;
 
 
 643}
 644
 645static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 646					      fmode_t mode) {
 
 647	struct table_device *td;
 648
 649	list_for_each_entry(td, l, list)
 650		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 651			return td;
 652
 653	return NULL;
 654}
 655
 656int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 657			struct dm_dev **result) {
 658	int r;
 659	struct table_device *td;
 660
 661	mutex_lock(&md->table_devices_lock);
 662	td = find_table_device(&md->table_devices, dev, mode);
 663	if (!td) {
 664		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 665		if (!td) {
 666			mutex_unlock(&md->table_devices_lock);
 667			return -ENOMEM;
 668		}
 669
 670		td->dm_dev.mode = mode;
 671		td->dm_dev.bdev = NULL;
 672
 673		if ((r = open_table_device(td, dev, md))) {
 674			mutex_unlock(&md->table_devices_lock);
 675			kfree(td);
 676			return r;
 677		}
 678
 679		format_dev_t(td->dm_dev.name, dev);
 680
 681		atomic_set(&td->count, 0);
 682		list_add(&td->list, &md->table_devices);
 683	}
 684	atomic_inc(&td->count);
 685	mutex_unlock(&md->table_devices_lock);
 686
 687	*result = &td->dm_dev;
 688	return 0;
 689}
 690EXPORT_SYMBOL_GPL(dm_get_table_device);
 691
 692void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 693{
 694	struct table_device *td = container_of(d, struct table_device, dm_dev);
 695
 696	mutex_lock(&md->table_devices_lock);
 697	if (atomic_dec_and_test(&td->count)) {
 698		close_table_device(td, md);
 699		list_del(&td->list);
 700		kfree(td);
 701	}
 702	mutex_unlock(&md->table_devices_lock);
 703}
 704EXPORT_SYMBOL(dm_put_table_device);
 705
 706static void free_table_devices(struct list_head *devices)
 707{
 708	struct list_head *tmp, *next;
 709
 710	list_for_each_safe(tmp, next, devices) {
 711		struct table_device *td = list_entry(tmp, struct table_device, list);
 712
 713		DMWARN("dm_destroy: %s still exists with %d references",
 714		       td->dm_dev.name, atomic_read(&td->count));
 715		kfree(td);
 716	}
 717}
 718
 719/*
 720 * Get the geometry associated with a dm device
 721 */
 722int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 723{
 724	*geo = md->geometry;
 725
 726	return 0;
 727}
 728
 729/*
 730 * Set the geometry of a device.
 731 */
 732int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 733{
 734	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 735
 736	if (geo->start > sz) {
 737		DMWARN("Start sector is beyond the geometry limits.");
 738		return -EINVAL;
 739	}
 740
 741	md->geometry = *geo;
 742
 743	return 0;
 744}
 745
 746/*-----------------------------------------------------------------
 747 * CRUD START:
 748 *   A more elegant soln is in the works that uses the queue
 749 *   merge fn, unfortunately there are a couple of changes to
 750 *   the block layer that I want to make for this.  So in the
 751 *   interests of getting something for people to use I give
 752 *   you this clearly demarcated crap.
 753 *---------------------------------------------------------------*/
 754
 755static int __noflush_suspending(struct mapped_device *md)
 756{
 757	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 758}
 759
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 760/*
 761 * Decrements the number of outstanding ios that a bio has been
 762 * cloned into, completing the original io if necc.
 763 */
 764static void dec_pending(struct dm_io *io, int error)
 765{
 766	unsigned long flags;
 767	int io_error;
 768	struct bio *bio;
 
 769	struct mapped_device *md = io->md;
 
 770
 771	/* Push-back supersedes any I/O errors */
 772	if (unlikely(error)) {
 773		spin_lock_irqsave(&io->endio_lock, flags);
 774		if (!(io->error > 0 && __noflush_suspending(md)))
 775			io->error = error;
 776		spin_unlock_irqrestore(&io->endio_lock, flags);
 777	}
 778
 779	if (atomic_dec_and_test(&io->io_count)) {
 780		if (io->error == DM_ENDIO_REQUEUE) {
 781			/*
 782			 * Target requested pushing back the I/O.
 
 
 783			 */
 784			spin_lock_irqsave(&md->deferred_lock, flags);
 785			if (__noflush_suspending(md))
 786				bio_list_add_head(&md->deferred, io->bio);
 787			else
 788				/* noflush suspend was interrupted. */
 789				io->error = -EIO;
 790			spin_unlock_irqrestore(&md->deferred_lock, flags);
 791		}
 792
 793		io_error = io->error;
 794		bio = io->bio;
 795		end_io_acct(io);
 796		free_io(md, io);
 797
 798		if (io_error == DM_ENDIO_REQUEUE)
 799			return;
 800
 801		if ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size) {
 
 
 802			/*
 803			 * Preflush done for flush with data, reissue
 804			 * without REQ_PREFLUSH.
 805			 */
 806			bio->bi_opf &= ~REQ_PREFLUSH;
 807			queue_io(md, bio);
 808		} else {
 809			/* done with normal IO or empty flush */
 810			trace_block_bio_complete(md->queue, bio, io_error);
 811			bio->bi_error = io_error;
 812			bio_endio(bio);
 813		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 814	}
 
 815}
 816
 817void disable_write_same(struct mapped_device *md)
 
 
 
 
 
 
 
 
 818{
 819	struct queue_limits *limits = dm_get_queue_limits(md);
 820
 821	/* device doesn't really support WRITE SAME, disable it */
 822	limits->max_write_same_sectors = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 823}
 824
 825static void clone_endio(struct bio *bio)
 826{
 827	int error = bio->bi_error;
 828	int r = error;
 829	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 
 830	struct dm_io *io = tio->io;
 831	struct mapped_device *md = tio->io->md;
 832	dm_endio_fn endio = tio->ti->type->end_io;
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834	if (endio) {
 835		r = endio(tio->ti, bio, error);
 836		if (r < 0 || r == DM_ENDIO_REQUEUE)
 837			/*
 838			 * error and requeue request are handled
 839			 * in dec_pending().
 840			 */
 841			error = r;
 842		else if (r == DM_ENDIO_INCOMPLETE)
 
 
 
 
 
 
 
 
 
 
 
 843			/* The target will handle the io */
 844			return;
 845		else if (r) {
 846			DMWARN("unimplemented target endio return value: %d", r);
 847			BUG();
 848		}
 849	}
 850
 851	if (unlikely(r == -EREMOTEIO && (bio_op(bio) == REQ_OP_WRITE_SAME) &&
 852		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
 853		disable_write_same(md);
 854
 855	free_tio(tio);
 856	dec_pending(io, error);
 857}
 858
 859/*
 860 * Return maximum size of I/O possible at the supplied sector up to the current
 861 * target boundary.
 862 */
 863static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
 
 864{
 865	sector_t target_offset = dm_target_offset(ti, sector);
 866
 867	return ti->len - target_offset;
 868}
 869
 870static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 871{
 872	sector_t len = max_io_len_target_boundary(sector, ti);
 873	sector_t offset, max_len;
 874
 875	/*
 876	 * Does the target need to split even further?
 877	 */
 878	if (ti->max_io_len) {
 879		offset = dm_target_offset(ti, sector);
 880		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
 881			max_len = sector_div(offset, ti->max_io_len);
 882		else
 883			max_len = offset & (ti->max_io_len - 1);
 884		max_len = ti->max_io_len - max_len;
 885
 886		if (len > max_len)
 887			len = max_len;
 888	}
 889
 890	return len;
 891}
 892
 893int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 894{
 895	if (len > UINT_MAX) {
 896		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
 897		      (unsigned long long)len, UINT_MAX);
 898		ti->error = "Maximum size of target IO is too large";
 899		return -EINVAL;
 900	}
 901
 902	ti->max_io_len = (uint32_t) len;
 903
 904	return 0;
 905}
 906EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
 907
 908static long dm_blk_direct_access(struct block_device *bdev, sector_t sector,
 909				 void **kaddr, pfn_t *pfn, long size)
 
 910{
 911	struct mapped_device *md = bdev->bd_disk->private_data;
 912	struct dm_table *map;
 913	struct dm_target *ti;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 914	int srcu_idx;
 915	long len, ret = -EIO;
 916
 917	map = dm_get_live_table(md, &srcu_idx);
 918	if (!map)
 
 
 
 
 
 
 919		goto out;
 
 
 
 
 
 920
 921	ti = dm_table_find_target(map, sector);
 922	if (!dm_target_is_valid(ti))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 923		goto out;
 
 
 
 
 924
 925	len = max_io_len(sector, ti) << SECTOR_SHIFT;
 926	size = min(len, size);
 927
 928	if (ti->type->direct_access)
 929		ret = ti->type->direct_access(ti, sector, kaddr, pfn, size);
 
 
 
 
 
 
 
 
 
 
 
 
 930out:
 931	dm_put_live_table(md, srcu_idx);
 932	return min(ret, size);
 933}
 934
 935/*
 936 * A target may call dm_accept_partial_bio only from the map routine.  It is
 937 * allowed for all bio types except REQ_PREFLUSH.
 
