Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END	}
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112	pte_t pte;
 113
 114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115	set_pte((pte_t *)ctxp, pte);
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131			      "andn %%g3, %2, %%g3\n\t"
 132			      "sta %%g3, [%0] %1\n\t" : :
 133			      "r" (MSI_MBUS_ARBEN),
 134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138{
 139	unsigned long ptp = __nocache_pa(ptep) >> 4;
 140	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 141}
 142
 143/*
 144 * size: bytes to allocate in the nocache area.
 145 * align: bytes, number to align at.
 146 * Returns the virtual address of the allocated area.
 147 */
 148static void *__srmmu_get_nocache(int size, int align)
 149{
 150	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
 151	unsigned long addr;
 152
 153	if (size < minsz) {
 154		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 155		       size);
 156		size = minsz;
 157	}
 158	if (size & (minsz - 1)) {
 159		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
 160		       size);
 161		size += minsz - 1;
 162	}
 163	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 164
 165	offset = bit_map_string_get(&srmmu_nocache_map,
 166				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 167				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 168	if (offset == -1) {
 169		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 170		       size, (int) srmmu_nocache_size,
 171		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 172		return NULL;
 173	}
 174
 175	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 176	return (void *)addr;
 177}
 178
 179void *srmmu_get_nocache(int size, int align)
 180{
 181	void *tmp;
 182
 183	tmp = __srmmu_get_nocache(size, align);
 184
 185	if (tmp)
 186		memset(tmp, 0, size);
 187
 188	return tmp;
 189}
 190
 191void srmmu_free_nocache(void *addr, int size)
 192{
 193	unsigned long vaddr;
 194	int offset;
 195
 196	vaddr = (unsigned long)addr;
 197	if (vaddr < SRMMU_NOCACHE_VADDR) {
 198		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200		BUG();
 201	}
 202	if (vaddr + size > srmmu_nocache_end) {
 203		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204		    vaddr, srmmu_nocache_end);
 205		BUG();
 206	}
 207	if (!is_power_of_2(size)) {
 208		printk("Size 0x%x is not a power of 2\n", size);
 209		BUG();
 210	}
 211	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212		printk("Size 0x%x is too small\n", size);
 213		BUG();
 214	}
 215	if (vaddr & (size - 1)) {
 216		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217		BUG();
 218	}
 219
 220	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223	bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227						 unsigned long end);
 228
 229/* Return how much physical memory we have.  */
 230static unsigned long __init probe_memory(void)
 231{
 232	unsigned long total = 0;
 233	int i;
 234
 235	for (i = 0; sp_banks[i].num_bytes; i++)
 236		total += sp_banks[i].num_bytes;
 237
 238	return total;
 239}
 240
 241/*
 242 * Reserve nocache dynamically proportionally to the amount of
 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 244 */
 245static void __init srmmu_nocache_calcsize(void)
 246{
 247	unsigned long sysmemavail = probe_memory() / 1024;
 248	int srmmu_nocache_npages;
 249
 250	srmmu_nocache_npages =
 251		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 252
 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 254	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 255	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 256		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 257
 258	/* anything above 1280 blows up */
 259	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 260		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 261
 262	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 263	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 264}
 265
 266static void __init srmmu_nocache_init(void)
 267{
 268	void *srmmu_nocache_bitmap;
 269	unsigned int bitmap_bits;
 270	pgd_t *pgd;
 271	p4d_t *p4d;
 272	pud_t *pud;
 273	pmd_t *pmd;
 274	pte_t *pte;
 275	unsigned long paddr, vaddr;
 276	unsigned long pteval;
 277
 278	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 279
 280	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 281					    SRMMU_NOCACHE_ALIGN_MAX);
 282	if (!srmmu_nocache_pool)
 283		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 284		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 285	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 286
 287	srmmu_nocache_bitmap =
 288		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 289			       SMP_CACHE_BYTES);
 290	if (!srmmu_nocache_bitmap)
 291		panic("%s: Failed to allocate %zu bytes\n", __func__,
 292		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 293	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297	init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301	paddr = __pa((unsigned long)srmmu_nocache_pool);
 302	vaddr = SRMMU_NOCACHE_VADDR;
 303
 304	while (vaddr < srmmu_nocache_end) {
 305		pgd = pgd_offset_k(vaddr);
 306		p4d = p4d_offset(pgd, vaddr);
 307		pud = pud_offset(p4d, vaddr);
 308		pmd = pmd_offset(__nocache_fix(pud), vaddr);
 309		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313		if (srmmu_cache_pagetables)
 314			pteval |= SRMMU_CACHE;
 315
 316		set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318		vaddr += PAGE_SIZE;
 319		paddr += PAGE_SIZE;
 320	}
 321
 322	flush_cache_all();
 323	flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328	pgd_t *pgd = NULL;
 329
 330	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331	if (pgd) {
 332		pgd_t *init = pgd_offset_k(0);
 333		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336	}
 337
 338	return pgd;
 339}
 340
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm)
 350{
 351	pte_t *ptep;
 352	struct page *page;
 353
 354	if (!(ptep = pte_alloc_one_kernel(mm)))
 
 
 
 
 355		return NULL;
 356	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 357	spin_lock(&mm->page_table_lock);
 358	if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
 359		page_ref_dec(page);
 360		ptep = NULL;
 361	}
 362	spin_unlock(&mm->page_table_lock);
 363
 364	return ptep;
 365}
 366
 367void pte_free(struct mm_struct *mm, pgtable_t ptep)
 368{
 369	struct page *page;
 370
 371	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 372	spin_lock(&mm->page_table_lock);
 373	if (page_ref_dec_return(page) == 1)
 374		pgtable_pte_page_dtor(page);
 375	spin_unlock(&mm->page_table_lock);
 376
 377	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
 
