Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 * Ux500 support taken from snippets in the old Ux500 cryp driver
   6 */
   7
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
  11#include <linux/iopoll.h>
  12#include <linux/module.h>
  13#include <linux/of_device.h>
  14#include <linux/platform_device.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/reset.h>
  17
  18#include <crypto/aes.h>
  19#include <crypto/internal/des.h>
  20#include <crypto/engine.h>
  21#include <crypto/scatterwalk.h>
  22#include <crypto/internal/aead.h>
  23#include <crypto/internal/skcipher.h>
  24
  25#define DRIVER_NAME             "stm32-cryp"
  26
  27/* Bit [0] encrypt / decrypt */
  28#define FLG_ENCRYPT             BIT(0)
  29/* Bit [8..1] algo & operation mode */
  30#define FLG_AES                 BIT(1)
  31#define FLG_DES                 BIT(2)
  32#define FLG_TDES                BIT(3)
  33#define FLG_ECB                 BIT(4)
  34#define FLG_CBC                 BIT(5)
  35#define FLG_CTR                 BIT(6)
  36#define FLG_GCM                 BIT(7)
  37#define FLG_CCM                 BIT(8)
  38/* Mode mask = bits [15..0] */
  39#define FLG_MODE_MASK           GENMASK(15, 0)
  40/* Bit [31..16] status  */
 
  41
  42/* Registers */
  43#define CRYP_CR                 0x00000000
  44#define CRYP_SR                 0x00000004
  45#define CRYP_DIN                0x00000008
  46#define CRYP_DOUT               0x0000000C
  47#define CRYP_DMACR              0x00000010
  48#define CRYP_IMSCR              0x00000014
  49#define CRYP_RISR               0x00000018
  50#define CRYP_MISR               0x0000001C
  51#define CRYP_K0LR               0x00000020
  52#define CRYP_K0RR               0x00000024
  53#define CRYP_K1LR               0x00000028
  54#define CRYP_K1RR               0x0000002C
  55#define CRYP_K2LR               0x00000030
  56#define CRYP_K2RR               0x00000034
  57#define CRYP_K3LR               0x00000038
  58#define CRYP_K3RR               0x0000003C
  59#define CRYP_IV0LR              0x00000040
  60#define CRYP_IV0RR              0x00000044
  61#define CRYP_IV1LR              0x00000048
  62#define CRYP_IV1RR              0x0000004C
  63#define CRYP_CSGCMCCM0R         0x00000050
  64#define CRYP_CSGCM0R            0x00000070
  65
  66#define UX500_CRYP_CR		0x00000000
  67#define UX500_CRYP_SR		0x00000004
  68#define UX500_CRYP_DIN		0x00000008
  69#define UX500_CRYP_DINSIZE	0x0000000C
  70#define UX500_CRYP_DOUT		0x00000010
  71#define UX500_CRYP_DOUSIZE	0x00000014
  72#define UX500_CRYP_DMACR	0x00000018
  73#define UX500_CRYP_IMSC		0x0000001C
  74#define UX500_CRYP_RIS		0x00000020
  75#define UX500_CRYP_MIS		0x00000024
  76#define UX500_CRYP_K1L		0x00000028
  77#define UX500_CRYP_K1R		0x0000002C
  78#define UX500_CRYP_K2L		0x00000030
  79#define UX500_CRYP_K2R		0x00000034
  80#define UX500_CRYP_K3L		0x00000038
  81#define UX500_CRYP_K3R		0x0000003C
  82#define UX500_CRYP_K4L		0x00000040
  83#define UX500_CRYP_K4R		0x00000044
  84#define UX500_CRYP_IV0L		0x00000048
  85#define UX500_CRYP_IV0R		0x0000004C
  86#define UX500_CRYP_IV1L		0x00000050
  87#define UX500_CRYP_IV1R		0x00000054
  88
  89/* Registers values */
  90#define CR_DEC_NOT_ENC          0x00000004
  91#define CR_TDES_ECB             0x00000000
  92#define CR_TDES_CBC             0x00000008
  93#define CR_DES_ECB              0x00000010
  94#define CR_DES_CBC              0x00000018
  95#define CR_AES_ECB              0x00000020
  96#define CR_AES_CBC              0x00000028
  97#define CR_AES_CTR              0x00000030
  98#define CR_AES_KP               0x00000038 /* Not on Ux500 */
  99#define CR_AES_XTS              0x00000038 /* Only on Ux500 */
 100#define CR_AES_GCM              0x00080000
 101#define CR_AES_CCM              0x00080008
 102#define CR_AES_UNKNOWN          0xFFFFFFFF
 103#define CR_ALGO_MASK            0x00080038
 104#define CR_DATA32               0x00000000
 105#define CR_DATA16               0x00000040
 106#define CR_DATA8                0x00000080
 107#define CR_DATA1                0x000000C0
 108#define CR_KEY128               0x00000000
 109#define CR_KEY192               0x00000100
 110#define CR_KEY256               0x00000200
 111#define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
 112#define CR_KSE                  0x00000800 /* Only on Ux500 */
 113#define CR_FFLUSH               0x00004000
 114#define CR_CRYPEN               0x00008000
 115#define CR_PH_INIT              0x00000000
 116#define CR_PH_HEADER            0x00010000
 117#define CR_PH_PAYLOAD           0x00020000
 118#define CR_PH_FINAL             0x00030000
 119#define CR_PH_MASK              0x00030000
 120#define CR_NBPBL_SHIFT          20
 121
 122#define SR_BUSY                 0x00000010
 123#define SR_OFNE                 0x00000004
 124
 125#define IMSCR_IN                BIT(0)
 126#define IMSCR_OUT               BIT(1)
 127
 128#define MISR_IN                 BIT(0)
 129#define MISR_OUT                BIT(1)
 130
 131/* Misc */
 132#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 133#define GCM_CTR_INIT            2
 
 
 134#define CRYP_AUTOSUSPEND_DELAY	50
 135
 136struct stm32_cryp_caps {
 137	bool			aeads_support;
 138	bool			linear_aes_key;
 139	bool			kp_mode;
 140	bool			iv_protection;
 141	bool			swap_final;
 142	bool			padding_wa;
 143	u32			cr;
 144	u32			sr;
 145	u32			din;
 146	u32			dout;
 147	u32			imsc;
 148	u32			mis;
 149	u32			k1l;
 150	u32			k1r;
 151	u32			k3r;
 152	u32			iv0l;
 153	u32			iv0r;
 154	u32			iv1l;
 155	u32			iv1r;
 156};
 157
 158struct stm32_cryp_ctx {
 159	struct crypto_engine_ctx enginectx;
 160	struct stm32_cryp       *cryp;
 161	int                     keylen;
 162	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 163	unsigned long           flags;
 164};
 165
 166struct stm32_cryp_reqctx {
 167	unsigned long mode;
 168};
 169
 170struct stm32_cryp {
 171	struct list_head        list;
 172	struct device           *dev;
 173	void __iomem            *regs;
 174	struct clk              *clk;
 175	unsigned long           flags;
 176	u32                     irq_status;
 177	const struct stm32_cryp_caps *caps;
 178	struct stm32_cryp_ctx   *ctx;
 179
 180	struct crypto_engine    *engine;
 181
 182	struct skcipher_request *req;
 183	struct aead_request     *areq;
 184
 185	size_t                  authsize;
 186	size_t                  hw_blocksize;
 187
 188	size_t                  payload_in;
 189	size_t                  header_in;
 190	size_t                  payload_out;
 
 191
 
 192	struct scatterlist      *out_sg;
 
 
 
 
 
 
 
 
 193
 194	struct scatter_walk     in_walk;
 195	struct scatter_walk     out_walk;
 196
 197	__be32                  last_ctr[4];
 198	u32                     gcm_ctr;
 199};
 200
 201struct stm32_cryp_list {
 202	struct list_head        dev_list;
 203	spinlock_t              lock; /* protect dev_list */
 204};
 205
 206static struct stm32_cryp_list cryp_list = {
 207	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 208	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 209};
 210
 211static inline bool is_aes(struct stm32_cryp *cryp)
 212{
 213	return cryp->flags & FLG_AES;
 214}
 215
 216static inline bool is_des(struct stm32_cryp *cryp)
 217{
 218	return cryp->flags & FLG_DES;
 219}
 220
 221static inline bool is_tdes(struct stm32_cryp *cryp)
 222{
 223	return cryp->flags & FLG_TDES;
 224}
 225
 226static inline bool is_ecb(struct stm32_cryp *cryp)
 227{
 228	return cryp->flags & FLG_ECB;
 229}
 230
 231static inline bool is_cbc(struct stm32_cryp *cryp)
 232{
 233	return cryp->flags & FLG_CBC;
 234}
 235
 236static inline bool is_ctr(struct stm32_cryp *cryp)
 237{
 238	return cryp->flags & FLG_CTR;
 239}
 240
 241static inline bool is_gcm(struct stm32_cryp *cryp)
 242{
 243	return cryp->flags & FLG_GCM;
 244}
 245
 246static inline bool is_ccm(struct stm32_cryp *cryp)
 247{
 248	return cryp->flags & FLG_CCM;
 249}
 250
 251static inline bool is_encrypt(struct stm32_cryp *cryp)
 252{
 253	return cryp->flags & FLG_ENCRYPT;
 254}
 255
 256static inline bool is_decrypt(struct stm32_cryp *cryp)
 257{
 258	return !is_encrypt(cryp);
 259}
 260
 261static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 262{
 263	return readl_relaxed(cryp->regs + ofst);
 264}
 265
 266static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 267{
 268	writel_relaxed(val, cryp->regs + ofst);
 269}
 270
 271static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 272{
 273	u32 status;
 274
 275	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 276			!(status & SR_BUSY), 10, 100000);
 277}
 278
 279static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
 280{
 281	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
 282		       cryp->regs + cryp->caps->cr);
 283}
 284
 285static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 286{
 287	u32 status;
 288
 289	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
 290			!(status & CR_CRYPEN), 10, 100000);
 291}
 292
 293static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 294{
 295	u32 status;
 296
 297	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 298			status & SR_OFNE, 10, 100000);
 299}
 300
 301static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
 302{
 303	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
 304		       cryp->regs + cryp->caps->cr);
 305}
 306
 307static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
 308{
 309	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
 310		       cryp->regs + cryp->caps->cr);
 311}
 312
 313static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 314static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
 315
 316static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 317{
 318	struct stm32_cryp *tmp, *cryp = NULL;
 319
 320	spin_lock_bh(&cryp_list.lock);
 321	if (!ctx->cryp) {
 322		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 323			cryp = tmp;
 324			break;
 325		}
 326		ctx->cryp = cryp;
 327	} else {
 328		cryp = ctx->cryp;
 329	}
 330
 331	spin_unlock_bh(&cryp_list.lock);
 332
 333	return cryp;
 334}
 335
 336static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 
 337{
 338	if (!iv)
 339		return;
 
 
 340
 341	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
 342	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
 343
 344	if (is_aes(cryp)) {
 345		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
 346		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
 
 
 
 
 
 
 347	}
 
 
 
 
 
 348}
 349
 350static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 351{
 352	struct skcipher_request *req = cryp->req;
 353	__be32 *tmp = (void *)req->iv;
 354
 355	if (!tmp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356		return;
 357
 358	if (cryp->caps->iv_protection)
 359		stm32_cryp_key_read_enable(cryp);
 
 
 
 360
 361	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
 362	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
 
