Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 * Ux500 support taken from snippets in the old Ux500 cryp driver
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/iopoll.h>
  12#include <linux/module.h>
  13#include <linux/of_device.h>
  14#include <linux/platform_device.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/reset.h>
  17
  18#include <crypto/aes.h>
  19#include <crypto/internal/des.h>
  20#include <crypto/engine.h>
  21#include <crypto/scatterwalk.h>
  22#include <crypto/internal/aead.h>
  23#include <crypto/internal/skcipher.h>
  24
  25#define DRIVER_NAME             "stm32-cryp"
  26
  27/* Bit [0] encrypt / decrypt */
  28#define FLG_ENCRYPT             BIT(0)
  29/* Bit [8..1] algo & operation mode */
  30#define FLG_AES                 BIT(1)
  31#define FLG_DES                 BIT(2)
  32#define FLG_TDES                BIT(3)
  33#define FLG_ECB                 BIT(4)
  34#define FLG_CBC                 BIT(5)
  35#define FLG_CTR                 BIT(6)
  36#define FLG_GCM                 BIT(7)
  37#define FLG_CCM                 BIT(8)
  38/* Mode mask = bits [15..0] */
  39#define FLG_MODE_MASK           GENMASK(15, 0)
  40/* Bit [31..16] status  */
 
  41
  42/* Registers */
  43#define CRYP_CR                 0x00000000
  44#define CRYP_SR                 0x00000004
  45#define CRYP_DIN                0x00000008
  46#define CRYP_DOUT               0x0000000C
  47#define CRYP_DMACR              0x00000010
  48#define CRYP_IMSCR              0x00000014
  49#define CRYP_RISR               0x00000018
  50#define CRYP_MISR               0x0000001C
  51#define CRYP_K0LR               0x00000020
  52#define CRYP_K0RR               0x00000024
  53#define CRYP_K1LR               0x00000028
  54#define CRYP_K1RR               0x0000002C
  55#define CRYP_K2LR               0x00000030
  56#define CRYP_K2RR               0x00000034
  57#define CRYP_K3LR               0x00000038
  58#define CRYP_K3RR               0x0000003C
  59#define CRYP_IV0LR              0x00000040
  60#define CRYP_IV0RR              0x00000044
  61#define CRYP_IV1LR              0x00000048
  62#define CRYP_IV1RR              0x0000004C
  63#define CRYP_CSGCMCCM0R         0x00000050
  64#define CRYP_CSGCM0R            0x00000070
  65
  66#define UX500_CRYP_CR		0x00000000
  67#define UX500_CRYP_SR		0x00000004
  68#define UX500_CRYP_DIN		0x00000008
  69#define UX500_CRYP_DINSIZE	0x0000000C
  70#define UX500_CRYP_DOUT		0x00000010
  71#define UX500_CRYP_DOUSIZE	0x00000014
  72#define UX500_CRYP_DMACR	0x00000018
  73#define UX500_CRYP_IMSC		0x0000001C
  74#define UX500_CRYP_RIS		0x00000020
  75#define UX500_CRYP_MIS		0x00000024
  76#define UX500_CRYP_K1L		0x00000028
  77#define UX500_CRYP_K1R		0x0000002C
  78#define UX500_CRYP_K2L		0x00000030
  79#define UX500_CRYP_K2R		0x00000034
  80#define UX500_CRYP_K3L		0x00000038
  81#define UX500_CRYP_K3R		0x0000003C
  82#define UX500_CRYP_K4L		0x00000040
  83#define UX500_CRYP_K4R		0x00000044
  84#define UX500_CRYP_IV0L		0x00000048
  85#define UX500_CRYP_IV0R		0x0000004C
  86#define UX500_CRYP_IV1L		0x00000050
  87#define UX500_CRYP_IV1R		0x00000054
  88
  89/* Registers values */
  90#define CR_DEC_NOT_ENC          0x00000004
  91#define CR_TDES_ECB             0x00000000
  92#define CR_TDES_CBC             0x00000008
  93#define CR_DES_ECB              0x00000010
  94#define CR_DES_CBC              0x00000018
  95#define CR_AES_ECB              0x00000020
  96#define CR_AES_CBC              0x00000028
  97#define CR_AES_CTR              0x00000030
  98#define CR_AES_KP               0x00000038 /* Not on Ux500 */
  99#define CR_AES_XTS              0x00000038 /* Only on Ux500 */
 100#define CR_AES_GCM              0x00080000
 101#define CR_AES_CCM              0x00080008
 102#define CR_AES_UNKNOWN          0xFFFFFFFF
 103#define CR_ALGO_MASK            0x00080038
 104#define CR_DATA32               0x00000000
 105#define CR_DATA16               0x00000040
 106#define CR_DATA8                0x00000080
 107#define CR_DATA1                0x000000C0
 108#define CR_KEY128               0x00000000
 109#define CR_KEY192               0x00000100
 110#define CR_KEY256               0x00000200
 111#define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
 112#define CR_KSE                  0x00000800 /* Only on Ux500 */
 113#define CR_FFLUSH               0x00004000
 114#define CR_CRYPEN               0x00008000
 115#define CR_PH_INIT              0x00000000
 116#define CR_PH_HEADER            0x00010000
 117#define CR_PH_PAYLOAD           0x00020000
 118#define CR_PH_FINAL             0x00030000
 119#define CR_PH_MASK              0x00030000
 120#define CR_NBPBL_SHIFT          20
 121
 122#define SR_BUSY                 0x00000010
 123#define SR_OFNE                 0x00000004
 124
 125#define IMSCR_IN                BIT(0)
 126#define IMSCR_OUT               BIT(1)
 127
 128#define MISR_IN                 BIT(0)
 129#define MISR_OUT                BIT(1)
 130
 131/* Misc */
 132#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 133#define GCM_CTR_INIT            2
 
 
 134#define CRYP_AUTOSUSPEND_DELAY	50
 135
 136struct stm32_cryp_caps {
 137	bool			aeads_support;
 138	bool			linear_aes_key;
 139	bool			kp_mode;
 140	bool			iv_protection;
 141	bool			swap_final;
 142	bool			padding_wa;
 143	u32			cr;
 144	u32			sr;
 145	u32			din;
 146	u32			dout;
 147	u32			imsc;
 148	u32			mis;
 149	u32			k1l;
 150	u32			k1r;
 151	u32			k3r;
 152	u32			iv0l;
 153	u32			iv0r;
 154	u32			iv1l;
 155	u32			iv1r;
 156};
 157
 158struct stm32_cryp_ctx {
 159	struct crypto_engine_ctx enginectx;
 160	struct stm32_cryp       *cryp;
 161	int                     keylen;
 162	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 163	unsigned long           flags;
 164};
 165
 166struct stm32_cryp_reqctx {
 167	unsigned long mode;
 168};
 169
 170struct stm32_cryp {
 171	struct list_head        list;
 172	struct device           *dev;
 173	void __iomem            *regs;
 174	struct clk              *clk;
 175	unsigned long           flags;
 176	u32                     irq_status;
 177	const struct stm32_cryp_caps *caps;
 178	struct stm32_cryp_ctx   *ctx;
 179
 180	struct crypto_engine    *engine;
 181
 182	struct skcipher_request *req;
 183	struct aead_request     *areq;
 184
 185	size_t                  authsize;
 186	size_t                  hw_blocksize;
 187
 188	size_t                  payload_in;
 189	size_t                  header_in;
 190	size_t                  payload_out;
 
 191
 
 192	struct scatterlist      *out_sg;
 
 
 
 
 
 
 
 
 193
 194	struct scatter_walk     in_walk;
 195	struct scatter_walk     out_walk;
 196
 197	__be32                  last_ctr[4];
 198	u32                     gcm_ctr;
 199};
 200
 201struct stm32_cryp_list {
 202	struct list_head        dev_list;
 203	spinlock_t              lock; /* protect dev_list */
 204};
 205
 206static struct stm32_cryp_list cryp_list = {
 207	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 208	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 209};
 210
 211static inline bool is_aes(struct stm32_cryp *cryp)
 212{
 213	return cryp->flags & FLG_AES;
 214}
 215
 216static inline bool is_des(struct stm32_cryp *cryp)
 217{
 218	return cryp->flags & FLG_DES;
 219}
 220
 221static inline bool is_tdes(struct stm32_cryp *cryp)
 222{
 223	return cryp->flags & FLG_TDES;
 224}
 225
 226static inline bool is_ecb(struct stm32_cryp *cryp)
 227{
 228	return cryp->flags & FLG_ECB;
 229}
 230
 231static inline bool is_cbc(struct stm32_cryp *cryp)
 232{
 233	return cryp->flags & FLG_CBC;
 234}
 235
 236static inline bool is_ctr(struct stm32_cryp *cryp)
 237{
 238	return cryp->flags & FLG_CTR;
 239}
 240
 241static inline bool is_gcm(struct stm32_cryp *cryp)
 242{
 243	return cryp->flags & FLG_GCM;
 244}
 245
 246static inline bool is_ccm(struct stm32_cryp *cryp)
 247{
 248	return cryp->flags & FLG_CCM;
 249}
 250
 251static inline bool is_encrypt(struct stm32_cryp *cryp)
 252{
 253	return cryp->flags & FLG_ENCRYPT;
 254}
 255
 256static inline bool is_decrypt(struct stm32_cryp *cryp)
 257{
 258	return !is_encrypt(cryp);
 259}
 260
 261static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 262{
 263	return readl_relaxed(cryp->regs + ofst);
 264}
 265
 266static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 267{
 268	writel_relaxed(val, cryp->regs + ofst);
 269}
 270
 271static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 272{
 273	u32 status;
 274
 275	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 276			!(status & SR_BUSY), 10, 100000);
 277}
 278
 279static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
 280{
 281	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
 282		       cryp->regs + cryp->caps->cr);
 283}
 284
 285static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 286{
 287	u32 status;
 288
 289	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
 290			!(status & CR_CRYPEN), 10, 100000);
 291}
 292
 293static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 294{
 295	u32 status;
 296
 297	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 298			status & SR_OFNE, 10, 100000);
 299}
 300
 301static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
 302{
 303	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
 304		       cryp->regs + cryp->caps->cr);
 305}
 306
 307static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
 308{
 309	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
 310		       cryp->regs + cryp->caps->cr);
 311}
 312
 313static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 314static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
 315
 316static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 317{
 318	struct stm32_cryp *tmp, *cryp = NULL;
 319
 320	spin_lock_bh(&cryp_list.lock);
 321	if (!ctx->cryp) {
 322		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 323			cryp = tmp;
 324			break;
 325		}
 326		ctx->cryp = cryp;
 327	} else {
 328		cryp = ctx->cryp;
 329	}
 330
 331	spin_unlock_bh(&cryp_list.lock);
 332
 333	return cryp;
 334}
 335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 336static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 337{
 338	if (!iv)
 339		return;
 340
 341	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
 342	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
 343
 344	if (is_aes(cryp)) {
 345		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
 346		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
 347	}
 348}
 349
 350static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 351{
 352	struct skcipher_request *req = cryp->req;
 353	__be32 *tmp = (void *)req->iv;
 354
 355	if (!tmp)
 356		return;
 357
 358	if (cryp->caps->iv_protection)
 359		stm32_cryp_key_read_enable(cryp);
 360
 361	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
 362	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
 363
 364	if (is_aes(cryp)) {
 365		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
 366		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
 367	}
 368
 369	if (cryp->caps->iv_protection)
 370		stm32_cryp_key_read_disable(cryp);
 371}
 372
 373/**
 374 * ux500_swap_bits_in_byte() - mirror the bits in a byte
 375 * @b: the byte to be mirrored
 376 *
 377 * The bits are swapped the following way:
 378 *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
 379 *  nibble 2 (n2) bits 4-7.
 380 *
 381 *  Nibble 1 (n1):
 382 *  (The "old" (moved) bit is replaced with a zero)
 383 *  1. Move bit 6 and 7, 4 positions to the left.
 384 *  2. Move bit 3 and 5, 2 positions to the left.
 385 *  3. Move bit 1-4, 1 position to the left.
 386 *
 387 *  Nibble 2 (n2):
 388 *  1. Move bit 0 and 1, 4 positions to the right.
 389 *  2. Move bit 2 and 4, 2 positions to the right.
 390 *  3. Move bit 3-6, 1 position to the right.
 391 *
 392 *  Combine the two nibbles to a complete and swapped byte.
 393 */
 394static inline u8 ux500_swap_bits_in_byte(u8 b)
 395{
 396#define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
 397#define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
 398				  right shift 2 */
 399#define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
 400				  right shift 1 */
 401#define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
 402#define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
 403				  left shift 2 */
 404#define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
 405				  left shift 1 */
 406
 407	u8 n1;
 408	u8 n2;
 409
 410	/* Swap most significant nibble */
 411	/* Right shift 4, bits 6 and 7 */
 412	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
 413	/* Right shift 2, bits 3 and 5 */
 414	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
 415	/* Right shift 1, bits 1-4 */
 416	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
 417
 418	/* Swap least significant nibble */
 419	/* Left shift 4, bits 0 and 1 */
 420	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
 421	/* Left shift 2, bits 2 and 4 */
 422	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
 423	/* Left shift 1, bits 3-6 */
 424	n2 = (n2  & L_SHIFT_1_MASK) << 1;
 425
 426	return n1 | n2;
 427}
 428
 429/**
 430 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
 431 * @in: key to swizzle
 432 * @out: swizzled key
 433 * @len: length of key, in bytes
 434 *
 435 * This "key swizzling procedure" is described in the examples in the
 436 * DB8500 design specification. There is no real description of why
 437 * the bits have been arranged like this in the hardware.
 438 */
 439static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
 440{
 441	int i = 0;
 442	int bpw = sizeof(u32);
 443	int j;
 444	int index = 0;
 445
 446	j = len - bpw;
 447	while (j >= 0) {
 448		for (i = 0; i < bpw; i++) {
 449			index = len - j - bpw + i;
 450			out[j + i] =
 451				ux500_swap_bits_in_byte(in[index]);
 452		}
 453		j -= bpw;
 454	}
 455}
 456
 457static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 458{
 459	unsigned int i;
 460	int r_id;
 461
 462	if (is_des(c)) {
 463		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
 464		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
 465		return;
 466	}
 467
 468	/*
 469	 * On the Ux500 the AES key is considered as a single bit sequence
 470	 * of 128, 192 or 256 bits length. It is written linearly into the
 471	 * registers from K1L and down, and need to be processed to become
 472	 * a proper big-endian bit sequence.
 473	 */
 474	if (is_aes(c) && c->caps->linear_aes_key) {
 475		u32 tmpkey[8];
 476
 477		ux500_swizzle_key((u8 *)c->ctx->key,
 478				  (u8 *)tmpkey, c->ctx->keylen);
 479
 480		r_id = c->caps->k1l;
 481		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
 482			stm32_cryp_write(c, r_id, tmpkey[i]);
 483
 484		return;
 485	}
 486
 487	r_id = c->caps->k3r;
 488	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 489		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
 490}
 491
 492static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 493{
 494	if (is_aes(cryp) && is_ecb(cryp))
 495		return CR_AES_ECB;
 496
 497	if (is_aes(cryp) && is_cbc(cryp))
 498		return CR_AES_CBC;
 499
 500	if (is_aes(cryp) && is_ctr(cryp))
 501		return CR_AES_CTR;
 502
 503	if (is_aes(cryp) && is_gcm(cryp))
 504		return CR_AES_GCM;
 505
 506	if (is_aes(cryp) && is_ccm(cryp))
 507		return CR_AES_CCM;
 508
 509	if (is_des(cryp) && is_ecb(cryp))
 510		return CR_DES_ECB;
 511
 512	if (is_des(cryp) && is_cbc(cryp))
 513		return CR_DES_CBC;
 514
 515	if (is_tdes(cryp) && is_ecb(cryp))
 516		return CR_TDES_ECB;
 517
 518	if (is_tdes(cryp) && is_cbc(cryp))
 519		return CR_TDES_CBC;
 520
 521	dev_err(cryp->dev, "Unknown mode\n");
 522	return CR_AES_UNKNOWN;
 523}
 524
 525static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 526{
 527	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 528				  cryp->areq->cryptlen - cryp->authsize;
 529}
 530
 531static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 532{
 533	int ret;
 534	__be32 iv[4];
 535
 536	/* Phase 1 : init */
 537	memcpy(iv, cryp->areq->iv, 12);
 538	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 539	cryp->gcm_ctr = GCM_CTR_INIT;
 540	stm32_cryp_hw_write_iv(cryp, iv);
 541
 542	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 543
 544	/* Wait for end of processing */
 545	ret = stm32_cryp_wait_enable(cryp);
 546	if (ret) {
 547		dev_err(cryp->dev, "Timeout (gcm init)\n");
 548		return ret;
 549	}
 550
 551	/* Prepare next phase */
 552	if (cryp->areq->assoclen) {
 553		cfg |= CR_PH_HEADER;
 554		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 555	} else if (stm32_cryp_get_input_text_len(cryp)) {
 556		cfg |= CR_PH_PAYLOAD;
 557		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 558	}
 559
 560	return 0;
 561}
 562
 563static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
 564{
 565	u32 cfg;
 566	int err;
 567
 568	/* Check if whole header written */
 569	if (!cryp->header_in) {
 570		/* Wait for completion */
 571		err = stm32_cryp_wait_busy(cryp);
 572		if (err) {
 573			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
 574			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 575			stm32_cryp_finish_req(cryp, err);
 576			return;
 577		}
 578
 579		if (stm32_cryp_get_input_text_len(cryp)) {
 580			/* Phase 3 : payload */
 581			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 582			cfg &= ~CR_CRYPEN;
 583			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 584
 585			cfg &= ~CR_PH_MASK;
 586			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
 587			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 588		} else {
 589			/*
 590			 * Phase 4 : tag.
 591			 * Nothing to read, nothing to write, caller have to
 592			 * end request
 593			 */
 594		}
 595	}
 596}
 597
 598static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
 599{
 600	unsigned int i;
 601	size_t written;
 602	size_t len;
 603	u32 alen = cryp->areq->assoclen;
 604	u32 block[AES_BLOCK_32] = {0};
 605	u8 *b8 = (u8 *)block;
 606
 607	if (alen <= 65280) {
 608		/* Write first u32 of B1 */
 609		b8[0] = (alen >> 8) & 0xFF;
 610		b8[1] = alen & 0xFF;
 611		len = 2;
 612	} else {
 613		/* Build the two first u32 of B1 */
 614		b8[0] = 0xFF;
 615		b8[1] = 0xFE;
 616		b8[2] = (alen & 0xFF000000) >> 24;
 617		b8[3] = (alen & 0x00FF0000) >> 16;
 618		b8[4] = (alen & 0x0000FF00) >> 8;
 619		b8[5] = alen & 0x000000FF;
 620		len = 6;
 621	}
 622
 623	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
 624
 625	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
 626	for (i = 0; i < AES_BLOCK_32; i++)
 627		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 628
 629	cryp->header_in -= written;
 630
 631	stm32_crypt_gcmccm_end_header(cryp);
 632}
 633
 634static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 635{
 636	int ret;
 637	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
 638	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
 639	__be32 *bd;
 640	u32 *d;
 641	unsigned int i, textlen;
 642
 643	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 644	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 645	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 646	iv[AES_BLOCK_SIZE - 1] = 1;
 647	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 648
 649	/* Build B0 */
 650	memcpy(b0, iv, AES_BLOCK_SIZE);
 651
 652	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 653
 654	if (cryp->areq->assoclen)
 655		b0[0] |= 0x40;
 656
 657	textlen = stm32_cryp_get_input_text_len(cryp);
 658
 659	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 660	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 661
 662	/* Enable HW */
 663	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 664
 665	/* Write B0 */
 666	d = (u32 *)b0;
 667	bd = (__be32 *)b0;
 668
 669	for (i = 0; i < AES_BLOCK_32; i++) {
 670		u32 xd = d[i];
 671
 672		if (!cryp->caps->padding_wa)
 673			xd = be32_to_cpu(bd[i]);
 674		stm32_cryp_write(cryp, cryp->caps->din, xd);
 675	}
 676
 677	/* Wait for end of processing */
 678	ret = stm32_cryp_wait_enable(cryp);
 679	if (ret) {
 680		dev_err(cryp->dev, "Timeout (ccm init)\n");
 681		return ret;
 682	}
 683
 684	/* Prepare next phase */
 685	if (cryp->areq->assoclen) {
 686		cfg |= CR_PH_HEADER | CR_CRYPEN;
 687		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 688
 689		/* Write first (special) block (may move to next phase [payload]) */
 690		stm32_cryp_write_ccm_first_header(cryp);
 691	} else if (stm32_cryp_get_input_text_len(cryp)) {
 692		cfg |= CR_PH_PAYLOAD;
 693		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 694	}
 695
 696	return 0;
 697}
 698
 699static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 700{
 701	int ret;
 702	u32 cfg, hw_mode;
 703
 704	pm_runtime_get_sync(cryp->dev);
 705
 706	/* Disable interrupt */
 707	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 
 
