Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm-core.h"
   9#include "dm-rq.h"
  10#include "dm-uevent.h"
  11#include "dm-ima.h"
  12
  13#include <linux/init.h>
  14#include <linux/module.h>
  15#include <linux/mutex.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/signal.h>
  18#include <linux/blkpg.h>
  19#include <linux/bio.h>
  20#include <linux/mempool.h>
  21#include <linux/dax.h>
  22#include <linux/slab.h>
  23#include <linux/idr.h>
  24#include <linux/uio.h>
  25#include <linux/hdreg.h>
  26#include <linux/delay.h>
  27#include <linux/wait.h>
 
 
 
 
  28#include <linux/pr.h>
  29#include <linux/refcount.h>
  30#include <linux/part_stat.h>
  31#include <linux/blk-crypto.h>
  32#include <linux/blk-crypto-profile.h>
  33
  34#define DM_MSG_PREFIX "core"
  35
 
 
 
 
 
 
 
 
 
 
  36/*
  37 * Cookies are numeric values sent with CHANGE and REMOVE
  38 * uevents while resuming, removing or renaming the device.
  39 */
  40#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  41#define DM_COOKIE_LENGTH 24
  42
  43/*
  44 * For REQ_POLLED fs bio, this flag is set if we link mapped underlying
  45 * dm_io into one list, and reuse bio->bi_private as the list head. Before
  46 * ending this fs bio, we will recover its ->bi_private.
  47 */
  48#define REQ_DM_POLL_LIST	REQ_DRV
  49
  50static const char *_name = DM_NAME;
  51
  52static unsigned int major = 0;
  53static unsigned int _major = 0;
  54
  55static DEFINE_IDR(_minor_idr);
  56
  57static DEFINE_SPINLOCK(_minor_lock);
  58
  59static void do_deferred_remove(struct work_struct *w);
  60
  61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  62
  63static struct workqueue_struct *deferred_remove_workqueue;
  64
  65atomic_t dm_global_event_nr = ATOMIC_INIT(0);
  66DECLARE_WAIT_QUEUE_HEAD(dm_global_eventq);
 
 
 
 
 
 
 
 
 
 
 
  67
  68void dm_issue_global_event(void)
  69{
  70	atomic_inc(&dm_global_event_nr);
  71	wake_up(&dm_global_eventq);
  72}
 
 
 
 
 
 
 
 
 
 
  73
  74DEFINE_STATIC_KEY_FALSE(stats_enabled);
  75DEFINE_STATIC_KEY_FALSE(swap_bios_enabled);
  76DEFINE_STATIC_KEY_FALSE(zoned_enabled);
 
 
 
 
 
 
 
 
 
 
 
 
  77
  78/*
  79 * One of these is allocated (on-stack) per original bio.
  80 */
  81struct clone_info {
  82	struct dm_table *map;
  83	struct bio *bio;
  84	struct dm_io *io;
  85	sector_t sector;
  86	unsigned sector_count;
  87	bool is_abnormal_io:1;
  88	bool submit_as_polled:1;
  89};
  90
  91static inline struct dm_target_io *clone_to_tio(struct bio *clone)
  92{
  93	return container_of(clone, struct dm_target_io, clone);
  94}
 
 
  95
  96void *dm_per_bio_data(struct bio *bio, size_t data_size)
  97{
  98	if (!dm_tio_flagged(clone_to_tio(bio), DM_TIO_INSIDE_DM_IO))
  99		return (char *)bio - DM_TARGET_IO_BIO_OFFSET - data_size;
 100	return (char *)bio - DM_IO_BIO_OFFSET - data_size;
 101}
 102EXPORT_SYMBOL_GPL(dm_per_bio_data);
 103
 104struct bio *dm_bio_from_per_bio_data(void *data, size_t data_size)
 105{
 106	struct dm_io *io = (struct dm_io *)((char *)data + data_size);
 107	if (io->magic == DM_IO_MAGIC)
 108		return (struct bio *)((char *)io + DM_IO_BIO_OFFSET);
 109	BUG_ON(io->magic != DM_TIO_MAGIC);
 110	return (struct bio *)((char *)io + DM_TARGET_IO_BIO_OFFSET);
 111}
 112EXPORT_SYMBOL_GPL(dm_bio_from_per_bio_data);
 113
 114unsigned dm_bio_get_target_bio_nr(const struct bio *bio)
 115{
 116	return container_of(bio, struct dm_target_io, clone)->target_bio_nr;
 117}
 118EXPORT_SYMBOL_GPL(dm_bio_get_target_bio_nr);
 119
 120#define MINOR_ALLOCED ((void *)-1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 122#define DM_NUMA_NODE NUMA_NO_NODE
 
 
 
 123static int dm_numa_node = DM_NUMA_NODE;
 124
 125#define DEFAULT_SWAP_BIOS	(8 * 1048576 / PAGE_SIZE)
 126static int swap_bios = DEFAULT_SWAP_BIOS;
 127static int get_swap_bios(void)
 128{
 129	int latch = READ_ONCE(swap_bios);
 130	if (unlikely(latch <= 0))
 131		latch = DEFAULT_SWAP_BIOS;
 132	return latch;
 133}
 
 
 
 
 
 
 
 
 
 
 134
 135struct table_device {
 136	struct list_head list;
 137	refcount_t count;
 138	struct dm_dev dm_dev;
 139};
 140
 
 
 
 
 
 
 
 141/*
 142 * Bio-based DM's mempools' reserved IOs set by the user.
 143 */
 144#define RESERVED_BIO_BASED_IOS		16
 145static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 146
 
 
 
 
 
 147static int __dm_get_module_param_int(int *module_param, int min, int max)
 148{
 149	int param = READ_ONCE(*module_param);
 150	int modified_param = 0;
 151	bool modified = true;
 152
 153	if (param < min)
 154		modified_param = min;
 155	else if (param > max)
 156		modified_param = max;
 157	else
 158		modified = false;
 159
 160	if (modified) {
 161		(void)cmpxchg(module_param, param, modified_param);
 162		param = modified_param;
 163	}
 164
 165	return param;
 166}
 167
 168unsigned __dm_get_module_param(unsigned *module_param,
 169			       unsigned def, unsigned max)
 170{
 171	unsigned param = READ_ONCE(*module_param);
 172	unsigned modified_param = 0;
 173
 174	if (!param)
 175		modified_param = def;
 176	else if (param > max)
 177		modified_param = max;
 178
 179	if (modified_param) {
 180		(void)cmpxchg(module_param, param, modified_param);
 181		param = modified_param;
 182	}
 183
 184	return param;
 185}
 186
 187unsigned dm_get_reserved_bio_based_ios(void)
 188{
 189	return __dm_get_module_param(&reserved_bio_based_ios,
 190				     RESERVED_BIO_BASED_IOS, DM_RESERVED_MAX_IOS);
 191}
 192EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194static unsigned dm_get_numa_node(void)
 195{
 196	return __dm_get_module_param_int(&dm_numa_node,
 197					 DM_NUMA_NODE, num_online_nodes() - 1);
 198}
 199
 200static int __init local_init(void)
 201{
 202	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203
 204	r = dm_uevent_init();
 205	if (r)
 206		return r;
 207
 208	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 209	if (!deferred_remove_workqueue) {
 210		r = -ENOMEM;
 211		goto out_uevent_exit;
 212	}
 213
 214	_major = major;
 215	r = register_blkdev(_major, _name);
 216	if (r < 0)
 217		goto out_free_workqueue;
 218
 219	if (!_major)
 220		_major = r;
 221
 222	return 0;
 223
 224out_free_workqueue:
 225	destroy_workqueue(deferred_remove_workqueue);
 226out_uevent_exit:
 227	dm_uevent_exit();
 
 
 
 
 
 
 228
 229	return r;
 230}
 231
 232static void local_exit(void)
 233{
 234	flush_scheduled_work();
 235	destroy_workqueue(deferred_remove_workqueue);
 236
 
 
 
 237	unregister_blkdev(_major, _name);
 238	dm_uevent_exit();
 239
 240	_major = 0;
 241
 242	DMINFO("cleaned up");
 243}
 244
 245static int (*_inits[])(void) __initdata = {
 246	local_init,
 247	dm_target_init,
 248	dm_linear_init,
 249	dm_stripe_init,
 250	dm_io_init,
 251	dm_kcopyd_init,
 252	dm_interface_init,
 253	dm_statistics_init,
 254};
 255
 256static void (*_exits[])(void) = {
 257	local_exit,
 258	dm_target_exit,
 259	dm_linear_exit,
 260	dm_stripe_exit,
 261	dm_io_exit,
 262	dm_kcopyd_exit,
 263	dm_interface_exit,
 264	dm_statistics_exit,
 265};
 266
 267static int __init dm_init(void)
 268{
 269	const int count = ARRAY_SIZE(_inits);
 270	int r, i;
 271
 272#if (IS_ENABLED(CONFIG_IMA) && !IS_ENABLED(CONFIG_IMA_DISABLE_HTABLE))
 273	DMWARN("CONFIG_IMA_DISABLE_HTABLE is disabled."
 274	       " Duplicate IMA measurements will not be recorded in the IMA log.");
 275#endif
 276
 277	for (i = 0; i < count; i++) {
 278		r = _inits[i]();
 279		if (r)
 280			goto bad;
 281	}
 282
 283	return 0;
 284bad:
 
 285	while (i--)
 286		_exits[i]();
 287
 288	return r;
 289}
 290
 291static void __exit dm_exit(void)
 292{
 293	int i = ARRAY_SIZE(_exits);
 294
 295	while (i--)
 296		_exits[i]();
 297
 298	/*
 299	 * Should be empty by this point.
 300	 */
 301	idr_destroy(&_minor_idr);
 302}
 303
 304/*
 305 * Block device functions
 306 */
 307int dm_deleting_md(struct mapped_device *md)
 308{
 309	return test_bit(DMF_DELETING, &md->flags);
 310}
 311
 312static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 313{
 314	struct mapped_device *md;
 315
 316	spin_lock(&_minor_lock);
 317
 318	md = bdev->bd_disk->private_data;
 319	if (!md)
 320		goto out;
 321
 322	if (test_bit(DMF_FREEING, &md->flags) ||
 323	    dm_deleting_md(md)) {
 324		md = NULL;
 325		goto out;
 326	}
 327
 328	dm_get(md);
 329	atomic_inc(&md->open_count);
 330out:
 331	spin_unlock(&_minor_lock);
 332
 333	return md ? 0 : -ENXIO;
 334}
 335
 336static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 337{
 338	struct mapped_device *md;
 339
 340	spin_lock(&_minor_lock);
 341
 342	md = disk->private_data;
 343	if (WARN_ON(!md))
 344		goto out;
 345
 346	if (atomic_dec_and_test(&md->open_count) &&
 347	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 348		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 349
 350	dm_put(md);
 351out:
 352	spin_unlock(&_minor_lock);
 353}
 354
 355int dm_open_count(struct mapped_device *md)
 356{
 357	return atomic_read(&md->open_count);
 358}
 359
 360/*
 361 * Guarantees nothing is using the device before it's deleted.
 362 */
 363int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 364{
 365	int r = 0;
 366
 367	spin_lock(&_minor_lock);
 368
 369	if (dm_open_count(md)) {
 370		r = -EBUSY;
 371		if (mark_deferred)
 372			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 373	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 374		r = -EEXIST;
 375	else
 376		set_bit(DMF_DELETING, &md->flags);
 377
 378	spin_unlock(&_minor_lock);
 379
 380	return r;
 381}
 382
 383int dm_cancel_deferred_remove(struct mapped_device *md)
 384{
 385	int r = 0;
 386
 387	spin_lock(&_minor_lock);
 388
 389	if (test_bit(DMF_DELETING, &md->flags))
 390		r = -EBUSY;
 391	else
 392		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 393
 394	spin_unlock(&_minor_lock);
 395
 396	return r;
 397}
 398
 399static void do_deferred_remove(struct work_struct *w)
 400{
 401	dm_deferred_remove();
 402}
 403
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 404static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 405{
 406	struct mapped_device *md = bdev->bd_disk->private_data;
 407
 408	return dm_get_geometry(md, geo);
 409}
 410
 411static int dm_prepare_ioctl(struct mapped_device *md, int *srcu_idx,
 412			    struct block_device **bdev)
 
 413{
 414	struct dm_target *ti;
 415	struct dm_table *map;
 416	int r;
 417
 418retry:
 419	r = -ENOTTY;
 420	map = dm_get_live_table(md, srcu_idx);
 421	if (!map || !dm_table_get_size(map))
 422		return r;
 423
 424	/* We only support devices that have a single target */
 425	if (map->num_targets != 1)
 426		return r;
 427
 428	ti = dm_table_get_target(map, 0);
 429	if (!ti->type->prepare_ioctl)
 430		return r;
 431
 432	if (dm_suspended_md(md))
 433		return -EAGAIN;
 
 
 434
 435	r = ti->type->prepare_ioctl(ti, bdev);
 
 
 
 
 
 
 
 
 
 436	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 437		dm_put_live_table(md, *srcu_idx);
 438		msleep(10);
 439		goto retry;
 440	}
 441
 442	return r;
 443}
 444
 445static void dm_unprepare_ioctl(struct mapped_device *md, int srcu_idx)
 446{
 447	dm_put_live_table(md, srcu_idx);
 448}
 449
 450static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 451			unsigned int cmd, unsigned long arg)
 452{
 453	struct mapped_device *md = bdev->bd_disk->private_data;
 454	int r, srcu_idx;
 455
 456	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
 457	if (r < 0)
 458		goto out;
 459
 460	if (r > 0) {
 461		/*
 462		 * Target determined this ioctl is being issued against a
 463		 * subset of the parent bdev; require extra privileges.
 
 464		 */
 465		if (!capable(CAP_SYS_RAWIO)) {
 466			DMDEBUG_LIMIT(
 467	"%s: sending ioctl %x to DM device without required privilege.",
 468				current->comm, cmd);
 469			r = -ENOIOCTLCMD;
 470			goto out;
 471		}
 472	}
 473
 474	if (!bdev->bd_disk->fops->ioctl)
 475		r = -ENOTTY;
 476	else
 477		r = bdev->bd_disk->fops->ioctl(bdev, mode, cmd, arg);
 478out:
 479	dm_unprepare_ioctl(md, srcu_idx);
 480	return r;
 481}
 482
 483u64 dm_start_time_ns_from_clone(struct bio *bio)
 484{
 485	return jiffies_to_nsecs(clone_to_tio(bio)->io->start_time);
 486}
 487EXPORT_SYMBOL_GPL(dm_start_time_ns_from_clone);
 488
 489static bool bio_is_flush_with_data(struct bio *bio)
 490{
 491	return ((bio->bi_opf & REQ_PREFLUSH) && bio->bi_iter.bi_size);
 492}
 493
 494static void dm_io_acct(struct dm_io *io, bool end)
 495{
 496	struct dm_stats_aux *stats_aux = &io->stats_aux;
 497	unsigned long start_time = io->start_time;
 498	struct mapped_device *md = io->md;
 499	struct bio *bio = io->orig_bio;
 500	unsigned int sectors;
 501
 502	/*
 503	 * If REQ_PREFLUSH set, don't account payload, it will be
 504	 * submitted (and accounted) after this flush completes.
 505	 */
 506	if (bio_is_flush_with_data(bio))
 507		sectors = 0;
 508	else if (likely(!(dm_io_flagged(io, DM_IO_WAS_SPLIT))))
 509		sectors = bio_sectors(bio);
 510	else
 511		sectors = io->sectors;
 512
 513	if (!end)
 514		bdev_start_io_acct(bio->bi_bdev, sectors, bio_op(bio),
 515				   start_time);
 516	else
 517		bdev_end_io_acct(bio->bi_bdev, bio_op(bio), start_time);
 518
 519	if (static_branch_unlikely(&stats_enabled) &&
 520	    unlikely(dm_stats_used(&md->stats))) {
 521		sector_t sector;
 522
 523		if (likely(!dm_io_flagged(io, DM_IO_WAS_SPLIT)))
 524			sector = bio->bi_iter.bi_sector;
 525		else
 526			sector = bio_end_sector(bio) - io->sector_offset;
 527
 528		dm_stats_account_io(&md->stats, bio_data_dir(bio),
 529				    sector, sectors,
 530				    end, start_time, stats_aux);
 531	}
 532}
 533
 534static void __dm_start_io_acct(struct dm_io *io)
 
 535{
 536	dm_io_acct(io, false);
 537}
 538
 539static void dm_start_io_acct(struct dm_io *io, struct bio *clone)
 540{
 541	/*
 542	 * Ensure IO accounting is only ever started once.
 543	 */
 544	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 545		return;
 546
 547	/* Expect no possibility for race unless DM_TIO_IS_DUPLICATE_BIO. */
 548	if (!clone || likely(dm_tio_is_normal(clone_to_tio(clone)))) {
 549		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 550	} else {
 551		unsigned long flags;
 552		/* Can afford locking given DM_TIO_IS_DUPLICATE_BIO */
 553		spin_lock_irqsave(&io->lock, flags);
 554		if (dm_io_flagged(io, DM_IO_ACCOUNTED)) {
 555			spin_unlock_irqrestore(&io->lock, flags);
 556			return;
 557		}
 558		dm_io_set_flag(io, DM_IO_ACCOUNTED);
 559		spin_unlock_irqrestore(&io->lock, flags);
 560	}
 561
 562	__dm_start_io_acct(io);
 563}
 564
 565static void dm_end_io_acct(struct dm_io *io)
 
 566{
 567	dm_io_acct(io, true);
 568}
 569
 570static struct dm_io *alloc_io(struct mapped_device *md, struct bio *bio)
 571{
 572	struct dm_io *io;
 573	struct dm_target_io *tio;
 574	struct bio *clone;
 575
 576	clone = bio_alloc_clone(NULL, bio, GFP_NOIO, &md->mempools->io_bs);
 577	tio = clone_to_tio(clone);
 578	tio->flags = 0;
 579	dm_tio_set_flag(tio, DM_TIO_INSIDE_DM_IO);
 580	tio->io = NULL;
 581
 582	io = container_of(tio, struct dm_io, tio);
 583	io->magic = DM_IO_MAGIC;
 584	io->status = BLK_STS_OK;
 585
 586	/* one ref is for submission, the other is for completion */
 587	atomic_set(&io->io_count, 2);
 588	this_cpu_inc(*md->pending_io);
 589	io->orig_bio = bio;
 590	io->md = md;
 591	spin_lock_init(&io->lock);
 592	io->start_time = jiffies;
 593	io->flags = 0;
 594
 595	if (static_branch_unlikely(&stats_enabled))
 596		dm_stats_record_start(&md->stats, &io->stats_aux);
 597
 598	return io;
 599}
 600
 601static void free_io(struct dm_io *io)
 602{
 603	bio_put(&io->tio.clone);
 
 604}
 605
 606static struct bio *alloc_tio(struct clone_info *ci, struct dm_target *ti,
 607			     unsigned target_bio_nr, unsigned *len, gfp_t gfp_mask)
 608{
 609	struct mapped_device *md = ci->io->md;
 610	struct dm_target_io *tio;
 611	struct bio *clone;
 
 612
 613	if (!ci->io->tio.io) {
 614		/* the dm_target_io embedded in ci->io is available */
 615		tio = &ci->io->tio;
 616		/* alloc_io() already initialized embedded clone */
 617		clone = &tio->clone;
 618	} else {
 619		clone = bio_alloc_clone(NULL, ci->bio, gfp_mask,
 620					&md->mempools->bs);
 621		if (!clone)
 622			return NULL;
 623
 624		/* REQ_DM_POLL_LIST shouldn't be inherited */
 625		clone->bi_opf &= ~REQ_DM_POLL_LIST;
 
 
 
 
 
 
 
 
 626
 627		tio = clone_to_tio(clone);
 628		tio->flags = 0; /* also clears DM_TIO_INSIDE_DM_IO */
 629	}
 
 
 
 
 630
 631	tio->magic = DM_TIO_MAGIC;
 632	tio->io = ci->io;
 633	tio->ti = ti;
 634	tio->target_bio_nr = target_bio_nr;
 635	tio->len_ptr = len;
 636	tio->old_sector = 0;
 637
 638	/* Set default bdev, but target must bio_set_dev() before issuing IO */
 639	clone->bi_bdev = md->disk->part0;
 640	if (unlikely(ti->needs_bio_set_dev))
 641		bio_set_dev(clone, md->disk->part0);
 642
 643	if (len) {
 644		clone->bi_iter.bi_size = to_bytes(*len);
 645		if (bio_integrity(clone))
 646			bio_integrity_trim(clone);
 647	}
 648
 649	return clone;
 650}
 
 
 
 
 
 651
 652static void free_tio(struct bio *clone)
 653{
 654	if (dm_tio_flagged(clone_to_tio(clone), DM_TIO_INSIDE_DM_IO))
 655		return;
 656	bio_put(clone);
 657}
 658
 659/*
 660 * Add the bio to the list of deferred io.
 661 */
 662static void queue_io(struct mapped_device *md, struct bio *bio)
 663{
 664	unsigned long flags;
 665
 666	spin_lock_irqsave(&md->deferred_lock, flags);
 667	bio_list_add(&md->deferred, bio);
 668	spin_unlock_irqrestore(&md->deferred_lock, flags);
 669	queue_work(md->wq, &md->work);
 670}
 671
 672/*
 673 * Everyone (including functions in this file), should use this
 674 * function to access the md->map field, and make sure they call
 675 * dm_put_live_table() when finished.
 676 */
 677struct dm_table *dm_get_live_table(struct mapped_device *md,
 678				   int *srcu_idx) __acquires(md->io_barrier)
 679{
 680	*srcu_idx = srcu_read_lock(&md->io_barrier);
 681
 682	return srcu_dereference(md->map, &md->io_barrier);
 683}
 684
 685void dm_put_live_table(struct mapped_device *md,
 686		       int srcu_idx) __releases(md->io_barrier)
 687{
 688	srcu_read_unlock(&md->io_barrier, srcu_idx);
 689}
 690
 691void dm_sync_table(struct mapped_device *md)
 692{
 693	synchronize_srcu(&md->io_barrier);
 694	synchronize_rcu_expedited();
 695}
 696
 697/*
 698 * A fast alternative to dm_get_live_table/dm_put_live_table.
 699 * The caller must not block between these two functions.
 700 */
 701static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 702{
 703	rcu_read_lock();
 704	return rcu_dereference(md->map);
 705}
 706
 707static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 708{
 709	rcu_read_unlock();
 710}
 711
 712static inline struct dm_table *dm_get_live_table_bio(struct mapped_device *md,
 713					int *srcu_idx, blk_opf_t bio_opf)
 714{
 715	if (bio_opf & REQ_NOWAIT)
 716		return dm_get_live_table_fast(md);
 717	else
 718		return dm_get_live_table(md, srcu_idx);
 719}
 720
 721static inline void dm_put_live_table_bio(struct mapped_device *md, int srcu_idx,
 722					 blk_opf_t bio_opf)
 723{
 724	if (bio_opf & REQ_NOWAIT)
 725		dm_put_live_table_fast(md);
 726	else
 727		dm_put_live_table(md, srcu_idx);
 728}
 729
 730static char *_dm_claim_ptr = "I belong to device-mapper";
 731
 732/*
 733 * Open a table device so we can use it as a map destination.
 734 */
 735static struct table_device *open_table_device(struct mapped_device *md,
 736		dev_t dev, fmode_t mode)
 737{
 738	struct table_device *td;
 739	struct block_device *bdev;
 740	u64 part_off;
 741	int r;
 742
 743	td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 744	if (!td)
 745		return ERR_PTR(-ENOMEM);
 746	refcount_set(&td->count, 1);
 747
 748	bdev = blkdev_get_by_dev(dev, mode | FMODE_EXCL, _dm_claim_ptr);
 749	if (IS_ERR(bdev)) {
 750		r = PTR_ERR(bdev);
 751		goto out_free_td;
 752	}
 753
 754	/*
 755	 * We can be called before the dm disk is added.  In that case we can't
 756	 * register the holder relation here.  It will be done once add_disk was
 757	 * called.
 758	 */
 759	if (md->disk->slave_dir) {
 760		r = bd_link_disk_holder(bdev, md->disk);
 761		if (r)
 762			goto out_blkdev_put;
 763	}
 764
 765	td->dm_dev.mode = mode;
 766	td->dm_dev.bdev = bdev;
 767	td->dm_dev.dax_dev = fs_dax_get_by_bdev(bdev, &part_off, NULL, NULL);
 768	format_dev_t(td->dm_dev.name, dev);
 769	list_add(&td->list, &md->table_devices);
 770	return td;
 771
 772out_blkdev_put:
 773	blkdev_put(bdev, mode | FMODE_EXCL);
 774out_free_td:
 775	kfree(td);
 776	return ERR_PTR(r);
 777}
 778
 779/*
 780 * Close a table device that we've been using.
 781 */
 782static void close_table_device(struct table_device *td, struct mapped_device *md)
 783{
 784	if (md->disk->slave_dir)
 785		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
 
 
 786	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 787	put_dax(td->dm_dev.dax_dev);
 788	list_del(&td->list);
 789	kfree(td);
 790}
 791
 792static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 793					      fmode_t mode)
 794{
 795	struct table_device *td;
 796
 797	list_for_each_entry(td, l, list)
 798		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 799			return td;
 800
 801	return NULL;
 802}
 803
 804int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 805			struct dm_dev **result)
 806{
 807	struct table_device *td;
 808
 809	mutex_lock(&md->table_devices_lock);
 810	td = find_table_device(&md->table_devices, dev, mode);
 811	if (!td) {
 812		td = open_table_device(md, dev, mode);
 813		if (IS_ERR(td)) {
 814			mutex_unlock(&md->table_devices_lock);
 815			return PTR_ERR(td);
 816		}
 817	} else {
 818		refcount_inc(&td->count);
 
 
 
 
 
 
 
 
 
 
 
 
 819	}
 
 820	mutex_unlock(&md->table_devices_lock);
 821
 822	*result = &td->dm_dev;
 823	return 0;
 824}
 
 825
 826void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 827{
 828	struct table_device *td = container_of(d, struct table_device, dm_dev);
 829
 830	mutex_lock(&md->table_devices_lock);
 831	if (refcount_dec_and_test(&td->count))
 832		close_table_device(td, md);
 
 
 
 833	mutex_unlock(&md->table_devices_lock);
 834}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836/*
 837 * Get the geometry associated with a dm device
 838 */
 839int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 840{
 841	*geo = md->geometry;
 842
 843	return 0;
 844}
 845
 846/*
 847 * Set the geometry of a device.
 848 */
 849int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 850{
 851	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 852
 853	if (geo->start > sz) {
 854		DMERR("Start sector is beyond the geometry limits.");
 855		return -EINVAL;
 856	}
 857
 858	md->geometry = *geo;
 859
 860	return 0;
 861}
 862
 
 
 
 
 
 
 
 
 
 863static int __noflush_suspending(struct mapped_device *md)
 864{
 865	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 866}
 867
 868static void dm_requeue_add_io(struct dm_io *io, bool first_stage)
 
 
 
 
 869{
 
 
 
 870	struct mapped_device *md = io->md;
 871
 872	if (first_stage) {
 873		struct dm_io *next = md->requeue_list;
 874
 875		md->requeue_list = io;
 876		io->next = next;
 877	} else {
 878		bio_list_add_head(&md->deferred, io->orig_bio);
 879	}
 880}
 881
 882static void dm_kick_requeue(struct mapped_device *md, bool first_stage)
 883{
 884	if (first_stage)
 885		queue_work(md->wq, &md->requeue_work);
 886	else
 887		queue_work(md->wq, &md->work);
 888}
 
 
 
 
 
 
 889
 890/*
 891 * Return true if the dm_io's original bio is requeued.
 892 * io->status is updated with error if requeue disallowed.
 893 */
 894static bool dm_handle_requeue(struct dm_io *io, bool first_stage)
 895{
 896	struct bio *bio = io->orig_bio;
 897	bool handle_requeue = (io->status == BLK_STS_DM_REQUEUE);
 898	bool handle_polled_eagain = ((io->status == BLK_STS_AGAIN) &&
 899				     (bio->bi_opf & REQ_POLLED));
 900	struct mapped_device *md = io->md;
 901	bool requeued = false;
 902
 903	if (handle_requeue || handle_polled_eagain) {
 904		unsigned long flags;
 905
 906		if (bio->bi_opf & REQ_POLLED) {
 907			/*
 908			 * Upper layer won't help us poll split bio
 909			 * (io->orig_bio may only reflect a subset of the
 910			 * pre-split original) so clear REQ_POLLED.
 911			 */
 912			bio_clear_polled(bio);
 
 
 
 
 
 
 913		}
 
 
 914
 915		/*
 916		 * Target requested pushing back the I/O or
 917		 * polled IO hit BLK_STS_AGAIN.
 918		 */
 919		spin_lock_irqsave(&md->deferred_lock, flags);
 920		if ((__noflush_suspending(md) &&
 921		     !WARN_ON_ONCE(dm_is_zone_write(md, bio))) ||
 922		    handle_polled_eagain || first_stage) {
 923			dm_requeue_add_io(io, first_stage);
 924			requeued = true;
 925		} else {
 
 
 
 
 
 
 
 
 
 926			/*
 927			 * noflush suspend was interrupted or this is
 928			 * a write to a zoned target.
 929			 */
 930			io->status = BLK_STS_IOERR;
 
 
 
 
 
 
 931		}
 932		spin_unlock_irqrestore(&md->deferred_lock, flags);
 933	}
 934
 935	if (requeued)
 936		dm_kick_requeue(md, first_stage);
 
 937
 938	return requeued;
 
 939}
 940
 941static void __dm_io_complete(struct dm_io *io, bool first_stage)
 
 
 
 942{
 943	struct bio *bio = io->orig_bio;
 944	struct mapped_device *md = io->md;
 945	blk_status_t io_error;
 946	bool requeued;
 
 
 947
 948	requeued = dm_handle_requeue(io, first_stage);
 949	if (requeued && first_stage)
 950		return;
 951
 952	io_error = io->status;
 953	if (dm_io_flagged(io, DM_IO_ACCOUNTED))
 954		dm_end_io_acct(io);
 955	else if (!io_error) {
 956		/*
 957		 * Must handle target that DM_MAPIO_SUBMITTED only to
 958		 * then bio_endio() rather than dm_submit_bio_remap()
 
 959		 */
 960		__dm_start_io_acct(io);
 961		dm_end_io_acct(io);
 962	}
 963	free_io(io);
 964	smp_wmb();
 965	this_cpu_dec(*md->pending_io);
 966
 967	/* nudge anyone waiting on suspend queue */
 968	if (unlikely(wq_has_sleeper(&md->wait)))
 969		wake_up(&md->wait);
 970
 971	/* Return early if the original bio was requeued */
 972	if (requeued)
 973		return;
 974
 975	if (bio_is_flush_with_data(bio)) {
 976		/*
 977		 * Preflush done for flush with data, reissue
 978		 * without REQ_PREFLUSH.
 
