Loading...
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mutex.h>
25#include <linux/log2.h>
26#include <linux/sched.h>
27#include <linux/sched/mm.h>
28#include <linux/sched/task.h>
29#include <linux/mmu_context.h>
30#include <linux/slab.h>
31#include <linux/amd-iommu.h>
32#include <linux/notifier.h>
33#include <linux/compat.h>
34#include <linux/mman.h>
35#include <linux/file.h>
36#include <linux/pm_runtime.h>
37#include "amdgpu_amdkfd.h"
38#include "amdgpu.h"
39
40struct mm_struct;
41
42#include "kfd_priv.h"
43#include "kfd_device_queue_manager.h"
44#include "kfd_iommu.h"
45#include "kfd_svm.h"
46#include "kfd_smi_events.h"
47
48/*
49 * List of struct kfd_process (field kfd_process).
50 * Unique/indexed by mm_struct*
51 */
52DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
53static DEFINE_MUTEX(kfd_processes_mutex);
54
55DEFINE_SRCU(kfd_processes_srcu);
56
57/* For process termination handling */
58static struct workqueue_struct *kfd_process_wq;
59
60/* Ordered, single-threaded workqueue for restoring evicted
61 * processes. Restoring multiple processes concurrently under memory
62 * pressure can lead to processes blocking each other from validating
63 * their BOs and result in a live-lock situation where processes
64 * remain evicted indefinitely.
65 */
66static struct workqueue_struct *kfd_restore_wq;
67
68static struct kfd_process *find_process(const struct task_struct *thread,
69 bool ref);
70static void kfd_process_ref_release(struct kref *ref);
71static struct kfd_process *create_process(const struct task_struct *thread);
72static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep);
73
74static void evict_process_worker(struct work_struct *work);
75static void restore_process_worker(struct work_struct *work);
76
77static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
78
79struct kfd_procfs_tree {
80 struct kobject *kobj;
81};
82
83static struct kfd_procfs_tree procfs;
84
85/*
86 * Structure for SDMA activity tracking
87 */
88struct kfd_sdma_activity_handler_workarea {
89 struct work_struct sdma_activity_work;
90 struct kfd_process_device *pdd;
91 uint64_t sdma_activity_counter;
92};
93
94struct temp_sdma_queue_list {
95 uint64_t __user *rptr;
96 uint64_t sdma_val;
97 unsigned int queue_id;
98 struct list_head list;
99};
100
101static void kfd_sdma_activity_worker(struct work_struct *work)
102{
103 struct kfd_sdma_activity_handler_workarea *workarea;
104 struct kfd_process_device *pdd;
105 uint64_t val;
106 struct mm_struct *mm;
107 struct queue *q;
108 struct qcm_process_device *qpd;
109 struct device_queue_manager *dqm;
110 int ret = 0;
111 struct temp_sdma_queue_list sdma_q_list;
112 struct temp_sdma_queue_list *sdma_q, *next;
113
114 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
115 sdma_activity_work);
116
117 pdd = workarea->pdd;
118 if (!pdd)
119 return;
120 dqm = pdd->dev->dqm;
121 qpd = &pdd->qpd;
122 if (!dqm || !qpd)
123 return;
124 /*
125 * Total SDMA activity is current SDMA activity + past SDMA activity
126 * Past SDMA count is stored in pdd.
127 * To get the current activity counters for all active SDMA queues,
128 * we loop over all SDMA queues and get their counts from user-space.
129 *
130 * We cannot call get_user() with dqm_lock held as it can cause
131 * a circular lock dependency situation. To read the SDMA stats,
132 * we need to do the following:
133 *
134 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
135 * with dqm_lock/dqm_unlock().
136 * 2. Call get_user() for each node in temporary list without dqm_lock.
137 * Save the SDMA count for each node and also add the count to the total
138 * SDMA count counter.
139 * Its possible, during this step, a few SDMA queue nodes got deleted
140 * from the qpd->queues_list.
141 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
142 * If any node got deleted, its SDMA count would be captured in the sdma
143 * past activity counter. So subtract the SDMA counter stored in step 2
144 * for this node from the total SDMA count.
145 */
146 INIT_LIST_HEAD(&sdma_q_list.list);
147
148 /*
149 * Create the temp list of all SDMA queues
150 */
151 dqm_lock(dqm);
152
153 list_for_each_entry(q, &qpd->queues_list, list) {
154 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
155 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
156 continue;
157
158 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
159 if (!sdma_q) {
160 dqm_unlock(dqm);
161 goto cleanup;
162 }
163
164 INIT_LIST_HEAD(&sdma_q->list);
165 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
166 sdma_q->queue_id = q->properties.queue_id;
167 list_add_tail(&sdma_q->list, &sdma_q_list.list);
168 }
169
170 /*
171 * If the temp list is empty, then no SDMA queues nodes were found in
172 * qpd->queues_list. Return the past activity count as the total sdma
173 * count
174 */
175 if (list_empty(&sdma_q_list.list)) {
176 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
177 dqm_unlock(dqm);
178 return;
179 }
180
181 dqm_unlock(dqm);
182
183 /*
184 * Get the usage count for each SDMA queue in temp_list.
185 */
186 mm = get_task_mm(pdd->process->lead_thread);
187 if (!mm)
188 goto cleanup;
189
190 kthread_use_mm(mm);
191
192 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
193 val = 0;
194 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
195 if (ret) {
196 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
197 sdma_q->queue_id);
198 } else {
199 sdma_q->sdma_val = val;
200 workarea->sdma_activity_counter += val;
201 }
202 }
203
204 kthread_unuse_mm(mm);
205 mmput(mm);
206
207 /*
208 * Do a second iteration over qpd_queues_list to check if any SDMA
209 * nodes got deleted while fetching SDMA counter.
210 */
211 dqm_lock(dqm);
212
213 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
214
215 list_for_each_entry(q, &qpd->queues_list, list) {
216 if (list_empty(&sdma_q_list.list))
217 break;
218
219 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
220 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
221 continue;
222
223 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
224 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
225 (sdma_q->queue_id == q->properties.queue_id)) {
226 list_del(&sdma_q->list);
227 kfree(sdma_q);
228 break;
229 }
230 }
231 }
232
233 dqm_unlock(dqm);
234
235 /*
236 * If temp list is not empty, it implies some queues got deleted
237 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
238 * count for each node from the total SDMA count.
239 */
240 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
241 workarea->sdma_activity_counter -= sdma_q->sdma_val;
242 list_del(&sdma_q->list);
243 kfree(sdma_q);
244 }
245
246 return;
247
248cleanup:
249 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
250 list_del(&sdma_q->list);
251 kfree(sdma_q);
252 }
253}
254
255/**
256 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
257 * by current process. Translates acquired wave count into number of compute units
258 * that are occupied.
259 *
260 * @attr: Handle of attribute that allows reporting of wave count. The attribute
261 * handle encapsulates GPU device it is associated with, thereby allowing collection
262 * of waves in flight, etc
263 * @buffer: Handle of user provided buffer updated with wave count
264 *
265 * Return: Number of bytes written to user buffer or an error value
266 */
267static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
268{
269 int cu_cnt;
270 int wave_cnt;
271 int max_waves_per_cu;
272 struct kfd_dev *dev = NULL;
273 struct kfd_process *proc = NULL;
274 struct kfd_process_device *pdd = NULL;
275
276 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
277 dev = pdd->dev;
278 if (dev->kfd2kgd->get_cu_occupancy == NULL)
279 return -EINVAL;
280
281 cu_cnt = 0;
282 proc = pdd->process;
283 if (pdd->qpd.queue_count == 0) {
284 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
285 dev->id, proc->pasid);
286 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
287 }
288
289 /* Collect wave count from device if it supports */
290 wave_cnt = 0;
291 max_waves_per_cu = 0;
292 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
293 &max_waves_per_cu);
294
295 /* Translate wave count to number of compute units */
296 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
297 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
298}
299
300static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
301 char *buffer)
302{
303 if (strcmp(attr->name, "pasid") == 0) {
304 struct kfd_process *p = container_of(attr, struct kfd_process,
305 attr_pasid);
306
307 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
308 } else if (strncmp(attr->name, "vram_", 5) == 0) {
309 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
310 attr_vram);
311 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
312 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
313 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
314 attr_sdma);
315 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
316
317 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
318 kfd_sdma_activity_worker);
319
320 sdma_activity_work_handler.pdd = pdd;
321 sdma_activity_work_handler.sdma_activity_counter = 0;
322
323 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
324
325 flush_work(&sdma_activity_work_handler.sdma_activity_work);
326
327 return snprintf(buffer, PAGE_SIZE, "%llu\n",
328 (sdma_activity_work_handler.sdma_activity_counter)/
329 SDMA_ACTIVITY_DIVISOR);
330 } else {
331 pr_err("Invalid attribute");
332 return -EINVAL;
333 }
334
335 return 0;
336}
337
338static void kfd_procfs_kobj_release(struct kobject *kobj)
339{
340 kfree(kobj);
341}
342
343static const struct sysfs_ops kfd_procfs_ops = {
344 .show = kfd_procfs_show,
345};
346
347static struct kobj_type procfs_type = {
348 .release = kfd_procfs_kobj_release,
349 .sysfs_ops = &kfd_procfs_ops,
350};
351
352void kfd_procfs_init(void)
353{
354 int ret = 0;
355
356 procfs.kobj = kfd_alloc_struct(procfs.kobj);
357 if (!procfs.kobj)
358 return;
359
360 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
361 &kfd_device->kobj, "proc");
362 if (ret) {
363 pr_warn("Could not create procfs proc folder");
364 /* If we fail to create the procfs, clean up */
365 kfd_procfs_shutdown();
366 }
367}
368
369void kfd_procfs_shutdown(void)
370{
371 if (procfs.kobj) {
372 kobject_del(procfs.kobj);
373 kobject_put(procfs.kobj);
374 procfs.kobj = NULL;
375 }
376}
377
378static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
379 struct attribute *attr, char *buffer)
380{
381 struct queue *q = container_of(kobj, struct queue, kobj);
382
383 if (!strcmp(attr->name, "size"))
384 return snprintf(buffer, PAGE_SIZE, "%llu",
385 q->properties.queue_size);
386 else if (!strcmp(attr->name, "type"))
387 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
388 else if (!strcmp(attr->name, "gpuid"))
389 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
390 else
391 pr_err("Invalid attribute");
392
393 return 0;
394}
395
396static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
397 struct attribute *attr, char *buffer)
398{
399 if (strcmp(attr->name, "evicted_ms") == 0) {
400 struct kfd_process_device *pdd = container_of(attr,
401 struct kfd_process_device,
402 attr_evict);
403 uint64_t evict_jiffies;
404
405 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
406
407 return snprintf(buffer,
408 PAGE_SIZE,
409 "%llu\n",
410 jiffies64_to_msecs(evict_jiffies));
411
412 /* Sysfs handle that gets CU occupancy is per device */
413 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
414 return kfd_get_cu_occupancy(attr, buffer);
415 } else {
416 pr_err("Invalid attribute");
417 }
418
419 return 0;
420}
421
422static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
423 struct attribute *attr, char *buf)
424{
425 struct kfd_process_device *pdd;
426
427 if (!strcmp(attr->name, "faults")) {
428 pdd = container_of(attr, struct kfd_process_device,
429 attr_faults);
430 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
431 }
432 if (!strcmp(attr->name, "page_in")) {
433 pdd = container_of(attr, struct kfd_process_device,
434 attr_page_in);
435 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
436 }
437 if (!strcmp(attr->name, "page_out")) {
438 pdd = container_of(attr, struct kfd_process_device,
439 attr_page_out);
440 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
441 }
442 return 0;
443}
444
445static struct attribute attr_queue_size = {
446 .name = "size",
447 .mode = KFD_SYSFS_FILE_MODE
448};
449
450static struct attribute attr_queue_type = {
451 .name = "type",
452 .mode = KFD_SYSFS_FILE_MODE
453};
454
455static struct attribute attr_queue_gpuid = {
456 .name = "gpuid",
457 .mode = KFD_SYSFS_FILE_MODE
458};
459
460static struct attribute *procfs_queue_attrs[] = {
461 &attr_queue_size,
462 &attr_queue_type,
463 &attr_queue_gpuid,
464 NULL
465};
466ATTRIBUTE_GROUPS(procfs_queue);
467
468static const struct sysfs_ops procfs_queue_ops = {
469 .show = kfd_procfs_queue_show,
470};
471
472static struct kobj_type procfs_queue_type = {
473 .sysfs_ops = &procfs_queue_ops,
474 .default_groups = procfs_queue_groups,
475};
476
477static const struct sysfs_ops procfs_stats_ops = {
478 .show = kfd_procfs_stats_show,
479};
480
481static struct kobj_type procfs_stats_type = {
482 .sysfs_ops = &procfs_stats_ops,
483 .release = kfd_procfs_kobj_release,
484};
485
486static const struct sysfs_ops sysfs_counters_ops = {
487 .show = kfd_sysfs_counters_show,
488};
489
490static struct kobj_type sysfs_counters_type = {
491 .sysfs_ops = &sysfs_counters_ops,
492 .release = kfd_procfs_kobj_release,
493};
494
495int kfd_procfs_add_queue(struct queue *q)
496{
497 struct kfd_process *proc;
498 int ret;
499
500 if (!q || !q->process)
501 return -EINVAL;
502 proc = q->process;
503
504 /* Create proc/<pid>/queues/<queue id> folder */
505 if (!proc->kobj_queues)
506 return -EFAULT;
507 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
508 proc->kobj_queues, "%u", q->properties.queue_id);
509 if (ret < 0) {
510 pr_warn("Creating proc/<pid>/queues/%u failed",
511 q->properties.queue_id);
512 kobject_put(&q->kobj);
513 return ret;
514 }
515
516 return 0;
517}
518
519static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
520 char *name)
521{
522 int ret;
523
524 if (!kobj || !attr || !name)
525 return;
526
527 attr->name = name;
528 attr->mode = KFD_SYSFS_FILE_MODE;
529 sysfs_attr_init(attr);
530
531 ret = sysfs_create_file(kobj, attr);
532 if (ret)
533 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
534}
535
536static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
537{
538 int ret;
539 int i;
540 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
541
542 if (!p || !p->kobj)
543 return;
544
545 /*
546 * Create sysfs files for each GPU:
547 * - proc/<pid>/stats_<gpuid>/
548 * - proc/<pid>/stats_<gpuid>/evicted_ms
549 * - proc/<pid>/stats_<gpuid>/cu_occupancy
550 */
551 for (i = 0; i < p->n_pdds; i++) {
552 struct kfd_process_device *pdd = p->pdds[i];
553
554 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
555 "stats_%u", pdd->dev->id);
556 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
557 if (!pdd->kobj_stats)
558 return;
559
560 ret = kobject_init_and_add(pdd->kobj_stats,
561 &procfs_stats_type,
562 p->kobj,
563 stats_dir_filename);
564
565 if (ret) {
566 pr_warn("Creating KFD proc/stats_%s folder failed",
567 stats_dir_filename);
568 kobject_put(pdd->kobj_stats);
569 pdd->kobj_stats = NULL;
570 return;
571 }
572
573 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
574 "evicted_ms");
575 /* Add sysfs file to report compute unit occupancy */
576 if (pdd->dev->kfd2kgd->get_cu_occupancy)
577 kfd_sysfs_create_file(pdd->kobj_stats,
578 &pdd->attr_cu_occupancy,
579 "cu_occupancy");
580 }
581}
582
583static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
584{
585 int ret = 0;
586 int i;
587 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
588
589 if (!p || !p->kobj)
590 return;
591
592 /*
593 * Create sysfs files for each GPU which supports SVM
594 * - proc/<pid>/counters_<gpuid>/
595 * - proc/<pid>/counters_<gpuid>/faults
596 * - proc/<pid>/counters_<gpuid>/page_in
597 * - proc/<pid>/counters_<gpuid>/page_out
598 */
599 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
600 struct kfd_process_device *pdd = p->pdds[i];
601 struct kobject *kobj_counters;
602
603 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
604 "counters_%u", pdd->dev->id);
605 kobj_counters = kfd_alloc_struct(kobj_counters);
606 if (!kobj_counters)
607 return;
608
609 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
610 p->kobj, counters_dir_filename);
611 if (ret) {
612 pr_warn("Creating KFD proc/%s folder failed",
613 counters_dir_filename);
614 kobject_put(kobj_counters);
615 return;
616 }
617
618 pdd->kobj_counters = kobj_counters;
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
620 "faults");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
622 "page_in");
623 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
624 "page_out");
625 }
626}
627
628static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
629{
630 int i;
631
632 if (!p || !p->kobj)
633 return;
634
635 /*
636 * Create sysfs files for each GPU:
637 * - proc/<pid>/vram_<gpuid>
638 * - proc/<pid>/sdma_<gpuid>
639 */
640 for (i = 0; i < p->n_pdds; i++) {
641 struct kfd_process_device *pdd = p->pdds[i];
642
643 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
644 pdd->dev->id);
645 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
646 pdd->vram_filename);
647
648 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
649 pdd->dev->id);
650 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
651 pdd->sdma_filename);
652 }
653}
654
655void kfd_procfs_del_queue(struct queue *q)
656{
657 if (!q)
658 return;
659
660 kobject_del(&q->kobj);
661 kobject_put(&q->kobj);
662}
663
664int kfd_process_create_wq(void)
665{
666 if (!kfd_process_wq)
667 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
668 if (!kfd_restore_wq)
669 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq", 0);
670
671 if (!kfd_process_wq || !kfd_restore_wq) {
672 kfd_process_destroy_wq();
673 return -ENOMEM;
674 }
675
676 return 0;
677}
678
679void kfd_process_destroy_wq(void)
680{
681 if (kfd_process_wq) {
682 destroy_workqueue(kfd_process_wq);
683 kfd_process_wq = NULL;
684 }
685 if (kfd_restore_wq) {
686 destroy_workqueue(kfd_restore_wq);
687 kfd_restore_wq = NULL;
688 }
689}
690
691static void kfd_process_free_gpuvm(struct kgd_mem *mem,
692 struct kfd_process_device *pdd, void **kptr)
693{
694 struct kfd_dev *dev = pdd->dev;
695
696 if (kptr && *kptr) {
697 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
698 *kptr = NULL;
699 }
700
701 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
702 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
703 NULL);
704}
705
706/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
707 * This function should be only called right after the process
708 * is created and when kfd_processes_mutex is still being held
709 * to avoid concurrency. Because of that exclusiveness, we do
710 * not need to take p->mutex.