 
 708
 709	/* Set configuration */
 710	cfg = CR_DATA8 | CR_FFLUSH;
 711
 712	switch (cryp->ctx->keylen) {
 713	case AES_KEYSIZE_128:
 714		cfg |= CR_KEY128;
 715		break;
 716
 717	case AES_KEYSIZE_192:
 718		cfg |= CR_KEY192;
 719		break;
 720
 721	default:
 722	case AES_KEYSIZE_256:
 723		cfg |= CR_KEY256;
 724		break;
 725	}
 726
 727	hw_mode = stm32_cryp_get_hw_mode(cryp);
 728	if (hw_mode == CR_AES_UNKNOWN)
 729		return -EINVAL;
 730
 731	/* AES ECB/CBC decrypt: run key preparation first */
 732	if (is_decrypt(cryp) &&
 733	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 734		/* Configure in key preparation mode */
 735		if (cryp->caps->kp_mode)
 736			stm32_cryp_write(cryp, cryp->caps->cr,
 737				cfg | CR_AES_KP);
 738		else
 739			stm32_cryp_write(cryp,
 740				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
 741
 742		/* Set key only after full configuration done */
 743		stm32_cryp_hw_write_key(cryp);
 744
 745		/* Start prepare key */
 746		stm32_cryp_enable(cryp);
 747		/* Wait for end of processing */
 748		ret = stm32_cryp_wait_busy(cryp);
 749		if (ret) {
 750			dev_err(cryp->dev, "Timeout (key preparation)\n");
 751			return ret;
 752		}
 
 753
 754		cfg |= hw_mode | CR_DEC_NOT_ENC;
 755
 756		/* Apply updated config (Decrypt + algo) and flush */
 757		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 758	} else {
 759		cfg |= hw_mode;
 760		if (is_decrypt(cryp))
 761			cfg |= CR_DEC_NOT_ENC;
 762
 763		/* Apply config and flush */
 764		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 765
 766		/* Set key only after configuration done */
 767		stm32_cryp_hw_write_key(cryp);
 768	}
 769
 770	switch (hw_mode) {
 771	case CR_AES_GCM:
 772	case CR_AES_CCM:
 773		/* Phase 1 : init */
 774		if (hw_mode == CR_AES_CCM)
 775			ret = stm32_cryp_ccm_init(cryp, cfg);
 776		else
 777			ret = stm32_cryp_gcm_init(cryp, cfg);
 778
 779		if (ret)
 780			return ret;
 781
 
 
 
 
 
 
 
 
 
 
 782		break;
 783
 784	case CR_DES_CBC:
 785	case CR_TDES_CBC:
 786	case CR_AES_CBC:
 787	case CR_AES_CTR:
 788		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 789		break;
 790
 791	default:
 792		break;
 793	}
 794
 795	/* Enable now */
 796	stm32_cryp_enable(cryp);
 
 
 
 
 797
 798	return 0;
 799}
 800
 801static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 802{
 803	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 804		/* Phase 4 : output tag */
 805		err = stm32_cryp_read_auth_tag(cryp);
 806
 807	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
 808		stm32_cryp_get_iv(cryp);
 809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810	pm_runtime_mark_last_busy(cryp->dev);
 811	pm_runtime_put_autosuspend(cryp->dev);
 812
 813	if (is_gcm(cryp) || is_ccm(cryp))
 814		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 815	else
 816		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 817						   err);
 
 
 818}
 819
 820static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 821{
 822	/* Enable interrupt and let the IRQ handler do everything */
 823	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
 824
 825	return 0;
 826}
 827
 828static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 829static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 830					 void *areq);
 831
 832static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 833{
 834	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 835
 836	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 837
 838	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 839	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 840	ctx->enginectx.op.unprepare_request = NULL;
 841	return 0;
 842}
 843
 844static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 845static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 846				       void *areq);
 847
 848static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 849{
 850	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 851
 852	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 853
 854	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 855	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 856	ctx->enginectx.op.unprepare_request = NULL;
 857
 858	return 0;
 859}
 860
 861static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 862{
 863	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 864			crypto_skcipher_reqtfm(req));
 865	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 866	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 867
 868	if (!cryp)
 869		return -ENODEV;
 870
 871	rctx->mode = mode;
 872
 873	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 874}
 875
 876static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 877{
 878	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 879	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 880	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 881
 882	if (!cryp)
 883		return -ENODEV;
 884
 885	rctx->mode = mode;
 886
 887	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 888}
 889
 890static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 891			     unsigned int keylen)
 892{
 893	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 894
 895	memcpy(ctx->key, key, keylen);
 896	ctx->keylen = keylen;
 897
 898	return 0;
 899}
 900
 901static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 902				 unsigned int keylen)
 903{
 904	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 905	    keylen != AES_KEYSIZE_256)
 906		return -EINVAL;
 907	else
 908		return stm32_cryp_setkey(tfm, key, keylen);
 909}
 910
 911static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 912				 unsigned int keylen)
 913{
 914	return verify_skcipher_des_key(tfm, key) ?:
 915	       stm32_cryp_setkey(tfm, key, keylen);
 916}
 917
 918static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 919				  unsigned int keylen)
 920{
 921	return verify_skcipher_des3_key(tfm, key) ?:
 922	       stm32_cryp_setkey(tfm, key, keylen);
 923}
 924
 925static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 926				      unsigned int keylen)
 927{
 928	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 929
 930	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 931	    keylen != AES_KEYSIZE_256)
 932		return -EINVAL;
 933
 934	memcpy(ctx->key, key, keylen);
 935	ctx->keylen = keylen;
 936
 937	return 0;
 938}
 939
 940static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 941					  unsigned int authsize)
 942{
 943	switch (authsize) {
 944	case 4:
 945	case 8:
 946	case 12:
 947	case 13:
 948	case 14:
 949	case 15:
 950	case 16:
 951		break;
 952	default:
 953		return -EINVAL;
 954	}
 955
 956	return 0;
 957}
 958
 959static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 960					  unsigned int authsize)
 961{
 962	switch (authsize) {
 963	case 4:
 964	case 6:
 965	case 8:
 966	case 10:
 967	case 12:
 968	case 14:
 969	case 16:
 970		break;
 971	default:
 972		return -EINVAL;
 973	}
 974
 975	return 0;
 976}
 977
 978static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 979{
 980	if (req->cryptlen % AES_BLOCK_SIZE)
 981		return -EINVAL;
 982
 983	if (req->cryptlen == 0)
 984		return 0;
 985
 986	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 987}
 988
 989static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 990{
 991	if (req->cryptlen % AES_BLOCK_SIZE)
 992		return -EINVAL;
 993
 994	if (req->cryptlen == 0)
 995		return 0;
 996
 997	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 998}
 999
1000static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1001{
1002	if (req->cryptlen % AES_BLOCK_SIZE)
1003		return -EINVAL;
1004
1005	if (req->cryptlen == 0)
1006		return 0;
1007
1008	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1009}
1010
1011static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1012{
1013	if (req->cryptlen % AES_BLOCK_SIZE)
1014		return -EINVAL;
1015
1016	if (req->cryptlen == 0)
1017		return 0;
1018
1019	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1020}
1021
1022static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1023{
1024	if (req->cryptlen == 0)
1025		return 0;
1026
1027	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1028}
1029
1030static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1031{
1032	if (req->cryptlen == 0)
1033		return 0;
1034
1035	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1036}
1037
1038static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1039{
1040	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1041}
1042
1043static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1044{
1045	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1046}
1047
1048static inline int crypto_ccm_check_iv(const u8 *iv)
1049{
1050	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1051	if (iv[0] < 1 || iv[0] > 7)
1052		return -EINVAL;
1053
1054	return 0;
1055}
1056
1057static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1058{
1059	int err;
1060
1061	err = crypto_ccm_check_iv(req->iv);
1062	if (err)
1063		return err;
1064
1065	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1066}
1067
1068static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1069{
1070	int err;
1071
1072	err = crypto_ccm_check_iv(req->iv);
1073	if (err)
1074		return err;
1075
1076	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1077}
1078
1079static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1080{
1081	if (req->cryptlen % DES_BLOCK_SIZE)
1082		return -EINVAL;
1083
1084	if (req->cryptlen == 0)
1085		return 0;
1086
1087	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1088}
1089
1090static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1091{
1092	if (req->cryptlen % DES_BLOCK_SIZE)
1093		return -EINVAL;
1094
1095	if (req->cryptlen == 0)
1096		return 0;
1097
1098	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1099}
1100
1101static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1102{
1103	if (req->cryptlen % DES_BLOCK_SIZE)
1104		return -EINVAL;
1105
1106	if (req->cryptlen == 0)
1107		return 0;
1108
1109	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1110}
1111
1112static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1113{
1114	if (req->cryptlen % DES_BLOCK_SIZE)
1115		return -EINVAL;
1116
1117	if (req->cryptlen == 0)
1118		return 0;
1119
1120	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1121}
1122
1123static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	if (req->cryptlen % DES_BLOCK_SIZE)
1126		return -EINVAL;
1127
1128	if (req->cryptlen == 0)
1129		return 0;
1130
1131	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1132}
1133
1134static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1135{
1136	if (req->cryptlen % DES_BLOCK_SIZE)
1137		return -EINVAL;
1138
1139	if (req->cryptlen == 0)
1140		return 0;
1141
1142	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1143}
1144
1145static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1146{
1147	if (req->cryptlen % DES_BLOCK_SIZE)
1148		return -EINVAL;
1149
1150	if (req->cryptlen == 0)
1151		return 0;
1152
1153	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1154}
1155
1156static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1157{
1158	if (req->cryptlen % DES_BLOCK_SIZE)
1159		return -EINVAL;
1160
1161	if (req->cryptlen == 0)
1162		return 0;
1163
1164	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1165}
1166
1167static int stm32_cryp_prepare_req(struct skcipher_request *req,
1168				  struct aead_request *areq)
1169{
1170	struct stm32_cryp_ctx *ctx;
1171	struct stm32_cryp *cryp;
1172	struct stm32_cryp_reqctx *rctx;
1173	struct scatterlist *in_sg;
1174	int ret;
1175
1176	if (!req && !areq)
1177		return -EINVAL;
1178
1179	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1180		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1181
1182	cryp = ctx->cryp;
1183
1184	if (!cryp)
1185		return -ENODEV;
1186
1187	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1188	rctx->mode &= FLG_MODE_MASK;
1189
1190	ctx->cryp = cryp;
1191
1192	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1193	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1194	cryp->ctx = ctx;
1195
1196	if (req) {
1197		cryp->req = req;
1198		cryp->areq = NULL;
1199		cryp->header_in = 0;
1200		cryp->payload_in = req->cryptlen;
1201		cryp->payload_out = req->cryptlen;
1202		cryp->authsize = 0;
1203	} else {
1204		/*
1205		 * Length of input and output data:
1206		 * Encryption case:
1207		 *  INPUT  = AssocData   ||     PlainText
1208		 *          <- assoclen ->  <- cryptlen ->
 
