Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mutex.h>
  25#include <linux/log2.h>
  26#include <linux/sched.h>
  27#include <linux/sched/mm.h>
  28#include <linux/sched/task.h>
  29#include <linux/mmu_context.h>
  30#include <linux/slab.h>
  31#include <linux/amd-iommu.h>
  32#include <linux/notifier.h>
  33#include <linux/compat.h>
  34#include <linux/mman.h>
  35#include <linux/file.h>
  36#include <linux/pm_runtime.h>
  37#include "amdgpu_amdkfd.h"
  38#include "amdgpu.h"
  39
  40struct mm_struct;
  41
  42#include "kfd_priv.h"
  43#include "kfd_device_queue_manager.h"
 
  44#include "kfd_iommu.h"
  45#include "kfd_svm.h"
  46#include "kfd_smi_events.h"
  47
  48/*
  49 * List of struct kfd_process (field kfd_process).
  50 * Unique/indexed by mm_struct*
  51 */
  52DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  53static DEFINE_MUTEX(kfd_processes_mutex);
  54
  55DEFINE_SRCU(kfd_processes_srcu);
  56
  57/* For process termination handling */
  58static struct workqueue_struct *kfd_process_wq;
  59
  60/* Ordered, single-threaded workqueue for restoring evicted
  61 * processes. Restoring multiple processes concurrently under memory
  62 * pressure can lead to processes blocking each other from validating
  63 * their BOs and result in a live-lock situation where processes
  64 * remain evicted indefinitely.
  65 */
  66static struct workqueue_struct *kfd_restore_wq;
  67
  68static struct kfd_process *find_process(const struct task_struct *thread,
  69					bool ref);
  70static void kfd_process_ref_release(struct kref *ref);
  71static struct kfd_process *create_process(const struct task_struct *thread);
  72static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
  73
  74static void evict_process_worker(struct work_struct *work);
  75static void restore_process_worker(struct work_struct *work);
  76
  77static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
  78
  79struct kfd_procfs_tree {
  80	struct kobject *kobj;
  81};
  82
  83static struct kfd_procfs_tree procfs;
  84
  85/*
  86 * Structure for SDMA activity tracking
  87 */
  88struct kfd_sdma_activity_handler_workarea {
  89	struct work_struct sdma_activity_work;
  90	struct kfd_process_device *pdd;
  91	uint64_t sdma_activity_counter;
  92};
  93
  94struct temp_sdma_queue_list {
  95	uint64_t __user *rptr;
  96	uint64_t sdma_val;
  97	unsigned int queue_id;
  98	struct list_head list;
  99};
 100
 101static void kfd_sdma_activity_worker(struct work_struct *work)
 102{
 103	struct kfd_sdma_activity_handler_workarea *workarea;
 104	struct kfd_process_device *pdd;
 105	uint64_t val;
 106	struct mm_struct *mm;
 107	struct queue *q;
 108	struct qcm_process_device *qpd;
 109	struct device_queue_manager *dqm;
 110	int ret = 0;
 111	struct temp_sdma_queue_list sdma_q_list;
 112	struct temp_sdma_queue_list *sdma_q, *next;
 113
 114	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 115				sdma_activity_work);
 116
 117	pdd = workarea->pdd;
 118	if (!pdd)
 119		return;
 120	dqm = pdd->dev->dqm;
 121	qpd = &pdd->qpd;
 122	if (!dqm || !qpd)
 123		return;
 124	/*
 125	 * Total SDMA activity is current SDMA activity + past SDMA activity
 126	 * Past SDMA count is stored in pdd.
 127	 * To get the current activity counters for all active SDMA queues,
 128	 * we loop over all SDMA queues and get their counts from user-space.
 129	 *
 130	 * We cannot call get_user() with dqm_lock held as it can cause
 131	 * a circular lock dependency situation. To read the SDMA stats,
 132	 * we need to do the following:
 133	 *
 134	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 135	 *    with dqm_lock/dqm_unlock().
 136	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 137	 *    Save the SDMA count for each node and also add the count to the total
 138	 *    SDMA count counter.
 139	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 140	 *    from the qpd->queues_list.
 141	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 142	 *    If any node got deleted, its SDMA count would be captured in the sdma
 143	 *    past activity counter. So subtract the SDMA counter stored in step 2
 144	 *    for this node from the total SDMA count.
 145	 */
 146	INIT_LIST_HEAD(&sdma_q_list.list);
 147
 148	/*
 149	 * Create the temp list of all SDMA queues
 150	 */
 151	dqm_lock(dqm);
 152
 153	list_for_each_entry(q, &qpd->queues_list, list) {
 154		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 155		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 156			continue;
 157
 158		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 159		if (!sdma_q) {
 160			dqm_unlock(dqm);
 161			goto cleanup;
 162		}
 163
 164		INIT_LIST_HEAD(&sdma_q->list);
 165		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 166		sdma_q->queue_id = q->properties.queue_id;
 167		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 168	}
 169
 170	/*
 171	 * If the temp list is empty, then no SDMA queues nodes were found in
 172	 * qpd->queues_list. Return the past activity count as the total sdma
 173	 * count
 174	 */
 175	if (list_empty(&sdma_q_list.list)) {
 176		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 177		dqm_unlock(dqm);
 178		return;
 179	}
 180
 181	dqm_unlock(dqm);
 182
 183	/*
 184	 * Get the usage count for each SDMA queue in temp_list.
 185	 */
 186	mm = get_task_mm(pdd->process->lead_thread);
 187	if (!mm)
 188		goto cleanup;
 189
 190	kthread_use_mm(mm);
 191
 192	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 193		val = 0;
 194		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 195		if (ret) {
 196			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 197				 sdma_q->queue_id);
 198		} else {
 199			sdma_q->sdma_val = val;
 200			workarea->sdma_activity_counter += val;
 201		}
 202	}
 203
 204	kthread_unuse_mm(mm);
 205	mmput(mm);
 206
 207	/*
 208	 * Do a second iteration over qpd_queues_list to check if any SDMA
 209	 * nodes got deleted while fetching SDMA counter.
 210	 */
 211	dqm_lock(dqm);
 212
 213	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 214
 215	list_for_each_entry(q, &qpd->queues_list, list) {
 216		if (list_empty(&sdma_q_list.list))
 217			break;
 218
 219		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 220		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 221			continue;
 222
 223		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 224			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 225			     (sdma_q->queue_id == q->properties.queue_id)) {
 226				list_del(&sdma_q->list);
 227				kfree(sdma_q);
 228				break;
 229			}
 230		}
 231	}
 232
 233	dqm_unlock(dqm);
 234
 235	/*
 236	 * If temp list is not empty, it implies some queues got deleted
 237	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 238	 * count for each node from the total SDMA count.
 239	 */
 240	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 241		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 242		list_del(&sdma_q->list);
 243		kfree(sdma_q);
 244	}
 245
 246	return;
 247
 248cleanup:
 249	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 250		list_del(&sdma_q->list);
 251		kfree(sdma_q);
 252	}
 253}
 254
 255/**
 256 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 257 * by current process. Translates acquired wave count into number of compute units
 258 * that are occupied.
 259 *
 260 * @attr: Handle of attribute that allows reporting of wave count. The attribute
 261 * handle encapsulates GPU device it is associated with, thereby allowing collection
 262 * of waves in flight, etc
 
 263 * @buffer: Handle of user provided buffer updated with wave count
 264 *
 265 * Return: Number of bytes written to user buffer or an error value
 266 */
 267static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 268{
 269	int cu_cnt;
 270	int wave_cnt;
 271	int max_waves_per_cu;
 272	struct kfd_dev *dev = NULL;
 273	struct kfd_process *proc = NULL;
 274	struct kfd_process_device *pdd = NULL;
 275
 276	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 277	dev = pdd->dev;
 278	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 279		return -EINVAL;
 280
 281	cu_cnt = 0;
 282	proc = pdd->process;
 283	if (pdd->qpd.queue_count == 0) {
 284		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 285			 dev->id, proc->pasid);
 286		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 287	}
 288
 289	/* Collect wave count from device if it supports */
 290	wave_cnt = 0;
 291	max_waves_per_cu = 0;
 292	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
 293			&max_waves_per_cu);
 294
 295	/* Translate wave count to number of compute units */
 296	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 297	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 298}
 299
 300static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 301			       char *buffer)
 302{
 303	if (strcmp(attr->name, "pasid") == 0) {
 304		struct kfd_process *p = container_of(attr, struct kfd_process,
 305						     attr_pasid);
 306
 307		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 308	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 309		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 310							      attr_vram);
 311		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 312	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 313		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 314							      attr_sdma);
 315		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 316
 317		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 318					kfd_sdma_activity_worker);
 319
 320		sdma_activity_work_handler.pdd = pdd;
 321		sdma_activity_work_handler.sdma_activity_counter = 0;
 322
 323		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 324
 325		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 326
 327		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 328				(sdma_activity_work_handler.sdma_activity_counter)/
 329				 SDMA_ACTIVITY_DIVISOR);
 330	} else {
 331		pr_err("Invalid attribute");
 332		return -EINVAL;
 333	}
 334
 335	return 0;
 336}
 337
 338static void kfd_procfs_kobj_release(struct kobject *kobj)
 339{
 340	kfree(kobj);
 341}
 342
 343static const struct sysfs_ops kfd_procfs_ops = {
 344	.show = kfd_procfs_show,
 345};
 346
 347static struct kobj_type procfs_type = {
 348	.release = kfd_procfs_kobj_release,
 349	.sysfs_ops = &kfd_procfs_ops,
 350};
 351
 352void kfd_procfs_init(void)
 353{
 354	int ret = 0;
 355
 356	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 357	if (!procfs.kobj)
 358		return;
 359
 360	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 361				   &kfd_device->kobj, "proc");
 362	if (ret) {
 363		pr_warn("Could not create procfs proc folder");
 364		/* If we fail to create the procfs, clean up */
 365		kfd_procfs_shutdown();
 366	}
 367}
 368
 369void kfd_procfs_shutdown(void)
 370{
 371	if (procfs.kobj) {
 372		kobject_del(procfs.kobj);
 373		kobject_put(procfs.kobj);
 374		procfs.kobj = NULL;
 375	}
 376}
 377
 378static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 379				     struct attribute *attr, char *buffer)
 380{
 381	struct queue *q = container_of(kobj, struct queue, kobj);
 382
 383	if (!strcmp(attr->name, "size"))
 384		return snprintf(buffer, PAGE_SIZE, "%llu",
 385				q->properties.queue_size);
 386	else if (!strcmp(attr->name, "type"))
 387		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 388	else if (!strcmp(attr->name, "gpuid"))
 389		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 390	else
 391		pr_err("Invalid attribute");
 392
 393	return 0;
 394}
 395
 396static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 397				     struct attribute *attr, char *buffer)
 398{
 399	if (strcmp(attr->name, "evicted_ms") == 0) {
 400		struct kfd_process_device *pdd = container_of(attr,
 401				struct kfd_process_device,
 402				attr_evict);
 403		uint64_t evict_jiffies;
 404
 405		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 406
 407		return snprintf(buffer,
 408				PAGE_SIZE,
 409				"%llu\n",
 410				jiffies64_to_msecs(evict_jiffies));
 411
 412	/* Sysfs handle that gets CU occupancy is per device */
 413	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 414		return kfd_get_cu_occupancy(attr, buffer);
 415	} else {
 416		pr_err("Invalid attribute");
 417	}
 418
 419	return 0;
 420}
 421
 422static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 423				       struct attribute *attr, char *buf)
 424{
 425	struct kfd_process_device *pdd;
 426
 427	if (!strcmp(attr->name, "faults")) {
 428		pdd = container_of(attr, struct kfd_process_device,
 429				   attr_faults);
 430		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 431	}
 432	if (!strcmp(attr->name, "page_in")) {
 433		pdd = container_of(attr, struct kfd_process_device,
 434				   attr_page_in);
 435		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 436	}
 437	if (!strcmp(attr->name, "page_out")) {
 438		pdd = container_of(attr, struct kfd_process_device,
 439				   attr_page_out);
 440		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 441	}
 442	return 0;
 443}
 444
 445static struct attribute attr_queue_size = {
 446	.name = "size",
 447	.mode = KFD_SYSFS_FILE_MODE
 448};
 449
 450static struct attribute attr_queue_type = {
 451	.name = "type",
 452	.mode = KFD_SYSFS_FILE_MODE
 453};
 454
 455static struct attribute attr_queue_gpuid = {
 456	.name = "gpuid",
 457	.mode = KFD_SYSFS_FILE_MODE
 458};
 459
 460static struct attribute *procfs_queue_attrs[] = {
 461	&attr_queue_size,
 462	&attr_queue_type,
 463	&attr_queue_gpuid,
 464	NULL
 465};
 466ATTRIBUTE_GROUPS(procfs_queue);
 467
 468static const struct sysfs_ops procfs_queue_ops = {
 469	.show = kfd_procfs_queue_show,
 470};
 471
 472static struct kobj_type procfs_queue_type = {
 473	.sysfs_ops = &procfs_queue_ops,
 474	.default_groups = procfs_queue_groups,
 475};
 476
 477static const struct sysfs_ops procfs_stats_ops = {
 478	.show = kfd_procfs_stats_show,
 479};
 480
 481static struct kobj_type procfs_stats_type = {
 482	.sysfs_ops = &procfs_stats_ops,
 483	.release = kfd_procfs_kobj_release,
 484};
 485
 486static const struct sysfs_ops sysfs_counters_ops = {
 487	.show = kfd_sysfs_counters_show,
 488};
 489
 490static struct kobj_type sysfs_counters_type = {
 491	.sysfs_ops = &sysfs_counters_ops,
 492	.release = kfd_procfs_kobj_release,
 493};
 494
 495int kfd_procfs_add_queue(struct queue *q)
 496{
 497	struct kfd_process *proc;
 498	int ret;
 499
 500	if (!q || !q->process)
 501		return -EINVAL;
 502	proc = q->process;
 503
 504	/* Create proc/<pid>/queues/<queue id> folder */
 505	if (!proc->kobj_queues)
 506		return -EFAULT;
 507	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 508			proc->kobj_queues, "%u", q->properties.queue_id);
 509	if (ret < 0) {
 510		pr_warn("Creating proc/<pid>/queues/%u failed",
 511			q->properties.queue_id);
 512		kobject_put(&q->kobj);
 513		return ret;
 514	}
 515
 516	return 0;
 517}
 518
 519static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 520				 char *name)
 521{
 522	int ret;
 523
 524	if (!kobj || !attr || !name)
 525		return;
 526
 527	attr->name = name;
 528	attr->mode = KFD_SYSFS_FILE_MODE;
 529	sysfs_attr_init(attr);
 530
 531	ret = sysfs_create_file(kobj, attr);
 532	if (ret)
 533		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 534}
 535
 536static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 537{
 538	int ret;
 539	int i;
 540	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 541
 542	if (!p || !p->kobj)
 543		return;
 544
 545	/*
 546	 * Create sysfs files for each GPU:
 547	 * - proc/<pid>/stats_<gpuid>/
 548	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 549	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 550	 */
 551	for (i = 0; i < p->n_pdds; i++) {
 552		struct kfd_process_device *pdd = p->pdds[i];
 553
 554		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 555				"stats_%u", pdd->dev->id);
 556		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 557		if (!pdd->kobj_stats)
 558			return;
 559
 560		ret = kobject_init_and_add(pdd->kobj_stats,
 561					   &procfs_stats_type,
 562					   p->kobj,
 563					   stats_dir_filename);
 564
 565		if (ret) {
 566			pr_warn("Creating KFD proc/stats_%s folder failed",
 567				stats_dir_filename);
 568			kobject_put(pdd->kobj_stats);
 569			pdd->kobj_stats = NULL;
 570			return;
 571		}
 572
 573		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 574				      "evicted_ms");
 575		/* Add sysfs file to report compute unit occupancy */
 576		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 577			kfd_sysfs_create_file(pdd->kobj_stats,
 578					      &pdd->attr_cu_occupancy,
 579					      "cu_occupancy");
 580	}
 581}
 582
 583static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 584{
 585	int ret = 0;
 586	int i;
 587	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 588
 589	if (!p || !p->kobj)
 590		return;
 591
 592	/*
 593	 * Create sysfs files for each GPU which supports SVM
 594	 * - proc/<pid>/counters_<gpuid>/
 595	 * - proc/<pid>/counters_<gpuid>/faults
 596	 * - proc/<pid>/counters_<gpuid>/page_in
 597	 * - proc/<pid>/counters_<gpuid>/page_out
 598	 */
 599	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 600		struct kfd_process_device *pdd = p->pdds[i];
 601		struct kobject *kobj_counters;
 602
 603		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 604			"counters_%u", pdd->dev->id);
 605		kobj_counters = kfd_alloc_struct(kobj_counters);
 606		if (!kobj_counters)
 607			return;
 608
 609		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 610					   p->kobj, counters_dir_filename);
 611		if (ret) {
 612			pr_warn("Creating KFD proc/%s folder failed",
 613				counters_dir_filename);
 614			kobject_put(kobj_counters);
 615			return;
 616		}
 617
 618		pdd->kobj_counters = kobj_counters;
 619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 620				      "faults");
 621		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 622				      "page_in");
 623		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 624				      "page_out");
 625	}
 626}
 627
 628static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 629{
 630	int i;
 631
 632	if (!p || !p->kobj)
 633		return;
 634
 635	/*
 636	 * Create sysfs files for each GPU:
 637	 * - proc/<pid>/vram_<gpuid>
 638	 * - proc/<pid>/sdma_<gpuid>
 639	 */
 640	for (i = 0; i < p->n_pdds; i++) {
 641		struct kfd_process_device *pdd = p->pdds[i];
 642
 643		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 644			 pdd->dev->id);
 645		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 646				      pdd->vram_filename);
 647
 648		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 649			 pdd->dev->id);
 650		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 651					    pdd->sdma_filename);
 652	}
 653}
 654
 655void kfd_procfs_del_queue(struct queue *q)
 656{
 657	if (!q)
 658		return;
 659
 660	kobject_del(&q->kobj);
 661	kobject_put(&q->kobj);
 662}
 663
 664int kfd_process_create_wq(void)
 665{
 666	if (!kfd_process_wq)
 667		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 668	if (!kfd_restore_wq)
 669		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
 670
 671	if (!kfd_process_wq || !kfd_restore_wq) {
 672		kfd_process_destroy_wq();
 673		return -ENOMEM;
 674	}
 675
 676	return 0;
 677}
 678
 679void kfd_process_destroy_wq(void)
 680{
 681	if (kfd_process_wq) {
 682		destroy_workqueue(kfd_process_wq);
 683		kfd_process_wq = NULL;
 684	}
 685	if (kfd_restore_wq) {
 686		destroy_workqueue(kfd_restore_wq);
 687		kfd_restore_wq = NULL;
 688	}
 689}
 690
 691static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 692			struct kfd_process_device *pdd, void **kptr)
 693{
 694	struct kfd_dev *dev = pdd->dev;
 695
 696	if (kptr && *kptr) {
 697		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 698		*kptr = NULL;
 699	}
 700
 701	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
 702	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
 703					       NULL);
 704}
 705
 706/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 707 *	This function should be only called right after the process
 708 *	is created and when kfd_processes_mutex is still being held
 709 *	to avoid concurrency. Because of that exclusiveness, we do
 710 *	not need to take p->mutex.
 711 */
 712static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 713				   uint64_t gpu_va, uint32_t size,
 714				   uint32_t flags, struct kgd_mem **mem, void **kptr)
 715{
 716	struct kfd_dev *kdev = pdd->dev;
 
