Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mutex.h>
  25#include <linux/log2.h>
  26#include <linux/sched.h>
  27#include <linux/sched/mm.h>
  28#include <linux/sched/task.h>
  29#include <linux/mmu_context.h>
  30#include <linux/slab.h>
  31#include <linux/amd-iommu.h>
  32#include <linux/notifier.h>
  33#include <linux/compat.h>
  34#include <linux/mman.h>
  35#include <linux/file.h>
  36#include <linux/pm_runtime.h>
  37#include "amdgpu_amdkfd.h"
  38#include "amdgpu.h"
  39
  40struct mm_struct;
  41
  42#include "kfd_priv.h"
  43#include "kfd_device_queue_manager.h"
  44#include "kfd_iommu.h"
  45#include "kfd_svm.h"
  46#include "kfd_smi_events.h"
 
  47
  48/*
  49 * List of struct kfd_process (field kfd_process).
  50 * Unique/indexed by mm_struct*
  51 */
  52DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  53static DEFINE_MUTEX(kfd_processes_mutex);
  54
  55DEFINE_SRCU(kfd_processes_srcu);
  56
  57/* For process termination handling */
  58static struct workqueue_struct *kfd_process_wq;
  59
  60/* Ordered, single-threaded workqueue for restoring evicted
  61 * processes. Restoring multiple processes concurrently under memory
  62 * pressure can lead to processes blocking each other from validating
  63 * their BOs and result in a live-lock situation where processes
  64 * remain evicted indefinitely.
  65 */
  66static struct workqueue_struct *kfd_restore_wq;
  67
  68static struct kfd_process *find_process(const struct task_struct *thread,
  69					bool ref);
  70static void kfd_process_ref_release(struct kref *ref);
  71static struct kfd_process *create_process(const struct task_struct *thread);
  72static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
  73
  74static void evict_process_worker(struct work_struct *work);
  75static void restore_process_worker(struct work_struct *work);
  76
  77static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
  78
  79struct kfd_procfs_tree {
  80	struct kobject *kobj;
  81};
  82
  83static struct kfd_procfs_tree procfs;
  84
  85/*
  86 * Structure for SDMA activity tracking
  87 */
  88struct kfd_sdma_activity_handler_workarea {
  89	struct work_struct sdma_activity_work;
  90	struct kfd_process_device *pdd;
  91	uint64_t sdma_activity_counter;
  92};
  93
  94struct temp_sdma_queue_list {
  95	uint64_t __user *rptr;
  96	uint64_t sdma_val;
  97	unsigned int queue_id;
  98	struct list_head list;
  99};
 100
 101static void kfd_sdma_activity_worker(struct work_struct *work)
 102{
 103	struct kfd_sdma_activity_handler_workarea *workarea;
 104	struct kfd_process_device *pdd;
 105	uint64_t val;
 106	struct mm_struct *mm;
 107	struct queue *q;
 108	struct qcm_process_device *qpd;
 109	struct device_queue_manager *dqm;
 110	int ret = 0;
 111	struct temp_sdma_queue_list sdma_q_list;
 112	struct temp_sdma_queue_list *sdma_q, *next;
 113
 114	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 115				sdma_activity_work);
 116
 117	pdd = workarea->pdd;
 118	if (!pdd)
 119		return;
 120	dqm = pdd->dev->dqm;
 121	qpd = &pdd->qpd;
 122	if (!dqm || !qpd)
 123		return;
 124	/*
 125	 * Total SDMA activity is current SDMA activity + past SDMA activity
 126	 * Past SDMA count is stored in pdd.
 127	 * To get the current activity counters for all active SDMA queues,
 128	 * we loop over all SDMA queues and get their counts from user-space.
 129	 *
 130	 * We cannot call get_user() with dqm_lock held as it can cause
 131	 * a circular lock dependency situation. To read the SDMA stats,
 132	 * we need to do the following:
 133	 *
 134	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 135	 *    with dqm_lock/dqm_unlock().
 136	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 137	 *    Save the SDMA count for each node and also add the count to the total
 138	 *    SDMA count counter.
 139	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 140	 *    from the qpd->queues_list.
 141	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 142	 *    If any node got deleted, its SDMA count would be captured in the sdma
 143	 *    past activity counter. So subtract the SDMA counter stored in step 2
 144	 *    for this node from the total SDMA count.
 145	 */
 146	INIT_LIST_HEAD(&sdma_q_list.list);
 147
 148	/*
 149	 * Create the temp list of all SDMA queues
 150	 */
 151	dqm_lock(dqm);
 152
 153	list_for_each_entry(q, &qpd->queues_list, list) {
 154		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 155		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 156			continue;
 157
 158		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 159		if (!sdma_q) {
 160			dqm_unlock(dqm);
 161			goto cleanup;
 162		}
 163
 164		INIT_LIST_HEAD(&sdma_q->list);
 165		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 166		sdma_q->queue_id = q->properties.queue_id;
 167		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 168	}
 169
 170	/*
 171	 * If the temp list is empty, then no SDMA queues nodes were found in
 172	 * qpd->queues_list. Return the past activity count as the total sdma
 173	 * count
 174	 */
 175	if (list_empty(&sdma_q_list.list)) {
 176		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 177		dqm_unlock(dqm);
 178		return;
 179	}
 180
 181	dqm_unlock(dqm);
 182
 183	/*
 184	 * Get the usage count for each SDMA queue in temp_list.
 185	 */
 186	mm = get_task_mm(pdd->process->lead_thread);
 187	if (!mm)
 188		goto cleanup;
 189
 190	kthread_use_mm(mm);
 191
 192	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 193		val = 0;
 194		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 195		if (ret) {
 196			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 197				 sdma_q->queue_id);
 198		} else {
 199			sdma_q->sdma_val = val;
 200			workarea->sdma_activity_counter += val;
 201		}
 202	}
 203
 204	kthread_unuse_mm(mm);
 205	mmput(mm);
 206
 207	/*
 208	 * Do a second iteration over qpd_queues_list to check if any SDMA
 209	 * nodes got deleted while fetching SDMA counter.
 210	 */
 211	dqm_lock(dqm);
 212
 213	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 214
 215	list_for_each_entry(q, &qpd->queues_list, list) {
 216		if (list_empty(&sdma_q_list.list))
 217			break;
 218
 219		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 220		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 221			continue;
 222
 223		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 224			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 225			     (sdma_q->queue_id == q->properties.queue_id)) {
 226				list_del(&sdma_q->list);
 227				kfree(sdma_q);
 228				break;
 229			}
 230		}
 231	}
 232
 233	dqm_unlock(dqm);
 234
 235	/*
 236	 * If temp list is not empty, it implies some queues got deleted
 237	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 238	 * count for each node from the total SDMA count.
 239	 */
 240	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 241		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 242		list_del(&sdma_q->list);
 243		kfree(sdma_q);
 244	}
 245
 246	return;
 247
 248cleanup:
 249	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 250		list_del(&sdma_q->list);
 251		kfree(sdma_q);
 252	}
 253}
 254
 255/**
 256 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 257 * by current process. Translates acquired wave count into number of compute units
 258 * that are occupied.
 259 *
 260 * @attr: Handle of attribute that allows reporting of wave count. The attribute
 261 * handle encapsulates GPU device it is associated with, thereby allowing collection
 262 * of waves in flight, etc
 263 * @buffer: Handle of user provided buffer updated with wave count
 264 *
 265 * Return: Number of bytes written to user buffer or an error value
 266 */
 267static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 268{
 269	int cu_cnt;
 270	int wave_cnt;
 271	int max_waves_per_cu;
 272	struct kfd_dev *dev = NULL;
 273	struct kfd_process *proc = NULL;
 274	struct kfd_process_device *pdd = NULL;
 
 
 
 275
 276	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 277	dev = pdd->dev;
 278	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 279		return -EINVAL;
 280
 281	cu_cnt = 0;
 282	proc = pdd->process;
 283	if (pdd->qpd.queue_count == 0) {
 284		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 285			 dev->id, proc->pasid);
 286		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 287	}
 288
 289	/* Collect wave count from device if it supports */
 290	wave_cnt = 0;
 291	max_waves_per_cu = 0;
 292	dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
 293			&max_waves_per_cu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 294
 295	/* Translate wave count to number of compute units */
 296	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 
 297	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 298}
 299
 300static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 301			       char *buffer)
 302{
 303	if (strcmp(attr->name, "pasid") == 0) {
 304		struct kfd_process *p = container_of(attr, struct kfd_process,
 305						     attr_pasid);
 306
 307		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 308	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 309		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 310							      attr_vram);
 311		return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
 312	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 313		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 314							      attr_sdma);
 315		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 316
 317		INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
 318					kfd_sdma_activity_worker);
 319
 320		sdma_activity_work_handler.pdd = pdd;
 321		sdma_activity_work_handler.sdma_activity_counter = 0;
 322
 323		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 324
 325		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 
 326
 327		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 328				(sdma_activity_work_handler.sdma_activity_counter)/
 329				 SDMA_ACTIVITY_DIVISOR);
 330	} else {
 331		pr_err("Invalid attribute");
 332		return -EINVAL;
 333	}
 334
 335	return 0;
 336}
 337
 338static void kfd_procfs_kobj_release(struct kobject *kobj)
 339{
 340	kfree(kobj);
 341}
 342
 343static const struct sysfs_ops kfd_procfs_ops = {
 344	.show = kfd_procfs_show,
 345};
 346
 347static struct kobj_type procfs_type = {
 348	.release = kfd_procfs_kobj_release,
 349	.sysfs_ops = &kfd_procfs_ops,
 350};
 351
 352void kfd_procfs_init(void)
 353{
 354	int ret = 0;
 355
 356	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 357	if (!procfs.kobj)
 358		return;
 359
 360	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 361				   &kfd_device->kobj, "proc");
 362	if (ret) {
 363		pr_warn("Could not create procfs proc folder");
 364		/* If we fail to create the procfs, clean up */
 365		kfd_procfs_shutdown();
 366	}
 367}
 368
 369void kfd_procfs_shutdown(void)
 370{
 371	if (procfs.kobj) {
 372		kobject_del(procfs.kobj);
 373		kobject_put(procfs.kobj);
 374		procfs.kobj = NULL;
 375	}
 376}
 377
 378static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 379				     struct attribute *attr, char *buffer)
 380{
 381	struct queue *q = container_of(kobj, struct queue, kobj);
 382
 383	if (!strcmp(attr->name, "size"))
 384		return snprintf(buffer, PAGE_SIZE, "%llu",
 385				q->properties.queue_size);
 386	else if (!strcmp(attr->name, "type"))
 387		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 388	else if (!strcmp(attr->name, "gpuid"))
 389		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 390	else
 391		pr_err("Invalid attribute");
 392
 393	return 0;
 394}
 395
 396static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 397				     struct attribute *attr, char *buffer)
 398{
 399	if (strcmp(attr->name, "evicted_ms") == 0) {
 400		struct kfd_process_device *pdd = container_of(attr,
 401				struct kfd_process_device,
 402				attr_evict);
 403		uint64_t evict_jiffies;
 404
 405		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 406
 407		return snprintf(buffer,
 408				PAGE_SIZE,
 409				"%llu\n",
 410				jiffies64_to_msecs(evict_jiffies));
 411
 412	/* Sysfs handle that gets CU occupancy is per device */
 413	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 414		return kfd_get_cu_occupancy(attr, buffer);
 415	} else {
 416		pr_err("Invalid attribute");
 417	}
 418
 419	return 0;
 420}
 421
 422static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 423				       struct attribute *attr, char *buf)
 424{
 425	struct kfd_process_device *pdd;
 426
 427	if (!strcmp(attr->name, "faults")) {
 428		pdd = container_of(attr, struct kfd_process_device,
 429				   attr_faults);
 430		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 431	}
 432	if (!strcmp(attr->name, "page_in")) {
 433		pdd = container_of(attr, struct kfd_process_device,
 434				   attr_page_in);
 435		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 436	}
 437	if (!strcmp(attr->name, "page_out")) {
 438		pdd = container_of(attr, struct kfd_process_device,
 439				   attr_page_out);
 440		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 441	}
 442	return 0;
 443}
 444
 445static struct attribute attr_queue_size = {
 446	.name = "size",
 447	.mode = KFD_SYSFS_FILE_MODE
 448};
 449
 450static struct attribute attr_queue_type = {
 451	.name = "type",
 452	.mode = KFD_SYSFS_FILE_MODE
 453};
 454
 455static struct attribute attr_queue_gpuid = {
 456	.name = "gpuid",
 457	.mode = KFD_SYSFS_FILE_MODE
 458};
 459
 460static struct attribute *procfs_queue_attrs[] = {
 461	&attr_queue_size,
 462	&attr_queue_type,
 463	&attr_queue_gpuid,
 464	NULL
 465};
 466ATTRIBUTE_GROUPS(procfs_queue);
 467
 468static const struct sysfs_ops procfs_queue_ops = {
 469	.show = kfd_procfs_queue_show,
 470};
 471
 472static struct kobj_type procfs_queue_type = {
 473	.sysfs_ops = &procfs_queue_ops,
 474	.default_groups = procfs_queue_groups,
 475};
 476
 477static const struct sysfs_ops procfs_stats_ops = {
 478	.show = kfd_procfs_stats_show,
 479};
 480
 481static struct kobj_type procfs_stats_type = {
 482	.sysfs_ops = &procfs_stats_ops,
 483	.release = kfd_procfs_kobj_release,
 484};
 485
 486static const struct sysfs_ops sysfs_counters_ops = {
 487	.show = kfd_sysfs_counters_show,
 488};
 489
 490static struct kobj_type sysfs_counters_type = {
 491	.sysfs_ops = &sysfs_counters_ops,
 492	.release = kfd_procfs_kobj_release,
 493};
 494
 495int kfd_procfs_add_queue(struct queue *q)
 496{
 497	struct kfd_process *proc;
 498	int ret;
 499
 500	if (!q || !q->process)
 501		return -EINVAL;
 502	proc = q->process;
 503
 504	/* Create proc/<pid>/queues/<queue id> folder */
 505	if (!proc->kobj_queues)
 506		return -EFAULT;
 507	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 508			proc->kobj_queues, "%u", q->properties.queue_id);
 509	if (ret < 0) {
 510		pr_warn("Creating proc/<pid>/queues/%u failed",
 511			q->properties.queue_id);
 512		kobject_put(&q->kobj);
 513		return ret;
 514	}
 515
 516	return 0;
 517}
 518
 519static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 520				 char *name)
 521{
 522	int ret;
 523
 524	if (!kobj || !attr || !name)
 525		return;
 526
 527	attr->name = name;
 528	attr->mode = KFD_SYSFS_FILE_MODE;
 529	sysfs_attr_init(attr);
 530
 531	ret = sysfs_create_file(kobj, attr);
 532	if (ret)
 533		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 534}
 535
 536static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 537{
 538	int ret;
 539	int i;
 540	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 541
 542	if (!p || !p->kobj)
 543		return;
 544
 545	/*
 546	 * Create sysfs files for each GPU:
 547	 * - proc/<pid>/stats_<gpuid>/
 548	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 549	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 550	 */
 551	for (i = 0; i < p->n_pdds; i++) {
 552		struct kfd_process_device *pdd = p->pdds[i];
 553
 554		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 555				"stats_%u", pdd->dev->id);
 556		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 557		if (!pdd->kobj_stats)
 558			return;
 559
 560		ret = kobject_init_and_add(pdd->kobj_stats,
 561					   &procfs_stats_type,
 562					   p->kobj,
 563					   stats_dir_filename);
 564
 565		if (ret) {
 566			pr_warn("Creating KFD proc/stats_%s folder failed",
 567				stats_dir_filename);
 568			kobject_put(pdd->kobj_stats);
 569			pdd->kobj_stats = NULL;
 570			return;
 571		}
 572
 573		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 574				      "evicted_ms");
 575		/* Add sysfs file to report compute unit occupancy */
 576		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 577			kfd_sysfs_create_file(pdd->kobj_stats,
 578					      &pdd->attr_cu_occupancy,
 579					      "cu_occupancy");
 580	}
 581}
 582
 583static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 584{
 585	int ret = 0;
 586	int i;
 587	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 588
 589	if (!p || !p->kobj)
 590		return;
 591
 592	/*
 593	 * Create sysfs files for each GPU which supports SVM
 594	 * - proc/<pid>/counters_<gpuid>/
 595	 * - proc/<pid>/counters_<gpuid>/faults
 596	 * - proc/<pid>/counters_<gpuid>/page_in
 597	 * - proc/<pid>/counters_<gpuid>/page_out
 598	 */
 599	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 600		struct kfd_process_device *pdd = p->pdds[i];
 601		struct kobject *kobj_counters;
 602
 603		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 604			"counters_%u", pdd->dev->id);
 605		kobj_counters = kfd_alloc_struct(kobj_counters);
 606		if (!kobj_counters)
 607			return;
 608
 609		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 610					   p->kobj, counters_dir_filename);
 611		if (ret) {
 612			pr_warn("Creating KFD proc/%s folder failed",
 613				counters_dir_filename);
 614			kobject_put(kobj_counters);
 615			return;
 616		}
 617
 618		pdd->kobj_counters = kobj_counters;
 619		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 620				      "faults");
 621		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 622				      "page_in");
 623		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 624				      "page_out");
 625	}
 626}
 627
 628static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 629{
 630	int i;
 631
 632	if (!p || !p->kobj)
 633		return;
 634
 635	/*
 636	 * Create sysfs files for each GPU:
 637	 * - proc/<pid>/vram_<gpuid>
 638	 * - proc/<pid>/sdma_<gpuid>
 639	 */
 640	for (i = 0; i < p->n_pdds; i++) {
 641		struct kfd_process_device *pdd = p->pdds[i];
 642
 643		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 644			 pdd->dev->id);
 645		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 646				      pdd->vram_filename);
 647
 648		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 649			 pdd->dev->id);
 650		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 651					    pdd->sdma_filename);
 652	}
 653}
 654
 655void kfd_procfs_del_queue(struct queue *q)
 656{
 657	if (!q)
 658		return;
 659
 660	kobject_del(&q->kobj);
 661	kobject_put(&q->kobj);
 662}
 663
 664int kfd_process_create_wq(void)
 665{
 666	if (!kfd_process_wq)
 667		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 668	if (!kfd_restore_wq)
 669		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
 