 
 363
 364	if (is_aes(cryp)) {
 365		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
 366		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
 367	}
 368
 369	if (cryp->caps->iv_protection)
 370		stm32_cryp_key_read_disable(cryp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 371}
 372
 373/**
 374 * ux500_swap_bits_in_byte() - mirror the bits in a byte
 375 * @b: the byte to be mirrored
 376 *
 377 * The bits are swapped the following way:
 378 *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
 379 *  nibble 2 (n2) bits 4-7.
 380 *
 381 *  Nibble 1 (n1):
 382 *  (The "old" (moved) bit is replaced with a zero)
 383 *  1. Move bit 6 and 7, 4 positions to the left.
 384 *  2. Move bit 3 and 5, 2 positions to the left.
 385 *  3. Move bit 1-4, 1 position to the left.
 386 *
 387 *  Nibble 2 (n2):
 388 *  1. Move bit 0 and 1, 4 positions to the right.
 389 *  2. Move bit 2 and 4, 2 positions to the right.
 390 *  3. Move bit 3-6, 1 position to the right.
 391 *
 392 *  Combine the two nibbles to a complete and swapped byte.
 393 */
 394static inline u8 ux500_swap_bits_in_byte(u8 b)
 395{
 396#define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
 397#define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
 398				  right shift 2 */
 399#define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
 400				  right shift 1 */
 401#define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
 402#define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
 403				  left shift 2 */
 404#define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
 405				  left shift 1 */
 406
 407	u8 n1;
 408	u8 n2;
 409
 410	/* Swap most significant nibble */
 411	/* Right shift 4, bits 6 and 7 */
 412	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
 413	/* Right shift 2, bits 3 and 5 */
 414	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
 415	/* Right shift 1, bits 1-4 */
 416	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
 417
 418	/* Swap least significant nibble */
 419	/* Left shift 4, bits 0 and 1 */
 420	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
 421	/* Left shift 2, bits 2 and 4 */
 422	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
 423	/* Left shift 1, bits 3-6 */
 424	n2 = (n2  & L_SHIFT_1_MASK) << 1;
 425
 426	return n1 | n2;
 427}
 428
 429/**
 430 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
 431 * @in: key to swizzle
 432 * @out: swizzled key
 433 * @len: length of key, in bytes
 434 *
 435 * This "key swizzling procedure" is described in the examples in the
 436 * DB8500 design specification. There is no real description of why
 437 * the bits have been arranged like this in the hardware.
 438 */
 439static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
 440{
 441	int i = 0;
 442	int bpw = sizeof(u32);
 443	int j;
 444	int index = 0;
 445
 446	j = len - bpw;
 447	while (j >= 0) {
 448		for (i = 0; i < bpw; i++) {
 449			index = len - j - bpw + i;
 450			out[j + i] =
 451				ux500_swap_bits_in_byte(in[index]);
 452		}
 453		j -= bpw;
 454	}
 455}
 456
 457static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 458{
 459	unsigned int i;
 460	int r_id;
 461
 462	if (is_des(c)) {
 463		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
 464		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
 465		return;
 466	}
 467
 468	/*
 469	 * On the Ux500 the AES key is considered as a single bit sequence
 470	 * of 128, 192 or 256 bits length. It is written linearly into the
 471	 * registers from K1L and down, and need to be processed to become
 472	 * a proper big-endian bit sequence.
 473	 */
 474	if (is_aes(c) && c->caps->linear_aes_key) {
 475		u32 tmpkey[8];
 476
 477		ux500_swizzle_key((u8 *)c->ctx->key,
 478				  (u8 *)tmpkey, c->ctx->keylen);
 479
 480		r_id = c->caps->k1l;
 481		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
 482			stm32_cryp_write(c, r_id, tmpkey[i]);
 483
 484		return;
 485	}
 486
 487	r_id = c->caps->k3r;
 488	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 489		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
 490}
 491
 492static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 493{
 494	if (is_aes(cryp) && is_ecb(cryp))
 495		return CR_AES_ECB;
 496
 497	if (is_aes(cryp) && is_cbc(cryp))
 498		return CR_AES_CBC;
 499
 500	if (is_aes(cryp) && is_ctr(cryp))
 501		return CR_AES_CTR;
 502
 503	if (is_aes(cryp) && is_gcm(cryp))
 504		return CR_AES_GCM;
 505
 506	if (is_aes(cryp) && is_ccm(cryp))
 507		return CR_AES_CCM;
 508
 509	if (is_des(cryp) && is_ecb(cryp))
 510		return CR_DES_ECB;
 511
 512	if (is_des(cryp) && is_cbc(cryp))
 513		return CR_DES_CBC;
 514
 515	if (is_tdes(cryp) && is_ecb(cryp))
 516		return CR_TDES_ECB;
 517
 518	if (is_tdes(cryp) && is_cbc(cryp))
 519		return CR_TDES_CBC;
 520
 521	dev_err(cryp->dev, "Unknown mode\n");
 522	return CR_AES_UNKNOWN;
 523}
 524
 525static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 526{
 527	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 528				  cryp->areq->cryptlen - cryp->authsize;
 529}
 530
 531static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 532{
 533	int ret;
 534	__be32 iv[4];
 535
 536	/* Phase 1 : init */
 537	memcpy(iv, cryp->areq->iv, 12);
 538	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 539	cryp->gcm_ctr = GCM_CTR_INIT;
 540	stm32_cryp_hw_write_iv(cryp, iv);
 541
 542	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 543
 544	/* Wait for end of processing */
 545	ret = stm32_cryp_wait_enable(cryp);
 546	if (ret) {
 547		dev_err(cryp->dev, "Timeout (gcm init)\n");
 548		return ret;
 549	}
 550
 551	/* Prepare next phase */
 552	if (cryp->areq->assoclen) {
 553		cfg |= CR_PH_HEADER;
 554		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 555	} else if (stm32_cryp_get_input_text_len(cryp)) {
 556		cfg |= CR_PH_PAYLOAD;
 557		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 558	}
 559
 560	return 0;
 561}
 562
 563static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
 564{
 565	u32 cfg;
 566	int err;
 567
 568	/* Check if whole header written */
 569	if (!cryp->header_in) {
 570		/* Wait for completion */
 571		err = stm32_cryp_wait_busy(cryp);
 572		if (err) {
 573			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
 574			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 575			stm32_cryp_finish_req(cryp, err);
 576			return;
 577		}
 578
 579		if (stm32_cryp_get_input_text_len(cryp)) {
 580			/* Phase 3 : payload */
 581			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 582			cfg &= ~CR_CRYPEN;
 583			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 584
 585			cfg &= ~CR_PH_MASK;
 586			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
 587			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 588		} else {
 589			/*
 590			 * Phase 4 : tag.
 591			 * Nothing to read, nothing to write, caller have to
 592			 * end request
 593			 */
 594		}
 595	}
 596}
 597
 598static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
 599{
 600	unsigned int i;
 601	size_t written;
 602	size_t len;
 603	u32 alen = cryp->areq->assoclen;
 604	u32 block[AES_BLOCK_32] = {0};
 605	u8 *b8 = (u8 *)block;
 606
 607	if (alen <= 65280) {
 608		/* Write first u32 of B1 */
 609		b8[0] = (alen >> 8) & 0xFF;
 610		b8[1] = alen & 0xFF;
 611		len = 2;
 612	} else {
 613		/* Build the two first u32 of B1 */
 614		b8[0] = 0xFF;
 615		b8[1] = 0xFE;
 616		b8[2] = (alen & 0xFF000000) >> 24;
 617		b8[3] = (alen & 0x00FF0000) >> 16;
 618		b8[4] = (alen & 0x0000FF00) >> 8;
 619		b8[5] = alen & 0x000000FF;
 620		len = 6;
 621	}
 622
 623	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
 624
 625	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
 626	for (i = 0; i < AES_BLOCK_32; i++)
 627		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 628
 629	cryp->header_in -= written;
 630
 631	stm32_crypt_gcmccm_end_header(cryp);
 632}
 633
 634static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 635{
 636	int ret;
 637	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
 638	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
 639	__be32 *bd;
 640	u32 *d;
 641	unsigned int i, textlen;
 642
 643	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 644	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 645	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 646	iv[AES_BLOCK_SIZE - 1] = 1;
 647	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 648
 649	/* Build B0 */
 650	memcpy(b0, iv, AES_BLOCK_SIZE);
 651
 652	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 653
 654	if (cryp->areq->assoclen)
 655		b0[0] |= 0x40;
 656
 657	textlen = stm32_cryp_get_input_text_len(cryp);
 658
 659	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 660	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 661
 662	/* Enable HW */
 663	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 664
 665	/* Write B0 */
 666	d = (u32 *)b0;
 667	bd = (__be32 *)b0;
 668
 669	for (i = 0; i < AES_BLOCK_32; i++) {
 670		u32 xd = d[i];
 671
 672		if (!cryp->caps->padding_wa)
 673			xd = be32_to_cpu(bd[i]);
 674		stm32_cryp_write(cryp, cryp->caps->din, xd);
 675	}
 676
 677	/* Wait for end of processing */
 678	ret = stm32_cryp_wait_enable(cryp);
 679	if (ret) {
 680		dev_err(cryp->dev, "Timeout (ccm init)\n");
 681		return ret;
 682	}
 683
 684	/* Prepare next phase */
 685	if (cryp->areq->assoclen) {
 686		cfg |= CR_PH_HEADER | CR_CRYPEN;
 687		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 688
 689		/* Write first (special) block (may move to next phase [payload]) */
 690		stm32_cryp_write_ccm_first_header(cryp);
 691	} else if (stm32_cryp_get_input_text_len(cryp)) {
 692		cfg |= CR_PH_PAYLOAD;
 693		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 694	}
 695
 696	return 0;
 697}
 698
 699static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 700{
 701	int ret;
 702	u32 cfg, hw_mode;
 703
 704	pm_runtime_get_sync(cryp->dev);
 705
 706	/* Disable interrupt */
 707	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 
 
 
 708
 709	/* Set configuration */
 710	cfg = CR_DATA8 | CR_FFLUSH;
 711
 712	switch (cryp->ctx->keylen) {
 713	case AES_KEYSIZE_128:
 714		cfg |= CR_KEY128;
 715		break;
 716
 717	case AES_KEYSIZE_192:
 718		cfg |= CR_KEY192;
 719		break;
 720
 721	default:
 722	case AES_KEYSIZE_256:
 723		cfg |= CR_KEY256;
 724		break;
 725	}
 726
 727	hw_mode = stm32_cryp_get_hw_mode(cryp);
 728	if (hw_mode == CR_AES_UNKNOWN)
 729		return -EINVAL;
 730
 731	/* AES ECB/CBC decrypt: run key preparation first */
 732	if (is_decrypt(cryp) &&
 733	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 734		/* Configure in key preparation mode */
 735		if (cryp->caps->kp_mode)
 736			stm32_cryp_write(cryp, cryp->caps->cr,
 737				cfg | CR_AES_KP);
 738		else
 739			stm32_cryp_write(cryp,
 740				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
 741
 742		/* Set key only after full configuration done */
 743		stm32_cryp_hw_write_key(cryp);
 744
 745		/* Start prepare key */
 746		stm32_cryp_enable(cryp);
 747		/* Wait for end of processing */
 748		ret = stm32_cryp_wait_busy(cryp);
 749		if (ret) {
 750			dev_err(cryp->dev, "Timeout (key preparation)\n");
 751			return ret;
 752		}
 
 753
 754		cfg |= hw_mode | CR_DEC_NOT_ENC;
 755
 756		/* Apply updated config (Decrypt + algo) and flush */
 757		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 758	} else {
 759		cfg |= hw_mode;
 760		if (is_decrypt(cryp))
 761			cfg |= CR_DEC_NOT_ENC;
 762
 763		/* Apply config and flush */
 764		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 765
 766		/* Set key only after configuration done */
 767		stm32_cryp_hw_write_key(cryp);
 768	}
 769
 770	switch (hw_mode) {
 771	case CR_AES_GCM:
 772	case CR_AES_CCM:
 773		/* Phase 1 : init */
 774		if (hw_mode == CR_AES_CCM)
 775			ret = stm32_cryp_ccm_init(cryp, cfg);
 776		else
 777			ret = stm32_cryp_gcm_init(cryp, cfg);
 778
 779		if (ret)
 780			return ret;
 781
 
 
 
 
 
 
 
 
 
 
 782		break;
 783
 784	case CR_DES_CBC:
 785	case CR_TDES_CBC:
 786	case CR_AES_CBC:
 787	case CR_AES_CTR:
 788		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 789		break;
 790
 791	default:
 792		break;
 793	}
 794
 795	/* Enable now */
 796	stm32_cryp_enable(cryp);
 
 
 
 
 797
 798	return 0;
 799}
 800
 801static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 802{
 803	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 804		/* Phase 4 : output tag */
 805		err = stm32_cryp_read_auth_tag(cryp);
 806
 807	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
 808		stm32_cryp_get_iv(cryp);
 809
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 810	pm_runtime_mark_last_busy(cryp->dev);
 811	pm_runtime_put_autosuspend(cryp->dev);
 812
 813	if (is_gcm(cryp) || is_ccm(cryp))
 814		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 815	else
 816		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 817						   err);
 
 
 818}
 819
 820static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 821{
 822	/* Enable interrupt and let the IRQ handler do everything */
 823	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
 824
 825	return 0;
 826}
 827
 828static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 829static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 830					 void *areq);
 831
 832static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 833{
 834	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 835
 836	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 837
 838	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 839	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 840	ctx->enginectx.op.unprepare_request = NULL;
 841	return 0;
 842}
 843
 844static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 845static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 846				       void *areq);
 847
 848static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 849{
 850	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 851
 852	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 853
 854	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 855	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 856	ctx->enginectx.op.unprepare_request = NULL;
 857
 858	return 0;
 859}
 860
 861static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 862{
 863	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 864			crypto_skcipher_reqtfm(req));
 865	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 866	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 867
 868	if (!cryp)
 869		return -ENODEV;
 870
 871	rctx->mode = mode;
 872
 873	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 874}
 875
 876static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 877{
 878	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 879	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 880	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 881
 882	if (!cryp)
 883		return -ENODEV;
 884
 885	rctx->mode = mode;
 886
 887	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 888}
 889
 890static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 891			     unsigned int keylen)
 892{
 893	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 894
 895	memcpy(ctx->key, key, keylen);
 896	ctx->keylen = keylen;
 897
 898	return 0;
 899}
 900
 901static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 902				 unsigned int keylen)
 903{
 904	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 905	    keylen != AES_KEYSIZE_256)
 906		return -EINVAL;
 907	else
 908		return stm32_cryp_setkey(tfm, key, keylen);
 909}
 910
 911static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 912				 unsigned int keylen)
 913{
 914	return verify_skcipher_des_key(tfm, key) ?:
 915	       stm32_cryp_setkey(tfm, key, keylen);
 916}
 917
 918static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 919				  unsigned int keylen)
 920{
 921	return verify_skcipher_des3_key(tfm, key) ?:
 922	       stm32_cryp_setkey(tfm, key, keylen);
 923}
 924
 925static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 926				      unsigned int keylen)
 927{
 928	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 929
 930	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 931	    keylen != AES_KEYSIZE_256)
 932		return -EINVAL;
 933
 934	memcpy(ctx->key, key, keylen);
 935	ctx->keylen = keylen;
 936
 937	return 0;
 938}
 939
 940static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 941					  unsigned int authsize)
 942{
 943	switch (authsize) {
 944	case 4:
 945	case 8:
 946	case 12:
 947	case 13:
 948	case 14:
 949	case 15:
 950	case 16:
 951		break;
 952	default:
 953		return -EINVAL;
 954	}
 955
 956	return 0;
 957}
 958
 959static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 960					  unsigned int authsize)
 961{
 962	switch (authsize) {
 963	case 4:
 964	case 6:
 965	case 8:
 966	case 10:
 967	case 12:
 968	case 14:
 969	case 16:
 970		break;
 971	default:
 972		return -EINVAL;
 973	}
 974
 975	return 0;
 976}
 977
 978static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 979{
 980	if (req->cryptlen % AES_BLOCK_SIZE)
 981		return -EINVAL;
 982
 983	if (req->cryptlen == 0)
 984		return 0;
 985
 986	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 987}
 988
 989static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 990{
 991	if (req->cryptlen % AES_BLOCK_SIZE)
 992		return -EINVAL;
 993
 994	if (req->cryptlen == 0)
 995		return 0;
 996
 997	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 998}
 999
1000static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1001{
1002	if (req->cryptlen % AES_BLOCK_SIZE)
1003		return -EINVAL;
1004
1005	if (req->cryptlen == 0)
1006		return 0;
1007
1008	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1009}
1010
1011static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1012{
1013	if (req->cryptlen % AES_BLOCK_SIZE)
1014		return -EINVAL;
1015
1016	if (req->cryptlen == 0)
1017		return 0;
1018
1019	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1020}
1021
1022static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1023{
1024	if (req->cryptlen == 0)
1025		return 0;
1026
1027	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1028}
1029
1030static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1031{
1032	if (req->cryptlen == 0)
1033		return 0;
1034
1035	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1036}
1037
1038static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1039{
1040	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1041}
1042
1043static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1044{
1045	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1046}
1047
1048static inline int crypto_ccm_check_iv(const u8 *iv)
1049{
1050	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1051	if (iv[0] < 1 || iv[0] > 7)
1052		return -EINVAL;
1053
1054	return 0;
1055}
1056
1057static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1058{
1059	int err;
1060
1061	err = crypto_ccm_check_iv(req->iv);
1062	if (err)
1063		return err;
1064
1065	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1066}
1067
1068static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1069{
1070	int err;
1071
1072	err = crypto_ccm_check_iv(req->iv);
1073	if (err)
1074		return err;
1075
1076	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1077}
1078
1079static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1080{
1081	if (req->cryptlen % DES_BLOCK_SIZE)
1082		return -EINVAL;
1083
1084	if (req->cryptlen == 0)
1085		return 0;
1086
1087	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1088}
1089
1090static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1091{
1092	if (req->cryptlen % DES_BLOCK_SIZE)
1093		return -EINVAL;
1094
1095	if (req->cryptlen == 0)
1096		return 0;
1097
1098	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1099}
1100
1101static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1102{
1103	if (req->cryptlen % DES_BLOCK_SIZE)
1104		return -EINVAL;
1105
1106	if (req->cryptlen == 0)
1107		return 0;
1108
1109	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1110}
1111
1112static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1113{
1114	if (req->cryptlen % DES_BLOCK_SIZE)
1115		return -EINVAL;
1116
1117	if (req->cryptlen == 0)
1118		return 0;
1119
1120	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1121}
1122
1123static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	if (req->cryptlen % DES_BLOCK_SIZE)
1126		return -EINVAL;
1127
1128	if (req->cryptlen == 0)
1129		return 0;
1130
1131	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1132}
1133
1134static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1135{
1136	if (req->cryptlen % DES_BLOCK_SIZE)
1137		return -EINVAL;
1138
1139	if (req->cryptlen == 0)
1140		return 0;
1141
1142	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1143}
1144
1145static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1146{
1147	if (req->cryptlen % DES_BLOCK_SIZE)
1148		return -EINVAL;
1149
1150	if (req->cryptlen == 0)
1151		return 0;
1152
1153	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1154}
1155
1156static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1157{
1158	if (req->cryptlen % DES_BLOCK_SIZE)
1159		return -EINVAL;
1160
1161	if (req->cryptlen == 0)
1162		return 0;
1163
1164	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1165}
1166
1167static int stm32_cryp_prepare_req(struct skcipher_request *req,
1168				  struct aead_request *areq)
1169{
1170	struct stm32_cryp_ctx *ctx;
1171	struct stm32_cryp *cryp;
1172	struct stm32_cryp_reqctx *rctx;
1173	struct scatterlist *in_sg;
1174	int ret;
1175
1176	if (!req && !areq)
1177		return -EINVAL;
1178
1179	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1180		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1181
1182	cryp = ctx->cryp;
1183
1184	if (!cryp)
1185		return -ENODEV;
1186
1187	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1188	rctx->mode &= FLG_MODE_MASK;
1189
1190	ctx->cryp = cryp;
1191
1192	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1193	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1194	cryp->ctx = ctx;
1195
1196	if (req) {
1197		cryp->req = req;
1198		cryp->areq = NULL;
1199		cryp->header_in = 0;
1200		cryp->payload_in = req->cryptlen;
1201		cryp->payload_out = req->cryptlen;
1202		cryp->authsize = 0;
1203	} else {
1204		/*
1205		 * Length of input and output data:
1206		 * Encryption case:
1207		 *  INPUT  = AssocData   ||     PlainText
1208		 *          <- assoclen ->  <- cryptlen ->
 