 
 717	int err;
 718
 719	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
 720						 pdd->drm_priv, mem, NULL,
 721						 flags, false);
 722	if (err)
 723		goto err_alloc_mem;
 724
 725	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
 726			pdd->drm_priv);
 727	if (err)
 728		goto err_map_mem;
 729
 730	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
 731	if (err) {
 732		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 733		goto sync_memory_failed;
 734	}
 735
 
 
 
 
 
 
 
 
 
 
 
 
 736	if (kptr) {
 737		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
 738				(struct kgd_mem *)*mem, kptr, NULL);
 739		if (err) {
 740			pr_debug("Map GTT BO to kernel failed\n");
 741			goto sync_memory_failed;
 742		}
 743	}
 744
 745	return err;
 746
 
 
 
 747sync_memory_failed:
 748	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
 
 749
 750err_map_mem:
 751	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
 752					       NULL);
 753err_alloc_mem:
 754	*mem = NULL;
 755	*kptr = NULL;
 756	return err;
 757}
 758
 759/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 760 *	process for IB usage The memory reserved is for KFD to submit
 761 *	IB to AMDGPU from kernel.  If the memory is reserved
 762 *	successfully, ib_kaddr will have the CPU/kernel
 763 *	address. Check ib_kaddr before accessing the memory.
 764 */
 765static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 766{
 767	struct qcm_process_device *qpd = &pdd->qpd;
 768	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 769			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 770			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 771			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 772	struct kgd_mem *mem;
 773	void *kaddr;
 774	int ret;
 775
 776	if (qpd->ib_kaddr || !qpd->ib_base)
 777		return 0;
 778
 779	/* ib_base is only set for dGPU */
 780	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 781				      &mem, &kaddr);
 782	if (ret)
 783		return ret;
 784
 785	qpd->ib_mem = mem;
 786	qpd->ib_kaddr = kaddr;
 787
 788	return 0;
 789}
 790
 791static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
 792{
 793	struct qcm_process_device *qpd = &pdd->qpd;
 794
 795	if (!qpd->ib_kaddr || !qpd->ib_base)
 796		return;
 797
 798	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
 799}
 800
 801struct kfd_process *kfd_create_process(struct file *filep)
 802{
 803	struct kfd_process *process;
 804	struct task_struct *thread = current;
 805	int ret;
 806
 807	if (!thread->mm)
 808		return ERR_PTR(-EINVAL);
 809
 810	/* Only the pthreads threading model is supported. */
 811	if (thread->group_leader->mm != thread->mm)
 812		return ERR_PTR(-EINVAL);
 813
 814	/*
 815	 * take kfd processes mutex before starting of process creation
 816	 * so there won't be a case where two threads of the same process
 817	 * create two kfd_process structures
 818	 */
 819	mutex_lock(&kfd_processes_mutex);
 820
 821	/* A prior open of /dev/kfd could have already created the process. */
 822	process = find_process(thread, false);
 823	if (process) {
 824		pr_debug("Process already found\n");
 825	} else {
 826		process = create_process(thread);
 827		if (IS_ERR(process))
 828			goto out;
 829
 830		ret = kfd_process_init_cwsr_apu(process, filep);
 831		if (ret)
 832			goto out_destroy;
 833
 834		if (!procfs.kobj)
 835			goto out;
 836
 837		process->kobj = kfd_alloc_struct(process->kobj);
 838		if (!process->kobj) {
 839			pr_warn("Creating procfs kobject failed");
 840			goto out;
 841		}
 842		ret = kobject_init_and_add(process->kobj, &procfs_type,
 843					   procfs.kobj, "%d",
 844					   (int)process->lead_thread->pid);
 845		if (ret) {
 846			pr_warn("Creating procfs pid directory failed");
 847			kobject_put(process->kobj);
 848			goto out;
 849		}
 850
 851		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 852				      "pasid");
 853
 854		process->kobj_queues = kobject_create_and_add("queues",
 855							process->kobj);
 856		if (!process->kobj_queues)
 857			pr_warn("Creating KFD proc/queues folder failed");
 858
 859		kfd_procfs_add_sysfs_stats(process);
 860		kfd_procfs_add_sysfs_files(process);
 861		kfd_procfs_add_sysfs_counters(process);
 862	}
 863out:
 864	if (!IS_ERR(process))
 865		kref_get(&process->ref);
 866	mutex_unlock(&kfd_processes_mutex);
 867
 868	return process;
 869
 870out_destroy:
 871	hash_del_rcu(&process->kfd_processes);
 872	mutex_unlock(&kfd_processes_mutex);
 873	synchronize_srcu(&kfd_processes_srcu);
 874	/* kfd_process_free_notifier will trigger the cleanup */
 875	mmu_notifier_put(&process->mmu_notifier);
 876	return ERR_PTR(ret);
 877}
 878
 879struct kfd_process *kfd_get_process(const struct task_struct *thread)
 880{
 881	struct kfd_process *process;
 882
 883	if (!thread->mm)
 884		return ERR_PTR(-EINVAL);
 885
 886	/* Only the pthreads threading model is supported. */
 887	if (thread->group_leader->mm != thread->mm)
 888		return ERR_PTR(-EINVAL);
 889
 890	process = find_process(thread, false);
 891	if (!process)
 892		return ERR_PTR(-EINVAL);
 893
 894	return process;
 895}
 896
 897static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 898{
 899	struct kfd_process *process;
 900
 901	hash_for_each_possible_rcu(kfd_processes_table, process,
 902					kfd_processes, (uintptr_t)mm)
 903		if (process->mm == mm)
 904			return process;
 905
 906	return NULL;
 907}
 908
 909static struct kfd_process *find_process(const struct task_struct *thread,
 910					bool ref)
 911{
 912	struct kfd_process *p;
 913	int idx;
 914
 915	idx = srcu_read_lock(&kfd_processes_srcu);
 916	p = find_process_by_mm(thread->mm);
 917	if (p && ref)
 918		kref_get(&p->ref);
 919	srcu_read_unlock(&kfd_processes_srcu, idx);
 920
 921	return p;
 922}
 923
 924void kfd_unref_process(struct kfd_process *p)
 925{
 926	kref_put(&p->ref, kfd_process_ref_release);
 927}
 928
 929/* This increments the process->ref counter. */
 930struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
 931{
 932	struct task_struct *task = NULL;
 933	struct kfd_process *p    = NULL;
 934
 935	if (!pid) {
 936		task = current;
 937		get_task_struct(task);
 938	} else {
 939		task = get_pid_task(pid, PIDTYPE_PID);
 940	}
 941
 942	if (task) {
 943		p = find_process(task, true);
 944		put_task_struct(task);
 945	}
 946
 947	return p;
 948}
 949
 950static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 951{
 952	struct kfd_process *p = pdd->process;
 953	void *mem;
 954	int id;
 955	int i;
 956
 957	/*
 958	 * Remove all handles from idr and release appropriate
 959	 * local memory object
 960	 */
 961	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 962
 963		for (i = 0; i < p->n_pdds; i++) {
 964			struct kfd_process_device *peer_pdd = p->pdds[i];
 965
 966			if (!peer_pdd->drm_priv)
 967				continue;
 968			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 969				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
 970		}
 971
 972		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
 973						       pdd->drm_priv, NULL);
 974		kfd_process_device_remove_obj_handle(pdd, id);
 975	}
 976}
 977
 978/*
 979 * Just kunmap and unpin signal BO here. It will be freed in
 980 * kfd_process_free_outstanding_kfd_bos()
 981 */
 982static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
 983{
 984	struct kfd_process_device *pdd;
 985	struct kfd_dev *kdev;
 986	void *mem;
 987
 988	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
 989	if (!kdev)
 990		return;
 991
 992	mutex_lock(&p->mutex);
 993
 994	pdd = kfd_get_process_device_data(kdev, p);
 995	if (!pdd)
 996		goto out;
 997
 998	mem = kfd_process_device_translate_handle(
 999		pdd, GET_IDR_HANDLE(p->signal_handle));
1000	if (!mem)
1001		goto out;
1002
1003	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1004
1005out:
1006	mutex_unlock(&p->mutex);
1007}
1008
1009static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1010{
1011	int i;
1012
1013	for (i = 0; i < p->n_pdds; i++)
1014		kfd_process_device_free_bos(p->pdds[i]);
1015}
1016
1017static void kfd_process_destroy_pdds(struct kfd_process *p)
1018{
1019	int i;
1020
1021	for (i = 0; i < p->n_pdds; i++) {
1022		struct kfd_process_device *pdd = p->pdds[i];
1023
1024		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1025				pdd->dev->id, p->pasid);
1026
1027		kfd_process_device_destroy_cwsr_dgpu(pdd);
1028		kfd_process_device_destroy_ib_mem(pdd);
1029
1030		if (pdd->drm_file) {
1031			amdgpu_amdkfd_gpuvm_release_process_vm(
1032					pdd->dev->adev, pdd->drm_priv);
1033			fput(pdd->drm_file);
1034		}
1035
1036		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1037			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1038				get_order(KFD_CWSR_TBA_TMA_SIZE));
1039
1040		bitmap_free(pdd->qpd.doorbell_bitmap);
1041		idr_destroy(&pdd->alloc_idr);
1042
1043		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1044
1045		if (pdd->dev->shared_resources.enable_mes)
1046			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1047						   pdd->proc_ctx_bo);
1048		/*
1049		 * before destroying pdd, make sure to report availability
1050		 * for auto suspend
1051		 */
1052		if (pdd->runtime_inuse) {
1053			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1054			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1055			pdd->runtime_inuse = false;
1056		}
1057
1058		kfree(pdd);
1059		p->pdds[i] = NULL;
1060	}
1061	p->n_pdds = 0;
1062}
1063
1064static void kfd_process_remove_sysfs(struct kfd_process *p)
1065{
1066	struct kfd_process_device *pdd;
1067	int i;
1068
1069	if (!p->kobj)
1070		return;
1071
1072	sysfs_remove_file(p->kobj, &p->attr_pasid);
1073	kobject_del(p->kobj_queues);
1074	kobject_put(p->kobj_queues);
1075	p->kobj_queues = NULL;
1076
1077	for (i = 0; i < p->n_pdds; i++) {
1078		pdd = p->pdds[i];
1079
1080		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1081		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1082
1083		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1084		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1085			sysfs_remove_file(pdd->kobj_stats,
1086					  &pdd->attr_cu_occupancy);
1087		kobject_del(pdd->kobj_stats);
1088		kobject_put(pdd->kobj_stats);
1089		pdd->kobj_stats = NULL;
1090	}
1091
1092	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1093		pdd = p->pdds[i];
1094
1095		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1096		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1097		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1098		kobject_del(pdd->kobj_counters);
1099		kobject_put(pdd->kobj_counters);
1100		pdd->kobj_counters = NULL;
1101	}
1102
1103	kobject_del(p->kobj);
1104	kobject_put(p->kobj);
1105	p->kobj = NULL;
1106}
1107
1108/* No process locking is needed in this function, because the process
1109 * is not findable any more. We must assume that no other thread is
1110 * using it any more, otherwise we couldn't safely free the process
1111 * structure in the end.
1112 */
1113static void kfd_process_wq_release(struct work_struct *work)
1114{
1115	struct kfd_process *p = container_of(work, struct kfd_process,
1116					     release_work);
1117
1118	kfd_process_dequeue_from_all_devices(p);
1119	pqm_uninit(&p->pqm);
1120
1121	/* Signal the eviction fence after user mode queues are
1122	 * destroyed. This allows any BOs to be freed without
1123	 * triggering pointless evictions or waiting for fences.
1124	 */
1125	dma_fence_signal(p->ef);
1126
1127	kfd_process_remove_sysfs(p);
1128	kfd_iommu_unbind_process(p);
1129
1130	kfd_process_kunmap_signal_bo(p);
1131	kfd_process_free_outstanding_kfd_bos(p);
1132	svm_range_list_fini(p);
1133
1134	kfd_process_destroy_pdds(p);
1135	dma_fence_put(p->ef);
1136
1137	kfd_event_free_process(p);
1138
1139	kfd_pasid_free(p->pasid);
1140	mutex_destroy(&p->mutex);
1141
1142	put_task_struct(p->lead_thread);
1143
1144	kfree(p);
1145}
1146
1147static void kfd_process_ref_release(struct kref *ref)
1148{
1149	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1150
1151	INIT_WORK(&p->release_work, kfd_process_wq_release);
1152	queue_work(kfd_process_wq, &p->release_work);
1153}
1154
1155static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1156{
1157	int idx = srcu_read_lock(&kfd_processes_srcu);
1158	struct kfd_process *p = find_process_by_mm(mm);
1159
1160	srcu_read_unlock(&kfd_processes_srcu, idx);
1161
1162	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1163}
1164
1165static void kfd_process_free_notifier(struct mmu_notifier *mn)
1166{
1167	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1168}
1169
1170static void kfd_process_notifier_release(struct mmu_notifier *mn,
1171					struct mm_struct *mm)
1172{
1173	struct kfd_process *p;
 