 979		 */
 980		bio->bi_opf &= ~REQ_PREFLUSH;
 981		queue_io(md, bio);
 982	} else {
 983		/* done with normal IO or empty flush */
 984		if (io_error)
 985			bio->bi_status = io_error;
 986		bio_endio(bio);
 987	}
 988}
 989
 990static void dm_wq_requeue_work(struct work_struct *work)
 991{
 992	struct mapped_device *md = container_of(work, struct mapped_device,
 993						requeue_work);
 994	unsigned long flags;
 995	struct dm_io *io;
 996
 997	/* reuse deferred lock to simplify dm_handle_requeue */
 998	spin_lock_irqsave(&md->deferred_lock, flags);
 999	io = md->requeue_list;
1000	md->requeue_list = NULL;
1001	spin_unlock_irqrestore(&md->deferred_lock, flags);
 
 
1002
1003	while (io) {
1004		struct dm_io *next = io->next;
 
 
 
 
 
1005
1006		dm_io_rewind(io, &md->disk->bio_split);
 
 
 
1007
1008		io->next = NULL;
1009		__dm_io_complete(io, false);
1010		io = next;
 
 
 
 
 
1011	}
1012}
1013
1014/*
1015 * Two staged requeue:
1016 *
1017 * 1) io->orig_bio points to the real original bio, and the part mapped to
1018 *    this io must be requeued, instead of other parts of the original bio.
1019 *
1020 * 2) io->orig_bio points to new cloned bio which matches the requeued dm_io.
1021 */
1022static void dm_io_complete(struct dm_io *io)
1023{
1024	bool first_requeue;
 
 
 
 
1025
1026	/*
1027	 * Only dm_io that has been split needs two stage requeue, otherwise
1028	 * we may run into long bio clone chain during suspend and OOM could
1029	 * be triggered.
1030	 *
1031	 * Also flush data dm_io won't be marked as DM_IO_WAS_SPLIT, so they
1032	 * also aren't handled via the first stage requeue.
1033	 */
1034	if (dm_io_flagged(io, DM_IO_WAS_SPLIT))
1035		first_requeue = true;
1036	else
1037		first_requeue = false;
1038
1039	__dm_io_complete(io, first_requeue);
 
 
 
1040}
1041
1042/*
1043 * Decrements the number of outstanding ios that a bio has been
1044 * cloned into, completing the original io if necc.
1045 */
1046static inline void __dm_io_dec_pending(struct dm_io *io)
1047{
1048	if (atomic_dec_and_test(&io->io_count))
1049		dm_io_complete(io);
 
 
 
 
 
 
 
 
 
 
 
 
1050}
1051
1052static void dm_io_set_error(struct dm_io *io, blk_status_t error)
 
 
 
 
 
1053{
1054	unsigned long flags;
 
 
 
1055
1056	/* Push-back supersedes any I/O errors */
1057	spin_lock_irqsave(&io->lock, flags);
1058	if (!(io->status == BLK_STS_DM_REQUEUE &&
1059	      __noflush_suspending(io->md))) {
1060		io->status = error;
 
 
 
 
 
 
1061	}
1062	spin_unlock_irqrestore(&io->lock, flags);
 
 
 
 
 
 
 
1063}
1064
1065static void dm_io_dec_pending(struct dm_io *io, blk_status_t error)
1066{
1067	if (unlikely(error))
1068		dm_io_set_error(io, error);
1069
1070	__dm_io_dec_pending(io);
 
 
 
 
 
 
 
 
1071}
1072
1073void disable_discard(struct mapped_device *md)
 
 
 
1074{
1075	struct queue_limits *limits = dm_get_queue_limits(md);
 
1076
1077	/* device doesn't really support DISCARD, disable it */
1078	limits->max_discard_sectors = 0;
 
 
1079}
1080
1081void disable_write_zeroes(struct mapped_device *md)
1082{
1083	struct queue_limits *limits = dm_get_queue_limits(md);
 
1084
1085	/* device doesn't really support WRITE ZEROES, disable it */
1086	limits->max_write_zeroes_sectors = 0;
 
 
 
1087}
1088
1089static bool swap_bios_limit(struct dm_target *ti, struct bio *bio)
 
1090{
1091	return unlikely((bio->bi_opf & REQ_SWAP) != 0) && unlikely(ti->limit_swap_bios);
 
 
 
 
 
 
 
 
 
 
1092}
1093
1094static void clone_endio(struct bio *bio)
1095{
1096	blk_status_t error = bio->bi_status;
1097	struct dm_target_io *tio = clone_to_tio(bio);
1098	struct dm_target *ti = tio->ti;
1099	dm_endio_fn endio = ti->type->end_io;
1100	struct dm_io *io = tio->io;
1101	struct mapped_device *md = io->md;
1102
1103	if (unlikely(error == BLK_STS_TARGET)) {
1104		if (bio_op(bio) == REQ_OP_DISCARD &&
1105		    !bdev_max_discard_sectors(bio->bi_bdev))
1106			disable_discard(md);
1107		else if (bio_op(bio) == REQ_OP_WRITE_ZEROES &&
1108			 !bdev_write_zeroes_sectors(bio->bi_bdev))
1109			disable_write_zeroes(md);
1110	}
1111
1112	if (static_branch_unlikely(&zoned_enabled) &&
1113	    unlikely(bdev_is_zoned(bio->bi_bdev)))
1114		dm_zone_endio(io, bio);
1115
1116	if (endio) {
1117		int r = endio(ti, bio, &error);
1118		switch (r) {
1119		case DM_ENDIO_REQUEUE:
1120			if (static_branch_unlikely(&zoned_enabled)) {
1121				/*
1122				 * Requeuing writes to a sequential zone of a zoned
1123				 * target will break the sequential write pattern:
1124				 * fail such IO.
1125				 */
1126				if (WARN_ON_ONCE(dm_is_zone_write(md, bio)))
1127					error = BLK_STS_IOERR;
1128				else
1129					error = BLK_STS_DM_REQUEUE;
1130			} else
1131				error = BLK_STS_DM_REQUEUE;
1132			fallthrough;
1133		case DM_ENDIO_DONE:
1134			break;
1135		case DM_ENDIO_INCOMPLETE:
1136			/* The target will handle the io */
1137			return;
1138		default:
1139			DMCRIT("unimplemented target endio return value: %d", r);
1140			BUG();
1141		}
1142	}
1143
1144	if (static_branch_unlikely(&swap_bios_enabled) &&
1145	    unlikely(swap_bios_limit(ti, bio)))
1146		up(&md->swap_bios_semaphore);
1147
1148	free_tio(bio);
1149	dm_io_dec_pending(io, error);
 
 
1150}
1151
1152/*
1153 * Return maximum size of I/O possible at the supplied sector up to the current
1154 * target boundary.
1155 */
1156static inline sector_t max_io_len_target_boundary(struct dm_target *ti,
1157						  sector_t target_offset)
1158{
1159	return ti->len - target_offset;
 
 
 
 
 
1160}
1161
1162static sector_t max_io_len(struct dm_target *ti, sector_t sector)
1163{
1164	sector_t target_offset = dm_target_offset(ti, sector);
1165	sector_t len = max_io_len_target_boundary(ti, target_offset);
 
1166
1167	/*
1168	 * Does the target need to split IO even further?
1169	 * - varied (per target) IO splitting is a tenet of DM; this
1170	 *   explains why stacked chunk_sectors based splitting via
1171	 *   bio_split_to_limits() isn't possible here.
1172	 */
1173	if (!ti->max_io_len)
1174		return len;
1175	return min_t(sector_t, len,
1176		min(queue_max_sectors(ti->table->md->queue),
1177		    blk_chunk_sectors_left(target_offset, ti->max_io_len)));
 
 
 
 
 
 
 
 
 
 
 
 
 
1178}
1179
1180int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 
 
 
1181{
1182	if (len > UINT_MAX) {
1183		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1184		      (unsigned long long)len, UINT_MAX);
1185		ti->error = "Maximum size of target IO is too large";
1186		return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
1187	}
1188
1189	ti->max_io_len = (uint32_t) len;
 
1190
1191	return 0;
1192}
1193EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1194
1195static struct dm_target *dm_dax_get_live_target(struct mapped_device *md,
1196						sector_t sector, int *srcu_idx)
1197	__acquires(md->io_barrier)
 
 
1198{
1199	struct dm_table *map;
1200	struct dm_target *ti;
1201
1202	map = dm_get_live_table(md, srcu_idx);
1203	if (!map)
1204		return NULL;
1205
1206	ti = dm_table_find_target(map, sector);
1207	if (!ti)
1208		return NULL;
1209
1210	return ti;
 
 
 
 
 
 
 
 
 
1211}
1212
1213static long dm_dax_direct_access(struct dax_device *dax_dev, pgoff_t pgoff,
1214		long nr_pages, enum dax_access_mode mode, void **kaddr,
1215		pfn_t *pfn)
 
1216{
1217	struct mapped_device *md = dax_get_private(dax_dev);
1218	sector_t sector = pgoff * PAGE_SECTORS;
1219	struct dm_target *ti;
1220	long len, ret = -EIO;
1221	int srcu_idx;
1222
1223	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
 
 
 
 
 
1224
1225	if (!ti)
1226		goto out;
1227	if (!ti->type->direct_access)
1228		goto out;
1229	len = max_io_len(ti, sector) / PAGE_SECTORS;
1230	if (len < 1)
1231		goto out;
1232	nr_pages = min(len, nr_pages);
1233	ret = ti->type->direct_access(ti, pgoff, nr_pages, mode, kaddr, pfn);
 
1234
1235 out:
1236	dm_put_live_table(md, srcu_idx);
 
 
 
 
 
1237
1238	return ret;
1239}
1240
1241static int dm_dax_zero_page_range(struct dax_device *dax_dev, pgoff_t pgoff,
1242				  size_t nr_pages)
1243{
1244	struct mapped_device *md = dax_get_private(dax_dev);
1245	sector_t sector = pgoff * PAGE_SECTORS;
1246	struct dm_target *ti;
1247	int ret = -EIO;
1248	int srcu_idx;
1249
1250	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
 
 
 
 
 
 
 
 
 
1251
1252	if (!ti)
1253		goto out;
1254	if (WARN_ON(!ti->type->dax_zero_page_range)) {
1255		/*
1256		 * ->zero_page_range() is mandatory dax operation. If we are
1257		 *  here, something is wrong.
1258		 */
1259		goto out;
1260	}
1261	ret = ti->type->dax_zero_page_range(ti, pgoff, nr_pages);
1262 out:
1263	dm_put_live_table(md, srcu_idx);
1264
1265	return ret;
1266}
1267
1268static size_t dm_dax_recovery_write(struct dax_device *dax_dev, pgoff_t pgoff,
1269		void *addr, size_t bytes, struct iov_iter *i)
1270{
1271	struct mapped_device *md = dax_get_private(dax_dev);
1272	sector_t sector = pgoff * PAGE_SECTORS;
1273	struct dm_target *ti;
1274	int srcu_idx;
1275	long ret = 0;
 
1276
1277	ti = dm_dax_get_live_target(md, sector, &srcu_idx);
1278	if (!ti || !ti->type->dax_recovery_write)
1279		goto out;
1280
1281	ret = ti->type->dax_recovery_write(ti, pgoff, addr, bytes, i);
1282out:
1283	dm_put_live_table(md, srcu_idx);
1284	return ret;
1285}
 
1286
1287/*
1288 * A target may call dm_accept_partial_bio only from the map routine.  It is
1289 * allowed for all bio types except REQ_PREFLUSH, REQ_OP_ZONE_* zone management
1290 * operations, REQ_OP_ZONE_APPEND (zone append writes) and any bio serviced by
1291 * __send_duplicate_bios().
1292 *
1293 * dm_accept_partial_bio informs the dm that the target only wants to process
1294 * additional n_sectors sectors of the bio and the rest of the data should be
1295 * sent in a next bio.
1296 *
1297 * A diagram that explains the arithmetics:
1298 * +--------------------+---------------+-------+
1299 * |         1          |       2       |   3   |
1300 * +--------------------+---------------+-------+
1301 *
1302 * <-------------- *tio->len_ptr --------------->
1303 *                      <----- bio_sectors ----->
1304 *                      <-- n_sectors -->
1305 *
1306 * Region 1 was already iterated over with bio_advance or similar function.
1307 *	(it may be empty if the target doesn't use bio_advance)
1308 * Region 2 is the remaining bio size that the target wants to process.
1309 *	(it may be empty if region 1 is non-empty, although there is no reason
1310 *	 to make it empty)
1311 * The target requires that region 3 is to be sent in the next bio.
1312 *
1313 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1314 * the partially processed part (the sum of regions 1+2) must be the same for all
1315 * copies of the bio.
1316 */
1317void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1318{
1319	struct dm_target_io *tio = clone_to_tio(bio);
1320	struct dm_io *io = tio->io;
1321	unsigned bio_sectors = bio_sectors(bio);
 
 
 
 
 
 
1322
1323	BUG_ON(dm_tio_flagged(tio, DM_TIO_IS_DUPLICATE_BIO));
1324	BUG_ON(op_is_zone_mgmt(bio_op(bio)));
1325	BUG_ON(bio_op(bio) == REQ_OP_ZONE_APPEND);
1326	BUG_ON(bio_sectors > *tio->len_ptr);
1327	BUG_ON(n_sectors > bio_sectors);
 
 
1328
1329	*tio->len_ptr -= bio_sectors - n_sectors;
1330	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1331
1332	/*
1333	 * __split_and_process_bio() may have already saved mapped part
1334	 * for accounting but it is being reduced so update accordingly.
1335	 */
1336	dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1337	io->sectors = n_sectors;
1338	io->sector_offset = bio_sectors(io->orig_bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1339}
1340EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1341
1342/*
1343 * @clone: clone bio that DM core passed to target's .map function
1344 * @tgt_clone: clone of @clone bio that target needs submitted
1345 *
1346 * Targets should use this interface to submit bios they take
1347 * ownership of when returning DM_MAPIO_SUBMITTED.
1348 *
1349 * Target should also enable ti->accounts_remapped_io
1350 */
1351void dm_submit_bio_remap(struct bio *clone, struct bio *tgt_clone)
 
1352{
1353	struct dm_target_io *tio = clone_to_tio(clone);
1354	struct dm_io *io = tio->io;
1355
1356	/* establish bio that will get submitted */
1357	if (!tgt_clone)
1358		tgt_clone = clone;
1359
1360	/*
1361	 * Account io->origin_bio to DM dev on behalf of target
1362	 * that took ownership of IO with DM_MAPIO_SUBMITTED.
1363	 */
1364	dm_start_io_acct(io, clone);
 
 
 
1365
1366	trace_block_bio_remap(tgt_clone, disk_devt(io->md->disk),
1367			      tio->old_sector);
1368	submit_bio_noacct(tgt_clone);
 
1369}
1370EXPORT_SYMBOL_GPL(dm_submit_bio_remap);
1371
1372static noinline void __set_swap_bios_limit(struct mapped_device *md, int latch)
 
 
1373{
1374	mutex_lock(&md->swap_bios_lock);
1375	while (latch < md->swap_bios) {
1376		cond_resched();
1377		down(&md->swap_bios_semaphore);
1378		md->swap_bios--;
1379	}
1380	while (latch > md->swap_bios) {
1381		cond_resched();
1382		up(&md->swap_bios_semaphore);
1383		md->swap_bios++;
1384	}
1385	mutex_unlock(&md->swap_bios_lock);
1386}
1387
1388static void __map_bio(struct bio *clone)
 
 
1389{
1390	struct dm_target_io *tio = clone_to_tio(clone);
1391	struct dm_target *ti = tio->ti;
1392	struct dm_io *io = tio->io;
1393	struct mapped_device *md = io->md;
1394	int r;
1395
1396	clone->bi_end_io = clone_endio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397
1398	/*
1399	 * Map the clone.
1400	 */
1401	tio->old_sector = clone->bi_iter.bi_sector;
 
1402
1403	if (static_branch_unlikely(&swap_bios_enabled) &&
1404	    unlikely(swap_bios_limit(ti, clone))) {
1405		int latch = get_swap_bios();
1406		if (unlikely(latch != md->swap_bios))
1407			__set_swap_bios_limit(md, latch);
1408		down(&md->swap_bios_semaphore);
 
 
 
1409	}
1410
1411	if (static_branch_unlikely(&zoned_enabled)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1412		/*
1413		 * Check if the IO needs a special mapping due to zone append
1414		 * emulation on zoned target. In this case, dm_zone_map_bio()
1415		 * calls the target map operation.
 
1416		 */
1417		if (unlikely(dm_emulate_zone_append(md)))
1418			r = dm_zone_map_bio(tio);
1419		else
1420			r = ti->type->map(ti, clone);
1421	} else
1422		r = ti->type->map(ti, clone);
1423
1424	switch (r) {
1425	case DM_MAPIO_SUBMITTED:
1426		/* target has assumed ownership of this io */
1427		if (!ti->accounts_remapped_io)
1428			dm_start_io_acct(io, clone);
1429		break;
1430	case DM_MAPIO_REMAPPED:
1431		dm_submit_bio_remap(clone, NULL);
1432		break;
1433	case DM_MAPIO_KILL:
1434	case DM_MAPIO_REQUEUE:
1435		if (static_branch_unlikely(&swap_bios_enabled) &&
1436		    unlikely(swap_bios_limit(ti, clone)))
1437			up(&md->swap_bios_semaphore);
1438		free_tio(clone);
1439		if (r == DM_MAPIO_KILL)
1440			dm_io_dec_pending(io, BLK_STS_IOERR);
1441		else
1442			dm_io_dec_pending(io, BLK_STS_DM_REQUEUE);
1443		break;
1444	default:
1445		DMCRIT("unimplemented target map return value: %d", r);
1446		BUG();
1447	}
 
 
1448}
1449
1450static void setup_split_accounting(struct clone_info *ci, unsigned len)
1451{
1452	struct dm_io *io = ci->io;
 
 
1453
1454	if (ci->sector_count > len) {
1455		/*
1456		 * Split needed, save the mapped part for accounting.
1457		 * NOTE: dm_accept_partial_bio() will update accordingly.
1458		 */
1459		dm_io_set_flag(io, DM_IO_WAS_SPLIT);
1460		io->sectors = len;
1461		io->sector_offset = bio_sectors(ci->bio);
1462	}
1463}
1464
1465static void alloc_multiple_bios(struct bio_list *blist, struct clone_info *ci,
1466				struct dm_target *ti, unsigned num_bios)
 
 
1467{
1468	struct bio *bio;
1469	int try;
 
 
1470
1471	for (try = 0; try < 2; try++) {
1472		int bio_nr;
 
 
1473
1474		if (try)
1475			mutex_lock(&ci->io->md->table_devices_lock);
1476		for (bio_nr = 0; bio_nr < num_bios; bio_nr++) {
1477			bio = alloc_tio(ci, ti, bio_nr, NULL,
1478					try ? GFP_NOIO : GFP_NOWAIT);
1479			if (!bio)
1480				break;
1481
1482			bio_list_add(blist, bio);
1483		}
1484		if (try)
1485			mutex_unlock(&ci->io->md->table_devices_lock);
1486		if (bio_nr == num_bios)
1487			return;
1488
1489		while ((bio = bio_list_pop(blist)))
1490			free_tio(bio);
1491	}
 
 
 
 
 
1492}
1493
1494static int __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1495				 unsigned int num_bios, unsigned *len)
 
 
 
1496{
1497	struct bio_list blist = BIO_EMPTY_LIST;
1498	struct bio *clone;
1499	unsigned int ret = 0;
1500
1501	switch (num_bios) {
1502	case 0:
1503		break;
1504	case 1:
1505		if (len)
1506			setup_split_accounting(ci, *len);
1507		clone = alloc_tio(ci, ti, 0, len, GFP_NOIO);
1508		__map_bio(clone);
1509		ret = 1;
1510		break;
1511	default:
1512		/* dm_accept_partial_bio() is not supported with shared tio->len_ptr */
1513		alloc_multiple_bios(&blist, ci, ti, num_bios);
1514		while ((clone = bio_list_pop(&blist))) {
1515			dm_tio_set_flag(clone_to_tio(clone), DM_TIO_IS_DUPLICATE_BIO);
1516			__map_bio(clone);
1517			ret += 1;
1518		}
1519		break;
 
 
 
 
 
 
 
 
1520	}
1521
1522	return ret;
 
1523}
 
 
 
1524
1525static void __send_empty_flush(struct clone_info *ci)
 
 
 
 
1526{
1527	struct dm_table *t = ci->map;
1528	struct bio flush_bio;
 
 
1529
1530	/*
1531	 * Use an on-stack bio for this, it's safe since we don't
1532	 * need to reference it after submit. It's just used as
1533	 * the basis for the clone(s).
1534	 */
1535	bio_init(&flush_bio, ci->io->md->disk->part0, NULL, 0,
1536		 REQ_OP_WRITE | REQ_PREFLUSH | REQ_SYNC);
1537
1538	ci->bio = &flush_bio;
1539	ci->sector_count = 0;
1540	ci->io->tio.clone.bi_iter.bi_size = 0;
1541
1542	for (unsigned int i = 0; i < t->num_targets; i++) {
1543		unsigned int bios;
1544		struct dm_target *ti = dm_table_get_target(t, i);
1545
1546		atomic_add(ti->num_flush_bios, &ci->io->io_count);
1547		bios = __send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1548		atomic_sub(ti->num_flush_bios - bios, &ci->io->io_count);
 
 
1549	}
1550
1551	/*
1552	 * alloc_io() takes one extra reference for submission, so the
1553	 * reference won't reach 0 without the following subtraction
1554	 */
1555	atomic_sub(1, &ci->io->io_count);
1556
1557	bio_uninit(ci->bio);
1558}
1559
1560static void __send_changing_extent_only(struct clone_info *ci, struct dm_target *ti,
1561					unsigned num_bios)
1562{
1563	unsigned len;
1564	unsigned int bios;
1565
1566	len = min_t(sector_t, ci->sector_count,
1567		    max_io_len_target_boundary(ti, dm_target_offset(ti, ci->sector)));
 
1568
1569	atomic_add(num_bios, &ci->io->io_count);
1570	bios = __send_duplicate_bios(ci, ti, num_bios, &len);
1571	/*
1572	 * alloc_io() takes one extra reference for submission, so the
1573	 * reference won't reach 0 without the following (+1) subtraction
1574	 */
1575	atomic_sub(num_bios - bios + 1, &ci->io->io_count);
1576
1577	ci->sector += len;
1578	ci->sector_count -= len;
 
 
 
1579}
1580
1581static bool is_abnormal_io(struct bio *bio)
 
1582{
1583	enum req_op op = bio_op(bio);
 
 
1584
1585	if (op != REQ_OP_READ && op != REQ_OP_WRITE && op != REQ_OP_FLUSH) {
1586		switch (op) {
1587		case REQ_OP_DISCARD:
1588		case REQ_OP_SECURE_ERASE:
1589		case REQ_OP_WRITE_ZEROES:
1590			return true;
1591		default:
1592			break;
1593		}
1594	}
1595
1596	return false;
1597}
1598
1599static blk_status_t __process_abnormal_io(struct clone_info *ci,
1600					  struct dm_target *ti)
1601{
1602	unsigned num_bios = 0;
1603
1604	switch (bio_op(ci->bio)) {
1605	case REQ_OP_DISCARD:
1606		num_bios = ti->num_discard_bios;
1607		break;
1608	case REQ_OP_SECURE_ERASE:
1609		num_bios = ti->num_secure_erase_bios;
1610		break;
1611	case REQ_OP_WRITE_ZEROES:
1612		num_bios = ti->num_write_zeroes_bios;
1613		break;
1614	default:
1615		break;
1616	}
 
 
1617
 
 
 
1618	/*
1619	 * Even though the device advertised support for this type of
1620	 * request, that does not mean every target supports it, and
1621	 * reconfiguration might also have changed that since the
1622	 * check was performed.
1623	 */
1624	if (unlikely(!num_bios))
1625		return BLK_STS_NOTSUPP;
 
 
 
1626
1627	__send_changing_extent_only(ci, ti, num_bios);
1628	return BLK_STS_OK;
 
 
 
 
 
 
1629}
1630
1631/*
1632 * Reuse ->bi_private as dm_io list head for storing all dm_io instances
1633 * associated with this bio, and this bio's bi_private needs to be
1634 * stored in dm_io->data before the reuse.
1635 *
1636 * bio->bi_private is owned by fs or upper layer, so block layer won't
1637 * touch it after splitting. Meantime it won't be changed by anyone after
1638 * bio is submitted. So this reuse is safe.
1639 */
1640static inline struct dm_io **dm_poll_list_head(struct bio *bio)
1641{
1642	return (struct dm_io **)&bio->bi_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
1643}
1644
1645static void dm_queue_poll_io(struct bio *bio, struct dm_io *io)
 
 
1646{
1647	struct dm_io **head = dm_poll_list_head(bio);
 
 
1648
1649	if (!(bio->bi_opf & REQ_DM_POLL_LIST)) {
1650		bio->bi_opf |= REQ_DM_POLL_LIST;
1651		/*
1652		 * Save .bi_private into dm_io, so that we can reuse
1653		 * .bi_private as dm_io list head for storing dm_io list
1654		 */
1655		io->data = bio->bi_private;
1656
1657		/* tell block layer to poll for completion */
1658		bio->bi_cookie = ~BLK_QC_T_NONE;
1659
1660		io->next = NULL;
1661	} else {
1662		/*
1663		 * bio recursed due to split, reuse original poll list,
1664		 * and save bio->bi_private too.
1665		 */
1666		io->data = (*head)->data;
1667		io->next = *head;
 
 
 
1668	}
 
1669
1670	*head = io;
1671}
1672
1673/*
1674 * Select the correct strategy for processing a non-flush bio.
1675 */
1676static blk_status_t __split_and_process_bio(struct clone_info *ci)
1677{
1678	struct bio *clone;
1679	struct dm_target *ti;
1680	unsigned len;
1681
1682	ti = dm_table_find_target(ci->map, ci->sector);
1683	if (unlikely(!ti))
1684		return BLK_STS_IOERR;
 
1685
1686	if (unlikely((ci->bio->bi_opf & REQ_NOWAIT) != 0) &&
1687	    unlikely(!dm_target_supports_nowait(ti->type)))
1688		return BLK_STS_NOTSUPP;
1689
1690	if (unlikely(ci->is_abnormal_io))
1691		return __process_abnormal_io(ci, ti);
1692
1693	/*
1694	 * Only support bio polling for normal IO, and the target io is
1695	 * exactly inside the dm_io instance (verified in dm_poll_dm_io)
1696	 */
1697	ci->submit_as_polled = !!(ci->bio->bi_opf & REQ_POLLED);
1698
1699	len = min_t(sector_t, max_io_len(ti, ci->sector), ci->sector_count);
1700	setup_split_accounting(ci, len);
1701	clone = alloc_tio(ci, ti, 0, &len, GFP_NOIO);
1702	__map_bio(clone);
 
 
 
 
 
 
 
 
1703
1704	ci->sector += len;
1705	ci->sector_count -= len;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706
1707	return BLK_STS_OK;
 
 
 
 
 
1708}
1709
1710static void init_clone_info(struct clone_info *ci, struct mapped_device *md,
1711			    struct dm_table *map, struct bio *bio, bool is_abnormal)
1712{
1713	ci->map = map;
1714	ci->io = alloc_io(md, bio);
1715	ci->bio = bio;
1716	ci->is_abnormal_io = is_abnormal;
1717	ci->submit_as_polled = false;
1718	ci->sector = bio->bi_iter.bi_sector;
1719	ci->sector_count = bio_sectors(bio);
1720
1721	/* Shouldn't happen but sector_count was being set to 0 so... */
1722	if (static_branch_unlikely(&zoned_enabled) &&
1723	    WARN_ON_ONCE(op_is_zone_mgmt(bio_op(bio)) && ci->sector_count))
1724		ci->sector_count = 0;
1725}
1726
1727/*
1728 * Entry point to split a bio into clones and submit them to the targets.
1729 */
1730static void dm_split_and_process_bio(struct mapped_device *md,
1731				     struct dm_table *map, struct bio *bio)
1732{
1733	struct clone_info ci;
1734	struct dm_io *io;
1735	blk_status_t error = BLK_STS_OK;
1736	bool is_abnormal;
 