1209		 *
1210		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1211		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
 
1212		 *
1213		 * Decryption case:
1214		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1215		 *          <- assoclen --->  <---------- cryptlen ---------->
 
 
1216		 *
1217		 *  OUTPUT = AssocData    ||               PlainText
1218		 *          <- assoclen ->  <- cryptlen - authsize ->
 
1219		 */
1220		cryp->areq = areq;
1221		cryp->req = NULL;
1222		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1223		if (is_encrypt(cryp)) {
1224			cryp->payload_in = areq->cryptlen;
1225			cryp->header_in = areq->assoclen;
1226			cryp->payload_out = areq->cryptlen;
1227		} else {
1228			cryp->payload_in = areq->cryptlen - cryp->authsize;
1229			cryp->header_in = areq->assoclen;
1230			cryp->payload_out = cryp->payload_in;
1231		}
1232	}
1233
1234	in_sg = req ? req->src : areq->src;
1235	scatterwalk_start(&cryp->in_walk, in_sg);
1236
 
1237	cryp->out_sg = req ? req->dst : areq->dst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1239
1240	if (is_gcm(cryp) || is_ccm(cryp)) {
1241		/* In output, jump after assoc data */
1242		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
 
1243	}
1244
1245	if (is_ctr(cryp))
1246		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1247
1248	ret = stm32_cryp_hw_init(cryp);
1249	return ret;
1250}
1251
1252static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1253					 void *areq)
1254{
1255	struct skcipher_request *req = container_of(areq,
1256						      struct skcipher_request,
1257						      base);
1258
1259	return stm32_cryp_prepare_req(req, NULL);
1260}
1261
1262static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1263{
1264	struct skcipher_request *req = container_of(areq,
1265						      struct skcipher_request,
1266						      base);
1267	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1268			crypto_skcipher_reqtfm(req));
1269	struct stm32_cryp *cryp = ctx->cryp;
1270
1271	if (!cryp)
1272		return -ENODEV;
1273
1274	return stm32_cryp_cpu_start(cryp);
1275}
1276
1277static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1278{
1279	struct aead_request *req = container_of(areq, struct aead_request,
1280						base);
1281
1282	return stm32_cryp_prepare_req(NULL, req);
1283}
1284
1285static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1286{
1287	struct aead_request *req = container_of(areq, struct aead_request,
1288						base);
1289	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1290	struct stm32_cryp *cryp = ctx->cryp;
1291
1292	if (!cryp)
1293		return -ENODEV;
1294
1295	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
 
1296		/* No input data to process: get tag and finish */
1297		stm32_cryp_finish_req(cryp, 0);
1298		return 0;
1299	}
1300
1301	return stm32_cryp_cpu_start(cryp);
1302}
1303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1305{
1306	u32 cfg, size_bit;
1307	unsigned int i;
 
1308	int ret = 0;
1309
1310	/* Update Config */
1311	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1312
1313	cfg &= ~CR_PH_MASK;
1314	cfg |= CR_PH_FINAL;
1315	cfg &= ~CR_DEC_NOT_ENC;
1316	cfg |= CR_CRYPEN;
1317
1318	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1319
1320	if (is_gcm(cryp)) {
1321		/* GCM: write aad and payload size (in bits) */
1322		size_bit = cryp->areq->assoclen * 8;
1323		if (cryp->caps->swap_final)
1324			size_bit = (__force u32)cpu_to_be32(size_bit);
1325
1326		stm32_cryp_write(cryp, cryp->caps->din, 0);
1327		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1328
1329		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1330				cryp->areq->cryptlen - cryp->authsize;
1331		size_bit *= 8;
1332		if (cryp->caps->swap_final)
1333			size_bit = (__force u32)cpu_to_be32(size_bit);
1334
1335		stm32_cryp_write(cryp, cryp->caps->din, 0);
1336		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1337	} else {
1338		/* CCM: write CTR0 */
1339		u32 iv32[AES_BLOCK_32];
1340		u8 *iv = (u8 *)iv32;
1341		__be32 *biv = (__be32 *)iv32;
 
 
1342
1343		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1344		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1345
1346		for (i = 0; i < AES_BLOCK_32; i++) {
1347			u32 xiv = iv32[i];
1348
1349			if (!cryp->caps->padding_wa)
1350				xiv = be32_to_cpu(biv[i]);
1351			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1352		}
1353	}
1354
1355	/* Wait for output data */
1356	ret = stm32_cryp_wait_output(cryp);
1357	if (ret) {
1358		dev_err(cryp->dev, "Timeout (read tag)\n");
1359		return ret;
1360	}
1361
1362	if (is_encrypt(cryp)) {
1363		u32 out_tag[AES_BLOCK_32];
1364
1365		/* Get and write tag */
1366		for (i = 0; i < AES_BLOCK_32; i++)
1367			out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1368
1369		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370	} else {
1371		/* Get and check tag */
1372		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1373
1374		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
 
 
1375
1376		for (i = 0; i < AES_BLOCK_32; i++)
1377			out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1378
1379		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1380			ret = -EBADMSG;
1381	}
1382
1383	/* Disable cryp */
1384	cfg &= ~CR_CRYPEN;
1385	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1386
1387	return ret;
1388}
1389
1390static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1391{
1392	u32 cr;
1393
1394	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1395		/*
1396		 * In this case, we need to increment manually the ctr counter,
1397		 * as HW doesn't handle the U32 carry.
1398		 */
1399		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
 
 
1400
1401		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1402		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1403
1404		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1405
1406		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1407	}
1408
1409	/* The IV registers are BE  */
1410	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1411	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1412	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1413	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1414}
1415
1416static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1417{
1418	unsigned int i;
1419	u32 block[AES_BLOCK_32];
 
 
 
 
 
 
 
 
1420
1421	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1422		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1423
1424	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1425							     cryp->payload_out), 1);
1426	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1427				   cryp->payload_out);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428}
1429
1430static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1431{
1432	unsigned int i;
1433	u32 block[AES_BLOCK_32] = {0};
 
 
 
 
 
 
 
 
 
 
1434
1435	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1436							    cryp->payload_in), 0);
1437	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1438		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
1439
1440	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
 
 
 
1441}
1442
1443static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1444{
1445	int err;
1446	u32 cfg, block[AES_BLOCK_32] = {0};
 
 
1447	unsigned int i;
1448
1449	/* 'Special workaround' procedure described in the datasheet */
1450
1451	/* a) disable ip */
1452	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1453	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1454	cfg &= ~CR_CRYPEN;
1455	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1456
1457	/* b) Update IV1R */
1458	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1459
1460	/* c) change mode to CTR */
1461	cfg &= ~CR_ALGO_MASK;
1462	cfg |= CR_AES_CTR;
1463	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1464
1465	/* a) enable IP */
1466	cfg |= CR_CRYPEN;
1467	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1468
1469	/* b) pad and write the last block */
1470	stm32_cryp_irq_write_block(cryp);
1471	/* wait end of process */
1472	err = stm32_cryp_wait_output(cryp);
1473	if (err) {
1474		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1475		return stm32_cryp_finish_req(cryp, err);
1476	}
1477
1478	/* c) get and store encrypted data */
1479	/*
1480	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1481	 * block value
1482	 */
1483	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1484		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1485
1486	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1487							     cryp->payload_out), 1);
1488	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1489				   cryp->payload_out);
1490
1491	/* d) change mode back to AES GCM */
1492	cfg &= ~CR_ALGO_MASK;
1493	cfg |= CR_AES_GCM;
1494	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1495
1496	/* e) change phase to Final */
1497	cfg &= ~CR_PH_MASK;
1498	cfg |= CR_PH_FINAL;
1499	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1500
1501	/* f) write padded data */
1502	for (i = 0; i < AES_BLOCK_32; i++)
1503		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 
 
 
 
 
 
1504
1505	/* g) Empty fifo out */
1506	err = stm32_cryp_wait_output(cryp);
1507	if (err) {
1508		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1509		return stm32_cryp_finish_req(cryp, err);
1510	}
1511
1512	for (i = 0; i < AES_BLOCK_32; i++)
1513		stm32_cryp_read(cryp, cryp->caps->dout);
1514
1515	/* h) run the he normal Final phase */
1516	stm32_cryp_finish_req(cryp, 0);
1517}
1518
1519static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1520{
1521	u32 cfg;
1522
1523	/* disable ip, set NPBLB and reneable ip */
1524	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1525	cfg &= ~CR_CRYPEN;
1526	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1527
1528	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
 
 
1529	cfg |= CR_CRYPEN;
1530	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1531}
1532
1533static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1534{
1535	int err = 0;
1536	u32 cfg, iv1tmp;
1537	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1538	u32 block[AES_BLOCK_32] = {0};
 
1539	unsigned int i;
1540
1541	/* 'Special workaround' procedure described in the datasheet */
 
1542
1543	/* a) disable ip */
1544	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1545
1546	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1547	cfg &= ~CR_CRYPEN;
1548	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1549
1550	/* b) get IV1 from CRYP_CSGCMCCM7 */
1551	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1552
1553	/* c) Load CRYP_CSGCMCCMxR */
1554	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1555		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1556
1557	/* d) Write IV1R */
1558	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1559
1560	/* e) change mode to CTR */
1561	cfg &= ~CR_ALGO_MASK;
1562	cfg |= CR_AES_CTR;
1563	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1564
1565	/* a) enable IP */
1566	cfg |= CR_CRYPEN;
1567	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1568
1569	/* b) pad and write the last block */
1570	stm32_cryp_irq_write_block(cryp);
1571	/* wait end of process */
1572	err = stm32_cryp_wait_output(cryp);
1573	if (err) {
1574		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1575		return stm32_cryp_finish_req(cryp, err);
1576	}
1577
1578	/* c) get and store decrypted data */
1579	/*
1580	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1581	 * block value
1582	 */
1583	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1584		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1585
1586	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1587							     cryp->payload_out), 1);
1588	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1589
1590	/* d) Load again CRYP_CSGCMCCMxR */
1591	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1592		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1593
1594	/* e) change mode back to AES CCM */
1595	cfg &= ~CR_ALGO_MASK;
1596	cfg |= CR_AES_CCM;
1597	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1598
1599	/* f) change phase to header */
1600	cfg &= ~CR_PH_MASK;
1601	cfg |= CR_PH_HEADER;
1602	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1603
1604	/* g) XOR and write padded data */
1605	for (i = 0; i < ARRAY_SIZE(block); i++) {
1606		block[i] ^= cstmp1[i];
1607		block[i] ^= cstmp2[i];
1608		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1609	}
1610
1611	/* h) wait for completion */
1612	err = stm32_cryp_wait_busy(cryp);
1613	if (err)
1614		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1615
1616	/* i) run the he normal Final phase */
1617	stm32_cryp_finish_req(cryp, err);
1618}
1619
1620static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1621{
1622	if (unlikely(!cryp->payload_in)) {
1623		dev_warn(cryp->dev, "No more data to process\n");
1624		return;
1625	}
1626
1627	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1628		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1629		     is_encrypt(cryp))) {
1630		/* Padding for AES GCM encryption */
1631		if (cryp->caps->padding_wa) {
1632			/* Special case 1 */
1633			stm32_cryp_irq_write_gcm_padded_data(cryp);
1634			return;
1635		}
1636
1637		/* Setting padding bytes (NBBLB) */
1638		stm32_cryp_irq_set_npblb(cryp);
1639	}
1640
1641	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1642		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1643		     is_decrypt(cryp))) {
1644		/* Padding for AES CCM decryption */
1645		if (cryp->caps->padding_wa) {
1646			/* Special case 2 */
1647			stm32_cryp_irq_write_ccm_padded_data(cryp);
1648			return;
1649		}
1650
1651		/* Setting padding bytes (NBBLB) */
1652		stm32_cryp_irq_set_npblb(cryp);
1653	}
1654
1655	if (is_aes(cryp) && is_ctr(cryp))
1656		stm32_cryp_check_ctr_counter(cryp);
1657
1658	stm32_cryp_irq_write_block(cryp);
1659}
1660
1661static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1662{
1663	unsigned int i;
1664	u32 block[AES_BLOCK_32] = {0};
1665	size_t written;
1666
1667	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1668
1669	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1670	for (i = 0; i < AES_BLOCK_32; i++)
1671		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 
 
1672
1673	cryp->header_in -= written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674
1675	stm32_crypt_gcmccm_end_header(cryp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676}
1677
1678static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679{
1680	struct stm32_cryp *cryp = arg;
1681	u32 ph;
1682	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1683
1684	if (cryp->irq_status & MISR_OUT)
1685		/* Output FIFO IRQ: read data */
1686		stm32_cryp_irq_read_data(cryp);
 
 
 
 
 
1687
1688	if (cryp->irq_status & MISR_IN) {
1689		if (is_gcm(cryp) || is_ccm(cryp)) {
1690			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1691			if (unlikely(ph == CR_PH_HEADER))
1692				/* Write Header */
1693				stm32_cryp_irq_write_gcmccm_header(cryp);
 
 
 
 
 
 
 
 
 