1174
1175	/*
1176	 * The kfd_process structure can not be free because the
1177	 * mmu_notifier srcu is read locked
1178	 */
1179	p = container_of(mn, struct kfd_process, mmu_notifier);
1180	if (WARN_ON(p->mm != mm))
1181		return;
1182
1183	mutex_lock(&kfd_processes_mutex);
1184	hash_del_rcu(&p->kfd_processes);
1185	mutex_unlock(&kfd_processes_mutex);
1186	synchronize_srcu(&kfd_processes_srcu);
1187
1188	cancel_delayed_work_sync(&p->eviction_work);
1189	cancel_delayed_work_sync(&p->restore_work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1190
1191	/* Indicate to other users that MM is no longer valid */
1192	p->mm = NULL;
 
 
 
 
 
 
 
1193
1194	mmu_notifier_put(&p->mmu_notifier);
1195}
1196
1197static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1198	.release = kfd_process_notifier_release,
1199	.alloc_notifier = kfd_process_alloc_notifier,
1200	.free_notifier = kfd_process_free_notifier,
1201};
1202
1203static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1204{
1205	unsigned long  offset;
1206	int i;
1207
1208	for (i = 0; i < p->n_pdds; i++) {
1209		struct kfd_dev *dev = p->pdds[i]->dev;
1210		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1211
1212		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1213			continue;
1214
1215		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1216		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1217			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1218			MAP_SHARED, offset);
1219
1220		if (IS_ERR_VALUE(qpd->tba_addr)) {
1221			int err = qpd->tba_addr;
1222
1223			pr_err("Failure to set tba address. error %d.\n", err);
1224			qpd->tba_addr = 0;
1225			qpd->cwsr_kaddr = NULL;
1226			return err;
1227		}
1228
1229		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1230
1231		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1232		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1233			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1234	}
1235
1236	return 0;
1237}
1238
1239static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1240{
1241	struct kfd_dev *dev = pdd->dev;
1242	struct qcm_process_device *qpd = &pdd->qpd;
1243	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1244			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1245			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1246	struct kgd_mem *mem;
1247	void *kaddr;
1248	int ret;
1249
1250	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1251		return 0;
1252
1253	/* cwsr_base is only set for dGPU */
1254	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1255				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1256	if (ret)
1257		return ret;
1258
1259	qpd->cwsr_mem = mem;
1260	qpd->cwsr_kaddr = kaddr;
1261	qpd->tba_addr = qpd->cwsr_base;
1262
1263	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1264
1265	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1266	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1267		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1268
1269	return 0;
1270}
1271
1272static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1273{
1274	struct kfd_dev *dev = pdd->dev;
1275	struct qcm_process_device *qpd = &pdd->qpd;
1276
1277	if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1278		return;
1279
1280	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1281}
1282
1283void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1284				  uint64_t tba_addr,
1285				  uint64_t tma_addr)
1286{
1287	if (qpd->cwsr_kaddr) {
1288		/* KFD trap handler is bound, record as second-level TBA/TMA
1289		 * in first-level TMA. First-level trap will jump to second.
1290		 */
1291		uint64_t *tma =
1292			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1293		tma[0] = tba_addr;
1294		tma[1] = tma_addr;
1295	} else {
1296		/* No trap handler bound, bind as first-level TBA/TMA. */
1297		qpd->tba_addr = tba_addr;
1298		qpd->tma_addr = tma_addr;
1299	}
1300}
1301
1302bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1303{
1304	int i;
1305
1306	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1307	 * boot time retry setting. Mixing processes with different
1308	 * XNACK/retry settings can hang the GPU.
1309	 *
1310	 * Different GPUs can have different noretry settings depending
1311	 * on HW bugs or limitations. We need to find at least one
1312	 * XNACK mode for this process that's compatible with all GPUs.
1313	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1314	 * built for XNACK-off. On GFXv9 it may perform slower.
1315	 *
1316	 * Therefore applications built for XNACK-off can always be
1317	 * supported and will be our fallback if any GPU does not
1318	 * support retry.
1319	 */
1320	for (i = 0; i < p->n_pdds; i++) {
1321		struct kfd_dev *dev = p->pdds[i]->dev;
1322
1323		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1324		 * support the SVM APIs and don't need to be considered
1325		 * for the XNACK mode selection.
1326		 */
1327		if (!KFD_IS_SOC15(dev))
1328			continue;
1329		/* Aldebaran can always support XNACK because it can support
1330		 * per-process XNACK mode selection. But let the dev->noretry
1331		 * setting still influence the default XNACK mode.
1332		 */
1333		if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
 
1334			continue;
1335
1336		/* GFXv10 and later GPUs do not support shader preemption
1337		 * during page faults. This can lead to poor QoS for queue
1338		 * management and memory-manager-related preemptions or
1339		 * even deadlocks.
1340		 */
1341		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1342			return false;
1343
1344		if (dev->noretry)
1345			return false;
1346	}
1347
1348	return true;
1349}
1350
1351/*
1352 * On return the kfd_process is fully operational and will be freed when the
1353 * mm is released
1354 */
1355static struct kfd_process *create_process(const struct task_struct *thread)
1356{
1357	struct kfd_process *process;
1358	struct mmu_notifier *mn;
1359	int err = -ENOMEM;
1360
1361	process = kzalloc(sizeof(*process), GFP_KERNEL);
1362	if (!process)
1363		goto err_alloc_process;
1364
1365	kref_init(&process->ref);
1366	mutex_init(&process->mutex);
1367	process->mm = thread->mm;
1368	process->lead_thread = thread->group_leader;
1369	process->n_pdds = 0;
1370	process->queues_paused = false;
1371	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1372	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1373	process->last_restore_timestamp = get_jiffies_64();
1374	err = kfd_event_init_process(process);
1375	if (err)
1376		goto err_event_init;
1377	process->is_32bit_user_mode = in_compat_syscall();
1378
1379	process->pasid = kfd_pasid_alloc();
1380	if (process->pasid == 0) {
1381		err = -ENOSPC;
1382		goto err_alloc_pasid;
1383	}
1384
1385	err = pqm_init(&process->pqm, process);
1386	if (err != 0)
1387		goto err_process_pqm_init;
1388
1389	/* init process apertures*/
1390	err = kfd_init_apertures(process);
1391	if (err != 0)
1392		goto err_init_apertures;
1393
1394	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1395	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1396
1397	err = svm_range_list_init(process);
1398	if (err)
1399		goto err_init_svm_range_list;
1400
1401	/* alloc_notifier needs to find the process in the hash table */
1402	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1403			(uintptr_t)process->mm);
1404
1405	/* Avoid free_notifier to start kfd_process_wq_release if
1406	 * mmu_notifier_get failed because of pending signal.
1407	 */
1408	kref_get(&process->ref);
1409
1410	/* MMU notifier registration must be the last call that can fail
1411	 * because after this point we cannot unwind the process creation.
1412	 * After this point, mmu_notifier_put will trigger the cleanup by
1413	 * dropping the last process reference in the free_notifier.
1414	 */
1415	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1416	if (IS_ERR(mn)) {
1417		err = PTR_ERR(mn);
1418		goto err_register_notifier;
1419	}
1420	BUG_ON(mn != &process->mmu_notifier);
1421
1422	kfd_unref_process(process);
1423	get_task_struct(process->lead_thread);
1424
1425	return process;
1426
1427err_register_notifier:
1428	hash_del_rcu(&process->kfd_processes);
1429	svm_range_list_fini(process);
1430err_init_svm_range_list:
1431	kfd_process_free_outstanding_kfd_bos(process);
1432	kfd_process_destroy_pdds(process);
1433err_init_apertures:
1434	pqm_uninit(&process->pqm);
1435err_process_pqm_init:
1436	kfd_pasid_free(process->pasid);
1437err_alloc_pasid:
1438	kfd_event_free_process(process);
1439err_event_init:
1440	mutex_destroy(&process->mutex);
1441	kfree(process);
1442err_alloc_process:
1443	return ERR_PTR(err);
1444}
1445
1446static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1447			struct kfd_dev *dev)
1448{
1449	unsigned int i;
1450	int range_start = dev->shared_resources.non_cp_doorbells_start;
1451	int range_end = dev->shared_resources.non_cp_doorbells_end;
1452
1453	if (!KFD_IS_SOC15(dev))
1454		return 0;
1455
1456	qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1457					     GFP_KERNEL);
 
1458	if (!qpd->doorbell_bitmap)
1459		return -ENOMEM;
1460
1461	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1462	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1463	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1464			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1465			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1466
1467	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1468		if (i >= range_start && i <= range_end) {
1469			__set_bit(i, qpd->doorbell_bitmap);
1470			__set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1471				  qpd->doorbell_bitmap);
1472		}
1473	}
1474
1475	return 0;
1476}
1477
1478struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1479							struct kfd_process *p)
1480{
1481	int i;
1482
1483	for (i = 0; i < p->n_pdds; i++)
1484		if (p->pdds[i]->dev == dev)
1485			return p->pdds[i];
1486
1487	return NULL;
1488}
1489
1490struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1491							struct kfd_process *p)
1492{
1493	struct kfd_process_device *pdd = NULL;
1494	int retval = 0;
1495
1496	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1497		return NULL;
1498	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1499	if (!pdd)
1500		return NULL;
1501
 
 
 
 
 