711 */
712static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
713 uint64_t gpu_va, uint32_t size,
714 uint32_t flags, struct kgd_mem **mem, void **kptr)
715{
716 struct kfd_dev *kdev = pdd->dev;
717 int err;
718
719 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
720 pdd->drm_priv, mem, NULL,
721 flags, false);
722 if (err)
723 goto err_alloc_mem;
724
725 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
726 pdd->drm_priv);
727 if (err)
728 goto err_map_mem;
729
730 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
731 if (err) {
732 pr_debug("Sync memory failed, wait interrupted by user signal\n");
733 goto sync_memory_failed;
734 }
735
736 if (kptr) {
737 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
738 (struct kgd_mem *)*mem, kptr, NULL);
739 if (err) {
740 pr_debug("Map GTT BO to kernel failed\n");
741 goto sync_memory_failed;
742 }
743 }
744
745 return err;
746
747sync_memory_failed:
748 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
749
750err_map_mem:
751 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
752 NULL);
753err_alloc_mem:
754 *mem = NULL;
755 *kptr = NULL;
756 return err;
757}
758
759/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
760 * process for IB usage The memory reserved is for KFD to submit
761 * IB to AMDGPU from kernel. If the memory is reserved
762 * successfully, ib_kaddr will have the CPU/kernel
763 * address. Check ib_kaddr before accessing the memory.
764 */
765static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
766{
767 struct qcm_process_device *qpd = &pdd->qpd;
768 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
769 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
770 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
771 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
772 struct kgd_mem *mem;
773 void *kaddr;
774 int ret;
775
776 if (qpd->ib_kaddr || !qpd->ib_base)
777 return 0;
778
779 /* ib_base is only set for dGPU */
780 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
781 &mem, &kaddr);
782 if (ret)
783 return ret;
784
785 qpd->ib_mem = mem;
786 qpd->ib_kaddr = kaddr;
787
788 return 0;
789}
790
791static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
792{
793 struct qcm_process_device *qpd = &pdd->qpd;
794
795 if (!qpd->ib_kaddr || !qpd->ib_base)
796 return;
797
798 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
799}
800
801struct kfd_process *kfd_create_process(struct file *filep)
802{
803 struct kfd_process *process;
804 struct task_struct *thread = current;
805 int ret;
806
807 if (!thread->mm)
808 return ERR_PTR(-EINVAL);
809
810 /* Only the pthreads threading model is supported. */
811 if (thread->group_leader->mm != thread->mm)
812 return ERR_PTR(-EINVAL);
813
814 /*
815 * take kfd processes mutex before starting of process creation
816 * so there won't be a case where two threads of the same process
817 * create two kfd_process structures
818 */
819 mutex_lock(&kfd_processes_mutex);
820
821 /* A prior open of /dev/kfd could have already created the process. */
822 process = find_process(thread, false);
823 if (process) {
824 pr_debug("Process already found\n");
825 } else {
826 process = create_process(thread);
827 if (IS_ERR(process))
828 goto out;
829
830 ret = kfd_process_init_cwsr_apu(process, filep);
831 if (ret)
832 goto out_destroy;
833
834 if (!procfs.kobj)
835 goto out;
836
837 process->kobj = kfd_alloc_struct(process->kobj);
838 if (!process->kobj) {
839 pr_warn("Creating procfs kobject failed");
840 goto out;
841 }
842 ret = kobject_init_and_add(process->kobj, &procfs_type,
843 procfs.kobj, "%d",
844 (int)process->lead_thread->pid);
845 if (ret) {
846 pr_warn("Creating procfs pid directory failed");
847 kobject_put(process->kobj);
848 goto out;
849 }
850
851 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
852 "pasid");
853
854 process->kobj_queues = kobject_create_and_add("queues",
855 process->kobj);
856 if (!process->kobj_queues)
857 pr_warn("Creating KFD proc/queues folder failed");
858
859 kfd_procfs_add_sysfs_stats(process);
860 kfd_procfs_add_sysfs_files(process);
861 kfd_procfs_add_sysfs_counters(process);
862 }
863out:
864 if (!IS_ERR(process))
865 kref_get(&process->ref);
866 mutex_unlock(&kfd_processes_mutex);
867
868 return process;
869
870out_destroy:
871 hash_del_rcu(&process->kfd_processes);
872 mutex_unlock(&kfd_processes_mutex);
873 synchronize_srcu(&kfd_processes_srcu);
874 /* kfd_process_free_notifier will trigger the cleanup */
875 mmu_notifier_put(&process->mmu_notifier);
876 return ERR_PTR(ret);
877}
878
879struct kfd_process *kfd_get_process(const struct task_struct *thread)
880{
881 struct kfd_process *process;
882
883 if (!thread->mm)
884 return ERR_PTR(-EINVAL);
885
886 /* Only the pthreads threading model is supported. */
887 if (thread->group_leader->mm != thread->mm)
888 return ERR_PTR(-EINVAL);
889
890 process = find_process(thread, false);
891 if (!process)
892 return ERR_PTR(-EINVAL);
893
894 return process;
895}
896
897static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
898{
899 struct kfd_process *process;
900
901 hash_for_each_possible_rcu(kfd_processes_table, process,
902 kfd_processes, (uintptr_t)mm)
903 if (process->mm == mm)
904 return process;
905
906 return NULL;
907}
908
909static struct kfd_process *find_process(const struct task_struct *thread,
910 bool ref)
911{
912 struct kfd_process *p;
913 int idx;
914
915 idx = srcu_read_lock(&kfd_processes_srcu);
916 p = find_process_by_mm(thread->mm);
917 if (p && ref)
918 kref_get(&p->ref);
919 srcu_read_unlock(&kfd_processes_srcu, idx);
920
921 return p;
922}
923
924void kfd_unref_process(struct kfd_process *p)
925{
926 kref_put(&p->ref, kfd_process_ref_release);
927}
928
929/* This increments the process->ref counter. */
930struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
931{
932 struct task_struct *task = NULL;
933 struct kfd_process *p = NULL;
934
935 if (!pid) {
936 task = current;
937 get_task_struct(task);
938 } else {
939 task = get_pid_task(pid, PIDTYPE_PID);
940 }
941
942 if (task) {
943 p = find_process(task, true);
944 put_task_struct(task);
945 }
946
947 return p;
948}
949
950static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
951{
952 struct kfd_process *p = pdd->process;
953 void *mem;
954 int id;
955 int i;
956
957 /*
958 * Remove all handles from idr and release appropriate
959 * local memory object
960 */
961 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
962
963 for (i = 0; i < p->n_pdds; i++) {
964 struct kfd_process_device *peer_pdd = p->pdds[i];
965
966 if (!peer_pdd->drm_priv)
967 continue;
968 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
969 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
970 }
971
972 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
973 pdd->drm_priv, NULL);
974 kfd_process_device_remove_obj_handle(pdd, id);
975 }
976}
977
978/*
979 * Just kunmap and unpin signal BO here. It will be freed in
980 * kfd_process_free_outstanding_kfd_bos()
981 */
982static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
983{
984 struct kfd_process_device *pdd;
985 struct kfd_dev *kdev;
986 void *mem;
987
988 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
989 if (!kdev)
990 return;
991
992 mutex_lock(&p->mutex);
993
994 pdd = kfd_get_process_device_data(kdev, p);
995 if (!pdd)
996 goto out;
997
998 mem = kfd_process_device_translate_handle(
999 pdd, GET_IDR_HANDLE(p->signal_handle));
1000 if (!mem)
1001 goto out;
1002
1003 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1004
1005out:
1006 mutex_unlock(&p->mutex);
1007}
1008
1009static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1010{
1011 int i;
1012
1013 for (i = 0; i < p->n_pdds; i++)
1014 kfd_process_device_free_bos(p->pdds[i]);
1015}
1016
1017static void kfd_process_destroy_pdds(struct kfd_process *p)
1018{
1019 int i;
1020
1021 for (i = 0; i < p->n_pdds; i++) {
1022 struct kfd_process_device *pdd = p->pdds[i];
1023
1024 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1025 pdd->dev->id, p->pasid);
1026
1027 kfd_process_device_destroy_cwsr_dgpu(pdd);
1028 kfd_process_device_destroy_ib_mem(pdd);
1029
1030 if (pdd->drm_file) {
1031 amdgpu_amdkfd_gpuvm_release_process_vm(
1032 pdd->dev->adev, pdd->drm_priv);
1033 fput(pdd->drm_file);
1034 }
1035
1036 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1037 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1038 get_order(KFD_CWSR_TBA_TMA_SIZE));
1039
1040 bitmap_free(pdd->qpd.doorbell_bitmap);
1041 idr_destroy(&pdd->alloc_idr);
1042
1043 kfd_free_process_doorbells(pdd->dev, pdd->doorbell_index);
1044
1045 if (pdd->dev->shared_resources.enable_mes)
1046 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1047 pdd->proc_ctx_bo);
1048 /*
1049 * before destroying pdd, make sure to report availability
1050 * for auto suspend
1051 */
1052 if (pdd->runtime_inuse) {
1053 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1054 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1055 pdd->runtime_inuse = false;
1056 }
1057
1058 kfree(pdd);
1059 p->pdds[i] = NULL;
1060 }
1061 p->n_pdds = 0;
1062}
1063
1064static void kfd_process_remove_sysfs(struct kfd_process *p)
1065{
1066 struct kfd_process_device *pdd;
1067 int i;
1068
1069 if (!p->kobj)
1070 return;
1071
1072 sysfs_remove_file(p->kobj, &p->attr_pasid);
1073 kobject_del(p->kobj_queues);
1074 kobject_put(p->kobj_queues);
1075 p->kobj_queues = NULL;
1076
1077 for (i = 0; i < p->n_pdds; i++) {
1078 pdd = p->pdds[i];
1079
1080 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1081 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1082
1083 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1084 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1085 sysfs_remove_file(pdd->kobj_stats,
1086 &pdd->attr_cu_occupancy);
1087 kobject_del(pdd->kobj_stats);
1088 kobject_put(pdd->kobj_stats);
1089 pdd->kobj_stats = NULL;
1090 }
1091
1092 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1093 pdd = p->pdds[i];
1094
1095 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1096 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1097 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1098 kobject_del(pdd->kobj_counters);
1099 kobject_put(pdd->kobj_counters);
1100 pdd->kobj_counters = NULL;
1101 }
1102
1103 kobject_del(p->kobj);
1104 kobject_put(p->kobj);
1105 p->kobj = NULL;
1106}
1107
1108/* No process locking is needed in this function, because the process
1109 * is not findable any more. We must assume that no other thread is
1110 * using it any more, otherwise we couldn't safely free the process
1111 * structure in the end.
1112 */
1113static void kfd_process_wq_release(struct work_struct *work)
1114{
1115 struct kfd_process *p = container_of(work, struct kfd_process,
1116 release_work);
1117
1118 kfd_process_dequeue_from_all_devices(p);
1119 pqm_uninit(&p->pqm);
1120
1121 /* Signal the eviction fence after user mode queues are
1122 * destroyed. This allows any BOs to be freed without
1123 * triggering pointless evictions or waiting for fences.
1124 */
1125 dma_fence_signal(p->ef);
1126
1127 kfd_process_remove_sysfs(p);
1128 kfd_iommu_unbind_process(p);
1129
1130 kfd_process_kunmap_signal_bo(p);
1131 kfd_process_free_outstanding_kfd_bos(p);
1132 svm_range_list_fini(p);
1133
1134 kfd_process_destroy_pdds(p);
1135 dma_fence_put(p->ef);
1136
1137 kfd_event_free_process(p);
1138
1139 kfd_pasid_free(p->pasid);
1140 mutex_destroy(&p->mutex);
1141
1142 put_task_struct(p->lead_thread);
1143
1144 kfree(p);
1145}
1146
1147static void kfd_process_ref_release(struct kref *ref)
1148{
1149 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1150
1151 INIT_WORK(&p->release_work, kfd_process_wq_release);
1152 queue_work(kfd_process_wq, &p->release_work);
1153}
1154
1155static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1156{
1157 int idx = srcu_read_lock(&kfd_processes_srcu);
1158 struct kfd_process *p = find_process_by_mm(mm);
1159
1160 srcu_read_unlock(&kfd_processes_srcu, idx);
1161
1162 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1163}
1164
1165static void kfd_process_free_notifier(struct mmu_notifier *mn)
1166{
1167 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1168}
1169
1170static void kfd_process_notifier_release(struct mmu_notifier *mn,
1171 struct mm_struct *mm)
1172{
1173 struct kfd_process *p;
1174
1175 /*
1176 * The kfd_process structure can not be free because the
1177 * mmu_notifier srcu is read locked
1178 */
1179 p = container_of(mn, struct kfd_process, mmu_notifier);
1180 if (WARN_ON(p->mm != mm))
1181 return;
1182
1183 mutex_lock(&kfd_processes_mutex);
1184 hash_del_rcu(&p->kfd_processes);
1185 mutex_unlock(&kfd_processes_mutex);
1186 synchronize_srcu(&kfd_processes_srcu);
1187
1188 cancel_delayed_work_sync(&p->eviction_work);
1189 cancel_delayed_work_sync(&p->restore_work);
1190
1191 /* Indicate to other users that MM is no longer valid */
1192 p->mm = NULL;
1193
1194 mmu_notifier_put(&p->mmu_notifier);
1195}
1196
1197static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1198 .release = kfd_process_notifier_release,
1199 .alloc_notifier = kfd_process_alloc_notifier,
1200 .free_notifier = kfd_process_free_notifier,
1201};
1202
1203static int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1204{
1205 unsigned long offset;
1206 int i;
1207
1208 for (i = 0; i < p->n_pdds; i++) {
1209 struct kfd_dev *dev = p->pdds[i]->dev;
1210 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1211
1212 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1213 continue;
1214
1215 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1216 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1217 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1218 MAP_SHARED, offset);
1219
1220 if (IS_ERR_VALUE(qpd->tba_addr)) {
1221 int err = qpd->tba_addr;
1222
1223 pr_err("Failure to set tba address. error %d.\n", err);
1224 qpd->tba_addr = 0;
1225 qpd->cwsr_kaddr = NULL;
1226 return err;
1227 }
1228
1229 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1230
1231 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1232 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1233 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1234 }
1235
1236 return 0;
1237}
1238
1239static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1240{
1241 struct kfd_dev *dev = pdd->dev;
1242 struct qcm_process_device *qpd = &pdd->qpd;
1243 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1244 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1245 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1246 struct kgd_mem *mem;
1247 void *kaddr;
1248 int ret;
1249
1250 if (!dev->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1251 return 0;
1252
1253 /* cwsr_base is only set for dGPU */
1254 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1255 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1256 if (ret)
1257 return ret;
1258
1259 qpd->cwsr_mem = mem;
1260 qpd->cwsr_kaddr = kaddr;
1261 qpd->tba_addr = qpd->cwsr_base;
1262
1263 memcpy(qpd->cwsr_kaddr, dev->cwsr_isa, dev->cwsr_isa_size);
1264
1265 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1266 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1267 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1268
1269 return 0;
1270}
1271
1272static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1273{
1274 struct kfd_dev *dev = pdd->dev;
1275 struct qcm_process_device *qpd = &pdd->qpd;
1276
1277 if (!dev->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1278 return;
1279
1280 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1281}
1282
1283void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1284 uint64_t tba_addr,
1285 uint64_t tma_addr)
1286{
1287 if (qpd->cwsr_kaddr) {
1288 /* KFD trap handler is bound, record as second-level TBA/TMA
1289 * in first-level TMA. First-level trap will jump to second.