 
 938 *
 939 * dm_accept_partial_bio informs the dm that the target only wants to process
 940 * additional n_sectors sectors of the bio and the rest of the data should be
 941 * sent in a next bio.
 942 *
 943 * A diagram that explains the arithmetics:
 944 * +--------------------+---------------+-------+
 945 * |         1          |       2       |   3   |
 946 * +--------------------+---------------+-------+
 947 *
 948 * <-------------- *tio->len_ptr --------------->
 949 *                      <------- bi_size ------->
 950 *                      <-- n_sectors -->
 951 *
 952 * Region 1 was already iterated over with bio_advance or similar function.
 953 *	(it may be empty if the target doesn't use bio_advance)
 954 * Region 2 is the remaining bio size that the target wants to process.
 955 *	(it may be empty if region 1 is non-empty, although there is no reason
 956 *	 to make it empty)
 957 * The target requires that region 3 is to be sent in the next bio.
 958 *
 959 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
 960 * the partially processed part (the sum of regions 1+2) must be the same for all
 961 * copies of the bio.
 962 */
 963void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
 964{
 965	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
 966	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
 967	BUG_ON(bio->bi_opf & REQ_PREFLUSH);
 968	BUG_ON(bi_size > *tio->len_ptr);
 969	BUG_ON(n_sectors > bi_size);
 970	*tio->len_ptr -= bi_size - n_sectors;
 
 
 
 
 
 971	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
 
 
 
 
 
 
 
 
 972}
 973EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
 974
 975/*
 976 * Flush current->bio_list when the target map method blocks.
 977 * This fixes deadlocks in snapshot and possibly in other targets.
 
 
 
 
 
 978 */
 979struct dm_offload {
 980	struct blk_plug plug;
 981	struct blk_plug_cb cb;
 982};
 983
 984static void flush_current_bio_list(struct blk_plug_cb *cb, bool from_schedule)
 985{
 986	struct dm_offload *o = container_of(cb, struct dm_offload, cb);
 987	struct bio_list list;
 988	struct bio *bio;
 989	int i;
 990
 991	INIT_LIST_HEAD(&o->cb.list);
 
 
 992
 993	if (unlikely(!current->bio_list))
 994		return;
 995
 996	for (i = 0; i < 2; i++) {
 997		list = current->bio_list[i];
 998		bio_list_init(&current->bio_list[i]);
 999
1000		while ((bio = bio_list_pop(&list))) {
1001			struct bio_set *bs = bio->bi_pool;
1002			if (unlikely(!bs) || bs == fs_bio_set) {
1003				bio_list_add(&current->bio_list[i], bio);
1004				continue;
1005			}
1006
1007			spin_lock(&bs->rescue_lock);
1008			bio_list_add(&bs->rescue_list, bio);
1009			queue_work(bs->rescue_workqueue, &bs->rescue_work);
1010			spin_unlock(&bs->rescue_lock);
1011		}
1012	}
1013}
 
1014
1015static void dm_offload_start(struct dm_offload *o)
1016{
1017	blk_start_plug(&o->plug);
1018	o->cb.callback = flush_current_bio_list;
1019	list_add(&o->cb.list, &current->plug->cb_list);
 
 
 
 
 
 
 
 
 
1020}
1021
1022static void dm_offload_end(struct dm_offload *o)
1023{
1024	list_del(&o->cb.list);
1025	blk_finish_plug(&o->plug);
1026}
1027
1028static void __map_bio(struct dm_target_io *tio)
1029{
 
 
 
 
1030	int r;
1031	sector_t sector;
1032	struct dm_offload o;
1033	struct bio *clone = &tio->clone;
1034	struct dm_target *ti = tio->ti;
1035
1036	clone->bi_end_io = clone_endio;
1037
1038	/*
1039	 * Map the clone.  If r == 0 we don't need to do
1040	 * anything, the target has assumed ownership of
1041	 * this io.
1042	 */
1043	atomic_inc(&tio->io->io_count);
1044	sector = clone->bi_iter.bi_sector;
1045
1046	dm_offload_start(&o);
1047	r = ti->type->map(ti, clone);
1048	dm_offload_end(&o);
1049
1050	if (r == DM_MAPIO_REMAPPED) {
1051		/* the bio has been remapped so dispatch it */
1052
1053		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1054				      tio->io->bio->bi_bdev->bd_dev, sector);
1055
1056		generic_make_request(clone);
1057	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1058		/* error the io and bail out, or requeue it if needed */
1059		dec_pending(tio->io, r);
1060		free_tio(tio);
1061	} else if (r != DM_MAPIO_SUBMITTED) {
1062		DMWARN("unimplemented target map return value: %d", r);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063		BUG();
1064	}
1065}
1066
1067struct clone_info {
1068	struct mapped_device *md;
1069	struct dm_table *map;
1070	struct bio *bio;
1071	struct dm_io *io;
1072	sector_t sector;
1073	unsigned sector_count;
1074};
1075
1076static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1077{
1078	bio->bi_iter.bi_sector = sector;
1079	bio->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
1080}
1081
1082/*
1083 * Creates a bio that consists of range of complete bvecs.
1084 */
1085static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1086		     sector_t sector, unsigned len)
1087{
1088	struct bio *clone = &tio->clone;
1089
1090	__bio_clone_fast(clone, bio);
1091
1092	if (bio_integrity(bio)) {
1093		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1094		if (r < 0)
1095			return r;
1096	}
1097
1098	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1099	clone->bi_iter.bi_size = to_bytes(len);
 
 
 
 
 
1100
1101	if (bio_integrity(bio))
1102		bio_integrity_trim(clone, 0, len);
 
 
 
 
1103
1104	return 0;
 
 
1105}
1106
1107static struct dm_target_io *alloc_tio(struct clone_info *ci,
1108				      struct dm_target *ti,
1109				      unsigned target_bio_nr)
1110{
1111	struct dm_target_io *tio;
1112	struct bio *clone;
 
1113
1114	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1115	tio = container_of(clone, struct dm_target_io, clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116
1117	tio->io = ci->io;
1118	tio->ti = ti;
1119	tio->target_bio_nr = target_bio_nr;
1120
1121	return tio;
1122}
1123
1124static void __clone_and_map_simple_bio(struct clone_info *ci,
1125				       struct dm_target *ti,
1126				       unsigned target_bio_nr, unsigned *len)
1127{
1128	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1129	struct bio *clone = &tio->clone;
 
 
 
 
 
 
 
 
1130
1131	tio->len_ptr = len;
 
 
1132
1133	__bio_clone_fast(clone, ci->bio);
1134	if (len)
1135		bio_setup_sector(clone, ci->sector, *len);
1136
1137	__map_bio(tio);
1138}
 
 
1139
1140static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1141				  unsigned num_bios, unsigned *len)
1142{
1143	unsigned target_bio_nr;
 
1144
1145	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1146		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1147}
1148
1149static int __send_empty_flush(struct clone_info *ci)
 
1150{
1151	unsigned target_nr = 0;
1152	struct dm_target *ti;
 
 
 
1153
1154	BUG_ON(bio_has_data(ci->bio));
1155	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1156		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
 
 
 
 
1157
1158	return 0;
 