1737
1738	is_abnormal = is_abnormal_io(bio);
1739	if (unlikely(is_abnormal)) {
1740		/*
1741		 * Use bio_split_to_limits() for abnormal IO (e.g. discard, etc)
1742		 * otherwise associated queue_limits won't be imposed.
1743		 */
1744		bio = bio_split_to_limits(bio);
1745		if (!bio)
1746			return;
1747	}
1748
1749	init_clone_info(&ci, md, map, bio, is_abnormal);
1750	io = ci.io;
1751
1752	if (bio->bi_opf & REQ_PREFLUSH) {
1753		__send_empty_flush(&ci);
1754		/* dm_io_complete submits any data associated with flush */
1755		goto out;
1756	}
1757
1758	error = __split_and_process_bio(&ci);
1759	if (error || !ci.sector_count)
1760		goto out;
1761	/*
1762	 * Remainder must be passed to submit_bio_noacct() so it gets handled
1763	 * *after* bios already submitted have been completely processed.
1764	 */
1765	bio_trim(bio, io->sectors, ci.sector_count);
1766	trace_block_split(bio, bio->bi_iter.bi_sector);
1767	bio_inc_remaining(bio);
1768	submit_bio_noacct(bio);
1769out:
1770	/*
1771	 * Drop the extra reference count for non-POLLED bio, and hold one
1772	 * reference for POLLED bio, which will be released in dm_poll_bio
1773	 *
1774	 * Add every dm_io instance into the dm_io list head which is stored
1775	 * in bio->bi_private, so that dm_poll_bio can poll them all.
1776	 */
1777	if (error || !ci.submit_as_polled) {
1778		/*
1779		 * In case of submission failure, the extra reference for
1780		 * submitting io isn't consumed yet
1781		 */
1782		if (error)
1783			atomic_dec(&io->io_count);
1784		dm_io_dec_pending(io, error);
1785	} else
1786		dm_queue_poll_io(bio, io);
1787}
1788
1789static void dm_submit_bio(struct bio *bio)
 
 
1790{
1791	struct mapped_device *md = bio->bi_bdev->bd_disk->private_data;
1792	int srcu_idx;
1793	struct dm_table *map;
1794	blk_opf_t bio_opf = bio->bi_opf;
1795
1796	map = dm_get_live_table_bio(md, &srcu_idx, bio_opf);
 
 
 
1797
1798	/* If suspended, or map not yet available, queue this IO for later */
1799	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) ||
1800	    unlikely(!map)) {
1801		if (bio->bi_opf & REQ_NOWAIT)
1802			bio_wouldblock_error(bio);
1803		else if (bio->bi_opf & REQ_RAHEAD)
1804			bio_io_error(bio);
1805		else
1806			queue_io(md, bio);
1807		goto out;
1808	}
1809
1810	dm_split_and_process_bio(md, map, bio);
1811out:
1812	dm_put_live_table_bio(md, srcu_idx, bio_opf);
 
 
 
 
 
 
1813}
1814
1815static bool dm_poll_dm_io(struct dm_io *io, struct io_comp_batch *iob,
1816			  unsigned int flags)
1817{
1818	WARN_ON_ONCE(!dm_tio_is_normal(&io->tio));
1819
1820	/* don't poll if the mapped io is done */
1821	if (atomic_read(&io->io_count) > 1)
1822		bio_poll(&io->tio.clone, iob, flags);
1823
1824	/* bio_poll holds the last reference */
1825	return atomic_read(&io->io_count) == 1;
 
 
1826}
1827
1828static int dm_poll_bio(struct bio *bio, struct io_comp_batch *iob,
1829		       unsigned int flags)
 
 
 
1830{
1831	struct dm_io **head = dm_poll_list_head(bio);
1832	struct dm_io *list = *head;
1833	struct dm_io *tmp = NULL;
1834	struct dm_io *curr, *next;
 
1835
1836	/* Only poll normal bio which was marked as REQ_DM_POLL_LIST */
1837	if (!(bio->bi_opf & REQ_DM_POLL_LIST))
1838		return 0;
1839
1840	WARN_ON_ONCE(!list);
 
 
1841
1842	/*
1843	 * Restore .bi_private before possibly completing dm_io.
1844	 *
1845	 * bio_poll() is only possible once @bio has been completely
1846	 * submitted via submit_bio_noacct()'s depth-first submission.
1847	 * So there is no dm_queue_poll_io() race associated with
1848	 * clearing REQ_DM_POLL_LIST here.
1849	 */
1850	bio->bi_opf &= ~REQ_DM_POLL_LIST;
1851	bio->bi_private = list->data;
1852
1853	for (curr = list, next = curr->next; curr; curr = next, next =
1854			curr ? curr->next : NULL) {
1855		if (dm_poll_dm_io(curr, iob, flags)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856			/*
1857			 * clone_endio() has already occurred, so no
1858			 * error handling is needed here.
1859			 */
1860			__dm_io_dec_pending(curr);
1861		} else {
1862			curr->next = tmp;
1863			tmp = curr;
 
 
1864		}
1865	}
1866
1867	/* Not done? */
1868	if (tmp) {
1869		bio->bi_opf |= REQ_DM_POLL_LIST;
1870		/* Reset bio->bi_private to dm_io list head */
1871		*head = tmp;
1872		return 0;
1873	}
1874	return 1;
1875}
1876
1877/*-----------------------------------------------------------------
1878 * An IDR is used to keep track of allocated minor numbers.
1879 *---------------------------------------------------------------*/
1880static void free_minor(int minor)
1881{
1882	spin_lock(&_minor_lock);
1883	idr_remove(&_minor_idr, minor);
1884	spin_unlock(&_minor_lock);
1885}
1886
1887/*
1888 * See if the device with a specific minor # is free.
1889 */
1890static int specific_minor(int minor)
1891{
1892	int r;
1893
1894	if (minor >= (1 << MINORBITS))
1895		return -EINVAL;
1896
1897	idr_preload(GFP_KERNEL);
1898	spin_lock(&_minor_lock);
1899
1900	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
1901
1902	spin_unlock(&_minor_lock);
1903	idr_preload_end();
1904	if (r < 0)
1905		return r == -ENOSPC ? -EBUSY : r;
1906	return 0;
1907}
1908
1909static int next_free_minor(int *minor)
1910{
1911	int r;
1912
1913	idr_preload(GFP_KERNEL);
1914	spin_lock(&_minor_lock);
1915
1916	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
1917
1918	spin_unlock(&_minor_lock);
1919	idr_preload_end();
1920	if (r < 0)
1921		return r;
1922	*minor = r;
1923	return 0;
1924}
1925
1926static const struct block_device_operations dm_blk_dops;
1927static const struct block_device_operations dm_rq_blk_dops;
1928static const struct dax_operations dm_dax_ops;
1929
1930static void dm_wq_work(struct work_struct *work);
1931
1932#ifdef CONFIG_BLK_INLINE_ENCRYPTION
1933static void dm_queue_destroy_crypto_profile(struct request_queue *q)
1934{
1935	dm_destroy_crypto_profile(q->crypto_profile);
1936}
 
 
 
 
 
 
 
 
1937
1938#else /* CONFIG_BLK_INLINE_ENCRYPTION */
 
 
 
 
 
 
1939
1940static inline void dm_queue_destroy_crypto_profile(struct request_queue *q)
1941{
 
 
 
 
 
 
 
 
1942}
1943#endif /* !CONFIG_BLK_INLINE_ENCRYPTION */
1944
1945static void cleanup_mapped_device(struct mapped_device *md)
1946{
1947	if (md->wq)
1948		destroy_workqueue(md->wq);
1949	dm_free_md_mempools(md->mempools);
 
 
 
 
 
1950
1951	if (md->dax_dev) {
1952		dax_remove_host(md->disk);
1953		kill_dax(md->dax_dev);
1954		put_dax(md->dax_dev);
1955		md->dax_dev = NULL;
1956	}
1957
1958	dm_cleanup_zoned_dev(md);
1959	if (md->disk) {
1960		spin_lock(&_minor_lock);
1961		md->disk->private_data = NULL;
1962		spin_unlock(&_minor_lock);
1963		if (dm_get_md_type(md) != DM_TYPE_NONE) {
1964			struct table_device *td;
1965
1966			dm_sysfs_exit(md);
1967			list_for_each_entry(td, &md->table_devices, list) {
1968				bd_unlink_disk_holder(td->dm_dev.bdev,
1969						      md->disk);
1970			}
1971
1972			/*
1973			 * Hold lock to make sure del_gendisk() won't concurrent
1974			 * with open/close_table_device().
1975			 */
1976			mutex_lock(&md->table_devices_lock);
1977			del_gendisk(md->disk);
1978			mutex_unlock(&md->table_devices_lock);
1979		}
1980		dm_queue_destroy_crypto_profile(md->queue);
1981		put_disk(md->disk);
1982	}
1983
1984	if (md->pending_io) {
1985		free_percpu(md->pending_io);
1986		md->pending_io = NULL;
1987	}
1988
1989	cleanup_srcu_struct(&md->io_barrier);
1990
1991	mutex_destroy(&md->suspend_lock);
1992	mutex_destroy(&md->type_lock);
1993	mutex_destroy(&md->table_devices_lock);
1994	mutex_destroy(&md->swap_bios_lock);
1995
1996	dm_mq_cleanup_mapped_device(md);
 
 
 
1997}
1998
1999/*
2000 * Allocate and initialise a blank device with a given minor.
2001 */
2002static struct mapped_device *alloc_dev(int minor)
2003{
2004	int r, numa_node_id = dm_get_numa_node();
2005	struct mapped_device *md;
2006	void *old_md;
2007
2008	md = kvzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2009	if (!md) {
2010		DMERR("unable to allocate device, out of memory.");
2011		return NULL;
2012	}
2013
2014	if (!try_module_get(THIS_MODULE))
2015		goto bad_module_get;
2016
2017	/* get a minor number for the dev */
2018	if (minor == DM_ANY_MINOR)
2019		r = next_free_minor(&minor);
2020	else
2021		r = specific_minor(minor);
2022	if (r < 0)
2023		goto bad_minor;
2024
2025	r = init_srcu_struct(&md->io_barrier);
2026	if (r < 0)
2027		goto bad_io_barrier;
2028
2029	md->numa_node_id = numa_node_id;
 
2030	md->init_tio_pdu = false;
2031	md->type = DM_TYPE_NONE;
2032	mutex_init(&md->suspend_lock);
2033	mutex_init(&md->type_lock);
2034	mutex_init(&md->table_devices_lock);
2035	spin_lock_init(&md->deferred_lock);
2036	atomic_set(&md->holders, 1);
2037	atomic_set(&md->open_count, 0);
2038	atomic_set(&md->event_nr, 0);
2039	atomic_set(&md->uevent_seq, 0);
2040	INIT_LIST_HEAD(&md->uevent_list);
2041	INIT_LIST_HEAD(&md->table_devices);
2042	spin_lock_init(&md->uevent_lock);
2043
2044	/*
2045	 * default to bio-based until DM table is loaded and md->type
2046	 * established. If request-based table is loaded: blk-mq will
2047	 * override accordingly.
2048	 */
2049	md->disk = blk_alloc_disk(md->numa_node_id);
 
2050	if (!md->disk)
2051		goto bad;
2052	md->queue = md->disk->queue;
2053
 
 
2054	init_waitqueue_head(&md->wait);
2055	INIT_WORK(&md->work, dm_wq_work);
2056	INIT_WORK(&md->requeue_work, dm_wq_requeue_work);
2057	init_waitqueue_head(&md->eventq);
2058	init_completion(&md->kobj_holder.completion);
2059
2060	md->requeue_list = NULL;
2061	md->swap_bios = get_swap_bios();
2062	sema_init(&md->swap_bios_semaphore, md->swap_bios);
2063	mutex_init(&md->swap_bios_lock);
2064
2065	md->disk->major = _major;
2066	md->disk->first_minor = minor;
2067	md->disk->minors = 1;
2068	md->disk->flags |= GENHD_FL_NO_PART;
2069	md->disk->fops = &dm_blk_dops;
 
2070	md->disk->private_data = md;
2071	sprintf(md->disk->disk_name, "dm-%d", minor);
2072
2073	if (IS_ENABLED(CONFIG_FS_DAX)) {
2074		md->dax_dev = alloc_dax(md, &dm_dax_ops);
2075		if (IS_ERR(md->dax_dev)) {
2076			md->dax_dev = NULL;
2077			goto bad;
2078		}
2079		set_dax_nocache(md->dax_dev);
2080		set_dax_nomc(md->dax_dev);
2081		if (dax_add_host(md->dax_dev, md->disk))
2082			goto bad;
2083	}
2084
2085	format_dev_t(md->name, MKDEV(_major, minor));
2086
2087	md->wq = alloc_workqueue("kdmflush/%s", WQ_MEM_RECLAIM, 0, md->name);
2088	if (!md->wq)
2089		goto bad;
2090
2091	md->pending_io = alloc_percpu(unsigned long);
2092	if (!md->pending_io)
2093		goto bad;
2094
 
 
 
 
2095	dm_stats_init(&md->stats);
2096
2097	/* Populate the mapping, nobody knows we exist yet */
2098	spin_lock(&_minor_lock);
2099	old_md = idr_replace(&_minor_idr, md, minor);
2100	spin_unlock(&_minor_lock);
2101
2102	BUG_ON(old_md != MINOR_ALLOCED);
2103
2104	return md;
2105
2106bad:
2107	cleanup_mapped_device(md);
2108bad_io_barrier:
2109	free_minor(minor);
2110bad_minor:
2111	module_put(THIS_MODULE);
2112bad_module_get:
2113	kvfree(md);
2114	return NULL;
2115}
2116
2117static void unlock_fs(struct mapped_device *md);
2118
2119static void free_dev(struct mapped_device *md)
2120{
2121	int minor = MINOR(disk_devt(md->disk));
2122
2123	unlock_fs(md);
2124
2125	cleanup_mapped_device(md);
 
 
 
 
2126
2127	WARN_ON_ONCE(!list_empty(&md->table_devices));
2128	dm_stats_cleanup(&md->stats);
2129	free_minor(minor);
2130
2131	module_put(THIS_MODULE);
2132	kvfree(md);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2133}
2134
2135/*
2136 * Bind a table to the device.
2137 */
2138static void event_callback(void *context)
2139{
2140	unsigned long flags;
2141	LIST_HEAD(uevents);
2142	struct mapped_device *md = (struct mapped_device *) context;
2143
2144	spin_lock_irqsave(&md->uevent_lock, flags);
2145	list_splice_init(&md->uevent_list, &uevents);
2146	spin_unlock_irqrestore(&md->uevent_lock, flags);
2147
2148	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2149
2150	atomic_inc(&md->event_nr);
2151	wake_up(&md->eventq);
2152	dm_issue_global_event();
 
 
 
 
 
 
 
 
 
2153}
2154
2155/*
2156 * Returns old map, which caller must destroy.
2157 */
2158static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2159			       struct queue_limits *limits)
2160{
2161	struct dm_table *old_map;
 
2162	sector_t size;
2163	int ret;
2164
2165	lockdep_assert_held(&md->suspend_lock);
2166
2167	size = dm_table_get_size(t);
2168
2169	/*
2170	 * Wipe any geometry if the size of the table changed.
2171	 */
2172	if (size != dm_get_size(md))
2173		memset(&md->geometry, 0, sizeof(md->geometry));
2174
2175	if (!get_capacity(md->disk))
2176		set_capacity(md->disk, size);
2177	else
2178		set_capacity_and_notify(md->disk, size);
2179
2180	dm_table_event_callback(t, event_callback, md);
2181
 
 
 
 
 
 
 
2182	if (dm_table_request_based(t)) {
 
2183		/*
2184		 * Leverage the fact that request-based DM targets are
2185		 * immutable singletons - used to optimize dm_mq_queue_rq.
 
2186		 */
2187		md->immutable_target = dm_table_get_immutable_target(t);
2188
2189		/*
2190		 * There is no need to reload with request-based dm because the
2191		 * size of front_pad doesn't change.
2192		 *
2193		 * Note for future: If you are to reload bioset, prep-ed
2194		 * requests in the queue may refer to bio from the old bioset,
2195		 * so you must walk through the queue to unprep.
2196		 */
2197		if (!md->mempools) {
2198			md->mempools = t->mempools;
2199			t->mempools = NULL;
2200		}
2201	} else {
2202		/*
2203		 * The md may already have mempools that need changing.
2204		 * If so, reload bioset because front_pad may have changed
2205		 * because a different table was loaded.
2206		 */
2207		dm_free_md_mempools(md->mempools);
2208		md->mempools = t->mempools;
2209		t->mempools = NULL;
2210	}
2211
2212	ret = dm_table_set_restrictions(t, md->queue, limits);
2213	if (ret) {
2214		old_map = ERR_PTR(ret);
2215		goto out;
2216	}
2217
2218	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2219	rcu_assign_pointer(md->map, (void *)t);
2220	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2221
 
2222	if (old_map)
2223		dm_sync_table(md);
2224out:
2225	return old_map;
2226}
2227
2228/*
2229 * Returns unbound table for the caller to free.
2230 */
2231static struct dm_table *__unbind(struct mapped_device *md)
2232{
2233	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2234
2235	if (!map)
2236		return NULL;
2237
2238	dm_table_event_callback(map, NULL, NULL);
2239	RCU_INIT_POINTER(md->map, NULL);
2240	dm_sync_table(md);
2241
2242	return map;
2243}
2244
2245/*
2246 * Constructor for a new device.
2247 */
2248int dm_create(int minor, struct mapped_device **result)
2249{
2250	struct mapped_device *md;
2251
2252	md = alloc_dev(minor);
2253	if (!md)
2254		return -ENXIO;
2255
2256	dm_ima_reset_data(md);
2257
2258	*result = md;
2259	return 0;
2260}
2261
2262/*
2263 * Functions to manage md->type.
2264 * All are required to hold md->type_lock.
2265 */
2266void dm_lock_md_type(struct mapped_device *md)
2267{
2268	mutex_lock(&md->type_lock);
2269}
2270
2271void dm_unlock_md_type(struct mapped_device *md)
2272{
2273	mutex_unlock(&md->type_lock);
2274}
2275
2276void dm_set_md_type(struct mapped_device *md, enum dm_queue_mode type)
2277{
2278	BUG_ON(!mutex_is_locked(&md->type_lock));
2279	md->type = type;
2280}
2281
2282enum dm_queue_mode dm_get_md_type(struct mapped_device *md)
2283{
2284	return md->type;
2285}
2286
2287struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2288{
2289	return md->immutable_target_type;
2290}
2291
2292/*
2293 * The queue_limits are only valid as long as you have a reference
2294 * count on 'md'.
2295 */
2296struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2297{
2298	BUG_ON(!atomic_read(&md->holders));
2299	return &md->queue->limits;
2300}
2301EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2302
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2303/*
2304 * Setup the DM device's queue based on md's type
2305 */
2306int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2307{
2308	enum dm_queue_mode type = dm_table_get_type(t);
2309	struct queue_limits limits;
2310	struct table_device *td;
2311	int r;
 
2312
2313	switch (type) {
2314	case DM_TYPE_REQUEST_BASED:
2315		md->disk->fops = &dm_rq_blk_dops;
2316		r = dm_mq_init_request_queue(md, t);
2317		if (r) {
2318			DMERR("Cannot initialize queue for request-based dm mapped device");
2319			return r;
2320		}
2321		break;
2322	case DM_TYPE_BIO_BASED:
2323	case DM_TYPE_DAX_BIO_BASED:
 
 
 
 
2324		break;
2325	case DM_TYPE_NONE:
2326		WARN_ON_ONCE(true);
 
 
 
 
 
 
 
2327		break;
2328	}
2329
2330	r = dm_calculate_queue_limits(t, &limits);
2331	if (r) {
2332		DMERR("Cannot calculate initial queue limits");
2333		return r;
2334	}
2335	r = dm_table_set_restrictions(t, md->queue, &limits);
2336	if (r)
2337		return r;
2338
2339	/*
2340	 * Hold lock to make sure add_disk() and del_gendisk() won't concurrent
2341	 * with open_table_device() and close_table_device().
2342	 */
2343	mutex_lock(&md->table_devices_lock);
2344	r = add_disk(md->disk);
2345	mutex_unlock(&md->table_devices_lock);
2346	if (r)
2347		return r;
2348
2349	/*
2350	 * Register the holder relationship for devices added before the disk
2351	 * was live.
2352	 */
2353	list_for_each_entry(td, &md->table_devices, list) {
2354		r = bd_link_disk_holder(td->dm_dev.bdev, md->disk);
2355		if (r)
2356			goto out_undo_holders;
2357	}
2358
2359	r = dm_sysfs_init(md);
2360	if (r)
2361		goto out_undo_holders;
2362
2363	md->type = type;
2364	return 0;
2365
2366out_undo_holders:
2367	list_for_each_entry_continue_reverse(td, &md->table_devices, list)
2368		bd_unlink_disk_holder(td->dm_dev.bdev, md->disk);
2369	mutex_lock(&md->table_devices_lock);
2370	del_gendisk(md->disk);
2371	mutex_unlock(&md->table_devices_lock);
2372	return r;
2373}
2374
2375struct mapped_device *dm_get_md(dev_t dev)
2376{
2377	struct mapped_device *md;
2378	unsigned minor = MINOR(dev);
2379
2380	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2381		return NULL;
2382
2383	spin_lock(&_minor_lock);
2384
2385	md = idr_find(&_minor_idr, minor);
2386	if (!md || md == MINOR_ALLOCED || (MINOR(disk_devt(dm_disk(md))) != minor) ||
2387	    test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
2388		md = NULL;
2389		goto out;
 
 
 
 
 
2390	}
2391	dm_get(md);
2392out:
2393	spin_unlock(&_minor_lock);
2394
2395	return md;
2396}
2397EXPORT_SYMBOL_GPL(dm_get_md);
2398
2399void *dm_get_mdptr(struct mapped_device *md)
2400{
2401	return md->interface_ptr;
2402}
2403
2404void dm_set_mdptr(struct mapped_device *md, void *ptr)
2405{
2406	md->interface_ptr = ptr;
2407}
2408
2409void dm_get(struct mapped_device *md)
2410{
2411	atomic_inc(&md->holders);
2412	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2413}
2414
2415int dm_hold(struct mapped_device *md)
2416{
2417	spin_lock(&_minor_lock);
2418	if (test_bit(DMF_FREEING, &md->flags)) {
2419		spin_unlock(&_minor_lock);
2420		return -EBUSY;
2421	}
2422	dm_get(md);
2423	spin_unlock(&_minor_lock);
2424	return 0;
2425}
2426EXPORT_SYMBOL_GPL(dm_hold);
2427
2428const char *dm_device_name(struct mapped_device *md)
2429{
2430	return md->name;
2431}
2432EXPORT_SYMBOL_GPL(dm_device_name);
2433
2434static void __dm_destroy(struct mapped_device *md, bool wait)
2435{
2436	struct dm_table *map;
2437	int srcu_idx;
2438
2439	might_sleep();
2440
2441	spin_lock(&_minor_lock);
2442	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2443	set_bit(DMF_FREEING, &md->flags);
2444	spin_unlock(&_minor_lock);
2445
2446	blk_mark_disk_dead(md->disk);
 
2447
2448	/*
2449	 * Take suspend_lock so that presuspend and postsuspend methods
2450	 * do not race with internal suspend.
2451	 */
2452	mutex_lock(&md->suspend_lock);
2453	map = dm_get_live_table(md, &srcu_idx);
2454	if (!dm_suspended_md(md)) {
2455		dm_table_presuspend_targets(map);
2456		set_bit(DMF_SUSPENDED, &md->flags);
2457		set_bit(DMF_POST_SUSPENDING, &md->flags);
2458		dm_table_postsuspend_targets(map);
2459	}
2460	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2461	dm_put_live_table(md, srcu_idx);
2462	mutex_unlock(&md->suspend_lock);
2463
2464	/*
2465	 * Rare, but there may be I/O requests still going to complete,
2466	 * for example.  Wait for all references to disappear.
2467	 * No one should increment the reference count of the mapped_device,
2468	 * after the mapped_device state becomes DMF_FREEING.
2469	 */
2470	if (wait)
2471		while (atomic_read(&md->holders))
2472			msleep(1);
2473	else if (atomic_read(&md->holders))
2474		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2475		       dm_device_name(md), atomic_read(&md->holders));
2476
 
2477	dm_table_destroy(__unbind(md));
2478	free_dev(md);
2479}
2480
2481void dm_destroy(struct mapped_device *md)
2482{
2483	__dm_destroy(md, true);
2484}
2485
2486void dm_destroy_immediate(struct mapped_device *md)
2487{
2488	__dm_destroy(md, false);
2489}
2490
2491void dm_put(struct mapped_device *md)
2492{
2493	atomic_dec(&md->holders);
2494}
2495EXPORT_SYMBOL_GPL(dm_put);
2496
2497static bool dm_in_flight_bios(struct mapped_device *md)
2498{
2499	int cpu;
2500	unsigned long sum = 0;
2501
2502	for_each_possible_cpu(cpu)
2503		sum += *per_cpu_ptr(md->pending_io, cpu);
2504
2505	return sum != 0;
2506}
2507
2508static int dm_wait_for_bios_completion(struct mapped_device *md, unsigned int task_state)
2509{
2510	int r = 0;
2511	DEFINE_WAIT(wait);
 
 
2512
2513	while (true) {
2514		prepare_to_wait(&md->wait, &wait, task_state);
2515
2516		if (!dm_in_flight_bios(md))
2517			break;
2518
2519		if (signal_pending_state(task_state, current)) {
 
2520			r = -EINTR;
2521			break;
2522		}
2523
2524		io_schedule();
2525	}
2526	finish_wait(&md->wait, &wait);
2527
2528	smp_rmb();
2529
2530	return r;
2531}
2532
2533static int dm_wait_for_completion(struct mapped_device *md, unsigned int task_state)
2534{
2535	int r = 0;
2536
2537	if (!queue_is_mq(md->queue))
2538		return dm_wait_for_bios_completion(md, task_state);
2539
2540	while (true) {
2541		if (!blk_mq_queue_inflight(md->queue))
2542			break;
2543
2544		if (signal_pending_state(task_state, current)) {
2545			r = -EINTR;
2546			break;
2547		}
2548
2549		msleep(5);
2550	}
2551
2552	return r;
2553}
2554
2555/*
2556 * Process the deferred bios
2557 */
2558static void dm_wq_work(struct work_struct *work)
2559{
2560	struct mapped_device *md = container_of(work, struct mapped_device, work);
2561	struct bio *bio;
 
 
 
 
 
2562
2563	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2564		spin_lock_irq(&md->deferred_lock);
2565		bio = bio_list_pop(&md->deferred);
2566		spin_unlock_irq(&md->deferred_lock);
2567
2568		if (!bio)
2569			break;
2570
2571		submit_bio_noacct(bio);
 
 
 
2572	}
 
 
2573}
2574
2575static void dm_queue_flush(struct mapped_device *md)
2576{
2577	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2578	smp_mb__after_atomic();
2579	queue_work(md->wq, &md->work);
2580}
2581
2582/*
2583 * Swap in a new table, returning the old one for the caller to destroy.
2584 */
2585struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
2586{
2587	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
2588	struct queue_limits limits;
2589	int r;
2590
2591	mutex_lock(&md->suspend_lock);
2592
2593	/* device must be suspended */
2594	if (!dm_suspended_md(md))
2595		goto out;
2596
2597	/*
2598	 * If the new table has no data devices, retain the existing limits.
2599	 * This helps multipath with queue_if_no_path if all paths disappear,
2600	 * then new I/O is queued based on these limits, and then some paths
2601	 * reappear.
2602	 */
2603	if (dm_table_has_no_data_devices(table)) {
2604		live_map = dm_get_live_table_fast(md);
2605		if (live_map)
2606			limits = md->queue->limits;
2607		dm_put_live_table_fast(md);
2608	}
2609
2610	if (!live_map) {
2611		r = dm_calculate_queue_limits(table, &limits);
2612		if (r) {
2613			map = ERR_PTR(r);
2614			goto out;
2615		}
2616	}
2617
2618	map = __bind(md, table, &limits);
2619	dm_issue_global_event();
2620
2621out:
2622	mutex_unlock(&md->suspend_lock);
2623	return map;
2624}
2625
2626/*
2627 * Functions to lock and unlock any filesystem running on the
2628 * device.
2629 */
2630static int lock_fs(struct mapped_device *md)
2631{
2632	int r;
2633
2634	WARN_ON(test_bit(DMF_FROZEN, &md->flags));
2635
2636	r = freeze_bdev(md->disk->part0);
2637	if (!r)
2638		set_bit(DMF_FROZEN, &md->flags);
2639	return r;
 
 
 
 
 
 
2640}
2641
2642static void unlock_fs(struct mapped_device *md)
2643{
2644	if (!test_bit(DMF_FROZEN, &md->flags))
2645		return;
2646	thaw_bdev(md->disk->part0);
 
 
2647	clear_bit(DMF_FROZEN, &md->flags);
2648}
2649
2650/*
2651 * @suspend_flags: DM_SUSPEND_LOCKFS_FLAG and/or DM_SUSPEND_NOFLUSH_FLAG
2652 * @task_state: e.g. TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE
2653 * @dmf_suspended_flag: DMF_SUSPENDED or DMF_SUSPENDED_INTERNALLY
2654 *
2655 * If __dm_suspend returns 0, the device is completely quiescent
2656 * now. There is no request-processing activity. All new requests
2657 * are being added to md->deferred list.
 