 670
 671	if (!kfd_process_wq || !kfd_restore_wq) {
 672		kfd_process_destroy_wq();
 673		return -ENOMEM;
 674	}
 675
 676	return 0;
 677}
 678
 679void kfd_process_destroy_wq(void)
 680{
 681	if (kfd_process_wq) {
 682		destroy_workqueue(kfd_process_wq);
 683		kfd_process_wq = NULL;
 684	}
 685	if (kfd_restore_wq) {
 686		destroy_workqueue(kfd_restore_wq);
 687		kfd_restore_wq = NULL;
 688	}
 689}
 690
 691static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 692			struct kfd_process_device *pdd, void **kptr)
 693{
 694	struct kfd_dev *dev = pdd->dev;
 695
 696	if (kptr && *kptr) {
 697		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 698		*kptr = NULL;
 699	}
 700
 701	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
 702	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
 703					       NULL);
 704}
 705
 706/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 707 *	This function should be only called right after the process
 708 *	is created and when kfd_processes_mutex is still being held
 709 *	to avoid concurrency. Because of that exclusiveness, we do
 710 *	not need to take p->mutex.
 711 */
 712static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 713				   uint64_t gpu_va, uint32_t size,
 714				   uint32_t flags, struct kgd_mem **mem, void **kptr)
 715{
 716	struct kfd_dev *kdev = pdd->dev;
 717	int err;
 718
 719	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
 720						 pdd->drm_priv, mem, NULL,
 721						 flags, false);
 722	if (err)
 723		goto err_alloc_mem;
 724
 725	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
 726			pdd->drm_priv);
 727	if (err)
 728		goto err_map_mem;
 729
 730	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
 731	if (err) {
 732		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 733		goto sync_memory_failed;
 734	}
 735
 736	if (kptr) {
 737		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
 738				(struct kgd_mem *)*mem, kptr, NULL);
 739		if (err) {
 740			pr_debug("Map GTT BO to kernel failed\n");
 741			goto sync_memory_failed;
 742		}
 743	}
 744
 745	return err;
 746
 747sync_memory_failed:
 748	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
 749
 750err_map_mem:
 751	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
 752					       NULL);
 753err_alloc_mem:
 754	*mem = NULL;
 755	*kptr = NULL;
 756	return err;
 757}
 758
 759/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 760 *	process for IB usage The memory reserved is for KFD to submit
 761 *	IB to AMDGPU from kernel.  If the memory is reserved
 762 *	successfully, ib_kaddr will have the CPU/kernel
 763 *	address. Check ib_kaddr before accessing the memory.
 764 */
 765static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 766{
 767	struct qcm_process_device *qpd = &pdd->qpd;
 768	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 769			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 770			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 771			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 772	struct kgd_mem *mem;
 773	void *kaddr;
 774	int ret;
 775
 776	if (qpd->ib_kaddr || !qpd->ib_base)
 777		return 0;
 778
 779	/* ib_base is only set for dGPU */
 780	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 781				      &mem, &kaddr);
 782	if (ret)
 783		return ret;
 784
 785	qpd->ib_mem = mem;
 786	qpd->ib_kaddr = kaddr;
 787
 788	return 0;
 789}
 790
 791static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
 792{
 793	struct qcm_process_device *qpd = &pdd->qpd;
 794
 795	if (!qpd->ib_kaddr || !qpd->ib_base)
 796		return;
 797
 798	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
 799}
 800
 801struct kfd_process *kfd_create_process(struct file *filep)
 802{
 803	struct kfd_process *process;
 804	struct task_struct *thread = current;
 805	int ret;
 806
 807	if (!thread->mm)
 808		return ERR_PTR(-EINVAL);
 809
 810	/* Only the pthreads threading model is supported. */
 811	if (thread->group_leader->mm != thread->mm)
 
 812		return ERR_PTR(-EINVAL);
 
 813
 814	/*
 815	 * take kfd processes mutex before starting of process creation
 816	 * so there won't be a case where two threads of the same process
 817	 * create two kfd_process structures
 818	 */
 819	mutex_lock(&kfd_processes_mutex);
 820
 821	/* A prior open of /dev/kfd could have already created the process. */
 822	process = find_process(thread, false);
 
 
 
 
 
 
 
 
 823	if (process) {
 824		pr_debug("Process already found\n");
 825	} else {
 
 
 
 
 
 
 
 
 826		process = create_process(thread);
 827		if (IS_ERR(process))
 828			goto out;
 829
 830		ret = kfd_process_init_cwsr_apu(process, filep);
 831		if (ret)
 832			goto out_destroy;
 833
 834		if (!procfs.kobj)
 835			goto out;
 836
 837		process->kobj = kfd_alloc_struct(process->kobj);
 838		if (!process->kobj) {
 839			pr_warn("Creating procfs kobject failed");
 840			goto out;
 841		}
 842		ret = kobject_init_and_add(process->kobj, &procfs_type,
 843					   procfs.kobj, "%d",
 844					   (int)process->lead_thread->pid);
 845		if (ret) {
 846			pr_warn("Creating procfs pid directory failed");
 847			kobject_put(process->kobj);
 848			goto out;
 849		}
 850
 851		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 852				      "pasid");
 853
 854		process->kobj_queues = kobject_create_and_add("queues",
 855							process->kobj);
 856		if (!process->kobj_queues)
 857			pr_warn("Creating KFD proc/queues folder failed");
 858
 859		kfd_procfs_add_sysfs_stats(process);
 860		kfd_procfs_add_sysfs_files(process);
 861		kfd_procfs_add_sysfs_counters(process);
 
 
 862	}
 863out:
 864	if (!IS_ERR(process))
 865		kref_get(&process->ref);
 866	mutex_unlock(&kfd_processes_mutex);
 
 867
 868	return process;
 869
 870out_destroy:
 871	hash_del_rcu(&process->kfd_processes);
 872	mutex_unlock(&kfd_processes_mutex);
 873	synchronize_srcu(&kfd_processes_srcu);
 874	/* kfd_process_free_notifier will trigger the cleanup */
 875	mmu_notifier_put(&process->mmu_notifier);
 876	return ERR_PTR(ret);
 877}
 878
 879struct kfd_process *kfd_get_process(const struct task_struct *thread)
 880{
 881	struct kfd_process *process;
 882
 883	if (!thread->mm)
 884		return ERR_PTR(-EINVAL);
 885
 886	/* Only the pthreads threading model is supported. */
 887	if (thread->group_leader->mm != thread->mm)
 888		return ERR_PTR(-EINVAL);
 889
 890	process = find_process(thread, false);
 891	if (!process)
 892		return ERR_PTR(-EINVAL);
 893
 894	return process;
 895}
 896
 897static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 898{
 899	struct kfd_process *process;
 900
 901	hash_for_each_possible_rcu(kfd_processes_table, process,
 902					kfd_processes, (uintptr_t)mm)
 903		if (process->mm == mm)
 904			return process;
 905
 906	return NULL;
 907}
 908
 909static struct kfd_process *find_process(const struct task_struct *thread,
 910					bool ref)
 911{
 912	struct kfd_process *p;
 913	int idx;
 914
 915	idx = srcu_read_lock(&kfd_processes_srcu);
 916	p = find_process_by_mm(thread->mm);
 917	if (p && ref)
 918		kref_get(&p->ref);
 919	srcu_read_unlock(&kfd_processes_srcu, idx);
 920
 921	return p;
 922}
 923
 924void kfd_unref_process(struct kfd_process *p)
 925{
 926	kref_put(&p->ref, kfd_process_ref_release);
 927}
 928
 929/* This increments the process->ref counter. */
 930struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
 931{
 932	struct task_struct *task = NULL;
 933	struct kfd_process *p    = NULL;
 934
 935	if (!pid) {
 936		task = current;
 937		get_task_struct(task);
 938	} else {
 939		task = get_pid_task(pid, PIDTYPE_PID);
 940	}
 941
 942	if (task) {
 943		p = find_process(task, true);
 944		put_task_struct(task);
 945	}
 946
 947	return p;
 948}
 949
 950static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 951{
 952	struct kfd_process *p = pdd->process;
 953	void *mem;
 954	int id;
 955	int i;
 956
 957	/*
 958	 * Remove all handles from idr and release appropriate
 959	 * local memory object
 960	 */
 961	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 962
 963		for (i = 0; i < p->n_pdds; i++) {
 964			struct kfd_process_device *peer_pdd = p->pdds[i];
 965
 966			if (!peer_pdd->drm_priv)
 967				continue;
 968			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
 969				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
 970		}
 971
 972		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
 973						       pdd->drm_priv, NULL);
 974		kfd_process_device_remove_obj_handle(pdd, id);
 975	}
 976}
 977
 978/*
 979 * Just kunmap and unpin signal BO here. It will be freed in
 980 * kfd_process_free_outstanding_kfd_bos()
 981 */
 982static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
 983{
 984	struct kfd_process_device *pdd;
 985	struct kfd_dev *kdev;
 986	void *mem;
 987
 988	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
 989	if (!kdev)
 990		return;
 991
 992	mutex_lock(&p->mutex);
 993
 994	pdd = kfd_get_process_device_data(kdev, p);
 995	if (!pdd)
 996		goto out;
 997
 998	mem = kfd_process_device_translate_handle(
 999		pdd, GET_IDR_HANDLE(p->signal_handle));
1000	if (!mem)
1001		goto out;
1002
1003	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1004
1005out:
1006	mutex_unlock(&p->mutex);
1007}
1008
1009static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1010{
1011	int i;
1012
1013	for (i = 0; i < p->n_pdds; i++)
1014		kfd_process_device_free_bos(p->pdds[i]);
1015}
1016
1017static void kfd_process_destroy_pdds(struct kfd_process *p)
1018{
1019	int i;
1020
1021	for (i = 0; i < p->n_pdds; i++) {
1022		struct kfd_process_device *pdd = p->pdds[i];
1023
1024		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1025				pdd->dev->id, p->pasid);
1026
1027		kfd_process_device_destroy_cwsr_dgpu(pdd);
1028		kfd_process_device_destroy_ib_mem(pdd);
1029
1030		if (pdd->drm_file) {
1031			amdgpu_amdkfd_gpuvm_release_process_vm(
1032					pdd->dev->adev, pdd->drm_priv);
1033			fput(pdd->drm_file);
1034		}
1035
1036		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1037			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1038				get_order(KFD_CWSR_TBA_TMA_SIZE));
1039
1040		bitmap_free(pdd->qpd.doorbell_bitmap);
1041		idr_destroy(&pdd->alloc_idr);
1042
1043		kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1044
1045		if (pdd->dev->shared_resources.enable_mes)
 
1046			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1047						   pdd->proc_ctx_bo);
1048		/*
1049		 * before destroying pdd, make sure to report availability
1050		 * for auto suspend
1051		 */
1052		if (pdd->runtime_inuse) {
1053			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1054			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1055			pdd->runtime_inuse = false;
1056		}
1057
1058		kfree(pdd);
1059		p->pdds[i] = NULL;
1060	}
1061	p->n_pdds = 0;
1062}
1063
1064static void kfd_process_remove_sysfs(struct kfd_process *p)
1065{
1066	struct kfd_process_device *pdd;
1067	int i;
1068
1069	if (!p->kobj)
1070		return;
1071
1072	sysfs_remove_file(p->kobj, &p->attr_pasid);
1073	kobject_del(p->kobj_queues);
1074	kobject_put(p->kobj_queues);
1075	p->kobj_queues = NULL;
1076
1077	for (i = 0; i < p->n_pdds; i++) {
1078		pdd = p->pdds[i];
1079
1080		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1081		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1082
1083		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1084		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1085			sysfs_remove_file(pdd->kobj_stats,
1086					  &pdd->attr_cu_occupancy);
1087		kobject_del(pdd->kobj_stats);
1088		kobject_put(pdd->kobj_stats);
1089		pdd->kobj_stats = NULL;
1090	}
1091
1092	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1093		pdd = p->pdds[i];
1094
1095		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1096		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1097		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1098		kobject_del(pdd->kobj_counters);
1099		kobject_put(pdd->kobj_counters);
1100		pdd->kobj_counters = NULL;
1101	}
1102
1103	kobject_del(p->kobj);
1104	kobject_put(p->kobj);
1105	p->kobj = NULL;
1106}
1107
1108/* No process locking is needed in this function, because the process
1109 * is not findable any more. We must assume that no other thread is
1110 * using it any more, otherwise we couldn't safely free the process
1111 * structure in the end.
1112 */
1113static void kfd_process_wq_release(struct work_struct *work)
1114{
1115	struct kfd_process *p = container_of(work, struct kfd_process,
1116					     release_work);
 
1117
1118	kfd_process_dequeue_from_all_devices(p);
1119	pqm_uninit(&p->pqm);
1120
1121	/* Signal the eviction fence after user mode queues are
1122	 * destroyed. This allows any BOs to be freed without
1123	 * triggering pointless evictions or waiting for fences.
1124	 */
1125	dma_fence_signal(p->ef);
 
 
 