1159}
1160
1161static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1162				     sector_t sector, unsigned *len)
1163{
1164	struct bio *bio = ci->bio;
1165	struct dm_target_io *tio;
1166	unsigned target_bio_nr;
1167	unsigned num_target_bios = 1;
1168	int r = 0;
1169
1170	/*
1171	 * Does the target want to receive duplicate copies of the bio?
1172	 */
1173	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1174		num_target_bios = ti->num_write_bios(ti, bio);
1175
1176	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1177		tio = alloc_tio(ci, ti, target_bio_nr);
1178		tio->len_ptr = len;
1179		r = clone_bio(tio, bio, sector, *len);
1180		if (r < 0) {
1181			free_tio(tio);
 
1182			break;
1183		}
1184		__map_bio(tio);
1185	}
1186
1187	return r;
1188}
1189
1190typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
 
 
 
1191
1192static unsigned get_num_discard_bios(struct dm_target *ti)
1193{
1194	return ti->num_discard_bios;
1195}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1196
1197static unsigned get_num_write_same_bios(struct dm_target *ti)
1198{
1199	return ti->num_write_same_bios;
1200}
1201
1202typedef bool (*is_split_required_fn)(struct dm_target *ti);
1203
1204static bool is_split_required_for_discard(struct dm_target *ti)
 
 
 
 
 
 
 
1205{
1206	return ti->split_discard_bios;
1207}
1208
1209static int __send_changing_extent_only(struct clone_info *ci,
1210				       get_num_bios_fn get_num_bios,
1211				       is_split_required_fn is_split_required)
1212{
1213	struct dm_target *ti;
1214	unsigned len;
1215	unsigned num_bios;
1216
1217	do {
1218		ti = dm_table_find_target(ci->map, ci->sector);
1219		if (!dm_target_is_valid(ti))
1220			return -EIO;
1221
 
 
1222		/*
1223		 * Even though the device advertised support for this type of
1224		 * request, that does not mean every target supports it, and
1225		 * reconfiguration might also have changed that since the
1226		 * check was performed.
1227		 */
1228		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1229		if (!num_bios)
1230			return -EOPNOTSUPP;
1231
1232		if (is_split_required && !is_split_required(ti))
1233			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
1234		else
1235			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1236
1237		__send_duplicate_bios(ci, ti, num_bios, &len);
1238
1239		ci->sector += len;
1240	} while (ci->sector_count -= len);
 
 
 
 
 
1241
1242	return 0;
1243}
1244
1245static int __send_discard(struct clone_info *ci)
1246{
1247	return __send_changing_extent_only(ci, get_num_discard_bios,
1248					   is_split_required_for_discard);
1249}
1250
1251static int __send_write_same(struct clone_info *ci)
1252{
1253	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
1254}
1255
1256/*
1257 * Select the correct strategy for processing a non-flush bio.
1258 */
1259static int __split_and_process_non_flush(struct clone_info *ci)
1260{
1261	struct bio *bio = ci->bio;
1262	struct dm_target *ti;
1263	unsigned len;
1264	int r;
1265
1266	if (unlikely(bio_op(bio) == REQ_OP_DISCARD))
1267		return __send_discard(ci);
1268	else if (unlikely(bio_op(bio) == REQ_OP_WRITE_SAME))
1269		return __send_write_same(ci);
 
 
 
1270
1271	ti = dm_table_find_target(ci->map, ci->sector);
1272	if (!dm_target_is_valid(ti))
1273		return -EIO;
1274
1275	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
 
 
1276
1277	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1278	if (r < 0)
1279		return r;
 
1280
1281	ci->sector += len;
1282	ci->sector_count -= len;
1283
1284	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285}
1286
1287/*
1288 * Entry point to split a bio into clones and submit them to the targets.
1289 */
1290static void __split_and_process_bio(struct mapped_device *md,
1291				    struct dm_table *map, struct bio *bio)
1292{
1293	struct clone_info ci;
1294	int error = 0;
 
 
1295
1296	if (unlikely(!map)) {
1297		bio_io_error(bio);
1298		return;
 
 
 
 
 
 
1299	}
1300
1301	ci.map = map;
1302	ci.md = md;
1303	ci.io = alloc_io(md);
1304	ci.io->error = 0;
1305	atomic_set(&ci.io->io_count, 1);
1306	ci.io->bio = bio;
1307	ci.io->md = md;
1308	spin_lock_init(&ci.io->endio_lock);
1309	ci.sector = bio->bi_iter.bi_sector;
1310
1311	start_io_acct(ci.io);
1312
1313	if (bio->bi_opf & REQ_PREFLUSH) {
1314		ci.bio = &ci.md->flush_bio;
1315		ci.sector_count = 0;
1316		error = __send_empty_flush(&ci);
1317		/* dec_pending submits any data associated with flush */
1318	} else {
1319		ci.bio = bio;
1320		ci.sector_count = bio_sectors(bio);
1321		while (ci.sector_count && !error)
1322			error = __split_and_process_non_flush(&ci);
1323	}
1324
1325	/* drop the extra reference count */
1326	dec_pending(ci.io, error);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1327}
1328/*-----------------------------------------------------------------
1329 * CRUD END
1330 *---------------------------------------------------------------*/
1331
1332/*
1333 * The request function that just remaps the bio built up by
1334 * dm_merge_bvec.
1335 */
1336static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1337{
1338	int rw = bio_data_dir(bio);
1339	struct mapped_device *md = q->queuedata;
1340	int srcu_idx;
1341	struct dm_table *map;
 
 
 
1342
1343	map = dm_get_live_table(md, &srcu_idx);
 
 
 
 
 
 
 
 
 
 
1344
1345	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
 
 
 
1346
1347	/* if we're suspended, we have to queue this io for later */
1348	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1349		dm_put_live_table(md, srcu_idx);
 
1350
1351		if (!(bio->bi_opf & REQ_RAHEAD))
1352			queue_io(md, bio);
1353		else
1354			bio_io_error(bio);
1355		return BLK_QC_T_NONE;
1356	}
1357
1358	__split_and_process_bio(md, map, bio);
1359	dm_put_live_table(md, srcu_idx);
1360	return BLK_QC_T_NONE;
1361}
1362
1363static int dm_any_congested(void *congested_data, int bdi_bits)
 
1364{
1365	int r = bdi_bits;
1366	struct mapped_device *md = congested_data;
1367	struct dm_table *map;
 
 
 
 
 
 
 
1368
1369	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
1370		if (dm_request_based(md)) {
 
 
 
 
 
 
 
 
 
 
 
 
1371			/*
1372			 * With request-based DM we only need to check the
1373			 * top-level queue for congestion.
1374			 */
1375			r = md->queue->backing_dev_info.wb.state & bdi_bits;
1376		} else {
1377			map = dm_get_live_table_fast(md);
1378			if (map)
1379				r = dm_table_any_congested(map, bdi_bits);
1380			dm_put_live_table_fast(md);
1381		}
1382	}
1383
1384	return r;
 
 
 
 
 
 
 
1385}
1386
1387/*-----------------------------------------------------------------
1388 * An IDR is used to keep track of allocated minor numbers.
1389 *---------------------------------------------------------------*/
1390static void free_minor(int minor)
1391{
1392	spin_lock(&_minor_lock);
1393	idr_remove(&_minor_idr, minor);
1394	spin_unlock(&_minor_lock);
1395}
1396
1397/*
1398 * See if the device with a specific minor # is free.
1399 */
1400static int specific_minor(int minor)
1401{
1402	int r;
1403
1404	if (minor >= (1 << MINORBITS))
1405		return -EINVAL;
1406
1407	idr_preload(GFP_KERNEL);
1408	spin_lock(&_minor_lock);
1409
1410	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1411
1412	spin_unlock(&_minor_lock);
1413	idr_preload_end();
1414	if (r < 0)
1415		return r == -ENOSPC ? -EBUSY : r;
1416	return 0;
1417}
1418
1419static int next_free_minor(int *minor)
1420{
1421	int r;
1422
1423	idr_preload(GFP_KERNEL);
1424	spin_lock(&_minor_lock);
1425
1426	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1427
1428	spin_unlock(&_minor_lock);
1429	idr_preload_end();
1430	if (r < 0)
1431		return r;
1432	*minor = r;
1433	return 0;
1434}
1435
1436static const struct block_device_operations dm_blk_dops;
 