 
2658 */
2659static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
2660			unsigned suspend_flags, unsigned int task_state,
2661			int dmf_suspended_flag)
2662{
2663	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
2664	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
2665	int r;
2666
2667	lockdep_assert_held(&md->suspend_lock);
2668
2669	/*
2670	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
2671	 * This flag is cleared before dm_suspend returns.
2672	 */
2673	if (noflush)
2674		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2675	else
2676		DMDEBUG("%s: suspending with flush", dm_device_name(md));
2677
2678	/*
2679	 * This gets reverted if there's an error later and the targets
2680	 * provide the .presuspend_undo hook.
2681	 */
2682	dm_table_presuspend_targets(map);
2683
2684	/*
2685	 * Flush I/O to the device.
2686	 * Any I/O submitted after lock_fs() may not be flushed.
2687	 * noflush takes precedence over do_lockfs.
2688	 * (lock_fs() flushes I/Os and waits for them to complete.)
2689	 */
2690	if (!noflush && do_lockfs) {
2691		r = lock_fs(md);
2692		if (r) {
2693			dm_table_presuspend_undo_targets(map);
2694			return r;
2695		}
2696	}
2697
2698	/*
2699	 * Here we must make sure that no processes are submitting requests
2700	 * to target drivers i.e. no one may be executing
2701	 * dm_split_and_process_bio from dm_submit_bio.
 
2702	 *
2703	 * To get all processes out of dm_split_and_process_bio in dm_submit_bio,
2704	 * we take the write lock. To prevent any process from reentering
2705	 * dm_split_and_process_bio from dm_submit_bio and quiesce the thread
2706	 * (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND and call
2707	 * flush_workqueue(md->wq).
2708	 */
2709	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2710	if (map)
2711		synchronize_srcu(&md->io_barrier);
2712
2713	/*
2714	 * Stop md->queue before flushing md->wq in case request-based
2715	 * dm defers requests to md->wq from md->queue.
2716	 */
2717	if (dm_request_based(md))
2718		dm_stop_queue(md->queue);
 
 
 
2719
2720	flush_workqueue(md->wq);
2721
2722	/*
2723	 * At this point no more requests are entering target request routines.
2724	 * We call dm_wait_for_completion to wait for all existing requests
2725	 * to finish.
2726	 */
2727	r = dm_wait_for_completion(md, task_state);
2728	if (!r)
2729		set_bit(dmf_suspended_flag, &md->flags);
2730
2731	if (noflush)
2732		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
2733	if (map)
2734		synchronize_srcu(&md->io_barrier);
2735
2736	/* were we interrupted ? */
2737	if (r < 0) {
2738		dm_queue_flush(md);
2739
2740		if (dm_request_based(md))
2741			dm_start_queue(md->queue);
2742
2743		unlock_fs(md);
2744		dm_table_presuspend_undo_targets(map);
2745		/* pushback list is already flushed, so skip flush */
2746	}
2747
2748	return r;
2749}
2750
2751/*
2752 * We need to be able to change a mapping table under a mounted
2753 * filesystem.  For example we might want to move some data in
2754 * the background.  Before the table can be swapped with
2755 * dm_bind_table, dm_suspend must be called to flush any in
2756 * flight bios and ensure that any further io gets deferred.
2757 */
2758/*
2759 * Suspend mechanism in request-based dm.
2760 *
2761 * 1. Flush all I/Os by lock_fs() if needed.
2762 * 2. Stop dispatching any I/O by stopping the request_queue.
2763 * 3. Wait for all in-flight I/Os to be completed or requeued.
2764 *
2765 * To abort suspend, start the request_queue.
2766 */
2767int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
2768{
2769	struct dm_table *map = NULL;
2770	int r = 0;
2771
2772retry:
2773	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2774
2775	if (dm_suspended_md(md)) {
2776		r = -EINVAL;
2777		goto out_unlock;
2778	}
2779
2780	if (dm_suspended_internally_md(md)) {
2781		/* already internally suspended, wait for internal resume */
2782		mutex_unlock(&md->suspend_lock);
2783		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2784		if (r)
2785			return r;
2786		goto retry;
2787	}
2788
2789	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2790
2791	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE, DMF_SUSPENDED);
2792	if (r)
2793		goto out_unlock;
2794
2795	set_bit(DMF_POST_SUSPENDING, &md->flags);
 
2796	dm_table_postsuspend_targets(map);
2797	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2798
2799out_unlock:
2800	mutex_unlock(&md->suspend_lock);
2801	return r;
2802}
2803
2804static int __dm_resume(struct mapped_device *md, struct dm_table *map)
2805{
2806	if (map) {
2807		int r = dm_table_resume_targets(map);
2808		if (r)
2809			return r;
2810	}
2811
2812	dm_queue_flush(md);
2813
2814	/*
2815	 * Flushing deferred I/Os must be done after targets are resumed
2816	 * so that mapping of targets can work correctly.
2817	 * Request-based dm is queueing the deferred I/Os in its request_queue.
2818	 */
2819	if (dm_request_based(md))
2820		dm_start_queue(md->queue);
2821
2822	unlock_fs(md);
2823
2824	return 0;
2825}
2826
2827int dm_resume(struct mapped_device *md)
2828{
2829	int r;
2830	struct dm_table *map = NULL;
2831
2832retry:
2833	r = -EINVAL;
2834	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
2835
2836	if (!dm_suspended_md(md))
2837		goto out;
2838
2839	if (dm_suspended_internally_md(md)) {
2840		/* already internally suspended, wait for internal resume */
2841		mutex_unlock(&md->suspend_lock);
2842		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
2843		if (r)
2844			return r;
2845		goto retry;
2846	}
2847
2848	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2849	if (!map || !dm_table_get_size(map))
2850		goto out;
2851
2852	r = __dm_resume(md, map);
2853	if (r)
2854		goto out;
2855
2856	clear_bit(DMF_SUSPENDED, &md->flags);
 
 
2857out:
2858	mutex_unlock(&md->suspend_lock);
2859
2860	return r;
2861}
2862
2863/*
2864 * Internal suspend/resume works like userspace-driven suspend. It waits
2865 * until all bios finish and prevents issuing new bios to the target drivers.
2866 * It may be used only from the kernel.
2867 */
2868
2869static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
2870{
2871	struct dm_table *map = NULL;
2872
2873	lockdep_assert_held(&md->suspend_lock);
2874
2875	if (md->internal_suspend_count++)
2876		return; /* nested internal suspend */
2877
2878	if (dm_suspended_md(md)) {
2879		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2880		return; /* nest suspend */
2881	}
2882
2883	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2884
2885	/*
2886	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
2887	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
2888	 * would require changing .presuspend to return an error -- avoid this
2889	 * until there is a need for more elaborate variants of internal suspend.
2890	 */
2891	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE,
2892			    DMF_SUSPENDED_INTERNALLY);
 
2893
2894	set_bit(DMF_POST_SUSPENDING, &md->flags);
2895	dm_table_postsuspend_targets(map);
2896	clear_bit(DMF_POST_SUSPENDING, &md->flags);
2897}
2898
2899static void __dm_internal_resume(struct mapped_device *md)
2900{
2901	BUG_ON(!md->internal_suspend_count);
2902
2903	if (--md->internal_suspend_count)
2904		return; /* resume from nested internal suspend */
2905
2906	if (dm_suspended_md(md))
2907		goto done; /* resume from nested suspend */
2908
2909	/*
2910	 * NOTE: existing callers don't need to call dm_table_resume_targets
2911	 * (which may fail -- so best to avoid it for now by passing NULL map)
2912	 */
2913	(void) __dm_resume(md, NULL);
2914
2915done:
2916	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
2917	smp_mb__after_atomic();
2918	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
2919}
2920
2921void dm_internal_suspend_noflush(struct mapped_device *md)
2922{
2923	mutex_lock(&md->suspend_lock);
2924	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
2925	mutex_unlock(&md->suspend_lock);
2926}
2927EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
2928
2929void dm_internal_resume(struct mapped_device *md)
2930{
2931	mutex_lock(&md->suspend_lock);
2932	__dm_internal_resume(md);
2933	mutex_unlock(&md->suspend_lock);
2934}
2935EXPORT_SYMBOL_GPL(dm_internal_resume);
2936
2937/*
2938 * Fast variants of internal suspend/resume hold md->suspend_lock,
2939 * which prevents interaction with userspace-driven suspend.
2940 */
2941
2942void dm_internal_suspend_fast(struct mapped_device *md)
2943{
2944	mutex_lock(&md->suspend_lock);
2945	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2946		return;
2947
2948	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
2949	synchronize_srcu(&md->io_barrier);
2950	flush_workqueue(md->wq);
2951	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
2952}
2953EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
2954
2955void dm_internal_resume_fast(struct mapped_device *md)
2956{
2957	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
2958		goto done;
2959
2960	dm_queue_flush(md);
2961
2962done:
2963	mutex_unlock(&md->suspend_lock);
2964}
2965EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
2966
2967/*-----------------------------------------------------------------
2968 * Event notification.
2969 *---------------------------------------------------------------*/
2970int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
2971		       unsigned cookie)
2972{
2973	int r;
2974	unsigned noio_flag;
2975	char udev_cookie[DM_COOKIE_LENGTH];
2976	char *envp[] = { udev_cookie, NULL };
2977
2978	noio_flag = memalloc_noio_save();
2979
2980	if (!cookie)
2981		r = kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
2982	else {
2983		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
2984			 DM_COOKIE_ENV_VAR_NAME, cookie);
2985		r = kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
2986				       action, envp);
2987	}
2988
2989	memalloc_noio_restore(noio_flag);
2990
2991	return r;
2992}
2993
2994uint32_t dm_next_uevent_seq(struct mapped_device *md)
2995{
2996	return atomic_add_return(1, &md->uevent_seq);
2997}
2998
2999uint32_t dm_get_event_nr(struct mapped_device *md)
3000{
3001	return atomic_read(&md->event_nr);
3002}
3003
3004int dm_wait_event(struct mapped_device *md, int event_nr)
3005{
3006	return wait_event_interruptible(md->eventq,
3007			(event_nr != atomic_read(&md->event_nr)));
3008}
3009
3010void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3011{
3012	unsigned long flags;
3013
3014	spin_lock_irqsave(&md->uevent_lock, flags);
3015	list_add(elist, &md->uevent_list);
3016	spin_unlock_irqrestore(&md->uevent_lock, flags);
3017}
3018
3019/*
3020 * The gendisk is only valid as long as you have a reference
3021 * count on 'md'.
3022 */
3023struct gendisk *dm_disk(struct mapped_device *md)
3024{
3025	return md->disk;
3026}
3027EXPORT_SYMBOL_GPL(dm_disk);
3028
3029struct kobject *dm_kobject(struct mapped_device *md)
3030{
3031	return &md->kobj_holder.kobj;
3032}
3033
3034struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3035{
3036	struct mapped_device *md;
3037
3038	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3039
3040	spin_lock(&_minor_lock);
3041	if (test_bit(DMF_FREEING, &md->flags) || dm_deleting_md(md)) {
3042		md = NULL;
3043		goto out;
3044	}
3045	dm_get(md);
3046out:
3047	spin_unlock(&_minor_lock);
3048
 
3049	return md;
3050}
3051
3052int dm_suspended_md(struct mapped_device *md)
3053{
3054	return test_bit(DMF_SUSPENDED, &md->flags);
3055}
3056
3057static int dm_post_suspending_md(struct mapped_device *md)
3058{
3059	return test_bit(DMF_POST_SUSPENDING, &md->flags);
3060}
3061
3062int dm_suspended_internally_md(struct mapped_device *md)
3063{
3064	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3065}
3066
3067int dm_test_deferred_remove_flag(struct mapped_device *md)
3068{
3069	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3070}
3071
3072int dm_suspended(struct dm_target *ti)
3073{
3074	return dm_suspended_md(ti->table->md);
3075}
3076EXPORT_SYMBOL_GPL(dm_suspended);
3077
3078int dm_post_suspending(struct dm_target *ti)
3079{
3080	return dm_post_suspending_md(ti->table->md);
3081}
3082EXPORT_SYMBOL_GPL(dm_post_suspending);
3083
3084int dm_noflush_suspending(struct dm_target *ti)
3085{
3086	return __noflush_suspending(ti->table->md);
3087}
3088EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3089
3090void dm_free_md_mempools(struct dm_md_mempools *pools)
 
3091{
3092	if (!pools)
3093		return;
3094
3095	bioset_exit(&pools->bs);
3096	bioset_exit(&pools->io_bs);
3097
3098	kfree(pools);
3099}
3100
3101struct dm_pr {
3102	u64	old_key;
3103	u64	new_key;
3104	u32	flags;
3105	bool	abort;
3106	bool	fail_early;
3107	int	ret;
3108	enum pr_type type;
3109};
3110
3111static int dm_call_pr(struct block_device *bdev, iterate_devices_callout_fn fn,
3112		      struct dm_pr *pr)
3113{
3114	struct mapped_device *md = bdev->bd_disk->private_data;
3115	struct dm_table *table;
3116	struct dm_target *ti;
3117	int ret = -ENOTTY, srcu_idx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3118
3119	table = dm_get_live_table(md, &srcu_idx);
3120	if (!table || !dm_table_get_size(table))
3121		goto out;
 
 
3122
3123	/* We only support devices that have a single target */
3124	if (table->num_targets != 1)
3125		goto out;
3126	ti = dm_table_get_target(table, 0);
3127
3128	if (dm_suspended_md(md)) {
3129		ret = -EAGAIN;
3130		goto out;
3131	}
3132
3133	ret = -EINVAL;
3134	if (!ti->type->iterate_devices)
3135		goto out;
3136
3137	ti->type->iterate_devices(ti, fn, pr);
3138	ret = 0;
3139out:
3140	dm_put_live_table(md, srcu_idx);
3141	return ret;
 
3142}
3143
3144/*
3145 * For register / unregister we need to manually call out to every path.
3146 */
3147static int __dm_pr_register(struct dm_target *ti, struct dm_dev *dev,
3148			    sector_t start, sector_t len, void *data)
3149{
3150	struct dm_pr *pr = data;
3151	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3152	int ret;
3153
3154	if (!ops || !ops->pr_register) {
3155		pr->ret = -EOPNOTSUPP;
3156		return -1;
3157	}
3158
3159	ret = ops->pr_register(dev->bdev, pr->old_key, pr->new_key, pr->flags);
3160	if (!ret)
3161		return 0;
3162
3163	if (!pr->ret)
3164		pr->ret = ret;
3165
3166	if (pr->fail_early)
3167		return -1;
3168
3169	return 0;
3170}
3171
3172static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3173			  u32 flags)
3174{
3175	struct dm_pr pr = {
3176		.old_key	= old_key,
3177		.new_key	= new_key,
3178		.flags		= flags,
3179		.fail_early	= true,
3180		.ret		= 0,
3181	};
3182	int ret;
3183
3184	ret = dm_call_pr(bdev, __dm_pr_register, &pr);
3185	if (ret) {
3186		/* Didn't even get to register a path */
3187		return ret;
3188	}
3189
3190	if (!pr.ret)
3191		return 0;
3192	ret = pr.ret;
3193
3194	if (!new_key)
3195		return ret;
3196
3197	/* unregister all paths if we failed to register any path */
3198	pr.old_key = new_key;
3199	pr.new_key = 0;
3200	pr.flags = 0;
3201	pr.fail_early = false;
3202	(void) dm_call_pr(bdev, __dm_pr_register, &pr);
3203	return ret;
3204}
3205
3206
3207static int __dm_pr_reserve(struct dm_target *ti, struct dm_dev *dev,
3208			   sector_t start, sector_t len, void *data)
3209{
3210	struct dm_pr *pr = data;
3211	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3212
3213	if (!ops || !ops->pr_reserve) {
3214		pr->ret = -EOPNOTSUPP;
3215		return -1;
3216	}
3217
3218	pr->ret = ops->pr_reserve(dev->bdev, pr->old_key, pr->type, pr->flags);
3219	if (!pr->ret)
3220		return -1;
 
 
3221
3222	return 0;
 
3223}
3224
3225static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3226			 u32 flags)
3227{
3228	struct dm_pr pr = {
3229		.old_key	= key,
3230		.flags		= flags,
3231		.type		= type,
3232		.fail_early	= false,
3233		.ret		= 0,
3234	};
3235	int ret;
3236
3237	ret = dm_call_pr(bdev, __dm_pr_reserve, &pr);
3238	if (ret)
3239		return ret;
3240
3241	return pr.ret;
3242}
3243
3244/*
3245 * If there is a non-All Registrants type of reservation, the release must be
3246 * sent down the holding path. For the cases where there is no reservation or
3247 * the path is not the holder the device will also return success, so we must
3248 * try each path to make sure we got the correct path.
3249 */
3250static int __dm_pr_release(struct dm_target *ti, struct dm_dev *dev,
3251			   sector_t start, sector_t len, void *data)
3252{
3253	struct dm_pr *pr = data;
3254	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3255
3256	if (!ops || !ops->pr_release) {
3257		pr->ret = -EOPNOTSUPP;
3258		return -1;
3259	}
3260
3261	pr->ret = ops->pr_release(dev->bdev, pr->old_key, pr->type);
3262	if (pr->ret)
3263		return -1;
 
 
3264
3265	return 0;
 
3266}
3267
3268static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3269{
3270	struct dm_pr pr = {
3271		.old_key	= key,
3272		.type		= type,
3273		.fail_early	= false,
3274	};
3275	int ret;
3276
3277	ret = dm_call_pr(bdev, __dm_pr_release, &pr);
3278	if (ret)
3279		return ret;
3280
3281	return pr.ret;
3282}
3283
3284static int __dm_pr_preempt(struct dm_target *ti, struct dm_dev *dev,
3285			   sector_t start, sector_t len, void *data)
3286{
3287	struct dm_pr *pr = data;
3288	const struct pr_ops *ops = dev->bdev->bd_disk->fops->pr_ops;
3289
3290	if (!ops || !ops->pr_preempt) {
3291		pr->ret = -EOPNOTSUPP;
3292		return -1;
3293	}
3294
3295	pr->ret = ops->pr_preempt(dev->bdev, pr->old_key, pr->new_key, pr->type,
3296				  pr->abort);
3297	if (!pr->ret)
3298		return -1;
 
3299
3300	return 0;
 
3301}
3302
3303static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3304			 enum pr_type type, bool abort)
3305{
3306	struct dm_pr pr = {
3307		.new_key	= new_key,
3308		.old_key	= old_key,
3309		.type		= type,
3310		.fail_early	= false,
3311	};
3312	int ret;
3313
3314	ret = dm_call_pr(bdev, __dm_pr_preempt, &pr);
3315	if (ret)
3316		return ret;
 
 
 
3317
3318	return pr.ret;
 
3319}
3320
3321static int dm_pr_clear(struct block_device *bdev, u64 key)
3322{
3323	struct mapped_device *md = bdev->bd_disk->private_data;
3324	const struct pr_ops *ops;
3325	int r, srcu_idx;
 
3326
3327	r = dm_prepare_ioctl(md, &srcu_idx, &bdev);
3328	if (r < 0)
3329		goto out;
3330
3331	ops = bdev->bd_disk->fops->pr_ops;
3332	if (ops && ops->pr_clear)
3333		r = ops->pr_clear(bdev, key);
3334	else
3335		r = -EOPNOTSUPP;
3336out:
3337	dm_unprepare_ioctl(md, srcu_idx);
3338	return r;
3339}
3340
3341static const struct pr_ops dm_pr_ops = {
3342	.pr_register	= dm_pr_register,
3343	.pr_reserve	= dm_pr_reserve,
3344	.pr_release	= dm_pr_release,
3345	.pr_preempt	= dm_pr_preempt,
3346	.pr_clear	= dm_pr_clear,
3347};
3348
3349static const struct block_device_operations dm_blk_dops = {
3350	.submit_bio = dm_submit_bio,
3351	.poll_bio = dm_poll_bio,
3352	.open = dm_blk_open,
3353	.release = dm_blk_close,
3354	.ioctl = dm_blk_ioctl,
3355	.getgeo = dm_blk_getgeo,
3356	.report_zones = dm_blk_report_zones,
3357	.pr_ops = &dm_pr_ops,
3358	.owner = THIS_MODULE
3359};
3360
3361static const struct block_device_operations dm_rq_blk_dops = {
3362	.open = dm_blk_open,
3363	.release = dm_blk_close,
3364	.ioctl = dm_blk_ioctl,
3365	.getgeo = dm_blk_getgeo,
3366	.pr_ops = &dm_pr_ops,
3367	.owner = THIS_MODULE
3368};
3369
3370static const struct dax_operations dm_dax_ops = {
3371	.direct_access = dm_dax_direct_access,
3372	.zero_page_range = dm_dax_zero_page_range,
3373	.recovery_write = dm_dax_recovery_write,
3374};
3375
3376/*
3377 * module hooks
3378 */
3379module_init(dm_init);
3380module_exit(dm_exit);
3381
3382module_param(major, uint, 0);
3383MODULE_PARM_DESC(major, "The major number of the device mapper");
3384
3385module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3386MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3387
 
 
 
 
 
 
 
 
 
 
 
 
3388module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3389MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
3390
3391module_param(swap_bios, int, S_IRUGO | S_IWUSR);
3392MODULE_PARM_DESC(swap_bios, "Maximum allowed inflight swap IOs");
3393
3394MODULE_DESCRIPTION(DM_NAME " driver");
3395MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3396MODULE_LICENSE("GPL");
v4.6
   1/*
   2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
   3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
   4 *
   5 * This file is released under the GPL.
   6 */
   7
   8#include "dm.h"
 
   9#include "dm-uevent.h"
 
  10
  11#include <linux/init.h>
  12#include <linux/module.h>
  13#include <linux/mutex.h>
  14#include <linux/moduleparam.h>
 
  15#include <linux/blkpg.h>
  16#include <linux/bio.h>
  17#include <linux/mempool.h>
 
  18#include <linux/slab.h>
  19#include <linux/idr.h>
 
  20#include <linux/hdreg.h>
  21#include <linux/delay.h>
  22#include <linux/wait.h>
  23#include <linux/kthread.h>
  24#include <linux/ktime.h>
  25#include <linux/elevator.h> /* for rq_end_sector() */
  26#include <linux/blk-mq.h>
  27#include <linux/pr.h>
  28
  29#include <trace/events/block.h>
 
 
  30
  31#define DM_MSG_PREFIX "core"
  32
  33#ifdef CONFIG_PRINTK
  34/*
  35 * ratelimit state to be used in DMXXX_LIMIT().
  36 */
  37DEFINE_RATELIMIT_STATE(dm_ratelimit_state,
  38		       DEFAULT_RATELIMIT_INTERVAL,
  39		       DEFAULT_RATELIMIT_BURST);
  40EXPORT_SYMBOL(dm_ratelimit_state);
  41#endif
  42
  43/*
  44 * Cookies are numeric values sent with CHANGE and REMOVE
  45 * uevents while resuming, removing or renaming the device.
  46 */
  47#define DM_COOKIE_ENV_VAR_NAME "DM_COOKIE"
  48#define DM_COOKIE_LENGTH 24
  49
 
 
 
 
 
 
 
  50static const char *_name = DM_NAME;
  51
  52static unsigned int major = 0;
  53static unsigned int _major = 0;
  54
  55static DEFINE_IDR(_minor_idr);
  56
  57static DEFINE_SPINLOCK(_minor_lock);
  58
  59static void do_deferred_remove(struct work_struct *w);
  60
  61static DECLARE_WORK(deferred_remove_work, do_deferred_remove);
  62
  63static struct workqueue_struct *deferred_remove_workqueue;
  64
  65/*
  66 * For bio-based dm.
  67 * One of these is allocated per bio.
  68 */
  69struct dm_io {
  70	struct mapped_device *md;
  71	int error;
  72	atomic_t io_count;
  73	struct bio *bio;
  74	unsigned long start_time;
  75	spinlock_t endio_lock;
  76	struct dm_stats_aux stats_aux;
  77};
  78
  79/*
  80 * For request-based dm.
  81 * One of these is allocated per request.
  82 */
  83struct dm_rq_target_io {
  84	struct mapped_device *md;
  85	struct dm_target *ti;
  86	struct request *orig, *clone;
  87	struct kthread_work work;
  88	int error;
  89	union map_info info;
  90	struct dm_stats_aux stats_aux;
  91	unsigned long duration_jiffies;
  92	unsigned n_sectors;
  93};
  94
  95/*
  96 * For request-based dm - the bio clones we allocate are embedded in these
  97 * structs.
  98 *
  99 * We allocate these with bio_alloc_bioset, using the front_pad parameter when
 100 * the bioset is created - this means the bio has to come at the end of the
 101 * struct.
 102 */
 103struct dm_rq_clone_bio_info {
 104	struct bio *orig;
 105	struct dm_rq_target_io *tio;
 106	struct bio clone;
 107};
 108
 109#define MINOR_ALLOCED ((void *)-1)
 110
 111/*
 112 * Bits for the md->flags field.
 113 */
 114#define DMF_BLOCK_IO_FOR_SUSPEND 0
 115#define DMF_SUSPENDED 1
 116#define DMF_FROZEN 2
 117#define DMF_FREEING 3
 118#define DMF_DELETING 4
 119#define DMF_NOFLUSH_SUSPENDING 5
 120#define DMF_DEFERRED_REMOVE 6
 121#define DMF_SUSPENDED_INTERNALLY 7
 
 122
 123/*
 124 * Work processed by per-device workqueue.
 125 */
 126struct mapped_device {
 127	struct srcu_struct io_barrier;
 128	struct mutex suspend_lock;
 129
 130	/*
 131	 * The current mapping (struct dm_table *).
 132	 * Use dm_get_live_table{_fast} or take suspend_lock for
 133	 * dereference.
 134	 */
 135	void __rcu *map;
 
 136
 137	struct list_head table_devices;
 138	struct mutex table_devices_lock;
 
 
 
 
 
 
 
 139
 140	unsigned long flags;
 
 
 
 
 141
 142	struct request_queue *queue;
 143	int numa_node_id;
 144
 145	unsigned type;
 146	/* Protect queue and type against concurrent access. */
 147	struct mutex type_lock;
 148
 149	atomic_t holders;
 150	atomic_t open_count;
 151
 152	struct dm_target *immutable_target;
 153	struct target_type *immutable_target_type;
 154
 155	struct gendisk *disk;
 156	char name[16];
 157
 158	void *interface_ptr;
 159
 160	/*
 161	 * A list of ios that arrived while we were suspended.
 162	 */
 163	atomic_t pending[2];
 164	wait_queue_head_t wait;
 165	struct work_struct work;
 166	spinlock_t deferred_lock;
 167	struct bio_list deferred;
 168
 169	/*
 170	 * Event handling.
 171	 */
 172	wait_queue_head_t eventq;
 173	atomic_t event_nr;
 174	atomic_t uevent_seq;
 175	struct list_head uevent_list;
 176	spinlock_t uevent_lock; /* Protect access to uevent_list */
 177
 178	/* the number of internal suspends */
 179	unsigned internal_suspend_count;
 180
 181	/*
 182	 * Processing queue (flush)
 183	 */
 184	struct workqueue_struct *wq;
 185
 186	/*
 187	 * io objects are allocated from here.
 188	 */
 189	mempool_t *io_pool;
 190	mempool_t *rq_pool;
 191
 192	struct bio_set *bs;
 193
 194	/*
 195	 * freeze/thaw support require holding onto a super block
 196	 */
 197	struct super_block *frozen_sb;
 198
 199	/* forced geometry settings */
 200	struct hd_geometry geometry;
 201
 202	struct block_device *bdev;
 203
 204	/* kobject and completion */
 205	struct dm_kobject_holder kobj_holder;
 206
 207	/* zero-length flush that will be cloned and submitted to targets */
 208	struct bio flush_bio;
 209
 210	struct dm_stats stats;
 211
 212	struct kthread_worker kworker;
 213	struct task_struct *kworker_task;
 214
 215	/* for request-based merge heuristic in dm_request_fn() */
 216	unsigned seq_rq_merge_deadline_usecs;
 217	int last_rq_rw;
 218	sector_t last_rq_pos;
 219	ktime_t last_rq_start_time;
 220
 221	/* for blk-mq request-based DM support */
 222	struct blk_mq_tag_set *tag_set;
 223	bool use_blk_mq:1;
 224	bool init_tio_pdu:1;
 225};
 226
 227#ifdef CONFIG_DM_MQ_DEFAULT
 228static bool use_blk_mq = true;
 229#else
 230static bool use_blk_mq = false;
 231#endif
 232
 233#define DM_MQ_NR_HW_QUEUES 1
 234#define DM_MQ_QUEUE_DEPTH 2048
 235#define DM_NUMA_NODE NUMA_NO_NODE
 236
 237static unsigned dm_mq_nr_hw_queues = DM_MQ_NR_HW_QUEUES;
 238static unsigned dm_mq_queue_depth = DM_MQ_QUEUE_DEPTH;
 239static int dm_numa_node = DM_NUMA_NODE;
 240
 241bool dm_use_blk_mq(struct mapped_device *md)
 242{
 243	return md->use_blk_mq;
 
 
 
 
 
 244}
 245EXPORT_SYMBOL_GPL(dm_use_blk_mq);
 246
 247/*
 248 * For mempools pre-allocation at the table loading time.
 249 */
 250struct dm_md_mempools {
 251	mempool_t *io_pool;
 252	mempool_t *rq_pool;
 253	struct bio_set *bs;
 254};
 255
 256struct table_device {
 257	struct list_head list;
 258	atomic_t count;
 259	struct dm_dev dm_dev;
 260};
 261
 262#define RESERVED_BIO_BASED_IOS		16
 263#define RESERVED_REQUEST_BASED_IOS	256
 264#define RESERVED_MAX_IOS		1024
 265static struct kmem_cache *_io_cache;
 266static struct kmem_cache *_rq_tio_cache;
 267static struct kmem_cache *_rq_cache;
 268
 269/*
 270 * Bio-based DM's mempools' reserved IOs set by the user.
 271 */
 