1694			else
1695				/* Input FIFO IRQ: write data */
1696				stm32_cryp_irq_write_data(cryp);
1697			if (is_gcm(cryp))
1698				cryp->gcm_ctr++;
1699		} else {
1700			/* Input FIFO IRQ: write data */
1701			stm32_cryp_irq_write_data(cryp);
1702		}
1703	}
1704
1705	/* Mask useless interrupts */
1706	if (!cryp->payload_in && !cryp->header_in)
1707		it_mask &= ~IMSCR_IN;
1708	if (!cryp->payload_out)
1709		it_mask &= ~IMSCR_OUT;
1710	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1711
1712	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1713		stm32_cryp_finish_req(cryp, 0);
1714
1715	return IRQ_HANDLED;
1716}
1717
1718static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719{
1720	struct stm32_cryp *cryp = arg;
1721
1722	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1723
1724	return IRQ_WAKE_THREAD;
1725}
1726
1727static struct skcipher_alg crypto_algs[] = {
1728{
1729	.base.cra_name		= "ecb(aes)",
1730	.base.cra_driver_name	= "stm32-ecb-aes",
1731	.base.cra_priority	= 200,
1732	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1733	.base.cra_blocksize	= AES_BLOCK_SIZE,
1734	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1735	.base.cra_alignmask	= 0,
1736	.base.cra_module	= THIS_MODULE,
1737
1738	.init			= stm32_cryp_init_tfm,
1739	.min_keysize		= AES_MIN_KEY_SIZE,
1740	.max_keysize		= AES_MAX_KEY_SIZE,
1741	.setkey			= stm32_cryp_aes_setkey,
1742	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1743	.decrypt		= stm32_cryp_aes_ecb_decrypt,
1744},
1745{
1746	.base.cra_name		= "cbc(aes)",
1747	.base.cra_driver_name	= "stm32-cbc-aes",
1748	.base.cra_priority	= 200,
1749	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1750	.base.cra_blocksize	= AES_BLOCK_SIZE,
1751	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1752	.base.cra_alignmask	= 0,
1753	.base.cra_module	= THIS_MODULE,
1754
1755	.init			= stm32_cryp_init_tfm,
1756	.min_keysize		= AES_MIN_KEY_SIZE,
1757	.max_keysize		= AES_MAX_KEY_SIZE,
1758	.ivsize			= AES_BLOCK_SIZE,
1759	.setkey			= stm32_cryp_aes_setkey,
1760	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1761	.decrypt		= stm32_cryp_aes_cbc_decrypt,
1762},
1763{
1764	.base.cra_name		= "ctr(aes)",
1765	.base.cra_driver_name	= "stm32-ctr-aes",
1766	.base.cra_priority	= 200,
1767	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1768	.base.cra_blocksize	= 1,
1769	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1770	.base.cra_alignmask	= 0,
1771	.base.cra_module	= THIS_MODULE,
1772
1773	.init			= stm32_cryp_init_tfm,
1774	.min_keysize		= AES_MIN_KEY_SIZE,
1775	.max_keysize		= AES_MAX_KEY_SIZE,
1776	.ivsize			= AES_BLOCK_SIZE,
1777	.setkey			= stm32_cryp_aes_setkey,
1778	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1779	.decrypt		= stm32_cryp_aes_ctr_decrypt,
1780},
1781{
1782	.base.cra_name		= "ecb(des)",
1783	.base.cra_driver_name	= "stm32-ecb-des",
1784	.base.cra_priority	= 200,
1785	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1786	.base.cra_blocksize	= DES_BLOCK_SIZE,
1787	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1788	.base.cra_alignmask	= 0,
1789	.base.cra_module	= THIS_MODULE,
1790
1791	.init			= stm32_cryp_init_tfm,
1792	.min_keysize		= DES_BLOCK_SIZE,
1793	.max_keysize		= DES_BLOCK_SIZE,
1794	.setkey			= stm32_cryp_des_setkey,
1795	.encrypt		= stm32_cryp_des_ecb_encrypt,
1796	.decrypt		= stm32_cryp_des_ecb_decrypt,
1797},
1798{
1799	.base.cra_name		= "cbc(des)",
1800	.base.cra_driver_name	= "stm32-cbc-des",
1801	.base.cra_priority	= 200,
1802	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1803	.base.cra_blocksize	= DES_BLOCK_SIZE,
1804	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1805	.base.cra_alignmask	= 0,
1806	.base.cra_module	= THIS_MODULE,
1807
1808	.init			= stm32_cryp_init_tfm,
1809	.min_keysize		= DES_BLOCK_SIZE,
1810	.max_keysize		= DES_BLOCK_SIZE,
1811	.ivsize			= DES_BLOCK_SIZE,
1812	.setkey			= stm32_cryp_des_setkey,
1813	.encrypt		= stm32_cryp_des_cbc_encrypt,
1814	.decrypt		= stm32_cryp_des_cbc_decrypt,
1815},
1816{
1817	.base.cra_name		= "ecb(des3_ede)",
1818	.base.cra_driver_name	= "stm32-ecb-des3",
1819	.base.cra_priority	= 200,
1820	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1821	.base.cra_blocksize	= DES_BLOCK_SIZE,
1822	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1823	.base.cra_alignmask	= 0,
1824	.base.cra_module	= THIS_MODULE,
1825
1826	.init			= stm32_cryp_init_tfm,
1827	.min_keysize		= 3 * DES_BLOCK_SIZE,
1828	.max_keysize		= 3 * DES_BLOCK_SIZE,
1829	.setkey			= stm32_cryp_tdes_setkey,
1830	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1831	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1832},
1833{
1834	.base.cra_name		= "cbc(des3_ede)",
1835	.base.cra_driver_name	= "stm32-cbc-des3",
1836	.base.cra_priority	= 200,
1837	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1838	.base.cra_blocksize	= DES_BLOCK_SIZE,
1839	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1840	.base.cra_alignmask	= 0,
1841	.base.cra_module	= THIS_MODULE,
1842
1843	.init			= stm32_cryp_init_tfm,
1844	.min_keysize		= 3 * DES_BLOCK_SIZE,
1845	.max_keysize		= 3 * DES_BLOCK_SIZE,
1846	.ivsize			= DES_BLOCK_SIZE,
1847	.setkey			= stm32_cryp_tdes_setkey,
1848	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1849	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1850},
1851};
1852
1853static struct aead_alg aead_algs[] = {
1854{
1855	.setkey		= stm32_cryp_aes_aead_setkey,
1856	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1857	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1858	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1859	.init		= stm32_cryp_aes_aead_init,
1860	.ivsize		= 12,
1861	.maxauthsize	= AES_BLOCK_SIZE,
1862
1863	.base = {
1864		.cra_name		= "gcm(aes)",
1865		.cra_driver_name	= "stm32-gcm-aes",
1866		.cra_priority		= 200,
1867		.cra_flags		= CRYPTO_ALG_ASYNC,
1868		.cra_blocksize		= 1,
1869		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1870		.cra_alignmask		= 0,
1871		.cra_module		= THIS_MODULE,
1872	},
1873},
1874{
1875	.setkey		= stm32_cryp_aes_aead_setkey,
1876	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1877	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1878	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1879	.init		= stm32_cryp_aes_aead_init,
1880	.ivsize		= AES_BLOCK_SIZE,
1881	.maxauthsize	= AES_BLOCK_SIZE,
1882
1883	.base = {
1884		.cra_name		= "ccm(aes)",
1885		.cra_driver_name	= "stm32-ccm-aes",
1886		.cra_priority		= 200,
1887		.cra_flags		= CRYPTO_ALG_ASYNC,
1888		.cra_blocksize		= 1,
1889		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1890		.cra_alignmask		= 0,
1891		.cra_module		= THIS_MODULE,
1892	},
1893},
1894};
1895
1896static const struct stm32_cryp_caps ux500_data = {
1897	.aeads_support = false,
1898	.linear_aes_key = true,
1899	.kp_mode = false,
1900	.iv_protection = true,
1901	.swap_final = true,
1902	.padding_wa = true,
1903	.cr = UX500_CRYP_CR,
1904	.sr = UX500_CRYP_SR,
1905	.din = UX500_CRYP_DIN,
1906	.dout = UX500_CRYP_DOUT,
1907	.imsc = UX500_CRYP_IMSC,
1908	.mis = UX500_CRYP_MIS,
1909	.k1l = UX500_CRYP_K1L,
1910	.k1r = UX500_CRYP_K1R,
1911	.k3r = UX500_CRYP_K3R,
1912	.iv0l = UX500_CRYP_IV0L,
1913	.iv0r = UX500_CRYP_IV0R,
1914	.iv1l = UX500_CRYP_IV1L,
1915	.iv1r = UX500_CRYP_IV1R,
1916};
1917
1918static const struct stm32_cryp_caps f7_data = {
1919	.aeads_support = true,
1920	.linear_aes_key = false,
1921	.kp_mode = true,
1922	.iv_protection = false,
1923	.swap_final = true,
1924	.padding_wa = true,
1925	.cr = CRYP_CR,
1926	.sr = CRYP_SR,
1927	.din = CRYP_DIN,
1928	.dout = CRYP_DOUT,
1929	.imsc = CRYP_IMSCR,
1930	.mis = CRYP_MISR,
1931	.k1l = CRYP_K1LR,
1932	.k1r = CRYP_K1RR,
1933	.k3r = CRYP_K3RR,
1934	.iv0l = CRYP_IV0LR,
1935	.iv0r = CRYP_IV0RR,
1936	.iv1l = CRYP_IV1LR,
1937	.iv1r = CRYP_IV1RR,
1938};
1939
1940static const struct stm32_cryp_caps mp1_data = {
1941	.aeads_support = true,
1942	.linear_aes_key = false,
1943	.kp_mode = true,
1944	.iv_protection = false,
1945	.swap_final = false,
1946	.padding_wa = false,
1947	.cr = CRYP_CR,
1948	.sr = CRYP_SR,
1949	.din = CRYP_DIN,
1950	.dout = CRYP_DOUT,
1951	.imsc = CRYP_IMSCR,
1952	.mis = CRYP_MISR,
1953	.k1l = CRYP_K1LR,
1954	.k1r = CRYP_K1RR,
1955	.k3r = CRYP_K3RR,
1956	.iv0l = CRYP_IV0LR,
1957	.iv0r = CRYP_IV0RR,
1958	.iv1l = CRYP_IV1LR,
1959	.iv1r = CRYP_IV1RR,
1960};
1961
1962static const struct of_device_id stm32_dt_ids[] = {
1963	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1964	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1965	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1966	{},
1967};
1968MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1969
1970static int stm32_cryp_probe(struct platform_device *pdev)
1971{
1972	struct device *dev = &pdev->dev;
1973	struct stm32_cryp *cryp;
1974	struct reset_control *rst;
1975	int irq, ret;
1976
1977	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1978	if (!cryp)
1979		return -ENOMEM;
1980
1981	cryp->caps = of_device_get_match_data(dev);
1982	if (!cryp->caps)
1983		return -ENODEV;
1984
1985	cryp->dev = dev;
1986
1987	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1988	if (IS_ERR(cryp->regs))
1989		return PTR_ERR(cryp->regs);
1990
1991	irq = platform_get_irq(pdev, 0);
1992	if (irq < 0)
1993		return irq;
1994
1995	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1996					stm32_cryp_irq_thread, IRQF_ONESHOT,
1997					dev_name(dev), cryp);
1998	if (ret) {
1999		dev_err(dev, "Cannot grab IRQ\n");
2000		return ret;
2001	}
2002
2003	cryp->clk = devm_clk_get(dev, NULL);
2004	if (IS_ERR(cryp->clk)) {
2005		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2006
2007		return PTR_ERR(cryp->clk);
2008	}
2009
2010	ret = clk_prepare_enable(cryp->clk);
2011	if (ret) {
2012		dev_err(cryp->dev, "Failed to enable clock\n");
2013		return ret;
2014	}
2015
2016	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2017	pm_runtime_use_autosuspend(dev);
2018
2019	pm_runtime_get_noresume(dev);
2020	pm_runtime_set_active(dev);
2021	pm_runtime_enable(dev);
2022
2023	rst = devm_reset_control_get(dev, NULL);
2024	if (IS_ERR(rst)) {
2025		ret = PTR_ERR(rst);
2026		if (ret == -EPROBE_DEFER)
2027			goto err_rst;
2028	} else {
2029		reset_control_assert(rst);
2030		udelay(2);
2031		reset_control_deassert(rst);
2032	}
2033
2034	platform_set_drvdata(pdev, cryp);
2035
2036	spin_lock(&cryp_list.lock);
2037	list_add(&cryp->list, &cryp_list.dev_list);
2038	spin_unlock(&cryp_list.lock);
2039
2040	/* Initialize crypto engine */
2041	cryp->engine = crypto_engine_alloc_init(dev, 1);
2042	if (!cryp->engine) {
2043		dev_err(dev, "Could not init crypto engine\n");
2044		ret = -ENOMEM;
2045		goto err_engine1;
2046	}
2047
2048	ret = crypto_engine_start(cryp->engine);
2049	if (ret) {
2050		dev_err(dev, "Could not start crypto engine\n");
2051		goto err_engine2;
2052	}
2053
2054	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2055	if (ret) {
2056		dev_err(dev, "Could not register algs\n");
2057		goto err_algs;
2058	}
2059
2060	if (cryp->caps->aeads_support) {
2061		ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062		if (ret)
2063			goto err_aead_algs;
2064	}
2065
2066	dev_info(dev, "Initialized\n");
2067
2068	pm_runtime_put_sync(dev);
2069
2070	return 0;
2071
2072err_aead_algs:
2073	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2074err_algs:
2075err_engine2:
2076	crypto_engine_exit(cryp->engine);
2077err_engine1:
2078	spin_lock(&cryp_list.lock);
2079	list_del(&cryp->list);
2080	spin_unlock(&cryp_list.lock);
2081err_rst:
 
 
2082	pm_runtime_disable(dev);
2083	pm_runtime_put_noidle(dev);
2084
2085	clk_disable_unprepare(cryp->clk);
2086
2087	return ret;
2088}
2089
2090static int stm32_cryp_remove(struct platform_device *pdev)
2091{
2092	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2093	int ret;
2094
2095	if (!cryp)
2096		return -ENODEV;
2097
2098	ret = pm_runtime_resume_and_get(cryp->dev);
2099	if (ret < 0)
2100		return ret;
2101
2102	if (cryp->caps->aeads_support)
2103		crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2104	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2105
2106	crypto_engine_exit(cryp->engine);
2107
2108	spin_lock(&cryp_list.lock);
2109	list_del(&cryp->list);
2110	spin_unlock(&cryp_list.lock);
2111
2112	pm_runtime_disable(cryp->dev);
2113	pm_runtime_put_noidle(cryp->dev);
2114
2115	clk_disable_unprepare(cryp->clk);
2116
2117	return 0;
2118}
2119
2120#ifdef CONFIG_PM
2121static int stm32_cryp_runtime_suspend(struct device *dev)
2122{
2123	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124
2125	clk_disable_unprepare(cryp->clk);
2126
2127	return 0;
2128}
2129
2130static int stm32_cryp_runtime_resume(struct device *dev)
2131{
2132	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2133	int ret;
2134
2135	ret = clk_prepare_enable(cryp->clk);
2136	if (ret) {
2137		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2138		return ret;
2139	}
2140
2141	return 0;
2142}
2143#endif
2144
2145static const struct dev_pm_ops stm32_cryp_pm_ops = {
2146	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2147				pm_runtime_force_resume)
2148	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2149			   stm32_cryp_runtime_resume, NULL)
2150};
2151
2152static struct platform_driver stm32_cryp_driver = {
2153	.probe  = stm32_cryp_probe,
2154	.remove = stm32_cryp_remove,
2155	.driver = {
2156		.name           = DRIVER_NAME,
2157		.pm		= &stm32_cryp_pm_ops,
2158		.of_match_table = stm32_dt_ids,
2159	},
2160};
2161
2162module_platform_driver(stm32_cryp_driver);
2163
2164MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2165MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2166MODULE_LICENSE("GPL");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
 
