Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 * Ux500 support taken from snippets in the old Ux500 cryp driver
   6 */
   7
 
 
 
 
 
 
 
   8#include <linux/clk.h>
   9#include <linux/delay.h>
  10#include <linux/interrupt.h>
 
 
  11#include <linux/iopoll.h>
 
 
  12#include <linux/module.h>
  13#include <linux/of_device.h>
  14#include <linux/platform_device.h>
  15#include <linux/pm_runtime.h>
  16#include <linux/reset.h>
  17
  18#include <crypto/aes.h>
  19#include <crypto/internal/des.h>
  20#include <crypto/engine.h>
  21#include <crypto/scatterwalk.h>
  22#include <crypto/internal/aead.h>
  23#include <crypto/internal/skcipher.h>
  24
  25#define DRIVER_NAME             "stm32-cryp"
  26
  27/* Bit [0] encrypt / decrypt */
  28#define FLG_ENCRYPT             BIT(0)
  29/* Bit [8..1] algo & operation mode */
  30#define FLG_AES                 BIT(1)
  31#define FLG_DES                 BIT(2)
  32#define FLG_TDES                BIT(3)
  33#define FLG_ECB                 BIT(4)
  34#define FLG_CBC                 BIT(5)
  35#define FLG_CTR                 BIT(6)
  36#define FLG_GCM                 BIT(7)
  37#define FLG_CCM                 BIT(8)
  38/* Mode mask = bits [15..0] */
  39#define FLG_MODE_MASK           GENMASK(15, 0)
  40/* Bit [31..16] status  */
 
 
  41
  42/* Registers */
  43#define CRYP_CR                 0x00000000
  44#define CRYP_SR                 0x00000004
  45#define CRYP_DIN                0x00000008
  46#define CRYP_DOUT               0x0000000C
  47#define CRYP_DMACR              0x00000010
  48#define CRYP_IMSCR              0x00000014
  49#define CRYP_RISR               0x00000018
  50#define CRYP_MISR               0x0000001C
  51#define CRYP_K0LR               0x00000020
  52#define CRYP_K0RR               0x00000024
  53#define CRYP_K1LR               0x00000028
  54#define CRYP_K1RR               0x0000002C
  55#define CRYP_K2LR               0x00000030
  56#define CRYP_K2RR               0x00000034
  57#define CRYP_K3LR               0x00000038
  58#define CRYP_K3RR               0x0000003C
  59#define CRYP_IV0LR              0x00000040
  60#define CRYP_IV0RR              0x00000044
  61#define CRYP_IV1LR              0x00000048
  62#define CRYP_IV1RR              0x0000004C
  63#define CRYP_CSGCMCCM0R         0x00000050
  64#define CRYP_CSGCM0R            0x00000070
  65
  66#define UX500_CRYP_CR		0x00000000
  67#define UX500_CRYP_SR		0x00000004
  68#define UX500_CRYP_DIN		0x00000008
  69#define UX500_CRYP_DINSIZE	0x0000000C
  70#define UX500_CRYP_DOUT		0x00000010
  71#define UX500_CRYP_DOUSIZE	0x00000014
  72#define UX500_CRYP_DMACR	0x00000018
  73#define UX500_CRYP_IMSC		0x0000001C
  74#define UX500_CRYP_RIS		0x00000020
  75#define UX500_CRYP_MIS		0x00000024
  76#define UX500_CRYP_K1L		0x00000028
  77#define UX500_CRYP_K1R		0x0000002C
  78#define UX500_CRYP_K2L		0x00000030
  79#define UX500_CRYP_K2R		0x00000034
  80#define UX500_CRYP_K3L		0x00000038
  81#define UX500_CRYP_K3R		0x0000003C
  82#define UX500_CRYP_K4L		0x00000040
  83#define UX500_CRYP_K4R		0x00000044
  84#define UX500_CRYP_IV0L		0x00000048
  85#define UX500_CRYP_IV0R		0x0000004C
  86#define UX500_CRYP_IV1L		0x00000050
  87#define UX500_CRYP_IV1R		0x00000054
  88
  89/* Registers values */
  90#define CR_DEC_NOT_ENC          0x00000004
  91#define CR_TDES_ECB             0x00000000
  92#define CR_TDES_CBC             0x00000008
  93#define CR_DES_ECB              0x00000010
  94#define CR_DES_CBC              0x00000018
  95#define CR_AES_ECB              0x00000020
  96#define CR_AES_CBC              0x00000028
  97#define CR_AES_CTR              0x00000030
  98#define CR_AES_KP               0x00000038 /* Not on Ux500 */
  99#define CR_AES_XTS              0x00000038 /* Only on Ux500 */
 100#define CR_AES_GCM              0x00080000
 101#define CR_AES_CCM              0x00080008
 102#define CR_AES_UNKNOWN          0xFFFFFFFF
 103#define CR_ALGO_MASK            0x00080038
 104#define CR_DATA32               0x00000000
 105#define CR_DATA16               0x00000040
 106#define CR_DATA8                0x00000080
 107#define CR_DATA1                0x000000C0
 108#define CR_KEY128               0x00000000
 109#define CR_KEY192               0x00000100
 110#define CR_KEY256               0x00000200
 111#define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
 112#define CR_KSE                  0x00000800 /* Only on Ux500 */
 113#define CR_FFLUSH               0x00004000
 114#define CR_CRYPEN               0x00008000
 115#define CR_PH_INIT              0x00000000
 116#define CR_PH_HEADER            0x00010000
 117#define CR_PH_PAYLOAD           0x00020000
 118#define CR_PH_FINAL             0x00030000
 119#define CR_PH_MASK              0x00030000
 120#define CR_NBPBL_SHIFT          20
 121
 122#define SR_BUSY                 0x00000010
 123#define SR_OFNE                 0x00000004
 