 378}
 379
 380/* context handling - a dynamically sized pool is used */
 381#define NO_CONTEXT	-1
 382
 383struct ctx_list {
 384	struct ctx_list *next;
 385	struct ctx_list *prev;
 386	unsigned int ctx_number;
 387	struct mm_struct *ctx_mm;
 388};
 389
 390static struct ctx_list *ctx_list_pool;
 391static struct ctx_list ctx_free;
 392static struct ctx_list ctx_used;
 393
 394/* At boot time we determine the number of contexts */
 395static int num_contexts;
 396
 397static inline void remove_from_ctx_list(struct ctx_list *entry)
 398{
 399	entry->next->prev = entry->prev;
 400	entry->prev->next = entry->next;
 401}
 402
 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 404{
 405	entry->next = head;
 406	(entry->prev = head->prev)->next = entry;
 407	head->prev = entry;
 408}
 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 411
 412
 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 414{
 415	struct ctx_list *ctxp;
 416
 417	ctxp = ctx_free.next;
 418	if (ctxp != &ctx_free) {
 419		remove_from_ctx_list(ctxp);
 420		add_to_used_ctxlist(ctxp);
 421		mm->context = ctxp->ctx_number;
 422		ctxp->ctx_mm = mm;
 423		return;
 424	}
 425	ctxp = ctx_used.next;
 426	if (ctxp->ctx_mm == old_mm)
 427		ctxp = ctxp->next;
 428	if (ctxp == &ctx_used)
 429		panic("out of mmu contexts");
 430	flush_cache_mm(ctxp->ctx_mm);
 431	flush_tlb_mm(ctxp->ctx_mm);
 432	remove_from_ctx_list(ctxp);
 433	add_to_used_ctxlist(ctxp);
 434	ctxp->ctx_mm->context = NO_CONTEXT;
 435	ctxp->ctx_mm = mm;
 436	mm->context = ctxp->ctx_number;
 437}
 438
 439static inline void free_context(int context)
 440{
 441	struct ctx_list *ctx_old;
 442
 443	ctx_old = ctx_list_pool + context;
 444	remove_from_ctx_list(ctx_old);
 445	add_to_free_ctxlist(ctx_old);
 446}
 447
 448static void __init sparc_context_init(int numctx)
 449{
 450	int ctx;
 451	unsigned long size;
 452
 453	size = numctx * sizeof(struct ctx_list);
 454	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 455	if (!ctx_list_pool)
 456		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 457
 458	for (ctx = 0; ctx < numctx; ctx++) {
 459		struct ctx_list *clist;
 460
 461		clist = (ctx_list_pool + ctx);
 462		clist->ctx_number = ctx;
 463		clist->ctx_mm = NULL;
 464	}
 465	ctx_free.next = ctx_free.prev = &ctx_free;
 466	ctx_used.next = ctx_used.prev = &ctx_used;
 467	for (ctx = 0; ctx < numctx; ctx++)
 468		add_to_free_ctxlist(ctx_list_pool + ctx);
 469}
 470
 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 472	       struct task_struct *tsk)
 473{
 474	unsigned long flags;
 475
 476	if (mm->context == NO_CONTEXT) {
 477		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 478		alloc_context(old_mm, mm);
 479		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 480		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 481	}
 482
 483	if (sparc_cpu_model == sparc_leon)
 484		leon_switch_mm();
 485
 486	if (is_hypersparc)
 487		hyper_flush_whole_icache();
 488
 489	srmmu_set_context(mm->context);
 490}
 491
 492/* Low level IO area allocation on the SRMMU. */
 493static inline void srmmu_mapioaddr(unsigned long physaddr,
 494				   unsigned long virt_addr, int bus_type)
 495{
 496	pgd_t *pgdp;
 497	p4d_t *p4dp;
 498	pud_t *pudp;
 499	pmd_t *pmdp;
 500	pte_t *ptep;
 501	unsigned long tmp;
 502
 503	physaddr &= PAGE_MASK;
 504	pgdp = pgd_offset_k(virt_addr);
 505	p4dp = p4d_offset(pgdp, virt_addr);
 506	pudp = pud_offset(p4dp, virt_addr);
 507	pmdp = pmd_offset(pudp, virt_addr);
 508	ptep = pte_offset_kernel(pmdp, virt_addr);
 509	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 510
 511	/* I need to test whether this is consistent over all
 512	 * sun4m's.  The bus_type represents the upper 4 bits of
 513	 * 36-bit physical address on the I/O space lines...
 514	 */
 515	tmp |= (bus_type << 28);
 516	tmp |= SRMMU_PRIV;
 517	__flush_page_to_ram(virt_addr);
 518	set_pte(ptep, __pte(tmp));
 519}
 520
 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 522		      unsigned long xva, unsigned int len)
 523{
 524	while (len != 0) {
 525		len -= PAGE_SIZE;
 526		srmmu_mapioaddr(xpa, xva, bus);
 527		xva += PAGE_SIZE;
 528		xpa += PAGE_SIZE;
 529	}
 530	flush_tlb_all();
 531}
 532
 533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 534{
 535	pgd_t *pgdp;
 536	p4d_t *p4dp;
 537	pud_t *pudp;
 538	pmd_t *pmdp;
 539	pte_t *ptep;
 540
 541
 542	pgdp = pgd_offset_k(virt_addr);
 543	p4dp = p4d_offset(pgdp, virt_addr);
 544	pudp = pud_offset(p4dp, virt_addr);
 545	pmdp = pmd_offset(pudp, virt_addr);
 546	ptep = pte_offset_kernel(pmdp, virt_addr);
 547
 548	/* No need to flush uncacheable page. */
 549	__pte_clear(ptep);
 550}
 551
 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 553{
 554	while (len != 0) {
 555		len -= PAGE_SIZE;
 556		srmmu_unmapioaddr(virt_addr);
 557		virt_addr += PAGE_SIZE;
 558	}
 559	flush_tlb_all();
 560}
 561
 562/* tsunami.S */
 563extern void tsunami_flush_cache_all(void);
 564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void tsunami_flush_page_to_ram(unsigned long page);
 568extern void tsunami_flush_page_for_dma(unsigned long page);
 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void tsunami_flush_tlb_all(void);
 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 574extern void tsunami_setup_blockops(void);
 575
 576/* swift.S */
 577extern void swift_flush_cache_all(void);
 578extern void swift_flush_cache_mm(struct mm_struct *mm);
 579extern void swift_flush_cache_range(struct vm_area_struct *vma,
 580				    unsigned long start, unsigned long end);
 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 582extern void swift_flush_page_to_ram(unsigned long page);
 583extern void swift_flush_page_for_dma(unsigned long page);
 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 585extern void swift_flush_tlb_all(void);
 586extern void swift_flush_tlb_mm(struct mm_struct *mm);
 587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 588				  unsigned long start, unsigned long end);
 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 590
 591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 593{
 594	int cctx, ctx1;
 595
 596	page &= PAGE_MASK;
 597	if ((ctx1 = vma->vm_mm->context) != -1) {
 598		cctx = srmmu_get_context();
 599/* Is context # ever different from current context? P3 */
 600		if (cctx != ctx1) {
 601			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 602			srmmu_set_context(ctx1);
 603			swift_flush_page(page);
 604			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 605					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 606			srmmu_set_context(cctx);
 607		} else {
 608			 /* Rm. prot. bits from virt. c. */
 609			/* swift_flush_cache_all(); */
 610			/* swift_flush_cache_page(vma, page); */
 611			swift_flush_page(page);
 612
 613			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 614				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 615			/* same as above: srmmu_flush_tlb_page() */
 616		}
 617	}
 618}
 619#endif
 620
 621/*
 622 * The following are all MBUS based SRMMU modules, and therefore could
 623 * be found in a multiprocessor configuration.  On the whole, these
 624 * chips seems to be much more touchy about DVMA and page tables
 625 * with respect to cache coherency.
 626 */
 627
 628/* viking.S */
 629extern void viking_flush_cache_all(void);
 630extern void viking_flush_cache_mm(struct mm_struct *mm);
 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 632				     unsigned long end);
 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 634extern void viking_flush_page_to_ram(unsigned long page);
 635extern void viking_flush_page_for_dma(unsigned long page);
 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 637extern void viking_flush_page(unsigned long page);
 638extern void viking_mxcc_flush_page(unsigned long page);
 639extern void viking_flush_tlb_all(void);
 640extern void viking_flush_tlb_mm(struct mm_struct *mm);
 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 642				   unsigned long end);
 643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 644				  unsigned long page);
 645extern void sun4dsmp_flush_tlb_all(void);
 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 648				   unsigned long end);
 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 650				  unsigned long page);
 651
 652/* hypersparc.S */
 653extern void hypersparc_flush_cache_all(void);
 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 657extern void hypersparc_flush_page_to_ram(unsigned long page);
 658extern void hypersparc_flush_page_for_dma(unsigned long page);
 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 660extern void hypersparc_flush_tlb_all(void);
 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 664extern void hypersparc_setup_blockops(void);
 665
 666/*
 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 668 *       kernel mappings are done with one single contiguous chunk of
 669 *       ram.  On small ram machines (classics mainly) we only get
 670 *       around 8mb mapped for us.
 671 */
 672
 673static void __init early_pgtable_allocfail(char *type)
 674{
 675	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 676	prom_halt();
 677}
 678
 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 680							unsigned long end)
 681{
 682	pgd_t *pgdp;
 683	p4d_t *p4dp;
 684	pud_t *pudp;
 685	pmd_t *pmdp;
 686	pte_t *ptep;
 687
 688	while (start < end) {
 689		pgdp = pgd_offset_k(start);
 690		p4dp = p4d_offset(pgdp, start);
 691		pudp = pud_offset(p4dp, start);
 692		if (pud_none(*__nocache_fix(pudp))) {
 693			pmdp = __srmmu_get_nocache(
 694			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 695			if (pmdp == NULL)
 696				early_pgtable_allocfail("pmd");
 697			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 698			pud_set(__nocache_fix(pudp), pmdp);
 699		}
 700		pmdp = pmd_offset(__nocache_fix(pudp), start);
 701		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 702			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 703			if (ptep == NULL)
 704				early_pgtable_allocfail("pte");
 705			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 706			pmd_set(__nocache_fix(pmdp), ptep);
 707		}
 708		if (start > (0xffffffffUL - PMD_SIZE))
 709			break;
 710		start = (start + PMD_SIZE) & PMD_MASK;
 711	}
 712}
 713
 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 715						  unsigned long end)
 716{
 717	pgd_t *pgdp;
 718	p4d_t *p4dp;
 719	pud_t *pudp;
 720	pmd_t *pmdp;
 721	pte_t *ptep;
 722
 723	while (start < end) {
 724		pgdp = pgd_offset_k(start);
 725		p4dp = p4d_offset(pgdp, start);
 726		pudp = pud_offset(p4dp, start);
 727		if (pud_none(*pudp)) {
 728			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 729			if (pmdp == NULL)
 730				early_pgtable_allocfail("pmd");
 731			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 732			pud_set((pud_t *)pgdp, pmdp);
 733		}
 734		pmdp = pmd_offset(pudp, start);
 735		if (srmmu_pmd_none(*pmdp)) {
 736			ptep = __srmmu_get_nocache(PTE_SIZE,
 737							     PTE_SIZE);
 738			if (ptep == NULL)
 739				early_pgtable_allocfail("pte");
 740			memset(ptep, 0, PTE_SIZE);
 741			pmd_set(pmdp, ptep);
 742		}
 743		if (start > (0xffffffffUL - PMD_SIZE))
 744			break;
 745		start = (start + PMD_SIZE) & PMD_MASK;
 746	}
 747}
 748
 749/* These flush types are not available on all chips... */
 750static inline unsigned long srmmu_probe(unsigned long vaddr)
 751{
 752	unsigned long retval;
 753
 754	if (sparc_cpu_model != sparc_leon) {
 755
 756		vaddr &= PAGE_MASK;
 757		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 758				     "=r" (retval) :
 759				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 760	} else {
 761		retval = leon_swprobe(vaddr, NULL);
 762	}
 763	return retval;
 764}
 765
 766/*
 767 * This is much cleaner than poking around physical address space
 768 * looking at the prom's page table directly which is what most
 769 * other OS's do.  Yuck... this is much better.
 770 */
 771static void __init srmmu_inherit_prom_mappings(unsigned long start,
 772					       unsigned long end)
 773{
 774	unsigned long probed;
 775	unsigned long addr;
 776	pgd_t *pgdp;
 777	p4d_t *p4dp;
 778	pud_t *pudp;
 779	pmd_t *pmdp;
 780	pte_t *ptep;
 781	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 782
 783	while (start <= end) {
 784		if (start == 0)
 785			break; /* probably wrap around */
 786		if (start == 0xfef00000)
 787			start = KADB_DEBUGGER_BEGVM;
 788		probed = srmmu_probe(start);
 789		if (!probed) {
 790			/* continue probing until we find an entry */
 791			start += PAGE_SIZE;
 792			continue;
 793		}
 794
 795		/* A red snapper, see what it really is. */
 796		what = 0;
 797		addr = start - PAGE_SIZE;
 798
 799		if (!(start & ~(PMD_MASK))) {
 800			if (srmmu_probe(addr + PMD_SIZE) == probed)
 801				what = 1;
 802		}
 803
 804		if (!(start & ~(PGDIR_MASK))) {
 805			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
 806				what = 2;
 807		}
 808
 809		pgdp = pgd_offset_k(start);
 810		p4dp = p4d_offset(pgdp, start);
 811		pudp = pud_offset(p4dp, start);
 812		if (what == 2) {
 813			*__nocache_fix(pgdp) = __pgd(probed);
 814			start += PGDIR_SIZE;
 815			continue;
 816		}
 817		if (pud_none(*__nocache_fix(pudp))) {
 818			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 819						   SRMMU_PMD_TABLE_SIZE);
 820			if (pmdp == NULL)
 821				early_pgtable_allocfail("pmd");
 822			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 823			pud_set(__nocache_fix(pudp), pmdp);
 824		}
 825		pmdp = pmd_offset(__nocache_fix(pudp), start);
 826		if (what == 1) {
 827			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
 828			start += PMD_SIZE;
 829			continue;
 830		}
 831		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 
 832			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 833			if (ptep == NULL)
 834				early_pgtable_allocfail("pte");
 835			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 836			pmd_set(__nocache_fix(pmdp), ptep);
 837		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 838		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 839		*__nocache_fix(ptep) = __pte(probed);
 840		start += PAGE_SIZE;
 841	}
 842}
 843
 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 845
 846/* Create a third-level SRMMU 16MB page mapping. */
 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 848{
 849	pgd_t *pgdp = pgd_offset_k(vaddr);
 850	unsigned long big_pte;
 851
 852	big_pte = KERNEL_PTE(phys_base >> 4);
 853	*__nocache_fix(pgdp) = __pgd(big_pte);
 854}
 855
 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 858{
 859	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
 860	unsigned long vstart = (vbase & PGDIR_MASK);
 861	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 862	/* Map "low" memory only */
 863	const unsigned long min_vaddr = PAGE_OFFSET;
 864	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 865
 866	if (vstart < min_vaddr || vstart >= max_vaddr)
 867		return vstart;
 868
 869	if (vend > max_vaddr || vend < min_vaddr)
 870		vend = max_vaddr;
 871
 872	while (vstart < vend) {
 873		do_large_mapping(vstart, pstart);
 874		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
 875	}
 876	return vstart;
 877}
 878
 879static void __init map_kernel(void)
 880{
 881	int i;
 882
 883	if (phys_base > 0) {
 884		do_large_mapping(PAGE_OFFSET, phys_base);
 885	}
 886
 887	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 888		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 889	}
 890}
 891
 892void (*poke_srmmu)(void) = NULL;
 893
 894void __init srmmu_paging_init(void)
 895{
 896	int i;
 897	phandle cpunode;
 898	char node_str[128];
 899	pgd_t *pgd;
 900	p4d_t *p4d;
 901	pud_t *pud;
 902	pmd_t *pmd;
 903	pte_t *pte;
 904	unsigned long pages_avail;
 905
 906	init_mm.context = (unsigned long) NO_CONTEXT;
 907	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 908
 909	if (sparc_cpu_model == sun4d)
 910		num_contexts = 65536; /* We know it is Viking */
 911	else {
 912		/* Find the number of contexts on the srmmu. */
 913		cpunode = prom_getchild(prom_root_node);
 914		num_contexts = 0;
 915		while (cpunode != 0) {
 916			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 917			if (!strcmp(node_str, "cpu")) {
 918				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 919				break;
 920			}
 921			cpunode = prom_getsibling(cpunode);
 922		}
 923	}
 924
 925	if (!num_contexts) {
 926		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 927		prom_halt();
 928	}
 929
 930	pages_avail = 0;
 931	last_valid_pfn = bootmem_init(&pages_avail);
 932
 933	srmmu_nocache_calcsize();
 934	srmmu_nocache_init();
 935	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 936	map_kernel();
 937
 938	/* ctx table has to be physically aligned to its size */
 939	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 940	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 941
 942	for (i = 0; i < num_contexts; i++)
 943		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 944
 945	flush_cache_all();
 946	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 947#ifdef CONFIG_SMP
 948	/* Stop from hanging here... */
 949	local_ops->tlb_all();
 950#else
 951	flush_tlb_all();
 952#endif
 953	poke_srmmu();
 954
 955	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 956	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 957
 958	srmmu_allocate_ptable_skeleton(
 959		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 960	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 961
 962	pgd = pgd_offset_k(PKMAP_BASE);
 963	p4d = p4d_offset(pgd, PKMAP_BASE);
 964	pud = pud_offset(p4d, PKMAP_BASE);
 965	pmd = pmd_offset(pud, PKMAP_BASE);
 966	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 967	pkmap_page_table = pte;
 968
 969	flush_cache_all();
 970	flush_tlb_all();
 971
 972	sparc_context_init(num_contexts);
 973
 
 
 974	{
 975		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
 
 
 
 976
 977		max_zone_pfn[ZONE_DMA] = max_low_pfn;
 978		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 979		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
 980
 981		free_area_init(max_zone_pfn);
 
 
 
 
 
 
 
 
 