1502	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1503		pr_err("Failed to init doorbell for process\n");
1504		goto err_free_pdd;
1505	}
1506
1507	pdd->dev = dev;
1508	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1509	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1510	pdd->qpd.dqm = dev->dqm;
1511	pdd->qpd.pqm = &p->pqm;
1512	pdd->qpd.evicted = 0;
1513	pdd->qpd.mapped_gws_queue = false;
1514	pdd->process = p;
1515	pdd->bound = PDD_UNBOUND;
1516	pdd->already_dequeued = false;
1517	pdd->runtime_inuse = false;
1518	pdd->vram_usage = 0;
1519	pdd->sdma_past_activity_counter = 0;
1520	pdd->user_gpu_id = dev->id;
1521	atomic64_set(&pdd->evict_duration_counter, 0);
1522
1523	if (dev->shared_resources.enable_mes) {
1524		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1525						AMDGPU_MES_PROC_CTX_SIZE,
1526						&pdd->proc_ctx_bo,
1527						&pdd->proc_ctx_gpu_addr,
1528						&pdd->proc_ctx_cpu_ptr,
1529						false);
1530		if (retval) {
1531			pr_err("failed to allocate process context bo\n");
1532			goto err_free_pdd;
1533		}
1534		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1535	}
1536
1537	p->pdds[p->n_pdds++] = pdd;
1538
1539	/* Init idr used for memory handle translation */
1540	idr_init(&pdd->alloc_idr);
1541
1542	return pdd;
1543
1544err_free_pdd:
1545	kfree(pdd);
1546	return NULL;
1547}
1548
1549/**
1550 * kfd_process_device_init_vm - Initialize a VM for a process-device
1551 *
1552 * @pdd: The process-device
1553 * @drm_file: Optional pointer to a DRM file descriptor
1554 *
1555 * If @drm_file is specified, it will be used to acquire the VM from
1556 * that file descriptor. If successful, the @pdd takes ownership of
1557 * the file descriptor.
1558 *
1559 * If @drm_file is NULL, a new VM is created.
1560 *
1561 * Returns 0 on success, -errno on failure.
1562 */
1563int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1564			       struct file *drm_file)
1565{
1566	struct kfd_process *p;
1567	struct kfd_dev *dev;
1568	int ret;
1569
1570	if (!drm_file)
1571		return -EINVAL;
1572
1573	if (pdd->drm_priv)
1574		return -EBUSY;
1575
1576	p = pdd->process;
1577	dev = pdd->dev;
1578
1579	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, drm_file,
1580						     &p->kgd_process_info,
1581						     &p->ef);
1582	if (ret) {
1583		pr_err("Failed to create process VM object\n");
1584		return ret;
1585	}
1586	pdd->drm_priv = drm_file->private_data;
1587	atomic64_set(&pdd->tlb_seq, 0);
1588
1589	ret = kfd_process_device_reserve_ib_mem(pdd);
1590	if (ret)
1591		goto err_reserve_ib_mem;
1592	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1593	if (ret)
1594		goto err_init_cwsr;
1595
1596	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, drm_file, p->pasid);
1597	if (ret)
1598		goto err_set_pasid;
1599
1600	pdd->drm_file = drm_file;
1601
1602	return 0;
1603
1604err_set_pasid:
1605	kfd_process_device_destroy_cwsr_dgpu(pdd);
1606err_init_cwsr:
1607	kfd_process_device_destroy_ib_mem(pdd);
1608err_reserve_ib_mem:
 
1609	pdd->drm_priv = NULL;
1610
1611	return ret;
1612}
1613
1614/*
1615 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1616 * to the device.
1617 * Unbinding occurs when the process dies or the device is removed.
1618 *
1619 * Assumes that the process lock is held.
1620 */
1621struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1622							struct kfd_process *p)
1623{
1624	struct kfd_process_device *pdd;
1625	int err;
1626
1627	pdd = kfd_get_process_device_data(dev, p);
1628	if (!pdd) {
1629		pr_err("Process device data doesn't exist\n");
1630		return ERR_PTR(-ENOMEM);
1631	}
1632
1633	if (!pdd->drm_priv)
1634		return ERR_PTR(-ENODEV);
1635
1636	/*
1637	 * signal runtime-pm system to auto resume and prevent
1638	 * further runtime suspend once device pdd is created until
1639	 * pdd is destroyed.
1640	 */
1641	if (!pdd->runtime_inuse) {
1642		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1643		if (err < 0) {
1644			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1645			return ERR_PTR(err);
1646		}
1647	}
1648
1649	err = kfd_iommu_bind_process_to_device(pdd);
1650	if (err)
1651		goto out;
1652
1653	/*
1654	 * make sure that runtime_usage counter is incremented just once
1655	 * per pdd
1656	 */
1657	pdd->runtime_inuse = true;
1658
1659	return pdd;
1660
1661out:
1662	/* balance runpm reference count and exit with error */
1663	if (!pdd->runtime_inuse) {
1664		pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev);
1665		pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1666	}
1667
1668	return ERR_PTR(err);
1669}
1670
1671/* Create specific handle mapped to mem from process local memory idr
1672 * Assumes that the process lock is held.
1673 */
1674int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1675					void *mem)
1676{
1677	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1678}
1679
1680/* Translate specific handle from process local memory idr
1681 * Assumes that the process lock is held.
1682 */
1683void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1684					int handle)
1685{
1686	if (handle < 0)
1687		return NULL;
1688
1689	return idr_find(&pdd->alloc_idr, handle);
1690}
1691
1692/* Remove specific handle from process local memory idr
1693 * Assumes that the process lock is held.
1694 */
1695void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1696					int handle)
1697{
1698	if (handle >= 0)
1699		idr_remove(&pdd->alloc_idr, handle);
1700}
1701
1702/* This increments the process->ref counter. */
1703struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1704{
1705	struct kfd_process *p, *ret_p = NULL;
1706	unsigned int temp;
1707
1708	int idx = srcu_read_lock(&kfd_processes_srcu);
1709
1710	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1711		if (p->pasid == pasid) {
1712			kref_get(&p->ref);
1713			ret_p = p;
1714			break;
1715		}
1716	}
1717
1718	srcu_read_unlock(&kfd_processes_srcu, idx);
1719
1720	return ret_p;
1721}
1722
1723/* This increments the process->ref counter. */
1724struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1725{
1726	struct kfd_process *p;
1727
1728	int idx = srcu_read_lock(&kfd_processes_srcu);
1729
1730	p = find_process_by_mm(mm);
1731	if (p)
1732		kref_get(&p->ref);
1733
1734	srcu_read_unlock(&kfd_processes_srcu, idx);
1735
1736	return p;
1737}
1738
1739/* kfd_process_evict_queues - Evict all user queues of a process
1740 *
1741 * Eviction is reference-counted per process-device. This means multiple
1742 * evictions from different sources can be nested safely.
1743 */
1744int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1745{
1746	int r = 0;
1747	int i;
1748	unsigned int n_evicted = 0;
1749
1750	for (i = 0; i < p->n_pdds; i++) {
1751		struct kfd_process_device *pdd = p->pdds[i];
1752
1753		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1754					     trigger);
1755
1756		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1757							    &pdd->qpd);
1758		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1759		 * we would like to set all the queues to be in evicted state to prevent
1760		 * them been add back since they actually not be saved right now.
1761		 */
1762		if (r && r != -EIO) {
1763			pr_err("Failed to evict process queues\n");
1764			goto fail;
1765		}
1766		n_evicted++;
1767	}
1768
1769	return r;
1770
1771fail:
1772	/* To keep state consistent, roll back partial eviction by
1773	 * restoring queues
1774	 */
1775	for (i = 0; i < p->n_pdds; i++) {
1776		struct kfd_process_device *pdd = p->pdds[i];
1777
1778		if (n_evicted == 0)
1779			break;
1780
1781		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1782
1783		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1784							      &pdd->qpd))
1785			pr_err("Failed to restore queues\n");
1786
1787		n_evicted--;
1788	}
1789
1790	return r;
1791}
1792
1793/* kfd_process_restore_queues - Restore all user queues of a process */
1794int kfd_process_restore_queues(struct kfd_process *p)
1795{
1796	int r, ret = 0;
1797	int i;
1798
1799	for (i = 0; i < p->n_pdds; i++) {
1800		struct kfd_process_device *pdd = p->pdds[i];
1801
1802		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1803
1804		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1805							      &pdd->qpd);
1806		if (r) {
1807			pr_err("Failed to restore process queues\n");
1808			if (!ret)
1809				ret = r;
1810		}
1811	}
1812
1813	return ret;
1814}
1815
1816int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1817{
1818	int i;
1819
1820	for (i = 0; i < p->n_pdds; i++)
1821		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1822			return i;
1823	return -EINVAL;
1824}
1825
1826int
1827kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1828			   uint32_t *gpuid, uint32_t *gpuidx)
1829{
 
1830	int i;
1831
1832	for (i = 0; i < p->n_pdds; i++)
1833		if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1834			*gpuid = p->pdds[i]->user_gpu_id;
1835			*gpuidx = i;
1836			return 0;
1837		}
1838	return -EINVAL;
1839}
1840
1841static void evict_process_worker(struct work_struct *work)
1842{
1843	int ret;
1844	struct kfd_process *p;
1845	struct delayed_work *dwork;
1846
1847	dwork = to_delayed_work(work);
1848
1849	/* Process termination destroys this worker thread. So during the
1850	 * lifetime of this thread, kfd_process p will be valid
1851	 */
1852	p = container_of(dwork, struct kfd_process, eviction_work);
1853	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1854		  "Eviction fence mismatch\n");
1855
1856	/* Narrow window of overlap between restore and evict work
1857	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1858	 * unreserves KFD BOs, it is possible to evicted again. But
1859	 * restore has few more steps of finish. So lets wait for any
1860	 * previous restore work to complete
1861	 */
1862	flush_delayed_work(&p->restore_work);
1863
1864	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1865	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1866	if (!ret) {
1867		dma_fence_signal(p->ef);
1868		dma_fence_put(p->ef);
1869		p->ef = NULL;
1870		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1871				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1872
1873		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1874	} else
1875		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1876}
1877
1878static void restore_process_worker(struct work_struct *work)
1879{
1880	struct delayed_work *dwork;
1881	struct kfd_process *p;
1882	int ret = 0;
1883
1884	dwork = to_delayed_work(work);
1885
1886	/* Process termination destroys this worker thread. So during the
1887	 * lifetime of this thread, kfd_process p will be valid
1888	 */
1889	p = container_of(dwork, struct kfd_process, restore_work);
1890	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1891
1892	/* Setting last_restore_timestamp before successful restoration.
1893	 * Otherwise this would have to be set by KGD (restore_process_bos)
1894	 * before KFD BOs are unreserved. If not, the process can be evicted
1895	 * again before the timestamp is set.
1896	 * If restore fails, the timestamp will be set again in the next
1897	 * attempt. This would mean that the minimum GPU quanta would be
1898	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1899	 * functions)
1900	 */
1901
1902	p->last_restore_timestamp = get_jiffies_64();
1903	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1904						     &p->ef);
1905	if (ret) {
1906		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1907			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1908		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1909				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1910		WARN(!ret, "reschedule restore work failed\n");
1911		return;
1912	}
1913
1914	ret = kfd_process_restore_queues(p);
1915	if (!ret)
1916		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1917	else
1918		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1919}
1920
1921void kfd_suspend_all_processes(void)
1922{
1923	struct kfd_process *p;
1924	unsigned int temp;
1925	int idx = srcu_read_lock(&kfd_processes_srcu);
1926
1927	WARN(debug_evictions, "Evicting all processes");
1928	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1929		cancel_delayed_work_sync(&p->eviction_work);
1930		cancel_delayed_work_sync(&p->restore_work);
1931
1932		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
1933			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1934		dma_fence_signal(p->ef);
1935		dma_fence_put(p->ef);
1936		p->ef = NULL;
1937	}
1938	srcu_read_unlock(&kfd_processes_srcu, idx);
1939}
1940
1941int kfd_resume_all_processes(void)
1942{
1943	struct kfd_process *p;
1944	unsigned int temp;
1945	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1946
1947	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1948		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1949			pr_err("Restore process %d failed during resume\n",
1950			       p->pasid);
1951			ret = -EFAULT;
1952		}
1953	}
1954	srcu_read_unlock(&kfd_processes_srcu, idx);
1955	return ret;
1956}
1957
1958int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1959			  struct vm_area_struct *vma)
1960{
1961	struct kfd_process_device *pdd;
1962	struct qcm_process_device *qpd;
1963
1964	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1965		pr_err("Incorrect CWSR mapping size.\n");
1966		return -EINVAL;
1967	}
1968
1969	pdd = kfd_get_process_device_data(dev, process);
1970	if (!pdd)
1971		return -EINVAL;
1972	qpd = &pdd->qpd;
1973
1974	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1975					get_order(KFD_CWSR_TBA_TMA_SIZE));
1976	if (!qpd->cwsr_kaddr) {
1977		pr_err("Error allocating per process CWSR buffer.\n");
1978		return -ENOMEM;
1979	}
1980
1981	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1982		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1983	/* Mapping pages to user process */
1984	return remap_pfn_range(vma, vma->vm_start,
1985			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1986			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1987}
1988
1989void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1990{
1991	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1992	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1993	struct kfd_dev *dev = pdd->dev;
1994
1995	/*
1996	 * It can be that we race and lose here, but that is extremely unlikely
1997	 * and the worst thing which could happen is that we flush the changes
1998	 * into the TLB once more which is harmless.
1999	 */
2000	if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2001		return;
2002
2003	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2004		/* Nothing to flush until a VMID is assigned, which
2005		 * only happens when the first queue is created.
2006		 */
2007		if (pdd->qpd.vmid)
2008			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2009							pdd->qpd.vmid);
2010	} else {
2011		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
2012					pdd->process->pasid, type);
2013	}
2014}
2015
2016struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2017{
2018	int i;
2019
2020	if (gpu_id) {
2021		for (i = 0; i < p->n_pdds; i++) {
2022			struct kfd_process_device *pdd = p->pdds[i];
2023
2024			if (pdd->user_gpu_id == gpu_id)
2025				return pdd;
2026		}
2027	}
2028	return NULL;
2029}
2030
2031int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2032{
2033	int i;
2034
2035	if (!actual_gpu_id)
2036		return 0;
2037
2038	for (i = 0; i < p->n_pdds; i++) {
2039		struct kfd_process_device *pdd = p->pdds[i];
2040
2041		if (pdd->dev->id == actual_gpu_id)
2042			return pdd->user_gpu_id;
2043	}
2044	return -EINVAL;
2045}
2046
2047#if defined(CONFIG_DEBUG_FS)
2048
2049int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2050{
2051	struct kfd_process *p;
2052	unsigned int temp;
2053	int r = 0;
2054
2055	int idx = srcu_read_lock(&kfd_processes_srcu);
2056
2057	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2058		seq_printf(m, "Process %d PASID 0x%x:\n",
2059			   p->lead_thread->tgid, p->pasid);
2060
2061		mutex_lock(&p->mutex);
2062		r = pqm_debugfs_mqds(m, &p->pqm);
2063		mutex_unlock(&p->mutex);
2064
2065		if (r)
2066			break;
2067	}
2068
2069	srcu_read_unlock(&kfd_processes_srcu, idx);
2070
2071	return r;
2072}
2073
2074#endif
2075
v5.14.15
 