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/delay.h>
   9#include <linux/interrupt.h>
  10#include <linux/iopoll.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <crypto/aes.h>
  18#include <crypto/internal/des.h>
  19#include <crypto/engine.h>
  20#include <crypto/scatterwalk.h>
  21#include <crypto/internal/aead.h>
  22#include <crypto/internal/skcipher.h>
  23
  24#define DRIVER_NAME             "stm32-cryp"
  25
  26/* Bit [0] encrypt / decrypt */
  27#define FLG_ENCRYPT             BIT(0)
  28/* Bit [8..1] algo & operation mode */
  29#define FLG_AES                 BIT(1)
  30#define FLG_DES                 BIT(2)
  31#define FLG_TDES                BIT(3)
  32#define FLG_ECB                 BIT(4)
  33#define FLG_CBC                 BIT(5)
  34#define FLG_CTR                 BIT(6)
  35#define FLG_GCM                 BIT(7)
  36#define FLG_CCM                 BIT(8)
  37/* Mode mask = bits [15..0] */
  38#define FLG_MODE_MASK           GENMASK(15, 0)
  39/* Bit [31..16] status  */
  40#define FLG_CCM_PADDED_WA       BIT(16)
  41
  42/* Registers */
  43#define CRYP_CR                 0x00000000
  44#define CRYP_SR                 0x00000004
  45#define CRYP_DIN                0x00000008
  46#define CRYP_DOUT               0x0000000C
  47#define CRYP_DMACR              0x00000010
  48#define CRYP_IMSCR              0x00000014
  49#define CRYP_RISR               0x00000018
  50#define CRYP_MISR               0x0000001C
  51#define CRYP_K0LR               0x00000020
  52#define CRYP_K0RR               0x00000024
  53#define CRYP_K1LR               0x00000028
  54#define CRYP_K1RR               0x0000002C
  55#define CRYP_K2LR               0x00000030
  56#define CRYP_K2RR               0x00000034
  57#define CRYP_K3LR               0x00000038
  58#define CRYP_K3RR               0x0000003C
  59#define CRYP_IV0LR              0x00000040
  60#define CRYP_IV0RR              0x00000044
  61#define CRYP_IV1LR              0x00000048
  62#define CRYP_IV1RR              0x0000004C
  63#define CRYP_CSGCMCCM0R         0x00000050
  64#define CRYP_CSGCM0R            0x00000070
  65
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  66/* Registers values */
  67#define CR_DEC_NOT_ENC          0x00000004
  68#define CR_TDES_ECB             0x00000000
  69#define CR_TDES_CBC             0x00000008
  70#define CR_DES_ECB              0x00000010
  71#define CR_DES_CBC              0x00000018
  72#define CR_AES_ECB              0x00000020
  73#define CR_AES_CBC              0x00000028
  74#define CR_AES_CTR              0x00000030
  75#define CR_AES_KP               0x00000038
 
  76#define CR_AES_GCM              0x00080000
  77#define CR_AES_CCM              0x00080008
  78#define CR_AES_UNKNOWN          0xFFFFFFFF
  79#define CR_ALGO_MASK            0x00080038
  80#define CR_DATA32               0x00000000
  81#define CR_DATA16               0x00000040
  82#define CR_DATA8                0x00000080
  83#define CR_DATA1                0x000000C0
  84#define CR_KEY128               0x00000000
  85#define CR_KEY192               0x00000100
  86#define CR_KEY256               0x00000200
 
 
  87#define CR_FFLUSH               0x00004000
  88#define CR_CRYPEN               0x00008000
  89#define CR_PH_INIT              0x00000000
  90#define CR_PH_HEADER            0x00010000
  91#define CR_PH_PAYLOAD           0x00020000
  92#define CR_PH_FINAL             0x00030000
  93#define CR_PH_MASK              0x00030000
  94#define CR_NBPBL_SHIFT          20
  95
  96#define SR_BUSY                 0x00000010
  97#define SR_OFNE                 0x00000004
  98
  99#define IMSCR_IN                BIT(0)
 100#define IMSCR_OUT               BIT(1)
 101
 102#define MISR_IN                 BIT(0)
 103#define MISR_OUT                BIT(1)
 104
 105/* Misc */
 106#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 107#define GCM_CTR_INIT            2
 108#define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
 109#define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
 110#define CRYP_AUTOSUSPEND_DELAY	50
 111
 112struct stm32_cryp_caps {
 113	bool                    swap_final;
 114	bool                    padding_wa;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115};
 116
 117struct stm32_cryp_ctx {
 118	struct crypto_engine_ctx enginectx;
 119	struct stm32_cryp       *cryp;
 120	int                     keylen;
 121	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 122	unsigned long           flags;
 123};
 124
 125struct stm32_cryp_reqctx {
 126	unsigned long mode;
 127};
 128
 129struct stm32_cryp {
 130	struct list_head        list;
 131	struct device           *dev;
 132	void __iomem            *regs;
 133	struct clk              *clk;
 134	unsigned long           flags;
 135	u32                     irq_status;
 136	const struct stm32_cryp_caps *caps;
 137	struct stm32_cryp_ctx   *ctx;
 138
 139	struct crypto_engine    *engine;
 140
 141	struct skcipher_request *req;
 142	struct aead_request     *areq;
 143
 144	size_t                  authsize;
 145	size_t                  hw_blocksize;
 146
 147	size_t                  total_in;
 148	size_t                  total_in_save;
 149	size_t                  total_out;
 150	size_t                  total_out_save;
 151
 152	struct scatterlist      *in_sg;
 153	struct scatterlist      *out_sg;
 154	struct scatterlist      *out_sg_save;
 155
 156	struct scatterlist      in_sgl;
 157	struct scatterlist      out_sgl;
 158	bool                    sgs_copied;
 159
 160	int                     in_sg_len;
 161	int                     out_sg_len;
 162
 163	struct scatter_walk     in_walk;
 164	struct scatter_walk     out_walk;
 165
 166	u32                     last_ctr[4];
 167	u32                     gcm_ctr;
 168};
 169
 170struct stm32_cryp_list {
 171	struct list_head        dev_list;
 172	spinlock_t              lock; /* protect dev_list */
 173};
 174
 175static struct stm32_cryp_list cryp_list = {
 176	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 177	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 178};
 179
 180static inline bool is_aes(struct stm32_cryp *cryp)
 181{
 182	return cryp->flags & FLG_AES;
 183}
 184
 185static inline bool is_des(struct stm32_cryp *cryp)
 186{
 187	return cryp->flags & FLG_DES;
 188}
 189
 190static inline bool is_tdes(struct stm32_cryp *cryp)
 191{
 192	return cryp->flags & FLG_TDES;
 193}
 194
 195static inline bool is_ecb(struct stm32_cryp *cryp)
 196{
 197	return cryp->flags & FLG_ECB;
 198}
 199
 200static inline bool is_cbc(struct stm32_cryp *cryp)
 201{
 202	return cryp->flags & FLG_CBC;
 203}
 204
 205static inline bool is_ctr(struct stm32_cryp *cryp)
 206{
 207	return cryp->flags & FLG_CTR;
 208}
 209
 210static inline bool is_gcm(struct stm32_cryp *cryp)
 211{
 212	return cryp->flags & FLG_GCM;
 213}
 214
 215static inline bool is_ccm(struct stm32_cryp *cryp)
 216{
 217	return cryp->flags & FLG_CCM;
 218}
 219
 220static inline bool is_encrypt(struct stm32_cryp *cryp)
 221{
 222	return cryp->flags & FLG_ENCRYPT;
 223}
 224
 225static inline bool is_decrypt(struct stm32_cryp *cryp)
 226{
 227	return !is_encrypt(cryp);
 228}
 229
 230static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 231{
 232	return readl_relaxed(cryp->regs + ofst);
 233}
 234
 235static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 236{
 237	writel_relaxed(val, cryp->regs + ofst);
 238}
 239
 240static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 241{
 242	u32 status;
 243
 244	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 245			!(status & SR_BUSY), 10, 100000);
 246}
 247
 
 
 
 
 
 
 248static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 249{
 250	u32 status;
 251
 252	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 253			!(status & CR_CRYPEN), 10, 100000);
 254}
 255
 256static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 257{
 258	u32 status;
 259
 260	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 261			status & SR_OFNE, 10, 100000);
 262}
 263
 
 
 
 
 
 
 
 
 
 
 
 
 264static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 
 265
 266static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 267{
 268	struct stm32_cryp *tmp, *cryp = NULL;
 269
 270	spin_lock_bh(&cryp_list.lock);
 271	if (!ctx->cryp) {
 272		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 273			cryp = tmp;
 274			break;
 275		}
 276		ctx->cryp = cryp;
 277	} else {
 278		cryp = ctx->cryp;
 279	}
 280
 281	spin_unlock_bh(&cryp_list.lock);
 282
 283	return cryp;
 284}
 285
 286static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
 287				    size_t align)
 288{
 289	int len = 0;
 290
 291	if (!total)
 292		return 0;
 293
 294	if (!IS_ALIGNED(total, align))
 295		return -EINVAL;
 296
 297	while (sg) {
 298		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 299			return -EINVAL;
 300
 301		if (!IS_ALIGNED(sg->length, align))
 302			return -EINVAL;
 303
 304		len += sg->length;
 305		sg = sg_next(sg);
 306	}
 307
 308	if (len != total)
 309		return -EINVAL;
 310
 311	return 0;
 312}
 313
 314static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
 315{
 316	int ret;
 317
 318	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
 319				       cryp->hw_blocksize);
 320	if (ret)
 321		return ret;
 322
 323	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
 324				       cryp->hw_blocksize);
 325
 326	return ret;
 327}
 328
 329static void sg_copy_buf(void *buf, struct scatterlist *sg,
 330			unsigned int start, unsigned int nbytes, int out)
 331{
 332	struct scatter_walk walk;
 333
 334	if (!nbytes)
 335		return;
 336
 337	scatterwalk_start(&walk, sg);
 338	scatterwalk_advance(&walk, start);
 339	scatterwalk_copychunks(buf, &walk, nbytes, out);
 340	scatterwalk_done(&walk, out, 0);
 341}
 342
 343static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
 344{
 345	void *buf_in, *buf_out;
 346	int pages, total_in, total_out;
 347
 348	if (!stm32_cryp_check_io_aligned(cryp)) {
 349		cryp->sgs_copied = 0;
 350		return 0;
 351	}
 352
 353	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
 354	pages = total_in ? get_order(total_in) : 1;
 355	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
 356
 357	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
 358	pages = total_out ? get_order(total_out) : 1;
 359	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
 360
 361	if (!buf_in || !buf_out) {
 362		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
 363		cryp->sgs_copied = 0;
 364		return -EFAULT;
 365	}
 366
 367	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
 368
 369	sg_init_one(&cryp->in_sgl, buf_in, total_in);
 370	cryp->in_sg = &cryp->in_sgl;
 371	cryp->in_sg_len = 1;
 372
 373	sg_init_one(&cryp->out_sgl, buf_out, total_out);
 374	cryp->out_sg_save = cryp->out_sg;
 375	cryp->out_sg = &cryp->out_sgl;
 376	cryp->out_sg_len = 1;
 377
 378	cryp->sgs_copied = 1;
 379
 380	return 0;
 381}
 382
 383static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 384{
 385	if (!iv)
 386		return;
 387
 388	stm32_cryp_write(cryp, CRYP_IV0LR, be32_to_cpu(*iv++));
 389	stm32_cryp_write(cryp, CRYP_IV0RR, be32_to_cpu(*iv++));
 390
 391	if (is_aes(cryp)) {
 392		stm32_cryp_write(cryp, CRYP_IV1LR, be32_to_cpu(*iv++));
 393		stm32_cryp_write(cryp, CRYP_IV1RR, be32_to_cpu(*iv++));
 394	}
 395}
 396
 397static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 398{
 399	struct skcipher_request *req = cryp->req;
 400	__be32 *tmp = (void *)req->iv;
 401
 402	if (!tmp)
 403		return;
 404
 405	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
 406	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
 
 
 
 407
 408	if (is_aes(cryp)) {
 409		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
 410		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411	}
 412}
 413
 414static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 415{
 416	unsigned int i;
 417	int r_id;
 418
 419	if (is_des(c)) {
 420		stm32_cryp_write(c, CRYP_K1LR, be32_to_cpu(c->ctx->key[0]));
 421		stm32_cryp_write(c, CRYP_K1RR, be32_to_cpu(c->ctx->key[1]));
 422	} else {
 423		r_id = CRYP_K3RR;
 424		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 425			stm32_cryp_write(c, r_id,
 426					 be32_to_cpu(c->ctx->key[i - 1]));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 427	}
 
 
 
 
 428}
 429
 430static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 431{
 432	if (is_aes(cryp) && is_ecb(cryp))
 433		return CR_AES_ECB;
 434
 435	if (is_aes(cryp) && is_cbc(cryp))
 436		return CR_AES_CBC;
 437
 438	if (is_aes(cryp) && is_ctr(cryp))
 439		return CR_AES_CTR;
 440
 441	if (is_aes(cryp) && is_gcm(cryp))
 442		return CR_AES_GCM;
 443
 444	if (is_aes(cryp) && is_ccm(cryp))
 445		return CR_AES_CCM;
 446
 447	if (is_des(cryp) && is_ecb(cryp))
 448		return CR_DES_ECB;
 449
 450	if (is_des(cryp) && is_cbc(cryp))
 451		return CR_DES_CBC;
 452
 453	if (is_tdes(cryp) && is_ecb(cryp))
 454		return CR_TDES_ECB;
 455
 456	if (is_tdes(cryp) && is_cbc(cryp))
 457		return CR_TDES_CBC;
 458
 459	dev_err(cryp->dev, "Unknown mode\n");
 460	return CR_AES_UNKNOWN;
 461}
 462
 463static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 464{
 465	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 466				  cryp->areq->cryptlen - cryp->authsize;
 467}
 468
 469static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 470{
 471	int ret;
 472	__be32 iv[4];
 473
 474	/* Phase 1 : init */
 475	memcpy(iv, cryp->areq->iv, 12);
 476	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 477	cryp->gcm_ctr = GCM_CTR_INIT;
 478	stm32_cryp_hw_write_iv(cryp, iv);
 479
 480	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 481
 482	/* Wait for end of processing */
 483	ret = stm32_cryp_wait_enable(cryp);
 484	if (ret)
 485		dev_err(cryp->dev, "Timeout (gcm init)\n");
 
 
 486
 487	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 488}
 489
 490static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 491{
 492	int ret;
 493	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
 
 494	__be32 *bd;
 495	u32 *d;
 496	unsigned int i, textlen;
 497
 498	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 499	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 500	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 501	iv[AES_BLOCK_SIZE - 1] = 1;
 502	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 503
 504	/* Build B0 */
 505	memcpy(b0, iv, AES_BLOCK_SIZE);
 506
 507	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 508
 509	if (cryp->areq->assoclen)
 510		b0[0] |= 0x40;
 511
 512	textlen = stm32_cryp_get_input_text_len(cryp);
 513
 514	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 515	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 516
 517	/* Enable HW */
 518	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 519
 520	/* Write B0 */
 521	d = (u32 *)b0;
 522	bd = (__be32 *)b0;
 523
 524	for (i = 0; i < AES_BLOCK_32; i++) {
 525		u32 xd = d[i];
 526
 527		if (!cryp->caps->padding_wa)
 528			xd = be32_to_cpu(bd[i]);
 529		stm32_cryp_write(cryp, CRYP_DIN, xd);
 530	}
 531
 532	/* Wait for end of processing */
 533	ret = stm32_cryp_wait_enable(cryp);
 534	if (ret)
 535		dev_err(cryp->dev, "Timeout (ccm init)\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536
 537	return ret;
 538}
 539
 540static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 541{
 542	int ret;
 543	u32 cfg, hw_mode;
 544
 545	pm_runtime_resume_and_get(cryp->dev);
 546
 547	/* Disable interrupt */
 548	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 549
 550	/* Set key */
 551	stm32_cryp_hw_write_key(cryp);
 552
 553	/* Set configuration */
 554	cfg = CR_DATA8 | CR_FFLUSH;
 555
 556	switch (cryp->ctx->keylen) {
 557	case AES_KEYSIZE_128:
 558		cfg |= CR_KEY128;
 559		break;
 560
 561	case AES_KEYSIZE_192:
 562		cfg |= CR_KEY192;
 563		break;
 564
 565	default:
 566	case AES_KEYSIZE_256:
 567		cfg |= CR_KEY256;
 568		break;
 569	}
 570
 571	hw_mode = stm32_cryp_get_hw_mode(cryp);
 572	if (hw_mode == CR_AES_UNKNOWN)
 573		return -EINVAL;
 574
 575	/* AES ECB/CBC decrypt: run key preparation first */
 576	if (is_decrypt(cryp) &&
 577	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 578		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
 