 982	}
 983}
 984
 985void mmu_info(struct seq_file *m)
 986{
 987	seq_printf(m,
 988		   "MMU type\t: %s\n"
 989		   "contexts\t: %d\n"
 990		   "nocache total\t: %ld\n"
 991		   "nocache used\t: %d\n",
 992		   srmmu_name,
 993		   num_contexts,
 994		   srmmu_nocache_size,
 995		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 996}
 997
 998int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 999{
1000	mm->context = NO_CONTEXT;
1001	return 0;
1002}
1003
1004void destroy_context(struct mm_struct *mm)
1005{
1006	unsigned long flags;
1007
1008	if (mm->context != NO_CONTEXT) {
1009		flush_cache_mm(mm);
1010		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1011		flush_tlb_mm(mm);
1012		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1013		free_context(mm->context);
1014		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1015		mm->context = NO_CONTEXT;
1016	}
1017}
1018
1019/* Init various srmmu chip types. */
1020static void __init srmmu_is_bad(void)
1021{
1022	prom_printf("Could not determine SRMMU chip type.\n");
1023	prom_halt();
1024}
1025
1026static void __init init_vac_layout(void)
1027{
1028	phandle nd;
1029	int cache_lines;
1030	char node_str[128];
1031#ifdef CONFIG_SMP
1032	int cpu = 0;
1033	unsigned long max_size = 0;
1034	unsigned long min_line_size = 0x10000000;
1035#endif
1036
1037	nd = prom_getchild(prom_root_node);
1038	while ((nd = prom_getsibling(nd)) != 0) {
1039		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1040		if (!strcmp(node_str, "cpu")) {
1041			vac_line_size = prom_getint(nd, "cache-line-size");
1042			if (vac_line_size == -1) {
1043				prom_printf("can't determine cache-line-size, halting.\n");
1044				prom_halt();
1045			}
1046			cache_lines = prom_getint(nd, "cache-nlines");
1047			if (cache_lines == -1) {
1048				prom_printf("can't determine cache-nlines, halting.\n");
1049				prom_halt();
1050			}
1051
1052			vac_cache_size = cache_lines * vac_line_size;
1053#ifdef CONFIG_SMP
1054			if (vac_cache_size > max_size)
1055				max_size = vac_cache_size;
1056			if (vac_line_size < min_line_size)
1057				min_line_size = vac_line_size;
1058			//FIXME: cpus not contiguous!!
1059			cpu++;
1060			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1061				break;
1062#else
1063			break;
1064#endif
1065		}
1066	}
1067	if (nd == 0) {
1068		prom_printf("No CPU nodes found, halting.\n");
1069		prom_halt();
1070	}
1071#ifdef CONFIG_SMP
1072	vac_cache_size = max_size;
1073	vac_line_size = min_line_size;
1074#endif
1075	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1076	       (int)vac_cache_size, (int)vac_line_size);
1077}
1078
1079static void poke_hypersparc(void)
1080{
1081	volatile unsigned long clear;
1082	unsigned long mreg = srmmu_get_mmureg();
1083
1084	hyper_flush_unconditional_combined();
1085
1086	mreg &= ~(HYPERSPARC_CWENABLE);
1087	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1088	mreg |= (HYPERSPARC_CMODE);
1089
1090	srmmu_set_mmureg(mreg);
1091
1092#if 0 /* XXX I think this is bad news... -DaveM */
1093	hyper_clear_all_tags();
1094#endif
1095
1096	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1097	hyper_flush_whole_icache();
1098	clear = srmmu_get_faddr();
1099	clear = srmmu_get_fstatus();
1100}
1101
1102static const struct sparc32_cachetlb_ops hypersparc_ops = {
1103	.cache_all	= hypersparc_flush_cache_all,
1104	.cache_mm	= hypersparc_flush_cache_mm,
1105	.cache_page	= hypersparc_flush_cache_page,
1106	.cache_range	= hypersparc_flush_cache_range,
1107	.tlb_all	= hypersparc_flush_tlb_all,
1108	.tlb_mm		= hypersparc_flush_tlb_mm,
1109	.tlb_page	= hypersparc_flush_tlb_page,
1110	.tlb_range	= hypersparc_flush_tlb_range,
1111	.page_to_ram	= hypersparc_flush_page_to_ram,
1112	.sig_insns	= hypersparc_flush_sig_insns,
1113	.page_for_dma	= hypersparc_flush_page_for_dma,
1114};
1115
1116static void __init init_hypersparc(void)
1117{
1118	srmmu_name = "ROSS HyperSparc";
1119	srmmu_modtype = HyperSparc;
1120
1121	init_vac_layout();
1122
1123	is_hypersparc = 1;
1124	sparc32_cachetlb_ops = &hypersparc_ops;
1125
1126	poke_srmmu = poke_hypersparc;
1127
1128	hypersparc_setup_blockops();
1129}
1130
1131static void poke_swift(void)
1132{
1133	unsigned long mreg;
1134
1135	/* Clear any crap from the cache or else... */
1136	swift_flush_cache_all();
1137
1138	/* Enable I & D caches */
1139	mreg = srmmu_get_mmureg();
1140	mreg |= (SWIFT_IE | SWIFT_DE);
1141	/*
1142	 * The Swift branch folding logic is completely broken.  At
1143	 * trap time, if things are just right, if can mistakenly
1144	 * think that a trap is coming from kernel mode when in fact
1145	 * it is coming from user mode (it mis-executes the branch in
1146	 * the trap code).  So you see things like crashme completely
1147	 * hosing your machine which is completely unacceptable.  Turn
1148	 * this shit off... nice job Fujitsu.
1149	 */
1150	mreg &= ~(SWIFT_BF);
1151	srmmu_set_mmureg(mreg);
1152}
1153
1154static const struct sparc32_cachetlb_ops swift_ops = {
1155	.cache_all	= swift_flush_cache_all,
1156	.cache_mm	= swift_flush_cache_mm,
1157	.cache_page	= swift_flush_cache_page,
1158	.cache_range	= swift_flush_cache_range,
1159	.tlb_all	= swift_flush_tlb_all,
1160	.tlb_mm		= swift_flush_tlb_mm,
1161	.tlb_page	= swift_flush_tlb_page,
1162	.tlb_range	= swift_flush_tlb_range,
1163	.page_to_ram	= swift_flush_page_to_ram,
1164	.sig_insns	= swift_flush_sig_insns,
1165	.page_for_dma	= swift_flush_page_for_dma,
1166};
1167
1168#define SWIFT_MASKID_ADDR  0x10003018
1169static void __init init_swift(void)
1170{
1171	unsigned long swift_rev;
1172
1173	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1174			     "srl %0, 0x18, %0\n\t" :
1175			     "=r" (swift_rev) :
1176			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1177	srmmu_name = "Fujitsu Swift";
1178	switch (swift_rev) {
1179	case 0x11:
1180	case 0x20:
1181	case 0x23:
1182	case 0x30:
1183		srmmu_modtype = Swift_lots_o_bugs;
1184		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1185		/*
1186		 * Gee george, I wonder why Sun is so hush hush about
1187		 * this hardware bug... really braindamage stuff going
1188		 * on here.  However I think we can find a way to avoid
1189		 * all of the workaround overhead under Linux.  Basically,
1190		 * any page fault can cause kernel pages to become user
1191		 * accessible (the mmu gets confused and clears some of
1192		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1193		 * horrible eh?  But wait, after extensive testing it appears
1194		 * that if you use pgd_t level large kernel pte's (like the
1195		 * 4MB pages on the Pentium) the bug does not get tripped
1196		 * at all.  This avoids almost all of the major overhead.
1197		 * Welcome to a world where your vendor tells you to,
1198		 * "apply this kernel patch" instead of "sorry for the
1199		 * broken hardware, send it back and we'll give you
1200		 * properly functioning parts"
1201		 */
1202		break;
1203	case 0x25:
1204	case 0x31:
1205		srmmu_modtype = Swift_bad_c;
1206		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1207		/*
1208		 * You see Sun allude to this hardware bug but never
1209		 * admit things directly, they'll say things like,
1210		 * "the Swift chip cache problems" or similar.
1211		 */
1212		break;
1213	default:
1214		srmmu_modtype = Swift_ok;
1215		break;
1216	}
1217
1218	sparc32_cachetlb_ops = &swift_ops;
1219	flush_page_for_dma_global = 0;
1220
1221	/*
1222	 * Are you now convinced that the Swift is one of the
1223	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1224	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1225	 * you examined the microcode of the Swift you'd find
1226	 * XXX's all over the place.
1227	 */
1228	poke_srmmu = poke_swift;
1229}
1230
1231static void turbosparc_flush_cache_all(void)
1232{
1233	flush_user_windows();
1234	turbosparc_idflash_clear();
1235}
1236
1237static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1238{
1239	FLUSH_BEGIN(mm)
1240	flush_user_windows();
1241	turbosparc_idflash_clear();
1242	FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1246{
1247	FLUSH_BEGIN(vma->vm_mm)
1248	flush_user_windows();
1249	turbosparc_idflash_clear();
1250	FLUSH_END
1251}
1252
1253static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1254{
1255	FLUSH_BEGIN(vma->vm_mm)
1256	flush_user_windows();
1257	if (vma->vm_flags & VM_EXEC)
1258		turbosparc_flush_icache();
1259	turbosparc_flush_dcache();
1260	FLUSH_END
1261}
1262
1263/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1264static void turbosparc_flush_page_to_ram(unsigned long page)
1265{
1266#ifdef TURBOSPARC_WRITEBACK
1267	volatile unsigned long clear;
1268
1269	if (srmmu_probe(page))
1270		turbosparc_flush_page_cache(page);
1271	clear = srmmu_get_fstatus();
1272#endif
1273}
1274
1275static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1276{
1277}
1278
1279static void turbosparc_flush_page_for_dma(unsigned long page)
1280{
1281	turbosparc_flush_dcache();
1282}
1283
1284static void turbosparc_flush_tlb_all(void)
1285{
1286	srmmu_flush_whole_tlb();
1287}
1288
1289static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1290{
1291	FLUSH_BEGIN(mm)
1292	srmmu_flush_whole_tlb();
1293	FLUSH_END
1294}
1295
1296static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1297{
1298	FLUSH_BEGIN(vma->vm_mm)
1299	srmmu_flush_whole_tlb();
1300	FLUSH_END
1301}
1302
1303static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1304{
1305	FLUSH_BEGIN(vma->vm_mm)
1306	srmmu_flush_whole_tlb();
1307	FLUSH_END
1308}
1309
1310
1311static void poke_turbosparc(void)
1312{
1313	unsigned long mreg = srmmu_get_mmureg();
1314	unsigned long ccreg;
1315
1316	/* Clear any crap from the cache or else... */
1317	turbosparc_flush_cache_all();
1318	/* Temporarily disable I & D caches */
1319	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1320	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1321	srmmu_set_mmureg(mreg);
1322
1323	ccreg = turbosparc_get_ccreg();
1324
1325#ifdef TURBOSPARC_WRITEBACK
1326	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1327	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1328			/* Write-back D-cache, emulate VLSI
1329			 * abortion number three, not number one */
1330#else
1331	/* For now let's play safe, optimize later */
1332	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1333			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1334	ccreg &= ~(TURBOSPARC_uS2);
1335			/* Emulate VLSI abortion number three, not number one */
1336#endif
1337
1338	switch (ccreg & 7) {
1339	case 0: /* No SE cache */
1340	case 7: /* Test mode */
1341		break;
1342	default:
1343		ccreg |= (TURBOSPARC_SCENABLE);
1344	}
1345	turbosparc_set_ccreg(ccreg);
1346
1347	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1348	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1349	srmmu_set_mmureg(mreg);
1350}
1351
1352static const struct sparc32_cachetlb_ops turbosparc_ops = {
1353	.cache_all	= turbosparc_flush_cache_all,
1354	.cache_mm	= turbosparc_flush_cache_mm,
1355	.cache_page	= turbosparc_flush_cache_page,
1356	.cache_range	= turbosparc_flush_cache_range,
1357	.tlb_all	= turbosparc_flush_tlb_all,
1358	.tlb_mm		= turbosparc_flush_tlb_mm,
1359	.tlb_page	= turbosparc_flush_tlb_page,
1360	.tlb_range	= turbosparc_flush_tlb_range,
1361	.page_to_ram	= turbosparc_flush_page_to_ram,
1362	.sig_insns	= turbosparc_flush_sig_insns,
1363	.page_for_dma	= turbosparc_flush_page_for_dma,
1364};
1365
1366static void __init init_turbosparc(void)
1367{
1368	srmmu_name = "Fujitsu TurboSparc";
1369	srmmu_modtype = TurboSparc;
1370	sparc32_cachetlb_ops = &turbosparc_ops;
1371	poke_srmmu = poke_turbosparc;
1372}
1373
1374static void poke_tsunami(void)
1375{
1376	unsigned long mreg = srmmu_get_mmureg();
1377
1378	tsunami_flush_icache();
1379	tsunami_flush_dcache();
1380	mreg &= ~TSUNAMI_ITD;
1381	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1382	srmmu_set_mmureg(mreg);
1383}
1384
1385static const struct sparc32_cachetlb_ops tsunami_ops = {
1386	.cache_all	= tsunami_flush_cache_all,
1387	.cache_mm	= tsunami_flush_cache_mm,
1388	.cache_page	= tsunami_flush_cache_page,
1389	.cache_range	= tsunami_flush_cache_range,
1390	.tlb_all	= tsunami_flush_tlb_all,
1391	.tlb_mm		= tsunami_flush_tlb_mm,
1392	.tlb_page	= tsunami_flush_tlb_page,
1393	.tlb_range	= tsunami_flush_tlb_range,
1394	.page_to_ram	= tsunami_flush_page_to_ram,
1395	.sig_insns	= tsunami_flush_sig_insns,
1396	.page_for_dma	= tsunami_flush_page_for_dma,
1397};
1398
1399static void __init init_tsunami(void)
1400{
1401	/*
1402	 * Tsunami's pretty sane, Sun and TI actually got it
1403	 * somewhat right this time.  Fujitsu should have
1404	 * taken some lessons from them.
1405	 */
1406
1407	srmmu_name = "TI Tsunami";
1408	srmmu_modtype = Tsunami;
1409	sparc32_cachetlb_ops = &tsunami_ops;
1410	poke_srmmu = poke_tsunami;
1411
1412	tsunami_setup_blockops();
1413}
1414
1415static void poke_viking(void)
1416{
1417	unsigned long mreg = srmmu_get_mmureg();
1418	static int smp_catch;
1419
1420	if (viking_mxcc_present) {
1421		unsigned long mxcc_control = mxcc_get_creg();
1422
1423		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1424		mxcc_control &= ~(MXCC_CTL_RRC);
1425		mxcc_set_creg(mxcc_control);
1426
1427		/*
1428		 * We don't need memory parity checks.
1429		 * XXX This is a mess, have to dig out later. ecd.
1430		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1431		 */
1432
1433		/* We do cache ptables on MXCC. */
1434		mreg |= VIKING_TCENABLE;
1435	} else {
1436		unsigned long bpreg;
1437
1438		mreg &= ~(VIKING_TCENABLE);
1439		if (smp_catch++) {
1440			/* Must disable mixed-cmd mode here for other cpu's. */
1441			bpreg = viking_get_bpreg();
1442			bpreg &= ~(VIKING_ACTION_MIX);
1443			viking_set_bpreg(bpreg);
1444
1445			/* Just in case PROM does something funny. */
1446			msi_set_sync();
1447		}
1448	}
1449
1450	mreg |= VIKING_SPENABLE;
1451	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1452	mreg |= VIKING_SBENABLE;
1453	mreg &= ~(VIKING_ACENABLE);
1454	srmmu_set_mmureg(mreg);
1455}
1456
1457static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1458	.cache_all	= viking_flush_cache_all,
1459	.cache_mm	= viking_flush_cache_mm,
1460	.cache_page	= viking_flush_cache_page,
1461	.cache_range	= viking_flush_cache_range,
1462	.tlb_all	= viking_flush_tlb_all,
1463	.tlb_mm		= viking_flush_tlb_mm,
1464	.tlb_page	= viking_flush_tlb_page,
1465	.tlb_range	= viking_flush_tlb_range,
1466	.page_to_ram	= viking_flush_page_to_ram,
1467	.sig_insns	= viking_flush_sig_insns,
1468	.page_for_dma	= viking_flush_page_for_dma,
1469};
1470
1471#ifdef CONFIG_SMP
1472/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1473 * perform the local TLB flush and all the other cpus will see it.
1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1475 * that requires that we add some synchronization to these flushes.
1476 *
1477 * The bug is that the fifo which keeps track of all the pending TLB
1478 * broadcasts in the system is an entry or two too small, so if we
1479 * have too many going at once we'll overflow that fifo and lose a TLB
1480 * flush resulting in corruption.
1481 *
1482 * Our workaround is to take a global spinlock around the TLB flushes,
1483 * which guarentees we won't ever have too many pending.  It's a big
1484 * hammer, but a semaphore like system to make sure we only have N TLB
1485 * flushes going at once will require SMP locking anyways so there's
1486 * no real value in trying any harder than this.
1487 */
1488static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1489	.cache_all	= viking_flush_cache_all,
1490	.cache_mm	= viking_flush_cache_mm,
1491	.cache_page	= viking_flush_cache_page,
1492	.cache_range	= viking_flush_cache_range,
1493	.tlb_all	= sun4dsmp_flush_tlb_all,
1494	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1495	.tlb_page	= sun4dsmp_flush_tlb_page,
1496	.tlb_range	= sun4dsmp_flush_tlb_range,
1497	.page_to_ram	= viking_flush_page_to_ram,
1498	.sig_insns	= viking_flush_sig_insns,
1499	.page_for_dma	= viking_flush_page_for_dma,
1500};
1501#endif
1502
1503static void __init init_viking(void)
1504{
1505	unsigned long mreg = srmmu_get_mmureg();
1506
1507	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1508	if (mreg & VIKING_MMODE) {
1509		srmmu_name = "TI Viking";
1510		viking_mxcc_present = 0;
1511		msi_set_sync();
1512
1513		/*
1514		 * We need this to make sure old viking takes no hits
1515		 * on it's cache for dma snoops to workaround the
1516		 * "load from non-cacheable memory" interrupt bug.
1517		 * This is only necessary because of the new way in
1518		 * which we use the IOMMU.
1519		 */
1520		viking_ops.page_for_dma = viking_flush_page;
1521#ifdef CONFIG_SMP
1522		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1523#endif
1524		flush_page_for_dma_global = 0;
1525	} else {
1526		srmmu_name = "TI Viking/MXCC";
1527		viking_mxcc_present = 1;
1528		srmmu_cache_pagetables = 1;
1529	}
1530
1531	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1532		&viking_ops;
1533#ifdef CONFIG_SMP
1534	if (sparc_cpu_model == sun4d)
1535		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1536			&viking_sun4d_smp_ops;
1537#endif
1538
1539	poke_srmmu = poke_viking;
1540}
1541
1542/* Probe for the srmmu chip version. */
1543static void __init get_srmmu_type(void)
1544{
1545	unsigned long mreg, psr;
1546	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1547
1548	srmmu_modtype = SRMMU_INVAL_MOD;
1549	hwbug_bitmask = 0;
1550
1551	mreg = srmmu_get_mmureg(); psr = get_psr();
1552	mod_typ = (mreg & 0xf0000000) >> 28;
1553	mod_rev = (mreg & 0x0f000000) >> 24;
1554	psr_typ = (psr >> 28) & 0xf;
1555	psr_vers = (psr >> 24) & 0xf;
1556
1557	/* First, check for sparc-leon. */
1558	if (sparc_cpu_model == sparc_leon) {
1559		init_leon();
1560		return;
1561	}
1562
1563	/* Second, check for HyperSparc or Cypress. */
1564	if (mod_typ == 1) {
1565		switch (mod_rev) {
1566		case 7:
1567			/* UP or MP Hypersparc */
1568			init_hypersparc();
1569			break;
1570		case 0:
1571		case 2:
1572		case 10:
1573		case 11:
1574		case 12:
1575		case 13:
1576		case 14:
1577		case 15:
1578		default:
1579			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1580			prom_halt();
1581			break;
1582		}
1583		return;
1584	}
1585
1586	/* Now Fujitsu TurboSparc. It might happen that it is
1587	 * in Swift emulation mode, so we will check later...
1588	 */
1589	if (psr_typ == 0 && psr_vers == 5) {
1590		init_turbosparc();
1591		return;
1592	}
1593
1594	/* Next check for Fujitsu Swift. */
1595	if (psr_typ == 0 && psr_vers == 4) {
1596		phandle cpunode;
1597		char node_str[128];
1598
1599		/* Look if it is not a TurboSparc emulating Swift... */
1600		cpunode = prom_getchild(prom_root_node);
1601		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1602			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1603			if (!strcmp(node_str, "cpu")) {
1604				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1605				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1606					init_turbosparc();
1607					return;
1608				}
1609				break;
1610			}
1611		}
1612
1613		init_swift();
1614		return;
1615	}
1616
1617	/* Now the Viking family of srmmu. */
1618	if (psr_typ == 4 &&
1619	   ((psr_vers == 0) ||
1620	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1621		init_viking();
1622		return;
1623	}
1624
1625	/* Finally the Tsunami. */
1626	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1627		init_tsunami();
1628		return;
1629	}
1630
1631	/* Oh well */
1632	srmmu_is_bad();
1633}
1634
1635#ifdef CONFIG_SMP
1636/* Local cross-calls. */
1637static void smp_flush_page_for_dma(unsigned long page)
1638{
1639	xc1(local_ops->page_for_dma, page);
1640	local_ops->page_for_dma(page);
1641}
1642
1643static void smp_flush_cache_all(void)
1644{
1645	xc0(local_ops->cache_all);
1646	local_ops->cache_all();
1647}
1648
1649static void smp_flush_tlb_all(void)
1650{
1651	xc0(local_ops->tlb_all);
1652	local_ops->tlb_all();
1653}
1654
1655static void smp_flush_cache_mm(struct mm_struct *mm)
1656{
1657	if (mm->context != NO_CONTEXT) {
1658		cpumask_t cpu_mask;
1659		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1660		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1661		if (!cpumask_empty(&cpu_mask))
1662			xc1(local_ops->cache_mm, (unsigned long)mm);
1663		local_ops->cache_mm(mm);
1664	}
1665}
1666
1667static void smp_flush_tlb_mm(struct mm_struct *mm)
1668{
1669	if (mm->context != NO_CONTEXT) {
1670		cpumask_t cpu_mask;
1671		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673		if (!cpumask_empty(&cpu_mask)) {
1674			xc1(local_ops->tlb_mm, (unsigned long)mm);
1675			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676				cpumask_copy(mm_cpumask(mm),
1677					     cpumask_of(smp_processor_id()));
1678		}
1679		local_ops->tlb_mm(mm);
1680	}
1681}
1682
1683static void smp_flush_cache_range(struct vm_area_struct *vma,
1684				  unsigned long start,
1685				  unsigned long end)
1686{
1687	struct mm_struct *mm = vma->vm_mm;
1688
1689	if (mm->context != NO_CONTEXT) {
1690		cpumask_t cpu_mask;
1691		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1692		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1693		if (!cpumask_empty(&cpu_mask))
1694			xc3(local_ops->cache_range, (unsigned long)vma, start,
1695			    end);
1696		local_ops->cache_range(vma, start, end);
1697	}
1698}
1699
1700static void smp_flush_tlb_range(struct vm_area_struct *vma,
1701				unsigned long start,
1702				unsigned long end)
1703{
1704	struct mm_struct *mm = vma->vm_mm;
1705
1706	if (mm->context != NO_CONTEXT) {
1707		cpumask_t cpu_mask;
1708		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710		if (!cpumask_empty(&cpu_mask))
1711			xc3(local_ops->tlb_range, (unsigned long)vma, start,
1712			    end);
1713		local_ops->tlb_range(vma, start, end);
1714	}
1715}
1716
1717static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719	struct mm_struct *mm = vma->vm_mm;
1720
1721	if (mm->context != NO_CONTEXT) {
1722		cpumask_t cpu_mask;
1723		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725		if (!cpumask_empty(&cpu_mask))
1726			xc2(local_ops->cache_page, (unsigned long)vma, page);
 