 
1437
1438static void dm_wq_work(struct work_struct *work);
1439
1440void dm_init_md_queue(struct mapped_device *md)
 
1441{
1442	/*
1443	 * Request-based dm devices cannot be stacked on top of bio-based dm
1444	 * devices.  The type of this dm device may not have been decided yet.
1445	 * The type is decided at the first table loading time.
1446	 * To prevent problematic device stacking, clear the queue flag
1447	 * for request stacking support until then.
1448	 *
1449	 * This queue is new, so no concurrency on the queue_flags.
1450	 */
1451	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
1452
1453	/*
1454	 * Initialize data that will only be used by a non-blk-mq DM queue
1455	 * - must do so here (in alloc_dev callchain) before queue is used
1456	 */
1457	md->queue->queuedata = md;
1458	md->queue->backing_dev_info.congested_data = md;
1459}
1460
1461void dm_init_normal_md_queue(struct mapped_device *md)
1462{
1463	md->use_blk_mq = false;
1464	dm_init_md_queue(md);
1465
1466	/*
1467	 * Initialize aspects of queue that aren't relevant for blk-mq
1468	 */
1469	md->queue->backing_dev_info.congested_fn = dm_any_congested;
1470	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
1471}
 
1472
1473static void cleanup_mapped_device(struct mapped_device *md)
1474{
1475	if (md->wq)
1476		destroy_workqueue(md->wq);
1477	if (md->kworker_task)
1478		kthread_stop(md->kworker_task);
1479	mempool_destroy(md->io_pool);
1480	mempool_destroy(md->rq_pool);
1481	if (md->bs)
1482		bioset_free(md->bs);
1483
 
 
 
 
 
 
 
 
1484	if (md->disk) {
1485		spin_lock(&_minor_lock);
1486		md->disk->private_data = NULL;
1487		spin_unlock(&_minor_lock);
1488		del_gendisk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1489		put_disk(md->disk);
1490	}
1491
1492	if (md->queue)
1493		blk_cleanup_queue(md->queue);
 
 
1494
1495	cleanup_srcu_struct(&md->io_barrier);
1496
1497	if (md->bdev) {
1498		bdput(md->bdev);
1499		md->bdev = NULL;
1500	}
1501
1502	dm_mq_cleanup_mapped_device(md);
1503}
1504
1505/*
1506 * Allocate and initialise a blank device with a given minor.
1507 */
1508static struct mapped_device *alloc_dev(int minor)
1509{
1510	int r, numa_node_id = dm_get_numa_node();
1511	struct mapped_device *md;
1512	void *old_md;
1513
1514	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
1515	if (!md) {
1516		DMWARN("unable to allocate device, out of memory.");
1517		return NULL;
1518	}
1519
1520	if (!try_module_get(THIS_MODULE))
1521		goto bad_module_get;
1522
1523	/* get a minor number for the dev */
1524	if (minor == DM_ANY_MINOR)
1525		r = next_free_minor(&minor);
1526	else
1527		r = specific_minor(minor);
1528	if (r < 0)
1529		goto bad_minor;
1530
1531	r = init_srcu_struct(&md->io_barrier);
1532	if (r < 0)
1533		goto bad_io_barrier;
1534
1535	md->numa_node_id = numa_node_id;
1536	md->use_blk_mq = dm_use_blk_mq_default();
1537	md->init_tio_pdu = false;
1538	md->type = DM_TYPE_NONE;
1539	mutex_init(&md->suspend_lock);
1540	mutex_init(&md->type_lock);
1541	mutex_init(&md->table_devices_lock);
1542	spin_lock_init(&md->deferred_lock);
1543	atomic_set(&md->holders, 1);
1544	atomic_set(&md->open_count, 0);
1545	atomic_set(&md->event_nr, 0);
1546	atomic_set(&md->uevent_seq, 0);
1547	INIT_LIST_HEAD(&md->uevent_list);
1548	INIT_LIST_HEAD(&md->table_devices);
1549	spin_lock_init(&md->uevent_lock);
1550
1551	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
1552	if (!md->queue)
1553		goto bad;
1554
1555	dm_init_md_queue(md);
1556
1557	md->disk = alloc_disk_node(1, numa_node_id);
1558	if (!md->disk)
1559		goto bad;
 
1560
1561	atomic_set(&md->pending[0], 0);
1562	atomic_set(&md->pending[1], 0);
1563	init_waitqueue_head(&md->wait);
1564	INIT_WORK(&md->work, dm_wq_work);
 
1565	init_waitqueue_head(&md->eventq);
1566	init_completion(&md->kobj_holder.completion);
1567	md->kworker_task = NULL;
 
 
 
 
1568
1569	md->disk->major = _major;
1570	md->disk->first_minor = minor;
 
 
1571	md->disk->fops = &dm_blk_dops;
1572	md->disk->queue = md->queue;
1573	md->disk->private_data = md;
1574	sprintf(md->disk->disk_name, "dm-%d", minor);
1575	add_disk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
1576	format_dev_t(md->name, MKDEV(_major, minor));
1577
1578	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
1579	if (!md->wq)
1580		goto bad;
1581
1582	md->bdev = bdget_disk(md->disk, 0);
1583	if (!md->bdev)
1584		goto bad;
1585
1586	bio_init(&md->flush_bio, NULL, 0);
1587	md->flush_bio.bi_bdev = md->bdev;
1588	md->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1589
1590	dm_stats_init(&md->stats);
1591
1592	/* Populate the mapping, nobody knows we exist yet */
1593	spin_lock(&_minor_lock);
1594	old_md = idr_replace(&_minor_idr, md, minor);
1595	spin_unlock(&_minor_lock);
1596
1597	BUG_ON(old_md != MINOR_ALLOCED);
1598
1599	return md;
1600
1601bad:
1602	cleanup_mapped_device(md);
1603bad_io_barrier:
1604	free_minor(minor);
1605bad_minor:
1606	module_put(THIS_MODULE);
1607bad_module_get:
1608	kfree(md);
1609	return NULL;
1610}
1611
1612static void unlock_fs(struct mapped_device *md);
1613
1614static void free_dev(struct mapped_device *md)
1615{
1616	int minor = MINOR(disk_devt(md->disk));
1617
1618	unlock_fs(md);
1619
1620	cleanup_mapped_device(md);
1621
1622	free_table_devices(&md->table_devices);
1623	dm_stats_cleanup(&md->stats);
1624	free_minor(minor);
1625
1626	module_put(THIS_MODULE);
1627	kfree(md);
1628}
1629
1630static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
1631{
1632	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
1633
1634	if (md->bs) {
1635		/* The md already has necessary mempools. */
1636		if (dm_table_bio_based(t)) {
1637			/*
1638			 * Reload bioset because front_pad may have changed
1639			 * because a different table was loaded.
1640			 */
1641			bioset_free(md->bs);
1642			md->bs = p->bs;
1643			p->bs = NULL;
1644		}
1645		/*
1646		 * There's no need to reload with request-based dm
1647		 * because the size of front_pad doesn't change.
1648		 * Note for future: If you are to reload bioset,
1649		 * prep-ed requests in the queue may refer
1650		 * to bio from the old bioset, so you must walk
1651		 * through the queue to unprep.
1652		 */
1653		goto out;
1654	}
1655
1656	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
1657
1658	md->io_pool = p->io_pool;
1659	p->io_pool = NULL;
1660	md->rq_pool = p->rq_pool;
1661	p->rq_pool = NULL;
1662	md->bs = p->bs;
1663	p->bs = NULL;
1664
1665out:
1666	/* mempool bind completed, no longer need any mempools in the table */
1667	dm_table_free_md_mempools(t);
1668}
1669
1670/*
1671 * Bind a table to the device.
1672 */
1673static void event_callback(void *context)
1674{
1675	unsigned long flags;
1676	LIST_HEAD(uevents);
1677	struct mapped_device *md = (struct mapped_device *) context;
1678
1679	spin_lock_irqsave(&md->uevent_lock, flags);
1680	list_splice_init(&md->uevent_list, &uevents);
1681	spin_unlock_irqrestore(&md->uevent_lock, flags);
1682
1683	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
1684
1685	atomic_inc(&md->event_nr);
1686	wake_up(&md->eventq);
1687}
1688
1689/*
1690 * Protected by md->suspend_lock obtained by dm_swap_table().
1691 */
1692static void __set_size(struct mapped_device *md, sector_t size)
1693{
1694	set_capacity(md->disk, size);
1695
1696	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
1697}
1698
1699/*
1700 * Returns old map, which caller must destroy.
1701 */
1702static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
1703			       struct queue_limits *limits)
1704{
1705	struct dm_table *old_map;
1706	struct request_queue *q = md->queue;
1707	sector_t size;
 