1209		 *
1210		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1211		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
 
1212		 *
1213		 * Decryption case:
1214		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1215		 *          <- assoclen --->  <---------- cryptlen ---------->
 
 
1216		 *
1217		 *  OUTPUT = AssocData    ||               PlainText
1218		 *          <- assoclen ->  <- cryptlen - authsize ->
 
1219		 */
1220		cryp->areq = areq;
1221		cryp->req = NULL;
1222		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1223		if (is_encrypt(cryp)) {
1224			cryp->payload_in = areq->cryptlen;
1225			cryp->header_in = areq->assoclen;
1226			cryp->payload_out = areq->cryptlen;
1227		} else {
1228			cryp->payload_in = areq->cryptlen - cryp->authsize;
1229			cryp->header_in = areq->assoclen;
1230			cryp->payload_out = cryp->payload_in;
1231		}
1232	}
1233
1234	in_sg = req ? req->src : areq->src;
1235	scatterwalk_start(&cryp->in_walk, in_sg);
1236
 
1237	cryp->out_sg = req ? req->dst : areq->dst;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1239
1240	if (is_gcm(cryp) || is_ccm(cryp)) {
1241		/* In output, jump after assoc data */
1242		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
 
1243	}
1244
1245	if (is_ctr(cryp))
1246		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1247
1248	ret = stm32_cryp_hw_init(cryp);
1249	return ret;
1250}
1251
1252static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1253					 void *areq)
1254{
1255	struct skcipher_request *req = container_of(areq,
1256						      struct skcipher_request,
1257						      base);
1258
1259	return stm32_cryp_prepare_req(req, NULL);
1260}
1261
1262static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1263{
1264	struct skcipher_request *req = container_of(areq,
1265						      struct skcipher_request,
1266						      base);
1267	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1268			crypto_skcipher_reqtfm(req));
1269	struct stm32_cryp *cryp = ctx->cryp;
1270
1271	if (!cryp)
1272		return -ENODEV;
1273
1274	return stm32_cryp_cpu_start(cryp);
1275}
1276
1277static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1278{
1279	struct aead_request *req = container_of(areq, struct aead_request,
1280						base);
1281
1282	return stm32_cryp_prepare_req(NULL, req);
1283}
1284
1285static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1286{
1287	struct aead_request *req = container_of(areq, struct aead_request,
1288						base);
1289	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1290	struct stm32_cryp *cryp = ctx->cryp;
1291
1292	if (!cryp)
1293		return -ENODEV;
1294
1295	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
 
1296		/* No input data to process: get tag and finish */
1297		stm32_cryp_finish_req(cryp, 0);
1298		return 0;
1299	}
1300
1301	return stm32_cryp_cpu_start(cryp);
1302}
1303
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1304static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1305{
1306	u32 cfg, size_bit;
1307	unsigned int i;
 
1308	int ret = 0;
1309
1310	/* Update Config */
1311	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1312
1313	cfg &= ~CR_PH_MASK;
1314	cfg |= CR_PH_FINAL;
1315	cfg &= ~CR_DEC_NOT_ENC;
1316	cfg |= CR_CRYPEN;
1317
1318	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1319
1320	if (is_gcm(cryp)) {
1321		/* GCM: write aad and payload size (in bits) */
1322		size_bit = cryp->areq->assoclen * 8;
1323		if (cryp->caps->swap_final)
1324			size_bit = (__force u32)cpu_to_be32(size_bit);
1325
1326		stm32_cryp_write(cryp, cryp->caps->din, 0);
1327		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1328
1329		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1330				cryp->areq->cryptlen - cryp->authsize;
1331		size_bit *= 8;
1332		if (cryp->caps->swap_final)
1333			size_bit = (__force u32)cpu_to_be32(size_bit);
1334
1335		stm32_cryp_write(cryp, cryp->caps->din, 0);
1336		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1337	} else {
1338		/* CCM: write CTR0 */
1339		u32 iv32[AES_BLOCK_32];
1340		u8 *iv = (u8 *)iv32;
1341		__be32 *biv = (__be32 *)iv32;
1342
1343		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1344		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1345
1346		for (i = 0; i < AES_BLOCK_32; i++) {
1347			u32 xiv = iv32[i];
1348
1349			if (!cryp->caps->padding_wa)
1350				xiv = be32_to_cpu(biv[i]);
1351			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1352		}
1353	}
1354
1355	/* Wait for output data */
1356	ret = stm32_cryp_wait_output(cryp);
1357	if (ret) {
1358		dev_err(cryp->dev, "Timeout (read tag)\n");
1359		return ret;
1360	}
1361
1362	if (is_encrypt(cryp)) {
1363		u32 out_tag[AES_BLOCK_32];
1364
1365		/* Get and write tag */
1366		for (i = 0; i < AES_BLOCK_32; i++)
1367			out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1368
1369		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1370	} else {
1371		/* Get and check tag */
1372		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1373
1374		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
 
 
1375
1376		for (i = 0; i < AES_BLOCK_32; i++)
1377			out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1378
1379		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1380			ret = -EBADMSG;
1381	}
1382
1383	/* Disable cryp */
1384	cfg &= ~CR_CRYPEN;
1385	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1386
1387	return ret;
1388}
1389
1390static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1391{
1392	u32 cr;
1393
1394	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1395		/*
1396		 * In this case, we need to increment manually the ctr counter,
1397		 * as HW doesn't handle the U32 carry.
1398		 */
1399		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
 
 
1400
1401		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1402		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1403
1404		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1405
1406		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1407	}
1408
1409	/* The IV registers are BE  */
1410	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1411	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1412	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1413	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1414}
1415
1416static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1417{
1418	unsigned int i;
1419	u32 block[AES_BLOCK_32];
 
 
 
 
 
 
 
 
1420
1421	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1422		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1423
1424	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1425							     cryp->payload_out), 1);
1426	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1427				   cryp->payload_out);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1428}
1429
1430static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1431{
1432	unsigned int i;
1433	u32 block[AES_BLOCK_32] = {0};
 
 
 
 
 
 
 
 
 
 
1434
1435	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1436							    cryp->payload_in), 0);
1437	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1438		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 
 
 
 
 
 
 
 
 
 
 
 
 
1439
1440	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
 
 
 
1441}
1442
1443static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1444{
1445	int err;
1446	u32 cfg, block[AES_BLOCK_32] = {0};
 
 
1447	unsigned int i;
1448
1449	/* 'Special workaround' procedure described in the datasheet */
1450
1451	/* a) disable ip */
1452	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1453	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1454	cfg &= ~CR_CRYPEN;
1455	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1456
1457	/* b) Update IV1R */
1458	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1459
1460	/* c) change mode to CTR */
1461	cfg &= ~CR_ALGO_MASK;
1462	cfg |= CR_AES_CTR;
1463	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1464
1465	/* a) enable IP */
1466	cfg |= CR_CRYPEN;
1467	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1468
1469	/* b) pad and write the last block */
1470	stm32_cryp_irq_write_block(cryp);
1471	/* wait end of process */
1472	err = stm32_cryp_wait_output(cryp);
1473	if (err) {
1474		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1475		return stm32_cryp_finish_req(cryp, err);
1476	}
1477
1478	/* c) get and store encrypted data */
1479	/*
1480	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1481	 * block value
1482	 */
1483	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1484		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1485
1486	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1487							     cryp->payload_out), 1);
1488	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1489				   cryp->payload_out);
1490
1491	/* d) change mode back to AES GCM */
1492	cfg &= ~CR_ALGO_MASK;
1493	cfg |= CR_AES_GCM;
1494	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1495
1496	/* e) change phase to Final */
1497	cfg &= ~CR_PH_MASK;
1498	cfg |= CR_PH_FINAL;
1499	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1500
1501	/* f) write padded data */
1502	for (i = 0; i < AES_BLOCK_32; i++)
1503		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 
 
 
 
 
 
1504
1505	/* g) Empty fifo out */
1506	err = stm32_cryp_wait_output(cryp);
1507	if (err) {
1508		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1509		return stm32_cryp_finish_req(cryp, err);
1510	}
1511
1512	for (i = 0; i < AES_BLOCK_32; i++)
1513		stm32_cryp_read(cryp, cryp->caps->dout);
1514
1515	/* h) run the he normal Final phase */
1516	stm32_cryp_finish_req(cryp, 0);
1517}
1518
1519static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1520{
1521	u32 cfg;
1522
1523	/* disable ip, set NPBLB and reneable ip */
1524	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1525	cfg &= ~CR_CRYPEN;
1526	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1527
1528	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
 
 
1529	cfg |= CR_CRYPEN;
1530	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1531}
1532
1533static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1534{
1535	int err = 0;
1536	u32 cfg, iv1tmp;
1537	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1538	u32 block[AES_BLOCK_32] = {0};
 
1539	unsigned int i;
1540
1541	/* 'Special workaround' procedure described in the datasheet */
 
1542
1543	/* a) disable ip */
1544	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1545
1546	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1547	cfg &= ~CR_CRYPEN;
1548	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1549
1550	/* b) get IV1 from CRYP_CSGCMCCM7 */
1551	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1552
1553	/* c) Load CRYP_CSGCMCCMxR */
1554	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1555		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1556
1557	/* d) Write IV1R */
1558	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1559
1560	/* e) change mode to CTR */
1561	cfg &= ~CR_ALGO_MASK;
1562	cfg |= CR_AES_CTR;
1563	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1564
1565	/* a) enable IP */
1566	cfg |= CR_CRYPEN;
1567	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1568
1569	/* b) pad and write the last block */
1570	stm32_cryp_irq_write_block(cryp);
1571	/* wait end of process */
1572	err = stm32_cryp_wait_output(cryp);
1573	if (err) {
1574		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1575		return stm32_cryp_finish_req(cryp, err);
1576	}
1577
1578	/* c) get and store decrypted data */
1579	/*
1580	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1581	 * block value
1582	 */
1583	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1584		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1585
1586	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1587							     cryp->payload_out), 1);
1588	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1589
1590	/* d) Load again CRYP_CSGCMCCMxR */
1591	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1592		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1593
1594	/* e) change mode back to AES CCM */
1595	cfg &= ~CR_ALGO_MASK;
1596	cfg |= CR_AES_CCM;
1597	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1598
1599	/* f) change phase to header */
1600	cfg &= ~CR_PH_MASK;
1601	cfg |= CR_PH_HEADER;
1602	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1603
1604	/* g) XOR and write padded data */
1605	for (i = 0; i < ARRAY_SIZE(block); i++) {
1606		block[i] ^= cstmp1[i];
1607		block[i] ^= cstmp2[i];
1608		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1609	}
1610
1611	/* h) wait for completion */
1612	err = stm32_cryp_wait_busy(cryp);
1613	if (err)
1614		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1615
1616	/* i) run the he normal Final phase */
1617	stm32_cryp_finish_req(cryp, err);
1618}
1619
1620static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1621{
1622	if (unlikely(!cryp->payload_in)) {
1623		dev_warn(cryp->dev, "No more data to process\n");
1624		return;
1625	}
1626
1627	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1628		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1629		     is_encrypt(cryp))) {
1630		/* Padding for AES GCM encryption */
1631		if (cryp->caps->padding_wa) {
1632			/* Special case 1 */
1633			stm32_cryp_irq_write_gcm_padded_data(cryp);
1634			return;
1635		}
1636
1637		/* Setting padding bytes (NBBLB) */
1638		stm32_cryp_irq_set_npblb(cryp);
1639	}
1640
1641	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1642		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1643		     is_decrypt(cryp))) {
1644		/* Padding for AES CCM decryption */
1645		if (cryp->caps->padding_wa) {
1646			/* Special case 2 */
1647			stm32_cryp_irq_write_ccm_padded_data(cryp);
1648			return;
1649		}
1650
1651		/* Setting padding bytes (NBBLB) */
1652		stm32_cryp_irq_set_npblb(cryp);
1653	}
1654
1655	if (is_aes(cryp) && is_ctr(cryp))
1656		stm32_cryp_check_ctr_counter(cryp);
1657
1658	stm32_cryp_irq_write_block(cryp);
1659}
1660
1661static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1662{
1663	unsigned int i;
1664	u32 block[AES_BLOCK_32] = {0};
1665	size_t written;
1666
1667	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1668
1669	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1670	for (i = 0; i < AES_BLOCK_32; i++)
1671		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 
 
1672
1673	cryp->header_in -= written;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1674
1675	stm32_crypt_gcmccm_end_header(cryp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1676}
1677
1678static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679{
1680	struct stm32_cryp *cryp = arg;
1681	u32 ph;
1682	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1683
1684	if (cryp->irq_status & MISR_OUT)
1685		/* Output FIFO IRQ: read data */
1686		stm32_cryp_irq_read_data(cryp);
 
 
 
 
 
1687
1688	if (cryp->irq_status & MISR_IN) {
1689		if (is_gcm(cryp) || is_ccm(cryp)) {
1690			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
 
 
 
 
 
 
 
 
 
1691			if (unlikely(ph == CR_PH_HEADER))
1692				/* Write Header */
1693				stm32_cryp_irq_write_gcmccm_header(cryp);
1694			else
1695				/* Input FIFO IRQ: write data */
1696				stm32_cryp_irq_write_data(cryp);
1697			if (is_gcm(cryp))
1698				cryp->gcm_ctr++;
1699		} else {
1700			/* Input FIFO IRQ: write data */
1701			stm32_cryp_irq_write_data(cryp);
1702		}
1703	}
1704
1705	/* Mask useless interrupts */
1706	if (!cryp->payload_in && !cryp->header_in)
1707		it_mask &= ~IMSCR_IN;
1708	if (!cryp->payload_out)
1709		it_mask &= ~IMSCR_OUT;
1710	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1711
1712	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1713		stm32_cryp_finish_req(cryp, 0);
1714
1715	return IRQ_HANDLED;
1716}
1717
1718static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719{
1720	struct stm32_cryp *cryp = arg;
1721
1722	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1723
1724	return IRQ_WAKE_THREAD;
1725}
1726
1727static struct skcipher_alg crypto_algs[] = {
1728{
1729	.base.cra_name		= "ecb(aes)",
1730	.base.cra_driver_name	= "stm32-ecb-aes",
1731	.base.cra_priority	= 200,
1732	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1733	.base.cra_blocksize	= AES_BLOCK_SIZE,
1734	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1735	.base.cra_alignmask	= 0,
1736	.base.cra_module	= THIS_MODULE,
1737
1738	.init			= stm32_cryp_init_tfm,
1739	.min_keysize		= AES_MIN_KEY_SIZE,
1740	.max_keysize		= AES_MAX_KEY_SIZE,
1741	.setkey			= stm32_cryp_aes_setkey,
1742	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1743	.decrypt		= stm32_cryp_aes_ecb_decrypt,
 
 
 
1744},
1745{
1746	.base.cra_name		= "cbc(aes)",
1747	.base.cra_driver_name	= "stm32-cbc-aes",
1748	.base.cra_priority	= 200,
1749	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1750	.base.cra_blocksize	= AES_BLOCK_SIZE,
1751	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1752	.base.cra_alignmask	= 0,
1753	.base.cra_module	= THIS_MODULE,
1754
1755	.init			= stm32_cryp_init_tfm,
1756	.min_keysize		= AES_MIN_KEY_SIZE,
1757	.max_keysize		= AES_MAX_KEY_SIZE,
1758	.ivsize			= AES_BLOCK_SIZE,
1759	.setkey			= stm32_cryp_aes_setkey,
1760	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1761	.decrypt		= stm32_cryp_aes_cbc_decrypt,
 