1126
1127	kfd_process_remove_sysfs(p);
1128	kfd_iommu_unbind_process(p);
1129
1130	kfd_process_kunmap_signal_bo(p);
1131	kfd_process_free_outstanding_kfd_bos(p);
1132	svm_range_list_fini(p);
1133
1134	kfd_process_destroy_pdds(p);
1135	dma_fence_put(p->ef);
1136
1137	kfd_event_free_process(p);
1138
1139	kfd_pasid_free(p->pasid);
1140	mutex_destroy(&p->mutex);
1141
1142	put_task_struct(p->lead_thread);
1143
1144	kfree(p);
1145}
1146
1147static void kfd_process_ref_release(struct kref *ref)
1148{
1149	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1150
1151	INIT_WORK(&p->release_work, kfd_process_wq_release);
1152	queue_work(kfd_process_wq, &p->release_work);
1153}
1154
1155static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1156{
1157	int idx = srcu_read_lock(&kfd_processes_srcu);
1158	struct kfd_process *p = find_process_by_mm(mm);
1159
1160	srcu_read_unlock(&kfd_processes_srcu, idx);
1161
1162	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1163}
1164
1165static void kfd_process_free_notifier(struct mmu_notifier *mn)
1166{
1167	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1168}
1169
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170static void kfd_process_notifier_release(struct mmu_notifier *mn,
1171					struct mm_struct *mm)
1172{
1173	struct kfd_process *p;
1174
1175	/*
1176	 * The kfd_process structure can not be free because the
1177	 * mmu_notifier srcu is read locked
1178	 */
1179	p = container_of(mn, struct kfd_process, mmu_notifier);
1180	if (WARN_ON(p->mm != mm))
1181		return;
1182
1183	mutex_lock(&kfd_processes_mutex);
 
 
 
 
 
 
 
 
 
 
 
1184	hash_del_rcu(&p->kfd_processes);
1185	mutex_unlock(&kfd_processes_mutex);
1186	synchronize_srcu(&kfd_processes_srcu);
1187
1188	cancel_delayed_work_sync(&p->eviction_work);
1189	cancel_delayed_work_sync(&p->restore_work);
1190
1191	/* Indicate to other users that MM is no longer valid */
1192	p->mm = NULL;
1193
1194	mmu_notifier_put(&p->mmu_notifier);
1195}
1196
1197static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1198	.release = kfd_process_notifier_release,
1199	.alloc_notifier = kfd_process_alloc_notifier,
1200	.free_notifier = kfd_process_free_notifier,
1201};
1202
1203static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1204{
1205	unsigned long  offset;
1206	int i;
1207
 
 
 
1208	for (i = 0; i < p->n_pdds; i++) {
1209		struct kfd_dev *dev = p->pdds[i]->dev;
1210		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1211
1212		if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1213			continue;
1214
1215		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1216		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1217			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1218			MAP_SHARED, offset);
1219
1220		if (IS_ERR_VALUE(qpd->tba_addr)) {
1221			int err = qpd->tba_addr;
1222
1223			pr_err("Failure to set tba address. error %d.\n", err);
 
1224			qpd->tba_addr = 0;
1225			qpd->cwsr_kaddr = NULL;
1226			return err;
1227		}
1228
1229		memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 
 
1230
1231		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1232		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1233			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1234	}
1235
 
 
1236	return 0;
1237}
1238
1239static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1240{
1241	struct kfd_dev *dev = pdd->dev;
1242	struct qcm_process_device *qpd = &pdd->qpd;
1243	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1244			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1245			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1246	struct kgd_mem *mem;
1247	void *kaddr;
1248	int ret;
1249
1250	if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1251		return 0;
1252
1253	/* cwsr_base is only set for dGPU */
1254	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1255				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1256	if (ret)
1257		return ret;
1258
1259	qpd->cwsr_mem = mem;
1260	qpd->cwsr_kaddr = kaddr;
1261	qpd->tba_addr = qpd->cwsr_base;
1262
1263	memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
 
 
 
1264
1265	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1266	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1267		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1268
1269	return 0;
1270}
1271
1272static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1273{
1274	struct kfd_dev *dev = pdd->dev;
1275	struct qcm_process_device *qpd = &pdd->qpd;
1276
1277	if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1278		return;
1279
1280	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1281}
1282
1283void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1284				  uint64_t tba_addr,
1285				  uint64_t tma_addr)
1286{
1287	if (qpd->cwsr_kaddr) {
1288		/* KFD trap handler is bound, record as second-level TBA/TMA
1289		 * in first-level TMA. First-level trap will jump to second.
1290		 */
1291		uint64_t *tma =
1292			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1293		tma[0] = tba_addr;
1294		tma[1] = tma_addr;
1295	} else {
1296		/* No trap handler bound, bind as first-level TBA/TMA. */
1297		qpd->tba_addr = tba_addr;
1298		qpd->tma_addr = tma_addr;
1299	}
1300}
1301
1302bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1303{
1304	int i;
1305
1306	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1307	 * boot time retry setting. Mixing processes with different
1308	 * XNACK/retry settings can hang the GPU.
1309	 *
1310	 * Different GPUs can have different noretry settings depending
1311	 * on HW bugs or limitations. We need to find at least one
1312	 * XNACK mode for this process that's compatible with all GPUs.
1313	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1314	 * built for XNACK-off. On GFXv9 it may perform slower.
1315	 *
1316	 * Therefore applications built for XNACK-off can always be
1317	 * supported and will be our fallback if any GPU does not
1318	 * support retry.
1319	 */
1320	for (i = 0; i < p->n_pdds; i++) {
1321		struct kfd_dev *dev = p->pdds[i]->dev;
1322
1323		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1324		 * support the SVM APIs and don't need to be considered
1325		 * for the XNACK mode selection.
1326		 */
1327		if (!KFD_IS_SOC15(dev))
1328			continue;
1329		/* Aldebaran can always support XNACK because it can support
1330		 * per-process XNACK mode selection. But let the dev->noretry
1331		 * setting still influence the default XNACK mode.
1332		 */
1333		if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
 
 
 
 
1334			continue;
 
1335
1336		/* GFXv10 and later GPUs do not support shader preemption
1337		 * during page faults. This can lead to poor QoS for queue
1338		 * management and memory-manager-related preemptions or
1339		 * even deadlocks.
1340		 */
1341		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1342			return false;
1343
1344		if (dev->noretry)
1345			return false;
1346	}
1347
1348	return true;
1349}
1350
 
 
 
 
 
 
 
 
 
 
1351/*
1352 * On return the kfd_process is fully operational and will be freed when the
1353 * mm is released
1354 */
1355static struct kfd_process *create_process(const struct task_struct *thread)
1356{
1357	struct kfd_process *process;
1358	struct mmu_notifier *mn;
1359	int err = -ENOMEM;
1360
1361	process = kzalloc(sizeof(*process), GFP_KERNEL);
1362	if (!process)
1363		goto err_alloc_process;
1364
1365	kref_init(&process->ref);
1366	mutex_init(&process->mutex);
1367	process->mm = thread->mm;
1368	process->lead_thread = thread->group_leader;
1369	process->n_pdds = 0;
1370	process->queues_paused = false;
1371	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1372	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1373	process->last_restore_timestamp = get_jiffies_64();
1374	err = kfd_event_init_process(process);
1375	if (err)
1376		goto err_event_init;
1377	process->is_32bit_user_mode = in_compat_syscall();
 
 
 
 
 
1378
1379	process->pasid = kfd_pasid_alloc();
1380	if (process->pasid == 0) {
1381		err = -ENOSPC;
1382		goto err_alloc_pasid;
1383	}
1384
1385	err = pqm_init(&process->pqm, process);
1386	if (err != 0)
1387		goto err_process_pqm_init;
1388
1389	/* init process apertures*/
1390	err = kfd_init_apertures(process);
1391	if (err != 0)
1392		goto err_init_apertures;
1393
1394	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1395	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1396
1397	err = svm_range_list_init(process);
1398	if (err)
1399		goto err_init_svm_range_list;
1400
1401	/* alloc_notifier needs to find the process in the hash table */
1402	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1403			(uintptr_t)process->mm);
1404
1405	/* Avoid free_notifier to start kfd_process_wq_release if
1406	 * mmu_notifier_get failed because of pending signal.
1407	 */
1408	kref_get(&process->ref);
1409
1410	/* MMU notifier registration must be the last call that can fail
1411	 * because after this point we cannot unwind the process creation.
1412	 * After this point, mmu_notifier_put will trigger the cleanup by
1413	 * dropping the last process reference in the free_notifier.
1414	 */
1415	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1416	if (IS_ERR(mn)) {
1417		err = PTR_ERR(mn);
1418		goto err_register_notifier;
1419	}
1420	BUG_ON(mn != &process->mmu_notifier);
1421
1422	kfd_unref_process(process);
1423	get_task_struct(process->lead_thread);
1424
 
 
1425	return process;
1426
1427err_register_notifier:
1428	hash_del_rcu(&process->kfd_processes);
1429	svm_range_list_fini(process);
1430err_init_svm_range_list:
1431	kfd_process_free_outstanding_kfd_bos(process);
1432	kfd_process_destroy_pdds(process);
1433err_init_apertures:
1434	pqm_uninit(&process->pqm);
1435err_process_pqm_init:
1436	kfd_pasid_free(process->pasid);
1437err_alloc_pasid:
1438	kfd_event_free_process(process);
1439err_event_init:
1440	mutex_destroy(&process->mutex);
1441	kfree(process);
1442err_alloc_process:
1443	return ERR_PTR(err);
1444}
1445
1446static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1447			struct kfd_dev *dev)
1448{
1449	unsigned int i;
1450	int range_start = dev->shared_resources.non_cp_doorbells_start;
1451	int range_end = dev->shared_resources.non_cp_doorbells_end;
1452
1453	if (!KFD_IS_SOC15(dev))
1454		return 0;
1455
1456	qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1457					     GFP_KERNEL);
1458	if (!qpd->doorbell_bitmap)
1459		return -ENOMEM;
1460
1461	/* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1462	pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1463	pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1464			range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1465			range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1466
1467	for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1468		if (i >= range_start && i <= range_end) {
1469			__set_bit(i, qpd->doorbell_bitmap);
1470			__set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1471				  qpd->doorbell_bitmap);
1472		}
1473	}
1474
1475	return 0;
1476}
1477
1478struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1479							struct kfd_process *p)
1480{
1481	int i;
1482
1483	for (i = 0; i < p->n_pdds; i++)
1484		if (p->pdds[i]->dev == dev)
1485			return p->pdds[i];
1486
1487	return NULL;
1488}
1489
1490struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1491							struct kfd_process *p)
1492{
1493	struct kfd_process_device *pdd = NULL;
1494	int retval = 0;
1495
1496	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1497		return NULL;
1498	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1499	if (!pdd)
1500		return NULL;
1501
1502	if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1503		pr_err("Failed to init doorbell for process\n");
1504		goto err_free_pdd;
1505	}
1506
1507	pdd->dev = dev;
1508	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1509	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1510	pdd->qpd.dqm = dev->dqm;
1511	pdd->qpd.pqm = &p->pqm;
1512	pdd->qpd.evicted = 0;
1513	pdd->qpd.mapped_gws_queue = false;
1514	pdd->process = p;
1515	pdd->bound = PDD_UNBOUND;
1516	pdd->already_dequeued = false;
1517	pdd->runtime_inuse = false;
1518	pdd->vram_usage = 0;
1519	pdd->sdma_past_activity_counter = 0;
1520	pdd->user_gpu_id = dev->id;
1521	atomic64_set(&pdd->evict_duration_counter, 0);
1522
1523	if (dev->shared_resources.enable_mes) {
1524		retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1525						AMDGPU_MES_PROC_CTX_SIZE,
1526						&pdd->proc_ctx_bo,
1527						&pdd->proc_ctx_gpu_addr,
1528						&pdd->proc_ctx_cpu_ptr,
1529						false);
1530		if (retval) {
1531			pr_err("failed to allocate process context bo\n");
1532			goto err_free_pdd;
1533		}
1534		memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1535	}
1536
1537	p->pdds[p->n_pdds++] = pdd;
 
 
 
 
 
1538
1539	/* Init idr used for memory handle translation */
1540	idr_init(&pdd->alloc_idr);
1541
1542	return pdd;
1543
1544err_free_pdd:
1545	kfree(pdd);
1546	return NULL;
1547}
1548
1549/**
1550 * kfd_process_device_init_vm - Initialize a VM for a process-device
1551 *
1552 * @pdd: The process-device
1553 * @drm_file: Optional pointer to a DRM file descriptor
1554 *
1555 * If @drm_file is specified, it will be used to acquire the VM from
1556 * that file descriptor. If successful, the @pdd takes ownership of
1557 * the file descriptor.
1558 *
1559 * If @drm_file is NULL, a new VM is created.
1560 *
1561 * Returns 0 on success, -errno on failure.
1562 */
1563int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1564			       struct file *drm_file)
1565{
 
 
1566	struct kfd_process *p;
1567	struct kfd_dev *dev;
 
1568	int ret;
1569
1570	if (!drm_file)
1571		return -EINVAL;
1572
1573	if (pdd->drm_priv)
1574		return -EBUSY;
1575
 
 
 
 
 
1576	p = pdd->process;
1577	dev = pdd->dev;
1578
1579	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, drm_file,
1580						     &p->kgd_process_info,
1581						     &p->ef);
1582	if (ret) {
1583		pr_err("Failed to create process VM object\n");
1584		return ret;
1585	}
 
 
 
 
1586	pdd->drm_priv = drm_file->private_data;
1587	atomic64_set(&pdd->tlb_seq, 0);
1588
1589	ret = kfd_process_device_reserve_ib_mem(pdd);
1590	if (ret)
1591		goto err_reserve_ib_mem;
1592	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1593	if (ret)
1594		goto err_init_cwsr;
1595
1596	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, drm_file, p->pasid);
1597	if (ret)
1598		goto err_set_pasid;
1599
1600	pdd->drm_file = drm_file;
1601
1602	return 0;
1603
1604err_set_pasid:
1605	kfd_process_device_destroy_cwsr_dgpu(pdd);
1606err_init_cwsr:
1607	kfd_process_device_destroy_ib_mem(pdd);
1608err_reserve_ib_mem:
1609	pdd->drm_priv = NULL;
 
1610
1611	return ret;
1612}
1613
1614/*
1615 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1616 * to the device.
1617 * Unbinding occurs when the process dies or the device is removed.
1618 *
1619 * Assumes that the process lock is held.
1620 */
1621struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1622							struct kfd_process *p)
1623{
1624	struct kfd_process_device *pdd;
1625	int err;
1626
1627	pdd = kfd_get_process_device_data(dev, p);
1628	if (!pdd) {
1629		pr_err("Process device data doesn't exist\n");
1630		return ERR_PTR(-ENOMEM);
1631	}
1632
1633	if (!pdd->drm_priv)
1634		return ERR_PTR(-ENODEV);
1635
1636	/*
1637	 * signal runtime-pm system to auto resume and prevent
1638	 * further runtime suspend once device pdd is created until
1639	 * pdd is destroyed.
1640	 */
1641	if (!pdd->runtime_inuse) {
1642		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1643		if (err < 0) {
1644			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1645			return ERR_PTR(err);
1646		}
1647	}
1648
1649	err = kfd_iommu_bind_process_to_device(pdd);
1650	if (err)
1651		goto out;
1652
1653	/*
1654	 * make sure that runtime_usage counter is incremented just once
1655	 * per pdd
1656	 */
1657	pdd->runtime_inuse = true;
1658
1659	return pdd;
1660
1661out:
1662	/* balance runpm reference count and exit with error */
1663	if (!pdd->runtime_inuse) {
1664		pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev);
1665		pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1666	}
1667
1668	return ERR_PTR(err);
1669}
1670
1671/* Create specific handle mapped to mem from process local memory idr
1672 * Assumes that the process lock is held.
1673 */
1674int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1675					void *mem)
1676{
1677	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1678}
1679
1680/* Translate specific handle from process local memory idr
1681 * Assumes that the process lock is held.
1682 */
1683void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1684					int handle)
1685{
1686	if (handle < 0)
1687		return NULL;
1688
1689	return idr_find(&pdd->alloc_idr, handle);
1690}
1691
1692/* Remove specific handle from process local memory idr
1693 * Assumes that the process lock is held.
1694 */
1695void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1696					int handle)
1697{
1698	if (handle >= 0)
1699		idr_remove(&pdd->alloc_idr, handle);
1700}
1701
1702/* This increments the process->ref counter. */
1703struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1704{
1705	struct kfd_process *p, *ret_p = NULL;
1706	unsigned int temp;
1707
1708	int idx = srcu_read_lock(&kfd_processes_srcu);
1709
1710	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1711		if (p->pasid == pasid) {
1712			kref_get(&p->ref);
1713			ret_p = p;
1714			break;
1715		}
1716	}
1717
1718	srcu_read_unlock(&kfd_processes_srcu, idx);
1719
1720	return ret_p;
1721}
1722
1723/* This increments the process->ref counter. */
1724struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1725{
1726	struct kfd_process *p;
1727
1728	int idx = srcu_read_lock(&kfd_processes_srcu);
1729
1730	p = find_process_by_mm(mm);
1731	if (p)
1732		kref_get(&p->ref);
1733
1734	srcu_read_unlock(&kfd_processes_srcu, idx);
1735
1736	return p;
1737}
1738
1739/* kfd_process_evict_queues - Evict all user queues of a process
1740 *
1741 * Eviction is reference-counted per process-device. This means multiple
1742 * evictions from different sources can be nested safely.
1743 */
1744int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1745{
1746	int r = 0;
1747	int i;
1748	unsigned int n_evicted = 0;
1749
1750	for (i = 0; i < p->n_pdds; i++) {
1751		struct kfd_process_device *pdd = p->pdds[i];
 