1727		local_ops->cache_page(vma, page);
1728	}
1729}
1730
1731static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1732{
1733	struct mm_struct *mm = vma->vm_mm;
1734
1735	if (mm->context != NO_CONTEXT) {
1736		cpumask_t cpu_mask;
1737		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1738		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1739		if (!cpumask_empty(&cpu_mask))
1740			xc2(local_ops->tlb_page, (unsigned long)vma, page);
 
1741		local_ops->tlb_page(vma, page);
1742	}
1743}
1744
1745static void smp_flush_page_to_ram(unsigned long page)
1746{
1747	/* Current theory is that those who call this are the one's
1748	 * who have just dirtied their cache with the pages contents
1749	 * in kernel space, therefore we only run this on local cpu.
1750	 *
1751	 * XXX This experiment failed, research further... -DaveM
1752	 */
1753#if 1
1754	xc1(local_ops->page_to_ram, page);
1755#endif
1756	local_ops->page_to_ram(page);
1757}
1758
1759static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1760{
1761	cpumask_t cpu_mask;
1762	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1763	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1764	if (!cpumask_empty(&cpu_mask))
1765		xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
 
1766	local_ops->sig_insns(mm, insn_addr);
1767}
1768
1769static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1770	.cache_all	= smp_flush_cache_all,
1771	.cache_mm	= smp_flush_cache_mm,
1772	.cache_page	= smp_flush_cache_page,
1773	.cache_range	= smp_flush_cache_range,
1774	.tlb_all	= smp_flush_tlb_all,
1775	.tlb_mm		= smp_flush_tlb_mm,
1776	.tlb_page	= smp_flush_tlb_page,
1777	.tlb_range	= smp_flush_tlb_range,
1778	.page_to_ram	= smp_flush_page_to_ram,
1779	.sig_insns	= smp_flush_sig_insns,
1780	.page_for_dma	= smp_flush_page_for_dma,
1781};
1782#endif
1783
1784/* Load up routines and constants for sun4m and sun4d mmu */
1785void __init load_mmu(void)
1786{
1787	/* Functions */
1788	get_srmmu_type();
1789
1790#ifdef CONFIG_SMP
1791	/* El switcheroo... */
1792	local_ops = sparc32_cachetlb_ops;
1793
1794	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1795		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1796		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1797		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1798		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1799	}
1800
1801	if (poke_srmmu == poke_viking) {
1802		/* Avoid unnecessary cross calls. */
1803		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1804		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1805		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1806		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1807
1808		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1809		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1810		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1811	}
1812
1813	/* It really is const after this point. */
1814	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1815		&smp_cachetlb_ops;
1816#endif
1817
1818	if (sparc_cpu_model != sun4d)
 