 
 
 
 
 
 
 
 
 579
 
 
 580		/* Wait for end of processing */
 581		ret = stm32_cryp_wait_busy(cryp);
 582		if (ret) {
 583			dev_err(cryp->dev, "Timeout (key preparation)\n");
 584			return ret;
 585		}
 586	}
 587
 588	cfg |= hw_mode;
 
 
 
 
 
 
 
 589
 590	if (is_decrypt(cryp))
 591		cfg |= CR_DEC_NOT_ENC;
 592
 593	/* Apply config and flush (valid when CRYPEN = 0) */
 594	stm32_cryp_write(cryp, CRYP_CR, cfg);
 
 595
 596	switch (hw_mode) {
 597	case CR_AES_GCM:
 598	case CR_AES_CCM:
 599		/* Phase 1 : init */
 600		if (hw_mode == CR_AES_CCM)
 601			ret = stm32_cryp_ccm_init(cryp, cfg);
 602		else
 603			ret = stm32_cryp_gcm_init(cryp, cfg);
 604
 605		if (ret)
 606			return ret;
 607
 608		/* Phase 2 : header (authenticated data) */
 609		if (cryp->areq->assoclen) {
 610			cfg |= CR_PH_HEADER;
 611		} else if (stm32_cryp_get_input_text_len(cryp)) {
 612			cfg |= CR_PH_PAYLOAD;
 613			stm32_cryp_write(cryp, CRYP_CR, cfg);
 614		} else {
 615			cfg |= CR_PH_INIT;
 616		}
 617
 618		break;
 619
 620	case CR_DES_CBC:
 621	case CR_TDES_CBC:
 622	case CR_AES_CBC:
 623	case CR_AES_CTR:
 624		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 625		break;
 626
 627	default:
 628		break;
 629	}
 630
 631	/* Enable now */
 632	cfg |= CR_CRYPEN;
 633
 634	stm32_cryp_write(cryp, CRYP_CR, cfg);
 635
 636	cryp->flags &= ~FLG_CCM_PADDED_WA;
 637
 638	return 0;
 639}
 640
 641static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 642{
 643	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 644		/* Phase 4 : output tag */
 645		err = stm32_cryp_read_auth_tag(cryp);
 646
 647	if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
 648		stm32_cryp_get_iv(cryp);
 649
 650	if (cryp->sgs_copied) {
 651		void *buf_in, *buf_out;
 652		int pages, len;
 653
 654		buf_in = sg_virt(&cryp->in_sgl);
 655		buf_out = sg_virt(&cryp->out_sgl);
 656
 657		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
 658			    cryp->total_out_save, 1);
 659
 660		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
 661		pages = len ? get_order(len) : 1;
 662		free_pages((unsigned long)buf_in, pages);
 663
 664		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
 665		pages = len ? get_order(len) : 1;
 666		free_pages((unsigned long)buf_out, pages);
 667	}
 668
 669	pm_runtime_mark_last_busy(cryp->dev);
 670	pm_runtime_put_autosuspend(cryp->dev);
 671
 672	if (is_gcm(cryp) || is_ccm(cryp))
 673		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 674	else
 675		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 676						   err);
 677
 678	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
 679}
 680
 681static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 682{
 683	/* Enable interrupt and let the IRQ handler do everything */
 684	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 685
 686	return 0;
 687}
 688
 689static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 690static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 691					 void *areq);
 692
 693static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 694{
 695	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 696
 697	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 698
 699	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 700	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 701	ctx->enginectx.op.unprepare_request = NULL;
 702	return 0;
 703}
 704
 705static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 706static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 707				       void *areq);
 708
 709static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 710{
 711	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 712
 713	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 714
 715	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 716	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 717	ctx->enginectx.op.unprepare_request = NULL;
 718
 719	return 0;
 720}
 721
 722static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 723{
 724	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 725			crypto_skcipher_reqtfm(req));
 726	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 727	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 728
 729	if (!cryp)
 730		return -ENODEV;
 731
 732	rctx->mode = mode;
 733
 734	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 735}
 736
 737static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 738{
 739	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 740	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 741	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 742
 743	if (!cryp)
 744		return -ENODEV;
 745
 746	rctx->mode = mode;
 747
 748	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 749}
 750
 751static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 752			     unsigned int keylen)
 753{
 754	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 755
 756	memcpy(ctx->key, key, keylen);
 757	ctx->keylen = keylen;
 758
 759	return 0;
 760}
 761
 762static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 763				 unsigned int keylen)
 764{
 765	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 766	    keylen != AES_KEYSIZE_256)
 767		return -EINVAL;
 768	else
 769		return stm32_cryp_setkey(tfm, key, keylen);
 770}
 771
 772static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 773				 unsigned int keylen)
 774{
 775	return verify_skcipher_des_key(tfm, key) ?:
 776	       stm32_cryp_setkey(tfm, key, keylen);
 777}
 778
 779static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 780				  unsigned int keylen)
 781{
 782	return verify_skcipher_des3_key(tfm, key) ?:
 783	       stm32_cryp_setkey(tfm, key, keylen);
 784}
 785
 786static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 787				      unsigned int keylen)
 788{
 789	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 790
 791	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 792	    keylen != AES_KEYSIZE_256)
 793		return -EINVAL;
 794
 795	memcpy(ctx->key, key, keylen);
 796	ctx->keylen = keylen;
 797
 798	return 0;
 799}
 800
 801static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 802					  unsigned int authsize)
 803{
 804	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 805}
 806
 807static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 808					  unsigned int authsize)
 809{
 810	switch (authsize) {
 811	case 4:
 812	case 6:
 813	case 8:
 814	case 10:
 815	case 12:
 816	case 14:
 817	case 16:
 818		break;
 819	default:
 820		return -EINVAL;
 821	}
 822
 823	return 0;
 824}
 825
 826static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 827{
 
 
 
 
 
 
 828	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 829}
 830
 831static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 832{
 
 
 
 
 
 
 833	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 834}
 835
 836static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
 837{
 
 
 
 
 
 
 838	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 839}
 840
 841static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
 842{
 
 
 
 
 
 
 843	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 844}
 845
 846static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
 847{
 
 
 
 848	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 849}
 850
 851static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
 852{
 
 
 
 853	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 854}
 855
 856static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 857{
 858	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 859}
 860
 861static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 862{
 863	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 864}
 865
 
 
 
 
 
 
 
 
 
 866static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 867{
 
 
 
 
 
 
 868	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 869}
 870
 871static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 872{
 
 
 
 
 
 
 873	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 874}
 875
 876static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
 877{
 
 
 
 
 
 
 878	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 879}
 880
 881static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
 882{
 
 
 
 
 
 
 883	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 884}
 885
 886static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
 887{
 
 
 
 
 
 
 888	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 889}
 890
 891static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
 892{
 
 
 
 
 
 
 893	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 894}
 895
 896static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
 897{
 
 
 
 
 
 
 898	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 899}
 900
 901static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
 902{
 
 
 
 
 
 
 903	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 904}
 905
 906static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
 907{
 
 
 
 
 
 
 908	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 909}
 910
 911static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
 912{
 
 
 
 
 
 
 913	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 914}
 915
 916static int stm32_cryp_prepare_req(struct skcipher_request *req,
 917				  struct aead_request *areq)
 918{
 919	struct stm32_cryp_ctx *ctx;
 920	struct stm32_cryp *cryp;
 921	struct stm32_cryp_reqctx *rctx;
 
 922	int ret;
 923
 924	if (!req && !areq)
 925		return -EINVAL;
 926
 927	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
 928		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
 929
 930	cryp = ctx->cryp;
 931
 932	if (!cryp)
 933		return -ENODEV;
 934
 935	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
 936	rctx->mode &= FLG_MODE_MASK;
 937
 938	ctx->cryp = cryp;
 939
 940	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 941	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 942	cryp->ctx = ctx;
 943
 944	if (req) {
 945		cryp->req = req;
 946		cryp->areq = NULL;
 947		cryp->total_in = req->cryptlen;
 948		cryp->total_out = cryp->total_in;
 
 
 949	} else {
 950		/*
 951		 * Length of input and output data:
 952		 * Encryption case:
 953		 *  INPUT  =   AssocData  ||   PlainText
 954		 *          <- assoclen ->  <- cryptlen ->
 955		 *          <------- total_in ----------->
 956		 *
 957		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
 958		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
 959		 *          <---------------- total_out ----------------->
 960		 *
 961		 * Decryption case:
 962		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
 963		 *          <- assoclen ->  <--------- cryptlen --------->
 964		 *                                          <- authsize ->
 965		 *          <---------------- total_in ------------------>
 966		 *
 967		 *  OUTPUT =   AssocData  ||   PlainText
 968		 *          <- assoclen ->  <- crypten - authsize ->
 969		 *          <---------- total_out ----------------->
 970		 */
 971		cryp->areq = areq;
 972		cryp->req = NULL;
 973		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 974		cryp->total_in = areq->assoclen + areq->cryptlen;
 975		if (is_encrypt(cryp))
 976			/* Append auth tag to output */
 977			cryp->total_out = cryp->total_in + cryp->authsize;
 978		else
 979			/* No auth tag in output */
 980			cryp->total_out = cryp->total_in - cryp->authsize;
 
 
 981	}
 982
 983	cryp->total_in_save = cryp->total_in;
 984	cryp->total_out_save = cryp->total_out;
 985
 986	cryp->in_sg = req ? req->src : areq->src;
 987	cryp->out_sg = req ? req->dst : areq->dst;
 988	cryp->out_sg_save = cryp->out_sg;
 989
 990	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
 991	if (cryp->in_sg_len < 0) {
 992		dev_err(cryp->dev, "Cannot get in_sg_len\n");
 993		ret = cryp->in_sg_len;
 994		return ret;
 995	}
 996
 997	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
 998	if (cryp->out_sg_len < 0) {
 999		dev_err(cryp->dev, "Cannot get out_sg_len\n");
1000		ret = cryp->out_sg_len;
1001		return ret;
1002	}
1003
1004	ret = stm32_cryp_copy_sgs(cryp);
1005	if (ret)
1006		return ret;
1007
1008	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1009	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1010
1011	if (is_gcm(cryp) || is_ccm(cryp)) {
1012		/* In output, jump after assoc data */
1013		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1014		cryp->total_out -= cryp->areq->assoclen;
1015	}
1016
 
 
 
1017	ret = stm32_cryp_hw_init(cryp);
1018	return ret;
1019}
1020
1021static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1022					 void *areq)
1023{
1024	struct skcipher_request *req = container_of(areq,
1025						      struct skcipher_request,
1026						      base);
1027
1028	return stm32_cryp_prepare_req(req, NULL);
1029}
1030
1031static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1032{
1033	struct skcipher_request *req = container_of(areq,
1034						      struct skcipher_request,
1035						      base);
1036	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1037			crypto_skcipher_reqtfm(req));
1038	struct stm32_cryp *cryp = ctx->cryp;
1039
1040	if (!cryp)
1041		return -ENODEV;
1042
1043	return stm32_cryp_cpu_start(cryp);
1044}
1045
1046static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1047{
1048	struct aead_request *req = container_of(areq, struct aead_request,
1049						base);
1050
1051	return stm32_cryp_prepare_req(NULL, req);
1052}
1053
1054static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1055{
1056	struct aead_request *req = container_of(areq, struct aead_request,
1057						base);
1058	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1059	struct stm32_cryp *cryp = ctx->cryp;
1060
1061	if (!cryp)
1062		return -ENODEV;
1063
1064	if (unlikely(!cryp->areq->assoclen &&
1065		     !stm32_cryp_get_input_text_len(cryp))) {
1066		/* No input data to process: get tag and finish */
1067		stm32_cryp_finish_req(cryp, 0);
1068		return 0;
1069	}
1070
1071	return stm32_cryp_cpu_start(cryp);
1072}
1073
1074static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1075				unsigned int n)
1076{
1077	scatterwalk_advance(&cryp->out_walk, n);
1078
1079	if (unlikely(cryp->out_sg->length == _walked_out)) {
1080		cryp->out_sg = sg_next(cryp->out_sg);
1081		if (cryp->out_sg) {
1082			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1083			return (sg_virt(cryp->out_sg) + _walked_out);
1084		}
1085	}
1086
1087	return (u32 *)((u8 *)dst + n);
1088}
1089
1090static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1091			       unsigned int n)
1092{
1093	scatterwalk_advance(&cryp->in_walk, n);
1094
1095	if (unlikely(cryp->in_sg->length == _walked_in)) {
1096		cryp->in_sg = sg_next(cryp->in_sg);
1097		if (cryp->in_sg) {
1098			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1099			return (sg_virt(cryp->in_sg) + _walked_in);
1100		}
1101	}
1102
1103	return (u32 *)((u8 *)src + n);
1104}
1105
1106static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1107{
1108	u32 cfg, size_bit, *dst, d32;
1109	u8 *d8;
1110	unsigned int i, j;
1111	int ret = 0;
1112
1113	/* Update Config */
1114	cfg = stm32_cryp_read(cryp, CRYP_CR);
1115
1116	cfg &= ~CR_PH_MASK;
1117	cfg |= CR_PH_FINAL;
1118	cfg &= ~CR_DEC_NOT_ENC;
1119	cfg |= CR_CRYPEN;
1120
1121	stm32_cryp_write(cryp, CRYP_CR, cfg);
1122
1123	if (is_gcm(cryp)) {
1124		/* GCM: write aad and payload size (in bits) */
1125		size_bit = cryp->areq->assoclen * 8;
1126		if (cryp->caps->swap_final)
1127			size_bit = (__force u32)cpu_to_be32(size_bit);
1128
1129		stm32_cryp_write(cryp, CRYP_DIN, 0);
1130		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1131
1132		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1133				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1134		size_bit *= 8;
1135		if (cryp->caps->swap_final)
1136			size_bit = (__force u32)cpu_to_be32(size_bit);
1137
1138		stm32_cryp_write(cryp, CRYP_DIN, 0);
1139		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1140	} else {
1141		/* CCM: write CTR0 */
1142		u8 iv[AES_BLOCK_SIZE];
1143		u32 *iv32 = (u32 *)iv;
1144		__be32 *biv;
1145
1146		biv = (void *)iv;
1147
1148		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1149		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1150
1151		for (i = 0; i < AES_BLOCK_32; i++) {
1152			u32 xiv = iv32[i];
1153
1154			if (!cryp->caps->padding_wa)
1155				xiv = be32_to_cpu(biv[i]);
1156			stm32_cryp_write(cryp, CRYP_DIN, xiv);
1157		}
1158	}
1159
1160	/* Wait for output data */
1161	ret = stm32_cryp_wait_output(cryp);
1162	if (ret) {
1163		dev_err(cryp->dev, "Timeout (read tag)\n");
1164		return ret;
1165	}
1166
1167	if (is_encrypt(cryp)) {
 
 
1168		/* Get and write tag */
1169		dst = sg_virt(cryp->out_sg) + _walked_out;
 