   1/*
   2 * Copyright 2014 Advanced Micro Devices, Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 */
  22
  23#include <linux/mutex.h>
  24#include <linux/log2.h>
  25#include <linux/sched.h>
  26#include <linux/sched/mm.h>
  27#include <linux/sched/task.h>
  28#include <linux/mmu_context.h>
  29#include <linux/slab.h>
  30#include <linux/amd-iommu.h>
  31#include <linux/notifier.h>
  32#include <linux/compat.h>
  33#include <linux/mman.h>
  34#include <linux/file.h>
  35#include <linux/pm_runtime.h>
  36#include "amdgpu_amdkfd.h"
  37#include "amdgpu.h"
  38
  39struct mm_struct;
  40
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
  43#include "kfd_dbgmgr.h"
  44#include "kfd_iommu.h"
  45#include "kfd_svm.h"
 
  46
  47/*
  48 * List of struct kfd_process (field kfd_process).
  49 * Unique/indexed by mm_struct*
  50 */
  51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  52static DEFINE_MUTEX(kfd_processes_mutex);
  53
  54DEFINE_SRCU(kfd_processes_srcu);
  55
  56/* For process termination handling */
  57static struct workqueue_struct *kfd_process_wq;
  58
  59/* Ordered, single-threaded workqueue for restoring evicted
  60 * processes. Restoring multiple processes concurrently under memory
  61 * pressure can lead to processes blocking each other from validating
  62 * their BOs and result in a live-lock situation where processes
  63 * remain evicted indefinitely.
  64 */
  65static struct workqueue_struct *kfd_restore_wq;
  66
  67static struct kfd_process *find_process(const struct task_struct *thread);
 
  68static void kfd_process_ref_release(struct kref *ref);
  69static struct kfd_process *create_process(const struct task_struct *thread);
  70static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
  71
  72static void evict_process_worker(struct work_struct *work);
  73static void restore_process_worker(struct work_struct *work);
  74
 
 
  75struct kfd_procfs_tree {
  76	struct kobject *kobj;
  77};
  78
  79static struct kfd_procfs_tree procfs;
  80
  81/*
  82 * Structure for SDMA activity tracking
  83 */
  84struct kfd_sdma_activity_handler_workarea {
  85	struct work_struct sdma_activity_work;
  86	struct kfd_process_device *pdd;
  87	uint64_t sdma_activity_counter;
  88};
  89
  90struct temp_sdma_queue_list {
  91	uint64_t __user *rptr;
  92	uint64_t sdma_val;
  93	unsigned int queue_id;
  94	struct list_head list;
  95};
  96
  97static void kfd_sdma_activity_worker(struct work_struct *work)
  98{
  99	struct kfd_sdma_activity_handler_workarea *workarea;
 100	struct kfd_process_device *pdd;
 101	uint64_t val;
 102	struct mm_struct *mm;
 103	struct queue *q;
 104	struct qcm_process_device *qpd;
 105	struct device_queue_manager *dqm;
 106	int ret = 0;
 107	struct temp_sdma_queue_list sdma_q_list;
 108	struct temp_sdma_queue_list *sdma_q, *next;
 109
 110	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 111				sdma_activity_work);
 112
 113	pdd = workarea->pdd;
 114	if (!pdd)
 115		return;
 116	dqm = pdd->dev->dqm;
 117	qpd = &pdd->qpd;
 118	if (!dqm || !qpd)
 119		return;
 120	/*
 121	 * Total SDMA activity is current SDMA activity + past SDMA activity
 122	 * Past SDMA count is stored in pdd.
 123	 * To get the current activity counters for all active SDMA queues,
 124	 * we loop over all SDMA queues and get their counts from user-space.
 125	 *
 126	 * We cannot call get_user() with dqm_lock held as it can cause
 127	 * a circular lock dependency situation. To read the SDMA stats,
 128	 * we need to do the following:
 129	 *
 130	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 131	 *    with dqm_lock/dqm_unlock().
 132	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 133	 *    Save the SDMA count for each node and also add the count to the total
 134	 *    SDMA count counter.
 135	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 136	 *    from the qpd->queues_list.
 137	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 138	 *    If any node got deleted, its SDMA count would be captured in the sdma
 139	 *    past activity counter. So subtract the SDMA counter stored in step 2
 140	 *    for this node from the total SDMA count.
 141	 */
 142	INIT_LIST_HEAD(&sdma_q_list.list);
 143
 144	/*
 145	 * Create the temp list of all SDMA queues
 146	 */
 147	dqm_lock(dqm);
 148
 149	list_for_each_entry(q, &qpd->queues_list, list) {
 150		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 151		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 152			continue;
 153
 154		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 155		if (!sdma_q) {
 156			dqm_unlock(dqm);
 157			goto cleanup;
 158		}
 159
 160		INIT_LIST_HEAD(&sdma_q->list);
 161		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 162		sdma_q->queue_id = q->properties.queue_id;
 163		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 164	}
 165
 166	/*
 167	 * If the temp list is empty, then no SDMA queues nodes were found in
 168	 * qpd->queues_list. Return the past activity count as the total sdma
 169	 * count
 170	 */
 171	if (list_empty(&sdma_q_list.list)) {
 172		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 173		dqm_unlock(dqm);
 174		return;
 175	}
 176
 177	dqm_unlock(dqm);
 178
 179	/*
 180	 * Get the usage count for each SDMA queue in temp_list.
 181	 */
 182	mm = get_task_mm(pdd->process->lead_thread);
 183	if (!mm)
 184		goto cleanup;
 185
 186	kthread_use_mm(mm);
 187
 188	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 189		val = 0;
 190		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 191		if (ret) {
 192			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 193				 sdma_q->queue_id);
 194		} else {
 195			sdma_q->sdma_val = val;
 196			workarea->sdma_activity_counter += val;
 197		}
 198	}
 199
 200	kthread_unuse_mm(mm);
 201	mmput(mm);
 202
 203	/*
 204	 * Do a second iteration over qpd_queues_list to check if any SDMA
 205	 * nodes got deleted while fetching SDMA counter.
 206	 */
 207	dqm_lock(dqm);
 208
 209	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 210
 211	list_for_each_entry(q, &qpd->queues_list, list) {
 212		if (list_empty(&sdma_q_list.list))
 213			break;
 214
 215		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 216		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 217			continue;
 218
 219		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 220			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 221			     (sdma_q->queue_id == q->properties.queue_id)) {
 222				list_del(&sdma_q->list);
 223				kfree(sdma_q);
 224				break;
 225			}
 226		}
 227	}
 228
 229	dqm_unlock(dqm);
 230
 231	/*
 232	 * If temp list is not empty, it implies some queues got deleted
 233	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 234	 * count for each node from the total SDMA count.
 235	 */
 236	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 237		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 238		list_del(&sdma_q->list);
 239		kfree(sdma_q);
 240	}
 241
 242	return;
 243
 244cleanup:
 245	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 246		list_del(&sdma_q->list);
 247		kfree(sdma_q);
 248	}
 249}
 250
 251/**
 252 * @kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 253 * by current process. Translates acquired wave count into number of compute units
 254 * that are occupied.
 255 *
 256 * @atr: Handle of attribute that allows reporting of wave count. The attribute
 257 * handle encapsulates GPU device it is associated with, thereby allowing collection
 258 * of waves in flight, etc
 259 *
 260 * @buffer: Handle of user provided buffer updated with wave count
 261 *
 262 * Return: Number of bytes written to user buffer or an error value
 263 */
 264static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 265{
 266	int cu_cnt;
 267	int wave_cnt;
 268	int max_waves_per_cu;
 269	struct kfd_dev *dev = NULL;
 270	struct kfd_process *proc = NULL;
 271	struct kfd_process_device *pdd = NULL;
 272
 273	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 274	dev = pdd->dev;
 275	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 276		return -EINVAL;
 277
 278	cu_cnt = 0;
 279	proc = pdd->process;
 280	if (pdd->qpd.queue_count == 0) {
 281		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 282			 dev->id, proc->pasid);
 283		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 284	}
 285
 286	/* Collect wave count from device if it supports */
 287	wave_cnt = 0;
 288	max_waves_per_cu = 0;
 289	dev->kfd2kgd->get_cu_occupancy(dev->kgd, proc->pasid, &wave_cnt,
 290			&max_waves_per_cu);
 291
 292	/* Translate wave count to number of compute units */
 293	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 294	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 295}
 296
 297static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 298			       char *buffer)
 299{
 300	if (strcmp(attr->name, "pasid") == 0) {
 301		struct kfd_process *p = container_of(attr, struct kfd_process,
 302						     attr_pasid);
 303
 304		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 305	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 306		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 307							      attr_vram);
 308		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 309	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 310		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 311							      attr_sdma);
 312		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 313
 314		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 315					kfd_sdma_activity_worker);
 316
 317		sdma_activity_work_handler.pdd = pdd;
 318		sdma_activity_work_handler.sdma_activity_counter = 0;
 319
 320		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 321
 322		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 323
 324		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 325				(sdma_activity_work_handler.sdma_activity_counter)/
 326				 SDMA_ACTIVITY_DIVISOR);
 327	} else {
 328		pr_err("Invalid attribute");
 329		return -EINVAL;
 330	}
 331
 332	return 0;
 333}
 334
 335static void kfd_procfs_kobj_release(struct kobject *kobj)
 336{
 337	kfree(kobj);
 338}
 339
 340static const struct sysfs_ops kfd_procfs_ops = {
 341	.show = kfd_procfs_show,
 342};
 343
 344static struct kobj_type procfs_type = {
 345	.release = kfd_procfs_kobj_release,
 346	.sysfs_ops = &kfd_procfs_ops,
 347};
 348
 349void kfd_procfs_init(void)
 350{
 351	int ret = 0;
 352
 353	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 354	if (!procfs.kobj)
 355		return;
 356
 357	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 358				   &kfd_device->kobj, "proc");
 359	if (ret) {
 360		pr_warn("Could not create procfs proc folder");
 361		/* If we fail to create the procfs, clean up */
 362		kfd_procfs_shutdown();
 363	}
 364}
 365
 366void kfd_procfs_shutdown(void)
 367{
 368	if (procfs.kobj) {
 369		kobject_del(procfs.kobj);
 370		kobject_put(procfs.kobj);
 371		procfs.kobj = NULL;
 372	}
 373}
 374
 375static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 376				     struct attribute *attr, char *buffer)
 377{
 378	struct queue *q = container_of(kobj, struct queue, kobj);
 379
 380	if (!strcmp(attr->name, "size"))
 381		return snprintf(buffer, PAGE_SIZE, "%llu",
 382				q->properties.queue_size);
 383	else if (!strcmp(attr->name, "type"))
 384		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 385	else if (!strcmp(attr->name, "gpuid"))
 386		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 387	else
 388		pr_err("Invalid attribute");
 389
 390	return 0;
 391}
 392
 393static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 394				     struct attribute *attr, char *buffer)
 395{
 396	if (strcmp(attr->name, "evicted_ms") == 0) {
 397		struct kfd_process_device *pdd = container_of(attr,
 398				struct kfd_process_device,
 399				attr_evict);
 400		uint64_t evict_jiffies;
 401
 402		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 403
 404		return snprintf(buffer,
 405				PAGE_SIZE,
 406				"%llu\n",
 407				jiffies64_to_msecs(evict_jiffies));
 408
 409	/* Sysfs handle that gets CU occupancy is per device */
 410	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 411		return kfd_get_cu_occupancy(attr, buffer);
 412	} else {
 413		pr_err("Invalid attribute");
 414	}
 415
 416	return 0;
 417}
 418
 419static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 420				       struct attribute *attr, char *buf)
 421{
 422	struct kfd_process_device *pdd;
 423
 424	if (!strcmp(attr->name, "faults")) {
 425		pdd = container_of(attr, struct kfd_process_device,
 426				   attr_faults);
 427		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 428	}
 429	if (!strcmp(attr->name, "page_in")) {
 430		pdd = container_of(attr, struct kfd_process_device,
 431				   attr_page_in);
 432		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 433	}
 434	if (!strcmp(attr->name, "page_out")) {
 435		pdd = container_of(attr, struct kfd_process_device,
 436				   attr_page_out);
 437		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 438	}
 439	return 0;
 440}
 441
 442static struct attribute attr_queue_size = {
 443	.name = "size",
 444	.mode = KFD_SYSFS_FILE_MODE
 445};
 446
 447static struct attribute attr_queue_type = {
 448	.name = "type",
 449	.mode = KFD_SYSFS_FILE_MODE
 450};
 451
 452static struct attribute attr_queue_gpuid = {
 453	.name = "gpuid",
 454	.mode = KFD_SYSFS_FILE_MODE
 455};
 456
 457static struct attribute *procfs_queue_attrs[] = {
 458	&attr_queue_size,
 459	&attr_queue_type,
 460	&attr_queue_gpuid,
 461	NULL
 462};
 