 272static unsigned reserved_bio_based_ios = RESERVED_BIO_BASED_IOS;
 273
 274/*
 275 * Request-based DM's mempools' reserved IOs set by the user.
 276 */
 277static unsigned reserved_rq_based_ios = RESERVED_REQUEST_BASED_IOS;
 278
 279static int __dm_get_module_param_int(int *module_param, int min, int max)
 280{
 281	int param = ACCESS_ONCE(*module_param);
 282	int modified_param = 0;
 283	bool modified = true;
 284
 285	if (param < min)
 286		modified_param = min;
 287	else if (param > max)
 288		modified_param = max;
 289	else
 290		modified = false;
 291
 292	if (modified) {
 293		(void)cmpxchg(module_param, param, modified_param);
 294		param = modified_param;
 295	}
 296
 297	return param;
 298}
 299
 300static unsigned __dm_get_module_param(unsigned *module_param,
 301				      unsigned def, unsigned max)
 302{
 303	unsigned param = ACCESS_ONCE(*module_param);
 304	unsigned modified_param = 0;
 305
 306	if (!param)
 307		modified_param = def;
 308	else if (param > max)
 309		modified_param = max;
 310
 311	if (modified_param) {
 312		(void)cmpxchg(module_param, param, modified_param);
 313		param = modified_param;
 314	}
 315
 316	return param;
 317}
 318
 319unsigned dm_get_reserved_bio_based_ios(void)
 320{
 321	return __dm_get_module_param(&reserved_bio_based_ios,
 322				     RESERVED_BIO_BASED_IOS, RESERVED_MAX_IOS);
 323}
 324EXPORT_SYMBOL_GPL(dm_get_reserved_bio_based_ios);
 325
 326unsigned dm_get_reserved_rq_based_ios(void)
 327{
 328	return __dm_get_module_param(&reserved_rq_based_ios,
 329				     RESERVED_REQUEST_BASED_IOS, RESERVED_MAX_IOS);
 330}
 331EXPORT_SYMBOL_GPL(dm_get_reserved_rq_based_ios);
 332
 333static unsigned dm_get_blk_mq_nr_hw_queues(void)
 334{
 335	return __dm_get_module_param(&dm_mq_nr_hw_queues, 1, 32);
 336}
 337
 338static unsigned dm_get_blk_mq_queue_depth(void)
 339{
 340	return __dm_get_module_param(&dm_mq_queue_depth,
 341				     DM_MQ_QUEUE_DEPTH, BLK_MQ_MAX_DEPTH);
 342}
 343
 344static unsigned dm_get_numa_node(void)
 345{
 346	return __dm_get_module_param_int(&dm_numa_node,
 347					 DM_NUMA_NODE, num_online_nodes() - 1);
 348}
 349
 350static int __init local_init(void)
 351{
 352	int r = -ENOMEM;
 353
 354	/* allocate a slab for the dm_ios */
 355	_io_cache = KMEM_CACHE(dm_io, 0);
 356	if (!_io_cache)
 357		return r;
 358
 359	_rq_tio_cache = KMEM_CACHE(dm_rq_target_io, 0);
 360	if (!_rq_tio_cache)
 361		goto out_free_io_cache;
 362
 363	_rq_cache = kmem_cache_create("dm_old_clone_request", sizeof(struct request),
 364				      __alignof__(struct request), 0, NULL);
 365	if (!_rq_cache)
 366		goto out_free_rq_tio_cache;
 367
 368	r = dm_uevent_init();
 369	if (r)
 370		goto out_free_rq_cache;
 371
 372	deferred_remove_workqueue = alloc_workqueue("kdmremove", WQ_UNBOUND, 1);
 373	if (!deferred_remove_workqueue) {
 374		r = -ENOMEM;
 375		goto out_uevent_exit;
 376	}
 377
 378	_major = major;
 379	r = register_blkdev(_major, _name);
 380	if (r < 0)
 381		goto out_free_workqueue;
 382
 383	if (!_major)
 384		_major = r;
 385
 386	return 0;
 387
 388out_free_workqueue:
 389	destroy_workqueue(deferred_remove_workqueue);
 390out_uevent_exit:
 391	dm_uevent_exit();
 392out_free_rq_cache:
 393	kmem_cache_destroy(_rq_cache);
 394out_free_rq_tio_cache:
 395	kmem_cache_destroy(_rq_tio_cache);
 396out_free_io_cache:
 397	kmem_cache_destroy(_io_cache);
 398
 399	return r;
 400}
 401
 402static void local_exit(void)
 403{
 404	flush_scheduled_work();
 405	destroy_workqueue(deferred_remove_workqueue);
 406
 407	kmem_cache_destroy(_rq_cache);
 408	kmem_cache_destroy(_rq_tio_cache);
 409	kmem_cache_destroy(_io_cache);
 410	unregister_blkdev(_major, _name);
 411	dm_uevent_exit();
 412
 413	_major = 0;
 414
 415	DMINFO("cleaned up");
 416}
 417
 418static int (*_inits[])(void) __initdata = {
 419	local_init,
 420	dm_target_init,
 421	dm_linear_init,
 422	dm_stripe_init,
 423	dm_io_init,
 424	dm_kcopyd_init,
 425	dm_interface_init,
 426	dm_statistics_init,
 427};
 428
 429static void (*_exits[])(void) = {
 430	local_exit,
 431	dm_target_exit,
 432	dm_linear_exit,
 433	dm_stripe_exit,
 434	dm_io_exit,
 435	dm_kcopyd_exit,
 436	dm_interface_exit,
 437	dm_statistics_exit,
 438};
 439
 440static int __init dm_init(void)
 441{
 442	const int count = ARRAY_SIZE(_inits);
 
 443
 444	int r, i;
 
 
 
 445
 446	for (i = 0; i < count; i++) {
 447		r = _inits[i]();
 448		if (r)
 449			goto bad;
 450	}
 451
 452	return 0;
 453
 454      bad:
 455	while (i--)
 456		_exits[i]();
 457
 458	return r;
 459}
 460
 461static void __exit dm_exit(void)
 462{
 463	int i = ARRAY_SIZE(_exits);
 464
 465	while (i--)
 466		_exits[i]();
 467
 468	/*
 469	 * Should be empty by this point.
 470	 */
 471	idr_destroy(&_minor_idr);
 472}
 473
 474/*
 475 * Block device functions
 476 */
 477int dm_deleting_md(struct mapped_device *md)
 478{
 479	return test_bit(DMF_DELETING, &md->flags);
 480}
 481
 482static int dm_blk_open(struct block_device *bdev, fmode_t mode)
 483{
 484	struct mapped_device *md;
 485
 486	spin_lock(&_minor_lock);
 487
 488	md = bdev->bd_disk->private_data;
 489	if (!md)
 490		goto out;
 491
 492	if (test_bit(DMF_FREEING, &md->flags) ||
 493	    dm_deleting_md(md)) {
 494		md = NULL;
 495		goto out;
 496	}
 497
 498	dm_get(md);
 499	atomic_inc(&md->open_count);
 500out:
 501	spin_unlock(&_minor_lock);
 502
 503	return md ? 0 : -ENXIO;
 504}
 505
 506static void dm_blk_close(struct gendisk *disk, fmode_t mode)
 507{
 508	struct mapped_device *md;
 509
 510	spin_lock(&_minor_lock);
 511
 512	md = disk->private_data;
 513	if (WARN_ON(!md))
 514		goto out;
 515
 516	if (atomic_dec_and_test(&md->open_count) &&
 517	    (test_bit(DMF_DEFERRED_REMOVE, &md->flags)))
 518		queue_work(deferred_remove_workqueue, &deferred_remove_work);
 519
 520	dm_put(md);
 521out:
 522	spin_unlock(&_minor_lock);
 523}
 524
 525int dm_open_count(struct mapped_device *md)
 526{
 527	return atomic_read(&md->open_count);
 528}
 529
 530/*
 531 * Guarantees nothing is using the device before it's deleted.
 532 */
 533int dm_lock_for_deletion(struct mapped_device *md, bool mark_deferred, bool only_deferred)
 534{
 535	int r = 0;
 536
 537	spin_lock(&_minor_lock);
 538
 539	if (dm_open_count(md)) {
 540		r = -EBUSY;
 541		if (mark_deferred)
 542			set_bit(DMF_DEFERRED_REMOVE, &md->flags);
 543	} else if (only_deferred && !test_bit(DMF_DEFERRED_REMOVE, &md->flags))
 544		r = -EEXIST;
 545	else
 546		set_bit(DMF_DELETING, &md->flags);
 547
 548	spin_unlock(&_minor_lock);
 549
 550	return r;
 551}
 552
 553int dm_cancel_deferred_remove(struct mapped_device *md)
 554{
 555	int r = 0;
 556
 557	spin_lock(&_minor_lock);
 558
 559	if (test_bit(DMF_DELETING, &md->flags))
 560		r = -EBUSY;
 561	else
 562		clear_bit(DMF_DEFERRED_REMOVE, &md->flags);
 563
 564	spin_unlock(&_minor_lock);
 565
 566	return r;
 567}
 568
 569static void do_deferred_remove(struct work_struct *w)
 570{
 571	dm_deferred_remove();
 572}
 573
 574sector_t dm_get_size(struct mapped_device *md)
 575{
 576	return get_capacity(md->disk);
 577}
 578
 579struct request_queue *dm_get_md_queue(struct mapped_device *md)
 580{
 581	return md->queue;
 582}
 583
 584struct dm_stats *dm_get_stats(struct mapped_device *md)
 585{
 586	return &md->stats;
 587}
 588
 589static int dm_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
 590{
 591	struct mapped_device *md = bdev->bd_disk->private_data;
 592
 593	return dm_get_geometry(md, geo);
 594}
 595
 596static int dm_grab_bdev_for_ioctl(struct mapped_device *md,
 597				  struct block_device **bdev,
 598				  fmode_t *mode)
 599{
 600	struct dm_target *tgt;
 601	struct dm_table *map;
 602	int srcu_idx, r;
 603
 604retry:
 605	r = -ENOTTY;
 606	map = dm_get_live_table(md, &srcu_idx);
 607	if (!map || !dm_table_get_size(map))
 608		goto out;
 609
 610	/* We only support devices that have a single target */
 611	if (dm_table_get_num_targets(map) != 1)
 612		goto out;
 613
 614	tgt = dm_table_get_target(map, 0);
 615	if (!tgt->type->prepare_ioctl)
 616		goto out;
 617
 618	if (dm_suspended_md(md)) {
 619		r = -EAGAIN;
 620		goto out;
 621	}
 622
 623	r = tgt->type->prepare_ioctl(tgt, bdev, mode);
 624	if (r < 0)
 625		goto out;
 626
 627	bdgrab(*bdev);
 628	dm_put_live_table(md, srcu_idx);
 629	return r;
 630
 631out:
 632	dm_put_live_table(md, srcu_idx);
 633	if (r == -ENOTCONN && !fatal_signal_pending(current)) {
 
 634		msleep(10);
 635		goto retry;
 636	}
 
 637	return r;
 638}
 639
 
 
 
 
 
 640static int dm_blk_ioctl(struct block_device *bdev, fmode_t mode,
 641			unsigned int cmd, unsigned long arg)
 642{
 643	struct mapped_device *md = bdev->bd_disk->private_data;
 644	int r;
 645
 646	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
 647	if (r < 0)
 648		return r;
 649
 650	if (r > 0) {
 651		/*
 652		 * Target determined this ioctl is being issued against
 653		 * a logical partition of the parent bdev; so extra
 654		 * validation is needed.
 655		 */
 656		r = scsi_verify_blk_ioctl(NULL, cmd);
 657		if (r)
 
 
 
 658			goto out;
 
 659	}
 660
 661	r =  __blkdev_driver_ioctl(bdev, mode, cmd, arg);
 
 
 
 662out:
 663	bdput(bdev);
 664	return r;
 665}
 666
 667static struct dm_io *alloc_io(struct mapped_device *md)
 668{
 669	return mempool_alloc(md->io_pool, GFP_NOIO);
 670}
 
 671
 672static void free_io(struct mapped_device *md, struct dm_io *io)
 673{
 674	mempool_free(io, md->io_pool);
 675}
 676
 677static void free_tio(struct mapped_device *md, struct dm_target_io *tio)
 678{
 679	bio_put(&tio->clone);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680}
 681
 682static struct dm_rq_target_io *alloc_old_rq_tio(struct mapped_device *md,
 683						gfp_t gfp_mask)
 684{
 685	return mempool_alloc(md->io_pool, gfp_mask);
 686}
 687
 688static void free_old_rq_tio(struct dm_rq_target_io *tio)
 689{
 690	mempool_free(tio, tio->md->io_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 691}
 692
 693static struct request *alloc_old_clone_request(struct mapped_device *md,
 694					       gfp_t gfp_mask)
 695{
 696	return mempool_alloc(md->rq_pool, gfp_mask);
 697}
 698
 699static void free_old_clone_request(struct mapped_device *md, struct request *rq)
 700{
 701	mempool_free(rq, md->rq_pool);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 702}
 703
 704static int md_in_flight(struct mapped_device *md)
 705{
 706	return atomic_read(&md->pending[READ]) +
 707	       atomic_read(&md->pending[WRITE]);
 708}
 709
 710static void start_io_acct(struct dm_io *io)
 
 711{
 712	struct mapped_device *md = io->md;
 713	struct bio *bio = io->bio;
 714	int cpu;
 715	int rw = bio_data_dir(bio);
 716
 717	io->start_time = jiffies;
 
 
 
 
 
 
 
 
 
 718
 719	cpu = part_stat_lock();
 720	part_round_stats(cpu, &dm_disk(md)->part0);
 721	part_stat_unlock();
 722	atomic_set(&dm_disk(md)->part0.in_flight[rw],
 723		atomic_inc_return(&md->pending[rw]));
 724
 725	if (unlikely(dm_stats_used(&md->stats)))
 726		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 727				    bio_sectors(bio), false, 0, &io->stats_aux);
 728}
 729
 730static void end_io_acct(struct dm_io *io)
 731{
 732	struct mapped_device *md = io->md;
 733	struct bio *bio = io->bio;
 734	unsigned long duration = jiffies - io->start_time;
 735	int pending;
 736	int rw = bio_data_dir(bio);
 737
 738	generic_end_io_acct(rw, &dm_disk(md)->part0, io->start_time);
 
 
 
 
 
 739
 740	if (unlikely(dm_stats_used(&md->stats)))
 741		dm_stats_account_io(&md->stats, bio->bi_rw, bio->bi_iter.bi_sector,
 742				    bio_sectors(bio), true, duration, &io->stats_aux);
 
 
 
 
 
 
 
 743
 744	/*
 745	 * After this is decremented the bio must not be touched if it is
 746	 * a flush.
 747	 */
 748	pending = atomic_dec_return(&md->pending[rw]);
 749	atomic_set(&dm_disk(md)->part0.in_flight[rw], pending);
 750	pending += atomic_read(&md->pending[rw^0x1]);
 751
 752	/* nudge anyone waiting on suspend queue */
 753	if (!pending)
 754		wake_up(&md->wait);
 
 
 755}
 756
 757/*
 758 * Add the bio to the list of deferred io.
 759 */
 760static void queue_io(struct mapped_device *md, struct bio *bio)
 761{
 762	unsigned long flags;
 763
 764	spin_lock_irqsave(&md->deferred_lock, flags);
 765	bio_list_add(&md->deferred, bio);
 766	spin_unlock_irqrestore(&md->deferred_lock, flags);
 767	queue_work(md->wq, &md->work);
 768}
 769
 770/*
 771 * Everyone (including functions in this file), should use this
 772 * function to access the md->map field, and make sure they call
 773 * dm_put_live_table() when finished.
 774 */
 775struct dm_table *dm_get_live_table(struct mapped_device *md, int *srcu_idx) __acquires(md->io_barrier)
 
 776{
 777	*srcu_idx = srcu_read_lock(&md->io_barrier);
 778
 779	return srcu_dereference(md->map, &md->io_barrier);
 780}
 781
 782void dm_put_live_table(struct mapped_device *md, int srcu_idx) __releases(md->io_barrier)
 
 783{
 784	srcu_read_unlock(&md->io_barrier, srcu_idx);
 785}
 786
 787void dm_sync_table(struct mapped_device *md)
 788{
 789	synchronize_srcu(&md->io_barrier);
 790	synchronize_rcu_expedited();
 791}
 792
 793/*
 794 * A fast alternative to dm_get_live_table/dm_put_live_table.
 795 * The caller must not block between these two functions.
 796 */
 797static struct dm_table *dm_get_live_table_fast(struct mapped_device *md) __acquires(RCU)
 798{
 799	rcu_read_lock();
 800	return rcu_dereference(md->map);
 801}
 802
 803static void dm_put_live_table_fast(struct mapped_device *md) __releases(RCU)
 804{
 805	rcu_read_unlock();
 806}
 807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 808/*
 809 * Open a table device so we can use it as a map destination.
 810 */
 811static int open_table_device(struct table_device *td, dev_t dev,
 812			     struct mapped_device *md)
 813{
 814	static char *_claim_ptr = "I belong to device-mapper";
 815	struct block_device *bdev;
 816
 817	int r;
 818
 819	BUG_ON(td->dm_dev.bdev);
 
 
 
 820
 821	bdev = blkdev_get_by_dev(dev, td->dm_dev.mode | FMODE_EXCL, _claim_ptr);
 822	if (IS_ERR(bdev))
 823		return PTR_ERR(bdev);
 
 
 824
 825	r = bd_link_disk_holder(bdev, dm_disk(md));
 826	if (r) {
 827		blkdev_put(bdev, td->dm_dev.mode | FMODE_EXCL);
 828		return r;
 
 
 
 
 
 829	}
 830
 
 831	td->dm_dev.bdev = bdev;
 832	return 0;
 
 
 
 
 
 
 
 
 
 833}
 834
 835/*
 836 * Close a table device that we've been using.
 837 */
 838static void close_table_device(struct table_device *td, struct mapped_device *md)
 839{
 840	if (!td->dm_dev.bdev)
 841		return;
 842
 843	bd_unlink_disk_holder(td->dm_dev.bdev, dm_disk(md));
 844	blkdev_put(td->dm_dev.bdev, td->dm_dev.mode | FMODE_EXCL);
 845	td->dm_dev.bdev = NULL;
 
 
 846}
 847
 848static struct table_device *find_table_device(struct list_head *l, dev_t dev,
 849					      fmode_t mode) {
 
 850	struct table_device *td;
 851
 852	list_for_each_entry(td, l, list)
 853		if (td->dm_dev.bdev->bd_dev == dev && td->dm_dev.mode == mode)
 854			return td;
 855
 856	return NULL;
 857}
 858
 859int dm_get_table_device(struct mapped_device *md, dev_t dev, fmode_t mode,
 860			struct dm_dev **result) {
 861	int r;
 862	struct table_device *td;
 863
 864	mutex_lock(&md->table_devices_lock);
 865	td = find_table_device(&md->table_devices, dev, mode);
 866	if (!td) {
 867		td = kmalloc_node(sizeof(*td), GFP_KERNEL, md->numa_node_id);
 868		if (!td) {
 869			mutex_unlock(&md->table_devices_lock);
 870			return -ENOMEM;
 871		}
 872
 873		td->dm_dev.mode = mode;
 874		td->dm_dev.bdev = NULL;
 875
 876		if ((r = open_table_device(td, dev, md))) {
 877			mutex_unlock(&md->table_devices_lock);
 878			kfree(td);
 879			return r;
 880		}
 881
 882		format_dev_t(td->dm_dev.name, dev);
 883
 884		atomic_set(&td->count, 0);
 885		list_add(&td->list, &md->table_devices);
 886	}
 887	atomic_inc(&td->count);
 888	mutex_unlock(&md->table_devices_lock);
 889
 890	*result = &td->dm_dev;
 891	return 0;
 892}
 893EXPORT_SYMBOL_GPL(dm_get_table_device);
 894
 895void dm_put_table_device(struct mapped_device *md, struct dm_dev *d)
 896{
 897	struct table_device *td = container_of(d, struct table_device, dm_dev);
 898
 899	mutex_lock(&md->table_devices_lock);
 900	if (atomic_dec_and_test(&td->count)) {
 901		close_table_device(td, md);
 902		list_del(&td->list);
 903		kfree(td);
 904	}
 905	mutex_unlock(&md->table_devices_lock);
 906}
 907EXPORT_SYMBOL(dm_put_table_device);
 908
 909static void free_table_devices(struct list_head *devices)
 910{
 911	struct list_head *tmp, *next;
 912
 913	list_for_each_safe(tmp, next, devices) {
 914		struct table_device *td = list_entry(tmp, struct table_device, list);
 915
 916		DMWARN("dm_destroy: %s still exists with %d references",
 917		       td->dm_dev.name, atomic_read(&td->count));
 918		kfree(td);
 919	}
 920}
 921
 922/*
 923 * Get the geometry associated with a dm device
 924 */
 925int dm_get_geometry(struct mapped_device *md, struct hd_geometry *geo)
 926{
 927	*geo = md->geometry;
 928
 929	return 0;
 930}
 931
 932/*
 933 * Set the geometry of a device.
 934 */
 935int dm_set_geometry(struct mapped_device *md, struct hd_geometry *geo)
 936{
 937	sector_t sz = (sector_t)geo->cylinders * geo->heads * geo->sectors;
 938
 939	if (geo->start > sz) {
 940		DMWARN("Start sector is beyond the geometry limits.");
 941		return -EINVAL;
 942	}
 943
 944	md->geometry = *geo;
 945
 946	return 0;
 947}
 948
 949/*-----------------------------------------------------------------
 950 * CRUD START:
 951 *   A more elegant soln is in the works that uses the queue
 952 *   merge fn, unfortunately there are a couple of changes to
 953 *   the block layer that I want to make for this.  So in the
 954 *   interests of getting something for people to use I give
 955 *   you this clearly demarcated crap.
 956 *---------------------------------------------------------------*/
 957
 958static int __noflush_suspending(struct mapped_device *md)
 959{
 960	return test_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 961}
 962
 963/*
 964 * Decrements the number of outstanding ios that a bio has been
 965 * cloned into, completing the original io if necc.
 966 */
 967static void dec_pending(struct dm_io *io, int error)
 968{
 969	unsigned long flags;
 970	int io_error;
 971	struct bio *bio;
 972	struct mapped_device *md = io->md;
 973
 974	/* Push-back supersedes any I/O errors */
 975	if (unlikely(error)) {
 976		spin_lock_irqsave(&io->endio_lock, flags);
 977		if (!(io->error > 0 && __noflush_suspending(md)))
 978			io->error = error;
 979		spin_unlock_irqrestore(&io->endio_lock, flags);
 
 980	}
 
 981
 982	if (atomic_dec_and_test(&io->io_count)) {
 983		if (io->error == DM_ENDIO_REQUEUE) {
 984			/*
 985			 * Target requested pushing back the I/O.
 986			 */
 987			spin_lock_irqsave(&md->deferred_lock, flags);
 988			if (__noflush_suspending(md))
 989				bio_list_add_head(&md->deferred, io->bio);
 990			else
 991				/* noflush suspend was interrupted. */
 992				io->error = -EIO;
 993			spin_unlock_irqrestore(&md->deferred_lock, flags);
 994		}
 995
 996		io_error = io->error;
 997		bio = io->bio;
 998		end_io_acct(io);
 999		free_io(md, io);
 
 
 
 
 
 
 
 
1000
1001		if (io_error == DM_ENDIO_REQUEUE)
1002			return;
1003
1004		if ((bio->bi_rw & REQ_FLUSH) && bio->bi_iter.bi_size) {
1005			/*
1006			 * Preflush done for flush with data, reissue
1007			 * without REQ_FLUSH.
 
1008			 */
1009			bio->bi_rw &= ~REQ_FLUSH;
1010			queue_io(md, bio);
1011		} else {
1012			/* done with normal IO or empty flush */
1013			trace_block_bio_complete(md->queue, bio, io_error);
1014			bio->bi_error = io_error;
1015			bio_endio(bio);
1016		}
1017	}
1018}
1019
1020static void disable_write_same(struct mapped_device *md)
1021{
1022	struct queue_limits *limits = dm_get_queue_limits(md);
1023
1024	/* device doesn't really support WRITE SAME, disable it */
1025	limits->max_write_same_sectors = 0;
1026}
1027
1028static void clone_endio(struct bio *bio)
1029{
1030	int error = bio->bi_error;
1031	int r = error;
1032	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1033	struct dm_io *io = tio->io;
1034	struct mapped_device *md = tio->io->md;
1035	dm_endio_fn endio = tio->ti->type->end_io;
1036
1037	if (endio) {
1038		r = endio(tio->ti, bio, error);
1039		if (r < 0 || r == DM_ENDIO_REQUEUE)
1040			/*
1041			 * error and requeue request are handled
1042			 * in dec_pending().
1043			 */
1044			error = r;
1045		else if (r == DM_ENDIO_INCOMPLETE)
1046			/* The target will handle the io */
1047			return;
1048		else if (r) {
1049			DMWARN("unimplemented target endio return value: %d", r);
1050			BUG();
1051		}
 
1052	}
1053
1054	if (unlikely(r == -EREMOTEIO && (bio->bi_rw & REQ_WRITE_SAME) &&
1055		     !bdev_get_queue(bio->bi_bdev)->limits.max_write_same_sectors))
1056		disable_write_same(md);
1057
1058	free_tio(md, tio);
1059	dec_pending(io, error);
1060}
1061
1062/*
1063 * Partial completion handling for request-based dm
1064 */
1065static void end_clone_bio(struct bio *clone)
1066{
1067	struct dm_rq_clone_bio_info *info =
1068		container_of(clone, struct dm_rq_clone_bio_info, clone);
1069	struct dm_rq_target_io *tio = info->tio;
1070	struct bio *bio = info->orig;
1071	unsigned int nr_bytes = info->orig->bi_iter.bi_size;
1072	int error = clone->bi_error;
1073
1074	bio_put(clone);
 
 
1075
1076	if (tio->error)
 
 
 
1077		/*
1078		 * An error has already been detected on the request.
1079		 * Once error occurred, just let clone->end_io() handle
1080		 * the remainder.
1081		 */
 
 
 
 
 
 
 
 
 
 
 
 
 
1082		return;
1083	else if (error) {
 
1084		/*
1085		 * Don't notice the error to the upper layer yet.
1086		 * The error handling decision is made by the target driver,
1087		 * when the request is completed.
1088		 */
1089		tio->error = error;
1090		return;
 
 
 
 
 
1091	}
 
1092
1093	/*
1094	 * I/O for the bio successfully completed.
1095	 * Notice the data completion to the upper layer.
1096	 */
 
 
1097
1098	/*
1099	 * bios are processed from the head of the list.
1100	 * So the completing bio should always be rq->bio.
1101	 * If it's not, something wrong is happening.
1102	 */
1103	if (tio->orig->bio != bio)
1104		DMERR("bio completion is going in the middle of the request");
1105
1106	/*
1107	 * Update the original request.
1108	 * Do not use blk_end_request() here, because it may complete
1109	 * the original request before the clone, and break the ordering.
1110	 */
1111	blk_update_request(tio->orig, 0, nr_bytes);
1112}
1113
1114static struct dm_rq_target_io *tio_from_request(struct request *rq)
1115{
1116	return (rq->q->mq_ops ? blk_mq_rq_to_pdu(rq) : rq->special);
1117}
1118
1119static void rq_end_stats(struct mapped_device *md, struct request *orig)
1120{
1121	if (unlikely(dm_stats_used(&md->stats))) {
1122		struct dm_rq_target_io *tio = tio_from_request(orig);
1123		tio->duration_jiffies = jiffies - tio->duration_jiffies;
1124		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
1125				    tio->n_sectors, true, tio->duration_jiffies,
1126				    &tio->stats_aux);
1127	}
1128}
1129
1130/*
1131 * Don't touch any member of the md after calling this function because
1132 * the md may be freed in dm_put() at the end of this function.
1133 * Or do dm_get() before calling this function and dm_put() later.
 
 
 
1134 */
1135static void rq_completed(struct mapped_device *md, int rw, bool run_queue)
1136{
1137	atomic_dec(&md->pending[rw]);
1138
1139	/* nudge anyone waiting on suspend queue */
1140	if (!md_in_flight(md))
1141		wake_up(&md->wait);
1142
1143	/*
1144	 * Run this off this callpath, as drivers could invoke end_io while
1145	 * inside their request_fn (and holding the queue lock). Calling
1146	 * back into ->request_fn() could deadlock attempting to grab the
1147	 * queue lock again.
 