 
1819		ld_mmu_iommu();
1820#ifdef CONFIG_SMP
1821	if (sparc_cpu_model == sun4d)
1822		sun4d_init_smp();
1823	else if (sparc_cpu_model == sparc_leon)
1824		leon_init_smp();
1825	else
1826		sun4m_init_smp();
1827#endif
1828}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END	}
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 111{
 112	pte_t pte;
 113
 114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115	set_pte((pte_t *)ctxp, pte);
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131			      "andn %%g3, %2, %%g3\n\t"
 132			      "sta %%g3, [%0] %1\n\t" : :
 133			      "r" (MSI_MBUS_ARBEN),
 134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 138{
 139	unsigned long ptp;	/* Physical address, shifted right by 4 */
 140	int i;
 141
 142	ptp = __nocache_pa(ptep) >> 4;
 143	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 144		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 145		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 146	}
 147}
 148
 149void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 150{
 151	unsigned long ptp;	/* Physical address, shifted right by 4 */
 152	int i;
 153
 154	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 155	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 156		set_pte((pte_t *)&pmdp->pmdv[i], __pte(SRMMU_ET_PTD | ptp));
 157		ptp += (SRMMU_REAL_PTRS_PER_PTE * sizeof(pte_t) >> 4);
 158	}
 159}
 160
 161/* Find an entry in the third-level page table.. */
 162pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 163{
 164	void *pte;
 165
 166	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 167	return (pte_t *) pte +
 168	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 169}
 170
 171/*
 172 * size: bytes to allocate in the nocache area.
 173 * align: bytes, number to align at.
 174 * Returns the virtual address of the allocated area.
 175 */
 176static void *__srmmu_get_nocache(int size, int align)
 177{
 178	int offset;
 179	unsigned long addr;
 180
 181	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 182		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 183		       size);
 184		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 185	}
 186	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 187		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 188		       size);
 189		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 190	}
 191	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 192
 193	offset = bit_map_string_get(&srmmu_nocache_map,
 194				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 195				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 196	if (offset == -1) {
 197		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 198		       size, (int) srmmu_nocache_size,
 199		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 200		return NULL;
 201	}
 202
 203	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 204	return (void *)addr;
 205}
 206
 207void *srmmu_get_nocache(int size, int align)
 208{
 209	void *tmp;
 210
 211	tmp = __srmmu_get_nocache(size, align);
 212
 213	if (tmp)
 214		memset(tmp, 0, size);
 215
 216	return tmp;
 217}
 218
 219void srmmu_free_nocache(void *addr, int size)
 220{
 221	unsigned long vaddr;
 222	int offset;
 223
 224	vaddr = (unsigned long)addr;
 225	if (vaddr < SRMMU_NOCACHE_VADDR) {
 226		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 227		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 228		BUG();
 229	}
 230	if (vaddr + size > srmmu_nocache_end) {
 231		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 232		    vaddr, srmmu_nocache_end);
 233		BUG();
 234	}
 235	if (!is_power_of_2(size)) {
 236		printk("Size 0x%x is not a power of 2\n", size);
 237		BUG();
 238	}
 239	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 240		printk("Size 0x%x is too small\n", size);
 241		BUG();
 242	}
 243	if (vaddr & (size - 1)) {
 244		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 245		BUG();
 246	}
 247
 248	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 249	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 250
 251	bit_map_clear(&srmmu_nocache_map, offset, size);
 252}
 253
 254static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 255						 unsigned long end);
 256
 257/* Return how much physical memory we have.  */
 258static unsigned long __init probe_memory(void)
 259{
 260	unsigned long total = 0;
 261	int i;
 262
 263	for (i = 0; sp_banks[i].num_bytes; i++)
 264		total += sp_banks[i].num_bytes;
 265
 266	return total;
 267}
 268
 269/*
 270 * Reserve nocache dynamically proportionally to the amount of
 271 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 272 */
 273static void __init srmmu_nocache_calcsize(void)
 274{
 275	unsigned long sysmemavail = probe_memory() / 1024;
 276	int srmmu_nocache_npages;
 277
 278	srmmu_nocache_npages =
 279		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 280
 281 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 282	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 283	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 284		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 285
 286	/* anything above 1280 blows up */
 287	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 288		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 289
 290	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 291	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 292}
 293
 294static void __init srmmu_nocache_init(void)
 295{
 296	void *srmmu_nocache_bitmap;
 297	unsigned int bitmap_bits;
 298	pgd_t *pgd;
 
 
 299	pmd_t *pmd;
 300	pte_t *pte;
 301	unsigned long paddr, vaddr;
 302	unsigned long pteval;
 303
 304	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 305
 306	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 307					    SRMMU_NOCACHE_ALIGN_MAX);
 308	if (!srmmu_nocache_pool)
 309		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 310		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 311	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 312
 313	srmmu_nocache_bitmap =
 314		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 315			       SMP_CACHE_BYTES);
 316	if (!srmmu_nocache_bitmap)
 317		panic("%s: Failed to allocate %zu bytes\n", __func__,
 318		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 319	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 320
 321	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 322	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 323	init_mm.pgd = srmmu_swapper_pg_dir;
 324
 325	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 326
 327	paddr = __pa((unsigned long)srmmu_nocache_pool);
 328	vaddr = SRMMU_NOCACHE_VADDR;
 329
 330	while (vaddr < srmmu_nocache_end) {
 331		pgd = pgd_offset_k(vaddr);
 332		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 
 
 333		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 334
 335		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 336
 337		if (srmmu_cache_pagetables)
 338			pteval |= SRMMU_CACHE;
 339
 340		set_pte(__nocache_fix(pte), __pte(pteval));
 341
 342		vaddr += PAGE_SIZE;
 343		paddr += PAGE_SIZE;
 344	}
 345
 346	flush_cache_all();
 347	flush_tlb_all();
 348}
 349
 350pgd_t *get_pgd_fast(void)
 351{
 352	pgd_t *pgd = NULL;
 353
 354	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 355	if (pgd) {
 356		pgd_t *init = pgd_offset_k(0);
 357		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 358		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 359						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 360	}
 361
 362	return pgd;
 363}
 364
 365/*
 366 * Hardware needs alignment to 256 only, but we align to whole page size
 367 * to reduce fragmentation problems due to the buddy principle.
 368 * XXX Provide actual fragmentation statistics in /proc.
 369 *
 370 * Alignments up to the page size are the same for physical and virtual
 371 * addresses of the nocache area.
 372 */
 373pgtable_t pte_alloc_one(struct mm_struct *mm)
 374{
 375	unsigned long pte;
 376	struct page *page;
 377
 378	if ((pte = (unsigned long)pte_alloc_one_kernel(mm)) == 0)
 379		return NULL;
 380	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 381	if (!pgtable_pte_page_ctor(page)) {
 382		__free_page(page);
 383		return NULL;
 
 
 
 
 
 384	}
 385	return page;
 
 
 386}
 387
 388void pte_free(struct mm_struct *mm, pgtable_t pte)
 389{
 390	unsigned long p;
 391
 392	pgtable_pte_page_dtor(pte);
 393	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 394	if (p == 0)
 395		BUG();
 396	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 397
 398	/* free non cached virtual address*/
 399	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 400}
 401
 402/* context handling - a dynamically sized pool is used */
 403#define NO_CONTEXT	-1
 404
 405struct ctx_list {
 406	struct ctx_list *next;
 407	struct ctx_list *prev;
 408	unsigned int ctx_number;
 409	struct mm_struct *ctx_mm;
 410};
 411
 412static struct ctx_list *ctx_list_pool;
 413static struct ctx_list ctx_free;
 414static struct ctx_list ctx_used;
 415
 416/* At boot time we determine the number of contexts */
 417static int num_contexts;
 418
 419static inline void remove_from_ctx_list(struct ctx_list *entry)
 420{
 421	entry->next->prev = entry->prev;
 422	entry->prev->next = entry->next;
 423}
 424
 425static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 426{
 427	entry->next = head;
 428	(entry->prev = head->prev)->next = entry;
 429	head->prev = entry;
 430}
 431#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 432#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 433
 434
 435static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 436{
 437	struct ctx_list *ctxp;
 438
 439	ctxp = ctx_free.next;
 440	if (ctxp != &ctx_free) {
 441		remove_from_ctx_list(ctxp);
 442		add_to_used_ctxlist(ctxp);
 443		mm->context = ctxp->ctx_number;
 444		ctxp->ctx_mm = mm;
 445		return;
 446	}
 447	ctxp = ctx_used.next;
 448	if (ctxp->ctx_mm == old_mm)
 449		ctxp = ctxp->next;
 450	if (ctxp == &ctx_used)
 451		panic("out of mmu contexts");
 452	flush_cache_mm(ctxp->ctx_mm);
 453	flush_tlb_mm(ctxp->ctx_mm);
 454	remove_from_ctx_list(ctxp);
 455	add_to_used_ctxlist(ctxp);
 456	ctxp->ctx_mm->context = NO_CONTEXT;
 457	ctxp->ctx_mm = mm;
 458	mm->context = ctxp->ctx_number;
 459}
 460
 461static inline void free_context(int context)
 462{
 463	struct ctx_list *ctx_old;
 464
 465	ctx_old = ctx_list_pool + context;
 466	remove_from_ctx_list(ctx_old);
 467	add_to_free_ctxlist(ctx_old);
 468}
 469
 470static void __init sparc_context_init(int numctx)
 471{
 472	int ctx;
 473	unsigned long size;
 474
 475	size = numctx * sizeof(struct ctx_list);
 476	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 477	if (!ctx_list_pool)
 478		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 479
 480	for (ctx = 0; ctx < numctx; ctx++) {
 481		struct ctx_list *clist;
 482
 483		clist = (ctx_list_pool + ctx);
 484		clist->ctx_number = ctx;
 485		clist->ctx_mm = NULL;
 486	}
 487	ctx_free.next = ctx_free.prev = &ctx_free;
 488	ctx_used.next = ctx_used.prev = &ctx_used;
 489	for (ctx = 0; ctx < numctx; ctx++)
 490		add_to_free_ctxlist(ctx_list_pool + ctx);
 491}
 492
 493void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 494	       struct task_struct *tsk)
 495{
 496	unsigned long flags;
 497
 498	if (mm->context == NO_CONTEXT) {
 499		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 500		alloc_context(old_mm, mm);
 501		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 502		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 503	}
 504
 505	if (sparc_cpu_model == sparc_leon)
 506		leon_switch_mm();
 507
 508	if (is_hypersparc)
 509		hyper_flush_whole_icache();
 510
 511	srmmu_set_context(mm->context);
 512}
 513
 514/* Low level IO area allocation on the SRMMU. */
 515static inline void srmmu_mapioaddr(unsigned long physaddr,
 516				   unsigned long virt_addr, int bus_type)
 517{
 518	pgd_t *pgdp;
 
 
 519	pmd_t *pmdp;
 520	pte_t *ptep;
 521	unsigned long tmp;
 522
 523	physaddr &= PAGE_MASK;
 524	pgdp = pgd_offset_k(virt_addr);
 525	pmdp = pmd_offset(pgdp, virt_addr);
 
 
 526	ptep = pte_offset_kernel(pmdp, virt_addr);
 527	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 528
 529	/* I need to test whether this is consistent over all
 530	 * sun4m's.  The bus_type represents the upper 4 bits of
 531	 * 36-bit physical address on the I/O space lines...
 532	 */
 533	tmp |= (bus_type << 28);
 534	tmp |= SRMMU_PRIV;
 535	__flush_page_to_ram(virt_addr);
 536	set_pte(ptep, __pte(tmp));
 537}
 538
 539void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 540		      unsigned long xva, unsigned int len)
 541{
 542	while (len != 0) {
 543		len -= PAGE_SIZE;
 544		srmmu_mapioaddr(xpa, xva, bus);
 545		xva += PAGE_SIZE;
 546		xpa += PAGE_SIZE;
 547	}
 548	flush_tlb_all();
 549}
 550
 551static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 552{
 553	pgd_t *pgdp;
 
 
 554	pmd_t *pmdp;
 555	pte_t *ptep;
 556
 
 557	pgdp = pgd_offset_k(virt_addr);
 558	pmdp = pmd_offset(pgdp, virt_addr);
 