1290 */
1291 uint64_t *tma =
1292 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1293 tma[0] = tba_addr;
1294 tma[1] = tma_addr;
1295 } else {
1296 /* No trap handler bound, bind as first-level TBA/TMA. */
1297 qpd->tba_addr = tba_addr;
1298 qpd->tma_addr = tma_addr;
1299 }
1300}
1301
1302bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1303{
1304 int i;
1305
1306 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1307 * boot time retry setting. Mixing processes with different
1308 * XNACK/retry settings can hang the GPU.
1309 *
1310 * Different GPUs can have different noretry settings depending
1311 * on HW bugs or limitations. We need to find at least one
1312 * XNACK mode for this process that's compatible with all GPUs.
1313 * Fortunately GPUs with retry enabled (noretry=0) can run code
1314 * built for XNACK-off. On GFXv9 it may perform slower.
1315 *
1316 * Therefore applications built for XNACK-off can always be
1317 * supported and will be our fallback if any GPU does not
1318 * support retry.
1319 */
1320 for (i = 0; i < p->n_pdds; i++) {
1321 struct kfd_dev *dev = p->pdds[i]->dev;
1322
1323 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1324 * support the SVM APIs and don't need to be considered
1325 * for the XNACK mode selection.
1326 */
1327 if (!KFD_IS_SOC15(dev))
1328 continue;
1329 /* Aldebaran can always support XNACK because it can support
1330 * per-process XNACK mode selection. But let the dev->noretry
1331 * setting still influence the default XNACK mode.
1332 */
1333 if (supported && KFD_GC_VERSION(dev) == IP_VERSION(9, 4, 2))
1334 continue;
1335
1336 /* GFXv10 and later GPUs do not support shader preemption
1337 * during page faults. This can lead to poor QoS for queue
1338 * management and memory-manager-related preemptions or
1339 * even deadlocks.
1340 */
1341 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1342 return false;
1343
1344 if (dev->noretry)
1345 return false;
1346 }
1347
1348 return true;
1349}
1350
1351/*
1352 * On return the kfd_process is fully operational and will be freed when the
1353 * mm is released
1354 */
1355static struct kfd_process *create_process(const struct task_struct *thread)
1356{
1357 struct kfd_process *process;
1358 struct mmu_notifier *mn;
1359 int err = -ENOMEM;
1360
1361 process = kzalloc(sizeof(*process), GFP_KERNEL);
1362 if (!process)
1363 goto err_alloc_process;
1364
1365 kref_init(&process->ref);
1366 mutex_init(&process->mutex);
1367 process->mm = thread->mm;
1368 process->lead_thread = thread->group_leader;
1369 process->n_pdds = 0;
1370 process->queues_paused = false;
1371 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1372 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1373 process->last_restore_timestamp = get_jiffies_64();
1374 err = kfd_event_init_process(process);
1375 if (err)
1376 goto err_event_init;
1377 process->is_32bit_user_mode = in_compat_syscall();
1378
1379 process->pasid = kfd_pasid_alloc();
1380 if (process->pasid == 0) {
1381 err = -ENOSPC;
1382 goto err_alloc_pasid;
1383 }
1384
1385 err = pqm_init(&process->pqm, process);
1386 if (err != 0)
1387 goto err_process_pqm_init;
1388
1389 /* init process apertures*/
1390 err = kfd_init_apertures(process);
1391 if (err != 0)
1392 goto err_init_apertures;
1393
1394 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1395 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1396
1397 err = svm_range_list_init(process);
1398 if (err)
1399 goto err_init_svm_range_list;
1400
1401 /* alloc_notifier needs to find the process in the hash table */
1402 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1403 (uintptr_t)process->mm);
1404
1405 /* Avoid free_notifier to start kfd_process_wq_release if
1406 * mmu_notifier_get failed because of pending signal.
1407 */
1408 kref_get(&process->ref);
1409
1410 /* MMU notifier registration must be the last call that can fail
1411 * because after this point we cannot unwind the process creation.
1412 * After this point, mmu_notifier_put will trigger the cleanup by
1413 * dropping the last process reference in the free_notifier.
1414 */
1415 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1416 if (IS_ERR(mn)) {
1417 err = PTR_ERR(mn);
1418 goto err_register_notifier;
1419 }
1420 BUG_ON(mn != &process->mmu_notifier);
1421
1422 kfd_unref_process(process);
1423 get_task_struct(process->lead_thread);
1424
1425 return process;
1426
1427err_register_notifier:
1428 hash_del_rcu(&process->kfd_processes);
1429 svm_range_list_fini(process);
1430err_init_svm_range_list:
1431 kfd_process_free_outstanding_kfd_bos(process);
1432 kfd_process_destroy_pdds(process);
1433err_init_apertures:
1434 pqm_uninit(&process->pqm);
1435err_process_pqm_init:
1436 kfd_pasid_free(process->pasid);
1437err_alloc_pasid:
1438 kfd_event_free_process(process);
1439err_event_init:
1440 mutex_destroy(&process->mutex);
1441 kfree(process);
1442err_alloc_process:
1443 return ERR_PTR(err);
1444}
1445
1446static int init_doorbell_bitmap(struct qcm_process_device *qpd,
1447 struct kfd_dev *dev)
1448{
1449 unsigned int i;
1450 int range_start = dev->shared_resources.non_cp_doorbells_start;
1451 int range_end = dev->shared_resources.non_cp_doorbells_end;
1452
1453 if (!KFD_IS_SOC15(dev))
1454 return 0;
1455
1456 qpd->doorbell_bitmap = bitmap_zalloc(KFD_MAX_NUM_OF_QUEUES_PER_PROCESS,
1457 GFP_KERNEL);
1458 if (!qpd->doorbell_bitmap)
1459 return -ENOMEM;
1460
1461 /* Mask out doorbells reserved for SDMA, IH, and VCN on SOC15. */
1462 pr_debug("reserved doorbell 0x%03x - 0x%03x\n", range_start, range_end);
1463 pr_debug("reserved doorbell 0x%03x - 0x%03x\n",
1464 range_start + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1465 range_end + KFD_QUEUE_DOORBELL_MIRROR_OFFSET);
1466
1467 for (i = 0; i < KFD_MAX_NUM_OF_QUEUES_PER_PROCESS / 2; i++) {
1468 if (i >= range_start && i <= range_end) {
1469 __set_bit(i, qpd->doorbell_bitmap);
1470 __set_bit(i + KFD_QUEUE_DOORBELL_MIRROR_OFFSET,
1471 qpd->doorbell_bitmap);
1472 }
1473 }
1474
1475 return 0;
1476}
1477
1478struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
1479 struct kfd_process *p)
1480{
1481 int i;
1482
1483 for (i = 0; i < p->n_pdds; i++)
1484 if (p->pdds[i]->dev == dev)
1485 return p->pdds[i];
1486
1487 return NULL;
1488}
1489
1490struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
1491 struct kfd_process *p)
1492{
1493 struct kfd_process_device *pdd = NULL;
1494 int retval = 0;
1495
1496 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1497 return NULL;
1498 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1499 if (!pdd)
1500 return NULL;
1501
1502 if (init_doorbell_bitmap(&pdd->qpd, dev)) {
1503 pr_err("Failed to init doorbell for process\n");
1504 goto err_free_pdd;
1505 }
1506
1507 pdd->dev = dev;
1508 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1509 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1510 pdd->qpd.dqm = dev->dqm;
1511 pdd->qpd.pqm = &p->pqm;
1512 pdd->qpd.evicted = 0;
1513 pdd->qpd.mapped_gws_queue = false;
1514 pdd->process = p;
1515 pdd->bound = PDD_UNBOUND;
1516 pdd->already_dequeued = false;
1517 pdd->runtime_inuse = false;
1518 pdd->vram_usage = 0;
1519 pdd->sdma_past_activity_counter = 0;
1520 pdd->user_gpu_id = dev->id;
1521 atomic64_set(&pdd->evict_duration_counter, 0);
1522
1523 if (dev->shared_resources.enable_mes) {
1524 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1525 AMDGPU_MES_PROC_CTX_SIZE,
1526 &pdd->proc_ctx_bo,
1527 &pdd->proc_ctx_gpu_addr,
1528 &pdd->proc_ctx_cpu_ptr,
1529 false);
1530 if (retval) {
1531 pr_err("failed to allocate process context bo\n");
1532 goto err_free_pdd;
1533 }
1534 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1535 }
1536
1537 p->pdds[p->n_pdds++] = pdd;
1538
1539 /* Init idr used for memory handle translation */
1540 idr_init(&pdd->alloc_idr);
1541
1542 return pdd;
1543
1544err_free_pdd:
1545 kfree(pdd);
1546 return NULL;
1547}
1548
1549/**
1550 * kfd_process_device_init_vm - Initialize a VM for a process-device
1551 *
1552 * @pdd: The process-device
1553 * @drm_file: Optional pointer to a DRM file descriptor
1554 *
1555 * If @drm_file is specified, it will be used to acquire the VM from
1556 * that file descriptor. If successful, the @pdd takes ownership of
1557 * the file descriptor.
1558 *
1559 * If @drm_file is NULL, a new VM is created.
1560 *
1561 * Returns 0 on success, -errno on failure.
1562 */
1563int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1564 struct file *drm_file)
1565{
1566 struct kfd_process *p;
1567 struct kfd_dev *dev;
1568 int ret;
1569
1570 if (!drm_file)
1571 return -EINVAL;
1572
1573 if (pdd->drm_priv)
1574 return -EBUSY;
1575
1576 p = pdd->process;
1577 dev = pdd->dev;
1578
1579 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, drm_file,
1580 &p->kgd_process_info,
1581 &p->ef);
1582 if (ret) {
1583 pr_err("Failed to create process VM object\n");
1584 return ret;
1585 }
1586 pdd->drm_priv = drm_file->private_data;
1587 atomic64_set(&pdd->tlb_seq, 0);
1588
1589 ret = kfd_process_device_reserve_ib_mem(pdd);
1590 if (ret)
1591 goto err_reserve_ib_mem;
1592 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1593 if (ret)
1594 goto err_init_cwsr;
1595
1596 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, drm_file, p->pasid);
1597 if (ret)
1598 goto err_set_pasid;
1599
1600 pdd->drm_file = drm_file;
1601
1602 return 0;
1603
1604err_set_pasid:
1605 kfd_process_device_destroy_cwsr_dgpu(pdd);
1606err_init_cwsr:
1607 kfd_process_device_destroy_ib_mem(pdd);
1608err_reserve_ib_mem:
1609 pdd->drm_priv = NULL;
1610
1611 return ret;
1612}
1613
1614/*
1615 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1616 * to the device.
1617 * Unbinding occurs when the process dies or the device is removed.
1618 *
1619 * Assumes that the process lock is held.
1620 */
1621struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
1622 struct kfd_process *p)
1623{
1624 struct kfd_process_device *pdd;
1625 int err;
1626
1627 pdd = kfd_get_process_device_data(dev, p);
1628 if (!pdd) {
1629 pr_err("Process device data doesn't exist\n");
1630 return ERR_PTR(-ENOMEM);
1631 }
1632
1633 if (!pdd->drm_priv)
1634 return ERR_PTR(-ENODEV);
1635
1636 /*
1637 * signal runtime-pm system to auto resume and prevent
1638 * further runtime suspend once device pdd is created until
1639 * pdd is destroyed.
1640 */
1641 if (!pdd->runtime_inuse) {
1642 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1643 if (err < 0) {
1644 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1645 return ERR_PTR(err);
1646 }
1647 }
1648
1649 err = kfd_iommu_bind_process_to_device(pdd);
1650 if (err)
1651 goto out;
1652
1653 /*
1654 * make sure that runtime_usage counter is incremented just once
1655 * per pdd
1656 */
1657 pdd->runtime_inuse = true;
1658
1659 return pdd;
1660
1661out:
1662 /* balance runpm reference count and exit with error */
1663 if (!pdd->runtime_inuse) {
1664 pm_runtime_mark_last_busy(adev_to_drm(dev->adev)->dev);
1665 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1666 }
1667
1668 return ERR_PTR(err);
1669}
1670
1671/* Create specific handle mapped to mem from process local memory idr
1672 * Assumes that the process lock is held.
1673 */
1674int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1675 void *mem)
1676{
1677 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1678}
1679
1680/* Translate specific handle from process local memory idr
1681 * Assumes that the process lock is held.
1682 */
1683void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1684 int handle)
1685{
1686 if (handle < 0)
1687 return NULL;
1688
1689 return idr_find(&pdd->alloc_idr, handle);
1690}
1691
1692/* Remove specific handle from process local memory idr
1693 * Assumes that the process lock is held.
1694 */
1695void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1696 int handle)
1697{
1698 if (handle >= 0)
1699 idr_remove(&pdd->alloc_idr, handle);
1700}
1701
1702/* This increments the process->ref counter. */
1703struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1704{
1705 struct kfd_process *p, *ret_p = NULL;
1706 unsigned int temp;
1707
1708 int idx = srcu_read_lock(&kfd_processes_srcu);
1709
1710 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1711 if (p->pasid == pasid) {
1712 kref_get(&p->ref);
1713 ret_p = p;
1714 break;
1715 }
1716 }
1717
1718 srcu_read_unlock(&kfd_processes_srcu, idx);
1719
1720 return ret_p;
1721}
1722
1723/* This increments the process->ref counter. */
1724struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1725{
1726 struct kfd_process *p;
1727
1728 int idx = srcu_read_lock(&kfd_processes_srcu);
1729
1730 p = find_process_by_mm(mm);
1731 if (p)
1732 kref_get(&p->ref);
1733
1734 srcu_read_unlock(&kfd_processes_srcu, idx);
1735
1736 return p;
1737}
1738
1739/* kfd_process_evict_queues - Evict all user queues of a process
1740 *
1741 * Eviction is reference-counted per process-device. This means multiple
1742 * evictions from different sources can be nested safely.
1743 */
1744int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1745{
1746 int r = 0;
1747 int i;
1748 unsigned int n_evicted = 0;
1749
1750 for (i = 0; i < p->n_pdds; i++) {
1751 struct kfd_process_device *pdd = p->pdds[i];
1752
1753 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1754 trigger);
1755
1756 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1757 &pdd->qpd);
1758 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1759 * we would like to set all the queues to be in evicted state to prevent
1760 * them been add back since they actually not be saved right now.
1761 */
1762 if (r && r != -EIO) {
1763 pr_err("Failed to evict process queues\n");
1764 goto fail;
1765 }
1766 n_evicted++;
1767 }
1768
1769 return r;
1770
1771fail:
1772 /* To keep state consistent, roll back partial eviction by
1773 * restoring queues
1774 */
1775 for (i = 0; i < p->n_pdds; i++) {
1776 struct kfd_process_device *pdd = p->pdds[i];
1777
1778 if (n_evicted == 0)
1779 break;
1780
1781 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1782
1783 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1784 &pdd->qpd))
1785 pr_err("Failed to restore queues\n");
1786
1787 n_evicted--;
1788 }
1789
1790 return r;
1791}
1792
1793/* kfd_process_restore_queues - Restore all user queues of a process */
1794int kfd_process_restore_queues(struct kfd_process *p)
1795{
1796 int r, ret = 0;
1797 int i;
1798
1799 for (i = 0; i < p->n_pdds; i++) {
1800 struct kfd_process_device *pdd = p->pdds[i];
1801
1802 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1803
1804 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1805 &pdd->qpd);
1806 if (r) {
1807 pr_err("Failed to restore process queues\n");
1808 if (!ret)
1809 ret = r;
1810 }
1811 }
1812
1813 return ret;
1814}
1815
1816int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1817{
1818 int i;
1819
1820 for (i = 0; i < p->n_pdds; i++)
1821 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1822 return i;
1823 return -EINVAL;
1824}
1825
1826int
1827kfd_process_gpuid_from_adev(struct kfd_process *p, struct amdgpu_device *adev,
1828 uint32_t *gpuid, uint32_t *gpuidx)
1829{
1830 int i;
1831
1832 for (i = 0; i < p->n_pdds; i++)
1833 if (p->pdds[i] && p->pdds[i]->dev->adev == adev) {
1834 *gpuid = p->pdds[i]->user_gpu_id;
1835 *gpuidx = i;
1836 return 0;
1837 }
1838 return -EINVAL;
1839}
1840
1841static void evict_process_worker(struct work_struct *work)
1842{
1843 int ret;
1844 struct kfd_process *p;
1845 struct delayed_work *dwork;
1846
1847 dwork = to_delayed_work(work);
1848
1849 /* Process termination destroys this worker thread. So during the
1850 * lifetime of this thread, kfd_process p will be valid
1851 */
1852 p = container_of(dwork, struct kfd_process, eviction_work);
1853 WARN_ONCE(p->last_eviction_seqno != p->ef->seqno,
1854 "Eviction fence mismatch\n");
1855
1856 /* Narrow window of overlap between restore and evict work
1857 * item is possible. Once amdgpu_amdkfd_gpuvm_restore_process_bos
1858 * unreserves KFD BOs, it is possible to evicted again. But
1859 * restore has few more steps of finish. So lets wait for any
1860 * previous restore work to complete
1861 */
1862 flush_delayed_work(&p->restore_work);
1863
1864 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1865 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1866 if (!ret) {
1867 dma_fence_signal(p->ef);
1868 dma_fence_put(p->ef);
1869 p->ef = NULL;
1870 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1871 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1872
1873 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1874 } else
1875 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1876}
1877
1878static void restore_process_worker(struct work_struct *work)
1879{
1880 struct delayed_work *dwork;
1881 struct kfd_process *p;
1882 int ret = 0;
1883
1884 dwork = to_delayed_work(work);
1885
1886 /* Process termination destroys this worker thread. So during the
1887 * lifetime of this thread, kfd_process p will be valid
1888 */
1889 p = container_of(dwork, struct kfd_process, restore_work);
1890 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1891
1892 /* Setting last_restore_timestamp before successful restoration.