 
 
1762},
1763{
1764	.base.cra_name		= "ctr(aes)",
1765	.base.cra_driver_name	= "stm32-ctr-aes",
1766	.base.cra_priority	= 200,
1767	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1768	.base.cra_blocksize	= 1,
1769	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1770	.base.cra_alignmask	= 0,
1771	.base.cra_module	= THIS_MODULE,
1772
1773	.init			= stm32_cryp_init_tfm,
1774	.min_keysize		= AES_MIN_KEY_SIZE,
1775	.max_keysize		= AES_MAX_KEY_SIZE,
1776	.ivsize			= AES_BLOCK_SIZE,
1777	.setkey			= stm32_cryp_aes_setkey,
1778	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1779	.decrypt		= stm32_cryp_aes_ctr_decrypt,
 
 
 
1780},
1781{
1782	.base.cra_name		= "ecb(des)",
1783	.base.cra_driver_name	= "stm32-ecb-des",
1784	.base.cra_priority	= 200,
1785	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1786	.base.cra_blocksize	= DES_BLOCK_SIZE,
1787	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1788	.base.cra_alignmask	= 0,
1789	.base.cra_module	= THIS_MODULE,
1790
1791	.init			= stm32_cryp_init_tfm,
1792	.min_keysize		= DES_BLOCK_SIZE,
1793	.max_keysize		= DES_BLOCK_SIZE,
1794	.setkey			= stm32_cryp_des_setkey,
1795	.encrypt		= stm32_cryp_des_ecb_encrypt,
1796	.decrypt		= stm32_cryp_des_ecb_decrypt,
 
 
 
1797},
1798{
1799	.base.cra_name		= "cbc(des)",
1800	.base.cra_driver_name	= "stm32-cbc-des",
1801	.base.cra_priority	= 200,
1802	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1803	.base.cra_blocksize	= DES_BLOCK_SIZE,
1804	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1805	.base.cra_alignmask	= 0,
1806	.base.cra_module	= THIS_MODULE,
1807
1808	.init			= stm32_cryp_init_tfm,
1809	.min_keysize		= DES_BLOCK_SIZE,
1810	.max_keysize		= DES_BLOCK_SIZE,
1811	.ivsize			= DES_BLOCK_SIZE,
1812	.setkey			= stm32_cryp_des_setkey,
1813	.encrypt		= stm32_cryp_des_cbc_encrypt,
1814	.decrypt		= stm32_cryp_des_cbc_decrypt,
 
 
 
1815},
1816{
1817	.base.cra_name		= "ecb(des3_ede)",
1818	.base.cra_driver_name	= "stm32-ecb-des3",
1819	.base.cra_priority	= 200,
1820	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1821	.base.cra_blocksize	= DES_BLOCK_SIZE,
1822	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1823	.base.cra_alignmask	= 0,
1824	.base.cra_module	= THIS_MODULE,
1825
1826	.init			= stm32_cryp_init_tfm,
1827	.min_keysize		= 3 * DES_BLOCK_SIZE,
1828	.max_keysize		= 3 * DES_BLOCK_SIZE,
1829	.setkey			= stm32_cryp_tdes_setkey,
1830	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1831	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
 
 
 
1832},
1833{
1834	.base.cra_name		= "cbc(des3_ede)",
1835	.base.cra_driver_name	= "stm32-cbc-des3",
1836	.base.cra_priority	= 200,
1837	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1838	.base.cra_blocksize	= DES_BLOCK_SIZE,
1839	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1840	.base.cra_alignmask	= 0,
1841	.base.cra_module	= THIS_MODULE,
1842
1843	.init			= stm32_cryp_init_tfm,
1844	.min_keysize		= 3 * DES_BLOCK_SIZE,
1845	.max_keysize		= 3 * DES_BLOCK_SIZE,
1846	.ivsize			= DES_BLOCK_SIZE,
1847	.setkey			= stm32_cryp_tdes_setkey,
1848	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1849	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
 
 
 
1850},
1851};
1852
1853static struct aead_alg aead_algs[] = {
1854{
1855	.setkey		= stm32_cryp_aes_aead_setkey,
1856	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1857	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1858	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1859	.init		= stm32_cryp_aes_aead_init,
1860	.ivsize		= 12,
1861	.maxauthsize	= AES_BLOCK_SIZE,
1862
1863	.base = {
1864		.cra_name		= "gcm(aes)",
1865		.cra_driver_name	= "stm32-gcm-aes",
1866		.cra_priority		= 200,
1867		.cra_flags		= CRYPTO_ALG_ASYNC,
1868		.cra_blocksize		= 1,
1869		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1870		.cra_alignmask		= 0,
1871		.cra_module		= THIS_MODULE,
1872	},
1873},
1874{
1875	.setkey		= stm32_cryp_aes_aead_setkey,
1876	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1877	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1878	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1879	.init		= stm32_cryp_aes_aead_init,
1880	.ivsize		= AES_BLOCK_SIZE,
1881	.maxauthsize	= AES_BLOCK_SIZE,
1882
1883	.base = {
1884		.cra_name		= "ccm(aes)",
1885		.cra_driver_name	= "stm32-ccm-aes",
1886		.cra_priority		= 200,
1887		.cra_flags		= CRYPTO_ALG_ASYNC,
1888		.cra_blocksize		= 1,
1889		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1890		.cra_alignmask		= 0,
1891		.cra_module		= THIS_MODULE,
1892	},
1893},
1894};
1895
1896static const struct stm32_cryp_caps ux500_data = {
1897	.aeads_support = false,
1898	.linear_aes_key = true,
1899	.kp_mode = false,
1900	.iv_protection = true,
1901	.swap_final = true,
1902	.padding_wa = true,
1903	.cr = UX500_CRYP_CR,
1904	.sr = UX500_CRYP_SR,
1905	.din = UX500_CRYP_DIN,
1906	.dout = UX500_CRYP_DOUT,
1907	.imsc = UX500_CRYP_IMSC,
1908	.mis = UX500_CRYP_MIS,
1909	.k1l = UX500_CRYP_K1L,
1910	.k1r = UX500_CRYP_K1R,
1911	.k3r = UX500_CRYP_K3R,
1912	.iv0l = UX500_CRYP_IV0L,
1913	.iv0r = UX500_CRYP_IV0R,
1914	.iv1l = UX500_CRYP_IV1L,
1915	.iv1r = UX500_CRYP_IV1R,
1916};
1917
1918static const struct stm32_cryp_caps f7_data = {
1919	.aeads_support = true,
1920	.linear_aes_key = false,
1921	.kp_mode = true,
1922	.iv_protection = false,
1923	.swap_final = true,
1924	.padding_wa = true,
1925	.cr = CRYP_CR,
1926	.sr = CRYP_SR,
1927	.din = CRYP_DIN,
1928	.dout = CRYP_DOUT,
1929	.imsc = CRYP_IMSCR,
1930	.mis = CRYP_MISR,
1931	.k1l = CRYP_K1LR,
1932	.k1r = CRYP_K1RR,
1933	.k3r = CRYP_K3RR,
1934	.iv0l = CRYP_IV0LR,
1935	.iv0r = CRYP_IV0RR,
1936	.iv1l = CRYP_IV1LR,
1937	.iv1r = CRYP_IV1RR,
1938};
1939
1940static const struct stm32_cryp_caps mp1_data = {
1941	.aeads_support = true,
1942	.linear_aes_key = false,
1943	.kp_mode = true,
1944	.iv_protection = false,
1945	.swap_final = false,
1946	.padding_wa = false,
1947	.cr = CRYP_CR,
1948	.sr = CRYP_SR,
1949	.din = CRYP_DIN,
1950	.dout = CRYP_DOUT,
1951	.imsc = CRYP_IMSCR,
1952	.mis = CRYP_MISR,
1953	.k1l = CRYP_K1LR,
1954	.k1r = CRYP_K1RR,
1955	.k3r = CRYP_K3RR,
1956	.iv0l = CRYP_IV0LR,
1957	.iv0r = CRYP_IV0RR,
1958	.iv1l = CRYP_IV1LR,
1959	.iv1r = CRYP_IV1RR,
1960};
1961
1962static const struct of_device_id stm32_dt_ids[] = {
1963	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1964	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1965	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1966	{},
1967};
1968MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1969
1970static int stm32_cryp_probe(struct platform_device *pdev)
1971{
1972	struct device *dev = &pdev->dev;
1973	struct stm32_cryp *cryp;
1974	struct reset_control *rst;
1975	int irq, ret;
1976
1977	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1978	if (!cryp)
1979		return -ENOMEM;
1980
1981	cryp->caps = of_device_get_match_data(dev);
1982	if (!cryp->caps)
1983		return -ENODEV;
1984
1985	cryp->dev = dev;
1986
1987	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1988	if (IS_ERR(cryp->regs))
1989		return PTR_ERR(cryp->regs);
1990
1991	irq = platform_get_irq(pdev, 0);
1992	if (irq < 0)
1993		return irq;
1994
1995	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1996					stm32_cryp_irq_thread, IRQF_ONESHOT,
1997					dev_name(dev), cryp);
1998	if (ret) {
1999		dev_err(dev, "Cannot grab IRQ\n");
2000		return ret;
2001	}
2002
2003	cryp->clk = devm_clk_get(dev, NULL);
2004	if (IS_ERR(cryp->clk)) {
2005		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2006
2007		return PTR_ERR(cryp->clk);
2008	}
2009
2010	ret = clk_prepare_enable(cryp->clk);
2011	if (ret) {
2012		dev_err(cryp->dev, "Failed to enable clock\n");
2013		return ret;
2014	}
2015
2016	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2017	pm_runtime_use_autosuspend(dev);
2018
2019	pm_runtime_get_noresume(dev);
2020	pm_runtime_set_active(dev);
2021	pm_runtime_enable(dev);
2022
2023	rst = devm_reset_control_get(dev, NULL);
2024	if (IS_ERR(rst)) {
2025		ret = PTR_ERR(rst);
2026		if (ret == -EPROBE_DEFER)
2027			goto err_rst;
2028	} else {
2029		reset_control_assert(rst);
2030		udelay(2);
2031		reset_control_deassert(rst);
2032	}
2033
2034	platform_set_drvdata(pdev, cryp);
2035
2036	spin_lock(&cryp_list.lock);
2037	list_add(&cryp->list, &cryp_list.dev_list);
2038	spin_unlock(&cryp_list.lock);
2039
2040	/* Initialize crypto engine */
2041	cryp->engine = crypto_engine_alloc_init(dev, 1);
2042	if (!cryp->engine) {
2043		dev_err(dev, "Could not init crypto engine\n");
2044		ret = -ENOMEM;
2045		goto err_engine1;
2046	}
2047
2048	ret = crypto_engine_start(cryp->engine);
2049	if (ret) {
2050		dev_err(dev, "Could not start crypto engine\n");
2051		goto err_engine2;
2052	}
2053
2054	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2055	if (ret) {
2056		dev_err(dev, "Could not register algs\n");
2057		goto err_algs;
2058	}
2059
2060	if (cryp->caps->aeads_support) {
2061		ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062		if (ret)
2063			goto err_aead_algs;
2064	}
2065
2066	dev_info(dev, "Initialized\n");
2067
2068	pm_runtime_put_sync(dev);
2069
2070	return 0;
2071
2072err_aead_algs:
2073	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2074err_algs:
2075err_engine2:
2076	crypto_engine_exit(cryp->engine);
2077err_engine1:
2078	spin_lock(&cryp_list.lock);
2079	list_del(&cryp->list);
2080	spin_unlock(&cryp_list.lock);
2081err_rst:
 
 
2082	pm_runtime_disable(dev);
2083	pm_runtime_put_noidle(dev);
2084
2085	clk_disable_unprepare(cryp->clk);
2086
2087	return ret;
2088}
2089
2090static int stm32_cryp_remove(struct platform_device *pdev)
2091{
2092	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2093	int ret;
2094
2095	if (!cryp)
2096		return -ENODEV;
2097
2098	ret = pm_runtime_resume_and_get(cryp->dev);
2099	if (ret < 0)
2100		return ret;
2101
2102	if (cryp->caps->aeads_support)
2103		crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2104	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2105
2106	crypto_engine_exit(cryp->engine);
2107
2108	spin_lock(&cryp_list.lock);
2109	list_del(&cryp->list);
2110	spin_unlock(&cryp_list.lock);
2111
2112	pm_runtime_disable(cryp->dev);
2113	pm_runtime_put_noidle(cryp->dev);
2114
2115	clk_disable_unprepare(cryp->clk);
2116
2117	return 0;
2118}
2119
2120#ifdef CONFIG_PM
2121static int stm32_cryp_runtime_suspend(struct device *dev)
2122{
2123	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124
2125	clk_disable_unprepare(cryp->clk);
2126
2127	return 0;
2128}
2129
2130static int stm32_cryp_runtime_resume(struct device *dev)
2131{
2132	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2133	int ret;
2134
2135	ret = clk_prepare_enable(cryp->clk);
2136	if (ret) {
2137		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2138		return ret;
2139	}
2140
2141	return 0;
2142}
2143#endif
2144
2145static const struct dev_pm_ops stm32_cryp_pm_ops = {
2146	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2147				pm_runtime_force_resume)
2148	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2149			   stm32_cryp_runtime_resume, NULL)
2150};
2151
2152static struct platform_driver stm32_cryp_driver = {
2153	.probe  = stm32_cryp_probe,
2154	.remove = stm32_cryp_remove,
2155	.driver = {
2156		.name           = DRIVER_NAME,
2157		.pm		= &stm32_cryp_pm_ops,
2158		.of_match_table = stm32_dt_ids,
2159	},
2160};
2161
2162module_platform_driver(stm32_cryp_driver);
2163
2164MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2165MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2166MODULE_LICENSE("GPL");
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
 
   5 */
   6
   7#include <linux/clk.h>
   8#include <linux/delay.h>
   9#include <linux/interrupt.h>
  10#include <linux/iopoll.h>
  11#include <linux/module.h>
  12#include <linux/of_device.h>
  13#include <linux/platform_device.h>
  14#include <linux/pm_runtime.h>
  15#include <linux/reset.h>
  16
  17#include <crypto/aes.h>
  18#include <crypto/internal/des.h>
  19#include <crypto/engine.h>
  20#include <crypto/scatterwalk.h>
  21#include <crypto/internal/aead.h>
 
  22
  23#define DRIVER_NAME             "stm32-cryp"
  24
  25/* Bit [0] encrypt / decrypt */
  26#define FLG_ENCRYPT             BIT(0)
  27/* Bit [8..1] algo & operation mode */
  28#define FLG_AES                 BIT(1)
  29#define FLG_DES                 BIT(2)
  30#define FLG_TDES                BIT(3)
  31#define FLG_ECB                 BIT(4)
  32#define FLG_CBC                 BIT(5)
  33#define FLG_CTR                 BIT(6)
  34#define FLG_GCM                 BIT(7)
  35#define FLG_CCM                 BIT(8)
  36/* Mode mask = bits [15..0] */
  37#define FLG_MODE_MASK           GENMASK(15, 0)
  38/* Bit [31..16] status  */
  39#define FLG_CCM_PADDED_WA       BIT(16)
  40
  41/* Registers */
  42#define CRYP_CR                 0x00000000
  43#define CRYP_SR                 0x00000004
  44#define CRYP_DIN                0x00000008
  45#define CRYP_DOUT               0x0000000C
  46#define CRYP_DMACR              0x00000010
  47#define CRYP_IMSCR              0x00000014
  48#define CRYP_RISR               0x00000018
  49#define CRYP_MISR               0x0000001C
  50#define CRYP_K0LR               0x00000020
  51#define CRYP_K0RR               0x00000024
  52#define CRYP_K1LR               0x00000028
  53#define CRYP_K1RR               0x0000002C
  54#define CRYP_K2LR               0x00000030
  55#define CRYP_K2RR               0x00000034
  56#define CRYP_K3LR               0x00000038
  57#define CRYP_K3RR               0x0000003C
  58#define CRYP_IV0LR              0x00000040
  59#define CRYP_IV0RR              0x00000044
  60#define CRYP_IV1LR              0x00000048
  61#define CRYP_IV1RR              0x0000004C
  62#define CRYP_CSGCMCCM0R         0x00000050
  63#define CRYP_CSGCM0R            0x00000070
  64
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  65/* Registers values */
  66#define CR_DEC_NOT_ENC          0x00000004
  67#define CR_TDES_ECB             0x00000000
  68#define CR_TDES_CBC             0x00000008
  69#define CR_DES_ECB              0x00000010
  70#define CR_DES_CBC              0x00000018
  71#define CR_AES_ECB              0x00000020
  72#define CR_AES_CBC              0x00000028
  73#define CR_AES_CTR              0x00000030
  74#define CR_AES_KP               0x00000038
 