 
 559	ptep = pte_offset_kernel(pmdp, virt_addr);
 560
 561	/* No need to flush uncacheable page. */
 562	__pte_clear(ptep);
 563}
 564
 565void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 566{
 567	while (len != 0) {
 568		len -= PAGE_SIZE;
 569		srmmu_unmapioaddr(virt_addr);
 570		virt_addr += PAGE_SIZE;
 571	}
 572	flush_tlb_all();
 573}
 574
 575/* tsunami.S */
 576extern void tsunami_flush_cache_all(void);
 577extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 578extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 579extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 580extern void tsunami_flush_page_to_ram(unsigned long page);
 581extern void tsunami_flush_page_for_dma(unsigned long page);
 582extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 583extern void tsunami_flush_tlb_all(void);
 584extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 585extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 586extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 587extern void tsunami_setup_blockops(void);
 588
 589/* swift.S */
 590extern void swift_flush_cache_all(void);
 591extern void swift_flush_cache_mm(struct mm_struct *mm);
 592extern void swift_flush_cache_range(struct vm_area_struct *vma,
 593				    unsigned long start, unsigned long end);
 594extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 595extern void swift_flush_page_to_ram(unsigned long page);
 596extern void swift_flush_page_for_dma(unsigned long page);
 597extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 598extern void swift_flush_tlb_all(void);
 599extern void swift_flush_tlb_mm(struct mm_struct *mm);
 600extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 601				  unsigned long start, unsigned long end);
 602extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 603
 604#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 605void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 606{
 607	int cctx, ctx1;
 608
 609	page &= PAGE_MASK;
 610	if ((ctx1 = vma->vm_mm->context) != -1) {
 611		cctx = srmmu_get_context();
 612/* Is context # ever different from current context? P3 */
 613		if (cctx != ctx1) {
 614			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 615			srmmu_set_context(ctx1);
 616			swift_flush_page(page);
 617			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 618					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 619			srmmu_set_context(cctx);
 620		} else {
 621			 /* Rm. prot. bits from virt. c. */
 622			/* swift_flush_cache_all(); */
 623			/* swift_flush_cache_page(vma, page); */
 624			swift_flush_page(page);
 625
 626			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 627				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 628			/* same as above: srmmu_flush_tlb_page() */
 629		}
 630	}
 631}
 632#endif
 633
 634/*
 635 * The following are all MBUS based SRMMU modules, and therefore could
 636 * be found in a multiprocessor configuration.  On the whole, these
 637 * chips seems to be much more touchy about DVMA and page tables
 638 * with respect to cache coherency.
 639 */
 640
 641/* viking.S */
 642extern void viking_flush_cache_all(void);
 643extern void viking_flush_cache_mm(struct mm_struct *mm);
 644extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 645				     unsigned long end);
 646extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 647extern void viking_flush_page_to_ram(unsigned long page);
 648extern void viking_flush_page_for_dma(unsigned long page);
 649extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 650extern void viking_flush_page(unsigned long page);
 651extern void viking_mxcc_flush_page(unsigned long page);
 652extern void viking_flush_tlb_all(void);
 653extern void viking_flush_tlb_mm(struct mm_struct *mm);
 654extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 655				   unsigned long end);
 656extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 657				  unsigned long page);
 658extern void sun4dsmp_flush_tlb_all(void);
 659extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 660extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 661				   unsigned long end);
 662extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 663				  unsigned long page);
 664
 665/* hypersparc.S */
 666extern void hypersparc_flush_cache_all(void);
 667extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 668extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 669extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 670extern void hypersparc_flush_page_to_ram(unsigned long page);
 671extern void hypersparc_flush_page_for_dma(unsigned long page);
 672extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 673extern void hypersparc_flush_tlb_all(void);
 674extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 675extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 676extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 677extern void hypersparc_setup_blockops(void);
 678
 679/*
 680 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 681 *       kernel mappings are done with one single contiguous chunk of
 682 *       ram.  On small ram machines (classics mainly) we only get
 683 *       around 8mb mapped for us.
 684 */
 685
 686static void __init early_pgtable_allocfail(char *type)
 687{
 688	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 689	prom_halt();
 690}
 691
 692static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 693							unsigned long end)
 694{
 695	pgd_t *pgdp;
 
 
 696	pmd_t *pmdp;
 697	pte_t *ptep;
 698
 699	while (start < end) {
 700		pgdp = pgd_offset_k(start);
 701		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 
 
 702			pmdp = __srmmu_get_nocache(
 703			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 704			if (pmdp == NULL)
 705				early_pgtable_allocfail("pmd");
 706			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 707			pgd_set(__nocache_fix(pgdp), pmdp);
 708		}
 709		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 710		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 711			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 712			if (ptep == NULL)
 713				early_pgtable_allocfail("pte");
 714			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 715			pmd_set(__nocache_fix(pmdp), ptep);
 716		}
 717		if (start > (0xffffffffUL - PMD_SIZE))
 718			break;
 719		start = (start + PMD_SIZE) & PMD_MASK;
 720	}
 721}
 722
 723static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 724						  unsigned long end)
 725{
 726	pgd_t *pgdp;
 
 
 727	pmd_t *pmdp;
 728	pte_t *ptep;
 729
 730	while (start < end) {
 731		pgdp = pgd_offset_k(start);
 732		if (pgd_none(*pgdp)) {
 
 
 733			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 734			if (pmdp == NULL)
 735				early_pgtable_allocfail("pmd");
 736			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 737			pgd_set(pgdp, pmdp);
 738		}
 739		pmdp = pmd_offset(pgdp, start);
 740		if (srmmu_pmd_none(*pmdp)) {
 741			ptep = __srmmu_get_nocache(PTE_SIZE,
 742							     PTE_SIZE);
 743			if (ptep == NULL)
 744				early_pgtable_allocfail("pte");
 745			memset(ptep, 0, PTE_SIZE);
 746			pmd_set(pmdp, ptep);
 747		}
 748		if (start > (0xffffffffUL - PMD_SIZE))
 749			break;
 750		start = (start + PMD_SIZE) & PMD_MASK;
 751	}
 752}
 753
 754/* These flush types are not available on all chips... */
 755static inline unsigned long srmmu_probe(unsigned long vaddr)
 756{
 757	unsigned long retval;
 758
 759	if (sparc_cpu_model != sparc_leon) {
 760
 761		vaddr &= PAGE_MASK;
 762		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 763				     "=r" (retval) :
 764				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 765	} else {
 766		retval = leon_swprobe(vaddr, NULL);
 767	}
 768	return retval;
 769}
 770
 771/*
 772 * This is much cleaner than poking around physical address space
 773 * looking at the prom's page table directly which is what most
 774 * other OS's do.  Yuck... this is much better.
 775 */
 776static void __init srmmu_inherit_prom_mappings(unsigned long start,
 777					       unsigned long end)
 778{
 779	unsigned long probed;
 780	unsigned long addr;
 781	pgd_t *pgdp;
 
 
 782	pmd_t *pmdp;
 783	pte_t *ptep;
 784	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 785
 786	while (start <= end) {
 787		if (start == 0)
 788			break; /* probably wrap around */
 789		if (start == 0xfef00000)
 790			start = KADB_DEBUGGER_BEGVM;
 791		probed = srmmu_probe(start);
 792		if (!probed) {
 793			/* continue probing until we find an entry */
 794			start += PAGE_SIZE;
 795			continue;
 796		}
 797
 798		/* A red snapper, see what it really is. */
 799		what = 0;
 800		addr = start - PAGE_SIZE;
 801
 802		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 803			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 804				what = 1;
 805		}
 806
 807		if (!(start & ~(SRMMU_PGDIR_MASK))) {
 808			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 809				what = 2;
 810		}
 811
 812		pgdp = pgd_offset_k(start);
 
 
 813		if (what == 2) {
 814			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 815			start += SRMMU_PGDIR_SIZE;
 816			continue;
 817		}
 818		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 819			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 820						   SRMMU_PMD_TABLE_SIZE);
 821			if (pmdp == NULL)
 822				early_pgtable_allocfail("pmd");
 823			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 824			pgd_set(__nocache_fix(pgdp), pmdp);
 
 
 
 
 
 
 825		}
 826		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 827		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 828			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 829			if (ptep == NULL)
 830				early_pgtable_allocfail("pte");
 831			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 832			pmd_set(__nocache_fix(pmdp), ptep);
 833		}
 834		if (what == 1) {
 835			/* We bend the rule where all 16 PTPs in a pmd_t point
 836			 * inside the same PTE page, and we leak a perfectly
 837			 * good hardware PTE piece. Alternatives seem worse.
 838			 */
 839			unsigned int x;	/* Index of HW PMD in soft cluster */
 840			unsigned long *val;
 841			x = (start >> PMD_SHIFT) & 15;
 842			val = &pmdp->pmdv[x];
 843			*(unsigned long *)__nocache_fix(val) = probed;
 844			start += SRMMU_REAL_PMD_SIZE;
 845			continue;
 846		}
 847		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 848		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
 849		start += PAGE_SIZE;
 850	}
 851}
 852
 853#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 854
 855/* Create a third-level SRMMU 16MB page mapping. */
 856static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 857{
 858	pgd_t *pgdp = pgd_offset_k(vaddr);
 859	unsigned long big_pte;
 860
 861	big_pte = KERNEL_PTE(phys_base >> 4);
 862	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 863}
 864
 865/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 866static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 867{
 868	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 869	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 870	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 871	/* Map "low" memory only */
 872	const unsigned long min_vaddr = PAGE_OFFSET;
 873	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 874
 875	if (vstart < min_vaddr || vstart >= max_vaddr)
 876		return vstart;
 877
 878	if (vend > max_vaddr || vend < min_vaddr)
 879		vend = max_vaddr;
 880
 881	while (vstart < vend) {
 882		do_large_mapping(vstart, pstart);
 883		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 884	}
 885	return vstart;
 886}
 887
 888static void __init map_kernel(void)
 889{
 890	int i;
 891
 892	if (phys_base > 0) {
 893		do_large_mapping(PAGE_OFFSET, phys_base);
 894	}
 895
 896	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 897		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 898	}
 899}
 900
 901void (*poke_srmmu)(void) = NULL;
 902
 903void __init srmmu_paging_init(void)
 904{
 905	int i;
 906	phandle cpunode;
 907	char node_str[128];
 908	pgd_t *pgd;
 
 
 909	pmd_t *pmd;
 910	pte_t *pte;
 911	unsigned long pages_avail;
 912
 913	init_mm.context = (unsigned long) NO_CONTEXT;
 914	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 915
 916	if (sparc_cpu_model == sun4d)
 917		num_contexts = 65536; /* We know it is Viking */
 918	else {
 919		/* Find the number of contexts on the srmmu. */
 920		cpunode = prom_getchild(prom_root_node);
 921		num_contexts = 0;
 922		while (cpunode != 0) {
 923			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 924			if (!strcmp(node_str, "cpu")) {
 925				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 926				break;
 927			}
 928			cpunode = prom_getsibling(cpunode);
 929		}
 930	}
 931
 932	if (!num_contexts) {
 933		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 934		prom_halt();
 935	}
 936
 937	pages_avail = 0;
 938	last_valid_pfn = bootmem_init(&pages_avail);
 939
 940	srmmu_nocache_calcsize();
 941	srmmu_nocache_init();
 942	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 943	map_kernel();
 944
 945	/* ctx table has to be physically aligned to its size */
 946	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 947	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 948
 949	for (i = 0; i < num_contexts; i++)
 950		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 951
 952	flush_cache_all();
 953	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 954#ifdef CONFIG_SMP
 955	/* Stop from hanging here... */
 956	local_ops->tlb_all();
 957#else
 958	flush_tlb_all();
 959#endif
 960	poke_srmmu();
 961
 962	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 963	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 964
 965	srmmu_allocate_ptable_skeleton(
 966		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 967	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 968
 969	pgd = pgd_offset_k(PKMAP_BASE);
 970	pmd = pmd_offset(pgd, PKMAP_BASE);
 
 
 971	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 972	pkmap_page_table = pte;
 973
 974	flush_cache_all();
 975	flush_tlb_all();
 976
 977	sparc_context_init(num_contexts);
 978
 979	kmap_init();
 980
 981	{
 982		unsigned long zones_size[MAX_NR_ZONES];
 983		unsigned long zholes_size[MAX_NR_ZONES];
 984		unsigned long npages;
 985		int znum;
 986
 987		for (znum = 0; znum < MAX_NR_ZONES; znum++)
 988			zones_size[znum] = zholes_size[znum] = 0;
 