 
 
 
 124
 125#define IMSCR_IN                BIT(0)
 126#define IMSCR_OUT               BIT(1)
 127
 128#define MISR_IN                 BIT(0)
 129#define MISR_OUT                BIT(1)
 130
 131/* Misc */
 132#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 133#define GCM_CTR_INIT            2
 134#define CRYP_AUTOSUSPEND_DELAY	50
 
 
 
 
 
 
 
 
 135
 136struct stm32_cryp_caps {
 137	bool			aeads_support;
 138	bool			linear_aes_key;
 139	bool			kp_mode;
 140	bool			iv_protection;
 141	bool			swap_final;
 142	bool			padding_wa;
 143	u32			cr;
 144	u32			sr;
 145	u32			din;
 146	u32			dout;
 
 147	u32			imsc;
 148	u32			mis;
 149	u32			k1l;
 150	u32			k1r;
 151	u32			k3r;
 152	u32			iv0l;
 153	u32			iv0r;
 154	u32			iv1l;
 155	u32			iv1r;
 156};
 157
 158struct stm32_cryp_ctx {
 159	struct crypto_engine_ctx enginectx;
 160	struct stm32_cryp       *cryp;
 161	int                     keylen;
 162	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 163	unsigned long           flags;
 164};
 165
 166struct stm32_cryp_reqctx {
 167	unsigned long mode;
 168};
 169
 170struct stm32_cryp {
 171	struct list_head        list;
 172	struct device           *dev;
 173	void __iomem            *regs;
 
 174	struct clk              *clk;
 175	unsigned long           flags;
 176	u32                     irq_status;
 177	const struct stm32_cryp_caps *caps;
 178	struct stm32_cryp_ctx   *ctx;
 179
 180	struct crypto_engine    *engine;
 181
 182	struct skcipher_request *req;
 183	struct aead_request     *areq;
 184
 185	size_t                  authsize;
 186	size_t                  hw_blocksize;
 187
 188	size_t                  payload_in;
 189	size_t                  header_in;
 190	size_t                  payload_out;
 191
 
 
 
 192	struct scatterlist      *out_sg;
 
 
 
 
 
 
 