  75#define CR_AES_GCM              0x00080000
  76#define CR_AES_CCM              0x00080008
  77#define CR_AES_UNKNOWN          0xFFFFFFFF
  78#define CR_ALGO_MASK            0x00080038
  79#define CR_DATA32               0x00000000
  80#define CR_DATA16               0x00000040
  81#define CR_DATA8                0x00000080
  82#define CR_DATA1                0x000000C0
  83#define CR_KEY128               0x00000000
  84#define CR_KEY192               0x00000100
  85#define CR_KEY256               0x00000200
 
 
  86#define CR_FFLUSH               0x00004000
  87#define CR_CRYPEN               0x00008000
  88#define CR_PH_INIT              0x00000000
  89#define CR_PH_HEADER            0x00010000
  90#define CR_PH_PAYLOAD           0x00020000
  91#define CR_PH_FINAL             0x00030000
  92#define CR_PH_MASK              0x00030000
  93#define CR_NBPBL_SHIFT          20
  94
  95#define SR_BUSY                 0x00000010
  96#define SR_OFNE                 0x00000004
  97
  98#define IMSCR_IN                BIT(0)
  99#define IMSCR_OUT               BIT(1)
 100
 101#define MISR_IN                 BIT(0)
 102#define MISR_OUT                BIT(1)
 103
 104/* Misc */
 105#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 106#define GCM_CTR_INIT            2
 107#define _walked_in              (cryp->in_walk.offset - cryp->in_sg->offset)
 108#define _walked_out             (cryp->out_walk.offset - cryp->out_sg->offset)
 109#define CRYP_AUTOSUSPEND_DELAY	50
 110
 111struct stm32_cryp_caps {
 112	bool                    swap_final;
 113	bool                    padding_wa;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 114};
 115
 116struct stm32_cryp_ctx {
 117	struct crypto_engine_ctx enginectx;
 118	struct stm32_cryp       *cryp;
 119	int                     keylen;
 120	u32                     key[AES_KEYSIZE_256 / sizeof(u32)];
 121	unsigned long           flags;
 122};
 123
 124struct stm32_cryp_reqctx {
 125	unsigned long mode;
 126};
 127
 128struct stm32_cryp {
 129	struct list_head        list;
 130	struct device           *dev;
 131	void __iomem            *regs;
 132	struct clk              *clk;
 133	unsigned long           flags;
 134	u32                     irq_status;
 135	const struct stm32_cryp_caps *caps;
 136	struct stm32_cryp_ctx   *ctx;
 137
 138	struct crypto_engine    *engine;
 139
 140	struct ablkcipher_request *req;
 141	struct aead_request     *areq;
 142
 143	size_t                  authsize;
 144	size_t                  hw_blocksize;
 145
 146	size_t                  total_in;
 147	size_t                  total_in_save;
 148	size_t                  total_out;
 149	size_t                  total_out_save;
 150
 151	struct scatterlist      *in_sg;
 152	struct scatterlist      *out_sg;
 153	struct scatterlist      *out_sg_save;
 154
 155	struct scatterlist      in_sgl;
 156	struct scatterlist      out_sgl;
 157	bool                    sgs_copied;
 158
 159	int                     in_sg_len;
 160	int                     out_sg_len;
 161
 162	struct scatter_walk     in_walk;
 163	struct scatter_walk     out_walk;
 164
 165	u32                     last_ctr[4];
 166	u32                     gcm_ctr;
 167};
 168
 169struct stm32_cryp_list {
 170	struct list_head        dev_list;
 171	spinlock_t              lock; /* protect dev_list */
 172};
 173
 174static struct stm32_cryp_list cryp_list = {
 175	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 176	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 177};
 178
 179static inline bool is_aes(struct stm32_cryp *cryp)
 180{
 181	return cryp->flags & FLG_AES;
 182}
 183
 184static inline bool is_des(struct stm32_cryp *cryp)
 185{
 186	return cryp->flags & FLG_DES;
 187}
 188
 189static inline bool is_tdes(struct stm32_cryp *cryp)
 190{
 191	return cryp->flags & FLG_TDES;
 192}
 193
 194static inline bool is_ecb(struct stm32_cryp *cryp)
 195{
 196	return cryp->flags & FLG_ECB;
 197}
 198
 199static inline bool is_cbc(struct stm32_cryp *cryp)
 200{
 201	return cryp->flags & FLG_CBC;
 202}
 203
 204static inline bool is_ctr(struct stm32_cryp *cryp)
 205{
 206	return cryp->flags & FLG_CTR;
 207}
 208
 209static inline bool is_gcm(struct stm32_cryp *cryp)
 210{
 211	return cryp->flags & FLG_GCM;
 212}
 213
 214static inline bool is_ccm(struct stm32_cryp *cryp)
 215{
 216	return cryp->flags & FLG_CCM;
 217}
 218
 219static inline bool is_encrypt(struct stm32_cryp *cryp)
 220{
 221	return cryp->flags & FLG_ENCRYPT;
 222}
 223
 224static inline bool is_decrypt(struct stm32_cryp *cryp)
 225{
 226	return !is_encrypt(cryp);
 227}
 228
 229static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 230{
 231	return readl_relaxed(cryp->regs + ofst);
 232}
 233
 234static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 235{
 236	writel_relaxed(val, cryp->regs + ofst);
 237}
 238
 239static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 240{
 241	u32 status;
 242
 243	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 244			!(status & SR_BUSY), 10, 100000);
 245}
 246
 
 
 
 
 
 
 247static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 248{
 249	u32 status;
 250
 251	return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
 252			!(status & CR_CRYPEN), 10, 100000);
 253}
 254
 255static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 256{
 257	u32 status;
 258
 259	return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
 260			status & SR_OFNE, 10, 100000);
 261}
 262
 
 
 
 
 
 
 
 
 
 
 
 
 263static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 
 264
 265static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 266{
 267	struct stm32_cryp *tmp, *cryp = NULL;
 268
 269	spin_lock_bh(&cryp_list.lock);
 270	if (!ctx->cryp) {
 271		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 272			cryp = tmp;
 273			break;
 274		}
 275		ctx->cryp = cryp;
 276	} else {
 277		cryp = ctx->cryp;
 278	}
 279
 280	spin_unlock_bh(&cryp_list.lock);
 281
 282	return cryp;
 283}
 284
 285static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
 286				    size_t align)
 287{
 288	int len = 0;
 289
 290	if (!total)
 291		return 0;
 292
 293	if (!IS_ALIGNED(total, align))
 294		return -EINVAL;
 295
 296	while (sg) {
 297		if (!IS_ALIGNED(sg->offset, sizeof(u32)))
 298			return -EINVAL;
 299
 300		if (!IS_ALIGNED(sg->length, align))
 301			return -EINVAL;
 302
 303		len += sg->length;
 304		sg = sg_next(sg);
 305	}
 306
 307	if (len != total)
 308		return -EINVAL;
 309
 310	return 0;
 311}
 312
 313static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
 314{
 315	int ret;
 
 316
 317	ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
 318				       cryp->hw_blocksize);
 319	if (ret)
 320		return ret;
 321
 322	ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
 323				       cryp->hw_blocksize);
 324
 325	return ret;
 326}
 327
 328static void sg_copy_buf(void *buf, struct scatterlist *sg,
 329			unsigned int start, unsigned int nbytes, int out)
 330{
 331	struct scatter_walk walk;
 332
 333	if (!nbytes)
 334		return;
 335
 336	scatterwalk_start(&walk, sg);
 337	scatterwalk_advance(&walk, start);
 338	scatterwalk_copychunks(buf, &walk, nbytes, out);
 339	scatterwalk_done(&walk, out, 0);
 340}
 341
 342static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
 343{
 344	void *buf_in, *buf_out;
 345	int pages, total_in, total_out;
 346
 347	if (!stm32_cryp_check_io_aligned(cryp)) {
 348		cryp->sgs_copied = 0;
 349		return 0;
 350	}
 351
 352	total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
 353	pages = total_in ? get_order(total_in) : 1;
 354	buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
 355
 356	total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
 357	pages = total_out ? get_order(total_out) : 1;
 358	buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
 359
 360	if (!buf_in || !buf_out) {
 361		dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
 362		cryp->sgs_copied = 0;
 363		return -EFAULT;
 364	}
 365
 366	sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
 367
 368	sg_init_one(&cryp->in_sgl, buf_in, total_in);
 369	cryp->in_sg = &cryp->in_sgl;
 370	cryp->in_sg_len = 1;
 371
 372	sg_init_one(&cryp->out_sgl, buf_out, total_out);
 373	cryp->out_sg_save = cryp->out_sg;
 374	cryp->out_sg = &cryp->out_sgl;
 375	cryp->out_sg_len = 1;
 376
 377	cryp->sgs_copied = 1;
 378
 379	return 0;
 380}
 381
 382static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 383{
 384	if (!iv)
 385		return;
 386
 387	stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
 388	stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
 389
 390	if (is_aes(cryp)) {
 391		stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
 392		stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
 393	}
 394}
 395
 396static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 397{
 398	struct ablkcipher_request *req = cryp->req;
 399	u32 *tmp = req->info;
 400
 401	if (!tmp)
 402		return;
 403
 404	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0LR));
 405	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV0RR));
 406
 407	if (is_aes(cryp)) {
 408		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1LR));
 409		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, CRYP_IV1RR));
 
 410	}
 411}
 412
 413static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 414{
 415	unsigned int i;
 416	int r_id;
 417
 418	if (is_des(c)) {
 419		stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
 420		stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
 421	} else {
 422		r_id = CRYP_K3RR;
 423		for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 424			stm32_cryp_write(c, r_id,
 425					 cpu_to_be32(c->ctx->key[i - 1]));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 426	}
 
 
 
 
 427}
 428
 429static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 430{
 431	if (is_aes(cryp) && is_ecb(cryp))
 432		return CR_AES_ECB;
 433
 434	if (is_aes(cryp) && is_cbc(cryp))
 435		return CR_AES_CBC;
 436
 437	if (is_aes(cryp) && is_ctr(cryp))
 438		return CR_AES_CTR;
 439
 440	if (is_aes(cryp) && is_gcm(cryp))
 441		return CR_AES_GCM;
 442
 443	if (is_aes(cryp) && is_ccm(cryp))
 444		return CR_AES_CCM;
 445
 446	if (is_des(cryp) && is_ecb(cryp))
 447		return CR_DES_ECB;
 448
 449	if (is_des(cryp) && is_cbc(cryp))
 450		return CR_DES_CBC;
 451
 452	if (is_tdes(cryp) && is_ecb(cryp))
 453		return CR_TDES_ECB;
 454
 455	if (is_tdes(cryp) && is_cbc(cryp))
 456		return CR_TDES_CBC;
 457
 458	dev_err(cryp->dev, "Unknown mode\n");
 459	return CR_AES_UNKNOWN;
 460}
 461
 462static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 463{
 464	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 465				  cryp->areq->cryptlen - cryp->authsize;
 466}
 467
 468static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 469{
 470	int ret;
 471	u32 iv[4];
 472
 473	/* Phase 1 : init */
 474	memcpy(iv, cryp->areq->iv, 12);
 475	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 476	cryp->gcm_ctr = GCM_CTR_INIT;
 477	stm32_cryp_hw_write_iv(cryp, iv);
 478
 479	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 480
 481	/* Wait for end of processing */
 482	ret = stm32_cryp_wait_enable(cryp);
 483	if (ret)
 484		dev_err(cryp->dev, "Timeout (gcm init)\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 485
 486	return ret;
 
 
 487}
 488
 489static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 490{
 491	int ret;
 492	u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
 
 
 493	u32 *d;
 494	unsigned int i, textlen;
 495
 496	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 497	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 498	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 499	iv[AES_BLOCK_SIZE - 1] = 1;
 500	stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
 501
 502	/* Build B0 */
 503	memcpy(b0, iv, AES_BLOCK_SIZE);
 504
 505	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 506
 507	if (cryp->areq->assoclen)
 508		b0[0] |= 0x40;
 509
 510	textlen = stm32_cryp_get_input_text_len(cryp);
 511
 512	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 513	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 514
 515	/* Enable HW */
 516	stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
 517
 518	/* Write B0 */
 519	d = (u32 *)b0;
 
 520
 521	for (i = 0; i < AES_BLOCK_32; i++) {
 
 
 522		if (!cryp->caps->padding_wa)
 523			*d = cpu_to_be32(*d);
 524		stm32_cryp_write(cryp, CRYP_DIN, *d++);
 525	}
 526
 527	/* Wait for end of processing */
 528	ret = stm32_cryp_wait_enable(cryp);
 529	if (ret)
 530		dev_err(cryp->dev, "Timeout (ccm init)\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 531
 532	return ret;
 533}
 534
 535static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 536{
 537	int ret;
 538	u32 cfg, hw_mode;
 539
 540	pm_runtime_get_sync(cryp->dev);
 541
 542	/* Disable interrupt */
 543	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
 544
 545	/* Set key */
 546	stm32_cryp_hw_write_key(cryp);
 547
 548	/* Set configuration */
 549	cfg = CR_DATA8 | CR_FFLUSH;
 550
 551	switch (cryp->ctx->keylen) {
 552	case AES_KEYSIZE_128:
 553		cfg |= CR_KEY128;
 554		break;
 555
 556	case AES_KEYSIZE_192:
 557		cfg |= CR_KEY192;
 558		break;
 559
 560	default:
 561	case AES_KEYSIZE_256:
 562		cfg |= CR_KEY256;
 563		break;
 564	}
 565
 566	hw_mode = stm32_cryp_get_hw_mode(cryp);
 567	if (hw_mode == CR_AES_UNKNOWN)
 568		return -EINVAL;
 569
 570	/* AES ECB/CBC decrypt: run key preparation first */
 571	if (is_decrypt(cryp) &&
 572	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 573		stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
 
 
 
 
 
 
 
 
 
 574
 
 
 575		/* Wait for end of processing */
 576		ret = stm32_cryp_wait_busy(cryp);
 577		if (ret) {
 578			dev_err(cryp->dev, "Timeout (key preparation)\n");
 579			return ret;
 580		}
 581	}
 582
 583	cfg |= hw_mode;
 
 
 
 
 
 
 
 584
 585	if (is_decrypt(cryp))
 586		cfg |= CR_DEC_NOT_ENC;
 587
 588	/* Apply config and flush (valid when CRYPEN = 0) */
 589	stm32_cryp_write(cryp, CRYP_CR, cfg);
 