1893 * Otherwise this would have to be set by KGD (restore_process_bos)
1894 * before KFD BOs are unreserved. If not, the process can be evicted
1895 * again before the timestamp is set.
1896 * If restore fails, the timestamp will be set again in the next
1897 * attempt. This would mean that the minimum GPU quanta would be
1898 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
1899 * functions)
1900 */
1901
1902 p->last_restore_timestamp = get_jiffies_64();
1903 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(p->kgd_process_info,
1904 &p->ef);
1905 if (ret) {
1906 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
1907 p->pasid, PROCESS_BACK_OFF_TIME_MS);
1908 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
1909 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
1910 WARN(!ret, "reschedule restore work failed\n");
1911 return;
1912 }
1913
1914 ret = kfd_process_restore_queues(p);
1915 if (!ret)
1916 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1917 else
1918 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1919}
1920
1921void kfd_suspend_all_processes(void)
1922{
1923 struct kfd_process *p;
1924 unsigned int temp;
1925 int idx = srcu_read_lock(&kfd_processes_srcu);
1926
1927 WARN(debug_evictions, "Evicting all processes");
1928 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1929 cancel_delayed_work_sync(&p->eviction_work);
1930 cancel_delayed_work_sync(&p->restore_work);
1931
1932 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
1933 pr_err("Failed to suspend process 0x%x\n", p->pasid);
1934 dma_fence_signal(p->ef);
1935 dma_fence_put(p->ef);
1936 p->ef = NULL;
1937 }
1938 srcu_read_unlock(&kfd_processes_srcu, idx);
1939}
1940
1941int kfd_resume_all_processes(void)
1942{
1943 struct kfd_process *p;
1944 unsigned int temp;
1945 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
1946
1947 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1948 if (!queue_delayed_work(kfd_restore_wq, &p->restore_work, 0)) {
1949 pr_err("Restore process %d failed during resume\n",
1950 p->pasid);
1951 ret = -EFAULT;
1952 }
1953 }
1954 srcu_read_unlock(&kfd_processes_srcu, idx);
1955 return ret;
1956}
1957
1958int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
1959 struct vm_area_struct *vma)
1960{
1961 struct kfd_process_device *pdd;
1962 struct qcm_process_device *qpd;
1963
1964 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
1965 pr_err("Incorrect CWSR mapping size.\n");
1966 return -EINVAL;
1967 }
1968
1969 pdd = kfd_get_process_device_data(dev, process);
1970 if (!pdd)
1971 return -EINVAL;
1972 qpd = &pdd->qpd;
1973
1974 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
1975 get_order(KFD_CWSR_TBA_TMA_SIZE));
1976 if (!qpd->cwsr_kaddr) {
1977 pr_err("Error allocating per process CWSR buffer.\n");
1978 return -ENOMEM;
1979 }
1980
1981 vma->vm_flags |= VM_IO | VM_DONTCOPY | VM_DONTEXPAND
1982 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP;
1983 /* Mapping pages to user process */
1984 return remap_pfn_range(vma, vma->vm_start,
1985 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
1986 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
1987}
1988
1989void kfd_flush_tlb(struct kfd_process_device *pdd, enum TLB_FLUSH_TYPE type)
1990{
1991 struct amdgpu_vm *vm = drm_priv_to_vm(pdd->drm_priv);
1992 uint64_t tlb_seq = amdgpu_vm_tlb_seq(vm);
1993 struct kfd_dev *dev = pdd->dev;
1994
1995 /*
1996 * It can be that we race and lose here, but that is extremely unlikely
1997 * and the worst thing which could happen is that we flush the changes
1998 * into the TLB once more which is harmless.
1999 */
2000 if (atomic64_xchg(&pdd->tlb_seq, tlb_seq) == tlb_seq)
2001 return;
2002
2003 if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
2004 /* Nothing to flush until a VMID is assigned, which
2005 * only happens when the first queue is created.
2006 */
2007 if (pdd->qpd.vmid)
2008 amdgpu_amdkfd_flush_gpu_tlb_vmid(dev->adev,
2009 pdd->qpd.vmid);
2010 } else {
2011 amdgpu_amdkfd_flush_gpu_tlb_pasid(dev->adev,
2012 pdd->process->pasid, type);
2013 }
2014}
2015
2016struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2017{
2018 int i;
2019
2020 if (gpu_id) {
2021 for (i = 0; i < p->n_pdds; i++) {
2022 struct kfd_process_device *pdd = p->pdds[i];
2023
2024 if (pdd->user_gpu_id == gpu_id)
2025 return pdd;
2026 }
2027 }
2028 return NULL;
2029}
2030
2031int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2032{
2033 int i;
2034
2035 if (!actual_gpu_id)
2036 return 0;
2037
2038 for (i = 0; i < p->n_pdds; i++) {
2039 struct kfd_process_device *pdd = p->pdds[i];
2040
2041 if (pdd->dev->id == actual_gpu_id)
2042 return pdd->user_gpu_id;
2043 }
2044 return -EINVAL;
2045}
2046
2047#if defined(CONFIG_DEBUG_FS)
2048
2049int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2050{
2051 struct kfd_process *p;
2052 unsigned int temp;
2053 int r = 0;
2054
2055 int idx = srcu_read_lock(&kfd_processes_srcu);
2056
2057 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2058 seq_printf(m, "Process %d PASID 0x%x:\n",
2059 p->lead_thread->tgid, p->pasid);
2060
2061 mutex_lock(&p->mutex);
2062 r = pqm_debugfs_mqds(m, &p->pqm);
2063 mutex_unlock(&p->mutex);
2064
2065 if (r)
2066 break;
2067 }
2068
2069 srcu_read_unlock(&kfd_processes_srcu, idx);
2070
2071 return r;
2072}
2073
2074#endif
2075
1// SPDX-License-Identifier: GPL-2.0 OR MIT
2/*
3 * Copyright 2014-2022 Advanced Micro Devices, Inc.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the "Software"),
7 * to deal in the Software without restriction, including without limitation
8 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9 * and/or sell copies of the Software, and to permit persons to whom the
10 * Software is furnished to do so, subject to the following conditions:
11 *
12 * The above copyright notice and this permission notice shall be included in
13 * all copies or substantial portions of the Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
19 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
20 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
21 * OTHER DEALINGS IN THE SOFTWARE.
22 */
23
24#include <linux/mutex.h>
25#include <linux/log2.h>
26#include <linux/sched.h>
27#include <linux/sched/mm.h>
28#include <linux/sched/task.h>
29#include <linux/mmu_context.h>
30#include <linux/slab.h>
31#include <linux/notifier.h>
32#include <linux/compat.h>
33#include <linux/mman.h>
34#include <linux/file.h>
35#include <linux/pm_runtime.h>
36#include "amdgpu_amdkfd.h"
37#include "amdgpu.h"
38
39struct mm_struct;
40
41#include "kfd_priv.h"
42#include "kfd_device_queue_manager.h"
43#include "kfd_svm.h"
44#include "kfd_smi_events.h"
45#include "kfd_debug.h"
46
47/*
48 * List of struct kfd_process (field kfd_process).
49 * Unique/indexed by mm_struct*
50 */
51DEFINE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
52DEFINE_MUTEX(kfd_processes_mutex);
53
54DEFINE_SRCU(kfd_processes_srcu);
55
56/* For process termination handling */
57static struct workqueue_struct *kfd_process_wq;
58
59/* Ordered, single-threaded workqueue for restoring evicted
60 * processes. Restoring multiple processes concurrently under memory
61 * pressure can lead to processes blocking each other from validating
62 * their BOs and result in a live-lock situation where processes
63 * remain evicted indefinitely.
64 */
65static struct workqueue_struct *kfd_restore_wq;
66
67static struct kfd_process *find_process(const struct task_struct *thread,
68 bool ref);
69static void kfd_process_ref_release(struct kref *ref);
70static struct kfd_process *create_process(const struct task_struct *thread);
71
72static void evict_process_worker(struct work_struct *work);
73static void restore_process_worker(struct work_struct *work);
74
75static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd);
76
77struct kfd_procfs_tree {
78 struct kobject *kobj;
79};
80
81static struct kfd_procfs_tree procfs;
82
83/*
84 * Structure for SDMA activity tracking
85 */
86struct kfd_sdma_activity_handler_workarea {
87 struct work_struct sdma_activity_work;
88 struct kfd_process_device *pdd;
89 uint64_t sdma_activity_counter;
90};
91
92struct temp_sdma_queue_list {
93 uint64_t __user *rptr;
94 uint64_t sdma_val;
95 unsigned int queue_id;
96 struct list_head list;
97};
98
99static void kfd_sdma_activity_worker(struct work_struct *work)
100{
101 struct kfd_sdma_activity_handler_workarea *workarea;
102 struct kfd_process_device *pdd;
103 uint64_t val;
104 struct mm_struct *mm;
105 struct queue *q;
106 struct qcm_process_device *qpd;
107 struct device_queue_manager *dqm;
108 int ret = 0;
109 struct temp_sdma_queue_list sdma_q_list;
110 struct temp_sdma_queue_list *sdma_q, *next;
111
112 workarea = container_of(work, struct kfd_sdma_activity_handler_workarea,
113 sdma_activity_work);
114
115 pdd = workarea->pdd;
116 if (!pdd)
117 return;
118 dqm = pdd->dev->dqm;
119 qpd = &pdd->qpd;
120 if (!dqm || !qpd)
121 return;
122 /*
123 * Total SDMA activity is current SDMA activity + past SDMA activity
124 * Past SDMA count is stored in pdd.
125 * To get the current activity counters for all active SDMA queues,
126 * we loop over all SDMA queues and get their counts from user-space.
127 *
128 * We cannot call get_user() with dqm_lock held as it can cause
129 * a circular lock dependency situation. To read the SDMA stats,
130 * we need to do the following:
131 *
132 * 1. Create a temporary list of SDMA queue nodes from the qpd->queues_list,
133 * with dqm_lock/dqm_unlock().
134 * 2. Call get_user() for each node in temporary list without dqm_lock.
135 * Save the SDMA count for each node and also add the count to the total
136 * SDMA count counter.
137 * Its possible, during this step, a few SDMA queue nodes got deleted
138 * from the qpd->queues_list.
139 * 3. Do a second pass over qpd->queues_list to check if any nodes got deleted.
140 * If any node got deleted, its SDMA count would be captured in the sdma
141 * past activity counter. So subtract the SDMA counter stored in step 2
142 * for this node from the total SDMA count.
143 */
144 INIT_LIST_HEAD(&sdma_q_list.list);
145
146 /*
147 * Create the temp list of all SDMA queues
148 */
149 dqm_lock(dqm);
150
151 list_for_each_entry(q, &qpd->queues_list, list) {
152 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
153 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
154 continue;
155
156 sdma_q = kzalloc(sizeof(struct temp_sdma_queue_list), GFP_KERNEL);
157 if (!sdma_q) {
158 dqm_unlock(dqm);
159 goto cleanup;
160 }
161
162 INIT_LIST_HEAD(&sdma_q->list);
163 sdma_q->rptr = (uint64_t __user *)q->properties.read_ptr;
164 sdma_q->queue_id = q->properties.queue_id;
165 list_add_tail(&sdma_q->list, &sdma_q_list.list);
166 }
167
168 /*
169 * If the temp list is empty, then no SDMA queues nodes were found in
170 * qpd->queues_list. Return the past activity count as the total sdma
171 * count
172 */
173 if (list_empty(&sdma_q_list.list)) {
174 workarea->sdma_activity_counter = pdd->sdma_past_activity_counter;
175 dqm_unlock(dqm);
176 return;
177 }
178
179 dqm_unlock(dqm);
180
181 /*
182 * Get the usage count for each SDMA queue in temp_list.
183 */
184 mm = get_task_mm(pdd->process->lead_thread);
185 if (!mm)
186 goto cleanup;
187
188 kthread_use_mm(mm);
189
190 list_for_each_entry(sdma_q, &sdma_q_list.list, list) {
191 val = 0;
192 ret = read_sdma_queue_counter(sdma_q->rptr, &val);
193 if (ret) {
194 pr_debug("Failed to read SDMA queue active counter for queue id: %d",
195 sdma_q->queue_id);
196 } else {
197 sdma_q->sdma_val = val;
198 workarea->sdma_activity_counter += val;
199 }
200 }
201
202 kthread_unuse_mm(mm);
203 mmput(mm);
204
205 /*
206 * Do a second iteration over qpd_queues_list to check if any SDMA
207 * nodes got deleted while fetching SDMA counter.
208 */
209 dqm_lock(dqm);
210
211 workarea->sdma_activity_counter += pdd->sdma_past_activity_counter;
212
213 list_for_each_entry(q, &qpd->queues_list, list) {
214 if (list_empty(&sdma_q_list.list))
215 break;
216
217 if ((q->properties.type != KFD_QUEUE_TYPE_SDMA) &&
218 (q->properties.type != KFD_QUEUE_TYPE_SDMA_XGMI))
219 continue;
220
221 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
222 if (((uint64_t __user *)q->properties.read_ptr == sdma_q->rptr) &&
223 (sdma_q->queue_id == q->properties.queue_id)) {
224 list_del(&sdma_q->list);
225 kfree(sdma_q);
226 break;
227 }
228 }
229 }
230
231 dqm_unlock(dqm);
232
233 /*
234 * If temp list is not empty, it implies some queues got deleted
235 * from qpd->queues_list during SDMA usage read. Subtract the SDMA
236 * count for each node from the total SDMA count.
237 */
238 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
239 workarea->sdma_activity_counter -= sdma_q->sdma_val;
240 list_del(&sdma_q->list);
241 kfree(sdma_q);
242 }
243
244 return;
245
246cleanup:
247 list_for_each_entry_safe(sdma_q, next, &sdma_q_list.list, list) {
248 list_del(&sdma_q->list);
249 kfree(sdma_q);
250 }
251}
252
253/**
254 * kfd_get_cu_occupancy - Collect number of waves in-flight on this device
255 * by current process. Translates acquired wave count into number of compute units
256 * that are occupied.