1752
1753		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1754					     trigger);
1755
1756		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1757							    &pdd->qpd);
1758		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1759		 * we would like to set all the queues to be in evicted state to prevent
1760		 * them been add back since they actually not be saved right now.
1761		 */
1762		if (r && r != -EIO) {
1763			pr_err("Failed to evict process queues\n");
1764			goto fail;
1765		}
1766		n_evicted++;
 
 
1767	}
1768
1769	return r;
1770
1771fail:
1772	/* To keep state consistent, roll back partial eviction by
1773	 * restoring queues
1774	 */
1775	for (i = 0; i < p->n_pdds; i++) {
1776		struct kfd_process_device *pdd = p->pdds[i];
1777
1778		if (n_evicted == 0)
1779			break;
1780
1781		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1782
1783		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1784							      &pdd->qpd))
1785			pr_err("Failed to restore queues\n");
 
1786
1787		n_evicted--;
1788	}
1789
1790	return r;
1791}
1792
1793/* kfd_process_restore_queues - Restore all user queues of a process */
1794int kfd_process_restore_queues(struct kfd_process *p)
1795{
1796	int r, ret = 0;
1797	int i;
1798
1799	for (i = 0; i < p->n_pdds; i++) {
1800		struct kfd_process_device *pdd = p->pdds[i];
 
1801
1802		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1803
1804		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1805							      &pdd->qpd);
1806		if (r) {
1807			pr_err("Failed to restore process queues\n");
1808			if (!ret)
1809				ret = r;
1810		}
1811	}
1812
1813	return ret;
1814}
1815
1816int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1817{
1818	int i;
1819
1820	for (i = 0; i < p->n_pdds; i++)
1821		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1822			return i;
1823	return -EINVAL;
1824}
1825
1826int
1827kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1828			   uint32_t *gpuid, uint32_t *gpuidx)
1829{
1830	int i;
1831
1832	for (i = 0; i < p->n_pdds; i++)
1833		if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1834			*gpuid = p->pdds[i]->user_gpu_id;
1835			*gpuidx = i;
1836			return 0;
1837		}
1838	return -EINVAL;
1839}
1840
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1841static void evict_process_worker(struct work_struct *work)
1842{
1843	int ret;
1844	struct kfd_process *p;
1845	struct delayed_work *dwork;
1846
1847	dwork = to_delayed_work(work);
1848
1849	/* Process termination destroys this worker thread. So during the
1850	 * lifetime of this thread, kfd_process p will be valid
1851	 */
1852	p = container_of(dwork, struct kfd_process, eviction_work);
1853	WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1854		  "Eviction fence mismatch\n");
1855
1856	/* Narrow window of overlap between restore and evict work
1857	 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1858	 * unreserves KFD BOs, it is possible to evicted again. But
1859	 * restore has few more steps of finish. So lets wait for any
1860	 * previous restore work to complete
1861	 */
1862	flush_delayed_work(&p->restore_work);
1863
1864	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1865	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1866	if (!ret) {
1867		dma_fence_signal(p->ef);
1868		dma_fence_put(p->ef);
1869		p->ef = NULL;
1870		queue_delayed_work(kfd_restore_wq, &p->restore_work,
1871				msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
 
 
 
1872
1873		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1874	} else
1875		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1876}
1877
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1878static void restore_process_worker(struct work_struct *work)
1879{
1880	struct delayed_work *dwork;
1881	struct kfd_process *p;
1882	int ret = 0;
1883
1884	dwork = to_delayed_work(work);
1885
1886	/* Process termination destroys this worker thread. So during the
1887	 * lifetime of this thread, kfd_process p will be valid
1888	 */
1889	p = container_of(dwork, struct kfd_process, restore_work);
1890	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1891
1892	/* Setting last_restore_timestamp before successful restoration.
1893	 * Otherwise this would have to be set by KGD (restore_process_bos)
1894	 * before KFD BOs are unreserved. If not, the process can be evicted
1895	 * again before the timestamp is set.
1896	 * If restore fails, the timestamp will be set again in the next
1897	 * attempt. This would mean that the minimum GPU quanta would be
1898	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1899	 * functions)
1900	 */
1901
1902	p->last_restore_timestamp = get_jiffies_64();
1903	ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1904						     &p->ef);
1905	if (ret) {
1906		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1907			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1908		ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1909				msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1910		WARN(!ret, "reschedule restore work failed\n");
1911		return;
1912	}
1913
1914	ret = kfd_process_restore_queues(p);
1915	if (!ret)
1916		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1917	else
1918		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1919}
1920
1921void kfd_suspend_all_processes(void)
1922{
1923	struct kfd_process *p;
1924	unsigned int temp;
1925	int idx = srcu_read_lock(&kfd_processes_srcu);
1926
1927	WARN(debug_evictions, "Evicting all processes");
1928	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1929		cancel_delayed_work_sync(&p->eviction_work);
1930		cancel_delayed_work_sync(&p->restore_work);
1931
1932		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
1933			pr_err("Failed to suspend process 0x%x\n", p->pasid);
1934		dma_fence_signal(p->ef);
1935		dma_fence_put(p->ef);
1936		p->ef = NULL;
1937	}
1938	srcu_read_unlock(&kfd_processes_srcu, idx);
1939}
1940
1941int kfd_resume_all_processes(void)
1942{
1943	struct kfd_process *p;
1944	unsigned int temp;
1945	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1946
1947	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1948		if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1949			pr_err("Restore process %d failed during resume\n",
1950			       p->pasid);
1951			ret = -EFAULT;
1952		}
1953	}
1954	srcu_read_unlock(&kfd_processes_srcu, idx);
1955	return ret;
1956}
1957
1958int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1959			  struct vm_area_struct *vma)
1960{
1961	struct kfd_process_device *pdd;
1962	struct qcm_process_device *qpd;
1963
1964	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1965		pr_err("Incorrect CWSR mapping size.\n");
1966		return -EINVAL;
1967	}
1968
1969	pdd = kfd_get_process_device_data(dev, process);
1970	if (!pdd)
1971		return -EINVAL;
1972	qpd = &pdd->qpd;
1973
1974	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1975					get_order(KFD_CWSR_TBA_TMA_SIZE));
1976	if (!qpd->cwsr_kaddr) {
1977		pr_err("Error allocating per process CWSR buffer.\n");
 
1978		return -ENOMEM;
1979	}
1980
1981	vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1982		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1983	/* Mapping pages to user process */
1984	return remap_pfn_range(vma, vma->vm_start,
1985			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1986			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1987}
1988
1989void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
 
1990{
1991	struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1992	uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1993	struct kfd_dev *dev = pdd->dev;
 
 
 
 
 
 
 
 
 
 
1994
1995	/*
1996	 * It can be that we race and lose here, but that is extremely unlikely
1997	 * and the worst thing which could happen is that we flush the changes
1998	 * into the TLB once more which is harmless.
1999	 */
2000	if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2001		return;
 
 
 
2002
2003	if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2004		/* Nothing to flush until a VMID is assigned, which
2005		 * only happens when the first queue is created.
2006		 */
2007		if (pdd->qpd.vmid)
2008			amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2009							pdd->qpd.vmid);
2010	} else {
2011		amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
2012					pdd->process->pasid, type);
2013	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2014}
2015
2016struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2017{
2018	int i;
2019
2020	if (gpu_id) {
2021		for (i = 0; i < p->n_pdds; i++) {
2022			struct kfd_process_device *pdd = p->pdds[i];
2023
2024			if (pdd->user_gpu_id == gpu_id)
2025				return pdd;
2026		}
2027	}
2028	return NULL;
2029}
2030
2031int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2032{
2033	int i;
2034
2035	if (!actual_gpu_id)
2036		return 0;
2037
2038	for (i = 0; i < p->n_pdds; i++) {
2039		struct kfd_process_device *pdd = p->pdds[i];
2040
2041		if (pdd->dev->id == actual_gpu_id)
2042			return pdd->user_gpu_id;
2043	}
2044	return -EINVAL;
2045}
2046
2047#if defined(CONFIG_DEBUG_FS)
2048
2049int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2050{
2051	struct kfd_process *p;
2052	unsigned int temp;
2053	int r = 0;
2054
2055	int idx = srcu_read_lock(&kfd_processes_srcu);
2056
2057	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2058		seq_printf(m, "Process %d PASID 0x%x:\n",
2059			   p->lead_thread->tgid, p->pasid);
2060
2061		mutex_lock(&p->mutex);
2062		r = pqm_debugfs_mqds(m, &p->pqm);
2063		mutex_unlock(&p->mutex);
2064
2065		if (r)
2066			break;
2067	}
2068
2069	srcu_read_unlock(&kfd_processes_srcu, idx);
2070
2071	return r;
2072}
2073
2074#endif
2075
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0 OR MIT
   2/*
   3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
   4 *
   5 * Permission is hereby granted, free of charge, to any person obtaining a
   6 * copy of this software and associated documentation files (the "Software"),
   7 * to deal in the Software without restriction, including without limitation
   8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   9 * and/or sell copies of the Software, and to permit persons to whom the
  10 * Software is furnished to do so, subject to the following conditions:
  11 *
  12 * The above copyright notice and this permission notice shall be included in
  13 * all copies or substantial portions of the Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  21 * OTHER DEALINGS IN THE SOFTWARE.
  22 */
  23
  24#include <linux/mutex.h>
  25#include <linux/log2.h>
  26#include <linux/sched.h>
  27#include <linux/sched/mm.h>
  28#include <linux/sched/task.h>
  29#include <linux/mmu_context.h>
  30#include <linux/slab.h>
 
  31#include <linux/notifier.h>
  32#include <linux/compat.h>
  33#include <linux/mman.h>
  34#include <linux/file.h>
  35#include <linux/pm_runtime.h>
  36#include "amdgpu_amdkfd.h"
  37#include "amdgpu.h"
  38
  39struct mm_struct;
  40
  41#include "kfd_priv.h"
  42#include "kfd_device_queue_manager.h"
 
  43#include "kfd_svm.h"
  44#include "kfd_smi_events.h"
  45#include "kfd_debug.h"
  46
  47/*
  48 * List of struct kfd_process (field kfd_process).
  49 * Unique/indexed by mm_struct*
  50 */
  51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
  52DEFINE_MUTEX(kfd_processes_mutex);
  53
  54DEFINE_SRCU(kfd_processes_srcu);
  55
  56/* For process termination handling */
  57static struct workqueue_struct *kfd_process_wq;
  58
  59/* Ordered, single-threaded workqueue for restoring evicted
  60 * processes. Restoring multiple processes concurrently under memory
  61 * pressure can lead to processes blocking each other from validating
  62 * their BOs and result in a live-lock situation where processes
  63 * remain evicted indefinitely.
  64 */
  65static struct workqueue_struct *kfd_restore_wq;
  66
  67static struct kfd_process *find_process(const struct task_struct *thread,
  68					bool ref);
  69static void kfd_process_ref_release(struct kref *ref);
  70static struct kfd_process *create_process(const struct task_struct *thread);
 