 590
 591	switch (hw_mode) {
 592	case CR_AES_GCM:
 593	case CR_AES_CCM:
 594		/* Phase 1 : init */
 595		if (hw_mode == CR_AES_CCM)
 596			ret = stm32_cryp_ccm_init(cryp, cfg);
 597		else
 598			ret = stm32_cryp_gcm_init(cryp, cfg);
 599
 600		if (ret)
 601			return ret;
 602
 603		/* Phase 2 : header (authenticated data) */
 604		if (cryp->areq->assoclen) {
 605			cfg |= CR_PH_HEADER;
 606		} else if (stm32_cryp_get_input_text_len(cryp)) {
 607			cfg |= CR_PH_PAYLOAD;
 608			stm32_cryp_write(cryp, CRYP_CR, cfg);
 609		} else {
 610			cfg |= CR_PH_INIT;
 611		}
 612
 613		break;
 614
 615	case CR_DES_CBC:
 616	case CR_TDES_CBC:
 617	case CR_AES_CBC:
 618	case CR_AES_CTR:
 619		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
 620		break;
 621
 622	default:
 623		break;
 624	}
 625
 626	/* Enable now */
 627	cfg |= CR_CRYPEN;
 628
 629	stm32_cryp_write(cryp, CRYP_CR, cfg);
 630
 631	cryp->flags &= ~FLG_CCM_PADDED_WA;
 632
 633	return 0;
 634}
 635
 636static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 637{
 638	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 639		/* Phase 4 : output tag */
 640		err = stm32_cryp_read_auth_tag(cryp);
 641
 642	if (!err && (!(is_gcm(cryp) || is_ccm(cryp))))
 643		stm32_cryp_get_iv(cryp);
 644
 645	if (cryp->sgs_copied) {
 646		void *buf_in, *buf_out;
 647		int pages, len;
 648
 649		buf_in = sg_virt(&cryp->in_sgl);
 650		buf_out = sg_virt(&cryp->out_sgl);
 651
 652		sg_copy_buf(buf_out, cryp->out_sg_save, 0,
 653			    cryp->total_out_save, 1);
 654
 655		len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
 656		pages = len ? get_order(len) : 1;
 657		free_pages((unsigned long)buf_in, pages);
 658
 659		len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
 660		pages = len ? get_order(len) : 1;
 661		free_pages((unsigned long)buf_out, pages);
 662	}
 663
 664	pm_runtime_mark_last_busy(cryp->dev);
 665	pm_runtime_put_autosuspend(cryp->dev);
 666
 667	if (is_gcm(cryp) || is_ccm(cryp))
 668		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 669	else
 670		crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
 671						   err);
 672
 673	memset(cryp->ctx->key, 0, cryp->ctx->keylen);
 674}
 675
 676static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 677{
 678	/* Enable interrupt and let the IRQ handler do everything */
 679	stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
 680
 681	return 0;
 682}
 683
 684static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 685static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 686					 void *areq);
 687
 688static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
 689{
 690	struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
 691
 692	tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
 693
 694	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 695	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 696	ctx->enginectx.op.unprepare_request = NULL;
 697	return 0;
 698}
 699
 700static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 701static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 702				       void *areq);
 703
 704static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 705{
 706	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 707
 708	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 709
 710	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 711	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 712	ctx->enginectx.op.unprepare_request = NULL;
 713
 714	return 0;
 715}
 716
 717static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
 718{
 719	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
 720			crypto_ablkcipher_reqtfm(req));
 721	struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
 722	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 723
 724	if (!cryp)
 725		return -ENODEV;
 726
 727	rctx->mode = mode;
 728
 729	return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
 730}
 731
 732static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 733{
 734	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 735	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 736	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 737
 738	if (!cryp)
 739		return -ENODEV;
 740
 741	rctx->mode = mode;
 742
 743	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 744}
 745
 746static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 747			     unsigned int keylen)
 748{
 749	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
 750
 751	memcpy(ctx->key, key, keylen);
 752	ctx->keylen = keylen;
 753
 754	return 0;
 755}
 756
 757static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 758				 unsigned int keylen)
 759{
 760	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 761	    keylen != AES_KEYSIZE_256)
 762		return -EINVAL;
 763	else
 764		return stm32_cryp_setkey(tfm, key, keylen);
 765}
 766
 767static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 768				 unsigned int keylen)
 769{
 770	return verify_ablkcipher_des_key(tfm, key) ?:
 771	       stm32_cryp_setkey(tfm, key, keylen);
 772}
 773
 774static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
 775				  unsigned int keylen)
 776{
 777	return verify_ablkcipher_des3_key(tfm, key) ?:
 778	       stm32_cryp_setkey(tfm, key, keylen);
 779}
 780
 781static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 782				      unsigned int keylen)
 783{
 784	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 785
 786	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 787	    keylen != AES_KEYSIZE_256)
 788		return -EINVAL;
 789
 790	memcpy(ctx->key, key, keylen);
 791	ctx->keylen = keylen;
 792
 793	return 0;
 794}
 795
 796static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 797					  unsigned int authsize)
 798{
 799	return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 800}
 801
 802static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 803					  unsigned int authsize)
 804{
 805	switch (authsize) {
 806	case 4:
 807	case 6:
 808	case 8:
 809	case 10:
 810	case 12:
 811	case 14:
 812	case 16:
 813		break;
 814	default:
 815		return -EINVAL;
 816	}
 817
 818	return 0;
 819}
 820
 821static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
 822{
 
 
 
 
 
 
 823	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 824}
 825
 826static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
 827{
 
 
 
 
 
 
 828	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 829}
 830
 831static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
 832{
 
 
 
 
 
 
 833	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
 834}
 835
 836static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
 837{
 
 
 
 
 
 
 838	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
 839}
 840
 841static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
 842{
 
 
 
 843	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
 844}
 845
 846static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
 847{
 
 
 
 848	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
 849}
 850
 851static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
 852{
 853	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
 854}
 855
 856static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
 857{
 858	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
 859}
 860
 
 
 
 
 
 
 
 
 
 861static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
 862{
 
 
 
 
 
 
 863	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
 864}
 865
 866static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
 867{
 
 
 
 
 
 
 868	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
 869}
 870
 871static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
 872{
 
 
 
 
 
 
 873	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
 874}
 875
 876static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
 877{
 
 
 
 
 
 
 878	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
 879}
 880
 881static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
 882{
 
 
 
 
 
 
 883	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
 884}
 885
 886static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
 887{
 
 
 
 
 
 
 888	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
 889}
 890
 891static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
 892{
 
 
 
 
 
 
 893	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
 894}
 895
 896static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
 897{
 
 
 
 
 
 
 898	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
 899}
 900
 901static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
 902{
 
 
 
 
 
 
 903	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
 904}
 905
 906static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
 907{
 
 
 
 
 
 
 908	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
 909}
 910
 911static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
 912				  struct aead_request *areq)
 913{
 914	struct stm32_cryp_ctx *ctx;
 915	struct stm32_cryp *cryp;
 916	struct stm32_cryp_reqctx *rctx;
 
 917	int ret;
 918
 919	if (!req && !areq)
 920		return -EINVAL;
 921
 922	ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
 923		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
 924
 925	cryp = ctx->cryp;
 926
 927	if (!cryp)
 928		return -ENODEV;
 929
 930	rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
 931	rctx->mode &= FLG_MODE_MASK;
 932
 933	ctx->cryp = cryp;
 934
 935	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
 936	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
 937	cryp->ctx = ctx;
 938
 939	if (req) {
 940		cryp->req = req;
 941		cryp->areq = NULL;
 942		cryp->total_in = req->nbytes;
 943		cryp->total_out = cryp->total_in;
 
 
 944	} else {
 945		/*
 946		 * Length of input and output data:
 947		 * Encryption case:
 948		 *  INPUT  =   AssocData  ||   PlainText
 949		 *          <- assoclen ->  <- cryptlen ->
 950		 *          <------- total_in ----------->
 951		 *
 952		 *  OUTPUT =   AssocData  ||  CipherText  ||   AuthTag
 953		 *          <- assoclen ->  <- cryptlen ->  <- authsize ->
 954		 *          <---------------- total_out ----------------->
 955		 *
 956		 * Decryption case:
 957		 *  INPUT  =   AssocData  ||  CipherText  ||  AuthTag
 958		 *          <- assoclen ->  <--------- cryptlen --------->
 959		 *                                          <- authsize ->
 960		 *          <---------------- total_in ------------------>
 961		 *
 962		 *  OUTPUT =   AssocData  ||   PlainText
 963		 *          <- assoclen ->  <- crypten - authsize ->
 964		 *          <---------- total_out ----------------->
 965		 */
 966		cryp->areq = areq;
 967		cryp->req = NULL;
 968		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
 969		cryp->total_in = areq->assoclen + areq->cryptlen;
 970		if (is_encrypt(cryp))
 971			/* Append auth tag to output */
 972			cryp->total_out = cryp->total_in + cryp->authsize;
 973		else
 974			/* No auth tag in output */
 975			cryp->total_out = cryp->total_in - cryp->authsize;
 
 
 976	}
 977
 978	cryp->total_in_save = cryp->total_in;
 979	cryp->total_out_save = cryp->total_out;
 980
 981	cryp->in_sg = req ? req->src : areq->src;
 982	cryp->out_sg = req ? req->dst : areq->dst;
 983	cryp->out_sg_save = cryp->out_sg;
 984
 985	cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
 986	if (cryp->in_sg_len < 0) {
 987		dev_err(cryp->dev, "Cannot get in_sg_len\n");
 988		ret = cryp->in_sg_len;
 989		return ret;
 990	}
 991
 992	cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
 993	if (cryp->out_sg_len < 0) {
 994		dev_err(cryp->dev, "Cannot get out_sg_len\n");
 995		ret = cryp->out_sg_len;
 996		return ret;
 997	}
 998
 999	ret = stm32_cryp_copy_sgs(cryp);
1000	if (ret)
1001		return ret;
1002
1003	scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1004	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1005
1006	if (is_gcm(cryp) || is_ccm(cryp)) {
1007		/* In output, jump after assoc data */
1008		scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
1009		cryp->total_out -= cryp->areq->assoclen;
1010	}
1011
 
 
 
1012	ret = stm32_cryp_hw_init(cryp);
1013	return ret;
1014}
1015
1016static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1017					 void *areq)
1018{
1019	struct ablkcipher_request *req = container_of(areq,
1020						      struct ablkcipher_request,
1021						      base);
1022
1023	return stm32_cryp_prepare_req(req, NULL);
1024}
1025
1026static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1027{
1028	struct ablkcipher_request *req = container_of(areq,
1029						      struct ablkcipher_request,
1030						      base);
1031	struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1032			crypto_ablkcipher_reqtfm(req));
1033	struct stm32_cryp *cryp = ctx->cryp;
1034
1035	if (!cryp)
1036		return -ENODEV;
1037
1038	return stm32_cryp_cpu_start(cryp);
1039}
1040
1041static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1042{
1043	struct aead_request *req = container_of(areq, struct aead_request,
1044						base);
1045
1046	return stm32_cryp_prepare_req(NULL, req);
1047}
1048
1049static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1050{
1051	struct aead_request *req = container_of(areq, struct aead_request,
1052						base);
1053	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1054	struct stm32_cryp *cryp = ctx->cryp;
1055
1056	if (!cryp)
1057		return -ENODEV;
1058
1059	if (unlikely(!cryp->areq->assoclen &&
1060		     !stm32_cryp_get_input_text_len(cryp))) {
1061		/* No input data to process: get tag and finish */
1062		stm32_cryp_finish_req(cryp, 0);
1063		return 0;
1064	}
1065
1066	return stm32_cryp_cpu_start(cryp);
1067}
1068
1069static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1070				unsigned int n)
1071{
1072	scatterwalk_advance(&cryp->out_walk, n);
1073
1074	if (unlikely(cryp->out_sg->length == _walked_out)) {
1075		cryp->out_sg = sg_next(cryp->out_sg);
1076		if (cryp->out_sg) {
1077			scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1078			return (sg_virt(cryp->out_sg) + _walked_out);
1079		}
1080	}
1081
1082	return (u32 *)((u8 *)dst + n);
1083}
1084
1085static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1086			       unsigned int n)
1087{
1088	scatterwalk_advance(&cryp->in_walk, n);
1089
1090	if (unlikely(cryp->in_sg->length == _walked_in)) {
1091		cryp->in_sg = sg_next(cryp->in_sg);
1092		if (cryp->in_sg) {
1093			scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1094			return (sg_virt(cryp->in_sg) + _walked_in);
1095		}
1096	}
1097
1098	return (u32 *)((u8 *)src + n);
1099}
1100
1101static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1102{
1103	u32 cfg, size_bit, *dst, d32;
1104	u8 *d8;
1105	unsigned int i, j;
1106	int ret = 0;
1107
1108	/* Update Config */
1109	cfg = stm32_cryp_read(cryp, CRYP_CR);
1110
1111	cfg &= ~CR_PH_MASK;
1112	cfg |= CR_PH_FINAL;
1113	cfg &= ~CR_DEC_NOT_ENC;
1114	cfg |= CR_CRYPEN;
1115
1116	stm32_cryp_write(cryp, CRYP_CR, cfg);
1117
1118	if (is_gcm(cryp)) {
1119		/* GCM: write aad and payload size (in bits) */
1120		size_bit = cryp->areq->assoclen * 8;
1121		if (cryp->caps->swap_final)
1122			size_bit = cpu_to_be32(size_bit);
1123
1124		stm32_cryp_write(cryp, CRYP_DIN, 0);
1125		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1126
1127		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1128				cryp->areq->cryptlen - AES_BLOCK_SIZE;
1129		size_bit *= 8;
1130		if (cryp->caps->swap_final)
1131			size_bit = cpu_to_be32(size_bit);
1132
1133		stm32_cryp_write(cryp, CRYP_DIN, 0);
1134		stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1135	} else {
1136		/* CCM: write CTR0 */
1137		u8 iv[AES_BLOCK_SIZE];
1138		u32 *iv32 = (u32 *)iv;
 
1139
1140		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1141		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1142
1143		for (i = 0; i < AES_BLOCK_32; i++) {
 
 
1144			if (!cryp->caps->padding_wa)
1145				*iv32 = cpu_to_be32(*iv32);
1146			stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1147		}
1148	}
1149
1150	/* Wait for output data */
1151	ret = stm32_cryp_wait_output(cryp);
1152	if (ret) {
1153		dev_err(cryp->dev, "Timeout (read tag)\n");
1154		return ret;
1155	}
1156
1157	if (is_encrypt(cryp)) {
 
 
1158		/* Get and write tag */
1159		dst = sg_virt(cryp->out_sg) + _walked_out;
 
1160
1161		for (i = 0; i < AES_BLOCK_32; i++) {
1162			if (cryp->total_out >= sizeof(u32)) {
1163				/* Read a full u32 */
1164				*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1165
1166				dst = stm32_cryp_next_out(cryp, dst,
1167							  sizeof(u32));
1168				cryp->total_out -= sizeof(u32);
1169			} else if (!cryp->total_out) {
1170				/* Empty fifo out (data from input padding) */
1171				stm32_cryp_read(cryp, CRYP_DOUT);
1172			} else {
1173				/* Read less than an u32 */
1174				d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1175				d8 = (u8 *)&d32;
1176
1177				for (j = 0; j < cryp->total_out; j++) {
1178					*((u8 *)dst) = *(d8++);
1179					dst = stm32_cryp_next_out(cryp, dst, 1);
1180				}
1181				cryp->total_out = 0;
1182			}
1183		}
1184	} else {
1185		/* Get and check tag */
1186		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1187
1188		scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1189					 cryp->total_in_save - cryp->authsize,
1190					 cryp->authsize, 0);
1191
1192		for (i = 0; i < AES_BLOCK_32; i++)
1193			out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1194
1195		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1196			ret = -EBADMSG;
1197	}
1198
1199	/* Disable cryp */
1200	cfg &= ~CR_CRYPEN;
1201	stm32_cryp_write(cryp, CRYP_CR, cfg);
1202
1203	return ret;
1204}
1205
1206static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1207{
1208	u32 cr;
1209
1210	if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1211		cryp->last_ctr[3] = 0;
1212		cryp->last_ctr[2]++;
1213		if (!cryp->last_ctr[2]) {
1214			cryp->last_ctr[1]++;
1215			if (!cryp->last_ctr[1])
1216				cryp->last_ctr[0]++;
1217		}
1218
1219		cr = stm32_cryp_read(cryp, CRYP_CR);
1220		stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1221
1222		stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1223
1224		stm32_cryp_write(cryp, CRYP_CR, cr);
1225	}
1226
1227	cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1228	cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1229	cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1230	cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
 