 463
 464static const struct sysfs_ops procfs_queue_ops = {
 465	.show = kfd_procfs_queue_show,
 466};
 467
 468static struct kobj_type procfs_queue_type = {
 469	.sysfs_ops = &procfs_queue_ops,
 470	.default_attrs = procfs_queue_attrs,
 471};
 472
 473static const struct sysfs_ops procfs_stats_ops = {
 474	.show = kfd_procfs_stats_show,
 475};
 476
 477static struct kobj_type procfs_stats_type = {
 478	.sysfs_ops = &procfs_stats_ops,
 479	.release = kfd_procfs_kobj_release,
 480};
 481
 482static const struct sysfs_ops sysfs_counters_ops = {
 483	.show = kfd_sysfs_counters_show,
 484};
 485
 486static struct kobj_type sysfs_counters_type = {
 487	.sysfs_ops = &sysfs_counters_ops,
 488	.release = kfd_procfs_kobj_release,
 489};
 490
 491int kfd_procfs_add_queue(struct queue *q)
 492{
 493	struct kfd_process *proc;
 494	int ret;
 495
 496	if (!q || !q->process)
 497		return -EINVAL;
 498	proc = q->process;
 499
 500	/* Create proc/<pid>/queues/<queue id> folder */
 501	if (!proc->kobj_queues)
 502		return -EFAULT;
 503	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 504			proc->kobj_queues, "%u", q->properties.queue_id);
 505	if (ret < 0) {
 506		pr_warn("Creating proc/<pid>/queues/%u failed",
 507			q->properties.queue_id);
 508		kobject_put(&q->kobj);
 509		return ret;
 510	}
 511
 512	return 0;
 513}
 514
 515static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 516				 char *name)
 517{
 518	int ret;
 519
 520	if (!kobj || !attr || !name)
 521		return;
 522
 523	attr->name = name;
 524	attr->mode = KFD_SYSFS_FILE_MODE;
 525	sysfs_attr_init(attr);
 526
 527	ret = sysfs_create_file(kobj, attr);
 528	if (ret)
 529		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 530}
 531
 532static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 533{
 534	int ret;
 535	int i;
 536	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 537
 538	if (!p || !p->kobj)
 539		return;
 540
 541	/*
 542	 * Create sysfs files for each GPU:
 543	 * - proc/<pid>/stats_<gpuid>/
 544	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 545	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 546	 */
 547	for (i = 0; i < p->n_pdds; i++) {
 548		struct kfd_process_device *pdd = p->pdds[i];
 549
 550		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 551				"stats_%u", pdd->dev->id);
 552		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 553		if (!pdd->kobj_stats)
 554			return;
 555
 556		ret = kobject_init_and_add(pdd->kobj_stats,
 557					   &procfs_stats_type,
 558					   p->kobj,
 559					   stats_dir_filename);
 560
 561		if (ret) {
 562			pr_warn("Creating KFD proc/stats_%s folder failed",
 563				stats_dir_filename);
 564			kobject_put(pdd->kobj_stats);
 565			pdd->kobj_stats = NULL;
 566			return;
 567		}
 568
 569		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 570				      "evicted_ms");
 571		/* Add sysfs file to report compute unit occupancy */
 572		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 573			kfd_sysfs_create_file(pdd->kobj_stats,
 574					      &pdd->attr_cu_occupancy,
 575					      "cu_occupancy");
 576	}
 577}
 578
 579static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 580{
 581	int ret = 0;
 582	int i;
 583	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 584
 585	if (!p || !p->kobj)
 586		return;
 587
 588	/*
 589	 * Create sysfs files for each GPU which supports SVM
 590	 * - proc/<pid>/counters_<gpuid>/
 591	 * - proc/<pid>/counters_<gpuid>/faults
 592	 * - proc/<pid>/counters_<gpuid>/page_in
 593	 * - proc/<pid>/counters_<gpuid>/page_out
 594	 */
 595	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 596		struct kfd_process_device *pdd = p->pdds[i];
 597		struct kobject *kobj_counters;
 598
 599		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 600			"counters_%u", pdd->dev->id);
 601		kobj_counters = kfd_alloc_struct(kobj_counters);
 602		if (!kobj_counters)
 603			return;
 604
 605		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 606					   p->kobj, counters_dir_filename);
 607		if (ret) {
 608			pr_warn("Creating KFD proc/%s folder failed",
 609				counters_dir_filename);
 610			kobject_put(kobj_counters);
 611			return;
 612		}
 613
 614		pdd->kobj_counters = kobj_counters;
 615		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 616				      "faults");
 617		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 618				      "page_in");
 619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 620				      "page_out");
 621	}
 622}
 623
 624static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 625{
 626	int i;
 627
 628	if (!p || !p->kobj)
 629		return;
 630
 631	/*
 632	 * Create sysfs files for each GPU:
 633	 * - proc/<pid>/vram_<gpuid>
 634	 * - proc/<pid>/sdma_<gpuid>
 635	 */
 636	for (i = 0; i < p->n_pdds; i++) {
 637		struct kfd_process_device *pdd = p->pdds[i];
 638
 639		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 640			 pdd->dev->id);
 641		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 642				      pdd->vram_filename);
 643
 644		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 645			 pdd->dev->id);
 646		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 647					    pdd->sdma_filename);
 648	}
 649}
 650
 651void kfd_procfs_del_queue(struct queue *q)
 652{
 653	if (!q)
 654		return;
 655
 656	kobject_del(&q->kobj);
 657	kobject_put(&q->kobj);
 658}
 659
 660int kfd_process_create_wq(void)
 661{
 662	if (!kfd_process_wq)
 663		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 664	if (!kfd_restore_wq)
 665		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
 666
 667	if (!kfd_process_wq || !kfd_restore_wq) {
 668		kfd_process_destroy_wq();
 669		return -ENOMEM;
 670	}
 671
 672	return 0;
 673}
 674
 675void kfd_process_destroy_wq(void)
 676{
 677	if (kfd_process_wq) {
 678		destroy_workqueue(kfd_process_wq);
 679		kfd_process_wq = NULL;
 680	}
 681	if (kfd_restore_wq) {
 682		destroy_workqueue(kfd_restore_wq);
 683		kfd_restore_wq = NULL;
 684	}
 685}
 686
 687static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 688			struct kfd_process_device *pdd)
 689{
 690	struct kfd_dev *dev = pdd->dev;
 691
 692	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->kgd, mem, pdd->drm_priv);
 693	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->kgd, mem, pdd->drm_priv,
 
 
 
 
 
 694					       NULL);
 695}
 696
 697/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 698 *	This function should be only called right after the process
 699 *	is created and when kfd_processes_mutex is still being held
 700 *	to avoid concurrency. Because of that exclusiveness, we do
 701 *	not need to take p->mutex.
 702 */
 703static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 704				   uint64_t gpu_va, uint32_t size,
 705				   uint32_t flags, void **kptr)
 706{
 707	struct kfd_dev *kdev = pdd->dev;
 708	struct kgd_mem *mem = NULL;
 709	int handle;
 710	int err;
 711
 712	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->kgd, gpu_va, size,
 713						 pdd->drm_priv, &mem, NULL, flags);
 
 714	if (err)
 715		goto err_alloc_mem;
 716
 717	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->kgd, mem, pdd->drm_priv);
 
 718	if (err)
 719		goto err_map_mem;
 720
 721	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->kgd, mem, true);
 722	if (err) {
 723		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 724		goto sync_memory_failed;
 725	}
 726
 727	/* Create an obj handle so kfd_process_device_remove_obj_handle
 728	 * will take care of the bo removal when the process finishes.
 729	 * We do not need to take p->mutex, because the process is just
 730	 * created and the ioctls have not had the chance to run.
 731	 */
 732	handle = kfd_process_device_create_obj_handle(pdd, mem);
 733
 734	if (handle < 0) {
 735		err = handle;
 736		goto free_gpuvm;
 737	}
 738
 739	if (kptr) {
 740		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(kdev->kgd,
 741				(struct kgd_mem *)mem, kptr, NULL);
 742		if (err) {
 743			pr_debug("Map GTT BO to kernel failed\n");
 744			goto free_obj_handle;
 745		}
 746	}
 747
 748	return err;
 749
 750free_obj_handle:
 751	kfd_process_device_remove_obj_handle(pdd, handle);
 752free_gpuvm:
 753sync_memory_failed:
 754	kfd_process_free_gpuvm(mem, pdd);
 755	return err;
 756
 757err_map_mem:
 758	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->kgd, mem, pdd->drm_priv,
 759					       NULL);
 760err_alloc_mem:
 
 761	*kptr = NULL;
 762	return err;
 763}
 764
 765/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 766 *	process for IB usage The memory reserved is for KFD to submit
 767 *	IB to AMDGPU from kernel.  If the memory is reserved
 768 *	successfully, ib_kaddr will have the CPU/kernel
 769 *	address. Check ib_kaddr before accessing the memory.
 770 */
 771static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 772{
 773	struct qcm_process_device *qpd = &pdd->qpd;
 774	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 775			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 776			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 777			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 
 778	void *kaddr;
 779	int ret;
 780
 781	if (qpd->ib_kaddr || !qpd->ib_base)
 782		return 0;
 783
 784	/* ib_base is only set for dGPU */
 785	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 786				      &kaddr);
 787	if (ret)
 788		return ret;
 789
 
 790	qpd->ib_kaddr = kaddr;
 791
 792	return 0;
 793}
 794
 
 
 
 
 
 
 
 
 
 
 795struct kfd_process *kfd_create_process(struct file *filep)
 796{
 797	struct kfd_process *process;
 798	struct task_struct *thread = current;
 799	int ret;
 800
 801	if (!thread->mm)
 802		return ERR_PTR(-EINVAL);
 803
 804	/* Only the pthreads threading model is supported. */
 805	if (thread->group_leader->mm != thread->mm)
 806		return ERR_PTR(-EINVAL);
 807
 808	/*
 809	 * take kfd processes mutex before starting of process creation
 810	 * so there won't be a case where two threads of the same process
 811	 * create two kfd_process structures
 812	 */
 813	mutex_lock(&kfd_processes_mutex);
 814
 815	/* A prior open of /dev/kfd could have already created the process. */
 816	process = find_process(thread);
 817	if (process) {
 818		pr_debug("Process already found\n");
 819	} else {
 820		process = create_process(thread);
 821		if (IS_ERR(process))
 822			goto out;
 823
 824		ret = kfd_process_init_cwsr_apu(process, filep);
 825		if (ret)
 826			goto out_destroy;
 827
 828		if (!procfs.kobj)
 829			goto out;
 830
 831		process->kobj = kfd_alloc_struct(process->kobj);
 832		if (!process->kobj) {
 833			pr_warn("Creating procfs kobject failed");
 834			goto out;
 835		}
 836		ret = kobject_init_and_add(process->kobj, &procfs_type,
 837					   procfs.kobj, "%d",
 838					   (int)process->lead_thread->pid);
 839		if (ret) {
 840			pr_warn("Creating procfs pid directory failed");
 841			kobject_put(process->kobj);
 842			goto out;
 843		}
 844
 845		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 846				      "pasid");
 847
 848		process->kobj_queues = kobject_create_and_add("queues",
 849							process->kobj);
 850		if (!process->kobj_queues)
 851			pr_warn("Creating KFD proc/queues folder failed");
 852
 853		kfd_procfs_add_sysfs_stats(process);
 854		kfd_procfs_add_sysfs_files(process);
 855		kfd_procfs_add_sysfs_counters(process);
 856	}
 857out:
 858	if (!IS_ERR(process))
 859		kref_get(&process->ref);
 860	mutex_unlock(&kfd_processes_mutex);
 861
 862	return process;
 863
 864out_destroy:
 865	hash_del_rcu(&process->kfd_processes);
 866	mutex_unlock(&kfd_processes_mutex);
 867	synchronize_srcu(&kfd_processes_srcu);
 868	/* kfd_process_free_notifier will trigger the cleanup */
 869	mmu_notifier_put(&process->mmu_notifier);
 870	return ERR_PTR(ret);
 871}
 872
 873struct kfd_process *kfd_get_process(const struct task_struct *thread)
 874{
 875	struct kfd_process *process;
 876
 877	if (!thread->mm)
 878		return ERR_PTR(-EINVAL);
 879
 880	/* Only the pthreads threading model is supported. */
 881	if (thread->group_leader->mm != thread->mm)
 882		return ERR_PTR(-EINVAL);
 883
 884	process = find_process(thread);
 885	if (!process)
 886		return ERR_PTR(-EINVAL);
 887
 888	return process;
 889}
 890
 891static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 892{
 893	struct kfd_process *process;
 894
 895	hash_for_each_possible_rcu(kfd_processes_table, process,
 896					kfd_processes, (uintptr_t)mm)
 897		if (process->mm == mm)
 898			return process;
 899
 900	return NULL;
 901}
 902
 903static struct kfd_process *find_process(const struct task_struct *thread)
 
 904{
 905	struct kfd_process *p;
 906	int idx;
 907
 908	idx = srcu_read_lock(&kfd_processes_srcu);
 909	p = find_process_by_mm(thread->mm);
 
 
 910	srcu_read_unlock(&kfd_processes_srcu, idx);
 911
 912	return p;
 913}
 914
 915void kfd_unref_process(struct kfd_process *p)
 916{
 917	kref_put(&p->ref, kfd_process_ref_release);
 918}
 919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 920
 921static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 922{
 923	struct kfd_process *p = pdd->process;
 924	void *mem;
 925	int id;
 926	int i;
 927
 928	/*
 929	 * Remove all handles from idr and release appropriate
 930	 * local memory object
 931	 */
 932	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 933
 934		for (i = 0; i < p->n_pdds; i++) {
 935			struct kfd_process_device *peer_pdd = p->pdds[i];
 936
 937			if (!peer_pdd->drm_priv)
 938				continue;
 939			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 940				peer_pdd->dev->kgd, mem, peer_pdd->drm_priv);
 941		}
 942
 943		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->kgd, mem,
 944						       pdd->drm_priv, NULL);
 945		kfd_process_device_remove_obj_handle(pdd, id);
 946	}
 947}
 948
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
 950{
 951	int i;
 952
 953	for (i = 0; i < p->n_pdds; i++)
 954		kfd_process_device_free_bos(p->pdds[i]);
 955}
 956
 957static void kfd_process_destroy_pdds(struct kfd_process *p)
 958{
 959	int i;
 960
 961	for (i = 0; i < p->n_pdds; i++) {
 962		struct kfd_process_device *pdd = p->pdds[i];
 963
 964		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
 965				pdd->dev->id, p->pasid);
 966
 
 
 
 967		if (pdd->drm_file) {
 968			amdgpu_amdkfd_gpuvm_release_process_vm(
 969					pdd->dev->kgd, pdd->drm_priv);
 970			fput(pdd->drm_file);
 971		}
 972
 973		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
 974			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
 975				get_order(KFD_CWSR_TBA_TMA_SIZE));
 976
 977		kfree(pdd->qpd.doorbell_bitmap);
 978		idr_destroy(&pdd->alloc_idr);
 979
 980		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
 981
 