  71
  72static void evict_process_worker(struct work_struct *work);
  73static void restore_process_worker(struct work_struct *work);
  74
  75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
  76
  77struct kfd_procfs_tree {
  78	struct kobject *kobj;
  79};
  80
  81static struct kfd_procfs_tree procfs;
  82
  83/*
  84 * Structure for SDMA activity tracking
  85 */
  86struct kfd_sdma_activity_handler_workarea {
  87	struct work_struct sdma_activity_work;
  88	struct kfd_process_device *pdd;
  89	uint64_t sdma_activity_counter;
  90};
  91
  92struct temp_sdma_queue_list {
  93	uint64_t __user *rptr;
  94	uint64_t sdma_val;
  95	unsigned int queue_id;
  96	struct list_head list;
  97};
  98
  99static void kfd_sdma_activity_worker(struct work_struct *work)
 100{
 101	struct kfd_sdma_activity_handler_workarea *workarea;
 102	struct kfd_process_device *pdd;
 103	uint64_t val;
 104	struct mm_struct *mm;
 105	struct queue *q;
 106	struct qcm_process_device *qpd;
 107	struct device_queue_manager *dqm;
 108	int ret = 0;
 109	struct temp_sdma_queue_list sdma_q_list;
 110	struct temp_sdma_queue_list *sdma_q, *next;
 111
 112	workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
 113				sdma_activity_work);
 114
 115	pdd = workarea->pdd;
 116	if (!pdd)
 117		return;
 118	dqm = pdd->dev->dqm;
 119	qpd = &pdd->qpd;
 120	if (!dqm || !qpd)
 121		return;
 122	/*
 123	 * Total SDMA activity is current SDMA activity + past SDMA activity
 124	 * Past SDMA count is stored in pdd.
 125	 * To get the current activity counters for all active SDMA queues,
 126	 * we loop over all SDMA queues and get their counts from user-space.
 127	 *
 128	 * We cannot call get_user() with dqm_lock held as it can cause
 129	 * a circular lock dependency situation. To read the SDMA stats,
 130	 * we need to do the following:
 131	 *
 132	 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
 133	 *    with dqm_lock/dqm_unlock().
 134	 * 2. Call get_user() for each node in temporary list without dqm_lock.
 135	 *    Save the SDMA count for each node and also add the count to the total
 136	 *    SDMA count counter.
 137	 *    Its possible, during this step, a few SDMA queue nodes got deleted
 138	 *    from the qpd->queues_list.
 139	 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
 140	 *    If any node got deleted, its SDMA count would be captured in the sdma
 141	 *    past activity counter. So subtract the SDMA counter stored in step 2
 142	 *    for this node from the total SDMA count.
 143	 */
 144	INIT_LIST_HEAD(&sdma_q_list.list);
 145
 146	/*
 147	 * Create the temp list of all SDMA queues
 148	 */
 149	dqm_lock(dqm);
 150
 151	list_for_each_entry(q, &qpd->queues_list, list) {
 152		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 153		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 154			continue;
 155
 156		sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
 157		if (!sdma_q) {
 158			dqm_unlock(dqm);
 159			goto cleanup;
 160		}
 161
 162		INIT_LIST_HEAD(&sdma_q->list);
 163		sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
 164		sdma_q->queue_id = q->properties.queue_id;
 165		list_add_tail(&sdma_q->list, &sdma_q_list.list);
 166	}
 167
 168	/*
 169	 * If the temp list is empty, then no SDMA queues nodes were found in
 170	 * qpd->queues_list. Return the past activity count as the total sdma
 171	 * count
 172	 */
 173	if (list_empty(&sdma_q_list.list)) {
 174		workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
 175		dqm_unlock(dqm);
 176		return;
 177	}
 178
 179	dqm_unlock(dqm);
 180
 181	/*
 182	 * Get the usage count for each SDMA queue in temp_list.
 183	 */
 184	mm = get_task_mm(pdd->process->lead_thread);
 185	if (!mm)
 186		goto cleanup;
 187
 188	kthread_use_mm(mm);
 189
 190	list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
 191		val = 0;
 192		ret = read_sdma_queue_counter(sdma_q->rptr, &val);
 193		if (ret) {
 194			pr_debug("Failed to read SDMA queue active counter for queue id: %d",
 195				 sdma_q->queue_id);
 196		} else {
 197			sdma_q->sdma_val = val;
 198			workarea->sdma_activity_counter += val;
 199		}
 200	}
 201
 202	kthread_unuse_mm(mm);
 203	mmput(mm);
 204
 205	/*
 206	 * Do a second iteration over qpd_queues_list to check if any SDMA
 207	 * nodes got deleted while fetching SDMA counter.
 208	 */
 209	dqm_lock(dqm);
 210
 211	workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
 212
 213	list_for_each_entry(q, &qpd->queues_list, list) {
 214		if (list_empty(&sdma_q_list.list))
 215			break;
 216
 217		if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
 218		    (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
 219			continue;
 220
 221		list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 222			if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
 223			     (sdma_q->queue_id == q->properties.queue_id)) {
 224				list_del(&sdma_q->list);
 225				kfree(sdma_q);
 226				break;
 227			}
 228		}
 229	}
 230
 231	dqm_unlock(dqm);
 232
 233	/*
 234	 * If temp list is not empty, it implies some queues got deleted
 235	 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
 236	 * count for each node from the total SDMA count.
 237	 */
 238	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 239		workarea->sdma_activity_counter -= sdma_q->sdma_val;
 240		list_del(&sdma_q->list);
 241		kfree(sdma_q);
 242	}
 243
 244	return;
 245
 246cleanup:
 247	list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
 248		list_del(&sdma_q->list);
 249		kfree(sdma_q);
 250	}
 251}
 252
 253/**
 254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
 255 * by current process. Translates acquired wave count into number of compute units
 256 * that are occupied.
 257 *
 258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
 259 * handle encapsulates GPU device it is associated with, thereby allowing collection
 260 * of waves in flight, etc
 261 * @buffer: Handle of user provided buffer updated with wave count
 262 *
 263 * Return: Number of bytes written to user buffer or an error value
 264 */
 265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
 266{
 267	int cu_cnt;
 268	int wave_cnt;
 269	int max_waves_per_cu;
 270	struct kfd_node *dev = NULL;
 271	struct kfd_process *proc = NULL;
 272	struct kfd_process_device *pdd = NULL;
 273	int i;
 274	struct kfd_cu_occupancy *cu_occupancy;
 275	u32 queue_format;
 276
 277	pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
 278	dev = pdd->dev;
 279	if (dev->kfd2kgd->get_cu_occupancy == NULL)
 280		return -EINVAL;
 281
 282	cu_cnt = 0;
 283	proc = pdd->process;
 284	if (pdd->qpd.queue_count == 0) {
 285		pr_debug("Gpu-Id: %d has no active queues for process %d\n",
 286			 dev->id, proc->pasid);
 287		return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 288	}
 289
 290	/* Collect wave count from device if it supports */
 291	wave_cnt = 0;
 292	max_waves_per_cu = 0;
 293
 294	cu_occupancy = kcalloc(AMDGPU_MAX_QUEUES, sizeof(*cu_occupancy), GFP_KERNEL);
 295	if (!cu_occupancy)
 296		return -ENOMEM;
 297
 298	/*
 299	 * For GFX 9.4.3, fetch the CU occupancy from the first XCC in the partition.
 300	 * For AQL queues, because of cooperative dispatch we multiply the wave count
 301	 * by number of XCCs in the partition to get the total wave counts across all
 302	 * XCCs in the partition.
 303	 * For PM4 queues, there is no cooperative dispatch so wave_cnt stay as it is.
 304	 */
 305	dev->kfd2kgd->get_cu_occupancy(dev->adev, cu_occupancy,
 306			&max_waves_per_cu, ffs(dev->xcc_mask) - 1);
 307
 308	for (i = 0; i < AMDGPU_MAX_QUEUES; i++) {
 309		if (cu_occupancy[i].wave_cnt != 0 &&
 310		    kfd_dqm_is_queue_in_process(dev->dqm, &pdd->qpd,
 311						cu_occupancy[i].doorbell_off,
 312						&queue_format)) {
 313			if (unlikely(queue_format == KFD_QUEUE_FORMAT_PM4))
 314				wave_cnt += cu_occupancy[i].wave_cnt;
 315			else
 316				wave_cnt += (NUM_XCC(dev->xcc_mask) *
 317						cu_occupancy[i].wave_cnt);
 318		}
 319	}
 320
 321	/* Translate wave count to number of compute units */
 322	cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
 323	kfree(cu_occupancy);
 324	return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
 325}
 326
 327static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
 328			       char *buffer)
 329{
 330	if (strcmp(attr->name, "pasid") == 0) {
 331		struct kfd_process *p = container_of(attr, struct kfd_process,
 332						     attr_pasid);
 333
 334		return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
 335	} else if (strncmp(attr->name, "vram_", 5) == 0) {
 336		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 337							      attr_vram);
 338		return snprintf(buffer, PAGE_SIZE, "%llu\n", atomic64_read(&pdd->vram_usage));
 339	} else if (strncmp(attr->name, "sdma_", 5) == 0) {
 340		struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
 341							      attr_sdma);
 342		struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
 343
 344		INIT_WORK_ONSTACK(&sdma_activity_work_handler.sdma_activity_work,
 345				  kfd_sdma_activity_worker);
 346
 347		sdma_activity_work_handler.pdd = pdd;
 348		sdma_activity_work_handler.sdma_activity_counter = 0;
 349
 350		schedule_work(&sdma_activity_work_handler.sdma_activity_work);
 351
 352		flush_work(&sdma_activity_work_handler.sdma_activity_work);
 353		destroy_work_on_stack(&sdma_activity_work_handler.sdma_activity_work);
 354
 355		return snprintf(buffer, PAGE_SIZE, "%llu\n",
 356				(sdma_activity_work_handler.sdma_activity_counter)/
 357				 SDMA_ACTIVITY_DIVISOR);
 358	} else {
 359		pr_err("Invalid attribute");
 360		return -EINVAL;
 361	}
 362
 363	return 0;
 364}
 365
 366static void kfd_procfs_kobj_release(struct kobject *kobj)
 367{
 368	kfree(kobj);
 369}
 370
 371static const struct sysfs_ops kfd_procfs_ops = {
 372	.show = kfd_procfs_show,
 373};
 374
 375static const struct kobj_type procfs_type = {
 376	.release = kfd_procfs_kobj_release,
 377	.sysfs_ops = &kfd_procfs_ops,
 378};
 379
 380void kfd_procfs_init(void)
 381{
 382	int ret = 0;
 383
 384	procfs.kobj = kfd_alloc_struct(procfs.kobj);
 385	if (!procfs.kobj)
 386		return;
 387
 388	ret = kobject_init_and_add(procfs.kobj, &procfs_type,
 389				   &kfd_device->kobj, "proc");
 390	if (ret) {
 391		pr_warn("Could not create procfs proc folder");
 392		/* If we fail to create the procfs, clean up */
 393		kfd_procfs_shutdown();
 394	}
 395}
 396
 397void kfd_procfs_shutdown(void)
 398{
 399	if (procfs.kobj) {
 400		kobject_del(procfs.kobj);
 401		kobject_put(procfs.kobj);
 402		procfs.kobj = NULL;
 403	}
 404}
 405
 406static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
 407				     struct attribute *attr, char *buffer)
 408{
 409	struct queue *q = container_of(kobj, struct queue, kobj);
 410
 411	if (!strcmp(attr->name, "size"))
 412		return snprintf(buffer, PAGE_SIZE, "%llu",
 413				q->properties.queue_size);
 414	else if (!strcmp(attr->name, "type"))
 415		return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
 416	else if (!strcmp(attr->name, "gpuid"))
 417		return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
 418	else
 419		pr_err("Invalid attribute");
 420
 421	return 0;
 422}
 423
 424static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
 425				     struct attribute *attr, char *buffer)
 426{
 427	if (strcmp(attr->name, "evicted_ms") == 0) {
 428		struct kfd_process_device *pdd = container_of(attr,
 429				struct kfd_process_device,
 430				attr_evict);
 431		uint64_t evict_jiffies;
 432
 433		evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
 434
 435		return snprintf(buffer,
 436				PAGE_SIZE,
 437				"%llu\n",
 438				jiffies64_to_msecs(evict_jiffies));
 439
 440	/* Sysfs handle that gets CU occupancy is per device */
 441	} else if (strcmp(attr->name, "cu_occupancy") == 0) {
 442		return kfd_get_cu_occupancy(attr, buffer);
 443	} else {
 444		pr_err("Invalid attribute");
 445	}
 446
 447	return 0;
 448}
 449
 450static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
 451				       struct attribute *attr, char *buf)
 452{
 453	struct kfd_process_device *pdd;
 454
 455	if (!strcmp(attr->name, "faults")) {
 456		pdd = container_of(attr, struct kfd_process_device,
 457				   attr_faults);
 458		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
 459	}
 460	if (!strcmp(attr->name, "page_in")) {
 461		pdd = container_of(attr, struct kfd_process_device,
 462				   attr_page_in);
 463		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
 464	}
 465	if (!strcmp(attr->name, "page_out")) {
 466		pdd = container_of(attr, struct kfd_process_device,
 467				   attr_page_out);
 468		return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
 469	}
 470	return 0;
 471}
 472
 473static struct attribute attr_queue_size = {
 474	.name = "size",
 475	.mode = KFD_SYSFS_FILE_MODE
 476};
 477
 478static struct attribute attr_queue_type = {
 479	.name = "type",
 480	.mode = KFD_SYSFS_FILE_MODE
 481};
 482
 483static struct attribute attr_queue_gpuid = {
 484	.name = "gpuid",
 485	.mode = KFD_SYSFS_FILE_MODE
 486};
 487
 488static struct attribute *procfs_queue_attrs[] = {
 489	&attr_queue_size,
 490	&attr_queue_type,
 491	&attr_queue_gpuid,
 492	NULL
 493};
 494ATTRIBUTE_GROUPS(procfs_queue);
 495
 496static const struct sysfs_ops procfs_queue_ops = {
 497	.show = kfd_procfs_queue_show,
 498};
 499
 500static const struct kobj_type procfs_queue_type = {
 501	.sysfs_ops = &procfs_queue_ops,
 502	.default_groups = procfs_queue_groups,
 503};
 504
 505static const struct sysfs_ops procfs_stats_ops = {
 506	.show = kfd_procfs_stats_show,
 507};
 508
 509static const struct kobj_type procfs_stats_type = {
 510	.sysfs_ops = &procfs_stats_ops,
 511	.release = kfd_procfs_kobj_release,
 512};
 513
 514static const struct sysfs_ops sysfs_counters_ops = {
 515	.show = kfd_sysfs_counters_show,
 516};
 517
 518static const struct kobj_type sysfs_counters_type = {
 519	.sysfs_ops = &sysfs_counters_ops,
 520	.release = kfd_procfs_kobj_release,
 521};
 522
 523int kfd_procfs_add_queue(struct queue *q)
 524{
 525	struct kfd_process *proc;
 526	int ret;
 527
 528	if (!q || !q->process)
 529		return -EINVAL;
 530	proc = q->process;
 531
 532	/* Create proc/<pid>/queues/<queue id> folder */
 533	if (!proc->kobj_queues)
 534		return -EFAULT;
 535	ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
 536			proc->kobj_queues, "%u", q->properties.queue_id);
 537	if (ret < 0) {
 538		pr_warn("Creating proc/<pid>/queues/%u failed",
 539			q->properties.queue_id);
 540		kobject_put(&q->kobj);
 541		return ret;
 542	}
 543
 544	return 0;
 545}
 546
 547static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
 548				 char *name)
 549{
 550	int ret;
 551
 552	if (!kobj || !attr || !name)
 553		return;
 554
 555	attr->name = name;
 556	attr->mode = KFD_SYSFS_FILE_MODE;
 557	sysfs_attr_init(attr);
 558
 559	ret = sysfs_create_file(kobj, attr);
 560	if (ret)
 561		pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
 562}
 563
 564static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
 565{
 566	int ret;
 567	int i;
 568	char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
 569
 570	if (!p || !p->kobj)
 571		return;
 572
 573	/*
 574	 * Create sysfs files for each GPU:
 575	 * - proc/<pid>/stats_<gpuid>/
 576	 * - proc/<pid>/stats_<gpuid>/evicted_ms
 577	 * - proc/<pid>/stats_<gpuid>/cu_occupancy
 578	 */
 579	for (i = 0; i < p->n_pdds; i++) {
 580		struct kfd_process_device *pdd = p->pdds[i];
 581
 582		snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
 583				"stats_%u", pdd->dev->id);
 584		pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
 585		if (!pdd->kobj_stats)
 586			return;
 587
 588		ret = kobject_init_and_add(pdd->kobj_stats,
 589					   &procfs_stats_type,
 590					   p->kobj,
 591					   stats_dir_filename);
 592
 593		if (ret) {
 594			pr_warn("Creating KFD proc/stats_%s folder failed",
 595				stats_dir_filename);
 596			kobject_put(pdd->kobj_stats);
 597			pdd->kobj_stats = NULL;
 598			return;
 599		}
 600
 601		kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
 602				      "evicted_ms");
 603		/* Add sysfs file to report compute unit occupancy */
 604		if (pdd->dev->kfd2kgd->get_cu_occupancy)
 605			kfd_sysfs_create_file(pdd->kobj_stats,
 606					      &pdd->attr_cu_occupancy,
 607					      "cu_occupancy");
 608	}
 609}
 610
 611static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
 612{
 613	int ret = 0;
 614	int i;
 615	char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
 616
 617	if (!p || !p->kobj)
 618		return;
 619
 620	/*
 621	 * Create sysfs files for each GPU which supports SVM
 622	 * - proc/<pid>/counters_<gpuid>/
 623	 * - proc/<pid>/counters_<gpuid>/faults
 624	 * - proc/<pid>/counters_<gpuid>/page_in
 625	 * - proc/<pid>/counters_<gpuid>/page_out
 626	 */
 627	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
 628		struct kfd_process_device *pdd = p->pdds[i];
 629		struct kobject *kobj_counters;
 630
 631		snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
 632			"counters_%u", pdd->dev->id);
 633		kobj_counters = kfd_alloc_struct(kobj_counters);
 634		if (!kobj_counters)
 635			return;
 636
 637		ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
 638					   p->kobj, counters_dir_filename);
 639		if (ret) {
 640			pr_warn("Creating KFD proc/%s folder failed",
 641				counters_dir_filename);
 642			kobject_put(kobj_counters);
 643			return;
 644		}
 645
 646		pdd->kobj_counters = kobj_counters;
 647		kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
 648				      "faults");
 649		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
 650				      "page_in");
 651		kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
 652				      "page_out");
 653	}
 654}
 655
 656static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
 657{
 658	int i;
 659
 660	if (!p || !p->kobj)
 661		return;
 662
 663	/*
 664	 * Create sysfs files for each GPU:
 665	 * - proc/<pid>/vram_<gpuid>
 666	 * - proc/<pid>/sdma_<gpuid>
 667	 */
 668	for (i = 0; i < p->n_pdds; i++) {
 669		struct kfd_process_device *pdd = p->pdds[i];
 670
 671		snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
 672			 pdd->dev->id);
 673		kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
 674				      pdd->vram_filename);
 675
 676		snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
 677			 pdd->dev->id);
 678		kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
 679					    pdd->sdma_filename);
 680	}
 681}
 682
 683void kfd_procfs_del_queue(struct queue *q)
 684{
 685	if (!q)
 686		return;
 687
 688	kobject_del(&q->kobj);
 689	kobject_put(&q->kobj);
 690}
 691
 692int kfd_process_create_wq(void)
 693{
 694	if (!kfd_process_wq)
 695		kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
 696	if (!kfd_restore_wq)
 697		kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
 698							 WQ_FREEZABLE);
 699
 700	if (!kfd_process_wq || !kfd_restore_wq) {
 701		kfd_process_destroy_wq();
 702		return -ENOMEM;
 703	}
 704
 705	return 0;
 706}
 707
 708void kfd_process_destroy_wq(void)
 709{
 710	if (kfd_process_wq) {
 711		destroy_workqueue(kfd_process_wq);
 712		kfd_process_wq = NULL;
 713	}
 714	if (kfd_restore_wq) {
 715		destroy_workqueue(kfd_restore_wq);
 716		kfd_restore_wq = NULL;
 717	}
 718}
 719
 720static void kfd_process_free_gpuvm(struct kgd_mem *mem,
 721			struct kfd_process_device *pdd, void **kptr)
 722{
 723	struct kfd_node *dev = pdd->dev;
 724
 725	if (kptr && *kptr) {
 726		amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
 727		*kptr = NULL;
 728	}
 729
 730	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
 731	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
 732					       NULL);
 733}
 734
 735/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
 736 *	This function should be only called right after the process
 737 *	is created and when kfd_processes_mutex is still being held
 738 *	to avoid concurrency. Because of that exclusiveness, we do
 739 *	not need to take p->mutex.
 740 */
 741static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
 742				   uint64_t gpu_va, uint32_t size,
 743				   uint32_t flags, struct kgd_mem **mem, void **kptr)
 744{
 745	struct kfd_node *kdev = pdd->dev;
 746	int err;
 747
 748	err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
 749						 pdd->drm_priv, mem, NULL,
 750						 flags, false);
 751	if (err)
 752		goto err_alloc_mem;
 753
 754	err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
 755			pdd->drm_priv);
 756	if (err)
 757		goto err_map_mem;
 758
 759	err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
 760	if (err) {
 761		pr_debug("Sync memory failed, wait interrupted by user signal\n");
 762		goto sync_memory_failed;
 763	}
 764
 765	if (kptr) {
 766		err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
 767				(struct kgd_mem *)*mem, kptr, NULL);
 768		if (err) {
 769			pr_debug("Map GTT BO to kernel failed\n");
 770			goto sync_memory_failed;
 771		}
 772	}
 773
 774	return err;
 775
 776sync_memory_failed:
 777	amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
 778
 779err_map_mem:
 780	amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
 781					       NULL);
 782err_alloc_mem:
 783	*mem = NULL;
 784	*kptr = NULL;
 785	return err;
 786}
 787
 788/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
 789 *	process for IB usage The memory reserved is for KFD to submit
 790 *	IB to AMDGPU from kernel.  If the memory is reserved
 791 *	successfully, ib_kaddr will have the CPU/kernel
 792 *	address. Check ib_kaddr before accessing the memory.
 793 */
 794static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
 795{
 796	struct qcm_process_device *qpd = &pdd->qpd;
 797	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
 798			KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
 799			KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
 800			KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
 801	struct kgd_mem *mem;
 802	void *kaddr;
 803	int ret;
 804
 805	if (qpd->ib_kaddr || !qpd->ib_base)
 806		return 0;
 807
 808	/* ib_base is only set for dGPU */
 809	ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
 810				      &mem, &kaddr);
 811	if (ret)
 812		return ret;
 813
 814	qpd->ib_mem = mem;
 815	qpd->ib_kaddr = kaddr;
 816
 817	return 0;
 818}
 819
 820static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
 821{
 822	struct qcm_process_device *qpd = &pdd->qpd;
 823
 824	if (!qpd->ib_kaddr || !qpd->ib_base)
 825		return;
 826
 827	kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
 828}
 829
 830struct kfd_process *kfd_create_process(struct task_struct *thread)
 831{
 832	struct kfd_process *process;
 