1231}
1232
1233static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1234{
1235	unsigned int i, j;
1236	u32 d32, *dst;
1237	u8 *d8;
1238	size_t tag_size;
1239
1240	/* Do no read tag now (if any) */
1241	if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1242		tag_size = cryp->authsize;
1243	else
1244		tag_size = 0;
1245
1246	dst = sg_virt(cryp->out_sg) + _walked_out;
 
1247
1248	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1249		if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1250			/* Read a full u32 */
1251			*dst = stm32_cryp_read(cryp, CRYP_DOUT);
1252
1253			dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1254			cryp->total_out -= sizeof(u32);
1255		} else if (cryp->total_out == tag_size) {
1256			/* Empty fifo out (data from input padding) */
1257			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1258		} else {
1259			/* Read less than an u32 */
1260			d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1261			d8 = (u8 *)&d32;
1262
1263			for (j = 0; j < cryp->total_out - tag_size; j++) {
1264				*((u8 *)dst) = *(d8++);
1265				dst = stm32_cryp_next_out(cryp, dst, 1);
1266			}
1267			cryp->total_out = tag_size;
1268		}
1269	}
1270
1271	return !(cryp->total_out - tag_size) || !cryp->total_in;
1272}
1273
1274static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1275{
1276	unsigned int i, j;
1277	u32 *src;
1278	u8 d8[4];
1279	size_t tag_size;
1280
1281	/* Do no write tag (if any) */
1282	if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1283		tag_size = cryp->authsize;
1284	else
1285		tag_size = 0;
1286
1287	src = sg_virt(cryp->in_sg) + _walked_in;
1288
1289	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1290		if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1291			/* Write a full u32 */
1292			stm32_cryp_write(cryp, CRYP_DIN, *src);
1293
1294			src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1295			cryp->total_in -= sizeof(u32);
1296		} else if (cryp->total_in == tag_size) {
1297			/* Write padding data */
1298			stm32_cryp_write(cryp, CRYP_DIN, 0);
1299		} else {
1300			/* Write less than an u32 */
1301			memset(d8, 0, sizeof(u32));
1302			for (j = 0; j < cryp->total_in - tag_size; j++) {
1303				d8[j] = *((u8 *)src);
1304				src = stm32_cryp_next_in(cryp, src, 1);
1305			}
1306
1307			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1308			cryp->total_in = tag_size;
1309		}
1310	}
1311}
1312
1313static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1314{
1315	int err;
1316	u32 cfg, tmp[AES_BLOCK_32];
1317	size_t total_in_ori = cryp->total_in;
1318	struct scatterlist *out_sg_ori = cryp->out_sg;
1319	unsigned int i;
1320
1321	/* 'Special workaround' procedure described in the datasheet */
1322
1323	/* a) disable ip */
1324	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1325	cfg = stm32_cryp_read(cryp, CRYP_CR);
1326	cfg &= ~CR_CRYPEN;
1327	stm32_cryp_write(cryp, CRYP_CR, cfg);
1328
1329	/* b) Update IV1R */
1330	stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1331
1332	/* c) change mode to CTR */
1333	cfg &= ~CR_ALGO_MASK;
1334	cfg |= CR_AES_CTR;
1335	stm32_cryp_write(cryp, CRYP_CR, cfg);
1336
1337	/* a) enable IP */
1338	cfg |= CR_CRYPEN;
1339	stm32_cryp_write(cryp, CRYP_CR, cfg);
1340
1341	/* b) pad and write the last block */
1342	stm32_cryp_irq_write_block(cryp);
1343	cryp->total_in = total_in_ori;
1344	err = stm32_cryp_wait_output(cryp);
1345	if (err) {
1346		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1347		return stm32_cryp_finish_req(cryp, err);
1348	}
1349
1350	/* c) get and store encrypted data */
1351	stm32_cryp_irq_read_data(cryp);
1352	scatterwalk_map_and_copy(tmp, out_sg_ori,
1353				 cryp->total_in_save - total_in_ori,
1354				 total_in_ori, 0);
 
 
 
 
 
 
 
1355
1356	/* d) change mode back to AES GCM */
1357	cfg &= ~CR_ALGO_MASK;
1358	cfg |= CR_AES_GCM;
1359	stm32_cryp_write(cryp, CRYP_CR, cfg);
1360
1361	/* e) change phase to Final */
1362	cfg &= ~CR_PH_MASK;
1363	cfg |= CR_PH_FINAL;
1364	stm32_cryp_write(cryp, CRYP_CR, cfg);
1365
1366	/* f) write padded data */
1367	for (i = 0; i < AES_BLOCK_32; i++) {
1368		if (cryp->total_in)
1369			stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1370		else
1371			stm32_cryp_write(cryp, CRYP_DIN, 0);
1372
1373		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1374	}
1375
1376	/* g) Empty fifo out */
1377	err = stm32_cryp_wait_output(cryp);
1378	if (err) {
1379		dev_err(cryp->dev, "Timeout (write gcm header)\n");
1380		return stm32_cryp_finish_req(cryp, err);
1381	}
1382
1383	for (i = 0; i < AES_BLOCK_32; i++)
1384		stm32_cryp_read(cryp, CRYP_DOUT);
1385
1386	/* h) run the he normal Final phase */
1387	stm32_cryp_finish_req(cryp, 0);
1388}
1389
1390static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1391{
1392	u32 cfg, payload_bytes;
1393
1394	/* disable ip, set NPBLB and reneable ip */
1395	cfg = stm32_cryp_read(cryp, CRYP_CR);
1396	cfg &= ~CR_CRYPEN;
1397	stm32_cryp_write(cryp, CRYP_CR, cfg);
1398
1399	payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1400					   cryp->total_in;
1401	cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1402	cfg |= CR_CRYPEN;
1403	stm32_cryp_write(cryp, CRYP_CR, cfg);
1404}
1405
1406static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1407{
1408	int err = 0;
1409	u32 cfg, iv1tmp;
1410	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1411	size_t last_total_out, total_in_ori = cryp->total_in;
1412	struct scatterlist *out_sg_ori = cryp->out_sg;
1413	unsigned int i;
1414
1415	/* 'Special workaround' procedure described in the datasheet */
1416	cryp->flags |= FLG_CCM_PADDED_WA;
1417
1418	/* a) disable ip */
1419	stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1420
1421	cfg = stm32_cryp_read(cryp, CRYP_CR);
1422	cfg &= ~CR_CRYPEN;
1423	stm32_cryp_write(cryp, CRYP_CR, cfg);
1424
1425	/* b) get IV1 from CRYP_CSGCMCCM7 */
1426	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1427
1428	/* c) Load CRYP_CSGCMCCMxR */
1429	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1430		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1431
1432	/* d) Write IV1R */
1433	stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1434
1435	/* e) change mode to CTR */
1436	cfg &= ~CR_ALGO_MASK;
1437	cfg |= CR_AES_CTR;
1438	stm32_cryp_write(cryp, CRYP_CR, cfg);
1439
1440	/* a) enable IP */
1441	cfg |= CR_CRYPEN;
1442	stm32_cryp_write(cryp, CRYP_CR, cfg);
1443
1444	/* b) pad and write the last block */
1445	stm32_cryp_irq_write_block(cryp);
1446	cryp->total_in = total_in_ori;
1447	err = stm32_cryp_wait_output(cryp);
1448	if (err) {
1449		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1450		return stm32_cryp_finish_req(cryp, err);
1451	}
1452
1453	/* c) get and store decrypted data */
1454	last_total_out = cryp->total_out;
1455	stm32_cryp_irq_read_data(cryp);
1456
1457	memset(tmp, 0, sizeof(tmp));
1458	scatterwalk_map_and_copy(tmp, out_sg_ori,
1459				 cryp->total_out_save - last_total_out,
1460				 last_total_out, 0);
 
 
 
1461
1462	/* d) Load again CRYP_CSGCMCCMxR */
1463	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1464		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1465
1466	/* e) change mode back to AES CCM */
1467	cfg &= ~CR_ALGO_MASK;
1468	cfg |= CR_AES_CCM;
1469	stm32_cryp_write(cryp, CRYP_CR, cfg);
1470
1471	/* f) change phase to header */
1472	cfg &= ~CR_PH_MASK;
1473	cfg |= CR_PH_HEADER;
1474	stm32_cryp_write(cryp, CRYP_CR, cfg);
1475
1476	/* g) XOR and write padded data */
1477	for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1478		tmp[i] ^= cstmp1[i];
1479		tmp[i] ^= cstmp2[i];
1480		stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1481	}
1482
1483	/* h) wait for completion */
1484	err = stm32_cryp_wait_busy(cryp);
1485	if (err)
1486		dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1487
1488	/* i) run the he normal Final phase */
1489	stm32_cryp_finish_req(cryp, err);
1490}
1491
1492static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1493{
1494	if (unlikely(!cryp->total_in)) {
1495		dev_warn(cryp->dev, "No more data to process\n");
1496		return;
1497	}
1498
1499	if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1500		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1501		     is_encrypt(cryp))) {
1502		/* Padding for AES GCM encryption */
1503		if (cryp->caps->padding_wa)
1504			/* Special case 1 */
1505			return stm32_cryp_irq_write_gcm_padded_data(cryp);
 
 
1506
1507		/* Setting padding bytes (NBBLB) */
1508		stm32_cryp_irq_set_npblb(cryp);
1509	}
1510
1511	if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1512		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1513		     is_decrypt(cryp))) {
1514		/* Padding for AES CCM decryption */
1515		if (cryp->caps->padding_wa)
1516			/* Special case 2 */
1517			return stm32_cryp_irq_write_ccm_padded_data(cryp);
 
 
1518
1519		/* Setting padding bytes (NBBLB) */
1520		stm32_cryp_irq_set_npblb(cryp);
1521	}
1522
1523	if (is_aes(cryp) && is_ctr(cryp))
1524		stm32_cryp_check_ctr_counter(cryp);
1525
1526	stm32_cryp_irq_write_block(cryp);
1527}
1528
1529static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1530{
1531	int err;
1532	unsigned int i, j;
1533	u32 cfg, *src;
1534
1535	src = sg_virt(cryp->in_sg) + _walked_in;
1536
1537	for (i = 0; i < AES_BLOCK_32; i++) {
1538		stm32_cryp_write(cryp, CRYP_DIN, *src);
1539
1540		src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1541		cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1542
1543		/* Check if whole header written */
1544		if ((cryp->total_in_save - cryp->total_in) ==
1545				cryp->areq->assoclen) {
1546			/* Write padding if needed */
1547			for (j = i + 1; j < AES_BLOCK_32; j++)
1548				stm32_cryp_write(cryp, CRYP_DIN, 0);
1549
1550			/* Wait for completion */
1551			err = stm32_cryp_wait_busy(cryp);
1552			if (err) {
1553				dev_err(cryp->dev, "Timeout (gcm header)\n");
1554				return stm32_cryp_finish_req(cryp, err);
1555			}
1556
1557			if (stm32_cryp_get_input_text_len(cryp)) {
1558				/* Phase 3 : payload */
1559				cfg = stm32_cryp_read(cryp, CRYP_CR);
1560				cfg &= ~CR_CRYPEN;
1561				stm32_cryp_write(cryp, CRYP_CR, cfg);
1562
1563				cfg &= ~CR_PH_MASK;
1564				cfg |= CR_PH_PAYLOAD;
1565				cfg |= CR_CRYPEN;
1566				stm32_cryp_write(cryp, CRYP_CR, cfg);
1567			} else {
1568				/* Phase 4 : tag */
1569				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1570				stm32_cryp_finish_req(cryp, 0);
1571			}
1572
1573			break;
1574		}
1575
1576		if (!cryp->total_in)
1577			break;
1578	}
1579}
1580
1581static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1582{
1583	int err;
1584	unsigned int i = 0, j, k;
1585	u32 alen, cfg, *src;
1586	u8 d8[4];
1587
1588	src = sg_virt(cryp->in_sg) + _walked_in;
1589	alen = cryp->areq->assoclen;
1590
1591	if (!_walked_in) {
1592		if (cryp->areq->assoclen <= 65280) {
1593			/* Write first u32 of B1 */
1594			d8[0] = (alen >> 8) & 0xFF;
1595			d8[1] = alen & 0xFF;
1596			d8[2] = *((u8 *)src);
1597			src = stm32_cryp_next_in(cryp, src, 1);
1598			d8[3] = *((u8 *)src);
1599			src = stm32_cryp_next_in(cryp, src, 1);
1600
1601			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1602			i++;
1603
1604			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1605		} else {
1606			/* Build the two first u32 of B1 */
1607			d8[0] = 0xFF;
1608			d8[1] = 0xFE;
1609			d8[2] = alen & 0xFF000000;
1610			d8[3] = alen & 0x00FF0000;
1611
1612			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1613			i++;
1614
1615			d8[0] = alen & 0x0000FF00;
1616			d8[1] = alen & 0x000000FF;
1617			d8[2] = *((u8 *)src);
1618			src = stm32_cryp_next_in(cryp, src, 1);
1619			d8[3] = *((u8 *)src);
1620			src = stm32_cryp_next_in(cryp, src, 1);
1621
1622			stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1623			i++;
1624
1625			cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1626		}
1627	}
1628
1629	/* Write next u32 */
1630	for (; i < AES_BLOCK_32; i++) {
1631		/* Build an u32 */
1632		memset(d8, 0, sizeof(u32));
1633		for (k = 0; k < sizeof(u32); k++) {
1634			d8[k] = *((u8 *)src);
1635			src = stm32_cryp_next_in(cryp, src, 1);
1636
1637			cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1638			if ((cryp->total_in_save - cryp->total_in) == alen)
1639				break;
1640		}
1641
1642		stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1643
1644		if ((cryp->total_in_save - cryp->total_in) == alen) {
1645			/* Write padding if needed */
1646			for (j = i + 1; j < AES_BLOCK_32; j++)
1647				stm32_cryp_write(cryp, CRYP_DIN, 0);
1648
1649			/* Wait for completion */
1650			err = stm32_cryp_wait_busy(cryp);
1651			if (err) {
1652				dev_err(cryp->dev, "Timeout (ccm header)\n");
1653				return stm32_cryp_finish_req(cryp, err);
1654			}
1655
1656			if (stm32_cryp_get_input_text_len(cryp)) {
1657				/* Phase 3 : payload */
1658				cfg = stm32_cryp_read(cryp, CRYP_CR);
1659				cfg &= ~CR_CRYPEN;
1660				stm32_cryp_write(cryp, CRYP_CR, cfg);
1661
1662				cfg &= ~CR_PH_MASK;
1663				cfg |= CR_PH_PAYLOAD;
1664				cfg |= CR_CRYPEN;
1665				stm32_cryp_write(cryp, CRYP_CR, cfg);
1666			} else {
1667				/* Phase 4 : tag */
1668				stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1669				stm32_cryp_finish_req(cryp, 0);
1670			}
1671
1672			break;
1673		}
1674	}
1675}
1676
1677static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1678{
1679	struct stm32_cryp *cryp = arg;
1680	u32 ph;
 