 989
 990		npages = max_low_pfn - pfn_base;
 991
 992		zones_size[ZONE_DMA] = npages;
 993		zholes_size[ZONE_DMA] = npages - pages_avail;
 994
 995		npages = highend_pfn - max_low_pfn;
 996		zones_size[ZONE_HIGHMEM] = npages;
 997		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 998
 999		free_area_init_node(0, zones_size, pfn_base, zholes_size);
1000	}
1001}
1002
1003void mmu_info(struct seq_file *m)
1004{
1005	seq_printf(m,
1006		   "MMU type\t: %s\n"
1007		   "contexts\t: %d\n"
1008		   "nocache total\t: %ld\n"
1009		   "nocache used\t: %d\n",
1010		   srmmu_name,
1011		   num_contexts,
1012		   srmmu_nocache_size,
1013		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
1014}
1015
1016int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
1017{
1018	mm->context = NO_CONTEXT;
1019	return 0;
1020}
1021
1022void destroy_context(struct mm_struct *mm)
1023{
1024	unsigned long flags;
1025
1026	if (mm->context != NO_CONTEXT) {
1027		flush_cache_mm(mm);
1028		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1029		flush_tlb_mm(mm);
1030		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1031		free_context(mm->context);
1032		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1033		mm->context = NO_CONTEXT;
1034	}
1035}
1036
1037/* Init various srmmu chip types. */
1038static void __init srmmu_is_bad(void)
1039{
1040	prom_printf("Could not determine SRMMU chip type.\n");
1041	prom_halt();
1042}
1043
1044static void __init init_vac_layout(void)
1045{
1046	phandle nd;
1047	int cache_lines;
1048	char node_str[128];
1049#ifdef CONFIG_SMP
1050	int cpu = 0;
1051	unsigned long max_size = 0;
1052	unsigned long min_line_size = 0x10000000;
1053#endif
1054
1055	nd = prom_getchild(prom_root_node);
1056	while ((nd = prom_getsibling(nd)) != 0) {
1057		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1058		if (!strcmp(node_str, "cpu")) {
1059			vac_line_size = prom_getint(nd, "cache-line-size");
1060			if (vac_line_size == -1) {
1061				prom_printf("can't determine cache-line-size, halting.\n");
1062				prom_halt();
1063			}
1064			cache_lines = prom_getint(nd, "cache-nlines");
1065			if (cache_lines == -1) {
1066				prom_printf("can't determine cache-nlines, halting.\n");
1067				prom_halt();
1068			}
1069
1070			vac_cache_size = cache_lines * vac_line_size;
1071#ifdef CONFIG_SMP
1072			if (vac_cache_size > max_size)
1073				max_size = vac_cache_size;
1074			if (vac_line_size < min_line_size)
1075				min_line_size = vac_line_size;
1076			//FIXME: cpus not contiguous!!
1077			cpu++;
1078			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1079				break;
1080#else
1081			break;
1082#endif
1083		}
1084	}
1085	if (nd == 0) {
1086		prom_printf("No CPU nodes found, halting.\n");
1087		prom_halt();
1088	}
1089#ifdef CONFIG_SMP
1090	vac_cache_size = max_size;
1091	vac_line_size = min_line_size;
1092#endif
1093	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1094	       (int)vac_cache_size, (int)vac_line_size);
1095}
1096
1097static void poke_hypersparc(void)
1098{
1099	volatile unsigned long clear;
1100	unsigned long mreg = srmmu_get_mmureg();
1101
1102	hyper_flush_unconditional_combined();
1103
1104	mreg &= ~(HYPERSPARC_CWENABLE);
1105	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1106	mreg |= (HYPERSPARC_CMODE);
1107
1108	srmmu_set_mmureg(mreg);
1109
1110#if 0 /* XXX I think this is bad news... -DaveM */
1111	hyper_clear_all_tags();
1112#endif
1113
1114	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1115	hyper_flush_whole_icache();
1116	clear = srmmu_get_faddr();
1117	clear = srmmu_get_fstatus();
1118}
1119
1120static const struct sparc32_cachetlb_ops hypersparc_ops = {
1121	.cache_all	= hypersparc_flush_cache_all,
1122	.cache_mm	= hypersparc_flush_cache_mm,
1123	.cache_page	= hypersparc_flush_cache_page,
1124	.cache_range	= hypersparc_flush_cache_range,
1125	.tlb_all	= hypersparc_flush_tlb_all,
1126	.tlb_mm		= hypersparc_flush_tlb_mm,
1127	.tlb_page	= hypersparc_flush_tlb_page,
1128	.tlb_range	= hypersparc_flush_tlb_range,
1129	.page_to_ram	= hypersparc_flush_page_to_ram,
1130	.sig_insns	= hypersparc_flush_sig_insns,
1131	.page_for_dma	= hypersparc_flush_page_for_dma,
1132};
1133
1134static void __init init_hypersparc(void)
1135{
1136	srmmu_name = "ROSS HyperSparc";
1137	srmmu_modtype = HyperSparc;
1138
1139	init_vac_layout();
1140
1141	is_hypersparc = 1;
1142	sparc32_cachetlb_ops = &hypersparc_ops;
1143
1144	poke_srmmu = poke_hypersparc;
1145
1146	hypersparc_setup_blockops();
1147}
1148
1149static void poke_swift(void)
1150{
1151	unsigned long mreg;
1152
1153	/* Clear any crap from the cache or else... */
1154	swift_flush_cache_all();
1155
1156	/* Enable I & D caches */
1157	mreg = srmmu_get_mmureg();
1158	mreg |= (SWIFT_IE | SWIFT_DE);
1159	/*
1160	 * The Swift branch folding logic is completely broken.  At
1161	 * trap time, if things are just right, if can mistakenly
1162	 * think that a trap is coming from kernel mode when in fact
1163	 * it is coming from user mode (it mis-executes the branch in
1164	 * the trap code).  So you see things like crashme completely
1165	 * hosing your machine which is completely unacceptable.  Turn
1166	 * this shit off... nice job Fujitsu.
1167	 */
1168	mreg &= ~(SWIFT_BF);
1169	srmmu_set_mmureg(mreg);
1170}
1171
1172static const struct sparc32_cachetlb_ops swift_ops = {
1173	.cache_all	= swift_flush_cache_all,
1174	.cache_mm	= swift_flush_cache_mm,
1175	.cache_page	= swift_flush_cache_page,
1176	.cache_range	= swift_flush_cache_range,
1177	.tlb_all	= swift_flush_tlb_all,
1178	.tlb_mm		= swift_flush_tlb_mm,
1179	.tlb_page	= swift_flush_tlb_page,
1180	.tlb_range	= swift_flush_tlb_range,
1181	.page_to_ram	= swift_flush_page_to_ram,
1182	.sig_insns	= swift_flush_sig_insns,
1183	.page_for_dma	= swift_flush_page_for_dma,
1184};
1185
1186#define SWIFT_MASKID_ADDR  0x10003018
1187static void __init init_swift(void)
1188{
1189	unsigned long swift_rev;
1190
1191	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1192			     "srl %0, 0x18, %0\n\t" :
1193			     "=r" (swift_rev) :
1194			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1195	srmmu_name = "Fujitsu Swift";
1196	switch (swift_rev) {
1197	case 0x11:
1198	case 0x20:
1199	case 0x23:
1200	case 0x30:
1201		srmmu_modtype = Swift_lots_o_bugs;
1202		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1203		/*
1204		 * Gee george, I wonder why Sun is so hush hush about
1205		 * this hardware bug... really braindamage stuff going
1206		 * on here.  However I think we can find a way to avoid
1207		 * all of the workaround overhead under Linux.  Basically,
1208		 * any page fault can cause kernel pages to become user
1209		 * accessible (the mmu gets confused and clears some of
1210		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1211		 * horrible eh?  But wait, after extensive testing it appears
1212		 * that if you use pgd_t level large kernel pte's (like the
1213		 * 4MB pages on the Pentium) the bug does not get tripped
1214		 * at all.  This avoids almost all of the major overhead.
1215		 * Welcome to a world where your vendor tells you to,
1216		 * "apply this kernel patch" instead of "sorry for the
1217		 * broken hardware, send it back and we'll give you
1218		 * properly functioning parts"
1219		 */
1220		break;
1221	case 0x25:
1222	case 0x31:
1223		srmmu_modtype = Swift_bad_c;
1224		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1225		/*
1226		 * You see Sun allude to this hardware bug but never
1227		 * admit things directly, they'll say things like,
1228		 * "the Swift chip cache problems" or similar.
1229		 */
1230		break;
1231	default:
1232		srmmu_modtype = Swift_ok;
1233		break;
1234	}
1235
1236	sparc32_cachetlb_ops = &swift_ops;
1237	flush_page_for_dma_global = 0;
1238
1239	/*
1240	 * Are you now convinced that the Swift is one of the
1241	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1242	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1243	 * you examined the microcode of the Swift you'd find
1244	 * XXX's all over the place.
1245	 */
1246	poke_srmmu = poke_swift;
1247}
1248
1249static void turbosparc_flush_cache_all(void)
1250{
1251	flush_user_windows();
1252	turbosparc_idflash_clear();
1253}
1254
1255static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1256{
1257	FLUSH_BEGIN(mm)
1258	flush_user_windows();
1259	turbosparc_idflash_clear();
1260	FLUSH_END
1261}
1262
1263static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1264{
1265	FLUSH_BEGIN(vma->vm_mm)
1266	flush_user_windows();
1267	turbosparc_idflash_clear();
1268	FLUSH_END
1269}
1270
1271static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1272{
1273	FLUSH_BEGIN(vma->vm_mm)
1274	flush_user_windows();
1275	if (vma->vm_flags & VM_EXEC)
1276		turbosparc_flush_icache();
1277	turbosparc_flush_dcache();
1278	FLUSH_END
1279}
1280
1281/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1282static void turbosparc_flush_page_to_ram(unsigned long page)
1283{
1284#ifdef TURBOSPARC_WRITEBACK
1285	volatile unsigned long clear;
1286
1287	if (srmmu_probe(page))
1288		turbosparc_flush_page_cache(page);
1289	clear = srmmu_get_fstatus();
1290#endif
1291}
1292
1293static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1294{
1295}
1296
1297static void turbosparc_flush_page_for_dma(unsigned long page)
1298{
1299	turbosparc_flush_dcache();
1300}
1301
1302static void turbosparc_flush_tlb_all(void)
1303{
1304	srmmu_flush_whole_tlb();
1305}
1306
1307static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1308{
1309	FLUSH_BEGIN(mm)
1310	srmmu_flush_whole_tlb();
1311	FLUSH_END
1312}
1313
1314static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1315{
1316	FLUSH_BEGIN(vma->vm_mm)
1317	srmmu_flush_whole_tlb();
1318	FLUSH_END
1319}
1320
1321static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1322{
1323	FLUSH_BEGIN(vma->vm_mm)
1324	srmmu_flush_whole_tlb();
1325	FLUSH_END
1326}
1327
1328
1329static void poke_turbosparc(void)
1330{
1331	unsigned long mreg = srmmu_get_mmureg();
1332	unsigned long ccreg;
1333
1334	/* Clear any crap from the cache or else... */
1335	turbosparc_flush_cache_all();
1336	/* Temporarily disable I & D caches */
1337	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1338	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1339	srmmu_set_mmureg(mreg);
1340
1341	ccreg = turbosparc_get_ccreg();
1342
1343#ifdef TURBOSPARC_WRITEBACK
1344	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1345	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1346			/* Write-back D-cache, emulate VLSI
1347			 * abortion number three, not number one */
1348#else
1349	/* For now let's play safe, optimize later */
1350	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1351			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1352	ccreg &= ~(TURBOSPARC_uS2);
1353			/* Emulate VLSI abortion number three, not number one */
1354#endif
1355
1356	switch (ccreg & 7) {
1357	case 0: /* No SE cache */
1358	case 7: /* Test mode */
1359		break;
1360	default:
1361		ccreg |= (TURBOSPARC_SCENABLE);
1362	}
1363	turbosparc_set_ccreg(ccreg);
1364
1365	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1366	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1367	srmmu_set_mmureg(mreg);
1368}
1369
1370static const struct sparc32_cachetlb_ops turbosparc_ops = {
1371	.cache_all	= turbosparc_flush_cache_all,
1372	.cache_mm	= turbosparc_flush_cache_mm,
1373	.cache_page	= turbosparc_flush_cache_page,
1374	.cache_range	= turbosparc_flush_cache_range,
1375	.tlb_all	= turbosparc_flush_tlb_all,
1376	.tlb_mm		= turbosparc_flush_tlb_mm,
1377	.tlb_page	= turbosparc_flush_tlb_page,
1378	.tlb_range	= turbosparc_flush_tlb_range,
1379	.page_to_ram	= turbosparc_flush_page_to_ram,
1380	.sig_insns	= turbosparc_flush_sig_insns,
1381	.page_for_dma	= turbosparc_flush_page_for_dma,
1382};
1383
1384static void __init init_turbosparc(void)
1385{
1386	srmmu_name = "Fujitsu TurboSparc";
1387	srmmu_modtype = TurboSparc;
1388	sparc32_cachetlb_ops = &turbosparc_ops;
1389	poke_srmmu = poke_turbosparc;
1390}
1391
1392static void poke_tsunami(void)
1393{
1394	unsigned long mreg = srmmu_get_mmureg();
1395
1396	tsunami_flush_icache();
1397	tsunami_flush_dcache();
1398	mreg &= ~TSUNAMI_ITD;
1399	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1400	srmmu_set_mmureg(mreg);
1401}
1402
1403static const struct sparc32_cachetlb_ops tsunami_ops = {
1404	.cache_all	= tsunami_flush_cache_all,
1405	.cache_mm	= tsunami_flush_cache_mm,
1406	.cache_page	= tsunami_flush_cache_page,
1407	.cache_range	= tsunami_flush_cache_range,
1408	.tlb_all	= tsunami_flush_tlb_all,
1409	.tlb_mm		= tsunami_flush_tlb_mm,
1410	.tlb_page	= tsunami_flush_tlb_page,
1411	.tlb_range	= tsunami_flush_tlb_range,
1412	.page_to_ram	= tsunami_flush_page_to_ram,
1413	.sig_insns	= tsunami_flush_sig_insns,
1414	.page_for_dma	= tsunami_flush_page_for_dma,
1415};
1416
1417static void __init init_tsunami(void)
1418{
1419	/*
1420	 * Tsunami's pretty sane, Sun and TI actually got it
1421	 * somewhat right this time.  Fujitsu should have
1422	 * taken some lessons from them.
1423	 */
1424
1425	srmmu_name = "TI Tsunami";