1708
1709	lockdep_assert_held(&md->suspend_lock);
1710
1711	size = dm_table_get_size(t);
1712
1713	/*
1714	 * Wipe any geometry if the size of the table changed.
1715	 */
1716	if (size != dm_get_size(md))
1717		memset(&md->geometry, 0, sizeof(md->geometry));
1718
1719	__set_size(md, size);
 
 
 
1720
1721	dm_table_event_callback(t, event_callback, md);
1722
1723	/*
1724	 * The queue hasn't been stopped yet, if the old table type wasn't
1725	 * for request-based during suspension.  So stop it to prevent
1726	 * I/O mapping before resume.
1727	 * This must be done before setting the queue restrictions,
1728	 * because request-based dm may be run just after the setting.
1729	 */
1730	if (dm_table_request_based(t)) {
1731		dm_stop_queue(q);
1732		/*
1733		 * Leverage the fact that request-based DM targets are
1734		 * immutable singletons and establish md->immutable_target
1735		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
1736		 */
1737		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1738	}
1739
1740	__bind_mempools(md, t);
 
 
 
 
1741
1742	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
1743	rcu_assign_pointer(md->map, (void *)t);
1744	md->immutable_target_type = dm_table_get_immutable_target_type(t);
1745
1746	dm_table_set_restrictions(t, q, limits);
1747	if (old_map)
1748		dm_sync_table(md);
1749
1750	return old_map;
1751}
1752
1753/*
1754 * Returns unbound table for the caller to free.
1755 */
1756static struct dm_table *__unbind(struct mapped_device *md)
1757{
1758	struct dm_table *map = rcu_dereference_protected(md->map, 1);
1759
1760	if (!map)
1761		return NULL;
1762
1763	dm_table_event_callback(map, NULL, NULL);
1764	RCU_INIT_POINTER(md->map, NULL);
1765	dm_sync_table(md);
1766
1767	return map;
1768}
1769
1770/*
1771 * Constructor for a new device.
1772 */
1773int dm_create(int minor, struct mapped_device **result)
1774{
1775	struct mapped_device *md;
1776
1777	md = alloc_dev(minor);
1778	if (!md)
1779		return -ENXIO;
1780
1781	dm_sysfs_init(md);
1782
1783	*result = md;
1784	return 0;
1785}
1786
1787/*
1788 * Functions to manage md->type.
1789 * All are required to hold md->type_lock.
1790 */
1791void dm_lock_md_type(struct mapped_device *md)
1792{
1793	mutex_lock(&md->type_lock);
1794}
1795
1796void dm_unlock_md_type(struct mapped_device *md)
1797{
1798	mutex_unlock(&md->type_lock);
1799}
1800
1801void dm_set_md_type(struct mapped_device *md, unsigned type)
1802{
1803	BUG_ON(!mutex_is_locked(&md->type_lock));
1804	md->type = type;
1805}
1806
1807unsigned dm_get_md_type(struct mapped_device *md)
1808{
1809	return md->type;
1810}
1811
1812struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
1813{
1814	return md->immutable_target_type;
1815}
1816
1817/*
1818 * The queue_limits are only valid as long as you have a reference
1819 * count on 'md'.
1820 */
1821struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
1822{
1823	BUG_ON(!atomic_read(&md->holders));
1824	return &md->queue->limits;
1825}
1826EXPORT_SYMBOL_GPL(dm_get_queue_limits);
1827
1828/*
1829 * Setup the DM device's queue based on md's type
1830 */
1831int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
1832{
 
 
 
1833	int r;
1834	unsigned type = dm_get_md_type(md);
1835
1836	switch (type) {
1837	case DM_TYPE_REQUEST_BASED:
1838		r = dm_old_init_request_queue(md);
1839		if (r) {
1840			DMERR("Cannot initialize queue for request-based mapped device");
1841			return r;
1842		}
1843		break;
1844	case DM_TYPE_MQ_REQUEST_BASED:
1845		r = dm_mq_init_request_queue(md, t);
1846		if (r) {
1847			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
1848			return r;
1849		}
1850		break;
1851	case DM_TYPE_BIO_BASED:
1852	case DM_TYPE_DAX_BIO_BASED:
1853		dm_init_normal_md_queue(md);
1854		blk_queue_make_request(md->queue, dm_make_request);
1855		/*
1856		 * DM handles splitting bios as needed.  Free the bio_split bioset
1857		 * since it won't be used (saves 1 process per bio-based DM device).
1858		 */
1859		bioset_free(md->queue->bio_split);
1860		md->queue->bio_split = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861
1862		if (type == DM_TYPE_DAX_BIO_BASED)
1863			queue_flag_set_unlocked(QUEUE_FLAG_DAX, md->queue);
1864		break;
 
 
 
 
 
1865	}
1866
 
 
 
 
 
1867	return 0;
 
 
 
 
 
 
 
 
1868}
1869
1870struct mapped_device *dm_get_md(dev_t dev)
1871{
1872	struct mapped_device *md;
1873	unsigned minor = MINOR(dev);
1874
1875	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
1876		return NULL;
1877
1878	spin_lock(&_minor_lock);
1879
1880	md = idr_find(&_minor_idr, minor);
1881	if (md) {
1882		if ((md == MINOR_ALLOCED ||
1883		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
1884		     dm_deleting_md(md) ||
1885		     test_bit(DMF_FREEING, &md->flags))) {
1886			md = NULL;
1887			goto out;
1888		}
1889		dm_get(md);
1890	}
1891
1892out:
1893	spin_unlock(&_minor_lock);
1894
1895	return md;
1896}
1897EXPORT_SYMBOL_GPL(dm_get_md);
1898
1899void *dm_get_mdptr(struct mapped_device *md)
1900{
1901	return md->interface_ptr;
1902}
1903
1904void dm_set_mdptr(struct mapped_device *md, void *ptr)
1905{
1906	md->interface_ptr = ptr;
1907}
1908
1909void dm_get(struct mapped_device *md)
1910{
1911	atomic_inc(&md->holders);
1912	BUG_ON(test_bit(DMF_FREEING, &md->flags));
1913}
1914
1915int dm_hold(struct mapped_device *md)
1916{
1917	spin_lock(&_minor_lock);
1918	if (test_bit(DMF_FREEING, &md->flags)) {
1919		spin_unlock(&_minor_lock);
1920		return -EBUSY;
1921	}
1922	dm_get(md);
1923	spin_unlock(&_minor_lock);
1924	return 0;
1925}
1926EXPORT_SYMBOL_GPL(dm_hold);
1927
1928const char *dm_device_name(struct mapped_device *md)
1929{
1930	return md->name;
1931}
1932EXPORT_SYMBOL_GPL(dm_device_name);
1933
1934static void __dm_destroy(struct mapped_device *md, bool wait)
1935{
1936	struct request_queue *q = dm_get_md_queue(md);
1937	struct dm_table *map;
1938	int srcu_idx;
1939
1940	might_sleep();
1941
1942	spin_lock(&_minor_lock);
1943	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
1944	set_bit(DMF_FREEING, &md->flags);
1945	spin_unlock(&_minor_lock);
1946
1947	blk_set_queue_dying(q);
1948
1949	if (dm_request_based(md) && md->kworker_task)
1950		kthread_flush_worker(&md->kworker);
1951
1952	/*
1953	 * Take suspend_lock so that presuspend and postsuspend methods
1954	 * do not race with internal suspend.
1955	 */
1956	mutex_lock(&md->suspend_lock);
1957	map = dm_get_live_table(md, &srcu_idx);
1958	if (!dm_suspended_md(md)) {
1959		dm_table_presuspend_targets(map);
 