1681
1682	if (cryp->irq_status & MISR_OUT)
1683		/* Output FIFO IRQ: read data */
1684		if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1685			/* All bytes processed, finish */
1686			stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1687			stm32_cryp_finish_req(cryp, 0);
1688			return IRQ_HANDLED;
1689		}
1690
1691	if (cryp->irq_status & MISR_IN) {
1692		if (is_gcm(cryp)) {
1693			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1694			if (unlikely(ph == CR_PH_HEADER))
1695				/* Write Header */
1696				stm32_cryp_irq_write_gcm_header(cryp);
1697			else
1698				/* Input FIFO IRQ: write data */
1699				stm32_cryp_irq_write_data(cryp);
1700			cryp->gcm_ctr++;
1701		} else if (is_ccm(cryp)) {
1702			ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1703			if (unlikely(ph == CR_PH_HEADER))
1704				/* Write Header */
1705				stm32_cryp_irq_write_ccm_header(cryp);
1706			else
1707				/* Input FIFO IRQ: write data */
1708				stm32_cryp_irq_write_data(cryp);
 
 
1709		} else {
1710			/* Input FIFO IRQ: write data */
1711			stm32_cryp_irq_write_data(cryp);
1712		}
1713	}
1714
 
 
 
 
 
 
 
 
 
 
1715	return IRQ_HANDLED;
1716}
1717
1718static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719{
1720	struct stm32_cryp *cryp = arg;
1721
1722	cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1723
1724	return IRQ_WAKE_THREAD;
1725}
1726
1727static struct crypto_alg crypto_algs[] = {
1728{
1729	.cra_name		= "ecb(aes)",
1730	.cra_driver_name	= "stm32-ecb-aes",
1731	.cra_priority		= 200,
1732	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1733				  CRYPTO_ALG_ASYNC,
1734	.cra_blocksize		= AES_BLOCK_SIZE,
1735	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1736	.cra_alignmask		= 0xf,
1737	.cra_type		= &crypto_ablkcipher_type,
1738	.cra_module		= THIS_MODULE,
1739	.cra_init		= stm32_cryp_cra_init,
1740	.cra_ablkcipher = {
1741		.min_keysize	= AES_MIN_KEY_SIZE,
1742		.max_keysize	= AES_MAX_KEY_SIZE,
1743		.setkey		= stm32_cryp_aes_setkey,
1744		.encrypt	= stm32_cryp_aes_ecb_encrypt,
1745		.decrypt	= stm32_cryp_aes_ecb_decrypt,
1746	}
1747},
1748{
1749	.cra_name		= "cbc(aes)",
1750	.cra_driver_name	= "stm32-cbc-aes",
1751	.cra_priority		= 200,
1752	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1753				  CRYPTO_ALG_ASYNC,
1754	.cra_blocksize		= AES_BLOCK_SIZE,
1755	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1756	.cra_alignmask		= 0xf,
1757	.cra_type		= &crypto_ablkcipher_type,
1758	.cra_module		= THIS_MODULE,
1759	.cra_init		= stm32_cryp_cra_init,
1760	.cra_ablkcipher = {
1761		.min_keysize	= AES_MIN_KEY_SIZE,
1762		.max_keysize	= AES_MAX_KEY_SIZE,
1763		.ivsize		= AES_BLOCK_SIZE,
1764		.setkey		= stm32_cryp_aes_setkey,
1765		.encrypt	= stm32_cryp_aes_cbc_encrypt,
1766		.decrypt	= stm32_cryp_aes_cbc_decrypt,
1767	}
1768},
1769{
1770	.cra_name		= "ctr(aes)",
1771	.cra_driver_name	= "stm32-ctr-aes",
1772	.cra_priority		= 200,
1773	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1774				  CRYPTO_ALG_ASYNC,
1775	.cra_blocksize		= 1,
1776	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1777	.cra_alignmask		= 0xf,
1778	.cra_type		= &crypto_ablkcipher_type,
1779	.cra_module		= THIS_MODULE,
1780	.cra_init		= stm32_cryp_cra_init,
1781	.cra_ablkcipher = {
1782		.min_keysize	= AES_MIN_KEY_SIZE,
1783		.max_keysize	= AES_MAX_KEY_SIZE,
1784		.ivsize		= AES_BLOCK_SIZE,
1785		.setkey		= stm32_cryp_aes_setkey,
1786		.encrypt	= stm32_cryp_aes_ctr_encrypt,
1787		.decrypt	= stm32_cryp_aes_ctr_decrypt,
1788	}
1789},
1790{
1791	.cra_name		= "ecb(des)",
1792	.cra_driver_name	= "stm32-ecb-des",
1793	.cra_priority		= 200,
1794	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1795				  CRYPTO_ALG_ASYNC,
1796	.cra_blocksize		= DES_BLOCK_SIZE,
1797	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1798	.cra_alignmask		= 0xf,
1799	.cra_type		= &crypto_ablkcipher_type,
1800	.cra_module		= THIS_MODULE,
1801	.cra_init		= stm32_cryp_cra_init,
1802	.cra_ablkcipher = {
1803		.min_keysize	= DES_BLOCK_SIZE,
1804		.max_keysize	= DES_BLOCK_SIZE,
1805		.setkey		= stm32_cryp_des_setkey,
1806		.encrypt	= stm32_cryp_des_ecb_encrypt,
1807		.decrypt	= stm32_cryp_des_ecb_decrypt,
1808	}
1809},
1810{
1811	.cra_name		= "cbc(des)",
1812	.cra_driver_name	= "stm32-cbc-des",
1813	.cra_priority		= 200,
1814	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1815				  CRYPTO_ALG_ASYNC,
1816	.cra_blocksize		= DES_BLOCK_SIZE,
1817	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1818	.cra_alignmask		= 0xf,
1819	.cra_type		= &crypto_ablkcipher_type,
1820	.cra_module		= THIS_MODULE,
1821	.cra_init		= stm32_cryp_cra_init,
1822	.cra_ablkcipher = {
1823		.min_keysize	= DES_BLOCK_SIZE,
1824		.max_keysize	= DES_BLOCK_SIZE,
1825		.ivsize		= DES_BLOCK_SIZE,
1826		.setkey		= stm32_cryp_des_setkey,
1827		.encrypt	= stm32_cryp_des_cbc_encrypt,
1828		.decrypt	= stm32_cryp_des_cbc_decrypt,
1829	}
1830},
1831{
1832	.cra_name		= "ecb(des3_ede)",
1833	.cra_driver_name	= "stm32-ecb-des3",
1834	.cra_priority		= 200,
1835	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1836				  CRYPTO_ALG_ASYNC,
1837	.cra_blocksize		= DES_BLOCK_SIZE,
1838	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1839	.cra_alignmask		= 0xf,
1840	.cra_type		= &crypto_ablkcipher_type,
1841	.cra_module		= THIS_MODULE,
1842	.cra_init		= stm32_cryp_cra_init,
1843	.cra_ablkcipher = {
1844		.min_keysize	= 3 * DES_BLOCK_SIZE,
1845		.max_keysize	= 3 * DES_BLOCK_SIZE,
1846		.setkey		= stm32_cryp_tdes_setkey,
1847		.encrypt	= stm32_cryp_tdes_ecb_encrypt,
1848		.decrypt	= stm32_cryp_tdes_ecb_decrypt,
1849	}
1850},
1851{
1852	.cra_name		= "cbc(des3_ede)",
1853	.cra_driver_name	= "stm32-cbc-des3",
1854	.cra_priority		= 200,
1855	.cra_flags		= CRYPTO_ALG_TYPE_ABLKCIPHER |
1856				  CRYPTO_ALG_ASYNC,
1857	.cra_blocksize		= DES_BLOCK_SIZE,
1858	.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1859	.cra_alignmask		= 0xf,
1860	.cra_type		= &crypto_ablkcipher_type,
1861	.cra_module		= THIS_MODULE,
1862	.cra_init		= stm32_cryp_cra_init,
1863	.cra_ablkcipher = {
1864		.min_keysize	= 3 * DES_BLOCK_SIZE,
1865		.max_keysize	= 3 * DES_BLOCK_SIZE,
1866		.ivsize		= DES_BLOCK_SIZE,
1867		.setkey		= stm32_cryp_tdes_setkey,
1868		.encrypt	= stm32_cryp_tdes_cbc_encrypt,
1869		.decrypt	= stm32_cryp_tdes_cbc_decrypt,
1870	}
1871},
1872};
1873
1874static struct aead_alg aead_algs[] = {
1875{
1876	.setkey		= stm32_cryp_aes_aead_setkey,
1877	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1878	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1879	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1880	.init		= stm32_cryp_aes_aead_init,
1881	.ivsize		= 12,
1882	.maxauthsize	= AES_BLOCK_SIZE,
1883
1884	.base = {
1885		.cra_name		= "gcm(aes)",
1886		.cra_driver_name	= "stm32-gcm-aes",
1887		.cra_priority		= 200,
1888		.cra_flags		= CRYPTO_ALG_ASYNC,
1889		.cra_blocksize		= 1,
1890		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1891		.cra_alignmask		= 0xf,
1892		.cra_module		= THIS_MODULE,
1893	},
1894},
1895{
1896	.setkey		= stm32_cryp_aes_aead_setkey,
1897	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1898	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1899	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1900	.init		= stm32_cryp_aes_aead_init,
1901	.ivsize		= AES_BLOCK_SIZE,
1902	.maxauthsize	= AES_BLOCK_SIZE,
1903
1904	.base = {
1905		.cra_name		= "ccm(aes)",
1906		.cra_driver_name	= "stm32-ccm-aes",
1907		.cra_priority		= 200,
1908		.cra_flags		= CRYPTO_ALG_ASYNC,
1909		.cra_blocksize		= 1,
1910		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1911		.cra_alignmask		= 0xf,
1912		.cra_module		= THIS_MODULE,
1913	},
1914},
1915};
1916
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1917static const struct stm32_cryp_caps f7_data = {
 
 
 
 
1918	.swap_final = true,
1919	.padding_wa = true,
 
 
 
 
 
 
 
 
 
 
 
 
 
1920};
1921
1922static const struct stm32_cryp_caps mp1_data = {
 
 
 
 
1923	.swap_final = false,
1924	.padding_wa = false,
 
 
 
 
 
 
 
 
 
 
 
 
 
1925};
1926
1927static const struct of_device_id stm32_dt_ids[] = {
 
1928	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1929	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1930	{},
1931};
1932MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1933
1934static int stm32_cryp_probe(struct platform_device *pdev)
1935{
1936	struct device *dev = &pdev->dev;
1937	struct stm32_cryp *cryp;
1938	struct reset_control *rst;
1939	int irq, ret;
1940
1941	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1942	if (!cryp)
1943		return -ENOMEM;
1944
1945	cryp->caps = of_device_get_match_data(dev);
1946	if (!cryp->caps)
1947		return -ENODEV;
1948
1949	cryp->dev = dev;
1950
1951	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1952	if (IS_ERR(cryp->regs))
1953		return PTR_ERR(cryp->regs);
1954
1955	irq = platform_get_irq(pdev, 0);
1956	if (irq < 0)
1957		return irq;
1958
1959	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1960					stm32_cryp_irq_thread, IRQF_ONESHOT,
1961					dev_name(dev), cryp);
1962	if (ret) {
1963		dev_err(dev, "Cannot grab IRQ\n");
1964		return ret;
1965	}
1966
1967	cryp->clk = devm_clk_get(dev, NULL);
1968	if (IS_ERR(cryp->clk)) {
1969		dev_err(dev, "Could not get clock\n");
 
1970		return PTR_ERR(cryp->clk);
1971	}
1972
1973	ret = clk_prepare_enable(cryp->clk);
1974	if (ret) {
1975		dev_err(cryp->dev, "Failed to enable clock\n");
1976		return ret;
1977	}
1978
1979	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
1980	pm_runtime_use_autosuspend(dev);
1981
1982	pm_runtime_get_noresume(dev);
1983	pm_runtime_set_active(dev);
1984	pm_runtime_enable(dev);
1985
1986	rst = devm_reset_control_get(dev, NULL);
1987	if (!IS_ERR(rst)) {
 
 
 
 
1988		reset_control_assert(rst);
1989		udelay(2);
1990		reset_control_deassert(rst);
1991	}
1992
1993	platform_set_drvdata(pdev, cryp);
1994
1995	spin_lock(&cryp_list.lock);
1996	list_add(&cryp->list, &cryp_list.dev_list);
1997	spin_unlock(&cryp_list.lock);
1998
1999	/* Initialize crypto engine */
2000	cryp->engine = crypto_engine_alloc_init(dev, 1);
2001	if (!cryp->engine) {
2002		dev_err(dev, "Could not init crypto engine\n");
2003		ret = -ENOMEM;
2004		goto err_engine1;
2005	}
2006
2007	ret = crypto_engine_start(cryp->engine);
2008	if (ret) {
2009		dev_err(dev, "Could not start crypto engine\n");
2010		goto err_engine2;
2011	}
2012
2013	ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2014	if (ret) {
2015		dev_err(dev, "Could not register algs\n");
2016		goto err_algs;
2017	}
2018
2019	ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2020	if (ret)
2021		goto err_aead_algs;
 
 
2022
2023	dev_info(dev, "Initialized\n");
2024
2025	pm_runtime_put_sync(dev);
2026
2027	return 0;
2028
2029err_aead_algs:
2030	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2031err_algs:
2032err_engine2:
2033	crypto_engine_exit(cryp->engine);
2034err_engine1:
2035	spin_lock(&cryp_list.lock);
2036	list_del(&cryp->list);
2037	spin_unlock(&cryp_list.lock);
2038
2039	pm_runtime_disable(dev);
2040	pm_runtime_put_noidle(dev);
2041	pm_runtime_disable(dev);
2042	pm_runtime_put_noidle(dev);
2043
2044	clk_disable_unprepare(cryp->clk);
2045
2046	return ret;
2047}
2048
2049static int stm32_cryp_remove(struct platform_device *pdev)
2050{
2051	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2052	int ret;
2053
2054	if (!cryp)
2055		return -ENODEV;
2056
2057	ret = pm_runtime_get_sync(cryp->dev);
2058	if (ret < 0)
2059		return ret;
2060
2061	crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062	crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
 
2063
2064	crypto_engine_exit(cryp->engine);
2065
2066	spin_lock(&cryp_list.lock);
2067	list_del(&cryp->list);
2068	spin_unlock(&cryp_list.lock);
2069
2070	pm_runtime_disable(cryp->dev);
2071	pm_runtime_put_noidle(cryp->dev);
2072
2073	clk_disable_unprepare(cryp->clk);
2074
2075	return 0;
2076}
2077
2078#ifdef CONFIG_PM
2079static int stm32_cryp_runtime_suspend(struct device *dev)
2080{
2081	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2082
2083	clk_disable_unprepare(cryp->clk);
2084
2085	return 0;
2086}
2087
2088static int stm32_cryp_runtime_resume(struct device *dev)
2089{
2090	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2091	int ret;
2092
2093	ret = clk_prepare_enable(cryp->clk);
2094	if (ret) {
2095		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2096		return ret;
2097	}
2098
2099	return 0;
2100}
2101#endif
2102
2103static const struct dev_pm_ops stm32_cryp_pm_ops = {
2104	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2105				pm_runtime_force_resume)
2106	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2107			   stm32_cryp_runtime_resume, NULL)
2108};
2109
2110static struct platform_driver stm32_cryp_driver = {
2111	.probe  = stm32_cryp_probe,
2112	.remove = stm32_cryp_remove,
2113	.driver = {
2114		.name           = DRIVER_NAME,
2115		.pm		= &stm32_cryp_pm_ops,
2116		.of_match_table = stm32_dt_ids,
2117	},
2118};
2119
2120module_platform_driver(stm32_cryp_driver);
2121
2122MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2123MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2124MODULE_LICENSE("GPL");