 
1148	 */
1149	if (!md->queue->mq_ops && run_queue)
1150		blk_run_queue_async(md->queue);
 
 
1151
1152	/*
1153	 * dm_put() must be at the end of this function. See the comment above
1154	 */
1155	dm_put(md);
1156}
1157
1158static void free_rq_clone(struct request *clone)
 
 
 
 
1159{
1160	struct dm_rq_target_io *tio = clone->end_io_data;
1161	struct mapped_device *md = tio->md;
1162
1163	blk_rq_unprep_clone(clone);
1164
1165	if (md->type == DM_TYPE_MQ_REQUEST_BASED)
1166		/* stacked on blk-mq queue(s) */
1167		tio->ti->type->release_clone_rq(clone);
1168	else if (!md->queue->mq_ops)
1169		/* request_fn queue stacked on request_fn queue(s) */
1170		free_old_clone_request(md, clone);
1171
1172	if (!md->queue->mq_ops)
1173		free_old_rq_tio(tio);
1174}
1175
1176/*
1177 * Complete the clone and the original request.
1178 * Must be called without clone's queue lock held,
1179 * see end_clone_request() for more details.
1180 */
1181static void dm_end_request(struct request *clone, int error)
1182{
1183	int rw = rq_data_dir(clone);
1184	struct dm_rq_target_io *tio = clone->end_io_data;
1185	struct mapped_device *md = tio->md;
1186	struct request *rq = tio->orig;
1187
1188	if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
1189		rq->errors = clone->errors;
1190		rq->resid_len = clone->resid_len;
1191
1192		if (rq->sense)
1193			/*
1194			 * We are using the sense buffer of the original
1195			 * request.
1196			 * So setting the length of the sense data is enough.
1197			 */
1198			rq->sense_len = clone->sense_len;
1199	}
1200
1201	free_rq_clone(clone);
1202	rq_end_stats(md, rq);
1203	if (!rq->q->mq_ops)
1204		blk_end_request_all(rq, error);
1205	else
1206		blk_mq_end_request(rq, error);
1207	rq_completed(md, rw, true);
1208}
1209
1210static void dm_unprep_request(struct request *rq)
1211{
1212	struct dm_rq_target_io *tio = tio_from_request(rq);
1213	struct request *clone = tio->clone;
1214
1215	if (!rq->q->mq_ops) {
1216		rq->special = NULL;
1217		rq->cmd_flags &= ~REQ_DONTPREP;
1218	}
1219
1220	if (clone)
1221		free_rq_clone(clone);
1222	else if (!tio->md->queue->mq_ops)
1223		free_old_rq_tio(tio);
1224}
1225
1226/*
1227 * Requeue the original request of a clone.
1228 */
1229static void dm_old_requeue_request(struct request *rq)
1230{
1231	struct request_queue *q = rq->q;
1232	unsigned long flags;
1233
1234	spin_lock_irqsave(q->queue_lock, flags);
1235	blk_requeue_request(q, rq);
1236	blk_run_queue_async(q);
1237	spin_unlock_irqrestore(q->queue_lock, flags);
1238}
1239
1240static void dm_mq_requeue_request(struct request *rq)
1241{
1242	struct request_queue *q = rq->q;
1243	unsigned long flags;
1244
1245	blk_mq_requeue_request(rq);
1246	spin_lock_irqsave(q->queue_lock, flags);
1247	if (!blk_queue_stopped(q))
1248		blk_mq_kick_requeue_list(q);
1249	spin_unlock_irqrestore(q->queue_lock, flags);
1250}
1251
1252static void dm_requeue_original_request(struct mapped_device *md,
1253					struct request *rq)
1254{
1255	int rw = rq_data_dir(rq);
1256
1257	rq_end_stats(md, rq);
1258	dm_unprep_request(rq);
1259
1260	if (!rq->q->mq_ops)
1261		dm_old_requeue_request(rq);
1262	else
1263		dm_mq_requeue_request(rq);
1264
1265	rq_completed(md, rw, false);
1266}
1267
1268static void dm_old_stop_queue(struct request_queue *q)
1269{
1270	unsigned long flags;
 
 
 
 
 
1271
1272	spin_lock_irqsave(q->queue_lock, flags);
1273	if (blk_queue_stopped(q)) {
1274		spin_unlock_irqrestore(q->queue_lock, flags);
1275		return;
 
 
 
1276	}
1277
1278	blk_stop_queue(q);
1279	spin_unlock_irqrestore(q->queue_lock, flags);
1280}
1281
1282static void dm_stop_queue(struct request_queue *q)
1283{
1284	if (!q->mq_ops)
1285		dm_old_stop_queue(q);
1286	else
1287		blk_mq_stop_hw_queues(q);
1288}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289
1290static void dm_old_start_queue(struct request_queue *q)
1291{
1292	unsigned long flags;
1293
1294	spin_lock_irqsave(q->queue_lock, flags);
1295	if (blk_queue_stopped(q))
1296		blk_start_queue(q);
1297	spin_unlock_irqrestore(q->queue_lock, flags);
1298}
1299
1300static void dm_start_queue(struct request_queue *q)
 
 
 
 
 
1301{
1302	if (!q->mq_ops)
1303		dm_old_start_queue(q);
1304	else {
1305		blk_mq_start_stopped_hw_queues(q, true);
1306		blk_mq_kick_requeue_list(q);
1307	}
1308}
1309
1310static void dm_done(struct request *clone, int error, bool mapped)
1311{
1312	int r = error;
1313	struct dm_rq_target_io *tio = clone->end_io_data;
1314	dm_request_endio_fn rq_end_io = NULL;
1315
1316	if (tio->ti) {
1317		rq_end_io = tio->ti->type->rq_end_io;
1318
1319		if (mapped && rq_end_io)
1320			r = rq_end_io(tio->ti, clone, error, &tio->info);
1321	}
1322
1323	if (unlikely(r == -EREMOTEIO && (clone->cmd_flags & REQ_WRITE_SAME) &&
1324		     !clone->q->limits.max_write_same_sectors))
1325		disable_write_same(tio->md);
1326
1327	if (r <= 0)
1328		/* The target wants to complete the I/O */
1329		dm_end_request(clone, r);
1330	else if (r == DM_ENDIO_INCOMPLETE)
1331		/* The target will handle the I/O */
1332		return;
1333	else if (r == DM_ENDIO_REQUEUE)
1334		/* The target wants to requeue the I/O */
1335		dm_requeue_original_request(tio->md, tio->orig);
1336	else {
1337		DMWARN("unimplemented target endio return value: %d", r);
1338		BUG();
1339	}
1340}
1341
1342/*
1343 * Request completion handler for request-based dm
1344 */
1345static void dm_softirq_done(struct request *rq)
1346{
1347	bool mapped = true;
1348	struct dm_rq_target_io *tio = tio_from_request(rq);
1349	struct request *clone = tio->clone;
1350	int rw;
1351
1352	if (!clone) {
1353		rq_end_stats(tio->md, rq);
1354		rw = rq_data_dir(rq);
1355		if (!rq->q->mq_ops) {
1356			blk_end_request_all(rq, tio->error);
1357			rq_completed(tio->md, rw, false);
1358			free_old_rq_tio(tio);
1359		} else {
1360			blk_mq_end_request(rq, tio->error);
1361			rq_completed(tio->md, rw, false);
1362		}
1363		return;
1364	}
1365
1366	if (rq->cmd_flags & REQ_FAILED)
1367		mapped = false;
1368
1369	dm_done(clone, tio->error, mapped);
1370}
 
1371
1372/*
1373 * Complete the clone and the original request with the error status
1374 * through softirq context.
1375 */
1376static void dm_complete_request(struct request *rq, int error)
1377{
1378	struct dm_rq_target_io *tio = tio_from_request(rq);
 
1379
1380	tio->error = error;
1381	if (!rq->q->mq_ops)
1382		blk_complete_request(rq);
1383	else
1384		blk_mq_complete_request(rq, error);
1385}
 
1386
1387/*
1388 * Complete the not-mapped clone and the original request with the error status
1389 * through softirq context.
1390 * Target's rq_end_io() function isn't called.
1391 * This may be used when the target's map_rq() or clone_and_map_rq() functions fail.
1392 */
1393static void dm_kill_unmapped_request(struct request *rq, int error)
1394{
1395	rq->cmd_flags |= REQ_FAILED;
1396	dm_complete_request(rq, error);
1397}
1398
1399/*
1400 * Called with the clone's queue lock held (in the case of .request_fn)
1401 */
1402static void end_clone_request(struct request *clone, int error)
1403{
1404	struct dm_rq_target_io *tio = clone->end_io_data;
 
 
 
 
1405
1406	if (!clone->q->mq_ops) {
1407		/*
1408		 * For just cleaning up the information of the queue in which
1409		 * the clone was dispatched.
1410		 * The clone is *NOT* freed actually here because it is alloced
1411		 * from dm own mempool (REQ_ALLOCED isn't set).
1412		 */
1413		__blk_put_request(clone->q, clone);
1414	}
1415
1416	/*
1417	 * Actual request completion is done in a softirq context which doesn't
1418	 * hold the clone's queue lock.  Otherwise, deadlock could occur because:
1419	 *     - another request may be submitted by the upper level driver
1420	 *       of the stacking during the completion
1421	 *     - the submission which requires queue lock may be done
1422	 *       against this clone's queue
1423	 */
1424	dm_complete_request(tio->orig, error);
1425}
1426
1427/*
1428 * Return maximum size of I/O possible at the supplied sector up to the current
1429 * target boundary.
1430 */
1431static sector_t max_io_len_target_boundary(sector_t sector, struct dm_target *ti)
1432{
1433	sector_t target_offset = dm_target_offset(ti, sector);
1434
1435	return ti->len - target_offset;
1436}
1437
1438static sector_t max_io_len(sector_t sector, struct dm_target *ti)
 
1439{
1440	sector_t len = max_io_len_target_boundary(sector, ti);
1441	sector_t offset, max_len;
 
 
 
1442
1443	/*
1444	 * Does the target need to split even further?
1445	 */
1446	if (ti->max_io_len) {
1447		offset = dm_target_offset(ti, sector);
1448		if (unlikely(ti->max_io_len & (ti->max_io_len - 1)))
1449			max_len = sector_div(offset, ti->max_io_len);
1450		else
1451			max_len = offset & (ti->max_io_len - 1);
1452		max_len = ti->max_io_len - max_len;
1453
1454		if (len > max_len)
1455			len = max_len;
 
 
 
 
 
 
1456	}
 
 
 
1457
1458	return len;
1459}
1460
1461int dm_set_target_max_io_len(struct dm_target *ti, sector_t len)
 
1462{
1463	if (len > UINT_MAX) {
1464		DMERR("Specified maximum size of target IO (%llu) exceeds limit (%u)",
1465		      (unsigned long long)len, UINT_MAX);
1466		ti->error = "Maximum size of target IO is too large";
1467		return -EINVAL;
1468	}
1469
1470	ti->max_io_len = (uint32_t) len;
 
 
1471
1472	return 0;
 
 
 
1473}
1474EXPORT_SYMBOL_GPL(dm_set_target_max_io_len);
1475
1476/*
1477 * A target may call dm_accept_partial_bio only from the map routine.  It is
1478 * allowed for all bio types except REQ_FLUSH.
 
 
1479 *
1480 * dm_accept_partial_bio informs the dm that the target only wants to process
1481 * additional n_sectors sectors of the bio and the rest of the data should be
1482 * sent in a next bio.
1483 *
1484 * A diagram that explains the arithmetics:
1485 * +--------------------+---------------+-------+
1486 * |         1          |       2       |   3   |
1487 * +--------------------+---------------+-------+
1488 *
1489 * <-------------- *tio->len_ptr --------------->
1490 *                      <------- bi_size ------->
1491 *                      <-- n_sectors -->
1492 *
1493 * Region 1 was already iterated over with bio_advance or similar function.
1494 *	(it may be empty if the target doesn't use bio_advance)
1495 * Region 2 is the remaining bio size that the target wants to process.
1496 *	(it may be empty if region 1 is non-empty, although there is no reason
1497 *	 to make it empty)
1498 * The target requires that region 3 is to be sent in the next bio.
1499 *
1500 * If the target wants to receive multiple copies of the bio (via num_*bios, etc),
1501 * the partially processed part (the sum of regions 1+2) must be the same for all
1502 * copies of the bio.
1503 */
1504void dm_accept_partial_bio(struct bio *bio, unsigned n_sectors)
1505{
1506	struct dm_target_io *tio = container_of(bio, struct dm_target_io, clone);
1507	unsigned bi_size = bio->bi_iter.bi_size >> SECTOR_SHIFT;
1508	BUG_ON(bio->bi_rw & REQ_FLUSH);
1509	BUG_ON(bi_size > *tio->len_ptr);
1510	BUG_ON(n_sectors > bi_size);
1511	*tio->len_ptr -= bi_size - n_sectors;
1512	bio->bi_iter.bi_size = n_sectors << SECTOR_SHIFT;
1513}
1514EXPORT_SYMBOL_GPL(dm_accept_partial_bio);
1515
1516static void __map_bio(struct dm_target_io *tio)
1517{
1518	int r;
1519	sector_t sector;
1520	struct mapped_device *md;
1521	struct bio *clone = &tio->clone;
1522	struct dm_target *ti = tio->ti;
1523
1524	clone->bi_end_io = clone_endio;
 
1525
1526	/*
1527	 * Map the clone.  If r == 0 we don't need to do
1528	 * anything, the target has assumed ownership of
1529	 * this io.
1530	 */
1531	atomic_inc(&tio->io->io_count);
1532	sector = clone->bi_iter.bi_sector;
1533	r = ti->type->map(ti, clone);
1534	if (r == DM_MAPIO_REMAPPED) {
1535		/* the bio has been remapped so dispatch it */
1536
1537		trace_block_bio_remap(bdev_get_queue(clone->bi_bdev), clone,
1538				      tio->io->bio->bi_bdev->bd_dev, sector);
1539
1540		generic_make_request(clone);
1541	} else if (r < 0 || r == DM_MAPIO_REQUEUE) {
1542		/* error the io and bail out, or requeue it if needed */
1543		md = tio->io->md;
1544		dec_pending(tio->io, r);
1545		free_tio(md, tio);
1546	} else if (r != DM_MAPIO_SUBMITTED) {
1547		DMWARN("unimplemented target map return value: %d", r);
1548		BUG();
1549	}
1550}
1551
1552struct clone_info {
1553	struct mapped_device *md;
1554	struct dm_table *map;
1555	struct bio *bio;
1556	struct dm_io *io;
1557	sector_t sector;
1558	unsigned sector_count;
1559};
1560
1561static void bio_setup_sector(struct bio *bio, sector_t sector, unsigned len)
1562{
1563	bio->bi_iter.bi_sector = sector;
1564	bio->bi_iter.bi_size = to_bytes(len);
1565}
 
1566
1567/*
1568 * Creates a bio that consists of range of complete bvecs.
 
 
 
 
 
 
1569 */
1570static int clone_bio(struct dm_target_io *tio, struct bio *bio,
1571		     sector_t sector, unsigned len)
1572{
1573	struct bio *clone = &tio->clone;
 
1574
1575	__bio_clone_fast(clone, bio);
 
 
1576
1577	if (bio_integrity(bio)) {
1578		int r = bio_integrity_clone(clone, bio, GFP_NOIO);
1579		if (r < 0)
1580			return r;
1581	}
1582
1583	bio_advance(clone, to_bytes(sector - clone->bi_iter.bi_sector));
1584	clone->bi_iter.bi_size = to_bytes(len);
1585
1586	if (bio_integrity(bio))
1587		bio_integrity_trim(clone, 0, len);
1588
1589	return 0;
1590}
 
1591
1592static struct dm_target_io *alloc_tio(struct clone_info *ci,
1593				      struct dm_target *ti,
1594				      unsigned target_bio_nr)
1595{
1596	struct dm_target_io *tio;
1597	struct bio *clone;
1598
1599	clone = bio_alloc_bioset(GFP_NOIO, 0, ci->md->bs);
1600	tio = container_of(clone, struct dm_target_io, clone);
1601
1602	tio->io = ci->io;
1603	tio->ti = ti;
1604	tio->target_bio_nr = target_bio_nr;
1605
1606	return tio;
 
1607}
1608
1609static void __clone_and_map_simple_bio(struct clone_info *ci,
1610				       struct dm_target *ti,
1611				       unsigned target_bio_nr, unsigned *len)
1612{
1613	struct dm_target_io *tio = alloc_tio(ci, ti, target_bio_nr);
1614	struct bio *clone = &tio->clone;
 
 
 
1615
1616	tio->len_ptr = len;
1617
1618	__bio_clone_fast(clone, ci->bio);
1619	if (len)
1620		bio_setup_sector(clone, ci->sector, *len);
1621
1622	__map_bio(tio);
1623}
1624
1625static void __send_duplicate_bios(struct clone_info *ci, struct dm_target *ti,
1626				  unsigned num_bios, unsigned *len)
1627{
1628	unsigned target_bio_nr;
1629
1630	for (target_bio_nr = 0; target_bio_nr < num_bios; target_bio_nr++)
1631		__clone_and_map_simple_bio(ci, ti, target_bio_nr, len);
1632}
1633
1634static int __send_empty_flush(struct clone_info *ci)
1635{
1636	unsigned target_nr = 0;
1637	struct dm_target *ti;
1638
1639	BUG_ON(bio_has_data(ci->bio));
1640	while ((ti = dm_table_get_target(ci->map, target_nr++)))
1641		__send_duplicate_bios(ci, ti, ti->num_flush_bios, NULL);
1642
1643	return 0;
1644}
1645
1646static int __clone_and_map_data_bio(struct clone_info *ci, struct dm_target *ti,
1647				     sector_t sector, unsigned *len)
1648{
1649	struct bio *bio = ci->bio;
1650	struct dm_target_io *tio;
1651	unsigned target_bio_nr;
1652	unsigned num_target_bios = 1;
1653	int r = 0;
1654
1655	/*
1656	 * Does the target want to receive duplicate copies of the bio?
1657	 */
1658	if (bio_data_dir(bio) == WRITE && ti->num_write_bios)
1659		num_target_bios = ti->num_write_bios(ti, bio);
1660
1661	for (target_bio_nr = 0; target_bio_nr < num_target_bios; target_bio_nr++) {
1662		tio = alloc_tio(ci, ti, target_bio_nr);
1663		tio->len_ptr = len;
1664		r = clone_bio(tio, bio, sector, *len);
1665		if (r < 0) {
1666			free_tio(ci->md, tio);
1667			break;
1668		}
1669		__map_bio(tio);
1670	}
1671
1672	return r;
1673}
1674
1675typedef unsigned (*get_num_bios_fn)(struct dm_target *ti);
1676
1677static unsigned get_num_discard_bios(struct dm_target *ti)
1678{
1679	return ti->num_discard_bios;
1680}
1681
1682static unsigned get_num_write_same_bios(struct dm_target *ti)
1683{
1684	return ti->num_write_same_bios;
1685}
1686
1687typedef bool (*is_split_required_fn)(struct dm_target *ti);
1688
1689static bool is_split_required_for_discard(struct dm_target *ti)
1690{
1691	return ti->split_discard_bios;
1692}
1693
1694static int __send_changing_extent_only(struct clone_info *ci,
1695				       get_num_bios_fn get_num_bios,
1696				       is_split_required_fn is_split_required)
1697{
1698	struct dm_target *ti;
1699	unsigned len;
1700	unsigned num_bios;
1701
1702	do {
1703		ti = dm_table_find_target(ci->map, ci->sector);
1704		if (!dm_target_is_valid(ti))
1705			return -EIO;
1706
1707		/*
1708		 * Even though the device advertised support for this type of
1709		 * request, that does not mean every target supports it, and
1710		 * reconfiguration might also have changed that since the
1711		 * check was performed.
1712		 */
1713		num_bios = get_num_bios ? get_num_bios(ti) : 0;
1714		if (!num_bios)
1715			return -EOPNOTSUPP;
 
 
 
1716
1717		if (is_split_required && !is_split_required(ti))
1718			len = min((sector_t)ci->sector_count, max_io_len_target_boundary(ci->sector, ti));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1719		else
1720			len = min((sector_t)ci->sector_count, max_io_len(ci->sector, ti));
1721
1722		__send_duplicate_bios(ci, ti, num_bios, &len);
1723
1724		ci->sector += len;
1725	} while (ci->sector_count -= len);
1726
1727	return 0;
1728}
1729
1730static int __send_discard(struct clone_info *ci)
1731{
1732	return __send_changing_extent_only(ci, get_num_discard_bios,
1733					   is_split_required_for_discard);
1734}
1735
1736static int __send_write_same(struct clone_info *ci)
1737{
1738	return __send_changing_extent_only(ci, get_num_write_same_bios, NULL);
 
 
 
 
 
 
1739}
1740
1741/*
1742 * Select the correct strategy for processing a non-flush bio.
1743 */
1744static int __split_and_process_non_flush(struct clone_info *ci)
1745{
1746	struct bio *bio = ci->bio;
1747	struct dm_target *ti;
1748	unsigned len;
1749	int r;
1750
1751	if (unlikely(bio->bi_rw & REQ_DISCARD))
1752		return __send_discard(ci);
1753	else if (unlikely(bio->bi_rw & REQ_WRITE_SAME))
1754		return __send_write_same(ci);
1755
1756	ti = dm_table_find_target(ci->map, ci->sector);
1757	if (!dm_target_is_valid(ti))
1758		return -EIO;
 
 
 
 
1759
1760	len = min_t(sector_t, max_io_len(ci->sector, ti), ci->sector_count);
 
 
 
 
 
1761
1762	r = __clone_and_map_data_bio(ci, ti, ci->sector, &len);
1763	if (r < 0)
1764		return r;
1765
1766	ci->sector += len;
1767	ci->sector_count -= len;
1768
1769	return 0;
1770}
1771
1772/*
1773 * Entry point to split a bio into clones and submit them to the targets.
1774 */
1775static void __split_and_process_bio(struct mapped_device *md,
1776				    struct dm_table *map, struct bio *bio)
1777{
1778	struct clone_info ci;
1779	int error = 0;
 
1780
1781	if (unlikely(!map)) {
1782		bio_io_error(bio);
1783		return;
1784	}
1785
1786	ci.map = map;
1787	ci.md = md;
1788	ci.io = alloc_io(md);
1789	ci.io->error = 0;
1790	atomic_set(&ci.io->io_count, 1);
1791	ci.io->bio = bio;
1792	ci.io->md = md;
1793	spin_lock_init(&ci.io->endio_lock);
1794	ci.sector = bio->bi_iter.bi_sector;
1795
1796	start_io_acct(ci.io);
1797
1798	if (bio->bi_rw & REQ_FLUSH) {
1799		ci.bio = &ci.md->flush_bio;
1800		ci.sector_count = 0;
1801		error = __send_empty_flush(&ci);
1802		/* dec_pending submits any data associated with flush */
1803	} else {
1804		ci.bio = bio;
1805		ci.sector_count = bio_sectors(bio);
1806		while (ci.sector_count && !error)
1807			error = __split_and_process_non_flush(&ci);
1808	}
1809
1810	/* drop the extra reference count */
1811	dec_pending(ci.io, error);
1812}
1813/*-----------------------------------------------------------------
1814 * CRUD END
1815 *---------------------------------------------------------------*/
1816
1817/*
1818 * The request function that just remaps the bio built up by
1819 * dm_merge_bvec.
1820 */
1821static blk_qc_t dm_make_request(struct request_queue *q, struct bio *bio)
1822{
1823	int rw = bio_data_dir(bio);
1824	struct mapped_device *md = q->queuedata;
1825	int srcu_idx;
1826	struct dm_table *map;
1827
1828	map = dm_get_live_table(md, &srcu_idx);
 
 
 
 
 
 
1829
1830	generic_start_io_acct(rw, bio_sectors(bio), &dm_disk(md)->part0);
 
 
1831
1832	/* if we're suspended, we have to queue this io for later */
1833	if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags))) {
1834		dm_put_live_table(md, srcu_idx);
1835
1836		if (bio_rw(bio) != READA)
1837			queue_io(md, bio);
1838		else
1839			bio_io_error(bio);
1840		return BLK_QC_T_NONE;
1841	}
1842
1843	__split_and_process_bio(md, map, bio);
1844	dm_put_live_table(md, srcu_idx);
1845	return BLK_QC_T_NONE;
 
 
 
 
1846}
1847
1848int dm_request_based(struct mapped_device *md)
 
1849{
1850	return blk_queue_stackable(md->queue);
1851}
1852
1853static void dm_dispatch_clone_request(struct request *clone, struct request *rq)
1854{
1855	int r;
1856
1857	if (blk_queue_io_stat(clone->q))
1858		clone->cmd_flags |= REQ_IO_STAT;
 
 
 
 
 
1859
1860	clone->start_time = jiffies;
1861	r = blk_insert_cloned_request(clone->q, clone);
1862	if (r)
1863		/* must complete clone in terms of original request */
1864		dm_complete_request(rq, r);
1865}
1866
1867static int dm_rq_bio_constructor(struct bio *bio, struct bio *bio_orig,
1868				 void *data)
1869{
1870	struct dm_rq_target_io *tio = data;
1871	struct dm_rq_clone_bio_info *info =
1872		container_of(bio, struct dm_rq_clone_bio_info, clone);
1873
1874	info->orig = bio_orig;
1875	info->tio = tio;
1876	bio->bi_end_io = end_clone_bio;
 
 
 
 
 
 
 
1877
1878	return 0;
1879}
1880
1881static int setup_clone(struct request *clone, struct request *rq,
1882		       struct dm_rq_target_io *tio, gfp_t gfp_mask)
1883{
1884	int r;
1885
1886	r = blk_rq_prep_clone(clone, rq, tio->md->bs, gfp_mask,
1887			      dm_rq_bio_constructor, tio);
1888	if (r)
1889		return r;
1890
1891	clone->cmd = rq->cmd;
1892	clone->cmd_len = rq->cmd_len;
1893	clone->sense = rq->sense;
1894	clone->end_io = end_clone_request;
1895	clone->end_io_data = tio;
1896
1897	tio->clone = clone;
1898
1899	return 0;
1900}
1901
1902static struct request *clone_old_rq(struct request *rq, struct mapped_device *md,
1903				    struct dm_rq_target_io *tio, gfp_t gfp_mask)
1904{
1905	/*
1906	 * Create clone for use with .request_fn request_queue
 
 
 
1907	 */
1908	struct request *clone;
1909
1910	clone = alloc_old_clone_request(md, gfp_mask);
1911	if (!clone)
1912		return NULL;
1913
1914	blk_rq_init(NULL, clone);
1915	if (setup_clone(clone, rq, tio, gfp_mask)) {
1916		/* -ENOMEM */
1917		free_old_clone_request(md, clone);
1918		return NULL;
1919	}
1920
1921	return clone;
1922}
1923
1924static void map_tio_request(struct kthread_work *work);
1925
1926static void init_tio(struct dm_rq_target_io *tio, struct request *rq,
1927		     struct mapped_device *md)
 
 
 
 
 
 
1928{
1929	tio->md = md;
1930	tio->ti = NULL;
1931	tio->clone = NULL;
1932	tio->orig = rq;
1933	tio->error = 0;
1934	/*
1935	 * Avoid initializing info for blk-mq; it passes
1936	 * target-specific data through info.ptr
1937	 * (see: dm_mq_init_request)
1938	 */
1939	if (!md->init_tio_pdu)
1940		memset(&tio->info, 0, sizeof(tio->info));
1941	if (md->kworker_task)
1942		init_kthread_work(&tio->work, map_tio_request);
1943}
1944
1945static struct dm_rq_target_io *dm_old_prep_tio(struct request *rq,
1946					       struct mapped_device *md,
1947					       gfp_t gfp_mask)
1948{
1949	struct dm_rq_target_io *tio;
1950	int srcu_idx;
1951	struct dm_table *table;
1952
1953	tio = alloc_old_rq_tio(md, gfp_mask);
1954	if (!tio)
1955		return NULL;
 
 
 
 
1956
1957	init_tio(tio, rq, md);
 
1958
1959	table = dm_get_live_table(md, &srcu_idx);
1960	/*
1961	 * Must clone a request if this .request_fn DM device
1962	 * is stacked on .request_fn device(s).
1963	 */
1964	if (!dm_table_mq_request_based(table)) {
1965		if (!clone_old_rq(rq, md, tio, gfp_mask)) {
1966			dm_put_live_table(md, srcu_idx);
1967			free_old_rq_tio(tio);
1968			return NULL;
1969		}
1970	}
1971	dm_put_live_table(md, srcu_idx);
1972
1973	return tio;
1974}
1975
1976/*
1977 * Called with the queue lock held.
1978 */
1979static int dm_old_prep_fn(struct request_queue *q, struct request *rq)
1980{
1981	struct mapped_device *md = q->queuedata;
1982	struct dm_rq_target_io *tio;
 
1983
1984	if (unlikely(rq->special)) {
1985		DMWARN("Already has something in rq->special.");
1986		return BLKPREP_KILL;
1987	}
1988
1989	tio = dm_old_prep_tio(rq, md, GFP_ATOMIC);
1990	if (!tio)
1991		return BLKPREP_DEFER;
1992
1993	rq->special = tio;
1994	rq->cmd_flags |= REQ_DONTPREP;
1995
1996	return BLKPREP_OK;
1997}
 
 
 
1998
1999/*
2000 * Returns:
2001 * 0                : the request has been processed
2002 * DM_MAPIO_REQUEUE : the original request needs to be requeued
2003 * < 0              : the request was completed due to failure
2004 */
2005static int map_request(struct dm_rq_target_io *tio, struct request *rq,
2006		       struct mapped_device *md)
2007{
2008	int r;
2009	struct dm_target *ti = tio->ti;
2010	struct request *clone = NULL;
2011
2012	if (tio->clone) {
2013		clone = tio->clone;
2014		r = ti->type->map_rq(ti, clone, &tio->info);
2015	} else {
2016		r = ti->type->clone_and_map_rq(ti, rq, &tio->info, &clone);
2017		if (r < 0) {
2018			/* The target wants to complete the I/O */
2019			dm_kill_unmapped_request(rq, r);
2020			return r;
2021		}
2022		if (r != DM_MAPIO_REMAPPED)
2023			return r;
2024		if (setup_clone(clone, rq, tio, GFP_ATOMIC)) {
2025			/* -ENOMEM */
2026			ti->type->release_clone_rq(clone);
2027			return DM_MAPIO_REQUEUE;
2028		}
2029	}
2030
2031	switch (r) {
2032	case DM_MAPIO_SUBMITTED:
2033		/* The target has taken the I/O to submit by itself later */
2034		break;
2035	case DM_MAPIO_REMAPPED:
2036		/* The target has remapped the I/O so dispatch it */
2037		trace_block_rq_remap(clone->q, clone, disk_devt(dm_disk(md)),
2038				     blk_rq_pos(rq));
2039		dm_dispatch_clone_request(clone, rq);
2040		break;
2041	case DM_MAPIO_REQUEUE:
2042		/* The target wants to requeue the I/O */
2043		dm_requeue_original_request(md, tio->orig);
2044		break;
2045	default:
2046		if (r > 0) {
2047			DMWARN("unimplemented target map return value: %d", r);
2048			BUG();
2049		}
2050
2051		/* The target wants to complete the I/O */
2052		dm_kill_unmapped_request(rq, r);
2053		return r;
2054	}
2055
2056	return 0;
2057}
2058
2059static void map_tio_request(struct kthread_work *work)
 