 
1960		dm_table_postsuspend_targets(map);
1961	}
1962	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
1963	dm_put_live_table(md, srcu_idx);
1964	mutex_unlock(&md->suspend_lock);
1965
1966	/*
1967	 * Rare, but there may be I/O requests still going to complete,
1968	 * for example.  Wait for all references to disappear.
1969	 * No one should increment the reference count of the mapped_device,
1970	 * after the mapped_device state becomes DMF_FREEING.
1971	 */
1972	if (wait)
1973		while (atomic_read(&md->holders))
1974			msleep(1);
1975	else if (atomic_read(&md->holders))
1976		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
1977		       dm_device_name(md), atomic_read(&md->holders));
1978
1979	dm_sysfs_exit(md);
1980	dm_table_destroy(__unbind(md));
1981	free_dev(md);
1982}
1983
1984void dm_destroy(struct mapped_device *md)
1985{
1986	__dm_destroy(md, true);
1987}
1988
1989void dm_destroy_immediate(struct mapped_device *md)
1990{
1991	__dm_destroy(md, false);
1992}
1993
1994void dm_put(struct mapped_device *md)
1995{
1996	atomic_dec(&md->holders);
1997}
1998EXPORT_SYMBOL_GPL(dm_put);
1999
2000static int dm_wait_for_completion(struct mapped_device *md, long task_state)
 
 
 
 
 
 
 
 
 
 
 
2001{
2002	int r = 0;
2003	DEFINE_WAIT(wait);
2004
2005	while (1) {
2006		prepare_to_wait(&md->wait, &wait, task_state);
2007
2008		if (!md_in_flight(md))
2009			break;
2010
2011		if (signal_pending_state(task_state, current)) {
2012			r = -EINTR;
2013			break;
2014		}
2015
2016		io_schedule();
2017	}
2018	finish_wait(&md->wait, &wait);
2019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2020	return r;
2021}
2022
2023/*
2024 * Process the deferred bios
2025 */
2026static void dm_wq_work(struct work_struct *work)
2027{
2028	struct mapped_device *md = container_of(work, struct mapped_device,
2029						work);
2030	struct bio *c;
2031	int srcu_idx;
2032	struct dm_table *map;
2033
2034	map = dm_get_live_table(md, &srcu_idx);
2035
2036	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2037		spin_lock_irq(&md->deferred_lock);
2038		c = bio_list_pop(&md->deferred);
2039		spin_unlock_irq(&md->deferred_lock);
2040
2041		if (!c)
2042			break;
2043
2044		if (dm_request_based(md))
2045			generic_make_request(c);
2046		else
2047			__split_and_process_bio(md, map, c);
2048	}
2049
2050	dm_put_live_table(md, srcu_idx);
2051}
2052
2053static void dm_queue_flush(struct mapped_device *md)
2054{
2055	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2056	smp_mb__after_atomic();
2057	queue_work(md->wq, &md->work);
2058}
2059
2060/*
2061 * Swap in a new table, returning the old one for the caller to destroy.
2062 */
2063struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2064{
2065	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2066	struct queue_limits limits;
2067	int r;
2068
2069	mutex_lock(&md->suspend_lock);
2070
2071	/* device must be suspended */
2072	if (!dm_suspended_md(md))
2073		goto out;
2074
2075	/*
2076	 * If the new table has no data devices, retain the existing limits.
2077	 * This helps multipath with queue_if_no_path if all paths disappear,
2078	 * then new I/O is queued based on these limits, and then some paths
2079	 * reappear.
2080	 */
2081	if (dm_table_has_no_data_devices(table)) {
2082		live_map = dm_get_live_table_fast(md);
2083		if (live_map)
2084			limits = md->queue->limits;
2085		dm_put_live_table_fast(md);
2086	}
2087
2088	if (!live_map) {
2089		r = dm_calculate_queue_limits(table, &limits);
2090		if (r) {
2091			map = ERR_PTR(r);
2092			goto out;
2093		}
2094	}
2095
2096	map = __bind(md, table, &limits);
 
2097
2098out:
2099	mutex_unlock(&md->suspend_lock);
2100	return map;
2101}
2102
2103/*
2104 * Functions to lock and unlock any filesystem running on the
2105 * device.
2106 */
2107static int lock_fs(struct mapped_device *md)
2108{
2109	int r;
2110
2111	WARN_ON(md->frozen_sb);
2112
2113	md->frozen_sb = freeze_bdev(md->bdev);
2114	if (IS_ERR(md->frozen_sb)) {
2115		r = PTR_ERR(md->frozen_sb);
2116		md->frozen_sb = NULL;
2117		return r;
2118	}
2119
2120	set_bit(DMF_FROZEN, &md->flags);
2121
2122	return 0;
2123}
2124
2125static void unlock_fs(struct mapped_device *md)
2126{
2127	if (!test_bit(DMF_FROZEN, &md->flags))
2128		return;
2129
2130	thaw_bdev(md->bdev, md->frozen_sb);
2131	md->frozen_sb = NULL;
2132	clear_bit(DMF_FROZEN, &md->flags);
2133}
2134
2135/*
2136 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2137 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2138 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2139 *
2140 * If __dm_suspend returns 0, the device is completely quiescent
2141 * now. There is no request-processing activity. All new requests
2142 * are being added to md->deferred list.
2143 *
2144 * Caller must hold md->suspend_lock
2145 */
2146static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2147			unsigned suspend_flags, long task_state,
2148			int dmf_suspended_flag)
2149{
2150	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2151	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2152	int r;
2153
2154	lockdep_assert_held(&md->suspend_lock);
2155
2156	/*
2157	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2158	 * This flag is cleared before dm_suspend returns.
2159	 */
2160	if (noflush)
2161		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
2162
2163	/*
2164	 * This gets reverted if there's an error later and the targets
2165	 * provide the .presuspend_undo hook.
2166	 */
2167	dm_table_presuspend_targets(map);
2168
2169	/*
2170	 * Flush I/O to the device.
2171	 * Any I/O submitted after lock_fs() may not be flushed.
2172	 * noflush takes precedence over do_lockfs.
2173	 * (lock_fs() flushes I/Os and waits for them to complete.)
2174	 */
2175	if (!noflush && do_lockfs) {
2176		r = lock_fs(md);
2177		if (r) {
2178			dm_table_presuspend_undo_targets(map);
2179			return r;
2180		}
2181	}
2182
2183	/*
2184	 * Here we must make sure that no processes are submitting requests
2185	 * to target drivers i.e. no one may be executing
2186	 * __split_and_process_bio. This is called from dm_request and
2187	 * dm_wq_work.
2188	 *
2189	 * To get all processes out of __split_and_process_bio in dm_request,
2190	 * we take the write lock. To prevent any process from reentering
2191	 * __split_and_process_bio from dm_request and quiesce the thread
2192	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
2193	 * flush_workqueue(md->wq).
2194	 */
2195	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2196	if (map)
2197		synchronize_srcu(&md->io_barrier);
2198
2199	/*
2200	 * Stop md->queue before flushing md->wq in case request-based
2201	 * dm defers requests to md->wq from md->queue.
2202	 */
2203	if (dm_request_based(md)) {
2204		dm_stop_queue(md->queue);
2205		if (md->kworker_task)
2206			kthread_flush_worker(&md->kworker);
2207	}
2208
2209	flush_workqueue(md->wq);
2210
2211	/*
2212	 * At this point no more requests are entering target request routines.
2213	 * We call dm_wait_for_completion to wait for all existing requests
2214	 * to finish.
2215	 */
2216	r = dm_wait_for_completion(md, task_state);
2217	if (!r)
2218		set_bit(dmf_suspended_flag, &md->flags);
2219
2220	if (noflush)
2221		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2222	if (map)
2223		synchronize_srcu(&md->io_barrier);
2224
2225	/* were we interrupted ? */
2226	if (r < 0) {
2227		dm_queue_flush(md);
2228
2229		if (dm_request_based(md))
2230			dm_start_queue(md->queue);
2231
2232		unlock_fs(md);
2233		dm_table_presuspend_undo_targets(map);
2234		/* pushback list is already flushed, so skip flush */
2235	}
2236
2237	return r;
2238}
2239
2240/*
2241 * We need to be able to change a mapping table under a mounted
2242 * filesystem.  For example we might want to move some data in
2243 * the background.  Before the table can be swapped with
2244 * dm_bind_table, dm_suspend must be called to flush any in
2245 * flight bios and ensure that any further io gets deferred.
2246 */
2247/*
2248 * Suspend mechanism in request-based dm.
2249 *
2250 * 1. Flush all I/Os by lock_fs() if needed.
2251 * 2. Stop dispatching any I/O by stopping the request_queue.
2252 * 3. Wait for all in-flight I/Os to be completed or requeued.
2253 *
2254 * To abort suspend, start the request_queue.
2255 */
2256int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2257{
2258	struct dm_table *map = NULL;
2259	int r = 0;
2260
2261retry:
2262	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2263
2264	if (dm_suspended_md(md)) {
2265		r = -EINVAL;
2266		goto out_unlock;
2267	}
2268
2269	if (dm_suspended_internally_md(md)) {
2270		/* already internally suspended, wait for internal resume */
2271		mutex_unlock(&md->suspend_lock);
2272		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2273		if (r)
2274			return r;
2275		goto retry;
2276	}
2277
2278	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2279
2280	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2281	if (r)
2282		goto out_unlock;
2283
 