257 *
258 * @attr: Handle of attribute that allows reporting of wave count. The attribute
259 * handle encapsulates GPU device it is associated with, thereby allowing collection
260 * of waves in flight, etc
261 * @buffer: Handle of user provided buffer updated with wave count
262 *
263 * Return: Number of bytes written to user buffer or an error value
264 */
265static int kfd_get_cu_occupancy(struct attribute *attr, char *buffer)
266{
267 int cu_cnt;
268 int wave_cnt;
269 int max_waves_per_cu;
270 struct kfd_node *dev = NULL;
271 struct kfd_process *proc = NULL;
272 struct kfd_process_device *pdd = NULL;
273
274 pdd = container_of(attr, struct kfd_process_device, attr_cu_occupancy);
275 dev = pdd->dev;
276 if (dev->kfd2kgd->get_cu_occupancy == NULL)
277 return -EINVAL;
278
279 cu_cnt = 0;
280 proc = pdd->process;
281 if (pdd->qpd.queue_count == 0) {
282 pr_debug("Gpu-Id: %d has no active queues for process %d\n",
283 dev->id, proc->pasid);
284 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
285 }
286
287 /* Collect wave count from device if it supports */
288 wave_cnt = 0;
289 max_waves_per_cu = 0;
290 dev->kfd2kgd->get_cu_occupancy(dev->adev, proc->pasid, &wave_cnt,
291 &max_waves_per_cu, 0);
292
293 /* Translate wave count to number of compute units */
294 cu_cnt = (wave_cnt + (max_waves_per_cu - 1)) / max_waves_per_cu;
295 return snprintf(buffer, PAGE_SIZE, "%d\n", cu_cnt);
296}
297
298static ssize_t kfd_procfs_show(struct kobject *kobj, struct attribute *attr,
299 char *buffer)
300{
301 if (strcmp(attr->name, "pasid") == 0) {
302 struct kfd_process *p = container_of(attr, struct kfd_process,
303 attr_pasid);
304
305 return snprintf(buffer, PAGE_SIZE, "%d\n", p->pasid);
306 } else if (strncmp(attr->name, "vram_", 5) == 0) {
307 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
308 attr_vram);
309 return snprintf(buffer, PAGE_SIZE, "%llu\n", READ_ONCE(pdd->vram_usage));
310 } else if (strncmp(attr->name, "sdma_", 5) == 0) {
311 struct kfd_process_device *pdd = container_of(attr, struct kfd_process_device,
312 attr_sdma);
313 struct kfd_sdma_activity_handler_workarea sdma_activity_work_handler;
314
315 INIT_WORK(&sdma_activity_work_handler.sdma_activity_work,
316 kfd_sdma_activity_worker);
317
318 sdma_activity_work_handler.pdd = pdd;
319 sdma_activity_work_handler.sdma_activity_counter = 0;
320
321 schedule_work(&sdma_activity_work_handler.sdma_activity_work);
322
323 flush_work(&sdma_activity_work_handler.sdma_activity_work);
324
325 return snprintf(buffer, PAGE_SIZE, "%llu\n",
326 (sdma_activity_work_handler.sdma_activity_counter)/
327 SDMA_ACTIVITY_DIVISOR);
328 } else {
329 pr_err("Invalid attribute");
330 return -EINVAL;
331 }
332
333 return 0;
334}
335
336static void kfd_procfs_kobj_release(struct kobject *kobj)
337{
338 kfree(kobj);
339}
340
341static const struct sysfs_ops kfd_procfs_ops = {
342 .show = kfd_procfs_show,
343};
344
345static const struct kobj_type procfs_type = {
346 .release = kfd_procfs_kobj_release,
347 .sysfs_ops = &kfd_procfs_ops,
348};
349
350void kfd_procfs_init(void)
351{
352 int ret = 0;
353
354 procfs.kobj = kfd_alloc_struct(procfs.kobj);
355 if (!procfs.kobj)
356 return;
357
358 ret = kobject_init_and_add(procfs.kobj, &procfs_type,
359 &kfd_device->kobj, "proc");
360 if (ret) {
361 pr_warn("Could not create procfs proc folder");
362 /* If we fail to create the procfs, clean up */
363 kfd_procfs_shutdown();
364 }
365}
366
367void kfd_procfs_shutdown(void)
368{
369 if (procfs.kobj) {
370 kobject_del(procfs.kobj);
371 kobject_put(procfs.kobj);
372 procfs.kobj = NULL;
373 }
374}
375
376static ssize_t kfd_procfs_queue_show(struct kobject *kobj,
377 struct attribute *attr, char *buffer)
378{
379 struct queue *q = container_of(kobj, struct queue, kobj);
380
381 if (!strcmp(attr->name, "size"))
382 return snprintf(buffer, PAGE_SIZE, "%llu",
383 q->properties.queue_size);
384 else if (!strcmp(attr->name, "type"))
385 return snprintf(buffer, PAGE_SIZE, "%d", q->properties.type);
386 else if (!strcmp(attr->name, "gpuid"))
387 return snprintf(buffer, PAGE_SIZE, "%u", q->device->id);
388 else
389 pr_err("Invalid attribute");
390
391 return 0;
392}
393
394static ssize_t kfd_procfs_stats_show(struct kobject *kobj,
395 struct attribute *attr, char *buffer)
396{
397 if (strcmp(attr->name, "evicted_ms") == 0) {
398 struct kfd_process_device *pdd = container_of(attr,
399 struct kfd_process_device,
400 attr_evict);
401 uint64_t evict_jiffies;
402
403 evict_jiffies = atomic64_read(&pdd->evict_duration_counter);
404
405 return snprintf(buffer,
406 PAGE_SIZE,
407 "%llu\n",
408 jiffies64_to_msecs(evict_jiffies));
409
410 /* Sysfs handle that gets CU occupancy is per device */
411 } else if (strcmp(attr->name, "cu_occupancy") == 0) {
412 return kfd_get_cu_occupancy(attr, buffer);
413 } else {
414 pr_err("Invalid attribute");
415 }
416
417 return 0;
418}
419
420static ssize_t kfd_sysfs_counters_show(struct kobject *kobj,
421 struct attribute *attr, char *buf)
422{
423 struct kfd_process_device *pdd;
424
425 if (!strcmp(attr->name, "faults")) {
426 pdd = container_of(attr, struct kfd_process_device,
427 attr_faults);
428 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->faults));
429 }
430 if (!strcmp(attr->name, "page_in")) {
431 pdd = container_of(attr, struct kfd_process_device,
432 attr_page_in);
433 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_in));
434 }
435 if (!strcmp(attr->name, "page_out")) {
436 pdd = container_of(attr, struct kfd_process_device,
437 attr_page_out);
438 return sysfs_emit(buf, "%llu\n", READ_ONCE(pdd->page_out));
439 }
440 return 0;
441}
442
443static struct attribute attr_queue_size = {
444 .name = "size",
445 .mode = KFD_SYSFS_FILE_MODE
446};
447
448static struct attribute attr_queue_type = {
449 .name = "type",
450 .mode = KFD_SYSFS_FILE_MODE
451};
452
453static struct attribute attr_queue_gpuid = {
454 .name = "gpuid",
455 .mode = KFD_SYSFS_FILE_MODE
456};
457
458static struct attribute *procfs_queue_attrs[] = {
459 &attr_queue_size,
460 &attr_queue_type,
461 &attr_queue_gpuid,
462 NULL
463};
464ATTRIBUTE_GROUPS(procfs_queue);
465
466static const struct sysfs_ops procfs_queue_ops = {
467 .show = kfd_procfs_queue_show,
468};
469
470static const struct kobj_type procfs_queue_type = {
471 .sysfs_ops = &procfs_queue_ops,
472 .default_groups = procfs_queue_groups,
473};
474
475static const struct sysfs_ops procfs_stats_ops = {
476 .show = kfd_procfs_stats_show,
477};
478
479static const struct kobj_type procfs_stats_type = {
480 .sysfs_ops = &procfs_stats_ops,
481 .release = kfd_procfs_kobj_release,
482};
483
484static const struct sysfs_ops sysfs_counters_ops = {
485 .show = kfd_sysfs_counters_show,
486};
487
488static const struct kobj_type sysfs_counters_type = {
489 .sysfs_ops = &sysfs_counters_ops,
490 .release = kfd_procfs_kobj_release,
491};
492
493int kfd_procfs_add_queue(struct queue *q)
494{
495 struct kfd_process *proc;
496 int ret;
497
498 if (!q || !q->process)
499 return -EINVAL;
500 proc = q->process;
501
502 /* Create proc/<pid>/queues/<queue id> folder */
503 if (!proc->kobj_queues)
504 return -EFAULT;
505 ret = kobject_init_and_add(&q->kobj, &procfs_queue_type,
506 proc->kobj_queues, "%u", q->properties.queue_id);
507 if (ret < 0) {
508 pr_warn("Creating proc/<pid>/queues/%u failed",
509 q->properties.queue_id);
510 kobject_put(&q->kobj);
511 return ret;
512 }
513
514 return 0;
515}
516
517static void kfd_sysfs_create_file(struct kobject *kobj, struct attribute *attr,
518 char *name)
519{
520 int ret;
521
522 if (!kobj || !attr || !name)
523 return;
524
525 attr->name = name;
526 attr->mode = KFD_SYSFS_FILE_MODE;
527 sysfs_attr_init(attr);
528
529 ret = sysfs_create_file(kobj, attr);
530 if (ret)
531 pr_warn("Create sysfs %s/%s failed %d", kobj->name, name, ret);
532}
533
534static void kfd_procfs_add_sysfs_stats(struct kfd_process *p)
535{
536 int ret;
537 int i;
538 char stats_dir_filename[MAX_SYSFS_FILENAME_LEN];
539
540 if (!p || !p->kobj)
541 return;
542
543 /*
544 * Create sysfs files for each GPU:
545 * - proc/<pid>/stats_<gpuid>/
546 * - proc/<pid>/stats_<gpuid>/evicted_ms
547 * - proc/<pid>/stats_<gpuid>/cu_occupancy
548 */
549 for (i = 0; i < p->n_pdds; i++) {
550 struct kfd_process_device *pdd = p->pdds[i];
551
552 snprintf(stats_dir_filename, MAX_SYSFS_FILENAME_LEN,
553 "stats_%u", pdd->dev->id);
554 pdd->kobj_stats = kfd_alloc_struct(pdd->kobj_stats);
555 if (!pdd->kobj_stats)
556 return;
557
558 ret = kobject_init_and_add(pdd->kobj_stats,
559 &procfs_stats_type,
560 p->kobj,
561 stats_dir_filename);
562
563 if (ret) {
564 pr_warn("Creating KFD proc/stats_%s folder failed",
565 stats_dir_filename);
566 kobject_put(pdd->kobj_stats);
567 pdd->kobj_stats = NULL;
568 return;
569 }
570
571 kfd_sysfs_create_file(pdd->kobj_stats, &pdd->attr_evict,
572 "evicted_ms");
573 /* Add sysfs file to report compute unit occupancy */
574 if (pdd->dev->kfd2kgd->get_cu_occupancy)
575 kfd_sysfs_create_file(pdd->kobj_stats,
576 &pdd->attr_cu_occupancy,
577 "cu_occupancy");
578 }
579}
580
581static void kfd_procfs_add_sysfs_counters(struct kfd_process *p)
582{
583 int ret = 0;
584 int i;
585 char counters_dir_filename[MAX_SYSFS_FILENAME_LEN];
586
587 if (!p || !p->kobj)
588 return;
589
590 /*
591 * Create sysfs files for each GPU which supports SVM
592 * - proc/<pid>/counters_<gpuid>/
593 * - proc/<pid>/counters_<gpuid>/faults
594 * - proc/<pid>/counters_<gpuid>/page_in
595 * - proc/<pid>/counters_<gpuid>/page_out
596 */
597 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
598 struct kfd_process_device *pdd = p->pdds[i];
599 struct kobject *kobj_counters;
600
601 snprintf(counters_dir_filename, MAX_SYSFS_FILENAME_LEN,
602 "counters_%u", pdd->dev->id);
603 kobj_counters = kfd_alloc_struct(kobj_counters);
604 if (!kobj_counters)
605 return;
606
607 ret = kobject_init_and_add(kobj_counters, &sysfs_counters_type,
608 p->kobj, counters_dir_filename);
609 if (ret) {
610 pr_warn("Creating KFD proc/%s folder failed",
611 counters_dir_filename);
612 kobject_put(kobj_counters);
613 return;
614 }
615
616 pdd->kobj_counters = kobj_counters;
617 kfd_sysfs_create_file(kobj_counters, &pdd->attr_faults,
618 "faults");
619 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_in,
620 "page_in");
621 kfd_sysfs_create_file(kobj_counters, &pdd->attr_page_out,
622 "page_out");
623 }
624}
625
626static void kfd_procfs_add_sysfs_files(struct kfd_process *p)
627{
628 int i;
629
630 if (!p || !p->kobj)
631 return;
632
633 /*
634 * Create sysfs files for each GPU:
635 * - proc/<pid>/vram_<gpuid>
636 * - proc/<pid>/sdma_<gpuid>
637 */
638 for (i = 0; i < p->n_pdds; i++) {
639 struct kfd_process_device *pdd = p->pdds[i];
640
641 snprintf(pdd->vram_filename, MAX_SYSFS_FILENAME_LEN, "vram_%u",
642 pdd->dev->id);
643 kfd_sysfs_create_file(p->kobj, &pdd->attr_vram,
644 pdd->vram_filename);
645
646 snprintf(pdd->sdma_filename, MAX_SYSFS_FILENAME_LEN, "sdma_%u",
647 pdd->dev->id);
648 kfd_sysfs_create_file(p->kobj, &pdd->attr_sdma,
649 pdd->sdma_filename);
650 }
651}
652
653void kfd_procfs_del_queue(struct queue *q)
654{
655 if (!q)
656 return;
657
658 kobject_del(&q->kobj);
659 kobject_put(&q->kobj);
660}
661
662int kfd_process_create_wq(void)
663{
664 if (!kfd_process_wq)
665 kfd_process_wq = alloc_workqueue("kfd_process_wq", 0, 0);
666 if (!kfd_restore_wq)
667 kfd_restore_wq = alloc_ordered_workqueue("kfd_restore_wq",
668 WQ_FREEZABLE);
669
670 if (!kfd_process_wq || !kfd_restore_wq) {
671 kfd_process_destroy_wq();
672 return -ENOMEM;
673 }
674
675 return 0;
676}
677
678void kfd_process_destroy_wq(void)
679{
680 if (kfd_process_wq) {
681 destroy_workqueue(kfd_process_wq);
682 kfd_process_wq = NULL;
683 }
684 if (kfd_restore_wq) {
685 destroy_workqueue(kfd_restore_wq);
686 kfd_restore_wq = NULL;
687 }
688}
689
690static void kfd_process_free_gpuvm(struct kgd_mem *mem,
691 struct kfd_process_device *pdd, void **kptr)
692{
693 struct kfd_node *dev = pdd->dev;
694
695 if (kptr && *kptr) {
696 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
697 *kptr = NULL;
698 }
699
700 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(dev->adev, mem, pdd->drm_priv);
701 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, mem, pdd->drm_priv,
702 NULL);
703}
704
705/* kfd_process_alloc_gpuvm - Allocate GPU VM for the KFD process
706 * This function should be only called right after the process
707 * is created and when kfd_processes_mutex is still being held
708 * to avoid concurrency. Because of that exclusiveness, we do
709 * not need to take p->mutex.
710 */
711static int kfd_process_alloc_gpuvm(struct kfd_process_device *pdd,
712 uint64_t gpu_va, uint32_t size,
713 uint32_t flags, struct kgd_mem **mem, void **kptr)
714{
715 struct kfd_node *kdev = pdd->dev;
716 int err;
717
718 err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(kdev->adev, gpu_va, size,
719 pdd->drm_priv, mem, NULL,
720 flags, false);
721 if (err)
722 goto err_alloc_mem;
723
724 err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(kdev->adev, *mem,
725 pdd->drm_priv);
726 if (err)
727 goto err_map_mem;
728
729 err = amdgpu_amdkfd_gpuvm_sync_memory(kdev->adev, *mem, true);
730 if (err) {
731 pr_debug("Sync memory failed, wait interrupted by user signal\n");
732 goto sync_memory_failed;
733 }
734
735 if (kptr) {
736 err = amdgpu_amdkfd_gpuvm_map_gtt_bo_to_kernel(
737 (struct kgd_mem *)*mem, kptr, NULL);
738 if (err) {
739 pr_debug("Map GTT BO to kernel failed\n");
740 goto sync_memory_failed;
741 }
742 }
743
744 return err;
745
746sync_memory_failed:
747 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(kdev->adev, *mem, pdd->drm_priv);
748
749err_map_mem:
750 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(kdev->adev, *mem, pdd->drm_priv,
751 NULL);
752err_alloc_mem:
753 *mem = NULL;
754 *kptr = NULL;
755 return err;
756}
757
758/* kfd_process_device_reserve_ib_mem - Reserve memory inside the
759 * process for IB usage The memory reserved is for KFD to submit
760 * IB to AMDGPU from kernel. If the memory is reserved
761 * successfully, ib_kaddr will have the CPU/kernel
762 * address. Check ib_kaddr before accessing the memory.