 
 
 982		/*
 983		 * before destroying pdd, make sure to report availability
 984		 * for auto suspend
 985		 */
 986		if (pdd->runtime_inuse) {
 987			pm_runtime_mark_last_busy(pdd->dev->ddev->dev);
 988			pm_runtime_put_autosuspend(pdd->dev->ddev->dev);
 989			pdd->runtime_inuse = false;
 990		}
 991
 992		kfree(pdd);
 993		p->pdds[i] = NULL;
 994	}
 995	p->n_pdds = 0;
 996}
 997
 998static void kfd_process_remove_sysfs(struct kfd_process *p)
 999{
1000	struct kfd_process_device *pdd;
1001	int i;
1002
1003	if (!p->kobj)
1004		return;
1005
1006	sysfs_remove_file(p->kobj, &p->attr_pasid);
1007	kobject_del(p->kobj_queues);
1008	kobject_put(p->kobj_queues);
1009	p->kobj_queues = NULL;
1010
1011	for (i = 0; i < p->n_pdds; i++) {
1012		pdd = p->pdds[i];
1013
1014		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1015		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1016
1017		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1018		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1019			sysfs_remove_file(pdd->kobj_stats,
1020					  &pdd->attr_cu_occupancy);
1021		kobject_del(pdd->kobj_stats);
1022		kobject_put(pdd->kobj_stats);
1023		pdd->kobj_stats = NULL;
1024	}
1025
1026	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1027		pdd = p->pdds[i];
1028
1029		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1030		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1031		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1032		kobject_del(pdd->kobj_counters);
1033		kobject_put(pdd->kobj_counters);
1034		pdd->kobj_counters = NULL;
1035	}
1036
1037	kobject_del(p->kobj);
1038	kobject_put(p->kobj);
1039	p->kobj = NULL;
1040}
1041
1042/* No process locking is needed in this function, because the process
1043 * is not findable any more. We must assume that no other thread is
1044 * using it any more, otherwise we couldn't safely free the process
1045 * structure in the end.
1046 */
1047static void kfd_process_wq_release(struct work_struct *work)
1048{
1049	struct kfd_process *p = container_of(work, struct kfd_process,
1050					     release_work);
 
 
 
 
 
 
 
 
 
 
1051	kfd_process_remove_sysfs(p);
1052	kfd_iommu_unbind_process(p);
1053
 
1054	kfd_process_free_outstanding_kfd_bos(p);
1055	svm_range_list_fini(p);
1056
1057	kfd_process_destroy_pdds(p);
1058	dma_fence_put(p->ef);
1059
1060	kfd_event_free_process(p);
1061
1062	kfd_pasid_free(p->pasid);
1063	mutex_destroy(&p->mutex);
1064
1065	put_task_struct(p->lead_thread);
1066
1067	kfree(p);
1068}
1069
1070static void kfd_process_ref_release(struct kref *ref)
1071{
1072	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1073
1074	INIT_WORK(&p->release_work, kfd_process_wq_release);
1075	queue_work(kfd_process_wq, &p->release_work);
1076}
1077
1078static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1079{
1080	int idx = srcu_read_lock(&kfd_processes_srcu);
1081	struct kfd_process *p = find_process_by_mm(mm);
1082
1083	srcu_read_unlock(&kfd_processes_srcu, idx);
1084
1085	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1086}
1087
1088static void kfd_process_free_notifier(struct mmu_notifier *mn)
1089{
1090	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1091}
1092
1093static void kfd_process_notifier_release(struct mmu_notifier *mn,
1094					struct mm_struct *mm)
1095{
1096	struct kfd_process *p;
1097	int i;
1098
1099	/*
1100	 * The kfd_process structure can not be free because the
1101	 * mmu_notifier srcu is read locked
1102	 */
1103	p = container_of(mn, struct kfd_process, mmu_notifier);
1104	if (WARN_ON(p->mm != mm))
1105		return;
1106
1107	mutex_lock(&kfd_processes_mutex);
1108	hash_del_rcu(&p->kfd_processes);
1109	mutex_unlock(&kfd_processes_mutex);
1110	synchronize_srcu(&kfd_processes_srcu);
1111
1112	cancel_delayed_work_sync(&p->eviction_work);
1113	cancel_delayed_work_sync(&p->restore_work);
1114	cancel_delayed_work_sync(&p->svms.restore_work);
1115
1116	mutex_lock(&p->mutex);
1117
1118	/* Iterate over all process device data structures and if the
1119	 * pdd is in debug mode, we should first force unregistration,
1120	 * then we will be able to destroy the queues
1121	 */
1122	for (i = 0; i < p->n_pdds; i++) {
1123		struct kfd_dev *dev = p->pdds[i]->dev;
1124
1125		mutex_lock(kfd_get_dbgmgr_mutex());
1126		if (dev && dev->dbgmgr && dev->dbgmgr->pasid == p->pasid) {
1127			if (!kfd_dbgmgr_unregister(dev->dbgmgr, p)) {
1128				kfd_dbgmgr_destroy(dev->dbgmgr);
1129				dev->dbgmgr = NULL;
1130			}
1131		}
1132		mutex_unlock(kfd_get_dbgmgr_mutex());
1133	}
1134
1135	kfd_process_dequeue_from_all_devices(p);
1136	pqm_uninit(&p->pqm);
1137
1138	/* Indicate to other users that MM is no longer valid */
1139	p->mm = NULL;
1140	/* Signal the eviction fence after user mode queues are
1141	 * destroyed. This allows any BOs to be freed without
1142	 * triggering pointless evictions or waiting for fences.
1143	 */
1144	dma_fence_signal(p->ef);
1145
1146	mutex_unlock(&p->mutex);
1147
1148	mmu_notifier_put(&p->mmu_notifier);
1149}
1150
1151static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1152	.release = kfd_process_notifier_release,
1153	.alloc_notifier = kfd_process_alloc_notifier,
1154	.free_notifier = kfd_process_free_notifier,
1155};
1156
1157static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1158{
1159	unsigned long  offset;
1160	int i;
1161
1162	for (i = 0; i < p->n_pdds; i++) {
1163		struct kfd_dev *dev = p->pdds[i]->dev;
1164		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1165
1166		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1167			continue;
1168
1169		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1170		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1171			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1172			MAP_SHARED, offset);
1173
1174		if (IS_ERR_VALUE(qpd->tba_addr)) {
1175			int err = qpd->tba_addr;
1176
1177			pr_err("Failure to set tba address. error %d.\n", err);
1178			qpd->tba_addr = 0;
1179			qpd->cwsr_kaddr = NULL;
1180			return err;
1181		}
1182
1183		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1184
1185		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1186		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1187			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1188	}
1189
1190	return 0;
1191}
1192
1193static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1194{
1195	struct kfd_dev *dev = pdd->dev;
1196	struct qcm_process_device *qpd = &pdd->qpd;
1197	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1198			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1199			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 
1200	void *kaddr;
1201	int ret;
1202
1203	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1204		return 0;
1205
1206	/* cwsr_base is only set for dGPU */
1207	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1208				      KFD_CWSR_TBA_TMA_SIZE, flags, &kaddr);
1209	if (ret)
1210		return ret;
1211
 
1212	qpd->cwsr_kaddr = kaddr;
1213	qpd->tba_addr = qpd->cwsr_base;
1214
1215	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1216
1217	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1218	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1219		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1220
1221	return 0;
1222}
1223
 
 
 
 
 
 
 
 
 
 
 
1224void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1225				  uint64_t tba_addr,
1226				  uint64_t tma_addr)
1227{
1228	if (qpd->cwsr_kaddr) {
1229		/* KFD trap handler is bound, record as second-level TBA/TMA
1230		 * in first-level TMA. First-level trap will jump to second.
1231		 */
1232		uint64_t *tma =
1233			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1234		tma[0] = tba_addr;
1235		tma[1] = tma_addr;
1236	} else {
1237		/* No trap handler bound, bind as first-level TBA/TMA. */
1238		qpd->tba_addr = tba_addr;
1239		qpd->tma_addr = tma_addr;
1240	}
1241}
1242
1243bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1244{
1245	int i;
1246
1247	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1248	 * boot time retry setting. Mixing processes with different
1249	 * XNACK/retry settings can hang the GPU.
1250	 *
1251	 * Different GPUs can have different noretry settings depending
1252	 * on HW bugs or limitations. We need to find at least one
1253	 * XNACK mode for this process that's compatible with all GPUs.
1254	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1255	 * built for XNACK-off. On GFXv9 it may perform slower.
1256	 *
1257	 * Therefore applications built for XNACK-off can always be
1258	 * supported and will be our fallback if any GPU does not
1259	 * support retry.
1260	 */
1261	for (i = 0; i < p->n_pdds; i++) {
1262		struct kfd_dev *dev = p->pdds[i]->dev;
1263
1264		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1265		 * support the SVM APIs and don't need to be considered
1266		 * for the XNACK mode selection.
1267		 */
1268		if (dev->device_info->asic_family < CHIP_VEGA10)
1269			continue;
1270		/* Aldebaran can always support XNACK because it can support
1271		 * per-process XNACK mode selection. But let the dev->noretry
1272		 * setting still influence the default XNACK mode.
1273		 */
1274		if (supported &&
1275		    dev->device_info->asic_family == CHIP_ALDEBARAN)
1276			continue;
1277
1278		/* GFXv10 and later GPUs do not support shader preemption
1279		 * during page faults. This can lead to poor QoS for queue
1280		 * management and memory-manager-related preemptions or
1281		 * even deadlocks.
1282		 */
1283		if (dev->device_info->asic_family >= CHIP_NAVI10)
1284			return false;
1285
1286		if (dev->noretry)
1287			return false;
1288	}
1289
1290	return true;
1291}
1292
1293/*
1294 * On return the kfd_process is fully operational and will be freed when the
1295 * mm is released
1296 */
1297static struct kfd_process *create_process(const struct task_struct *thread)
1298{
1299	struct kfd_process *process;
1300	struct mmu_notifier *mn;
1301	int err = -ENOMEM;
1302
1303	process = kzalloc(sizeof(*process), GFP_KERNEL);
1304	if (!process)
1305		goto err_alloc_process;
1306
1307	kref_init(&process->ref);
1308	mutex_init(&process->mutex);
1309	process->mm = thread->mm;
1310	process->lead_thread = thread->group_leader;
1311	process->n_pdds = 0;
 
1312	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1313	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1314	process->last_restore_timestamp = get_jiffies_64();
1315	kfd_event_init_process(process);
 
 
1316	process->is_32bit_user_mode = in_compat_syscall();
1317
1318	process->pasid = kfd_pasid_alloc();
1319	if (process->pasid == 0)
 
1320		goto err_alloc_pasid;
 
1321
1322	err = pqm_init(&process->pqm, process);
1323	if (err != 0)
1324		goto err_process_pqm_init;
1325
1326	/* init process apertures*/
1327	err = kfd_init_apertures(process);
1328	if (err != 0)
1329		goto err_init_apertures;
1330
1331	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1332	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1333
1334	err = svm_range_list_init(process);
1335	if (err)
1336		goto err_init_svm_range_list;
1337
1338	/* alloc_notifier needs to find the process in the hash table */
1339	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1340			(uintptr_t)process->mm);
1341
 
 
 
 
 
1342	/* MMU notifier registration must be the last call that can fail
1343	 * because after this point we cannot unwind the process creation.
1344	 * After this point, mmu_notifier_put will trigger the cleanup by
1345	 * dropping the last process reference in the free_notifier.
1346	 */
1347	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1348	if (IS_ERR(mn)) {
1349		err = PTR_ERR(mn);
1350		goto err_register_notifier;
1351	}
1352	BUG_ON(mn != &process->mmu_notifier);
1353
 
1354	get_task_struct(process->lead_thread);
1355
1356	return process;
1357
1358err_register_notifier:
1359	hash_del_rcu(&process->kfd_processes);
1360	svm_range_list_fini(process);
1361err_init_svm_range_list:
1362	kfd_process_free_outstanding_kfd_bos(process);
1363	kfd_process_destroy_pdds(process);
1364err_init_apertures:
1365	pqm_uninit(&process->pqm);
1366err_process_pqm_init:
1367	kfd_pasid_free(process->pasid);
1368err_alloc_pasid:
 
 
1369	mutex_destroy(&process->mutex);
1370	kfree(process);
1371err_alloc_process:
1372	return ERR_PTR(err);
1373}
1374
1375static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1376			struct kfd_dev *dev)
1377{
1378	unsigned int i;
1379	int range_start = dev->shared_resources.non_cp_doorbells_start;
1380	int range_end = dev->shared_resources.non_cp_doorbells_end;
1381
1382	if (!KFD_IS_SOC15(dev->device_info->asic_family))
1383		return 0;
1384
1385	qpd->doorbell_bitmap =
1386		kzalloc(DIV_ROUND_UP(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1387				     BITS_PER_BYTE), GFP_KERNEL);
1388	if (!qpd->doorbell_bitmap)
1389		return -ENOMEM;
1390
1391	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1392	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1393	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1394			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1395			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1396
1397	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1398		if (i >= range_start && i <= range_end) {
1399			set_bit(i, qpd->doorbell_bitmap);
1400			set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1401				qpd->doorbell_bitmap);
1402		}
1403	}
1404
1405	return 0;
1406}
1407
1408struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1409							struct kfd_process *p)
1410{
1411	int i;
1412
1413	for (i = 0; i < p->n_pdds; i++)
1414		if (p->pdds[i]->dev == dev)
1415			return p->pdds[i];
1416
1417	return NULL;
1418}
1419
1420struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1421							struct kfd_process *p)
1422{
1423	struct kfd_process_device *pdd = NULL;
 