2284	dm_table_postsuspend_targets(map);
 
2285
2286out_unlock:
2287	mutex_unlock(&md->suspend_lock);
2288	return r;
2289}
2290
2291static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2292{
2293	if (map) {
2294		int r = dm_table_resume_targets(map);
2295		if (r)
2296			return r;
2297	}
2298
2299	dm_queue_flush(md);
2300
2301	/*
2302	 * Flushing deferred I/Os must be done after targets are resumed
2303	 * so that mapping of targets can work correctly.
2304	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2305	 */
2306	if (dm_request_based(md))
2307		dm_start_queue(md->queue);
2308
2309	unlock_fs(md);
2310
2311	return 0;
2312}
2313
2314int dm_resume(struct mapped_device *md)
2315{
2316	int r;
2317	struct dm_table *map = NULL;
2318
2319retry:
2320	r = -EINVAL;
2321	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2322
2323	if (!dm_suspended_md(md))
2324		goto out;
2325
2326	if (dm_suspended_internally_md(md)) {
2327		/* already internally suspended, wait for internal resume */
2328		mutex_unlock(&md->suspend_lock);
2329		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2330		if (r)
2331			return r;
2332		goto retry;
2333	}
2334
2335	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2336	if (!map || !dm_table_get_size(map))
2337		goto out;
2338
2339	r = __dm_resume(md, map);
2340	if (r)
2341		goto out;
2342
2343	clear_bit(DMF_SUSPENDED, &md->flags);
2344out:
2345	mutex_unlock(&md->suspend_lock);
2346
2347	return r;
2348}
2349
2350/*
2351 * Internal suspend/resume works like userspace-driven suspend. It waits
2352 * until all bios finish and prevents issuing new bios to the target drivers.
2353 * It may be used only from the kernel.
2354 */
2355
2356static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2357{
2358	struct dm_table *map = NULL;
2359
 
 
2360	if (md->internal_suspend_count++)
2361		return; /* nested internal suspend */
2362
2363	if (dm_suspended_md(md)) {
2364		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2365		return; /* nest suspend */
2366	}
2367
2368	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2369
2370	/*
2371	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2372	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2373	 * would require changing .presuspend to return an error -- avoid this
2374	 * until there is a need for more elaborate variants of internal suspend.
2375	 */
2376	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2377			    DMF_SUSPENDED_INTERNALLY);
2378
 
2379	dm_table_postsuspend_targets(map);
 
2380}
2381
2382static void __dm_internal_resume(struct mapped_device *md)
2383{
2384	BUG_ON(!md->internal_suspend_count);
2385
2386	if (--md->internal_suspend_count)
2387		return; /* resume from nested internal suspend */
2388
2389	if (dm_suspended_md(md))
2390		goto done; /* resume from nested suspend */
2391
2392	/*
2393	 * NOTE: existing callers don't need to call dm_table_resume_targets
2394	 * (which may fail -- so best to avoid it for now by passing NULL map)
2395	 */
2396	(void) __dm_resume(md, NULL);
2397
2398done:
2399	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2400	smp_mb__after_atomic();
2401	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2402}
2403
2404void dm_internal_suspend_noflush(struct mapped_device *md)
2405{
2406	mutex_lock(&md->suspend_lock);
2407	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2408	mutex_unlock(&md->suspend_lock);
2409}
2410EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2411
2412void dm_internal_resume(struct mapped_device *md)
2413{
2414	mutex_lock(&md->suspend_lock);
2415	__dm_internal_resume(md);
2416	mutex_unlock(&md->suspend_lock);
2417}
2418EXPORT_SYMBOL_GPL(dm_internal_resume);
2419
2420/*
2421 * Fast variants of internal suspend/resume hold md->suspend_lock,
2422 * which prevents interaction with userspace-driven suspend.
2423 */
2424
2425void dm_internal_suspend_fast(struct mapped_device *md)
2426{
2427	mutex_lock(&md->suspend_lock);
2428	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2429		return;
2430
2431	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2432	synchronize_srcu(&md->io_barrier);
2433	flush_workqueue(md->wq);
2434	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2435}
2436EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2437
2438void dm_internal_resume_fast(struct mapped_device *md)
2439{
2440	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2441		goto done;
2442
2443	dm_queue_flush(md);
2444
2445done:
2446	mutex_unlock(&md->suspend_lock);
2447}
2448EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2449
2450/*-----------------------------------------------------------------
2451 * Event notification.
2452 *---------------------------------------------------------------*/
2453int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2454		       unsigned cookie)
2455{
 
 
2456	char udev_cookie[DM_COOKIE_LENGTH];
2457	char *envp[] = { udev_cookie, NULL };
2458
 
 
2459	if (!cookie)
2460		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2461	else {
2462		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2463			 DM_COOKIE_ENV_VAR_NAME, cookie);
2464		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2465					  action, envp);
2466	}
 
 
 
 
2467}
2468
2469uint32_t dm_next_uevent_seq(struct mapped_device *md)
2470{
2471	return atomic_add_return(1, &md->uevent_seq);
2472}
2473
2474uint32_t dm_get_event_nr(struct mapped_device *md)
2475{
2476	return atomic_read(&md->event_nr);
2477}
2478
2479int dm_wait_event(struct mapped_device *md, int event_nr)
2480{
2481	return wait_event_interruptible(md->eventq,
2482			(event_nr != atomic_read(&md->event_nr)));
2483}
2484
2485void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
2486{
2487	unsigned long flags;
2488
2489	spin_lock_irqsave(&md->uevent_lock, flags);
2490	list_add(elist, &md->uevent_list);
2491	spin_unlock_irqrestore(&md->uevent_lock, flags);
2492}
2493
2494/*
2495 * The gendisk is only valid as long as you have a reference
2496 * count on 'md'.
2497 */
2498struct gendisk *dm_disk(struct mapped_device *md)
2499{
2500	return md->disk;
2501}
2502EXPORT_SYMBOL_GPL(dm_disk);
2503
2504struct kobject *dm_kobject(struct mapped_device *md)
2505{
2506	return &md->kobj_holder.kobj;
2507}
2508
2509struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
2510{
2511	struct mapped_device *md;
2512
2513	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
2514
2515	if (test_bit(DMF_FREEING, &md->flags) ||
2516	    dm_deleting_md(md))
2517		return NULL;
 
 
 
 
 
2518
2519	dm_get(md);
2520	return md;
2521}
2522
2523int dm_suspended_md(struct mapped_device *md)
2524{
2525	return test_bit(DMF_SUSPENDED, &md->flags);
2526}
2527
 
 
 
 
 