 833	int ret;
 834
 835	if (!(thread->mm && mmget_not_zero(thread->mm)))
 836		return ERR_PTR(-EINVAL);
 837
 838	/* Only the pthreads threading model is supported. */
 839	if (thread->group_leader->mm != thread->mm) {
 840		mmput(thread->mm);
 841		return ERR_PTR(-EINVAL);
 842	}
 843
 844	/*
 845	 * take kfd processes mutex before starting of process creation
 846	 * so there won't be a case where two threads of the same process
 847	 * create two kfd_process structures
 848	 */
 849	mutex_lock(&kfd_processes_mutex);
 850
 851	if (kfd_is_locked()) {
 852		pr_debug("KFD is locked! Cannot create process");
 853		process = ERR_PTR(-EINVAL);
 854		goto out;
 855	}
 856
 857	/* A prior open of /dev/kfd could have already created the process.
 858	 * find_process will increase process kref in this case
 859	 */
 860	process = find_process(thread, true);
 861	if (process) {
 862		pr_debug("Process already found\n");
 863	} else {
 864		/* If the process just called exec(3), it is possible that the
 865		 * cleanup of the kfd_process (following the release of the mm
 866		 * of the old process image) is still in the cleanup work queue.
 867		 * Make sure to drain any job before trying to recreate any
 868		 * resource for this process.
 869		 */
 870		flush_workqueue(kfd_process_wq);
 871
 872		process = create_process(thread);
 873		if (IS_ERR(process))
 874			goto out;
 875
 
 
 
 
 876		if (!procfs.kobj)
 877			goto out;
 878
 879		process->kobj = kfd_alloc_struct(process->kobj);
 880		if (!process->kobj) {
 881			pr_warn("Creating procfs kobject failed");
 882			goto out;
 883		}
 884		ret = kobject_init_and_add(process->kobj, &procfs_type,
 885					   procfs.kobj, "%d",
 886					   (int)process->lead_thread->pid);
 887		if (ret) {
 888			pr_warn("Creating procfs pid directory failed");
 889			kobject_put(process->kobj);
 890			goto out;
 891		}
 892
 893		kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
 894				      "pasid");
 895
 896		process->kobj_queues = kobject_create_and_add("queues",
 897							process->kobj);
 898		if (!process->kobj_queues)
 899			pr_warn("Creating KFD proc/queues folder failed");
 900
 901		kfd_procfs_add_sysfs_stats(process);
 902		kfd_procfs_add_sysfs_files(process);
 903		kfd_procfs_add_sysfs_counters(process);
 904
 905		init_waitqueue_head(&process->wait_irq_drain);
 906	}
 907out:
 
 
 908	mutex_unlock(&kfd_processes_mutex);
 909	mmput(thread->mm);
 910
 911	return process;
 
 
 
 
 
 
 
 
 912}
 913
 914struct kfd_process *kfd_get_process(const struct task_struct *thread)
 915{
 916	struct kfd_process *process;
 917
 918	if (!thread->mm)
 919		return ERR_PTR(-EINVAL);
 920
 921	/* Only the pthreads threading model is supported. */
 922	if (thread->group_leader->mm != thread->mm)
 923		return ERR_PTR(-EINVAL);
 924
 925	process = find_process(thread, false);
 926	if (!process)
 927		return ERR_PTR(-EINVAL);
 928
 929	return process;
 930}
 931
 932static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
 933{
 934	struct kfd_process *process;
 935
 936	hash_for_each_possible_rcu(kfd_processes_table, process,
 937					kfd_processes, (uintptr_t)mm)
 938		if (process->mm == mm)
 939			return process;
 940
 941	return NULL;
 942}
 943
 944static struct kfd_process *find_process(const struct task_struct *thread,
 945					bool ref)
 946{
 947	struct kfd_process *p;
 948	int idx;
 949
 950	idx = srcu_read_lock(&kfd_processes_srcu);
 951	p = find_process_by_mm(thread->mm);
 952	if (p && ref)
 953		kref_get(&p->ref);
 954	srcu_read_unlock(&kfd_processes_srcu, idx);
 955
 956	return p;
 957}
 958
 959void kfd_unref_process(struct kfd_process *p)
 960{
 961	kref_put(&p->ref, kfd_process_ref_release);
 962}
 963
 964/* This increments the process->ref counter. */
 965struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
 966{
 967	struct task_struct *task = NULL;
 968	struct kfd_process *p    = NULL;
 969
 970	if (!pid) {
 971		task = current;
 972		get_task_struct(task);
 973	} else {
 974		task = get_pid_task(pid, PIDTYPE_PID);
 975	}
 976
 977	if (task) {
 978		p = find_process(task, true);
 979		put_task_struct(task);
 980	}
 981
 982	return p;
 983}
 984
 985static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
 986{
 987	struct kfd_process *p = pdd->process;
 988	void *mem;
 989	int id;
 990	int i;
 991
 992	/*
 993	 * Remove all handles from idr and release appropriate
 994	 * local memory object
 995	 */
 996	idr_for_each_entry(&pdd->alloc_idr, mem, id) {
 997
 998		for (i = 0; i < p->n_pdds; i++) {
 999			struct kfd_process_device *peer_pdd = p->pdds[i];
1000
1001			if (!peer_pdd->drm_priv)
1002				continue;
1003			amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
1004				peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
1005		}
1006
1007		amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
1008						       pdd->drm_priv, NULL);
1009		kfd_process_device_remove_obj_handle(pdd, id);
1010	}
1011}
1012
1013/*
1014 * Just kunmap and unpin signal BO here. It will be freed in
1015 * kfd_process_free_outstanding_kfd_bos()
1016 */
1017static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
1018{
1019	struct kfd_process_device *pdd;
1020	struct kfd_node *kdev;
1021	void *mem;
1022
1023	kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
1024	if (!kdev)
1025		return;
1026
1027	mutex_lock(&p->mutex);
1028
1029	pdd = kfd_get_process_device_data(kdev, p);
1030	if (!pdd)
1031		goto out;
1032
1033	mem = kfd_process_device_translate_handle(
1034		pdd, GET_IDR_HANDLE(p->signal_handle));
1035	if (!mem)
1036		goto out;
1037
1038	amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1039
1040out:
1041	mutex_unlock(&p->mutex);
1042}
1043
1044static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1045{
1046	int i;
1047
1048	for (i = 0; i < p->n_pdds; i++)
1049		kfd_process_device_free_bos(p->pdds[i]);
1050}
1051
1052static void kfd_process_destroy_pdds(struct kfd_process *p)
1053{
1054	int i;
1055
1056	for (i = 0; i < p->n_pdds; i++) {
1057		struct kfd_process_device *pdd = p->pdds[i];
1058
1059		pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1060				pdd->dev->id, p->pasid);
1061
1062		kfd_process_device_destroy_cwsr_dgpu(pdd);
1063		kfd_process_device_destroy_ib_mem(pdd);
1064
1065		if (pdd->drm_file) {
1066			amdgpu_amdkfd_gpuvm_release_process_vm(
1067					pdd->dev->adev, pdd->drm_priv);
1068			fput(pdd->drm_file);
1069		}
1070
1071		if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1072			free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1073				get_order(KFD_CWSR_TBA_TMA_SIZE));
1074
 
1075		idr_destroy(&pdd->alloc_idr);
1076
1077		kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1078
1079		if (pdd->dev->kfd->shared_resources.enable_mes &&
1080			pdd->proc_ctx_cpu_ptr)
1081			amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1082						   &pdd->proc_ctx_bo);
1083		/*
1084		 * before destroying pdd, make sure to report availability
1085		 * for auto suspend
1086		 */
1087		if (pdd->runtime_inuse) {
1088			pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1089			pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1090			pdd->runtime_inuse = false;
1091		}
1092
1093		kfree(pdd);
1094		p->pdds[i] = NULL;
1095	}
1096	p->n_pdds = 0;
1097}
1098
1099static void kfd_process_remove_sysfs(struct kfd_process *p)
1100{
1101	struct kfd_process_device *pdd;
1102	int i;
1103
1104	if (!p->kobj)
1105		return;
1106
1107	sysfs_remove_file(p->kobj, &p->attr_pasid);
1108	kobject_del(p->kobj_queues);
1109	kobject_put(p->kobj_queues);
1110	p->kobj_queues = NULL;
1111
1112	for (i = 0; i < p->n_pdds; i++) {
1113		pdd = p->pdds[i];
1114
1115		sysfs_remove_file(p->kobj, &pdd->attr_vram);
1116		sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1117
1118		sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1119		if (pdd->dev->kfd2kgd->get_cu_occupancy)
1120			sysfs_remove_file(pdd->kobj_stats,
1121					  &pdd->attr_cu_occupancy);
1122		kobject_del(pdd->kobj_stats);
1123		kobject_put(pdd->kobj_stats);
1124		pdd->kobj_stats = NULL;
1125	}
1126
1127	for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1128		pdd = p->pdds[i];
1129
1130		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1131		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1132		sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1133		kobject_del(pdd->kobj_counters);
1134		kobject_put(pdd->kobj_counters);
1135		pdd->kobj_counters = NULL;
1136	}
1137
1138	kobject_del(p->kobj);
1139	kobject_put(p->kobj);
1140	p->kobj = NULL;
1141}
1142
1143/* No process locking is needed in this function, because the process
1144 * is not findable any more. We must assume that no other thread is
1145 * using it any more, otherwise we couldn't safely free the process
1146 * structure in the end.
1147 */
1148static void kfd_process_wq_release(struct work_struct *work)
1149{
1150	struct kfd_process *p = container_of(work, struct kfd_process,
1151					     release_work);
1152	struct dma_fence *ef;
1153
1154	kfd_process_dequeue_from_all_devices(p);
1155	pqm_uninit(&p->pqm);
1156
1157	/* Signal the eviction fence after user mode queues are
1158	 * destroyed. This allows any BOs to be freed without
1159	 * triggering pointless evictions or waiting for fences.
1160	 */
1161	synchronize_rcu();
1162	ef = rcu_access_pointer(p->ef);
1163	if (ef)
1164		dma_fence_signal(ef);
1165
1166	kfd_process_remove_sysfs(p);
 
1167
1168	kfd_process_kunmap_signal_bo(p);
1169	kfd_process_free_outstanding_kfd_bos(p);
1170	svm_range_list_fini(p);
1171
1172	kfd_process_destroy_pdds(p);
1173	dma_fence_put(ef);
1174
1175	kfd_event_free_process(p);
1176
1177	kfd_pasid_free(p->pasid);
1178	mutex_destroy(&p->mutex);
1179
1180	put_task_struct(p->lead_thread);
1181
1182	kfree(p);
1183}
1184
1185static void kfd_process_ref_release(struct kref *ref)
1186{
1187	struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1188
1189	INIT_WORK(&p->release_work, kfd_process_wq_release);
1190	queue_work(kfd_process_wq, &p->release_work);
1191}
1192
1193static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1194{
1195	/* This increments p->ref counter if kfd process p exists */
1196	struct kfd_process *p = kfd_lookup_process_by_mm(mm);
 