1170
1171		for (i = 0; i < AES_BLOCK_32; i++) {
1172			if (cryp->total_out >= sizeof(u32)) {
1173				/* Read a full u32 */
1174				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1175
1176				dst = stm32_cryp_next_out(cryp, dst,
1177							  sizeof(u32));
1178				cryp->total_out -= sizeof(u32);
1179			} else if (!cryp->total_out) {
1180				/* Empty fifo out (data from input padding) */
1181				stm32_cryp_read(cryp, CRYP_DOUT);
1182			} else {
1183				/* Read less than an u32 */
1184				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1185				d8 = (u8 *)&d32;
1186
1187				for (j = 0; j < cryp->total_out; j++) {
1188					*((u8 *)dst) = *(d8++);
1189					dst = stm32_cryp_next_out(cryp, dst, 1);
1190				}
1191				cryp->total_out = 0;
1192			}
1193		}
1194	} else {
1195		/* Get and check tag */
1196		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1197
1198		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1199					 cryp->total_in_save - cryp->authsize,
1200					 cryp->authsize, 0);
1201
1202		for (i = 0; i < AES_BLOCK_32; i++)
1203			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1204
1205		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1206			ret = -EBADMSG;
1207	}
1208
1209	/* Disable cryp */
1210	cfg &= ~CR_CRYPEN;
1211	stm32_cryp_write(cryp, CRYP_CR, cfg);
1212
1213	return ret;
1214}
1215
1216static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1217{
1218	u32 cr;
1219
1220	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1221		cryp->last_ctr[3] = 0;
1222		cryp->last_ctr[2]++;
1223		if (!cryp->last_ctr[2]) {
1224			cryp->last_ctr[1]++;
1225			if (!cryp->last_ctr[1])
1226				cryp->last_ctr[0]++;
1227		}
1228
1229		cr = stm32_cryp_read(cryp, CRYP_CR);
1230		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1231
1232		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->last_ctr);
1233
1234		stm32_cryp_write(cryp, CRYP_CR, cr);
1235	}
1236
1237	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1238	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1239	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1240	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
 
1241}
1242
1243static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1244{
1245	unsigned int i, j;
1246	u32 d32, *dst;
1247	u8 *d8;
1248	size_t tag_size;
1249
1250	/* Do no read tag now (if any) */
1251	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1252		tag_size = cryp->authsize;
1253	else
1254		tag_size = 0;
1255
1256	dst = sg_virt(cryp->out_sg) + _walked_out;
 
1257
1258	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1259		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1260			/* Read a full u32 */
1261			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1262
1263			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1264			cryp->total_out -= sizeof(u32);
1265		} else if (cryp->total_out == tag_size) {
1266			/* Empty fifo out (data from input padding) */
1267			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1268		} else {
1269			/* Read less than an u32 */
1270			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1271			d8 = (u8 *)&d32;
1272
1273			for (j = 0; j < cryp->total_out - tag_size; j++) {
1274				*((u8 *)dst) = *(d8++);
1275				dst = stm32_cryp_next_out(cryp, dst, 1);
1276			}
1277			cryp->total_out = tag_size;
1278		}
1279	}
1280
1281	return !(cryp->total_out - tag_size) || !cryp->total_in;
1282}
1283
1284static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1285{
1286	unsigned int i, j;
1287	u32 *src;
1288	u8 d8[4];
1289	size_t tag_size;
1290
1291	/* Do no write tag (if any) */
1292	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1293		tag_size = cryp->authsize;
1294	else
1295		tag_size = 0;
1296
1297	src = sg_virt(cryp->in_sg) + _walked_in;
1298
1299	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1300		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1301			/* Write a full u32 */
1302			stm32_cryp_write(cryp, CRYP_DIN, *src);
1303
1304			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1305			cryp->total_in -= sizeof(u32);
1306		} else if (cryp->total_in == tag_size) {
1307			/* Write padding data */
1308			stm32_cryp_write(cryp, CRYP_DIN, 0);
1309		} else {
1310			/* Write less than an u32 */
1311			memset(d8, 0, sizeof(u32));
1312			for (j = 0; j < cryp->total_in - tag_size; j++) {
1313				d8[j] = *((u8 *)src);
1314				src = stm32_cryp_next_in(cryp, src, 1);
1315			}
1316
1317			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1318			cryp->total_in = tag_size;
1319		}
1320	}
1321}
1322
1323static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1324{
1325	int err;
1326	u32 cfg, tmp[AES_BLOCK_32];
1327	size_t total_in_ori = cryp->total_in;
1328	struct scatterlist *out_sg_ori = cryp->out_sg;
1329	unsigned int i;
1330
1331	/* 'Special workaround' procedure described in the datasheet */
1332
1333	/* a) disable ip */
1334	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1335	cfg = stm32_cryp_read(cryp, CRYP_CR);
1336	cfg &= ~CR_CRYPEN;
1337	stm32_cryp_write(cryp, CRYP_CR, cfg);
1338
1339	/* b) Update IV1R */
1340	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1341
1342	/* c) change mode to CTR */
1343	cfg &= ~CR_ALGO_MASK;
1344	cfg |= CR_AES_CTR;
1345	stm32_cryp_write(cryp, CRYP_CR, cfg);
1346
1347	/* a) enable IP */
1348	cfg |= CR_CRYPEN;
1349	stm32_cryp_write(cryp, CRYP_CR, cfg);
1350
1351	/* b) pad and write the last block */
1352	stm32_cryp_irq_write_block(cryp);
1353	cryp->total_in = total_in_ori;
1354	err = stm32_cryp_wait_output(cryp);
1355	if (err) {
1356		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1357		return stm32_cryp_finish_req(cryp, err);
1358	}
1359
1360	/* c) get and store encrypted data */
1361	stm32_cryp_irq_read_data(cryp);
1362	scatterwalk_map_and_copy(tmp, out_sg_ori,
1363				 cryp->total_in_save - total_in_ori,
1364				 total_in_ori, 0);
 
 
 
 
 
 
 
1365
1366	/* d) change mode back to AES GCM */
1367	cfg &= ~CR_ALGO_MASK;
1368	cfg |= CR_AES_GCM;
1369	stm32_cryp_write(cryp, CRYP_CR, cfg);
1370
1371	/* e) change phase to Final */
1372	cfg &= ~CR_PH_MASK;
1373	cfg |= CR_PH_FINAL;
1374	stm32_cryp_write(cryp, CRYP_CR, cfg);
1375
1376	/* f) write padded data */
1377	for (i = 0; i < AES_BLOCK_32; i++) {
1378		if (cryp->total_in)
1379			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1380		else
1381			stm32_cryp_write(cryp, CRYP_DIN, 0);
1382
1383		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1384	}
1385
1386	/* g) Empty fifo out */
1387	err = stm32_cryp_wait_output(cryp);
1388	if (err) {
1389		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1390		return stm32_cryp_finish_req(cryp, err);
1391	}
1392
1393	for (i = 0; i < AES_BLOCK_32; i++)
1394		stm32_cryp_read(cryp, CRYP_DOUT);
1395
1396	/* h) run the he normal Final phase */
1397	stm32_cryp_finish_req(cryp, 0);
1398}
1399
1400static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1401{
1402	u32 cfg, payload_bytes;
1403
1404	/* disable ip, set NPBLB and reneable ip */
1405	cfg = stm32_cryp_read(cryp, CRYP_CR);
1406	cfg &= ~CR_CRYPEN;
1407	stm32_cryp_write(cryp, CRYP_CR, cfg);
1408
1409	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1410					   cryp->total_in;
1411	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1412	cfg |= CR_CRYPEN;
1413	stm32_cryp_write(cryp, CRYP_CR, cfg);
1414}
1415
1416static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1417{
1418	int err = 0;
1419	u32 cfg, iv1tmp;
1420	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1421	size_t last_total_out, total_in_ori = cryp->total_in;
1422	struct scatterlist *out_sg_ori = cryp->out_sg;
1423	unsigned int i;
1424
1425	/* 'Special workaround' procedure described in the datasheet */
1426	cryp->flags |= FLG_CCM_PADDED_WA;
1427
1428	/* a) disable ip */
1429	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1430
1431	cfg = stm32_cryp_read(cryp, CRYP_CR);
1432	cfg &= ~CR_CRYPEN;
1433	stm32_cryp_write(cryp, CRYP_CR, cfg);
1434
1435	/* b) get IV1 from CRYP_CSGCMCCM7 */
1436	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1437
1438	/* c) Load CRYP_CSGCMCCMxR */
1439	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1440		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1441
1442	/* d) Write IV1R */
1443	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1444
1445	/* e) change mode to CTR */
1446	cfg &= ~CR_ALGO_MASK;
1447	cfg |= CR_AES_CTR;
1448	stm32_cryp_write(cryp, CRYP_CR, cfg);
1449
1450	/* a) enable IP */
1451	cfg |= CR_CRYPEN;
1452	stm32_cryp_write(cryp, CRYP_CR, cfg);
1453
1454	/* b) pad and write the last block */
1455	stm32_cryp_irq_write_block(cryp);
1456	cryp->total_in = total_in_ori;
1457	err = stm32_cryp_wait_output(cryp);
1458	if (err) {
1459		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1460		return stm32_cryp_finish_req(cryp, err);
1461	}
1462
1463	/* c) get and store decrypted data */
1464	last_total_out = cryp->total_out;
1465	stm32_cryp_irq_read_data(cryp);
1466
1467	memset(tmp, 0, sizeof(tmp));
1468	scatterwalk_map_and_copy(tmp, out_sg_ori,
1469				 cryp->total_out_save - last_total_out,
1470				 last_total_out, 0);
 
 
 
1471
1472	/* d) Load again CRYP_CSGCMCCMxR */
1473	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1474		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1475
1476	/* e) change mode back to AES CCM */
1477	cfg &= ~CR_ALGO_MASK;
1478	cfg |= CR_AES_CCM;
1479	stm32_cryp_write(cryp, CRYP_CR, cfg);
1480
1481	/* f) change phase to header */
1482	cfg &= ~CR_PH_MASK;
1483	cfg |= CR_PH_HEADER;
1484	stm32_cryp_write(cryp, CRYP_CR, cfg);
1485
1486	/* g) XOR and write padded data */
1487	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1488		tmp[i] ^= cstmp1[i];
1489		tmp[i] ^= cstmp2[i];
1490		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1491	}
1492
1493	/* h) wait for completion */
1494	err = stm32_cryp_wait_busy(cryp);
1495	if (err)
1496		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1497
1498	/* i) run the he normal Final phase */
1499	stm32_cryp_finish_req(cryp, err);
1500}
1501
1502static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1503{
1504	if (unlikely(!cryp->total_in)) {
1505		dev_warn(cryp->dev, "No more data to process\n");
1506		return;
1507	}
1508
1509	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1510		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1511		     is_encrypt(cryp))) {
1512		/* Padding for AES GCM encryption */
1513		if (cryp->caps->padding_wa)
1514			/* Special case 1 */
1515			return stm32_cryp_irq_write_gcm_padded_data(cryp);
 
 
1516
1517		/* Setting padding bytes (NBBLB) */
1518		stm32_cryp_irq_set_npblb(cryp);
1519	}
1520
1521	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1522		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1523		     is_decrypt(cryp))) {
1524		/* Padding for AES CCM decryption */
1525		if (cryp->caps->padding_wa)
1526			/* Special case 2 */
1527			return stm32_cryp_irq_write_ccm_padded_data(cryp);
 
 
1528
1529		/* Setting padding bytes (NBBLB) */
1530		stm32_cryp_irq_set_npblb(cryp);
1531	}
1532
1533	if (is_aes(cryp) && is_ctr(cryp))
1534		stm32_cryp_check_ctr_counter(cryp);
1535
1536	stm32_cryp_irq_write_block(cryp);
1537}
1538
1539static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1540{
1541	int err;
1542	unsigned int i, j;
1543	u32 cfg, *src;
1544
1545	src = sg_virt(cryp->in_sg) + _walked_in;
1546
1547	for (i = 0; i < AES_BLOCK_32; i++) {
1548		stm32_cryp_write(cryp, CRYP_DIN, *src);
1549
1550		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1551		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1552
1553		/* Check if whole header written */
1554		if ((cryp->total_in_save - cryp->total_in) ==
1555				cryp->areq->assoclen) {
1556			/* Write padding if needed */
1557			for (j = i + 1; j < AES_BLOCK_32; j++)
1558				stm32_cryp_write(cryp, CRYP_DIN, 0);
1559
1560			/* Wait for completion */
1561			err = stm32_cryp_wait_busy(cryp);
1562			if (err) {
1563				dev_err(cryp->dev, "Timeout (gcm header)\n");
1564				return stm32_cryp_finish_req(cryp, err);
1565			}
1566
1567			if (stm32_cryp_get_input_text_len(cryp)) {
1568				/* Phase 3 : payload */
1569				cfg = stm32_cryp_read(cryp, CRYP_CR);
1570				cfg &= ~CR_CRYPEN;
1571				stm32_cryp_write(cryp, CRYP_CR, cfg);
1572
1573				cfg &= ~CR_PH_MASK;
1574				cfg |= CR_PH_PAYLOAD;
1575				cfg |= CR_CRYPEN;
1576				stm32_cryp_write(cryp, CRYP_CR, cfg);
1577			} else {
1578				/* Phase 4 : tag */
1579				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1580				stm32_cryp_finish_req(cryp, 0);
1581			}
1582
1583			break;
1584		}
1585
1586		if (!cryp->total_in)
1587			break;
1588	}
1589}
1590
1591static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1592{
1593	int err;
1594	unsigned int i = 0, j, k;
1595	u32 alen, cfg, *src;
1596	u8 d8[4];
1597
1598	src = sg_virt(cryp->in_sg) + _walked_in;
1599	alen = cryp->areq->assoclen;
1600
1601	if (!_walked_in) {
1602		if (cryp->areq->assoclen <= 65280) {
1603			/* Write first u32 of B1 */
1604			d8[0] = (alen >> 8) & 0xFF;
1605			d8[1] = alen & 0xFF;
1606			d8[2] = *((u8 *)src);
1607			src = stm32_cryp_next_in(cryp, src, 1);
1608			d8[3] = *((u8 *)src);
1609			src = stm32_cryp_next_in(cryp, src, 1);
1610
1611			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1612			i++;
1613
1614			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1615		} else {
1616			/* Build the two first u32 of B1 */
1617			d8[0] = 0xFF;
1618			d8[1] = 0xFE;
1619			d8[2] = alen & 0xFF000000;
1620			d8[3] = alen & 0x00FF0000;
1621
1622			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623			i++;
1624
1625			d8[0] = alen & 0x0000FF00;
1626			d8[1] = alen & 0x000000FF;
1627			d8[2] = *((u8 *)src);
1628			src = stm32_cryp_next_in(cryp, src, 1);
1629			d8[3] = *((u8 *)src);
1630			src = stm32_cryp_next_in(cryp, src, 1);
1631
1632			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1633			i++;
1634
1635			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1636		}
1637	}
1638
1639	/* Write next u32 */
1640	for (; i < AES_BLOCK_32; i++) {
1641		/* Build an u32 */
1642		memset(d8, 0, sizeof(u32));
1643		for (k = 0; k < sizeof(u32); k++) {
1644			d8[k] = *((u8 *)src);
1645			src = stm32_cryp_next_in(cryp, src, 1);
1646
1647			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1648			if ((cryp->total_in_save - cryp->total_in) == alen)
1649				break;
1650		}
1651
1652		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1653
1654		if ((cryp->total_in_save - cryp->total_in) == alen) {
1655			/* Write padding if needed */
1656			for (j = i + 1; j < AES_BLOCK_32; j++)
1657				stm32_cryp_write(cryp, CRYP_DIN, 0);
1658
1659			/* Wait for completion */
1660			err = stm32_cryp_wait_busy(cryp);
1661			if (err) {
1662				dev_err(cryp->dev, "Timeout (ccm header)\n");
1663				return stm32_cryp_finish_req(cryp, err);
1664			}
1665
1666			if (stm32_cryp_get_input_text_len(cryp)) {
1667				/* Phase 3 : payload */
1668				cfg = stm32_cryp_read(cryp, CRYP_CR);
1669				cfg &= ~CR_CRYPEN;
1670				stm32_cryp_write(cryp, CRYP_CR, cfg);
1671
1672				cfg &= ~CR_PH_MASK;
1673				cfg |= CR_PH_PAYLOAD;
1674				cfg |= CR_CRYPEN;
1675				stm32_cryp_write(cryp, CRYP_CR, cfg);
1676			} else {
1677				/* Phase 4 : tag */
1678				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1679				stm32_cryp_finish_req(cryp, 0);
1680			}
1681
1682			break;
1683		}
1684	}
1685}
1686
1687static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1688{
1689	struct stm32_cryp *cryp = arg;
1690	u32 ph;
 