2528int dm_suspended_internally_md(struct mapped_device *md)
2529{
2530	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2531}
2532
2533int dm_test_deferred_remove_flag(struct mapped_device *md)
2534{
2535	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
2536}
2537
2538int dm_suspended(struct dm_target *ti)
2539{
2540	return dm_suspended_md(dm_table_get_md(ti->table));
2541}
2542EXPORT_SYMBOL_GPL(dm_suspended);
2543
2544int dm_noflush_suspending(struct dm_target *ti)
2545{
2546	return __noflush_suspending(dm_table_get_md(ti->table));
2547}
2548EXPORT_SYMBOL_GPL(dm_noflush_suspending);
2549
2550struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
2551					    unsigned integrity, unsigned per_io_data_size)
2552{
2553	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
2554	struct kmem_cache *cachep = NULL;
2555	unsigned int pool_size = 0;
2556	unsigned int front_pad;
2557
2558	if (!pools)
2559		return NULL;
2560
2561	switch (type) {
2562	case DM_TYPE_BIO_BASED:
2563	case DM_TYPE_DAX_BIO_BASED:
2564		cachep = _io_cache;
2565		pool_size = dm_get_reserved_bio_based_ios();
2566		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
2567		break;
2568	case DM_TYPE_REQUEST_BASED:
2569		cachep = _rq_tio_cache;
2570		pool_size = dm_get_reserved_rq_based_ios();
2571		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
2572		if (!pools->rq_pool)
2573			goto out;
2574		/* fall through to setup remaining rq-based pools */
2575	case DM_TYPE_MQ_REQUEST_BASED:
2576		if (!pool_size)
2577			pool_size = dm_get_reserved_rq_based_ios();
2578		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
2579		/* per_io_data_size is used for blk-mq pdu at queue allocation */
2580		break;
2581	default:
2582		BUG();
2583	}
2584
2585	if (cachep) {
2586		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
2587		if (!pools->io_pool)
2588			goto out;
2589	}
2590
2591	pools->bs = bioset_create_nobvec(pool_size, front_pad);
2592	if (!pools->bs)
2593		goto out;
2594
2595	if (integrity && bioset_integrity_create(pools->bs, pool_size))
2596		goto out;
2597
2598	return pools;
2599
2600out:
2601	dm_free_md_mempools(pools);
2602
2603	return NULL;
2604}
 
2605
2606void dm_free_md_mempools(struct dm_md_mempools *pools)
2607{
2608	if (!pools)
2609		return;
2610
2611	mempool_destroy(pools->io_pool);
2612	mempool_destroy(pools->rq_pool);
2613
2614	if (pools->bs)
2615		bioset_free(pools->bs);
2616
2617	kfree(pools);
2618}
2619
2620struct dm_pr {
2621	u64	old_key;
2622	u64	new_key;
2623	u32	flags;
 
2624	bool	fail_early;
 
 
2625};
2626
2627static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
2628		      void *data)
2629{
2630	struct mapped_device *md = bdev->bd_disk->private_data;
2631	struct dm_table *table;
2632	struct dm_target *ti;
2633	int ret = -ENOTTY, srcu_idx;
2634
2635	table = dm_get_live_table(md, &srcu_idx);
2636	if (!table || !dm_table_get_size(table))
2637		goto out;
2638
2639	/* We only support devices that have a single target */
2640	if (dm_table_get_num_targets(table) != 1)
2641		goto out;
2642	ti = dm_table_get_target(table, 0);
2643
 
 
 
 
 
2644	ret = -EINVAL;
2645	if (!ti->type->iterate_devices)
2646		goto out;
2647
2648	ret = ti->type->iterate_devices(ti, fn, data);
 
2649out:
2650	dm_put_live_table(md, srcu_idx);
2651	return ret;
2652}
2653
2654/*
2655 * For register / unregister we need to manually call out to every path.
2656 */
2657static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
2658			    sector_t start, sector_t len, void *data)
2659{
2660	struct dm_pr *pr = data;
2661	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
 
 
 
 
 
 
2662
2663	if (!ops || !ops->pr_register)
2664		return -EOPNOTSUPP;
2665	return ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
 
 
 
 
 
 
 
 
2666}
2667
2668static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
2669			  u32 flags)
2670{
2671	struct dm_pr pr = {
2672		.old_key	= old_key,
2673		.new_key	= new_key,
2674		.flags		= flags,
2675		.fail_early	= true,
 
2676	};
2677	int ret;
2678
2679	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
2680	if (ret && new_key) {
2681		/* unregister all paths if we failed to register any path */
2682		pr.old_key = new_key;
2683		pr.new_key = 0;
2684		pr.flags = 0;
2685		pr.fail_early = false;
2686		dm_call_pr(bdev, __dm_pr_register, &pr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2687	}
2688
2689	return ret;
 
 
 
 
2690}
2691
2692static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
2693			 u32 flags)
2694{
2695	struct mapped_device *md = bdev->bd_disk->private_data;
2696	const struct pr_ops *ops;
2697	fmode_t mode;
2698	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2699
2700	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2701	if (r < 0)
2702		return r;
 
2703
2704	ops = bdev->bd_disk->fops->pr_ops;
2705	if (ops && ops->pr_reserve)
2706		r = ops->pr_reserve(bdev, key, type, flags);
2707	else
2708		r = -EOPNOTSUPP;
2709
2710	bdput(bdev);
2711	return r;
2712}
2713
2714static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
2715{
2716	struct mapped_device *md = bdev->bd_disk->private_data;
2717	const struct pr_ops *ops;
2718	fmode_t mode;
2719	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2720
2721	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2722	if (r < 0)
2723		return r;
 
2724
2725	ops = bdev->bd_disk->fops->pr_ops;
2726	if (ops && ops->pr_release)
2727		r = ops->pr_release(bdev, key, type);
2728	else
2729		r = -EOPNOTSUPP;
2730
2731	bdput(bdev);
2732	return r;
2733}
2734
2735static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
2736			 enum pr_type type, bool abort)
2737{
2738	struct mapped_device *md = bdev->bd_disk->private_data;
2739	const struct pr_ops *ops;
2740	fmode_t mode;
2741	int r;
 
 
 
2742
2743	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2744	if (r < 0)
2745		return r;
2746
2747	ops = bdev->bd_disk->fops->pr_ops;
2748	if (ops && ops->pr_preempt)
2749		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
2750	else
2751		r = -EOPNOTSUPP;
2752
2753	bdput(bdev);
2754	return r;
2755}
2756
2757static int dm_pr_clear(struct block_device *bdev, u64 key)
2758{
2759	struct mapped_device *md = bdev->bd_disk->private_data;
2760	const struct pr_ops *ops;
2761	fmode_t mode;
2762	int r;
2763
2764	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
2765	if (r < 0)
2766		return r;
2767
2768	ops = bdev->bd_disk->fops->pr_ops;
2769	if (ops && ops->pr_clear)
2770		r = ops->pr_clear(bdev, key);
2771	else
2772		r = -EOPNOTSUPP;
2773
2774	bdput(bdev);
2775	return r;
2776}
2777
2778static const struct pr_ops dm_pr_ops = {
2779	.pr_register	= dm_pr_register,
2780	.pr_reserve	= dm_pr_reserve,
2781	.pr_release	= dm_pr_release,
2782	.pr_preempt	= dm_pr_preempt,
2783	.pr_clear	= dm_pr_clear,
2784};
2785
2786static const struct block_device_operations dm_blk_dops = {
 
 
2787	.open = dm_blk_open,
2788	.release = dm_blk_close,
2789	.ioctl = dm_blk_ioctl,
2790	.direct_access = dm_blk_direct_access,
2791	.getgeo = dm_blk_getgeo,
 
2792	.pr_ops = &dm_pr_ops,
2793	.owner = THIS_MODULE
2794};
2795
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2796/*
2797 * module hooks
2798 */
2799module_init(dm_init);
2800module_exit(dm_exit);
2801
2802module_param(major, uint, 0);
2803MODULE_PARM_DESC(major, "The major number of the device mapper");
2804
2805module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
2806MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
2807
2808module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
2809MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 
 
 
2810
2811MODULE_DESCRIPTION(DM_NAME " driver");
2812MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
2813MODULE_LICENSE("GPL");