2060{
2061	struct dm_rq_target_io *tio = container_of(work, struct dm_rq_target_io, work);
2062	struct request *rq = tio->orig;
2063	struct mapped_device *md = tio->md;
2064
2065	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE)
2066		dm_requeue_original_request(md, rq);
 
 
 
 
 
 
2067}
2068
2069static void dm_start_request(struct mapped_device *md, struct request *orig)
 
 
 
 
2070{
2071	if (!orig->q->mq_ops)
2072		blk_start_request(orig);
2073	else
2074		blk_mq_start_request(orig);
2075	atomic_inc(&md->pending[rq_data_dir(orig)]);
2076
2077	if (md->seq_rq_merge_deadline_usecs) {
2078		md->last_rq_pos = rq_end_sector(orig);
2079		md->last_rq_rw = rq_data_dir(orig);
2080		md->last_rq_start_time = ktime_get();
 
 
 
 
 
2081	}
2082
2083	if (unlikely(dm_stats_used(&md->stats))) {
2084		struct dm_rq_target_io *tio = tio_from_request(orig);
2085		tio->duration_jiffies = jiffies;
2086		tio->n_sectors = blk_rq_sectors(orig);
2087		dm_stats_account_io(&md->stats, orig->cmd_flags, blk_rq_pos(orig),
2088				    tio->n_sectors, false, 0, &tio->stats_aux);
 
2089	}
2090
 
 
 
 
 
 
 
 
 
 
 
 
2091	/*
2092	 * Hold the md reference here for the in-flight I/O.
2093	 * We can't rely on the reference count by device opener,
2094	 * because the device may be closed during the request completion
2095	 * when all bios are completed.
2096	 * See the comment in rq_completed() too.
2097	 */
2098	dm_get(md);
 
 
 
 
 
 
 
 
 
2099}
2100
2101#define MAX_SEQ_RQ_MERGE_DEADLINE_USECS 100000
2102
2103ssize_t dm_attr_rq_based_seq_io_merge_deadline_show(struct mapped_device *md, char *buf)
2104{
2105	return sprintf(buf, "%u\n", md->seq_rq_merge_deadline_usecs);
2106}
 
 
2107
2108ssize_t dm_attr_rq_based_seq_io_merge_deadline_store(struct mapped_device *md,
2109						     const char *buf, size_t count)
2110{
2111	unsigned deadline;
2112
2113	if (!dm_request_based(md) || md->use_blk_mq)
2114		return count;
 
 
 
 
 
 
 
 
 
2115
2116	if (kstrtouint(buf, 10, &deadline))
2117		return -EINVAL;
2118
2119	if (deadline > MAX_SEQ_RQ_MERGE_DEADLINE_USECS)
2120		deadline = MAX_SEQ_RQ_MERGE_DEADLINE_USECS;
2121
2122	md->seq_rq_merge_deadline_usecs = deadline;
2123
2124	return count;
2125}
2126
2127static bool dm_request_peeked_before_merge_deadline(struct mapped_device *md)
 
2128{
2129	ktime_t kt_deadline;
2130
2131	if (!md->seq_rq_merge_deadline_usecs)
2132		return false;
 
2133
2134	kt_deadline = ns_to_ktime((u64)md->seq_rq_merge_deadline_usecs * NSEC_PER_USEC);
2135	kt_deadline = ktime_add_safe(md->last_rq_start_time, kt_deadline);
2136
2137	return !ktime_after(ktime_get(), kt_deadline);
2138}
2139
2140/*
2141 * q->request_fn for request-based dm.
2142 * Called with the queue lock held.
2143 */
2144static void dm_request_fn(struct request_queue *q)
2145{
2146	struct mapped_device *md = q->queuedata;
2147	struct dm_target *ti = md->immutable_target;
2148	struct request *rq;
2149	struct dm_rq_target_io *tio;
2150	sector_t pos = 0;
2151
2152	if (unlikely(!ti)) {
2153		int srcu_idx;
2154		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2155
2156		ti = dm_table_find_target(map, pos);
2157		dm_put_live_table(md, srcu_idx);
2158	}
2159
2160	/*
2161	 * For suspend, check blk_queue_stopped() and increment
2162	 * ->pending within a single queue_lock not to increment the
2163	 * number of in-flight I/Os after the queue is stopped in
2164	 * dm_suspend().
2165	 */
2166	while (!blk_queue_stopped(q)) {
2167		rq = blk_peek_request(q);
2168		if (!rq)
2169			return;
2170
2171		/* always use block 0 to find the target for flushes for now */
2172		pos = 0;
2173		if (!(rq->cmd_flags & REQ_FLUSH))
2174			pos = blk_rq_pos(rq);
2175
2176		if ((dm_request_peeked_before_merge_deadline(md) &&
2177		     md_in_flight(md) && rq->bio && rq->bio->bi_vcnt == 1 &&
2178		     md->last_rq_pos == pos && md->last_rq_rw == rq_data_dir(rq)) ||
2179		    (ti->type->busy && ti->type->busy(ti))) {
2180			blk_delay_queue(q, HZ / 100);
2181			return;
2182		}
2183
2184		dm_start_request(md, rq);
2185
2186		tio = tio_from_request(rq);
2187		/* Establish tio->ti before queuing work (map_tio_request) */
2188		tio->ti = ti;
2189		queue_kthread_work(&md->kworker, &tio->work);
2190		BUG_ON(!irqs_disabled());
2191	}
2192}
2193
2194static int dm_any_congested(void *congested_data, int bdi_bits)
2195{
2196	int r = bdi_bits;
2197	struct mapped_device *md = congested_data;
2198	struct dm_table *map;
2199
2200	if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
2201		if (dm_request_based(md)) {
2202			/*
2203			 * With request-based DM we only need to check the
2204			 * top-level queue for congestion.
2205			 */
2206			r = md->queue->backing_dev_info.wb.state & bdi_bits;
2207		} else {
2208			map = dm_get_live_table_fast(md);
2209			if (map)
2210				r = dm_table_any_congested(map, bdi_bits);
2211			dm_put_live_table_fast(md);
2212		}
2213	}
2214
2215	return r;
 
 
 
 
 
 
 
2216}
2217
2218/*-----------------------------------------------------------------
2219 * An IDR is used to keep track of allocated minor numbers.
2220 *---------------------------------------------------------------*/
2221static void free_minor(int minor)
2222{
2223	spin_lock(&_minor_lock);
2224	idr_remove(&_minor_idr, minor);
2225	spin_unlock(&_minor_lock);
2226}
2227
2228/*
2229 * See if the device with a specific minor # is free.
2230 */
2231static int specific_minor(int minor)
2232{
2233	int r;
2234
2235	if (minor >= (1 << MINORBITS))
2236		return -EINVAL;
2237
2238	idr_preload(GFP_KERNEL);
2239	spin_lock(&_minor_lock);
2240
2241	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, minor, minor + 1, GFP_NOWAIT);
2242
2243	spin_unlock(&_minor_lock);
2244	idr_preload_end();
2245	if (r < 0)
2246		return r == -ENOSPC ? -EBUSY : r;
2247	return 0;
2248}
2249
2250static int next_free_minor(int *minor)
2251{
2252	int r;
2253
2254	idr_preload(GFP_KERNEL);
2255	spin_lock(&_minor_lock);
2256
2257	r = idr_alloc(&_minor_idr, MINOR_ALLOCED, 0, 1 << MINORBITS, GFP_NOWAIT);
2258
2259	spin_unlock(&_minor_lock);
2260	idr_preload_end();
2261	if (r < 0)
2262		return r;
2263	*minor = r;
2264	return 0;
2265}
2266
2267static const struct block_device_operations dm_blk_dops;
 
 
2268
2269static void dm_wq_work(struct work_struct *work);
2270
2271static void dm_init_md_queue(struct mapped_device *md)
 
2272{
2273	/*
2274	 * Request-based dm devices cannot be stacked on top of bio-based dm
2275	 * devices.  The type of this dm device may not have been decided yet.
2276	 * The type is decided at the first table loading time.
2277	 * To prevent problematic device stacking, clear the queue flag
2278	 * for request stacking support until then.
2279	 *
2280	 * This queue is new, so no concurrency on the queue_flags.
2281	 */
2282	queue_flag_clear_unlocked(QUEUE_FLAG_STACKABLE, md->queue);
2283
2284	/*
2285	 * Initialize data that will only be used by a non-blk-mq DM queue
2286	 * - must do so here (in alloc_dev callchain) before queue is used
2287	 */
2288	md->queue->queuedata = md;
2289	md->queue->backing_dev_info.congested_data = md;
2290}
2291
2292static void dm_init_normal_md_queue(struct mapped_device *md)
2293{
2294	md->use_blk_mq = false;
2295	dm_init_md_queue(md);
2296
2297	/*
2298	 * Initialize aspects of queue that aren't relevant for blk-mq
2299	 */
2300	md->queue->backing_dev_info.congested_fn = dm_any_congested;
2301	blk_queue_bounce_limit(md->queue, BLK_BOUNCE_ANY);
2302}
 
2303
2304static void cleanup_mapped_device(struct mapped_device *md)
2305{
2306	if (md->wq)
2307		destroy_workqueue(md->wq);
2308	if (md->kworker_task)
2309		kthread_stop(md->kworker_task);
2310	mempool_destroy(md->io_pool);
2311	mempool_destroy(md->rq_pool);
2312	if (md->bs)
2313		bioset_free(md->bs);
2314
2315	cleanup_srcu_struct(&md->io_barrier);
 
 
 
 
 
2316
 
2317	if (md->disk) {
2318		spin_lock(&_minor_lock);
2319		md->disk->private_data = NULL;
2320		spin_unlock(&_minor_lock);
2321		del_gendisk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2322		put_disk(md->disk);
2323	}
2324
2325	if (md->queue)
2326		blk_cleanup_queue(md->queue);
 
 
 
 
 
 
 
 
 
2327
2328	if (md->bdev) {
2329		bdput(md->bdev);
2330		md->bdev = NULL;
2331	}
2332}
2333
2334/*
2335 * Allocate and initialise a blank device with a given minor.
2336 */
2337static struct mapped_device *alloc_dev(int minor)
2338{
2339	int r, numa_node_id = dm_get_numa_node();
2340	struct mapped_device *md;
2341	void *old_md;
2342
2343	md = kzalloc_node(sizeof(*md), GFP_KERNEL, numa_node_id);
2344	if (!md) {
2345		DMWARN("unable to allocate device, out of memory.");
2346		return NULL;
2347	}
2348
2349	if (!try_module_get(THIS_MODULE))
2350		goto bad_module_get;
2351
2352	/* get a minor number for the dev */
2353	if (minor == DM_ANY_MINOR)
2354		r = next_free_minor(&minor);
2355	else
2356		r = specific_minor(minor);
2357	if (r < 0)
2358		goto bad_minor;
2359
2360	r = init_srcu_struct(&md->io_barrier);
2361	if (r < 0)
2362		goto bad_io_barrier;
2363
2364	md->numa_node_id = numa_node_id;
2365	md->use_blk_mq = use_blk_mq;
2366	md->init_tio_pdu = false;
2367	md->type = DM_TYPE_NONE;
2368	mutex_init(&md->suspend_lock);
2369	mutex_init(&md->type_lock);
2370	mutex_init(&md->table_devices_lock);
2371	spin_lock_init(&md->deferred_lock);
2372	atomic_set(&md->holders, 1);
2373	atomic_set(&md->open_count, 0);
2374	atomic_set(&md->event_nr, 0);
2375	atomic_set(&md->uevent_seq, 0);
2376	INIT_LIST_HEAD(&md->uevent_list);
2377	INIT_LIST_HEAD(&md->table_devices);
2378	spin_lock_init(&md->uevent_lock);
2379
2380	md->queue = blk_alloc_queue_node(GFP_KERNEL, numa_node_id);
2381	if (!md->queue)
2382		goto bad;
2383
2384	dm_init_md_queue(md);
2385
2386	md->disk = alloc_disk_node(1, numa_node_id);
2387	if (!md->disk)
2388		goto bad;
 
2389
2390	atomic_set(&md->pending[0], 0);
2391	atomic_set(&md->pending[1], 0);
2392	init_waitqueue_head(&md->wait);
2393	INIT_WORK(&md->work, dm_wq_work);
 
2394	init_waitqueue_head(&md->eventq);
2395	init_completion(&md->kobj_holder.completion);
2396	md->kworker_task = NULL;
 
 
 
 
2397
2398	md->disk->major = _major;
2399	md->disk->first_minor = minor;
 
 
2400	md->disk->fops = &dm_blk_dops;
2401	md->disk->queue = md->queue;
2402	md->disk->private_data = md;
2403	sprintf(md->disk->disk_name, "dm-%d", minor);
2404	add_disk(md->disk);
 
 
 
 
 
 
 
 
 
 
 
 
2405	format_dev_t(md->name, MKDEV(_major, minor));
2406
2407	md->wq = alloc_workqueue("kdmflush", WQ_MEM_RECLAIM, 0);
2408	if (!md->wq)
2409		goto bad;
2410
2411	md->bdev = bdget_disk(md->disk, 0);
2412	if (!md->bdev)
2413		goto bad;
2414
2415	bio_init(&md->flush_bio);
2416	md->flush_bio.bi_bdev = md->bdev;
2417	md->flush_bio.bi_rw = WRITE_FLUSH;
2418
2419	dm_stats_init(&md->stats);
2420
2421	/* Populate the mapping, nobody knows we exist yet */
2422	spin_lock(&_minor_lock);
2423	old_md = idr_replace(&_minor_idr, md, minor);
2424	spin_unlock(&_minor_lock);
2425
2426	BUG_ON(old_md != MINOR_ALLOCED);
2427
2428	return md;
2429
2430bad:
2431	cleanup_mapped_device(md);
2432bad_io_barrier:
2433	free_minor(minor);
2434bad_minor:
2435	module_put(THIS_MODULE);
2436bad_module_get:
2437	kfree(md);
2438	return NULL;
2439}
2440
2441static void unlock_fs(struct mapped_device *md);
2442
2443static void free_dev(struct mapped_device *md)
2444{
2445	int minor = MINOR(disk_devt(md->disk));
2446
2447	unlock_fs(md);
2448
2449	cleanup_mapped_device(md);
2450	if (md->tag_set) {
2451		blk_mq_free_tag_set(md->tag_set);
2452		kfree(md->tag_set);
2453	}
2454
2455	free_table_devices(&md->table_devices);
2456	dm_stats_cleanup(&md->stats);
2457	free_minor(minor);
2458
2459	module_put(THIS_MODULE);
2460	kfree(md);
2461}
2462
2463static void __bind_mempools(struct mapped_device *md, struct dm_table *t)
2464{
2465	struct dm_md_mempools *p = dm_table_get_md_mempools(t);
2466
2467	if (md->bs) {
2468		/* The md already has necessary mempools. */
2469		if (dm_table_get_type(t) == DM_TYPE_BIO_BASED) {
2470			/*
2471			 * Reload bioset because front_pad may have changed
2472			 * because a different table was loaded.
2473			 */
2474			bioset_free(md->bs);
2475			md->bs = p->bs;
2476			p->bs = NULL;
2477		}
2478		/*
2479		 * There's no need to reload with request-based dm
2480		 * because the size of front_pad doesn't change.
2481		 * Note for future: If you are to reload bioset,
2482		 * prep-ed requests in the queue may refer
2483		 * to bio from the old bioset, so you must walk
2484		 * through the queue to unprep.
2485		 */
2486		goto out;
2487	}
2488
2489	BUG_ON(!p || md->io_pool || md->rq_pool || md->bs);
2490
2491	md->io_pool = p->io_pool;
2492	p->io_pool = NULL;
2493	md->rq_pool = p->rq_pool;
2494	p->rq_pool = NULL;
2495	md->bs = p->bs;
2496	p->bs = NULL;
2497
2498out:
2499	/* mempool bind completed, no longer need any mempools in the table */
2500	dm_table_free_md_mempools(t);
2501}
2502
2503/*
2504 * Bind a table to the device.
2505 */
2506static void event_callback(void *context)
2507{
2508	unsigned long flags;
2509	LIST_HEAD(uevents);
2510	struct mapped_device *md = (struct mapped_device *) context;
2511
2512	spin_lock_irqsave(&md->uevent_lock, flags);
2513	list_splice_init(&md->uevent_list, &uevents);
2514	spin_unlock_irqrestore(&md->uevent_lock, flags);
2515
2516	dm_send_uevents(&uevents, &disk_to_dev(md->disk)->kobj);
2517
2518	atomic_inc(&md->event_nr);
2519	wake_up(&md->eventq);
2520}
2521
2522/*
2523 * Protected by md->suspend_lock obtained by dm_swap_table().
2524 */
2525static void __set_size(struct mapped_device *md, sector_t size)
2526{
2527	set_capacity(md->disk, size);
2528
2529	i_size_write(md->bdev->bd_inode, (loff_t)size << SECTOR_SHIFT);
2530}
2531
2532/*
2533 * Returns old map, which caller must destroy.
2534 */
2535static struct dm_table *__bind(struct mapped_device *md, struct dm_table *t,
2536			       struct queue_limits *limits)
2537{
2538	struct dm_table *old_map;
2539	struct request_queue *q = md->queue;
2540	sector_t size;
 
 
 
2541
2542	size = dm_table_get_size(t);
2543
2544	/*
2545	 * Wipe any geometry if the size of the table changed.
2546	 */
2547	if (size != dm_get_size(md))
2548		memset(&md->geometry, 0, sizeof(md->geometry));
2549
2550	__set_size(md, size);
 
 
 
2551
2552	dm_table_event_callback(t, event_callback, md);
2553
2554	/*
2555	 * The queue hasn't been stopped yet, if the old table type wasn't
2556	 * for request-based during suspension.  So stop it to prevent
2557	 * I/O mapping before resume.
2558	 * This must be done before setting the queue restrictions,
2559	 * because request-based dm may be run just after the setting.
2560	 */
2561	if (dm_table_request_based(t)) {
2562		dm_stop_queue(q);
2563		/*
2564		 * Leverage the fact that request-based DM targets are
2565		 * immutable singletons and establish md->immutable_target
2566		 * - used to optimize both dm_request_fn and dm_mq_queue_rq
2567		 */
2568		md->immutable_target = dm_table_get_immutable_target(t);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2569	}
2570
2571	__bind_mempools(md, t);
 
 
 
 
2572
2573	old_map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
2574	rcu_assign_pointer(md->map, (void *)t);
2575	md->immutable_target_type = dm_table_get_immutable_target_type(t);
2576
2577	dm_table_set_restrictions(t, q, limits);
2578	if (old_map)
2579		dm_sync_table(md);
2580
2581	return old_map;
2582}
2583
2584/*
2585 * Returns unbound table for the caller to free.
2586 */
2587static struct dm_table *__unbind(struct mapped_device *md)
2588{
2589	struct dm_table *map = rcu_dereference_protected(md->map, 1);
2590
2591	if (!map)
2592		return NULL;
2593
2594	dm_table_event_callback(map, NULL, NULL);
2595	RCU_INIT_POINTER(md->map, NULL);
2596	dm_sync_table(md);
2597
2598	return map;
2599}
2600
2601/*
2602 * Constructor for a new device.
2603 */
2604int dm_create(int minor, struct mapped_device **result)
2605{
2606	struct mapped_device *md;
2607
2608	md = alloc_dev(minor);
2609	if (!md)
2610		return -ENXIO;
2611
2612	dm_sysfs_init(md);
2613
2614	*result = md;
2615	return 0;
2616}
2617
2618/*
2619 * Functions to manage md->type.
2620 * All are required to hold md->type_lock.
2621 */
2622void dm_lock_md_type(struct mapped_device *md)
2623{
2624	mutex_lock(&md->type_lock);
2625}
2626
2627void dm_unlock_md_type(struct mapped_device *md)
2628{
2629	mutex_unlock(&md->type_lock);
2630}
2631
2632void dm_set_md_type(struct mapped_device *md, unsigned type)
2633{
2634	BUG_ON(!mutex_is_locked(&md->type_lock));
2635	md->type = type;
2636}
2637
2638unsigned dm_get_md_type(struct mapped_device *md)
2639{
2640	return md->type;
2641}
2642
2643struct target_type *dm_get_immutable_target_type(struct mapped_device *md)
2644{
2645	return md->immutable_target_type;
2646}
2647
2648/*
2649 * The queue_limits are only valid as long as you have a reference
2650 * count on 'md'.
2651 */
2652struct queue_limits *dm_get_queue_limits(struct mapped_device *md)
2653{
2654	BUG_ON(!atomic_read(&md->holders));
2655	return &md->queue->limits;
2656}
2657EXPORT_SYMBOL_GPL(dm_get_queue_limits);
2658
2659static void dm_old_init_rq_based_worker_thread(struct mapped_device *md)
2660{
2661	/* Initialize the request-based DM worker thread */
2662	init_kthread_worker(&md->kworker);
2663	md->kworker_task = kthread_run(kthread_worker_fn, &md->kworker,
2664				       "kdmwork-%s", dm_device_name(md));
2665}
2666
2667/*
2668 * Fully initialize a .request_fn request-based queue.
2669 */
2670static int dm_old_init_request_queue(struct mapped_device *md)
2671{
2672	/* Fully initialize the queue */
2673	if (!blk_init_allocated_queue(md->queue, dm_request_fn, NULL))
2674		return -EINVAL;
2675
2676	/* disable dm_request_fn's merge heuristic by default */
2677	md->seq_rq_merge_deadline_usecs = 0;
2678
2679	dm_init_normal_md_queue(md);
2680	blk_queue_softirq_done(md->queue, dm_softirq_done);
2681	blk_queue_prep_rq(md->queue, dm_old_prep_fn);
2682
2683	dm_old_init_rq_based_worker_thread(md);
2684
2685	elv_register_queue(md->queue);
2686
2687	return 0;
2688}
2689
2690static int dm_mq_init_request(void *data, struct request *rq,
2691			      unsigned int hctx_idx, unsigned int request_idx,
2692			      unsigned int numa_node)
2693{
2694	struct mapped_device *md = data;
2695	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2696
2697	/*
2698	 * Must initialize md member of tio, otherwise it won't
2699	 * be available in dm_mq_queue_rq.
2700	 */
2701	tio->md = md;
2702
2703	if (md->init_tio_pdu) {
2704		/* target-specific per-io data is immediately after the tio */
2705		tio->info.ptr = tio + 1;
2706	}
2707
2708	return 0;
2709}
2710
2711static int dm_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
2712			  const struct blk_mq_queue_data *bd)
2713{
2714	struct request *rq = bd->rq;
2715	struct dm_rq_target_io *tio = blk_mq_rq_to_pdu(rq);
2716	struct mapped_device *md = tio->md;
2717	struct dm_target *ti = md->immutable_target;
2718
2719	if (unlikely(!ti)) {
2720		int srcu_idx;
2721		struct dm_table *map = dm_get_live_table(md, &srcu_idx);
2722
2723		ti = dm_table_find_target(map, 0);
2724		dm_put_live_table(md, srcu_idx);
2725	}
2726
2727	if (ti->type->busy && ti->type->busy(ti))
2728		return BLK_MQ_RQ_QUEUE_BUSY;
2729
2730	dm_start_request(md, rq);
2731
2732	/* Init tio using md established in .init_request */
2733	init_tio(tio, rq, md);
2734
2735	/*
2736	 * Establish tio->ti before queuing work (map_tio_request)
2737	 * or making direct call to map_request().
2738	 */
2739	tio->ti = ti;
2740
2741	/* Direct call is fine since .queue_rq allows allocations */
2742	if (map_request(tio, rq, md) == DM_MAPIO_REQUEUE) {
2743		/* Undo dm_start_request() before requeuing */
2744		rq_end_stats(md, rq);
2745		rq_completed(md, rq_data_dir(rq), false);
2746		return BLK_MQ_RQ_QUEUE_BUSY;
2747	}
2748
2749	return BLK_MQ_RQ_QUEUE_OK;
2750}
2751
2752static struct blk_mq_ops dm_mq_ops = {
2753	.queue_rq = dm_mq_queue_rq,
2754	.map_queue = blk_mq_map_queue,
2755	.complete = dm_softirq_done,
2756	.init_request = dm_mq_init_request,
2757};
2758
2759static int dm_mq_init_request_queue(struct mapped_device *md,
2760				    struct dm_target *immutable_tgt)
2761{
2762	struct request_queue *q;
2763	int err;
2764
2765	if (dm_get_md_type(md) == DM_TYPE_REQUEST_BASED) {
2766		DMERR("request-based dm-mq may only be stacked on blk-mq device(s)");
2767		return -EINVAL;
2768	}
2769
2770	md->tag_set = kzalloc_node(sizeof(struct blk_mq_tag_set), GFP_KERNEL, md->numa_node_id);
2771	if (!md->tag_set)
2772		return -ENOMEM;
2773
2774	md->tag_set->ops = &dm_mq_ops;
2775	md->tag_set->queue_depth = dm_get_blk_mq_queue_depth();
2776	md->tag_set->numa_node = md->numa_node_id;
2777	md->tag_set->flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2778	md->tag_set->nr_hw_queues = dm_get_blk_mq_nr_hw_queues();
2779	md->tag_set->driver_data = md;
2780
2781	md->tag_set->cmd_size = sizeof(struct dm_rq_target_io);
2782	if (immutable_tgt && immutable_tgt->per_io_data_size) {
2783		/* any target-specific per-io data is immediately after the tio */
2784		md->tag_set->cmd_size += immutable_tgt->per_io_data_size;
2785		md->init_tio_pdu = true;
2786	}
2787
2788	err = blk_mq_alloc_tag_set(md->tag_set);
2789	if (err)
2790		goto out_kfree_tag_set;
2791
2792	q = blk_mq_init_allocated_queue(md->tag_set, md->queue);
2793	if (IS_ERR(q)) {
2794		err = PTR_ERR(q);
2795		goto out_tag_set;
2796	}
2797	dm_init_md_queue(md);
2798
2799	/* backfill 'mq' sysfs registration normally done in blk_register_queue */
2800	blk_mq_register_disk(md->disk);
2801
2802	return 0;
2803
2804out_tag_set:
2805	blk_mq_free_tag_set(md->tag_set);
2806out_kfree_tag_set:
2807	kfree(md->tag_set);
2808
2809	return err;
2810}
2811
2812static unsigned filter_md_type(unsigned type, struct mapped_device *md)
2813{
2814	if (type == DM_TYPE_BIO_BASED)
2815		return type;
2816
2817	return !md->use_blk_mq ? DM_TYPE_REQUEST_BASED : DM_TYPE_MQ_REQUEST_BASED;
2818}
2819
2820/*
2821 * Setup the DM device's queue based on md's type
2822 */
2823int dm_setup_md_queue(struct mapped_device *md, struct dm_table *t)
2824{
 
 
 
2825	int r;
2826	unsigned md_type = filter_md_type(dm_get_md_type(md), md);
2827
2828	switch (md_type) {
2829	case DM_TYPE_REQUEST_BASED:
2830		r = dm_old_init_request_queue(md);
 
2831		if (r) {
2832			DMERR("Cannot initialize queue for request-based mapped device");
2833			return r;
2834		}
2835		break;
2836	case DM_TYPE_MQ_REQUEST_BASED:
2837		r = dm_mq_init_request_queue(md, dm_table_get_immutable_target(t));
2838		if (r) {
2839			DMERR("Cannot initialize queue for request-based dm-mq mapped device");
2840			return r;
2841		}
2842		break;
2843	case DM_TYPE_BIO_BASED:
2844		dm_init_normal_md_queue(md);
2845		blk_queue_make_request(md->queue, dm_make_request);
2846		/*
2847		 * DM handles splitting bios as needed.  Free the bio_split bioset
2848		 * since it won't be used (saves 1 process per bio-based DM device).
2849		 */
2850		bioset_free(md->queue->bio_split);
2851		md->queue->bio_split = NULL;
2852		break;
2853	}
2854
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2855	return 0;
 
 
 
 
 
 
 