1426	srmmu_modtype = Tsunami;
1427	sparc32_cachetlb_ops = &tsunami_ops;
1428	poke_srmmu = poke_tsunami;
1429
1430	tsunami_setup_blockops();
1431}
1432
1433static void poke_viking(void)
1434{
1435	unsigned long mreg = srmmu_get_mmureg();
1436	static int smp_catch;
1437
1438	if (viking_mxcc_present) {
1439		unsigned long mxcc_control = mxcc_get_creg();
1440
1441		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1442		mxcc_control &= ~(MXCC_CTL_RRC);
1443		mxcc_set_creg(mxcc_control);
1444
1445		/*
1446		 * We don't need memory parity checks.
1447		 * XXX This is a mess, have to dig out later. ecd.
1448		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1449		 */
1450
1451		/* We do cache ptables on MXCC. */
1452		mreg |= VIKING_TCENABLE;
1453	} else {
1454		unsigned long bpreg;
1455
1456		mreg &= ~(VIKING_TCENABLE);
1457		if (smp_catch++) {
1458			/* Must disable mixed-cmd mode here for other cpu's. */
1459			bpreg = viking_get_bpreg();
1460			bpreg &= ~(VIKING_ACTION_MIX);
1461			viking_set_bpreg(bpreg);
1462
1463			/* Just in case PROM does something funny. */
1464			msi_set_sync();
1465		}
1466	}
1467
1468	mreg |= VIKING_SPENABLE;
1469	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1470	mreg |= VIKING_SBENABLE;
1471	mreg &= ~(VIKING_ACENABLE);
1472	srmmu_set_mmureg(mreg);
1473}
1474
1475static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1476	.cache_all	= viking_flush_cache_all,
1477	.cache_mm	= viking_flush_cache_mm,
1478	.cache_page	= viking_flush_cache_page,
1479	.cache_range	= viking_flush_cache_range,
1480	.tlb_all	= viking_flush_tlb_all,
1481	.tlb_mm		= viking_flush_tlb_mm,
1482	.tlb_page	= viking_flush_tlb_page,
1483	.tlb_range	= viking_flush_tlb_range,
1484	.page_to_ram	= viking_flush_page_to_ram,
1485	.sig_insns	= viking_flush_sig_insns,
1486	.page_for_dma	= viking_flush_page_for_dma,
1487};
1488
1489#ifdef CONFIG_SMP
1490/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1491 * perform the local TLB flush and all the other cpus will see it.
1492 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1493 * that requires that we add some synchronization to these flushes.
1494 *
1495 * The bug is that the fifo which keeps track of all the pending TLB
1496 * broadcasts in the system is an entry or two too small, so if we
1497 * have too many going at once we'll overflow that fifo and lose a TLB
1498 * flush resulting in corruption.
1499 *
1500 * Our workaround is to take a global spinlock around the TLB flushes,
1501 * which guarentees we won't ever have too many pending.  It's a big
1502 * hammer, but a semaphore like system to make sure we only have N TLB
1503 * flushes going at once will require SMP locking anyways so there's
1504 * no real value in trying any harder than this.
1505 */
1506static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1507	.cache_all	= viking_flush_cache_all,
1508	.cache_mm	= viking_flush_cache_mm,
1509	.cache_page	= viking_flush_cache_page,
1510	.cache_range	= viking_flush_cache_range,
1511	.tlb_all	= sun4dsmp_flush_tlb_all,
1512	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1513	.tlb_page	= sun4dsmp_flush_tlb_page,
1514	.tlb_range	= sun4dsmp_flush_tlb_range,
1515	.page_to_ram	= viking_flush_page_to_ram,
1516	.sig_insns	= viking_flush_sig_insns,
1517	.page_for_dma	= viking_flush_page_for_dma,
1518};
1519#endif
1520
1521static void __init init_viking(void)
1522{
1523	unsigned long mreg = srmmu_get_mmureg();
1524
1525	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1526	if (mreg & VIKING_MMODE) {
1527		srmmu_name = "TI Viking";
1528		viking_mxcc_present = 0;
1529		msi_set_sync();
1530
1531		/*
1532		 * We need this to make sure old viking takes no hits
1533		 * on it's cache for dma snoops to workaround the
1534		 * "load from non-cacheable memory" interrupt bug.
1535		 * This is only necessary because of the new way in
1536		 * which we use the IOMMU.
1537		 */
1538		viking_ops.page_for_dma = viking_flush_page;
1539#ifdef CONFIG_SMP
1540		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1541#endif
1542		flush_page_for_dma_global = 0;
1543	} else {
1544		srmmu_name = "TI Viking/MXCC";
1545		viking_mxcc_present = 1;
1546		srmmu_cache_pagetables = 1;
1547	}
1548
1549	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1550		&viking_ops;
1551#ifdef CONFIG_SMP
1552	if (sparc_cpu_model == sun4d)
1553		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1554			&viking_sun4d_smp_ops;
1555#endif
1556
1557	poke_srmmu = poke_viking;
1558}
1559
1560/* Probe for the srmmu chip version. */
1561static void __init get_srmmu_type(void)
1562{
1563	unsigned long mreg, psr;
1564	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1565
1566	srmmu_modtype = SRMMU_INVAL_MOD;
1567	hwbug_bitmask = 0;
1568
1569	mreg = srmmu_get_mmureg(); psr = get_psr();
1570	mod_typ = (mreg & 0xf0000000) >> 28;
1571	mod_rev = (mreg & 0x0f000000) >> 24;
1572	psr_typ = (psr >> 28) & 0xf;
1573	psr_vers = (psr >> 24) & 0xf;
1574
1575	/* First, check for sparc-leon. */
1576	if (sparc_cpu_model == sparc_leon) {
1577		init_leon();
1578		return;
1579	}
1580
1581	/* Second, check for HyperSparc or Cypress. */
1582	if (mod_typ == 1) {
1583		switch (mod_rev) {
1584		case 7:
1585			/* UP or MP Hypersparc */
1586			init_hypersparc();
1587			break;
1588		case 0:
1589		case 2:
1590		case 10:
1591		case 11:
1592		case 12:
1593		case 13:
1594		case 14:
1595		case 15:
1596		default:
1597			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1598			prom_halt();
1599			break;
1600		}
1601		return;
1602	}
1603
1604	/* Now Fujitsu TurboSparc. It might happen that it is
1605	 * in Swift emulation mode, so we will check later...
1606	 */
1607	if (psr_typ == 0 && psr_vers == 5) {
1608		init_turbosparc();
1609		return;
1610	}
1611
1612	/* Next check for Fujitsu Swift. */
1613	if (psr_typ == 0 && psr_vers == 4) {
1614		phandle cpunode;
1615		char node_str[128];
1616
1617		/* Look if it is not a TurboSparc emulating Swift... */
1618		cpunode = prom_getchild(prom_root_node);
1619		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1620			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1621			if (!strcmp(node_str, "cpu")) {
1622				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1623				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1624					init_turbosparc();
1625					return;
1626				}
1627				break;
1628			}
1629		}
1630
1631		init_swift();
1632		return;
1633	}
1634
1635	/* Now the Viking family of srmmu. */
1636	if (psr_typ == 4 &&
1637	   ((psr_vers == 0) ||
1638	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1639		init_viking();
1640		return;
1641	}
1642
1643	/* Finally the Tsunami. */
1644	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1645		init_tsunami();
1646		return;
1647	}
1648
1649	/* Oh well */
1650	srmmu_is_bad();
1651}
1652
1653#ifdef CONFIG_SMP
1654/* Local cross-calls. */
1655static void smp_flush_page_for_dma(unsigned long page)
1656{
1657	xc1((smpfunc_t) local_ops->page_for_dma, page);
1658	local_ops->page_for_dma(page);
1659}
1660
1661static void smp_flush_cache_all(void)
1662{
1663	xc0((smpfunc_t) local_ops->cache_all);
1664	local_ops->cache_all();
1665}
1666
1667static void smp_flush_tlb_all(void)
1668{
1669	xc0((smpfunc_t) local_ops->tlb_all);
1670	local_ops->tlb_all();
1671}
1672
1673static void smp_flush_cache_mm(struct mm_struct *mm)
1674{
1675	if (mm->context != NO_CONTEXT) {
1676		cpumask_t cpu_mask;
1677		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1678		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1679		if (!cpumask_empty(&cpu_mask))
1680			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1681		local_ops->cache_mm(mm);
1682	}
1683}
1684
1685static void smp_flush_tlb_mm(struct mm_struct *mm)
1686{
1687	if (mm->context != NO_CONTEXT) {
1688		cpumask_t cpu_mask;
1689		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1690		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1691		if (!cpumask_empty(&cpu_mask)) {
1692			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1693			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1694				cpumask_copy(mm_cpumask(mm),
1695					     cpumask_of(smp_processor_id()));
1696		}
1697		local_ops->tlb_mm(mm);
1698	}
1699}
1700
1701static void smp_flush_cache_range(struct vm_area_struct *vma,
1702				  unsigned long start,
1703				  unsigned long end)
1704{
1705	struct mm_struct *mm = vma->vm_mm;
1706
1707	if (mm->context != NO_CONTEXT) {
1708		cpumask_t cpu_mask;
1709		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1710		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1711		if (!cpumask_empty(&cpu_mask))
1712			xc3((smpfunc_t) local_ops->cache_range,
1713			    (unsigned long) vma, start, end);
1714		local_ops->cache_range(vma, start, end);
1715	}
1716}
1717
1718static void smp_flush_tlb_range(struct vm_area_struct *vma,
1719				unsigned long start,
1720				unsigned long end)
1721{
1722	struct mm_struct *mm = vma->vm_mm;
1723
1724	if (mm->context != NO_CONTEXT) {
1725		cpumask_t cpu_mask;
1726		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1727		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1728		if (!cpumask_empty(&cpu_mask))
1729			xc3((smpfunc_t) local_ops->tlb_range,
1730			    (unsigned long) vma, start, end);
1731		local_ops->tlb_range(vma, start, end);
1732	}
1733}
1734
1735static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1736{
1737	struct mm_struct *mm = vma->vm_mm;
1738
1739	if (mm->context != NO_CONTEXT) {
1740		cpumask_t cpu_mask;
1741		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1742		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1743		if (!cpumask_empty(&cpu_mask))
1744			xc2((smpfunc_t) local_ops->cache_page,
1745			    (unsigned long) vma, page);
1746		local_ops->cache_page(vma, page);
1747	}
1748}
1749
1750static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1751{
1752	struct mm_struct *mm = vma->vm_mm;
1753
1754	if (mm->context != NO_CONTEXT) {
1755		cpumask_t cpu_mask;
1756		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1757		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1758		if (!cpumask_empty(&cpu_mask))
1759			xc2((smpfunc_t) local_ops->tlb_page,
1760			    (unsigned long) vma, page);
1761		local_ops->tlb_page(vma, page);
1762	}
1763}
1764
1765static void smp_flush_page_to_ram(unsigned long page)
1766{
1767	/* Current theory is that those who call this are the one's
1768	 * who have just dirtied their cache with the pages contents
1769	 * in kernel space, therefore we only run this on local cpu.
1770	 *
1771	 * XXX This experiment failed, research further... -DaveM
1772	 */
1773#if 1
1774	xc1((smpfunc_t) local_ops->page_to_ram, page);
1775#endif
1776	local_ops->page_to_ram(page);
1777}
1778
1779static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1780{
1781	cpumask_t cpu_mask;
1782	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1783	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1784	if (!cpumask_empty(&cpu_mask))
1785		xc2((smpfunc_t) local_ops->sig_insns,
1786		    (unsigned long) mm, insn_addr);
1787	local_ops->sig_insns(mm, insn_addr);
1788}
1789
1790static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1791	.cache_all	= smp_flush_cache_all,
1792	.cache_mm	= smp_flush_cache_mm,
1793	.cache_page	= smp_flush_cache_page,
1794	.cache_range	= smp_flush_cache_range,
1795	.tlb_all	= smp_flush_tlb_all,
1796	.tlb_mm		= smp_flush_tlb_mm,
1797	.tlb_page	= smp_flush_tlb_page,
1798	.tlb_range	= smp_flush_tlb_range,
1799	.page_to_ram	= smp_flush_page_to_ram,
1800	.sig_insns	= smp_flush_sig_insns,
1801	.page_for_dma	= smp_flush_page_for_dma,
1802};
1803#endif
1804
1805/* Load up routines and constants for sun4m and sun4d mmu */
1806void __init load_mmu(void)
1807{
1808	/* Functions */
1809	get_srmmu_type();
1810
1811#ifdef CONFIG_SMP
1812	/* El switcheroo... */
1813	local_ops = sparc32_cachetlb_ops;
1814
1815	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1816		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1817		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1818		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1819		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1820	}
1821
1822	if (poke_srmmu == poke_viking) {
1823		/* Avoid unnecessary cross calls. */
1824		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1825		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1826		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1827		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1828
1829		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1830		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1831		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1832	}
1833
1834	/* It really is const after this point. */
1835	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1836		&smp_cachetlb_ops;
1837#endif
1838
1839	if (sparc_cpu_model == sun4d)
1840		ld_mmu_iounit();
1841	else
1842		ld_mmu_iommu();
1843#ifdef CONFIG_SMP
1844	if (sparc_cpu_model == sun4d)
1845		sun4d_init_smp();
1846	else if (sparc_cpu_model == sparc_leon)
1847		leon_init_smp();
1848	else
1849		sun4m_init_smp();
1850#endif
1851}