 
1197
1198	return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1199}
1200
1201static void kfd_process_free_notifier(struct mmu_notifier *mn)
1202{
1203	kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1204}
1205
1206static void kfd_process_notifier_release_internal(struct kfd_process *p)
1207{
1208	int i;
1209
1210	cancel_delayed_work_sync(&p->eviction_work);
1211	cancel_delayed_work_sync(&p->restore_work);
1212
1213	for (i = 0; i < p->n_pdds; i++) {
1214		struct kfd_process_device *pdd = p->pdds[i];
1215
1216		/* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1217		if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1218			amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1219	}
1220
1221	/* Indicate to other users that MM is no longer valid */
1222	p->mm = NULL;
1223	kfd_dbg_trap_disable(p);
1224
1225	if (atomic_read(&p->debugged_process_count) > 0) {
1226		struct kfd_process *target;
1227		unsigned int temp;
1228		int idx = srcu_read_lock(&kfd_processes_srcu);
1229
1230		hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1231			if (target->debugger_process && target->debugger_process == p) {
1232				mutex_lock_nested(&target->mutex, 1);
1233				kfd_dbg_trap_disable(target);
1234				mutex_unlock(&target->mutex);
1235				if (atomic_read(&p->debugged_process_count) == 0)
1236					break;
1237			}
1238		}
1239
1240		srcu_read_unlock(&kfd_processes_srcu, idx);
1241	}
1242
1243	mmu_notifier_put(&p->mmu_notifier);
1244}
1245
1246static void kfd_process_notifier_release(struct mmu_notifier *mn,
1247					struct mm_struct *mm)
1248{
1249	struct kfd_process *p;
1250
1251	/*
1252	 * The kfd_process structure can not be free because the
1253	 * mmu_notifier srcu is read locked
1254	 */
1255	p = container_of(mn, struct kfd_process, mmu_notifier);
1256	if (WARN_ON(p->mm != mm))
1257		return;
1258
1259	mutex_lock(&kfd_processes_mutex);
1260	/*
1261	 * Do early return if table is empty.
1262	 *
1263	 * This could potentially happen if this function is called concurrently
1264	 * by mmu_notifier and by kfd_cleanup_pocesses.
1265	 *
1266	 */
1267	if (hash_empty(kfd_processes_table)) {
1268		mutex_unlock(&kfd_processes_mutex);
1269		return;
1270	}
1271	hash_del_rcu(&p->kfd_processes);
1272	mutex_unlock(&kfd_processes_mutex);
1273	synchronize_srcu(&kfd_processes_srcu);
1274
1275	kfd_process_notifier_release_internal(p);
 
 
 
 
 
 
1276}
1277
1278static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1279	.release = kfd_process_notifier_release,
1280	.alloc_notifier = kfd_process_alloc_notifier,
1281	.free_notifier = kfd_process_free_notifier,
1282};
1283
1284/*
1285 * This code handles the case when driver is being unloaded before all
1286 * mm_struct are released.  We need to safely free the kfd_process and
1287 * avoid race conditions with mmu_notifier that might try to free them.
1288 *
1289 */
1290void kfd_cleanup_processes(void)
1291{
1292	struct kfd_process *p;
1293	struct hlist_node *p_temp;
1294	unsigned int temp;
1295	HLIST_HEAD(cleanup_list);
1296
1297	/*
1298	 * Move all remaining kfd_process from the process table to a
1299	 * temp list for processing.   Once done, callback from mmu_notifier
1300	 * release will not see the kfd_process in the table and do early return,
1301	 * avoiding double free issues.
1302	 */
1303	mutex_lock(&kfd_processes_mutex);
1304	hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1305		hash_del_rcu(&p->kfd_processes);
1306		synchronize_srcu(&kfd_processes_srcu);
1307		hlist_add_head(&p->kfd_processes, &cleanup_list);
1308	}
1309	mutex_unlock(&kfd_processes_mutex);
1310
1311	hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1312		kfd_process_notifier_release_internal(p);
1313
1314	/*
1315	 * Ensures that all outstanding free_notifier get called, triggering
1316	 * the release of the kfd_process struct.
1317	 */
1318	mmu_notifier_synchronize();
1319}
1320
1321int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1322{
1323	unsigned long  offset;
1324	int i;
1325
1326	if (p->has_cwsr)
1327		return 0;
1328
1329	for (i = 0; i < p->n_pdds; i++) {
1330		struct kfd_node *dev = p->pdds[i]->dev;
1331		struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1332
1333		if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1334			continue;
1335
1336		offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1337		qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1338			KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1339			MAP_SHARED, offset);
1340
1341		if (IS_ERR_VALUE(qpd->tba_addr)) {
1342			int err = qpd->tba_addr;
1343
1344			dev_err(dev->adev->dev,
1345				"Failure to set tba address. error %d.\n", err);
1346			qpd->tba_addr = 0;
1347			qpd->cwsr_kaddr = NULL;
1348			return err;
1349		}
1350
1351		memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1352
1353		kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1354
1355		qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1356		pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1357			qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1358	}
1359
1360	p->has_cwsr = true;
1361
1362	return 0;
1363}
1364
1365static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1366{
1367	struct kfd_node *dev = pdd->dev;
1368	struct qcm_process_device *qpd = &pdd->qpd;
1369	uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1370			| KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1371			| KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1372	struct kgd_mem *mem;
1373	void *kaddr;
1374	int ret;
1375
1376	if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1377		return 0;
1378
1379	/* cwsr_base is only set for dGPU */
1380	ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1381				      KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1382	if (ret)
1383		return ret;
1384
1385	qpd->cwsr_mem = mem;
1386	qpd->cwsr_kaddr = kaddr;
1387	qpd->tba_addr = qpd->cwsr_base;
1388
1389	memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1390
1391	kfd_process_set_trap_debug_flag(&pdd->qpd,
1392					pdd->process->debug_trap_enabled);
1393
1394	qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1395	pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1396		 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1397
1398	return 0;
1399}
1400
1401static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1402{
1403	struct kfd_node *dev = pdd->dev;
1404	struct qcm_process_device *qpd = &pdd->qpd;
1405
1406	if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1407		return;
1408
1409	kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1410}
1411
1412void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1413				  uint64_t tba_addr,
1414				  uint64_t tma_addr)
1415{
1416	if (qpd->cwsr_kaddr) {
1417		/* KFD trap handler is bound, record as second-level TBA/TMA
1418		 * in first-level TMA. First-level trap will jump to second.
1419		 */
1420		uint64_t *tma =
1421			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1422		tma[0] = tba_addr;
1423		tma[1] = tma_addr;
1424	} else {
1425		/* No trap handler bound, bind as first-level TBA/TMA. */
1426		qpd->tba_addr = tba_addr;
1427		qpd->tma_addr = tma_addr;
1428	}
1429}
1430
1431bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1432{
1433	int i;
1434
1435	/* On most GFXv9 GPUs, the retry mode in the SQ must match the
1436	 * boot time retry setting. Mixing processes with different
1437	 * XNACK/retry settings can hang the GPU.
1438	 *
1439	 * Different GPUs can have different noretry settings depending
1440	 * on HW bugs or limitations. We need to find at least one
1441	 * XNACK mode for this process that's compatible with all GPUs.
1442	 * Fortunately GPUs with retry enabled (noretry=0) can run code
1443	 * built for XNACK-off. On GFXv9 it may perform slower.
1444	 *
1445	 * Therefore applications built for XNACK-off can always be
1446	 * supported and will be our fallback if any GPU does not
1447	 * support retry.
1448	 */
1449	for (i = 0; i < p->n_pdds; i++) {
1450		struct kfd_node *dev = p->pdds[i]->dev;
1451
1452		/* Only consider GFXv9 and higher GPUs. Older GPUs don't
1453		 * support the SVM APIs and don't need to be considered
1454		 * for the XNACK mode selection.
1455		 */
1456		if (!KFD_IS_SOC15(dev))
1457			continue;
1458		/* Aldebaran can always support XNACK because it can support
1459		 * per-process XNACK mode selection. But let the dev->noretry
1460		 * setting still influence the default XNACK mode.
1461		 */
1462		if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1463			if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1464				pr_debug("SRIOV platform xnack not supported\n");
1465				return false;
1466			}
1467			continue;
1468		}
1469
1470		/* GFXv10 and later GPUs do not support shader preemption
1471		 * during page faults. This can lead to poor QoS for queue
1472		 * management and memory-manager-related preemptions or
1473		 * even deadlocks.
1474		 */
1475		if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1476			return false;
1477
1478		if (dev->kfd->noretry)
1479			return false;
1480	}
1481
1482	return true;
1483}
1484
1485void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1486				     bool enabled)
1487{
1488	if (qpd->cwsr_kaddr) {
1489		uint64_t *tma =
1490			(uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1491		tma[2] = enabled;
1492	}
1493}
1494
1495/*
1496 * On return the kfd_process is fully operational and will be freed when the
1497 * mm is released
1498 */
1499static struct kfd_process *create_process(const struct task_struct *thread)
1500{
1501	struct kfd_process *process;
1502	struct mmu_notifier *mn;
1503	int err = -ENOMEM;
1504
1505	process = kzalloc(sizeof(*process), GFP_KERNEL);
1506	if (!process)
1507		goto err_alloc_process;
1508
1509	kref_init(&process->ref);
1510	mutex_init(&process->mutex);
1511	process->mm = thread->mm;
1512	process->lead_thread = thread->group_leader;
1513	process->n_pdds = 0;
1514	process->queues_paused = false;
1515	INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1516	INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1517	process->last_restore_timestamp = get_jiffies_64();
1518	err = kfd_event_init_process(process);
1519	if (err)
1520		goto err_event_init;
1521	process->is_32bit_user_mode = in_compat_syscall();
1522	process->debug_trap_enabled = false;
1523	process->debugger_process = NULL;
1524	process->exception_enable_mask = 0;
1525	atomic_set(&process->debugged_process_count, 0);
1526	sema_init(&process->runtime_enable_sema, 0);
1527
1528	process->pasid = kfd_pasid_alloc();
1529	if (process->pasid == 0) {
1530		err = -ENOSPC;
1531		goto err_alloc_pasid;
1532	}
1533
1534	err = pqm_init(&process->pqm, process);
1535	if (err != 0)
1536		goto err_process_pqm_init;
1537
1538	/* init process apertures*/
1539	err = kfd_init_apertures(process);
1540	if (err != 0)
1541		goto err_init_apertures;
1542
1543	/* Check XNACK support after PDDs are created in kfd_init_apertures */
1544	process->xnack_enabled = kfd_process_xnack_mode(process, false);
1545
1546	err = svm_range_list_init(process);
1547	if (err)
1548		goto err_init_svm_range_list;
1549
1550	/* alloc_notifier needs to find the process in the hash table */
1551	hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1552			(uintptr_t)process->mm);
1553
1554	/* Avoid free_notifier to start kfd_process_wq_release if
1555	 * mmu_notifier_get failed because of pending signal.
1556	 */
1557	kref_get(&process->ref);
1558
1559	/* MMU notifier registration must be the last call that can fail
1560	 * because after this point we cannot unwind the process creation.
1561	 * After this point, mmu_notifier_put will trigger the cleanup by
1562	 * dropping the last process reference in the free_notifier.
1563	 */
1564	mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1565	if (IS_ERR(mn)) {
1566		err = PTR_ERR(mn);
1567		goto err_register_notifier;
1568	}
1569	BUG_ON(mn != &process->mmu_notifier);
1570
1571	kfd_unref_process(process);
1572	get_task_struct(process->lead_thread);
1573
1574	INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1575
1576	return process;
1577
1578err_register_notifier:
1579	hash_del_rcu(&process->kfd_processes);
1580	svm_range_list_fini(process);
1581err_init_svm_range_list:
1582	kfd_process_free_outstanding_kfd_bos(process);
1583	kfd_process_destroy_pdds(process);
1584err_init_apertures:
1585	pqm_uninit(&process->pqm);
1586err_process_pqm_init:
1587	kfd_pasid_free(process->pasid);
1588err_alloc_pasid:
1589	kfd_event_free_process(process);
1590err_event_init:
1591	mutex_destroy(&process->mutex);
1592	kfree(process);
1593err_alloc_process:
1594	return ERR_PTR(err);
1595}
1596
1597struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1598							struct kfd_process *p)
1599{
1600	int i;
1601
1602	for (i = 0; i < p->n_pdds; i++)
1603		if (p->pdds[i]->dev == dev)
1604			return p->pdds[i];
1605
1606	return NULL;
1607}
1608
1609struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1610							struct kfd_process *p)
1611{
1612	struct kfd_process_device *pdd = NULL;
 
1613
1614	if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1615		return NULL;
1616	pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1617	if (!pdd)
1618		return NULL;
1619
 
 
 
 
 
1620	pdd->dev = dev;
1621	INIT_LIST_HEAD(&pdd->qpd.queues_list);
1622	INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1623	pdd->qpd.dqm = dev->dqm;
1624	pdd->qpd.pqm = &p->pqm;
1625	pdd->qpd.evicted = 0;
1626	pdd->qpd.mapped_gws_queue = false;
1627	pdd->process = p;
1628	pdd->bound = PDD_UNBOUND;
1629	pdd->already_dequeued = false;
1630	pdd->runtime_inuse = false;
1631	atomic64_set(&pdd->vram_usage, 0);
1632	pdd->sdma_past_activity_counter = 0;
1633	pdd->user_gpu_id = dev->id;
1634	atomic64_set(&pdd->evict_duration_counter, 0);
1635
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636	p->pdds[p->n_pdds++] = pdd;
1637	if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1638		pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1639							pdd->dev->adev,
1640							false,
1641							0);
1642
1643	/* Init idr used for memory handle translation */
1644	idr_init(&pdd->alloc_idr);
1645
1646	return pdd;
 
 
 
 
1647}
1648
1649/**
1650 * kfd_process_device_init_vm - Initialize a VM for a process-device
1651 *
1652 * @pdd: The process-device
1653 * @drm_file: Optional pointer to a DRM file descriptor
1654 *
1655 * If @drm_file is specified, it will be used to acquire the VM from
1656 * that file descriptor. If successful, the @pdd takes ownership of
1657 * the file descriptor.
1658 *
1659 * If @drm_file is NULL, a new VM is created.
1660 *
1661 * Returns 0 on success, -errno on failure.
1662 */
1663int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1664			       struct file *drm_file)
1665{
1666	struct amdgpu_fpriv *drv_priv;
1667	struct amdgpu_vm *avm;
1668	struct kfd_process *p;
1669	struct dma_fence *ef;
1670	struct kfd_node *dev;
1671	int ret;
1672
1673	if (!drm_file)
1674		return -EINVAL;
1675
1676	if (pdd->drm_priv)
1677		return -EBUSY;
1678
1679	ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1680	if (ret)
1681		return ret;
1682	avm = &drv_priv->vm;
1683
1684	p = pdd->process;
1685	dev = pdd->dev;
1686
1687	ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1688						     &p->kgd_process_info,
1689						     p->ef ? NULL : &ef);
1690	if (ret) {
1691		dev_err(dev->adev->dev, "Failed to create process VM object\n");
1692		return ret;
1693	}
1694
1695	if (!p->ef)
1696		RCU_INIT_POINTER(p->ef, ef);
1697
1698	pdd->drm_priv = drm_file->private_data;
 