763 */
764static int kfd_process_device_reserve_ib_mem(struct kfd_process_device *pdd)
765{
766 struct qcm_process_device *qpd = &pdd->qpd;
767 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT |
768 KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE |
769 KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE |
770 KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
771 struct kgd_mem *mem;
772 void *kaddr;
773 int ret;
774
775 if (qpd->ib_kaddr || !qpd->ib_base)
776 return 0;
777
778 /* ib_base is only set for dGPU */
779 ret = kfd_process_alloc_gpuvm(pdd, qpd->ib_base, PAGE_SIZE, flags,
780 &mem, &kaddr);
781 if (ret)
782 return ret;
783
784 qpd->ib_mem = mem;
785 qpd->ib_kaddr = kaddr;
786
787 return 0;
788}
789
790static void kfd_process_device_destroy_ib_mem(struct kfd_process_device *pdd)
791{
792 struct qcm_process_device *qpd = &pdd->qpd;
793
794 if (!qpd->ib_kaddr || !qpd->ib_base)
795 return;
796
797 kfd_process_free_gpuvm(qpd->ib_mem, pdd, &qpd->ib_kaddr);
798}
799
800struct kfd_process *kfd_create_process(struct task_struct *thread)
801{
802 struct kfd_process *process;
803 int ret;
804
805 if (!(thread->mm && mmget_not_zero(thread->mm)))
806 return ERR_PTR(-EINVAL);
807
808 /* Only the pthreads threading model is supported. */
809 if (thread->group_leader->mm != thread->mm) {
810 mmput(thread->mm);
811 return ERR_PTR(-EINVAL);
812 }
813
814 /*
815 * take kfd processes mutex before starting of process creation
816 * so there won't be a case where two threads of the same process
817 * create two kfd_process structures
818 */
819 mutex_lock(&kfd_processes_mutex);
820
821 if (kfd_is_locked()) {
822 mutex_unlock(&kfd_processes_mutex);
823 pr_debug("KFD is locked! Cannot create process");
824 return ERR_PTR(-EINVAL);
825 }
826
827 /* A prior open of /dev/kfd could have already created the process. */
828 process = find_process(thread, false);
829 if (process) {
830 pr_debug("Process already found\n");
831 } else {
832 process = create_process(thread);
833 if (IS_ERR(process))
834 goto out;
835
836 if (!procfs.kobj)
837 goto out;
838
839 process->kobj = kfd_alloc_struct(process->kobj);
840 if (!process->kobj) {
841 pr_warn("Creating procfs kobject failed");
842 goto out;
843 }
844 ret = kobject_init_and_add(process->kobj, &procfs_type,
845 procfs.kobj, "%d",
846 (int)process->lead_thread->pid);
847 if (ret) {
848 pr_warn("Creating procfs pid directory failed");
849 kobject_put(process->kobj);
850 goto out;
851 }
852
853 kfd_sysfs_create_file(process->kobj, &process->attr_pasid,
854 "pasid");
855
856 process->kobj_queues = kobject_create_and_add("queues",
857 process->kobj);
858 if (!process->kobj_queues)
859 pr_warn("Creating KFD proc/queues folder failed");
860
861 kfd_procfs_add_sysfs_stats(process);
862 kfd_procfs_add_sysfs_files(process);
863 kfd_procfs_add_sysfs_counters(process);
864
865 init_waitqueue_head(&process->wait_irq_drain);
866 }
867out:
868 if (!IS_ERR(process))
869 kref_get(&process->ref);
870 mutex_unlock(&kfd_processes_mutex);
871 mmput(thread->mm);
872
873 return process;
874}
875
876struct kfd_process *kfd_get_process(const struct task_struct *thread)
877{
878 struct kfd_process *process;
879
880 if (!thread->mm)
881 return ERR_PTR(-EINVAL);
882
883 /* Only the pthreads threading model is supported. */
884 if (thread->group_leader->mm != thread->mm)
885 return ERR_PTR(-EINVAL);
886
887 process = find_process(thread, false);
888 if (!process)
889 return ERR_PTR(-EINVAL);
890
891 return process;
892}
893
894static struct kfd_process *find_process_by_mm(const struct mm_struct *mm)
895{
896 struct kfd_process *process;
897
898 hash_for_each_possible_rcu(kfd_processes_table, process,
899 kfd_processes, (uintptr_t)mm)
900 if (process->mm == mm)
901 return process;
902
903 return NULL;
904}
905
906static struct kfd_process *find_process(const struct task_struct *thread,
907 bool ref)
908{
909 struct kfd_process *p;
910 int idx;
911
912 idx = srcu_read_lock(&kfd_processes_srcu);
913 p = find_process_by_mm(thread->mm);
914 if (p && ref)
915 kref_get(&p->ref);
916 srcu_read_unlock(&kfd_processes_srcu, idx);
917
918 return p;
919}
920
921void kfd_unref_process(struct kfd_process *p)
922{
923 kref_put(&p->ref, kfd_process_ref_release);
924}
925
926/* This increments the process->ref counter. */
927struct kfd_process *kfd_lookup_process_by_pid(struct pid *pid)
928{
929 struct task_struct *task = NULL;
930 struct kfd_process *p = NULL;
931
932 if (!pid) {
933 task = current;
934 get_task_struct(task);
935 } else {
936 task = get_pid_task(pid, PIDTYPE_PID);
937 }
938
939 if (task) {
940 p = find_process(task, true);
941 put_task_struct(task);
942 }
943
944 return p;
945}
946
947static void kfd_process_device_free_bos(struct kfd_process_device *pdd)
948{
949 struct kfd_process *p = pdd->process;
950 void *mem;
951 int id;
952 int i;
953
954 /*
955 * Remove all handles from idr and release appropriate
956 * local memory object
957 */
958 idr_for_each_entry(&pdd->alloc_idr, mem, id) {
959
960 for (i = 0; i < p->n_pdds; i++) {
961 struct kfd_process_device *peer_pdd = p->pdds[i];
962
963 if (!peer_pdd->drm_priv)
964 continue;
965 amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
966 peer_pdd->dev->adev, mem, peer_pdd->drm_priv);
967 }
968
969 amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, mem,
970 pdd->drm_priv, NULL);
971 kfd_process_device_remove_obj_handle(pdd, id);
972 }
973}
974
975/*
976 * Just kunmap and unpin signal BO here. It will be freed in
977 * kfd_process_free_outstanding_kfd_bos()
978 */
979static void kfd_process_kunmap_signal_bo(struct kfd_process *p)
980{
981 struct kfd_process_device *pdd;
982 struct kfd_node *kdev;
983 void *mem;
984
985 kdev = kfd_device_by_id(GET_GPU_ID(p->signal_handle));
986 if (!kdev)
987 return;
988
989 mutex_lock(&p->mutex);
990
991 pdd = kfd_get_process_device_data(kdev, p);
992 if (!pdd)
993 goto out;
994
995 mem = kfd_process_device_translate_handle(
996 pdd, GET_IDR_HANDLE(p->signal_handle));
997 if (!mem)
998 goto out;
999
1000 amdgpu_amdkfd_gpuvm_unmap_gtt_bo_from_kernel(mem);
1001
1002out:
1003 mutex_unlock(&p->mutex);
1004}
1005
1006static void kfd_process_free_outstanding_kfd_bos(struct kfd_process *p)
1007{
1008 int i;
1009
1010 for (i = 0; i < p->n_pdds; i++)
1011 kfd_process_device_free_bos(p->pdds[i]);
1012}
1013
1014static void kfd_process_destroy_pdds(struct kfd_process *p)
1015{
1016 int i;
1017
1018 for (i = 0; i < p->n_pdds; i++) {
1019 struct kfd_process_device *pdd = p->pdds[i];
1020
1021 pr_debug("Releasing pdd (topology id %d) for process (pasid 0x%x)\n",
1022 pdd->dev->id, p->pasid);
1023
1024 kfd_process_device_destroy_cwsr_dgpu(pdd);
1025 kfd_process_device_destroy_ib_mem(pdd);
1026
1027 if (pdd->drm_file) {
1028 amdgpu_amdkfd_gpuvm_release_process_vm(
1029 pdd->dev->adev, pdd->drm_priv);
1030 fput(pdd->drm_file);
1031 }
1032
1033 if (pdd->qpd.cwsr_kaddr && !pdd->qpd.cwsr_base)
1034 free_pages((unsigned long)pdd->qpd.cwsr_kaddr,
1035 get_order(KFD_CWSR_TBA_TMA_SIZE));
1036
1037 idr_destroy(&pdd->alloc_idr);
1038
1039 kfd_free_process_doorbells(pdd->dev->kfd, pdd);
1040
1041 if (pdd->dev->kfd->shared_resources.enable_mes)
1042 amdgpu_amdkfd_free_gtt_mem(pdd->dev->adev,
1043 pdd->proc_ctx_bo);
1044 /*
1045 * before destroying pdd, make sure to report availability
1046 * for auto suspend
1047 */
1048 if (pdd->runtime_inuse) {
1049 pm_runtime_mark_last_busy(adev_to_drm(pdd->dev->adev)->dev);
1050 pm_runtime_put_autosuspend(adev_to_drm(pdd->dev->adev)->dev);
1051 pdd->runtime_inuse = false;
1052 }
1053
1054 kfree(pdd);
1055 p->pdds[i] = NULL;
1056 }
1057 p->n_pdds = 0;
1058}
1059
1060static void kfd_process_remove_sysfs(struct kfd_process *p)
1061{
1062 struct kfd_process_device *pdd;
1063 int i;
1064
1065 if (!p->kobj)
1066 return;
1067
1068 sysfs_remove_file(p->kobj, &p->attr_pasid);
1069 kobject_del(p->kobj_queues);
1070 kobject_put(p->kobj_queues);
1071 p->kobj_queues = NULL;
1072
1073 for (i = 0; i < p->n_pdds; i++) {
1074 pdd = p->pdds[i];
1075
1076 sysfs_remove_file(p->kobj, &pdd->attr_vram);
1077 sysfs_remove_file(p->kobj, &pdd->attr_sdma);
1078
1079 sysfs_remove_file(pdd->kobj_stats, &pdd->attr_evict);
1080 if (pdd->dev->kfd2kgd->get_cu_occupancy)
1081 sysfs_remove_file(pdd->kobj_stats,
1082 &pdd->attr_cu_occupancy);
1083 kobject_del(pdd->kobj_stats);
1084 kobject_put(pdd->kobj_stats);
1085 pdd->kobj_stats = NULL;
1086 }
1087
1088 for_each_set_bit(i, p->svms.bitmap_supported, p->n_pdds) {
1089 pdd = p->pdds[i];
1090
1091 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_faults);
1092 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_in);
1093 sysfs_remove_file(pdd->kobj_counters, &pdd->attr_page_out);
1094 kobject_del(pdd->kobj_counters);
1095 kobject_put(pdd->kobj_counters);
1096 pdd->kobj_counters = NULL;
1097 }
1098
1099 kobject_del(p->kobj);
1100 kobject_put(p->kobj);
1101 p->kobj = NULL;
1102}
1103
1104/* No process locking is needed in this function, because the process
1105 * is not findable any more. We must assume that no other thread is
1106 * using it any more, otherwise we couldn't safely free the process
1107 * structure in the end.
1108 */
1109static void kfd_process_wq_release(struct work_struct *work)
1110{
1111 struct kfd_process *p = container_of(work, struct kfd_process,
1112 release_work);
1113 struct dma_fence *ef;
1114
1115 kfd_process_dequeue_from_all_devices(p);
1116 pqm_uninit(&p->pqm);
1117
1118 /* Signal the eviction fence after user mode queues are
1119 * destroyed. This allows any BOs to be freed without
1120 * triggering pointless evictions or waiting for fences.
1121 */
1122 synchronize_rcu();
1123 ef = rcu_access_pointer(p->ef);
1124 dma_fence_signal(ef);
1125
1126 kfd_process_remove_sysfs(p);
1127
1128 kfd_process_kunmap_signal_bo(p);
1129 kfd_process_free_outstanding_kfd_bos(p);
1130 svm_range_list_fini(p);
1131
1132 kfd_process_destroy_pdds(p);
1133 dma_fence_put(ef);
1134
1135 kfd_event_free_process(p);
1136
1137 kfd_pasid_free(p->pasid);
1138 mutex_destroy(&p->mutex);
1139
1140 put_task_struct(p->lead_thread);
1141
1142 kfree(p);
1143}
1144
1145static void kfd_process_ref_release(struct kref *ref)
1146{
1147 struct kfd_process *p = container_of(ref, struct kfd_process, ref);
1148
1149 INIT_WORK(&p->release_work, kfd_process_wq_release);
1150 queue_work(kfd_process_wq, &p->release_work);
1151}
1152
1153static struct mmu_notifier *kfd_process_alloc_notifier(struct mm_struct *mm)
1154{
1155 int idx = srcu_read_lock(&kfd_processes_srcu);
1156 struct kfd_process *p = find_process_by_mm(mm);
1157
1158 srcu_read_unlock(&kfd_processes_srcu, idx);
1159
1160 return p ? &p->mmu_notifier : ERR_PTR(-ESRCH);
1161}
1162
1163static void kfd_process_free_notifier(struct mmu_notifier *mn)
1164{
1165 kfd_unref_process(container_of(mn, struct kfd_process, mmu_notifier));
1166}
1167
1168static void kfd_process_notifier_release_internal(struct kfd_process *p)
1169{
1170 int i;
1171
1172 cancel_delayed_work_sync(&p->eviction_work);
1173 cancel_delayed_work_sync(&p->restore_work);
1174
1175 for (i = 0; i < p->n_pdds; i++) {
1176 struct kfd_process_device *pdd = p->pdds[i];
1177
1178 /* re-enable GFX OFF since runtime enable with ttmp setup disabled it. */
1179 if (!kfd_dbg_is_rlc_restore_supported(pdd->dev) && p->runtime_info.ttmp_setup)
1180 amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
1181 }
1182
1183 /* Indicate to other users that MM is no longer valid */
1184 p->mm = NULL;
1185 kfd_dbg_trap_disable(p);
1186
1187 if (atomic_read(&p->debugged_process_count) > 0) {
1188 struct kfd_process *target;
1189 unsigned int temp;
1190 int idx = srcu_read_lock(&kfd_processes_srcu);
1191
1192 hash_for_each_rcu(kfd_processes_table, temp, target, kfd_processes) {
1193 if (target->debugger_process && target->debugger_process == p) {
1194 mutex_lock_nested(&target->mutex, 1);
1195 kfd_dbg_trap_disable(target);
1196 mutex_unlock(&target->mutex);
1197 if (atomic_read(&p->debugged_process_count) == 0)
1198 break;
1199 }
1200 }
1201
1202 srcu_read_unlock(&kfd_processes_srcu, idx);
1203 }
1204
1205 mmu_notifier_put(&p->mmu_notifier);
1206}
1207
1208static void kfd_process_notifier_release(struct mmu_notifier *mn,
1209 struct mm_struct *mm)
1210{
1211 struct kfd_process *p;
1212
1213 /*
1214 * The kfd_process structure can not be free because the
1215 * mmu_notifier srcu is read locked
1216 */
1217 p = container_of(mn, struct kfd_process, mmu_notifier);
1218 if (WARN_ON(p->mm != mm))
1219 return;
1220
1221 mutex_lock(&kfd_processes_mutex);
1222 /*
1223 * Do early return if table is empty.
1224 *
1225 * This could potentially happen if this function is called concurrently
1226 * by mmu_notifier and by kfd_cleanup_pocesses.
1227 *
1228 */
1229 if (hash_empty(kfd_processes_table)) {
1230 mutex_unlock(&kfd_processes_mutex);
1231 return;
1232 }
1233 hash_del_rcu(&p->kfd_processes);
1234 mutex_unlock(&kfd_processes_mutex);
1235 synchronize_srcu(&kfd_processes_srcu);
1236
1237 kfd_process_notifier_release_internal(p);
1238}
1239
1240static const struct mmu_notifier_ops kfd_process_mmu_notifier_ops = {
1241 .release = kfd_process_notifier_release,
1242 .alloc_notifier = kfd_process_alloc_notifier,
1243 .free_notifier = kfd_process_free_notifier,
1244};
1245
1246/*
1247 * This code handles the case when driver is being unloaded before all
1248 * mm_struct are released. We need to safely free the kfd_process and
1249 * avoid race conditions with mmu_notifier that might try to free them.
1250 *
1251 */
1252void kfd_cleanup_processes(void)
1253{
1254 struct kfd_process *p;
1255 struct hlist_node *p_temp;
1256 unsigned int temp;
1257 HLIST_HEAD(cleanup_list);
1258
1259 /*
1260 * Move all remaining kfd_process from the process table to a
1261 * temp list for processing. Once done, callback from mmu_notifier
1262 * release will not see the kfd_process in the table and do early return,
1263 * avoiding double free issues.
1264 */
1265 mutex_lock(&kfd_processes_mutex);
1266 hash_for_each_safe(kfd_processes_table, temp, p_temp, p, kfd_processes) {
1267 hash_del_rcu(&p->kfd_processes);
1268 synchronize_srcu(&kfd_processes_srcu);
1269 hlist_add_head(&p->kfd_processes, &cleanup_list);
1270 }
1271 mutex_unlock(&kfd_processes_mutex);
1272
1273 hlist_for_each_entry_safe(p, p_temp, &cleanup_list, kfd_processes)
1274 kfd_process_notifier_release_internal(p);
1275
1276 /*
1277 * Ensures that all outstanding free_notifier get called, triggering
1278 * the release of the kfd_process struct.