1691
1692	if (cryp->irq_status & MISR_OUT)
1693		/* Output FIFO IRQ: read data */
1694		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1695			/* All bytes processed, finish */
1696			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1697			stm32_cryp_finish_req(cryp, 0);
1698			return IRQ_HANDLED;
1699		}
1700
1701	if (cryp->irq_status & MISR_IN) {
1702		if (is_gcm(cryp)) {
1703			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1704			if (unlikely(ph == CR_PH_HEADER))
1705				/* Write Header */
1706				stm32_cryp_irq_write_gcm_header(cryp);
1707			else
1708				/* Input FIFO IRQ: write data */
1709				stm32_cryp_irq_write_data(cryp);
1710			cryp->gcm_ctr++;
1711		} else if (is_ccm(cryp)) {
1712			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1713			if (unlikely(ph == CR_PH_HEADER))
1714				/* Write Header */
1715				stm32_cryp_irq_write_ccm_header(cryp);
1716			else
1717				/* Input FIFO IRQ: write data */
1718				stm32_cryp_irq_write_data(cryp);
 
 
1719		} else {
1720			/* Input FIFO IRQ: write data */
1721			stm32_cryp_irq_write_data(cryp);
1722		}
1723	}
1724
 
 
 
 
 
 
 
 
 
 
1725	return IRQ_HANDLED;
1726}
1727
1728static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1729{
1730	struct stm32_cryp *cryp = arg;
1731
1732	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1733
1734	return IRQ_WAKE_THREAD;
1735}
1736
1737static struct skcipher_alg crypto_algs[] = {
1738{
1739	.base.cra_name		= "ecb(aes)",
1740	.base.cra_driver_name	= "stm32-ecb-aes",
1741	.base.cra_priority	= 200,
1742	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1743	.base.cra_blocksize	= AES_BLOCK_SIZE,
1744	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1745	.base.cra_alignmask	= 0xf,
1746	.base.cra_module	= THIS_MODULE,
1747
1748	.init			= stm32_cryp_init_tfm,
1749	.min_keysize		= AES_MIN_KEY_SIZE,
1750	.max_keysize		= AES_MAX_KEY_SIZE,
1751	.setkey			= stm32_cryp_aes_setkey,
1752	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1753	.decrypt		= stm32_cryp_aes_ecb_decrypt,
1754},
1755{
1756	.base.cra_name		= "cbc(aes)",
1757	.base.cra_driver_name	= "stm32-cbc-aes",
1758	.base.cra_priority	= 200,
1759	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1760	.base.cra_blocksize	= AES_BLOCK_SIZE,
1761	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1762	.base.cra_alignmask	= 0xf,
1763	.base.cra_module	= THIS_MODULE,
1764
1765	.init			= stm32_cryp_init_tfm,
1766	.min_keysize		= AES_MIN_KEY_SIZE,
1767	.max_keysize		= AES_MAX_KEY_SIZE,
1768	.ivsize			= AES_BLOCK_SIZE,
1769	.setkey			= stm32_cryp_aes_setkey,
1770	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1771	.decrypt		= stm32_cryp_aes_cbc_decrypt,
1772},
1773{
1774	.base.cra_name		= "ctr(aes)",
1775	.base.cra_driver_name	= "stm32-ctr-aes",
1776	.base.cra_priority	= 200,
1777	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1778	.base.cra_blocksize	= 1,
1779	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1780	.base.cra_alignmask	= 0xf,
1781	.base.cra_module	= THIS_MODULE,
1782
1783	.init			= stm32_cryp_init_tfm,
1784	.min_keysize		= AES_MIN_KEY_SIZE,
1785	.max_keysize		= AES_MAX_KEY_SIZE,
1786	.ivsize			= AES_BLOCK_SIZE,
1787	.setkey			= stm32_cryp_aes_setkey,
1788	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1789	.decrypt		= stm32_cryp_aes_ctr_decrypt,
1790},
1791{
1792	.base.cra_name		= "ecb(des)",
1793	.base.cra_driver_name	= "stm32-ecb-des",
1794	.base.cra_priority	= 200,
1795	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1796	.base.cra_blocksize	= DES_BLOCK_SIZE,
1797	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1798	.base.cra_alignmask	= 0xf,
1799	.base.cra_module	= THIS_MODULE,
1800
1801	.init			= stm32_cryp_init_tfm,
1802	.min_keysize		= DES_BLOCK_SIZE,
1803	.max_keysize		= DES_BLOCK_SIZE,
1804	.setkey			= stm32_cryp_des_setkey,
1805	.encrypt		= stm32_cryp_des_ecb_encrypt,
1806	.decrypt		= stm32_cryp_des_ecb_decrypt,
1807},
1808{
1809	.base.cra_name		= "cbc(des)",
1810	.base.cra_driver_name	= "stm32-cbc-des",
1811	.base.cra_priority	= 200,
1812	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1813	.base.cra_blocksize	= DES_BLOCK_SIZE,
1814	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1815	.base.cra_alignmask	= 0xf,
1816	.base.cra_module	= THIS_MODULE,
1817
1818	.init			= stm32_cryp_init_tfm,
1819	.min_keysize		= DES_BLOCK_SIZE,
1820	.max_keysize		= DES_BLOCK_SIZE,
1821	.ivsize			= DES_BLOCK_SIZE,
1822	.setkey			= stm32_cryp_des_setkey,
1823	.encrypt		= stm32_cryp_des_cbc_encrypt,
1824	.decrypt		= stm32_cryp_des_cbc_decrypt,
1825},
1826{
1827	.base.cra_name		= "ecb(des3_ede)",
1828	.base.cra_driver_name	= "stm32-ecb-des3",
1829	.base.cra_priority	= 200,
1830	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1831	.base.cra_blocksize	= DES_BLOCK_SIZE,
1832	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1833	.base.cra_alignmask	= 0xf,
1834	.base.cra_module	= THIS_MODULE,
1835
1836	.init			= stm32_cryp_init_tfm,
1837	.min_keysize		= 3 * DES_BLOCK_SIZE,
1838	.max_keysize		= 3 * DES_BLOCK_SIZE,
1839	.setkey			= stm32_cryp_tdes_setkey,
1840	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1841	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
1842},
1843{
1844	.base.cra_name		= "cbc(des3_ede)",
1845	.base.cra_driver_name	= "stm32-cbc-des3",
1846	.base.cra_priority	= 200,
1847	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1848	.base.cra_blocksize	= DES_BLOCK_SIZE,
1849	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1850	.base.cra_alignmask	= 0xf,
1851	.base.cra_module	= THIS_MODULE,
1852
1853	.init			= stm32_cryp_init_tfm,
1854	.min_keysize		= 3 * DES_BLOCK_SIZE,
1855	.max_keysize		= 3 * DES_BLOCK_SIZE,
1856	.ivsize			= DES_BLOCK_SIZE,
1857	.setkey			= stm32_cryp_tdes_setkey,
1858	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1859	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
1860},
1861};
1862
1863static struct aead_alg aead_algs[] = {
1864{
1865	.setkey		= stm32_cryp_aes_aead_setkey,
1866	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1867	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1868	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1869	.init		= stm32_cryp_aes_aead_init,
1870	.ivsize		= 12,
1871	.maxauthsize	= AES_BLOCK_SIZE,
1872
1873	.base = {
1874		.cra_name		= "gcm(aes)",
1875		.cra_driver_name	= "stm32-gcm-aes",
1876		.cra_priority		= 200,
1877		.cra_flags		= CRYPTO_ALG_ASYNC,
1878		.cra_blocksize		= 1,
1879		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1880		.cra_alignmask		= 0xf,
1881		.cra_module		= THIS_MODULE,
1882	},
1883},
1884{
1885	.setkey		= stm32_cryp_aes_aead_setkey,
1886	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1887	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1888	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1889	.init		= stm32_cryp_aes_aead_init,
1890	.ivsize		= AES_BLOCK_SIZE,
1891	.maxauthsize	= AES_BLOCK_SIZE,
1892
1893	.base = {
1894		.cra_name		= "ccm(aes)",
1895		.cra_driver_name	= "stm32-ccm-aes",
1896		.cra_priority		= 200,
1897		.cra_flags		= CRYPTO_ALG_ASYNC,
1898		.cra_blocksize		= 1,
1899		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1900		.cra_alignmask		= 0xf,
1901		.cra_module		= THIS_MODULE,
1902	},
1903},
1904};
1905
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1906static const struct stm32_cryp_caps f7_data = {
 
 
 
 
1907	.swap_final = true,
1908	.padding_wa = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
1909};
1910
1911static const struct stm32_cryp_caps mp1_data = {
 
 
 
 
1912	.swap_final = false,
1913	.padding_wa = false,
 
 
 
 
 
 
 
 
 
 
 
 
 
1914};
1915
1916static const struct of_device_id stm32_dt_ids[] = {
 
1917	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1918	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1919	{},
1920};
1921MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1922
1923static int stm32_cryp_probe(struct platform_device *pdev)
1924{
1925	struct device *dev = &pdev->dev;
1926	struct stm32_cryp *cryp;
1927	struct reset_control *rst;
1928	int irq, ret;
1929
1930	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1931	if (!cryp)
1932		return -ENOMEM;
1933
1934	cryp->caps = of_device_get_match_data(dev);
1935	if (!cryp->caps)
1936		return -ENODEV;
1937
1938	cryp->dev = dev;
1939
1940	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1941	if (IS_ERR(cryp->regs))
1942		return PTR_ERR(cryp->regs);
1943
1944	irq = platform_get_irq(pdev, 0);
1945	if (irq < 0)
1946		return irq;
1947
1948	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1949					stm32_cryp_irq_thread, IRQF_ONESHOT,
1950					dev_name(dev), cryp);
1951	if (ret) {
1952		dev_err(dev, "Cannot grab IRQ\n");
1953		return ret;
1954	}
1955
1956	cryp->clk = devm_clk_get(dev, NULL);
1957	if (IS_ERR(cryp->clk)) {
1958		dev_err(dev, "Could not get clock\n");
 
1959		return PTR_ERR(cryp->clk);
1960	}
1961
1962	ret = clk_prepare_enable(cryp->clk);
1963	if (ret) {
1964		dev_err(cryp->dev, "Failed to enable clock\n");
1965		return ret;
1966	}
1967
1968	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1969	pm_runtime_use_autosuspend(dev);
1970
1971	pm_runtime_get_noresume(dev);
1972	pm_runtime_set_active(dev);
1973	pm_runtime_enable(dev);
1974
1975	rst = devm_reset_control_get(dev, NULL);
1976	if (!IS_ERR(rst)) {
 
 
 
 
1977		reset_control_assert(rst);
1978		udelay(2);
1979		reset_control_deassert(rst);
1980	}
1981
1982	platform_set_drvdata(pdev, cryp);
1983
1984	spin_lock(&cryp_list.lock);
1985	list_add(&cryp->list, &cryp_list.dev_list);
1986	spin_unlock(&cryp_list.lock);
1987
1988	/* Initialize crypto engine */
1989	cryp->engine = crypto_engine_alloc_init(dev, 1);
1990	if (!cryp->engine) {
1991		dev_err(dev, "Could not init crypto engine\n");
1992		ret = -ENOMEM;
1993		goto err_engine1;
1994	}
1995
1996	ret = crypto_engine_start(cryp->engine);
1997	if (ret) {
1998		dev_err(dev, "Could not start crypto engine\n");
1999		goto err_engine2;
2000	}
2001
2002	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2003	if (ret) {
2004		dev_err(dev, "Could not register algs\n");
2005		goto err_algs;
2006	}
2007
2008	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2009	if (ret)
2010		goto err_aead_algs;
 
 
2011
2012	dev_info(dev, "Initialized\n");
2013
2014	pm_runtime_put_sync(dev);
2015
2016	return 0;
2017
2018err_aead_algs:
2019	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2020err_algs:
2021err_engine2:
2022	crypto_engine_exit(cryp->engine);
2023err_engine1:
2024	spin_lock(&cryp_list.lock);
2025	list_del(&cryp->list);
2026	spin_unlock(&cryp_list.lock);
2027
2028	pm_runtime_disable(dev);
2029	pm_runtime_put_noidle(dev);
2030	pm_runtime_disable(dev);
2031	pm_runtime_put_noidle(dev);
2032
2033	clk_disable_unprepare(cryp->clk);
2034
2035	return ret;
2036}
2037
2038static int stm32_cryp_remove(struct platform_device *pdev)
2039{
2040	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2041	int ret;
2042
2043	if (!cryp)
2044		return -ENODEV;
2045
2046	ret = pm_runtime_resume_and_get(cryp->dev);
2047	if (ret < 0)
2048		return ret;
2049
2050	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
 
2051	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2052
2053	crypto_engine_exit(cryp->engine);
2054
2055	spin_lock(&cryp_list.lock);
2056	list_del(&cryp->list);
2057	spin_unlock(&cryp_list.lock);
2058
2059	pm_runtime_disable(cryp->dev);
2060	pm_runtime_put_noidle(cryp->dev);
2061
2062	clk_disable_unprepare(cryp->clk);
2063
2064	return 0;
2065}
2066
2067#ifdef CONFIG_PM
2068static int stm32_cryp_runtime_suspend(struct device *dev)
2069{
2070	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2071
2072	clk_disable_unprepare(cryp->clk);
2073
2074	return 0;
2075}
2076
2077static int stm32_cryp_runtime_resume(struct device *dev)
2078{
2079	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2080	int ret;
2081
2082	ret = clk_prepare_enable(cryp->clk);
2083	if (ret) {
2084		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2085		return ret;
2086	}
2087
2088	return 0;
2089}
2090#endif
2091
2092static const struct dev_pm_ops stm32_cryp_pm_ops = {
2093	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2094				pm_runtime_force_resume)
2095	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2096			   stm32_cryp_runtime_resume, NULL)
2097};
2098
2099static struct platform_driver stm32_cryp_driver = {
2100	.probe  = stm32_cryp_probe,
2101	.remove = stm32_cryp_remove,
2102	.driver = {
2103		.name           = DRIVER_NAME,
2104		.pm		= &stm32_cryp_pm_ops,
2105		.of_match_table = stm32_dt_ids,
2106	},
2107};
2108
2109module_platform_driver(stm32_cryp_driver);
2110
2111MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2112MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2113MODULE_LICENSE("GPL");