1699
1700	ret = kfd_process_device_reserve_ib_mem(pdd);
1701	if (ret)
1702		goto err_reserve_ib_mem;
1703	ret = kfd_process_device_init_cwsr_dgpu(pdd);
1704	if (ret)
1705		goto err_init_cwsr;
1706
1707	ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1708	if (ret)
1709		goto err_set_pasid;
1710
1711	pdd->drm_file = drm_file;
1712
1713	return 0;
1714
1715err_set_pasid:
1716	kfd_process_device_destroy_cwsr_dgpu(pdd);
1717err_init_cwsr:
1718	kfd_process_device_destroy_ib_mem(pdd);
1719err_reserve_ib_mem:
1720	pdd->drm_priv = NULL;
1721	amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1722
1723	return ret;
1724}
1725
1726/*
1727 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1728 * to the device.
1729 * Unbinding occurs when the process dies or the device is removed.
1730 *
1731 * Assumes that the process lock is held.
1732 */
1733struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1734							struct kfd_process *p)
1735{
1736	struct kfd_process_device *pdd;
1737	int err;
1738
1739	pdd = kfd_get_process_device_data(dev, p);
1740	if (!pdd) {
1741		dev_err(dev->adev->dev, "Process device data doesn't exist\n");
1742		return ERR_PTR(-ENOMEM);
1743	}
1744
1745	if (!pdd->drm_priv)
1746		return ERR_PTR(-ENODEV);
1747
1748	/*
1749	 * signal runtime-pm system to auto resume and prevent
1750	 * further runtime suspend once device pdd is created until
1751	 * pdd is destroyed.
1752	 */
1753	if (!pdd->runtime_inuse) {
1754		err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1755		if (err < 0) {
1756			pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1757			return ERR_PTR(err);
1758		}
1759	}
1760
 
 
 
 
1761	/*
1762	 * make sure that runtime_usage counter is incremented just once
1763	 * per pdd
1764	 */
1765	pdd->runtime_inuse = true;
1766
1767	return pdd;
 
 
 
 
 
 
 
 
 
1768}
1769
1770/* Create specific handle mapped to mem from process local memory idr
1771 * Assumes that the process lock is held.
1772 */
1773int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1774					void *mem)
1775{
1776	return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1777}
1778
1779/* Translate specific handle from process local memory idr
1780 * Assumes that the process lock is held.
1781 */
1782void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1783					int handle)
1784{
1785	if (handle < 0)
1786		return NULL;
1787
1788	return idr_find(&pdd->alloc_idr, handle);
1789}
1790
1791/* Remove specific handle from process local memory idr
1792 * Assumes that the process lock is held.
1793 */
1794void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1795					int handle)
1796{
1797	if (handle >= 0)
1798		idr_remove(&pdd->alloc_idr, handle);
1799}
1800
1801/* This increments the process->ref counter. */
1802struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1803{
1804	struct kfd_process *p, *ret_p = NULL;
1805	unsigned int temp;
1806
1807	int idx = srcu_read_lock(&kfd_processes_srcu);
1808
1809	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1810		if (p->pasid == pasid) {
1811			kref_get(&p->ref);
1812			ret_p = p;
1813			break;
1814		}
1815	}
1816
1817	srcu_read_unlock(&kfd_processes_srcu, idx);
1818
1819	return ret_p;
1820}
1821
1822/* This increments the process->ref counter. */
1823struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1824{
1825	struct kfd_process *p;
1826
1827	int idx = srcu_read_lock(&kfd_processes_srcu);
1828
1829	p = find_process_by_mm(mm);
1830	if (p)
1831		kref_get(&p->ref);
1832
1833	srcu_read_unlock(&kfd_processes_srcu, idx);
1834
1835	return p;
1836}
1837
1838/* kfd_process_evict_queues - Evict all user queues of a process
1839 *
1840 * Eviction is reference-counted per process-device. This means multiple
1841 * evictions from different sources can be nested safely.
1842 */
1843int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1844{
1845	int r = 0;
1846	int i;
1847	unsigned int n_evicted = 0;
1848
1849	for (i = 0; i < p->n_pdds; i++) {
1850		struct kfd_process_device *pdd = p->pdds[i];
1851		struct device *dev = pdd->dev->adev->dev;
1852
1853		kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1854					     trigger);
1855
1856		r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1857							    &pdd->qpd);
1858		/* evict return -EIO if HWS is hang or asic is resetting, in this case
1859		 * we would like to set all the queues to be in evicted state to prevent
1860		 * them been add back since they actually not be saved right now.
1861		 */
1862		if (r && r != -EIO) {
1863			dev_err(dev, "Failed to evict process queues\n");
1864			goto fail;
1865		}
1866		n_evicted++;
1867
1868		pdd->dev->dqm->is_hws_hang = false;
1869	}
1870
1871	return r;
1872
1873fail:
1874	/* To keep state consistent, roll back partial eviction by
1875	 * restoring queues
1876	 */
1877	for (i = 0; i < p->n_pdds; i++) {
1878		struct kfd_process_device *pdd = p->pdds[i];
1879
1880		if (n_evicted == 0)
1881			break;
1882
1883		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1884
1885		if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1886							      &pdd->qpd))
1887			dev_err(pdd->dev->adev->dev,
1888				"Failed to restore queues\n");
1889
1890		n_evicted--;
1891	}
1892
1893	return r;
1894}
1895
1896/* kfd_process_restore_queues - Restore all user queues of a process */
1897int kfd_process_restore_queues(struct kfd_process *p)
1898{
1899	int r, ret = 0;
1900	int i;
1901
1902	for (i = 0; i < p->n_pdds; i++) {
1903		struct kfd_process_device *pdd = p->pdds[i];
1904		struct device *dev = pdd->dev->adev->dev;
1905
1906		kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1907
1908		r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1909							      &pdd->qpd);
1910		if (r) {
1911			dev_err(dev, "Failed to restore process queues\n");
1912			if (!ret)
1913				ret = r;
1914		}
1915	}
1916
1917	return ret;
1918}
1919
1920int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1921{
1922	int i;
1923
1924	for (i = 0; i < p->n_pdds; i++)
1925		if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1926			return i;
1927	return -EINVAL;
1928}
1929
1930int
1931kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1932			    uint32_t *gpuid, uint32_t *gpuidx)
1933{
1934	int i;
1935
1936	for (i = 0; i < p->n_pdds; i++)
1937		if (p->pdds[i] && p->pdds[i]->dev == node) {
1938			*gpuid = p->pdds[i]->user_gpu_id;
1939			*gpuidx = i;
1940			return 0;
1941		}
1942	return -EINVAL;
1943}
1944
1945static int signal_eviction_fence(struct kfd_process *p)
1946{
1947	struct dma_fence *ef;
1948	int ret;
1949
1950	rcu_read_lock();
1951	ef = dma_fence_get_rcu_safe(&p->ef);
1952	rcu_read_unlock();
1953	if (!ef)
1954		return -EINVAL;
1955
1956	ret = dma_fence_signal(ef);
1957	dma_fence_put(ef);
1958
1959	return ret;
1960}
1961
1962static void evict_process_worker(struct work_struct *work)
1963{
1964	int ret;
1965	struct kfd_process *p;
1966	struct delayed_work *dwork;
1967
1968	dwork = to_delayed_work(work);
1969
1970	/* Process termination destroys this worker thread. So during the
1971	 * lifetime of this thread, kfd_process p will be valid
1972	 */
1973	p = container_of(dwork, struct kfd_process, eviction_work);
 
 
 
 
 
 
 
 
 
 
1974
1975	pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1976	ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1977	if (!ret) {
1978		/* If another thread already signaled the eviction fence,
1979		 * they are responsible stopping the queues and scheduling
1980		 * the restore work.
1981		 */
1982		if (signal_eviction_fence(p) ||
1983		    mod_delayed_work(kfd_restore_wq, &p->restore_work,
1984				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
1985			kfd_process_restore_queues(p);
1986
1987		pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1988	} else
1989		pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1990}
1991
1992static int restore_process_helper(struct kfd_process *p)
1993{
1994	int ret = 0;
1995
1996	/* VMs may not have been acquired yet during debugging. */
1997	if (p->kgd_process_info) {
1998		ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1999			p->kgd_process_info, &p->ef);
2000		if (ret)
2001			return ret;
2002	}
2003
2004	ret = kfd_process_restore_queues(p);
2005	if (!ret)
2006		pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
2007	else
2008		pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
2009
2010	return ret;
2011}
2012
2013static void restore_process_worker(struct work_struct *work)
2014{
2015	struct delayed_work *dwork;
2016	struct kfd_process *p;
2017	int ret = 0;
2018
2019	dwork = to_delayed_work(work);
2020
2021	/* Process termination destroys this worker thread. So during the
2022	 * lifetime of this thread, kfd_process p will be valid
2023	 */
2024	p = container_of(dwork, struct kfd_process, restore_work);
2025	pr_debug("Started restoring pasid 0x%x\n", p->pasid);
2026
2027	/* Setting last_restore_timestamp before successful restoration.
2028	 * Otherwise this would have to be set by KGD (restore_process_bos)
2029	 * before KFD BOs are unreserved. If not, the process can be evicted
2030	 * again before the timestamp is set.
2031	 * If restore fails, the timestamp will be set again in the next
2032	 * attempt. This would mean that the minimum GPU quanta would be
2033	 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2034	 * functions)
2035	 */
2036
2037	p->last_restore_timestamp = get_jiffies_64();
2038
2039	ret = restore_process_helper(p);
2040	if (ret) {
2041		pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2042			 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2043		if (mod_delayed_work(kfd_restore_wq, &p->restore_work,
2044				     msecs_to_jiffies(PROCESS_RESTORE_TIME_MS)))
2045			kfd_process_restore_queues(p);
 
2046	}
 
 
 
 
 
 
2047}
2048
2049void kfd_suspend_all_processes(void)
2050{
2051	struct kfd_process *p;
2052	unsigned int temp;
2053	int idx = srcu_read_lock(&kfd_processes_srcu);
2054
2055	WARN(debug_evictions, "Evicting all processes");
2056	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
 
 
 
2057		if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2058			pr_err("Failed to suspend process 0x%x\n", p->pasid);
2059		signal_eviction_fence(p);
 
 
2060	}
2061	srcu_read_unlock(&kfd_processes_srcu, idx);
2062}
2063
2064int kfd_resume_all_processes(void)
2065{
2066	struct kfd_process *p;
2067	unsigned int temp;
2068	int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2069
2070	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2071		if (restore_process_helper(p)) {
2072			pr_err("Restore process %d failed during resume\n",
2073			       p->pasid);
2074			ret = -EFAULT;
2075		}
2076	}
2077	srcu_read_unlock(&kfd_processes_srcu, idx);
2078	return ret;
2079}
2080
2081int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2082			  struct vm_area_struct *vma)
2083{
2084	struct kfd_process_device *pdd;
2085	struct qcm_process_device *qpd;
2086
2087	if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2088		dev_err(dev->adev->dev, "Incorrect CWSR mapping size.\n");
2089		return -EINVAL;
2090	}
2091
2092	pdd = kfd_get_process_device_data(dev, process);
2093	if (!pdd)
2094		return -EINVAL;
2095	qpd = &pdd->qpd;
2096
2097	qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2098					get_order(KFD_CWSR_TBA_TMA_SIZE));
2099	if (!qpd->cwsr_kaddr) {
2100		dev_err(dev->adev->dev,
2101			"Error allocating per process CWSR buffer.\n");
2102		return -ENOMEM;
2103	}
2104
2105	vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2106		| VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2107	/* Mapping pages to user process */
2108	return remap_pfn_range(vma, vma->vm_start,
2109			       PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2110			       KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2111}
2112
2113/* assumes caller holds process lock. */
2114int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2115{
2116	uint32_t irq_drain_fence[8];
2117	uint8_t node_id = 0;
2118	int r = 0;
2119
2120	if (!KFD_IS_SOC15(pdd->dev))
2121		return 0;
2122
2123	pdd->process->irq_drain_is_open = true;
2124
2125	memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2126	irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2127							KFD_IRQ_FENCE_CLIENTID;
2128	irq_drain_fence[3] = pdd->process->pasid;
2129
2130	/*
2131	 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
 
 
2132	 */
2133	if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3) ||
2134	    KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 4)) {
2135		node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2136		irq_drain_fence[3] |= node_id << 16;
2137	}
2138
2139	/* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2140	if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2141						     irq_drain_fence)) {
2142		pdd->process->irq_drain_is_open = false;
2143		return 0;
 
 
 
 
 
2144	}
2145
2146	r = wait_event_interruptible(pdd->process->wait_irq_drain,
2147				     !READ_ONCE(pdd->process->irq_drain_is_open));
2148	if (r)
2149		pdd->process->irq_drain_is_open = false;
2150
2151	return r;
2152}
2153
2154void kfd_process_close_interrupt_drain(unsigned int pasid)
2155{
2156	struct kfd_process *p;
2157
2158	p = kfd_lookup_process_by_pasid(pasid);
2159
2160	if (!p)
2161		return;
2162
2163	WRITE_ONCE(p->irq_drain_is_open, false);
2164	wake_up_all(&p->wait_irq_drain);
2165	kfd_unref_process(p);
2166}
2167
2168struct send_exception_work_handler_workarea {
2169	struct work_struct work;
2170	struct kfd_process *p;
2171	unsigned int queue_id;
2172	uint64_t error_reason;
2173};
2174
2175static void send_exception_work_handler(struct work_struct *work)
2176{
2177	struct send_exception_work_handler_workarea *workarea;
2178	struct kfd_process *p;
2179	struct queue *q;
2180	struct mm_struct *mm;
2181	struct kfd_context_save_area_header __user *csa_header;
2182	uint64_t __user *err_payload_ptr;
2183	uint64_t cur_err;
2184	uint32_t ev_id;
2185
2186	workarea = container_of(work,
2187				struct send_exception_work_handler_workarea,
2188				work);
2189	p = workarea->p;
2190
2191	mm = get_task_mm(p->lead_thread);
2192
2193	if (!mm)
2194		return;
2195
2196	kthread_use_mm(mm);
2197
2198	q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2199
2200	if (!q)
2201		goto out;
2202
2203	csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2204
2205	get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2206	get_user(cur_err, err_payload_ptr);
2207	cur_err |= workarea->error_reason;
2208	put_user(cur_err, err_payload_ptr);
2209	get_user(ev_id, &csa_header->err_event_id);
2210
2211	kfd_set_event(p, ev_id);
2212
2213out:
2214	kthread_unuse_mm(mm);
2215	mmput(mm);
2216}
2217
2218int kfd_send_exception_to_runtime(struct kfd_process *p,
2219			unsigned int queue_id,
2220			uint64_t error_reason)
2221{
2222	struct send_exception_work_handler_workarea worker;
2223
2224	INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2225
2226	worker.p = p;
2227	worker.queue_id = queue_id;
2228	worker.error_reason = error_reason;
2229
2230	schedule_work(&worker.work);
2231	flush_work(&worker.work);
2232	destroy_work_on_stack(&worker.work);
2233
2234	return 0;
2235}
2236
2237struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2238{
2239	int i;
2240
2241	if (gpu_id) {
2242		for (i = 0; i < p->n_pdds; i++) {
2243			struct kfd_process_device *pdd = p->pdds[i];
2244
2245			if (pdd->user_gpu_id == gpu_id)
2246				return pdd;
2247		}
2248	}
2249	return NULL;
2250}
2251
2252int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2253{
2254	int i;
2255
2256	if (!actual_gpu_id)
2257		return 0;
2258
2259	for (i = 0; i < p->n_pdds; i++) {
2260		struct kfd_process_device *pdd = p->pdds[i];
2261
2262		if (pdd->dev->id == actual_gpu_id)
2263			return pdd->user_gpu_id;
2264	}
2265	return -EINVAL;
2266}
2267
2268#if defined(CONFIG_DEBUG_FS)
2269
2270int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2271{
2272	struct kfd_process *p;
2273	unsigned int temp;
2274	int r = 0;
2275
2276	int idx = srcu_read_lock(&kfd_processes_srcu);
2277
2278	hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2279		seq_printf(m, "Process %d PASID 0x%x:\n",
2280			   p->lead_thread->tgid, p->pasid);
2281
2282		mutex_lock(&p->mutex);
2283		r = pqm_debugfs_mqds(m, &p->pqm);
2284		mutex_unlock(&p->mutex);
2285
2286		if (r)
2287			break;
2288	}
2289
2290	srcu_read_unlock(&kfd_processes_srcu, idx);
2291
2292	return r;
2293}
2294
2295#endif