1279 */
1280 mmu_notifier_synchronize();
1281}
1282
1283int kfd_process_init_cwsr_apu(struct kfd_process *p, struct file *filep)
1284{
1285 unsigned long offset;
1286 int i;
1287
1288 if (p->has_cwsr)
1289 return 0;
1290
1291 for (i = 0; i < p->n_pdds; i++) {
1292 struct kfd_node *dev = p->pdds[i]->dev;
1293 struct qcm_process_device *qpd = &p->pdds[i]->qpd;
1294
1295 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || qpd->cwsr_base)
1296 continue;
1297
1298 offset = KFD_MMAP_TYPE_RESERVED_MEM | KFD_MMAP_GPU_ID(dev->id);
1299 qpd->tba_addr = (int64_t)vm_mmap(filep, 0,
1300 KFD_CWSR_TBA_TMA_SIZE, PROT_READ | PROT_EXEC,
1301 MAP_SHARED, offset);
1302
1303 if (IS_ERR_VALUE(qpd->tba_addr)) {
1304 int err = qpd->tba_addr;
1305
1306 pr_err("Failure to set tba address. error %d.\n", err);
1307 qpd->tba_addr = 0;
1308 qpd->cwsr_kaddr = NULL;
1309 return err;
1310 }
1311
1312 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1313
1314 kfd_process_set_trap_debug_flag(qpd, p->debug_trap_enabled);
1315
1316 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1317 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1318 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1319 }
1320
1321 p->has_cwsr = true;
1322
1323 return 0;
1324}
1325
1326static int kfd_process_device_init_cwsr_dgpu(struct kfd_process_device *pdd)
1327{
1328 struct kfd_node *dev = pdd->dev;
1329 struct qcm_process_device *qpd = &pdd->qpd;
1330 uint32_t flags = KFD_IOC_ALLOC_MEM_FLAGS_GTT
1331 | KFD_IOC_ALLOC_MEM_FLAGS_NO_SUBSTITUTE
1332 | KFD_IOC_ALLOC_MEM_FLAGS_EXECUTABLE;
1333 struct kgd_mem *mem;
1334 void *kaddr;
1335 int ret;
1336
1337 if (!dev->kfd->cwsr_enabled || qpd->cwsr_kaddr || !qpd->cwsr_base)
1338 return 0;
1339
1340 /* cwsr_base is only set for dGPU */
1341 ret = kfd_process_alloc_gpuvm(pdd, qpd->cwsr_base,
1342 KFD_CWSR_TBA_TMA_SIZE, flags, &mem, &kaddr);
1343 if (ret)
1344 return ret;
1345
1346 qpd->cwsr_mem = mem;
1347 qpd->cwsr_kaddr = kaddr;
1348 qpd->tba_addr = qpd->cwsr_base;
1349
1350 memcpy(qpd->cwsr_kaddr, dev->kfd->cwsr_isa, dev->kfd->cwsr_isa_size);
1351
1352 kfd_process_set_trap_debug_flag(&pdd->qpd,
1353 pdd->process->debug_trap_enabled);
1354
1355 qpd->tma_addr = qpd->tba_addr + KFD_CWSR_TMA_OFFSET;
1356 pr_debug("set tba :0x%llx, tma:0x%llx, cwsr_kaddr:%p for pqm.\n",
1357 qpd->tba_addr, qpd->tma_addr, qpd->cwsr_kaddr);
1358
1359 return 0;
1360}
1361
1362static void kfd_process_device_destroy_cwsr_dgpu(struct kfd_process_device *pdd)
1363{
1364 struct kfd_node *dev = pdd->dev;
1365 struct qcm_process_device *qpd = &pdd->qpd;
1366
1367 if (!dev->kfd->cwsr_enabled || !qpd->cwsr_kaddr || !qpd->cwsr_base)
1368 return;
1369
1370 kfd_process_free_gpuvm(qpd->cwsr_mem, pdd, &qpd->cwsr_kaddr);
1371}
1372
1373void kfd_process_set_trap_handler(struct qcm_process_device *qpd,
1374 uint64_t tba_addr,
1375 uint64_t tma_addr)
1376{
1377 if (qpd->cwsr_kaddr) {
1378 /* KFD trap handler is bound, record as second-level TBA/TMA
1379 * in first-level TMA. First-level trap will jump to second.
1380 */
1381 uint64_t *tma =
1382 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1383 tma[0] = tba_addr;
1384 tma[1] = tma_addr;
1385 } else {
1386 /* No trap handler bound, bind as first-level TBA/TMA. */
1387 qpd->tba_addr = tba_addr;
1388 qpd->tma_addr = tma_addr;
1389 }
1390}
1391
1392bool kfd_process_xnack_mode(struct kfd_process *p, bool supported)
1393{
1394 int i;
1395
1396 /* On most GFXv9 GPUs, the retry mode in the SQ must match the
1397 * boot time retry setting. Mixing processes with different
1398 * XNACK/retry settings can hang the GPU.
1399 *
1400 * Different GPUs can have different noretry settings depending
1401 * on HW bugs or limitations. We need to find at least one
1402 * XNACK mode for this process that's compatible with all GPUs.
1403 * Fortunately GPUs with retry enabled (noretry=0) can run code
1404 * built for XNACK-off. On GFXv9 it may perform slower.
1405 *
1406 * Therefore applications built for XNACK-off can always be
1407 * supported and will be our fallback if any GPU does not
1408 * support retry.
1409 */
1410 for (i = 0; i < p->n_pdds; i++) {
1411 struct kfd_node *dev = p->pdds[i]->dev;
1412
1413 /* Only consider GFXv9 and higher GPUs. Older GPUs don't
1414 * support the SVM APIs and don't need to be considered
1415 * for the XNACK mode selection.
1416 */
1417 if (!KFD_IS_SOC15(dev))
1418 continue;
1419 /* Aldebaran can always support XNACK because it can support
1420 * per-process XNACK mode selection. But let the dev->noretry
1421 * setting still influence the default XNACK mode.
1422 */
1423 if (supported && KFD_SUPPORT_XNACK_PER_PROCESS(dev)) {
1424 if (!amdgpu_sriov_xnack_support(dev->kfd->adev)) {
1425 pr_debug("SRIOV platform xnack not supported\n");
1426 return false;
1427 }
1428 continue;
1429 }
1430
1431 /* GFXv10 and later GPUs do not support shader preemption
1432 * during page faults. This can lead to poor QoS for queue
1433 * management and memory-manager-related preemptions or
1434 * even deadlocks.
1435 */
1436 if (KFD_GC_VERSION(dev) >= IP_VERSION(10, 1, 1))
1437 return false;
1438
1439 if (dev->kfd->noretry)
1440 return false;
1441 }
1442
1443 return true;
1444}
1445
1446void kfd_process_set_trap_debug_flag(struct qcm_process_device *qpd,
1447 bool enabled)
1448{
1449 if (qpd->cwsr_kaddr) {
1450 uint64_t *tma =
1451 (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
1452 tma[2] = enabled;
1453 }
1454}
1455
1456/*
1457 * On return the kfd_process is fully operational and will be freed when the
1458 * mm is released
1459 */
1460static struct kfd_process *create_process(const struct task_struct *thread)
1461{
1462 struct kfd_process *process;
1463 struct mmu_notifier *mn;
1464 int err = -ENOMEM;
1465
1466 process = kzalloc(sizeof(*process), GFP_KERNEL);
1467 if (!process)
1468 goto err_alloc_process;
1469
1470 kref_init(&process->ref);
1471 mutex_init(&process->mutex);
1472 process->mm = thread->mm;
1473 process->lead_thread = thread->group_leader;
1474 process->n_pdds = 0;
1475 process->queues_paused = false;
1476 INIT_DELAYED_WORK(&process->eviction_work, evict_process_worker);
1477 INIT_DELAYED_WORK(&process->restore_work, restore_process_worker);
1478 process->last_restore_timestamp = get_jiffies_64();
1479 err = kfd_event_init_process(process);
1480 if (err)
1481 goto err_event_init;
1482 process->is_32bit_user_mode = in_compat_syscall();
1483 process->debug_trap_enabled = false;
1484 process->debugger_process = NULL;
1485 process->exception_enable_mask = 0;
1486 atomic_set(&process->debugged_process_count, 0);
1487 sema_init(&process->runtime_enable_sema, 0);
1488
1489 process->pasid = kfd_pasid_alloc();
1490 if (process->pasid == 0) {
1491 err = -ENOSPC;
1492 goto err_alloc_pasid;
1493 }
1494
1495 err = pqm_init(&process->pqm, process);
1496 if (err != 0)
1497 goto err_process_pqm_init;
1498
1499 /* init process apertures*/
1500 err = kfd_init_apertures(process);
1501 if (err != 0)
1502 goto err_init_apertures;
1503
1504 /* Check XNACK support after PDDs are created in kfd_init_apertures */
1505 process->xnack_enabled = kfd_process_xnack_mode(process, false);
1506
1507 err = svm_range_list_init(process);
1508 if (err)
1509 goto err_init_svm_range_list;
1510
1511 /* alloc_notifier needs to find the process in the hash table */
1512 hash_add_rcu(kfd_processes_table, &process->kfd_processes,
1513 (uintptr_t)process->mm);
1514
1515 /* Avoid free_notifier to start kfd_process_wq_release if
1516 * mmu_notifier_get failed because of pending signal.
1517 */
1518 kref_get(&process->ref);
1519
1520 /* MMU notifier registration must be the last call that can fail
1521 * because after this point we cannot unwind the process creation.
1522 * After this point, mmu_notifier_put will trigger the cleanup by
1523 * dropping the last process reference in the free_notifier.
1524 */
1525 mn = mmu_notifier_get(&kfd_process_mmu_notifier_ops, process->mm);
1526 if (IS_ERR(mn)) {
1527 err = PTR_ERR(mn);
1528 goto err_register_notifier;
1529 }
1530 BUG_ON(mn != &process->mmu_notifier);
1531
1532 kfd_unref_process(process);
1533 get_task_struct(process->lead_thread);
1534
1535 INIT_WORK(&process->debug_event_workarea, debug_event_write_work_handler);
1536
1537 return process;
1538
1539err_register_notifier:
1540 hash_del_rcu(&process->kfd_processes);
1541 svm_range_list_fini(process);
1542err_init_svm_range_list:
1543 kfd_process_free_outstanding_kfd_bos(process);
1544 kfd_process_destroy_pdds(process);
1545err_init_apertures:
1546 pqm_uninit(&process->pqm);
1547err_process_pqm_init:
1548 kfd_pasid_free(process->pasid);
1549err_alloc_pasid:
1550 kfd_event_free_process(process);
1551err_event_init:
1552 mutex_destroy(&process->mutex);
1553 kfree(process);
1554err_alloc_process:
1555 return ERR_PTR(err);
1556}
1557
1558struct kfd_process_device *kfd_get_process_device_data(struct kfd_node *dev,
1559 struct kfd_process *p)
1560{
1561 int i;
1562
1563 for (i = 0; i < p->n_pdds; i++)
1564 if (p->pdds[i]->dev == dev)
1565 return p->pdds[i];
1566
1567 return NULL;
1568}
1569
1570struct kfd_process_device *kfd_create_process_device_data(struct kfd_node *dev,
1571 struct kfd_process *p)
1572{
1573 struct kfd_process_device *pdd = NULL;
1574 int retval = 0;
1575
1576 if (WARN_ON_ONCE(p->n_pdds >= MAX_GPU_INSTANCE))
1577 return NULL;
1578 pdd = kzalloc(sizeof(*pdd), GFP_KERNEL);
1579 if (!pdd)
1580 return NULL;
1581
1582 pdd->dev = dev;
1583 INIT_LIST_HEAD(&pdd->qpd.queues_list);
1584 INIT_LIST_HEAD(&pdd->qpd.priv_queue_list);
1585 pdd->qpd.dqm = dev->dqm;
1586 pdd->qpd.pqm = &p->pqm;
1587 pdd->qpd.evicted = 0;
1588 pdd->qpd.mapped_gws_queue = false;
1589 pdd->process = p;
1590 pdd->bound = PDD_UNBOUND;
1591 pdd->already_dequeued = false;
1592 pdd->runtime_inuse = false;
1593 pdd->vram_usage = 0;
1594 pdd->sdma_past_activity_counter = 0;
1595 pdd->user_gpu_id = dev->id;
1596 atomic64_set(&pdd->evict_duration_counter, 0);
1597
1598 if (dev->kfd->shared_resources.enable_mes) {
1599 retval = amdgpu_amdkfd_alloc_gtt_mem(dev->adev,
1600 AMDGPU_MES_PROC_CTX_SIZE,
1601 &pdd->proc_ctx_bo,
1602 &pdd->proc_ctx_gpu_addr,
1603 &pdd->proc_ctx_cpu_ptr,
1604 false);
1605 if (retval) {
1606 pr_err("failed to allocate process context bo\n");
1607 goto err_free_pdd;
1608 }
1609 memset(pdd->proc_ctx_cpu_ptr, 0, AMDGPU_MES_PROC_CTX_SIZE);
1610 }
1611
1612 p->pdds[p->n_pdds++] = pdd;
1613 if (kfd_dbg_is_per_vmid_supported(pdd->dev))
1614 pdd->spi_dbg_override = pdd->dev->kfd2kgd->disable_debug_trap(
1615 pdd->dev->adev,
1616 false,
1617 0);
1618
1619 /* Init idr used for memory handle translation */
1620 idr_init(&pdd->alloc_idr);
1621
1622 return pdd;
1623
1624err_free_pdd:
1625 kfree(pdd);
1626 return NULL;
1627}
1628
1629/**
1630 * kfd_process_device_init_vm - Initialize a VM for a process-device
1631 *
1632 * @pdd: The process-device
1633 * @drm_file: Optional pointer to a DRM file descriptor
1634 *
1635 * If @drm_file is specified, it will be used to acquire the VM from
1636 * that file descriptor. If successful, the @pdd takes ownership of
1637 * the file descriptor.
1638 *
1639 * If @drm_file is NULL, a new VM is created.
1640 *
1641 * Returns 0 on success, -errno on failure.
1642 */
1643int kfd_process_device_init_vm(struct kfd_process_device *pdd,
1644 struct file *drm_file)
1645{
1646 struct amdgpu_fpriv *drv_priv;
1647 struct amdgpu_vm *avm;
1648 struct kfd_process *p;
1649 struct dma_fence *ef;
1650 struct kfd_node *dev;
1651 int ret;
1652
1653 if (!drm_file)
1654 return -EINVAL;
1655
1656 if (pdd->drm_priv)
1657 return -EBUSY;
1658
1659 ret = amdgpu_file_to_fpriv(drm_file, &drv_priv);
1660 if (ret)
1661 return ret;
1662 avm = &drv_priv->vm;
1663
1664 p = pdd->process;
1665 dev = pdd->dev;
1666
1667 ret = amdgpu_amdkfd_gpuvm_acquire_process_vm(dev->adev, avm,
1668 &p->kgd_process_info,
1669 &ef);
1670 if (ret) {
1671 pr_err("Failed to create process VM object\n");
1672 return ret;
1673 }
1674 RCU_INIT_POINTER(p->ef, ef);
1675 pdd->drm_priv = drm_file->private_data;
1676
1677 ret = kfd_process_device_reserve_ib_mem(pdd);
1678 if (ret)
1679 goto err_reserve_ib_mem;
1680 ret = kfd_process_device_init_cwsr_dgpu(pdd);
1681 if (ret)
1682 goto err_init_cwsr;
1683
1684 ret = amdgpu_amdkfd_gpuvm_set_vm_pasid(dev->adev, avm, p->pasid);
1685 if (ret)
1686 goto err_set_pasid;
1687
1688 pdd->drm_file = drm_file;
1689
1690 return 0;
1691
1692err_set_pasid:
1693 kfd_process_device_destroy_cwsr_dgpu(pdd);
1694err_init_cwsr:
1695 kfd_process_device_destroy_ib_mem(pdd);
1696err_reserve_ib_mem:
1697 pdd->drm_priv = NULL;
1698 amdgpu_amdkfd_gpuvm_destroy_cb(dev->adev, avm);
1699
1700 return ret;
1701}
1702
1703/*
1704 * Direct the IOMMU to bind the process (specifically the pasid->mm)
1705 * to the device.
1706 * Unbinding occurs when the process dies or the device is removed.
1707 *
1708 * Assumes that the process lock is held.
1709 */
1710struct kfd_process_device *kfd_bind_process_to_device(struct kfd_node *dev,
1711 struct kfd_process *p)
1712{
1713 struct kfd_process_device *pdd;
1714 int err;
1715
1716 pdd = kfd_get_process_device_data(dev, p);
1717 if (!pdd) {
1718 pr_err("Process device data doesn't exist\n");
1719 return ERR_PTR(-ENOMEM);
1720 }
1721
1722 if (!pdd->drm_priv)
1723 return ERR_PTR(-ENODEV);
1724
1725 /*
1726 * signal runtime-pm system to auto resume and prevent
1727 * further runtime suspend once device pdd is created until
1728 * pdd is destroyed.
1729 */
1730 if (!pdd->runtime_inuse) {
1731 err = pm_runtime_get_sync(adev_to_drm(dev->adev)->dev);
1732 if (err < 0) {
1733 pm_runtime_put_autosuspend(adev_to_drm(dev->adev)->dev);
1734 return ERR_PTR(err);
1735 }
1736 }
1737
1738 /*
1739 * make sure that runtime_usage counter is incremented just once
1740 * per pdd
1741 */
1742 pdd->runtime_inuse = true;
1743
1744 return pdd;
1745}
1746
1747/* Create specific handle mapped to mem from process local memory idr
1748 * Assumes that the process lock is held.
1749 */
1750int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
1751 void *mem)
1752{
1753 return idr_alloc(&pdd->alloc_idr, mem, 0, 0, GFP_KERNEL);
1754}
1755
1756/* Translate specific handle from process local memory idr
1757 * Assumes that the process lock is held.