 
2856}
2857
2858struct mapped_device *dm_get_md(dev_t dev)
2859{
2860	struct mapped_device *md;
2861	unsigned minor = MINOR(dev);
2862
2863	if (MAJOR(dev) != _major || minor >= (1 << MINORBITS))
2864		return NULL;
2865
2866	spin_lock(&_minor_lock);
2867
2868	md = idr_find(&_minor_idr, minor);
2869	if (md) {
2870		if ((md == MINOR_ALLOCED ||
2871		     (MINOR(disk_devt(dm_disk(md))) != minor) ||
2872		     dm_deleting_md(md) ||
2873		     test_bit(DMF_FREEING, &md->flags))) {
2874			md = NULL;
2875			goto out;
2876		}
2877		dm_get(md);
2878	}
2879
2880out:
2881	spin_unlock(&_minor_lock);
2882
2883	return md;
2884}
2885EXPORT_SYMBOL_GPL(dm_get_md);
2886
2887void *dm_get_mdptr(struct mapped_device *md)
2888{
2889	return md->interface_ptr;
2890}
2891
2892void dm_set_mdptr(struct mapped_device *md, void *ptr)
2893{
2894	md->interface_ptr = ptr;
2895}
2896
2897void dm_get(struct mapped_device *md)
2898{
2899	atomic_inc(&md->holders);
2900	BUG_ON(test_bit(DMF_FREEING, &md->flags));
2901}
2902
2903int dm_hold(struct mapped_device *md)
2904{
2905	spin_lock(&_minor_lock);
2906	if (test_bit(DMF_FREEING, &md->flags)) {
2907		spin_unlock(&_minor_lock);
2908		return -EBUSY;
2909	}
2910	dm_get(md);
2911	spin_unlock(&_minor_lock);
2912	return 0;
2913}
2914EXPORT_SYMBOL_GPL(dm_hold);
2915
2916const char *dm_device_name(struct mapped_device *md)
2917{
2918	return md->name;
2919}
2920EXPORT_SYMBOL_GPL(dm_device_name);
2921
2922static void __dm_destroy(struct mapped_device *md, bool wait)
2923{
2924	struct dm_table *map;
2925	int srcu_idx;
2926
2927	might_sleep();
2928
2929	spin_lock(&_minor_lock);
2930	idr_replace(&_minor_idr, MINOR_ALLOCED, MINOR(disk_devt(dm_disk(md))));
2931	set_bit(DMF_FREEING, &md->flags);
2932	spin_unlock(&_minor_lock);
2933
2934	if (dm_request_based(md) && md->kworker_task)
2935		flush_kthread_worker(&md->kworker);
2936
2937	/*
2938	 * Take suspend_lock so that presuspend and postsuspend methods
2939	 * do not race with internal suspend.
2940	 */
2941	mutex_lock(&md->suspend_lock);
2942	map = dm_get_live_table(md, &srcu_idx);
2943	if (!dm_suspended_md(md)) {
2944		dm_table_presuspend_targets(map);
 
 
2945		dm_table_postsuspend_targets(map);
2946	}
2947	/* dm_put_live_table must be before msleep, otherwise deadlock is possible */
2948	dm_put_live_table(md, srcu_idx);
2949	mutex_unlock(&md->suspend_lock);
2950
2951	/*
2952	 * Rare, but there may be I/O requests still going to complete,
2953	 * for example.  Wait for all references to disappear.
2954	 * No one should increment the reference count of the mapped_device,
2955	 * after the mapped_device state becomes DMF_FREEING.
2956	 */
2957	if (wait)
2958		while (atomic_read(&md->holders))
2959			msleep(1);
2960	else if (atomic_read(&md->holders))
2961		DMWARN("%s: Forcibly removing mapped_device still in use! (%d users)",
2962		       dm_device_name(md), atomic_read(&md->holders));
2963
2964	dm_sysfs_exit(md);
2965	dm_table_destroy(__unbind(md));
2966	free_dev(md);
2967}
2968
2969void dm_destroy(struct mapped_device *md)
2970{
2971	__dm_destroy(md, true);
2972}
2973
2974void dm_destroy_immediate(struct mapped_device *md)
2975{
2976	__dm_destroy(md, false);
2977}
2978
2979void dm_put(struct mapped_device *md)
2980{
2981	atomic_dec(&md->holders);
2982}
2983EXPORT_SYMBOL_GPL(dm_put);
2984
2985static int dm_wait_for_completion(struct mapped_device *md, int interruptible)
 
 
 
 
 
 
 
 
 
 
 
2986{
2987	int r = 0;
2988	DECLARE_WAITQUEUE(wait, current);
2989
2990	add_wait_queue(&md->wait, &wait);
2991
2992	while (1) {
2993		set_current_state(interruptible);
2994
2995		if (!md_in_flight(md))
2996			break;
2997
2998		if (interruptible == TASK_INTERRUPTIBLE &&
2999		    signal_pending(current)) {
3000			r = -EINTR;
3001			break;
3002		}
3003
3004		io_schedule();
3005	}
3006	set_current_state(TASK_RUNNING);
 
 
 
 
 
 
 
 
 
 
 
 
3007
3008	remove_wait_queue(&md->wait, &wait);
 
 
 
 
 
 
 
 
 
 
3009
3010	return r;
3011}
3012
3013/*
3014 * Process the deferred bios
3015 */
3016static void dm_wq_work(struct work_struct *work)
3017{
3018	struct mapped_device *md = container_of(work, struct mapped_device,
3019						work);
3020	struct bio *c;
3021	int srcu_idx;
3022	struct dm_table *map;
3023
3024	map = dm_get_live_table(md, &srcu_idx);
3025
3026	while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags)) {
3027		spin_lock_irq(&md->deferred_lock);
3028		c = bio_list_pop(&md->deferred);
3029		spin_unlock_irq(&md->deferred_lock);
3030
3031		if (!c)
3032			break;
3033
3034		if (dm_request_based(md))
3035			generic_make_request(c);
3036		else
3037			__split_and_process_bio(md, map, c);
3038	}
3039
3040	dm_put_live_table(md, srcu_idx);
3041}
3042
3043static void dm_queue_flush(struct mapped_device *md)
3044{
3045	clear_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3046	smp_mb__after_atomic();
3047	queue_work(md->wq, &md->work);
3048}
3049
3050/*
3051 * Swap in a new table, returning the old one for the caller to destroy.
3052 */
3053struct dm_table *dm_swap_table(struct mapped_device *md, struct dm_table *table)
3054{
3055	struct dm_table *live_map = NULL, *map = ERR_PTR(-EINVAL);
3056	struct queue_limits limits;
3057	int r;
3058
3059	mutex_lock(&md->suspend_lock);
3060
3061	/* device must be suspended */
3062	if (!dm_suspended_md(md))
3063		goto out;
3064
3065	/*
3066	 * If the new table has no data devices, retain the existing limits.
3067	 * This helps multipath with queue_if_no_path if all paths disappear,
3068	 * then new I/O is queued based on these limits, and then some paths
3069	 * reappear.
3070	 */
3071	if (dm_table_has_no_data_devices(table)) {
3072		live_map = dm_get_live_table_fast(md);
3073		if (live_map)
3074			limits = md->queue->limits;
3075		dm_put_live_table_fast(md);
3076	}
3077
3078	if (!live_map) {
3079		r = dm_calculate_queue_limits(table, &limits);
3080		if (r) {
3081			map = ERR_PTR(r);
3082			goto out;
3083		}
3084	}
3085
3086	map = __bind(md, table, &limits);
 
3087
3088out:
3089	mutex_unlock(&md->suspend_lock);
3090	return map;
3091}
3092
3093/*
3094 * Functions to lock and unlock any filesystem running on the
3095 * device.
3096 */
3097static int lock_fs(struct mapped_device *md)
3098{
3099	int r;
3100
3101	WARN_ON(md->frozen_sb);
3102
3103	md->frozen_sb = freeze_bdev(md->bdev);
3104	if (IS_ERR(md->frozen_sb)) {
3105		r = PTR_ERR(md->frozen_sb);
3106		md->frozen_sb = NULL;
3107		return r;
3108	}
3109
3110	set_bit(DMF_FROZEN, &md->flags);
3111
3112	return 0;
3113}
3114
3115static void unlock_fs(struct mapped_device *md)
3116{
3117	if (!test_bit(DMF_FROZEN, &md->flags))
3118		return;
3119
3120	thaw_bdev(md->bdev, md->frozen_sb);
3121	md->frozen_sb = NULL;
3122	clear_bit(DMF_FROZEN, &md->flags);
3123}
3124
3125/*
 
 
 
 
3126 * If __dm_suspend returns 0, the device is completely quiescent
3127 * now. There is no request-processing activity. All new requests
3128 * are being added to md->deferred list.
3129 *
3130 * Caller must hold md->suspend_lock
3131 */
3132static int __dm_suspend(struct mapped_device *md, struct dm_table *map,
3133			unsigned suspend_flags, int interruptible)
 
3134{
3135	bool do_lockfs = suspend_flags & DM_SUSPEND_LOCKFS_FLAG;
3136	bool noflush = suspend_flags & DM_SUSPEND_NOFLUSH_FLAG;
3137	int r;
3138
 
 
3139	/*
3140	 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
3141	 * This flag is cleared before dm_suspend returns.
3142	 */
3143	if (noflush)
3144		set_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
 
 
3145
3146	/*
3147	 * This gets reverted if there's an error later and the targets
3148	 * provide the .presuspend_undo hook.
3149	 */
3150	dm_table_presuspend_targets(map);
3151
3152	/*
3153	 * Flush I/O to the device.
3154	 * Any I/O submitted after lock_fs() may not be flushed.
3155	 * noflush takes precedence over do_lockfs.
3156	 * (lock_fs() flushes I/Os and waits for them to complete.)
3157	 */
3158	if (!noflush && do_lockfs) {
3159		r = lock_fs(md);
3160		if (r) {
3161			dm_table_presuspend_undo_targets(map);
3162			return r;
3163		}
3164	}
3165
3166	/*
3167	 * Here we must make sure that no processes are submitting requests
3168	 * to target drivers i.e. no one may be executing
3169	 * __split_and_process_bio. This is called from dm_request and
3170	 * dm_wq_work.
3171	 *
3172	 * To get all processes out of __split_and_process_bio in dm_request,
3173	 * we take the write lock. To prevent any process from reentering
3174	 * __split_and_process_bio from dm_request and quiesce the thread
3175	 * (dm_wq_work), we set BMF_BLOCK_IO_FOR_SUSPEND and call
3176	 * flush_workqueue(md->wq).
3177	 */
3178	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3179	if (map)
3180		synchronize_srcu(&md->io_barrier);
3181
3182	/*
3183	 * Stop md->queue before flushing md->wq in case request-based
3184	 * dm defers requests to md->wq from md->queue.
3185	 */
3186	if (dm_request_based(md)) {
3187		dm_stop_queue(md->queue);
3188		if (md->kworker_task)
3189			flush_kthread_worker(&md->kworker);
3190	}
3191
3192	flush_workqueue(md->wq);
3193
3194	/*
3195	 * At this point no more requests are entering target request routines.
3196	 * We call dm_wait_for_completion to wait for all existing requests
3197	 * to finish.
3198	 */
3199	r = dm_wait_for_completion(md, interruptible);
 
 
3200
3201	if (noflush)
3202		clear_bit(DMF_NOFLUSH_SUSPENDING, &md->flags);
3203	if (map)
3204		synchronize_srcu(&md->io_barrier);
3205
3206	/* were we interrupted ? */
3207	if (r < 0) {
3208		dm_queue_flush(md);
3209
3210		if (dm_request_based(md))
3211			dm_start_queue(md->queue);
3212
3213		unlock_fs(md);
3214		dm_table_presuspend_undo_targets(map);
3215		/* pushback list is already flushed, so skip flush */
3216	}
3217
3218	return r;
3219}
3220
3221/*
3222 * We need to be able to change a mapping table under a mounted
3223 * filesystem.  For example we might want to move some data in
3224 * the background.  Before the table can be swapped with
3225 * dm_bind_table, dm_suspend must be called to flush any in
3226 * flight bios and ensure that any further io gets deferred.
3227 */
3228/*
3229 * Suspend mechanism in request-based dm.
3230 *
3231 * 1. Flush all I/Os by lock_fs() if needed.
3232 * 2. Stop dispatching any I/O by stopping the request_queue.
3233 * 3. Wait for all in-flight I/Os to be completed or requeued.
3234 *
3235 * To abort suspend, start the request_queue.
3236 */
3237int dm_suspend(struct mapped_device *md, unsigned suspend_flags)
3238{
3239	struct dm_table *map = NULL;
3240	int r = 0;
3241
3242retry:
3243	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3244
3245	if (dm_suspended_md(md)) {
3246		r = -EINVAL;
3247		goto out_unlock;
3248	}
3249
3250	if (dm_suspended_internally_md(md)) {
3251		/* already internally suspended, wait for internal resume */
3252		mutex_unlock(&md->suspend_lock);
3253		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3254		if (r)
3255			return r;
3256		goto retry;
3257	}
3258
3259	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3260
3261	r = __dm_suspend(md, map, suspend_flags, TASK_INTERRUPTIBLE);
3262	if (r)
3263		goto out_unlock;
3264
3265	set_bit(DMF_SUSPENDED, &md->flags);
3266
3267	dm_table_postsuspend_targets(map);
 
3268
3269out_unlock:
3270	mutex_unlock(&md->suspend_lock);
3271	return r;
3272}
3273
3274static int __dm_resume(struct mapped_device *md, struct dm_table *map)
3275{
3276	if (map) {
3277		int r = dm_table_resume_targets(map);
3278		if (r)
3279			return r;
3280	}
3281
3282	dm_queue_flush(md);
3283
3284	/*
3285	 * Flushing deferred I/Os must be done after targets are resumed
3286	 * so that mapping of targets can work correctly.
3287	 * Request-based dm is queueing the deferred I/Os in its request_queue.
3288	 */
3289	if (dm_request_based(md))
3290		dm_start_queue(md->queue);
3291
3292	unlock_fs(md);
3293
3294	return 0;
3295}
3296
3297int dm_resume(struct mapped_device *md)
3298{
3299	int r = -EINVAL;
3300	struct dm_table *map = NULL;
3301
3302retry:
 
3303	mutex_lock_nested(&md->suspend_lock, SINGLE_DEPTH_NESTING);
3304
3305	if (!dm_suspended_md(md))
3306		goto out;
3307
3308	if (dm_suspended_internally_md(md)) {
3309		/* already internally suspended, wait for internal resume */
3310		mutex_unlock(&md->suspend_lock);
3311		r = wait_on_bit(&md->flags, DMF_SUSPENDED_INTERNALLY, TASK_INTERRUPTIBLE);
3312		if (r)
3313			return r;
3314		goto retry;
3315	}
3316
3317	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3318	if (!map || !dm_table_get_size(map))
3319		goto out;
3320
3321	r = __dm_resume(md, map);
3322	if (r)
3323		goto out;
3324
3325	clear_bit(DMF_SUSPENDED, &md->flags);
3326
3327	r = 0;
3328out:
3329	mutex_unlock(&md->suspend_lock);
3330
3331	return r;
3332}
3333
3334/*
3335 * Internal suspend/resume works like userspace-driven suspend. It waits
3336 * until all bios finish and prevents issuing new bios to the target drivers.
3337 * It may be used only from the kernel.
3338 */
3339
3340static void __dm_internal_suspend(struct mapped_device *md, unsigned suspend_flags)
3341{
3342	struct dm_table *map = NULL;
3343
 
 
3344	if (md->internal_suspend_count++)
3345		return; /* nested internal suspend */
3346
3347	if (dm_suspended_md(md)) {
3348		set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3349		return; /* nest suspend */
3350	}
3351
3352	map = rcu_dereference_protected(md->map, lockdep_is_held(&md->suspend_lock));
3353
3354	/*
3355	 * Using TASK_UNINTERRUPTIBLE because only NOFLUSH internal suspend is
3356	 * supported.  Properly supporting a TASK_INTERRUPTIBLE internal suspend
3357	 * would require changing .presuspend to return an error -- avoid this
3358	 * until there is a need for more elaborate variants of internal suspend.
3359	 */
3360	(void) __dm_suspend(md, map, suspend_flags, TASK_UNINTERRUPTIBLE);
3361
3362	set_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3363
 
3364	dm_table_postsuspend_targets(map);
 
3365}
3366
3367static void __dm_internal_resume(struct mapped_device *md)
3368{
3369	BUG_ON(!md->internal_suspend_count);
3370
3371	if (--md->internal_suspend_count)
3372		return; /* resume from nested internal suspend */
3373
3374	if (dm_suspended_md(md))
3375		goto done; /* resume from nested suspend */
3376
3377	/*
3378	 * NOTE: existing callers don't need to call dm_table_resume_targets
3379	 * (which may fail -- so best to avoid it for now by passing NULL map)
3380	 */
3381	(void) __dm_resume(md, NULL);
3382
3383done:
3384	clear_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3385	smp_mb__after_atomic();
3386	wake_up_bit(&md->flags, DMF_SUSPENDED_INTERNALLY);
3387}
3388
3389void dm_internal_suspend_noflush(struct mapped_device *md)
3390{
3391	mutex_lock(&md->suspend_lock);
3392	__dm_internal_suspend(md, DM_SUSPEND_NOFLUSH_FLAG);
3393	mutex_unlock(&md->suspend_lock);
3394}
3395EXPORT_SYMBOL_GPL(dm_internal_suspend_noflush);
3396
3397void dm_internal_resume(struct mapped_device *md)
3398{
3399	mutex_lock(&md->suspend_lock);
3400	__dm_internal_resume(md);
3401	mutex_unlock(&md->suspend_lock);
3402}
3403EXPORT_SYMBOL_GPL(dm_internal_resume);
3404
3405/*
3406 * Fast variants of internal suspend/resume hold md->suspend_lock,
3407 * which prevents interaction with userspace-driven suspend.
3408 */
3409
3410void dm_internal_suspend_fast(struct mapped_device *md)
3411{
3412	mutex_lock(&md->suspend_lock);
3413	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3414		return;
3415
3416	set_bit(DMF_BLOCK_IO_FOR_SUSPEND, &md->flags);
3417	synchronize_srcu(&md->io_barrier);
3418	flush_workqueue(md->wq);
3419	dm_wait_for_completion(md, TASK_UNINTERRUPTIBLE);
3420}
3421EXPORT_SYMBOL_GPL(dm_internal_suspend_fast);
3422
3423void dm_internal_resume_fast(struct mapped_device *md)
3424{
3425	if (dm_suspended_md(md) || dm_suspended_internally_md(md))
3426		goto done;
3427
3428	dm_queue_flush(md);
3429
3430done:
3431	mutex_unlock(&md->suspend_lock);
3432}
3433EXPORT_SYMBOL_GPL(dm_internal_resume_fast);
3434
3435/*-----------------------------------------------------------------
3436 * Event notification.
3437 *---------------------------------------------------------------*/
3438int dm_kobject_uevent(struct mapped_device *md, enum kobject_action action,
3439		       unsigned cookie)
3440{
 
 
3441	char udev_cookie[DM_COOKIE_LENGTH];
3442	char *envp[] = { udev_cookie, NULL };
3443
 
 
3444	if (!cookie)
3445		return kobject_uevent(&disk_to_dev(md->disk)->kobj, action);
3446	else {
3447		snprintf(udev_cookie, DM_COOKIE_LENGTH, "%s=%u",
3448			 DM_COOKIE_ENV_VAR_NAME, cookie);
3449		return kobject_uevent_env(&disk_to_dev(md->disk)->kobj,
3450					  action, envp);
3451	}
 
 
 
 
3452}
3453
3454uint32_t dm_next_uevent_seq(struct mapped_device *md)
3455{
3456	return atomic_add_return(1, &md->uevent_seq);
3457}
3458
3459uint32_t dm_get_event_nr(struct mapped_device *md)
3460{
3461	return atomic_read(&md->event_nr);
3462}
3463
3464int dm_wait_event(struct mapped_device *md, int event_nr)
3465{
3466	return wait_event_interruptible(md->eventq,
3467			(event_nr != atomic_read(&md->event_nr)));
3468}
3469
3470void dm_uevent_add(struct mapped_device *md, struct list_head *elist)
3471{
3472	unsigned long flags;
3473
3474	spin_lock_irqsave(&md->uevent_lock, flags);
3475	list_add(elist, &md->uevent_list);
3476	spin_unlock_irqrestore(&md->uevent_lock, flags);
3477}
3478
3479/*
3480 * The gendisk is only valid as long as you have a reference
3481 * count on 'md'.
3482 */
3483struct gendisk *dm_disk(struct mapped_device *md)
3484{
3485	return md->disk;
3486}
3487EXPORT_SYMBOL_GPL(dm_disk);
3488
3489struct kobject *dm_kobject(struct mapped_device *md)
3490{
3491	return &md->kobj_holder.kobj;
3492}
3493
3494struct mapped_device *dm_get_from_kobject(struct kobject *kobj)
3495{
3496	struct mapped_device *md;
3497
3498	md = container_of(kobj, struct mapped_device, kobj_holder.kobj);
3499
3500	if (test_bit(DMF_FREEING, &md->flags) ||
3501	    dm_deleting_md(md))
3502		return NULL;
 
 
 
 
 
3503
3504	dm_get(md);
3505	return md;
3506}
3507
3508int dm_suspended_md(struct mapped_device *md)
3509{
3510	return test_bit(DMF_SUSPENDED, &md->flags);
3511}
3512
 
 
 
 
 
3513int dm_suspended_internally_md(struct mapped_device *md)
3514{
3515	return test_bit(DMF_SUSPENDED_INTERNALLY, &md->flags);
3516}
3517
3518int dm_test_deferred_remove_flag(struct mapped_device *md)
3519{
3520	return test_bit(DMF_DEFERRED_REMOVE, &md->flags);
3521}
3522
3523int dm_suspended(struct dm_target *ti)
3524{
3525	return dm_suspended_md(dm_table_get_md(ti->table));
3526}
3527EXPORT_SYMBOL_GPL(dm_suspended);
3528
 
 
 
 
 
 
3529int dm_noflush_suspending(struct dm_target *ti)
3530{
3531	return __noflush_suspending(dm_table_get_md(ti->table));
3532}
3533EXPORT_SYMBOL_GPL(dm_noflush_suspending);
3534
3535struct dm_md_mempools *dm_alloc_md_mempools(struct mapped_device *md, unsigned type,
3536					    unsigned integrity, unsigned per_io_data_size)
3537{
3538	struct dm_md_mempools *pools = kzalloc_node(sizeof(*pools), GFP_KERNEL, md->numa_node_id);
3539	struct kmem_cache *cachep = NULL;
3540	unsigned int pool_size = 0;
3541	unsigned int front_pad;
 
3542
3543	if (!pools)
3544		return NULL;
3545
3546	type = filter_md_type(type, md);
 
 
 
 
 
 
 
 
3547
3548	switch (type) {
3549	case DM_TYPE_BIO_BASED:
3550		cachep = _io_cache;
3551		pool_size = dm_get_reserved_bio_based_ios();
3552		front_pad = roundup(per_io_data_size, __alignof__(struct dm_target_io)) + offsetof(struct dm_target_io, clone);
3553		break;
3554	case DM_TYPE_REQUEST_BASED:
3555		cachep = _rq_tio_cache;
3556		pool_size = dm_get_reserved_rq_based_ios();
3557		pools->rq_pool = mempool_create_slab_pool(pool_size, _rq_cache);
3558		if (!pools->rq_pool)
3559			goto out;
3560		/* fall through to setup remaining rq-based pools */
3561	case DM_TYPE_MQ_REQUEST_BASED:
3562		if (!pool_size)
3563			pool_size = dm_get_reserved_rq_based_ios();
3564		front_pad = offsetof(struct dm_rq_clone_bio_info, clone);
3565		/* per_io_data_size is used for blk-mq pdu at queue allocation */
3566		break;
3567	default:
3568		BUG();
3569	}
3570
3571	if (cachep) {
3572		pools->io_pool = mempool_create_slab_pool(pool_size, cachep);
3573		if (!pools->io_pool)
3574			goto out;
3575	}
3576
3577	pools->bs = bioset_create_nobvec(pool_size, front_pad);
3578	if (!pools->bs)
3579		goto out;
 
3580
3581	if (integrity && bioset_integrity_create(pools->bs, pool_size))
 
3582		goto out;
 
3583
3584	return pools;
 
 
3585
 
 
3586out:
3587	dm_free_md_mempools(pools);
3588
3589	return NULL;
3590}
3591
3592void dm_free_md_mempools(struct dm_md_mempools *pools)
 
 
 
 
3593{
3594	if (!pools)
3595		return;
 
 
 
 
 
 
 
 
 
 
3596
3597	mempool_destroy(pools->io_pool);
3598	mempool_destroy(pools->rq_pool);
3599
3600	if (pools->bs)
3601		bioset_free(pools->bs);
3602
3603	kfree(pools);
3604}
3605
3606static int dm_pr_register(struct block_device *bdev, u64 old_key, u64 new_key,
3607			  u32 flags)
3608{
3609	struct mapped_device *md = bdev->bd_disk->private_data;
3610	const struct pr_ops *ops;
3611	fmode_t mode;
3612	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3613
3614	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3615	if (r < 0)
3616		return r;
 
3617
3618	ops = bdev->bd_disk->fops->pr_ops;
3619	if (ops && ops->pr_register)
3620		r = ops->pr_register(bdev, old_key, new_key, flags);
3621	else
3622		r = -EOPNOTSUPP;
3623
3624	bdput(bdev);
3625	return r;
3626}
3627
3628static int dm_pr_reserve(struct block_device *bdev, u64 key, enum pr_type type,
3629			 u32 flags)
3630{
3631	struct mapped_device *md = bdev->bd_disk->private_data;
3632	const struct pr_ops *ops;
3633	fmode_t mode;
3634	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3635
3636	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3637	if (r < 0)
3638		return r;
 
3639
3640	ops = bdev->bd_disk->fops->pr_ops;
3641	if (ops && ops->pr_reserve)
3642		r = ops->pr_reserve(bdev, key, type, flags);
3643	else
3644		r = -EOPNOTSUPP;
3645
3646	bdput(bdev);
3647	return r;
3648}
3649
3650static int dm_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
3651{
3652	struct mapped_device *md = bdev->bd_disk->private_data;
3653	const struct pr_ops *ops;
3654	fmode_t mode;
3655	int r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3656
3657	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3658	if (r < 0)
3659		return r;
 
3660
3661	ops = bdev->bd_disk->fops->pr_ops;
3662	if (ops && ops->pr_release)
3663		r = ops->pr_release(bdev, key, type);
3664	else
3665		r = -EOPNOTSUPP;
3666
3667	bdput(bdev);
3668	return r;
3669}
3670
3671static int dm_pr_preempt(struct block_device *bdev, u64 old_key, u64 new_key,
3672			 enum pr_type type, bool abort)
3673{
3674	struct mapped_device *md = bdev->bd_disk->private_data;
3675	const struct pr_ops *ops;
3676	fmode_t mode;
3677	int r;
3678
3679	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3680	if (r < 0)
3681		return r;
3682
3683	ops = bdev->bd_disk->fops->pr_ops;
3684	if (ops && ops->pr_preempt)
3685		r = ops->pr_preempt(bdev, old_key, new_key, type, abort);
3686	else
3687		r = -EOPNOTSUPP;
3688
3689	bdput(bdev);
3690	return r;
3691}
3692
3693static int dm_pr_clear(struct block_device *bdev, u64 key)
3694{
3695	struct mapped_device *md = bdev->bd_disk->private_data;
3696	const struct pr_ops *ops;
3697	fmode_t mode;
3698	int r;
3699
3700	r = dm_grab_bdev_for_ioctl(md, &bdev, &mode);
3701	if (r < 0)
3702		return r;
3703
3704	ops = bdev->bd_disk->fops->pr_ops;
3705	if (ops && ops->pr_clear)
3706		r = ops->pr_clear(bdev, key);
3707	else
3708		r = -EOPNOTSUPP;
3709
3710	bdput(bdev);
3711	return r;
3712}
3713
3714static const struct pr_ops dm_pr_ops = {
3715	.pr_register	= dm_pr_register,
3716	.pr_reserve	= dm_pr_reserve,
3717	.pr_release	= dm_pr_release,
3718	.pr_preempt	= dm_pr_preempt,
3719	.pr_clear	= dm_pr_clear,
3720};
3721
3722static const struct block_device_operations dm_blk_dops = {
 
 
3723	.open = dm_blk_open,
3724	.release = dm_blk_close,
3725	.ioctl = dm_blk_ioctl,
3726	.getgeo = dm_blk_getgeo,
 
3727	.pr_ops = &dm_pr_ops,
3728	.owner = THIS_MODULE
3729};
3730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3731/*
3732 * module hooks
3733 */
3734module_init(dm_init);
3735module_exit(dm_exit);
3736
3737module_param(major, uint, 0);
3738MODULE_PARM_DESC(major, "The major number of the device mapper");
3739
3740module_param(reserved_bio_based_ios, uint, S_IRUGO | S_IWUSR);
3741MODULE_PARM_DESC(reserved_bio_based_ios, "Reserved IOs in bio-based mempools");
3742
3743module_param(reserved_rq_based_ios, uint, S_IRUGO | S_IWUSR);
3744MODULE_PARM_DESC(reserved_rq_based_ios, "Reserved IOs in request-based mempools");
3745
3746module_param(use_blk_mq, bool, S_IRUGO | S_IWUSR);
3747MODULE_PARM_DESC(use_blk_mq, "Use block multiqueue for request-based DM devices");
3748
3749module_param(dm_mq_nr_hw_queues, uint, S_IRUGO | S_IWUSR);
3750MODULE_PARM_DESC(dm_mq_nr_hw_queues, "Number of hardware queues for request-based dm-mq devices");
3751
3752module_param(dm_mq_queue_depth, uint, S_IRUGO | S_IWUSR);
3753MODULE_PARM_DESC(dm_mq_queue_depth, "Queue depth for request-based dm-mq devices");
3754
3755module_param(dm_numa_node, int, S_IRUGO | S_IWUSR);
3756MODULE_PARM_DESC(dm_numa_node, "NUMA node for DM device memory allocations");
 
 
 
3757
3758MODULE_DESCRIPTION(DM_NAME " driver");
3759MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
3760MODULE_LICENSE("GPL");