1424
1425	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1426		return NULL;
1427	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1428	if (!pdd)
1429		return NULL;
1430
1431	if (kfd_alloc_process_doorbells(dev, &pdd->doorbell_index) < 0) {
1432		pr_err("Failed to alloc doorbell for pdd\n");
1433		goto err_free_pdd;
1434	}
1435
1436	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1437		pr_err("Failed to init doorbell for process\n");
1438		goto err_free_pdd;
1439	}
1440
1441	pdd->dev = dev;
1442	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1443	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1444	pdd->qpd.dqm = dev->dqm;
1445	pdd->qpd.pqm = &p->pqm;
1446	pdd->qpd.evicted = 0;
1447	pdd->qpd.mapped_gws_queue = false;
1448	pdd->process = p;
1449	pdd->bound = PDD_UNBOUND;
1450	pdd->already_dequeued = false;
1451	pdd->runtime_inuse = false;
1452	pdd->vram_usage = 0;
1453	pdd->sdma_past_activity_counter = 0;
 
1454	atomic64_set(&pdd->evict_duration_counter, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1455	p->pdds[p->n_pdds++] = pdd;
1456
1457	/* Init idr used for memory handle translation */
1458	idr_init(&pdd->alloc_idr);
1459
1460	return pdd;
1461
1462err_free_pdd:
1463	kfree(pdd);
1464	return NULL;
1465}
1466
1467/**
1468 * kfd_process_device_init_vm - Initialize a VM for a process-device
1469 *
1470 * @pdd: The process-device
1471 * @drm_file: Optional pointer to a DRM file descriptor
1472 *
1473 * If @drm_file is specified, it will be used to acquire the VM from
1474 * that file descriptor. If successful, the @pdd takes ownership of
1475 * the file descriptor.
1476 *
1477 * If @drm_file is NULL, a new VM is created.
1478 *
1479 * Returns 0 on success, -errno on failure.
1480 */
1481int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1482			       struct file *drm_file)
1483{
1484	struct kfd_process *p;
1485	struct kfd_dev *dev;
1486	int ret;
1487
1488	if (!drm_file)
1489		return -EINVAL;
1490
1491	if (pdd->drm_priv)
1492		return -EBUSY;
1493
1494	p = pdd->process;
1495	dev = pdd->dev;
1496
1497	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(
1498		dev->kgd, drm_file, p->pasid,
1499		&p->kgd_process_info, &p->ef);
1500	if (ret) {
1501		pr_err("Failed to create process VM object\n");
1502		return ret;
1503	}
1504	pdd->drm_priv = drm_file->private_data;
 
1505
1506	ret = kfd_process_device_reserve_ib_mem(pdd);
1507	if (ret)
1508		goto err_reserve_ib_mem;
1509	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1510	if (ret)
1511		goto err_init_cwsr;
1512
 
 
 
 
1513	pdd->drm_file = drm_file;
1514
1515	return 0;
1516
 
 
1517err_init_cwsr:
 
1518err_reserve_ib_mem:
1519	kfd_process_device_free_bos(pdd);
1520	pdd->drm_priv = NULL;
1521
1522	return ret;
1523}
1524
1525/*
1526 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1527 * to the device.
1528 * Unbinding occurs when the process dies or the device is removed.
1529 *
1530 * Assumes that the process lock is held.
1531 */
1532struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1533							struct kfd_process *p)
1534{
1535	struct kfd_process_device *pdd;
1536	int err;
1537
1538	pdd = kfd_get_process_device_data(dev, p);
1539	if (!pdd) {
1540		pr_err("Process device data doesn't exist\n");
1541		return ERR_PTR(-ENOMEM);
1542	}
1543
1544	if (!pdd->drm_priv)
1545		return ERR_PTR(-ENODEV);
1546
1547	/*
1548	 * signal runtime-pm system to auto resume and prevent
1549	 * further runtime suspend once device pdd is created until
1550	 * pdd is destroyed.
1551	 */
1552	if (!pdd->runtime_inuse) {
1553		err = pm_runtime_get_sync(dev->ddev->dev);
1554		if (err < 0) {
1555			pm_runtime_put_autosuspend(dev->ddev->dev);
1556			return ERR_PTR(err);
1557		}
1558	}
1559
1560	err = kfd_iommu_bind_process_to_device(pdd);
1561	if (err)
1562		goto out;
1563
1564	/*
1565	 * make sure that runtime_usage counter is incremented just once
1566	 * per pdd
1567	 */
1568	pdd->runtime_inuse = true;
1569
1570	return pdd;
1571
1572out:
1573	/* balance runpm reference count and exit with error */
1574	if (!pdd->runtime_inuse) {
1575		pm_runtime_mark_last_busy(dev->ddev->dev);
1576		pm_runtime_put_autosuspend(dev->ddev->dev);
1577	}
1578
1579	return ERR_PTR(err);
1580}
1581
1582/* Create specific handle mapped to mem from process local memory idr
1583 * Assumes that the process lock is held.
1584 */
1585int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1586					void *mem)
1587{
1588	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1589}
1590
1591/* Translate specific handle from process local memory idr
1592 * Assumes that the process lock is held.
1593 */
1594void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1595					int handle)
1596{
1597	if (handle < 0)
1598		return NULL;
1599
1600	return idr_find(&pdd->alloc_idr, handle);
1601}
1602
1603/* Remove specific handle from process local memory idr
1604 * Assumes that the process lock is held.
1605 */
1606void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1607					int handle)
1608{
1609	if (handle >= 0)
1610		idr_remove(&pdd->alloc_idr, handle);
1611}
1612
1613/* This increments the process->ref counter. */
1614struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1615{
1616	struct kfd_process *p, *ret_p = NULL;
1617	unsigned int temp;
1618
1619	int idx = srcu_read_lock(&kfd_processes_srcu);
1620
1621	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1622		if (p->pasid == pasid) {
1623			kref_get(&p->ref);
1624			ret_p = p;
1625			break;
1626		}
1627	}
1628
1629	srcu_read_unlock(&kfd_processes_srcu, idx);
1630
1631	return ret_p;
1632}
1633
1634/* This increments the process->ref counter. */
1635struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1636{
1637	struct kfd_process *p;
1638
1639	int idx = srcu_read_lock(&kfd_processes_srcu);
1640
1641	p = find_process_by_mm(mm);
1642	if (p)
1643		kref_get(&p->ref);
1644
1645	srcu_read_unlock(&kfd_processes_srcu, idx);
1646
1647	return p;
1648}
1649
1650/* kfd_process_evict_queues - Evict all user queues of a process
1651 *
1652 * Eviction is reference-counted per process-device. This means multiple
1653 * evictions from different sources can be nested safely.
1654 */
1655int kfd_process_evict_queues(struct kfd_process *p)
1656{
1657	int r = 0;
1658	int i;
1659	unsigned int n_evicted = 0;
1660
1661	for (i = 0; i < p->n_pdds; i++) {
1662		struct kfd_process_device *pdd = p->pdds[i];
1663
 
 
 
1664		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1665							    &pdd->qpd);
1666		if (r) {
 
 
 
 
1667			pr_err("Failed to evict process queues\n");
1668			goto fail;
1669		}
1670		n_evicted++;
1671	}
1672
1673	return r;
1674
1675fail:
1676	/* To keep state consistent, roll back partial eviction by
1677	 * restoring queues
1678	 */
1679	for (i = 0; i < p->n_pdds; i++) {
1680		struct kfd_process_device *pdd = p->pdds[i];
1681
1682		if (n_evicted == 0)
1683			break;
 
 
 
1684		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1685							      &pdd->qpd))
1686			pr_err("Failed to restore queues\n");
1687
1688		n_evicted--;
1689	}
1690
1691	return r;
1692}
1693
1694/* kfd_process_restore_queues - Restore all user queues of a process */
1695int kfd_process_restore_queues(struct kfd_process *p)
1696{
1697	int r, ret = 0;
1698	int i;
1699
1700	for (i = 0; i < p->n_pdds; i++) {
1701		struct kfd_process_device *pdd = p->pdds[i];
1702
 
 
1703		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1704							      &pdd->qpd);
1705		if (r) {
1706			pr_err("Failed to restore process queues\n");
1707			if (!ret)
1708				ret = r;
1709		}
1710	}
1711
1712	return ret;
1713}
1714
1715int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1716{
1717	int i;
1718
1719	for (i = 0; i < p->n_pdds; i++)
1720		if (p->pdds[i] && gpu_id == p->pdds[i]->dev->id)
1721			return i;
1722	return -EINVAL;
1723}
1724
1725int
1726kfd_process_gpuid_from_kgd(struct kfd_process *p, struct amdgpu_device *adev,
1727			   uint32_t *gpuid, uint32_t *gpuidx)
1728{
1729	struct kgd_dev *kgd = (struct kgd_dev *)adev;
1730	int i;
1731
1732	for (i = 0; i < p->n_pdds; i++)
1733		if (p->pdds[i] && p->pdds[i]->dev->kgd == kgd) {
1734			*gpuid = p->pdds[i]->dev->id;
1735			*gpuidx = i;
1736			return 0;
1737		}
1738	return -EINVAL;
1739}
1740
1741static void evict_process_worker(struct work_struct *work)
1742{
1743	int ret;
1744	struct kfd_process *p;
1745	struct delayed_work *dwork;
1746
1747	dwork = to_delayed_work(work);
1748
1749	/* Process termination destroys this worker thread. So during the
1750	 * lifetime of this thread, kfd_process p will be valid
1751	 */
1752	p = container_of(dwork, struct kfd_process, eviction_work);
1753	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1754		  "Eviction fence mismatch\n");
1755
1756	/* Narrow window of overlap between restore and evict work
1757	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1758	 * unreserves KFD BOs, it is possible to evicted again. But
1759	 * restore has few more steps of finish. So lets wait for any
1760	 * previous restore work to complete
1761	 */
1762	flush_delayed_work(&p->restore_work);
1763
1764	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1765	ret = kfd_process_evict_queues(p);
1766	if (!ret) {
1767		dma_fence_signal(p->ef);
1768		dma_fence_put(p->ef);
1769		p->ef = NULL;
1770		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1771				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1772
1773		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1774	} else
1775		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1776}
1777
1778static void restore_process_worker(struct work_struct *work)
1779{
1780	struct delayed_work *dwork;
1781	struct kfd_process *p;
1782	int ret = 0;
1783
1784	dwork = to_delayed_work(work);
1785
1786	/* Process termination destroys this worker thread. So during the
1787	 * lifetime of this thread, kfd_process p will be valid
1788	 */
1789	p = container_of(dwork, struct kfd_process, restore_work);
1790	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1791
1792	/* Setting last_restore_timestamp before successful restoration.
1793	 * Otherwise this would have to be set by KGD (restore_process_bos)
1794	 * before KFD BOs are unreserved. If not, the process can be evicted
1795	 * again before the timestamp is set.
1796	 * If restore fails, the timestamp will be set again in the next
1797	 * attempt. This would mean that the minimum GPU quanta would be
1798	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1799	 * functions)
1800	 */
1801
1802	p->last_restore_timestamp = get_jiffies_64();
1803	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1804						     &p->ef);
1805	if (ret) {
1806		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1807			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1808		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1809				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1810		WARN(!ret, "reschedule restore work failed\n");
1811		return;
1812	}
1813
1814	ret = kfd_process_restore_queues(p);
1815	if (!ret)
1816		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1817	else
1818		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1819}
1820
1821void kfd_suspend_all_processes(void)
1822{
1823	struct kfd_process *p;
1824	unsigned int temp;
1825	int idx = srcu_read_lock(&kfd_processes_srcu);
1826
1827	WARN(debug_evictions, "Evicting all processes");
1828	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1829		cancel_delayed_work_sync(&p->eviction_work);
1830		cancel_delayed_work_sync(&p->restore_work);
1831
1832		if (kfd_process_evict_queues(p))
1833			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1834		dma_fence_signal(p->ef);
1835		dma_fence_put(p->ef);
1836		p->ef = NULL;
1837	}
1838	srcu_read_unlock(&kfd_processes_srcu, idx);
1839}
1840
1841int kfd_resume_all_processes(void)
1842{
1843	struct kfd_process *p;
1844	unsigned int temp;
1845	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1846
1847	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1848		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1849			pr_err("Restore process %d failed during resume\n",
1850			       p->pasid);
1851			ret = -EFAULT;
1852		}
1853	}
1854	srcu_read_unlock(&kfd_processes_srcu, idx);
1855	return ret;
1856}
1857
1858int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1859			  struct vm_area_struct *vma)
1860{
1861	struct kfd_process_device *pdd;
1862	struct qcm_process_device *qpd;
1863
1864	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1865		pr_err("Incorrect CWSR mapping size.\n");
1866		return -EINVAL;
1867	}
1868
1869	pdd = kfd_get_process_device_data(dev, process);
1870	if (!pdd)
1871		return -EINVAL;
1872	qpd = &pdd->qpd;
1873
1874	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1875					get_order(KFD_CWSR_TBA_TMA_SIZE));
1876	if (!qpd->cwsr_kaddr) {
1877		pr_err("Error allocating per process CWSR buffer.\n");
1878		return -ENOMEM;
1879	}
1880
1881	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1882		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1883	/* Mapping pages to user process */
1884	return remap_pfn_range(vma, vma->vm_start,
1885			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1886			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1887}
1888
1889void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1890{
 
 
1891	struct kfd_dev *dev = pdd->dev;
1892
 
 
 
 
 
 
 
 
1893	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
1894		/* Nothing to flush until a VMID is assigned, which
1895		 * only happens when the first queue is created.
1896		 */
1897		if (pdd->qpd.vmid)
1898			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->kgd,
1899							pdd->qpd.vmid);
1900	} else {
1901		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->kgd,
1902					pdd->process->pasid, type);
1903	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1904}
1905
1906#if defined(CONFIG_DEBUG_FS)
1907
1908int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
1909{
1910	struct kfd_process *p;
1911	unsigned int temp;
1912	int r = 0;
1913
1914	int idx = srcu_read_lock(&kfd_processes_srcu);
1915
1916	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1917		seq_printf(m, "Process %d PASID 0x%x:\n",
1918			   p->lead_thread->tgid, p->pasid);
1919
1920		mutex_lock(&p->mutex);
1921		r = pqm_debugfs_mqds(m, &p->pqm);
1922		mutex_unlock(&p->mutex);
1923
1924		if (r)
1925			break;
1926	}
1927
1928	srcu_read_unlock(&kfd_processes_srcu, idx);
1929
1930	return r;
1931}
1932
1933#endif
1934