1758 */
1759void *kfd_process_device_translate_handle(struct kfd_process_device *pdd,
1760 int handle)
1761{
1762 if (handle < 0)
1763 return NULL;
1764
1765 return idr_find(&pdd->alloc_idr, handle);
1766}
1767
1768/* Remove specific handle from process local memory idr
1769 * Assumes that the process lock is held.
1770 */
1771void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
1772 int handle)
1773{
1774 if (handle >= 0)
1775 idr_remove(&pdd->alloc_idr, handle);
1776}
1777
1778/* This increments the process->ref counter. */
1779struct kfd_process *kfd_lookup_process_by_pasid(u32 pasid)
1780{
1781 struct kfd_process *p, *ret_p = NULL;
1782 unsigned int temp;
1783
1784 int idx = srcu_read_lock(&kfd_processes_srcu);
1785
1786 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
1787 if (p->pasid == pasid) {
1788 kref_get(&p->ref);
1789 ret_p = p;
1790 break;
1791 }
1792 }
1793
1794 srcu_read_unlock(&kfd_processes_srcu, idx);
1795
1796 return ret_p;
1797}
1798
1799/* This increments the process->ref counter. */
1800struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm)
1801{
1802 struct kfd_process *p;
1803
1804 int idx = srcu_read_lock(&kfd_processes_srcu);
1805
1806 p = find_process_by_mm(mm);
1807 if (p)
1808 kref_get(&p->ref);
1809
1810 srcu_read_unlock(&kfd_processes_srcu, idx);
1811
1812 return p;
1813}
1814
1815/* kfd_process_evict_queues - Evict all user queues of a process
1816 *
1817 * Eviction is reference-counted per process-device. This means multiple
1818 * evictions from different sources can be nested safely.
1819 */
1820int kfd_process_evict_queues(struct kfd_process *p, uint32_t trigger)
1821{
1822 int r = 0;
1823 int i;
1824 unsigned int n_evicted = 0;
1825
1826 for (i = 0; i < p->n_pdds; i++) {
1827 struct kfd_process_device *pdd = p->pdds[i];
1828
1829 kfd_smi_event_queue_eviction(pdd->dev, p->lead_thread->pid,
1830 trigger);
1831
1832 r = pdd->dev->dqm->ops.evict_process_queues(pdd->dev->dqm,
1833 &pdd->qpd);
1834 /* evict return -EIO if HWS is hang or asic is resetting, in this case
1835 * we would like to set all the queues to be in evicted state to prevent
1836 * them been add back since they actually not be saved right now.
1837 */
1838 if (r && r != -EIO) {
1839 pr_err("Failed to evict process queues\n");
1840 goto fail;
1841 }
1842 n_evicted++;
1843 }
1844
1845 return r;
1846
1847fail:
1848 /* To keep state consistent, roll back partial eviction by
1849 * restoring queues
1850 */
1851 for (i = 0; i < p->n_pdds; i++) {
1852 struct kfd_process_device *pdd = p->pdds[i];
1853
1854 if (n_evicted == 0)
1855 break;
1856
1857 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1858
1859 if (pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1860 &pdd->qpd))
1861 pr_err("Failed to restore queues\n");
1862
1863 n_evicted--;
1864 }
1865
1866 return r;
1867}
1868
1869/* kfd_process_restore_queues - Restore all user queues of a process */
1870int kfd_process_restore_queues(struct kfd_process *p)
1871{
1872 int r, ret = 0;
1873 int i;
1874
1875 for (i = 0; i < p->n_pdds; i++) {
1876 struct kfd_process_device *pdd = p->pdds[i];
1877
1878 kfd_smi_event_queue_restore(pdd->dev, p->lead_thread->pid);
1879
1880 r = pdd->dev->dqm->ops.restore_process_queues(pdd->dev->dqm,
1881 &pdd->qpd);
1882 if (r) {
1883 pr_err("Failed to restore process queues\n");
1884 if (!ret)
1885 ret = r;
1886 }
1887 }
1888
1889 return ret;
1890}
1891
1892int kfd_process_gpuidx_from_gpuid(struct kfd_process *p, uint32_t gpu_id)
1893{
1894 int i;
1895
1896 for (i = 0; i < p->n_pdds; i++)
1897 if (p->pdds[i] && gpu_id == p->pdds[i]->user_gpu_id)
1898 return i;
1899 return -EINVAL;
1900}
1901
1902int
1903kfd_process_gpuid_from_node(struct kfd_process *p, struct kfd_node *node,
1904 uint32_t *gpuid, uint32_t *gpuidx)
1905{
1906 int i;
1907
1908 for (i = 0; i < p->n_pdds; i++)
1909 if (p->pdds[i] && p->pdds[i]->dev == node) {
1910 *gpuid = p->pdds[i]->user_gpu_id;
1911 *gpuidx = i;
1912 return 0;
1913 }
1914 return -EINVAL;
1915}
1916
1917static int signal_eviction_fence(struct kfd_process *p)
1918{
1919 struct dma_fence *ef;
1920 int ret;
1921
1922 rcu_read_lock();
1923 ef = dma_fence_get_rcu_safe(&p->ef);
1924 rcu_read_unlock();
1925
1926 ret = dma_fence_signal(ef);
1927 dma_fence_put(ef);
1928
1929 return ret;
1930}
1931
1932static void evict_process_worker(struct work_struct *work)
1933{
1934 int ret;
1935 struct kfd_process *p;
1936 struct delayed_work *dwork;
1937
1938 dwork = to_delayed_work(work);
1939
1940 /* Process termination destroys this worker thread. So during the
1941 * lifetime of this thread, kfd_process p will be valid
1942 */
1943 p = container_of(dwork, struct kfd_process, eviction_work);
1944
1945 pr_debug("Started evicting pasid 0x%x\n", p->pasid);
1946 ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_TTM);
1947 if (!ret) {
1948 /* If another thread already signaled the eviction fence,
1949 * they are responsible stopping the queues and scheduling
1950 * the restore work.
1951 */
1952 if (!signal_eviction_fence(p))
1953 queue_delayed_work(kfd_restore_wq, &p->restore_work,
1954 msecs_to_jiffies(PROCESS_RESTORE_TIME_MS));
1955 else
1956 kfd_process_restore_queues(p);
1957
1958 pr_debug("Finished evicting pasid 0x%x\n", p->pasid);
1959 } else
1960 pr_err("Failed to evict queues of pasid 0x%x\n", p->pasid);
1961}
1962
1963static int restore_process_helper(struct kfd_process *p)
1964{
1965 int ret = 0;
1966
1967 /* VMs may not have been acquired yet during debugging. */
1968 if (p->kgd_process_info) {
1969 ret = amdgpu_amdkfd_gpuvm_restore_process_bos(
1970 p->kgd_process_info, &p->ef);
1971 if (ret)
1972 return ret;
1973 }
1974
1975 ret = kfd_process_restore_queues(p);
1976 if (!ret)
1977 pr_debug("Finished restoring pasid 0x%x\n", p->pasid);
1978 else
1979 pr_err("Failed to restore queues of pasid 0x%x\n", p->pasid);
1980
1981 return ret;
1982}
1983
1984static void restore_process_worker(struct work_struct *work)
1985{
1986 struct delayed_work *dwork;
1987 struct kfd_process *p;
1988 int ret = 0;
1989
1990 dwork = to_delayed_work(work);
1991
1992 /* Process termination destroys this worker thread. So during the
1993 * lifetime of this thread, kfd_process p will be valid
1994 */
1995 p = container_of(dwork, struct kfd_process, restore_work);
1996 pr_debug("Started restoring pasid 0x%x\n", p->pasid);
1997
1998 /* Setting last_restore_timestamp before successful restoration.
1999 * Otherwise this would have to be set by KGD (restore_process_bos)
2000 * before KFD BOs are unreserved. If not, the process can be evicted
2001 * again before the timestamp is set.
2002 * If restore fails, the timestamp will be set again in the next
2003 * attempt. This would mean that the minimum GPU quanta would be
2004 * PROCESS_ACTIVE_TIME_MS - (time to execute the following two
2005 * functions)
2006 */
2007
2008 p->last_restore_timestamp = get_jiffies_64();
2009
2010 ret = restore_process_helper(p);
2011 if (ret) {
2012 pr_debug("Failed to restore BOs of pasid 0x%x, retry after %d ms\n",
2013 p->pasid, PROCESS_BACK_OFF_TIME_MS);
2014 ret = queue_delayed_work(kfd_restore_wq, &p->restore_work,
2015 msecs_to_jiffies(PROCESS_BACK_OFF_TIME_MS));
2016 WARN(!ret, "reschedule restore work failed\n");
2017 }
2018}
2019
2020void kfd_suspend_all_processes(void)
2021{
2022 struct kfd_process *p;
2023 unsigned int temp;
2024 int idx = srcu_read_lock(&kfd_processes_srcu);
2025
2026 WARN(debug_evictions, "Evicting all processes");
2027 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2028 if (kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_TRIGGER_SUSPEND))
2029 pr_err("Failed to suspend process 0x%x\n", p->pasid);
2030 signal_eviction_fence(p);
2031 }
2032 srcu_read_unlock(&kfd_processes_srcu, idx);
2033}
2034
2035int kfd_resume_all_processes(void)
2036{
2037 struct kfd_process *p;
2038 unsigned int temp;
2039 int ret = 0, idx = srcu_read_lock(&kfd_processes_srcu);
2040
2041 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2042 if (restore_process_helper(p)) {
2043 pr_err("Restore process %d failed during resume\n",
2044 p->pasid);
2045 ret = -EFAULT;
2046 }
2047 }
2048 srcu_read_unlock(&kfd_processes_srcu, idx);
2049 return ret;
2050}
2051
2052int kfd_reserved_mem_mmap(struct kfd_node *dev, struct kfd_process *process,
2053 struct vm_area_struct *vma)
2054{
2055 struct kfd_process_device *pdd;
2056 struct qcm_process_device *qpd;
2057
2058 if ((vma->vm_end - vma->vm_start) != KFD_CWSR_TBA_TMA_SIZE) {
2059 pr_err("Incorrect CWSR mapping size.\n");
2060 return -EINVAL;
2061 }
2062
2063 pdd = kfd_get_process_device_data(dev, process);
2064 if (!pdd)
2065 return -EINVAL;
2066 qpd = &pdd->qpd;
2067
2068 qpd->cwsr_kaddr = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
2069 get_order(KFD_CWSR_TBA_TMA_SIZE));
2070 if (!qpd->cwsr_kaddr) {
2071 pr_err("Error allocating per process CWSR buffer.\n");
2072 return -ENOMEM;
2073 }
2074
2075 vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND
2076 | VM_NORESERVE | VM_DONTDUMP | VM_PFNMAP);
2077 /* Mapping pages to user process */
2078 return remap_pfn_range(vma, vma->vm_start,
2079 PFN_DOWN(__pa(qpd->cwsr_kaddr)),
2080 KFD_CWSR_TBA_TMA_SIZE, vma->vm_page_prot);
2081}
2082
2083/* assumes caller holds process lock. */
2084int kfd_process_drain_interrupts(struct kfd_process_device *pdd)
2085{
2086 uint32_t irq_drain_fence[8];
2087 uint8_t node_id = 0;
2088 int r = 0;
2089
2090 if (!KFD_IS_SOC15(pdd->dev))
2091 return 0;
2092
2093 pdd->process->irq_drain_is_open = true;
2094
2095 memset(irq_drain_fence, 0, sizeof(irq_drain_fence));
2096 irq_drain_fence[0] = (KFD_IRQ_FENCE_SOURCEID << 8) |
2097 KFD_IRQ_FENCE_CLIENTID;
2098 irq_drain_fence[3] = pdd->process->pasid;
2099
2100 /*
2101 * For GFX 9.4.3, send the NodeId also in IH cookie DW[3]
2102 */
2103 if (KFD_GC_VERSION(pdd->dev->kfd) == IP_VERSION(9, 4, 3)) {
2104 node_id = ffs(pdd->dev->interrupt_bitmap) - 1;
2105 irq_drain_fence[3] |= node_id << 16;
2106 }
2107
2108 /* ensure stale irqs scheduled KFD interrupts and send drain fence. */
2109 if (amdgpu_amdkfd_send_close_event_drain_irq(pdd->dev->adev,
2110 irq_drain_fence)) {
2111 pdd->process->irq_drain_is_open = false;
2112 return 0;
2113 }
2114
2115 r = wait_event_interruptible(pdd->process->wait_irq_drain,
2116 !READ_ONCE(pdd->process->irq_drain_is_open));
2117 if (r)
2118 pdd->process->irq_drain_is_open = false;
2119
2120 return r;
2121}
2122
2123void kfd_process_close_interrupt_drain(unsigned int pasid)
2124{
2125 struct kfd_process *p;
2126
2127 p = kfd_lookup_process_by_pasid(pasid);
2128
2129 if (!p)
2130 return;
2131
2132 WRITE_ONCE(p->irq_drain_is_open, false);
2133 wake_up_all(&p->wait_irq_drain);
2134 kfd_unref_process(p);
2135}
2136
2137struct send_exception_work_handler_workarea {
2138 struct work_struct work;
2139 struct kfd_process *p;
2140 unsigned int queue_id;
2141 uint64_t error_reason;
2142};
2143
2144static void send_exception_work_handler(struct work_struct *work)
2145{
2146 struct send_exception_work_handler_workarea *workarea;
2147 struct kfd_process *p;
2148 struct queue *q;
2149 struct mm_struct *mm;
2150 struct kfd_context_save_area_header __user *csa_header;
2151 uint64_t __user *err_payload_ptr;
2152 uint64_t cur_err;
2153 uint32_t ev_id;
2154
2155 workarea = container_of(work,
2156 struct send_exception_work_handler_workarea,
2157 work);
2158 p = workarea->p;
2159
2160 mm = get_task_mm(p->lead_thread);
2161
2162 if (!mm)
2163 return;
2164
2165 kthread_use_mm(mm);
2166
2167 q = pqm_get_user_queue(&p->pqm, workarea->queue_id);
2168
2169 if (!q)
2170 goto out;
2171
2172 csa_header = (void __user *)q->properties.ctx_save_restore_area_address;
2173
2174 get_user(err_payload_ptr, (uint64_t __user **)&csa_header->err_payload_addr);
2175 get_user(cur_err, err_payload_ptr);
2176 cur_err |= workarea->error_reason;
2177 put_user(cur_err, err_payload_ptr);
2178 get_user(ev_id, &csa_header->err_event_id);
2179
2180 kfd_set_event(p, ev_id);
2181
2182out:
2183 kthread_unuse_mm(mm);
2184 mmput(mm);
2185}
2186
2187int kfd_send_exception_to_runtime(struct kfd_process *p,
2188 unsigned int queue_id,
2189 uint64_t error_reason)
2190{
2191 struct send_exception_work_handler_workarea worker;
2192
2193 INIT_WORK_ONSTACK(&worker.work, send_exception_work_handler);
2194
2195 worker.p = p;
2196 worker.queue_id = queue_id;
2197 worker.error_reason = error_reason;
2198
2199 schedule_work(&worker.work);
2200 flush_work(&worker.work);
2201 destroy_work_on_stack(&worker.work);
2202
2203 return 0;
2204}
2205
2206struct kfd_process_device *kfd_process_device_data_by_id(struct kfd_process *p, uint32_t gpu_id)
2207{
2208 int i;
2209
2210 if (gpu_id) {
2211 for (i = 0; i < p->n_pdds; i++) {
2212 struct kfd_process_device *pdd = p->pdds[i];
2213
2214 if (pdd->user_gpu_id == gpu_id)
2215 return pdd;
2216 }
2217 }
2218 return NULL;
2219}
2220
2221int kfd_process_get_user_gpu_id(struct kfd_process *p, uint32_t actual_gpu_id)
2222{
2223 int i;
2224
2225 if (!actual_gpu_id)
2226 return 0;
2227
2228 for (i = 0; i < p->n_pdds; i++) {
2229 struct kfd_process_device *pdd = p->pdds[i];
2230
2231 if (pdd->dev->id == actual_gpu_id)
2232 return pdd->user_gpu_id;
2233 }
2234 return -EINVAL;
2235}
2236
2237#if defined(CONFIG_DEBUG_FS)
2238
2239int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data)
2240{
2241 struct kfd_process *p;
2242 unsigned int temp;
2243 int r = 0;
2244
2245 int idx = srcu_read_lock(&kfd_processes_srcu);
2246
2247 hash_for_each_rcu(kfd_processes_table, temp, p, kfd_processes) {
2248 seq_printf(m, "Process %d PASID 0x%x:\n",
2249 p->lead_thread->tgid, p->pasid);
2250
2251 mutex_lock(&p->mutex);
2252 r = pqm_debugfs_mqds(m, &p->pqm);
2253 mutex_unlock(&p->mutex);
2254
2255 if (r)
2256 break;
2257 }
2258
2259 srcu_read_unlock(&kfd_processes_srcu, idx);
2260
2261 return r;
2262}
2263
2264#endif