 
 193
 
 194	struct scatter_walk     in_walk;
 195	struct scatter_walk     out_walk;
 196
 197	__be32                  last_ctr[4];
 198	u32                     gcm_ctr;
 199};
 200
 201struct stm32_cryp_list {
 202	struct list_head        dev_list;
 203	spinlock_t              lock; /* protect dev_list */
 204};
 205
 206static struct stm32_cryp_list cryp_list = {
 207	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 208	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 209};
 210
 211static inline bool is_aes(struct stm32_cryp *cryp)
 212{
 213	return cryp->flags & FLG_AES;
 214}
 215
 216static inline bool is_des(struct stm32_cryp *cryp)
 217{
 218	return cryp->flags & FLG_DES;
 219}
 220
 221static inline bool is_tdes(struct stm32_cryp *cryp)
 222{
 223	return cryp->flags & FLG_TDES;
 224}
 225
 226static inline bool is_ecb(struct stm32_cryp *cryp)
 227{
 228	return cryp->flags & FLG_ECB;
 229}
 230
 231static inline bool is_cbc(struct stm32_cryp *cryp)
 232{
 233	return cryp->flags & FLG_CBC;
 234}
 235
 236static inline bool is_ctr(struct stm32_cryp *cryp)
 237{
 238	return cryp->flags & FLG_CTR;
 239}
 240
 241static inline bool is_gcm(struct stm32_cryp *cryp)
 242{
 243	return cryp->flags & FLG_GCM;
 244}
 245
 246static inline bool is_ccm(struct stm32_cryp *cryp)
 247{
 248	return cryp->flags & FLG_CCM;
 249}
 250
 251static inline bool is_encrypt(struct stm32_cryp *cryp)
 252{
 253	return cryp->flags & FLG_ENCRYPT;
 254}
 255
 256static inline bool is_decrypt(struct stm32_cryp *cryp)
 257{
 258	return !is_encrypt(cryp);
 259}
 260
 261static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 262{
 263	return readl_relaxed(cryp->regs + ofst);
 264}
 265
 266static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 267{
 268	writel_relaxed(val, cryp->regs + ofst);
 269}
 270
 271static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 272{
 273	u32 status;
 274
 275	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 276			!(status & SR_BUSY), 10, 100000);
 277}
 278
 279static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
 280{
 281	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
 282		       cryp->regs + cryp->caps->cr);
 283}
 284
 285static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 286{
 287	u32 status;
 288
 289	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
 290			!(status & CR_CRYPEN), 10, 100000);
 291}
 292
 
 
 
 
 
 
 
 
 293static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 294{
 295	u32 status;
 296
 297	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 298			status & SR_OFNE, 10, 100000);
 299}
 300
 301static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
 302{
 303	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
 304		       cryp->regs + cryp->caps->cr);
 305}
 306
 307static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
 308{
 309	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
 310		       cryp->regs + cryp->caps->cr);
 311}
 312
 
 
 
 313static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 314static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
 
 
 315
 316static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 317{
 318	struct stm32_cryp *tmp, *cryp = NULL;
 319
 320	spin_lock_bh(&cryp_list.lock);
 321	if (!ctx->cryp) {
 322		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 323			cryp = tmp;
 324			break;
 325		}
 326		ctx->cryp = cryp;
 327	} else {
 328		cryp = ctx->cryp;
 329	}
 330
 331	spin_unlock_bh(&cryp_list.lock);
 332
 333	return cryp;
 334}
 335
 336static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 337{
 338	if (!iv)
 339		return;
 340
 341	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
 342	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
 343
 344	if (is_aes(cryp)) {
 345		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
 346		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
 347	}
 348}
 349
 350static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 351{
 352	struct skcipher_request *req = cryp->req;
 353	__be32 *tmp = (void *)req->iv;
 354
 355	if (!tmp)
 356		return;
 357
 358	if (cryp->caps->iv_protection)
 359		stm32_cryp_key_read_enable(cryp);
 360
 361	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
 362	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
 363
 364	if (is_aes(cryp)) {
 365		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
 366		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
 367	}
 368
 369	if (cryp->caps->iv_protection)
 370		stm32_cryp_key_read_disable(cryp);
 371}
 372
 373/**
 374 * ux500_swap_bits_in_byte() - mirror the bits in a byte
 375 * @b: the byte to be mirrored
 376 *
 377 * The bits are swapped the following way:
 378 *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
 379 *  nibble 2 (n2) bits 4-7.
 380 *
 381 *  Nibble 1 (n1):
 382 *  (The "old" (moved) bit is replaced with a zero)
 383 *  1. Move bit 6 and 7, 4 positions to the left.
 384 *  2. Move bit 3 and 5, 2 positions to the left.
 385 *  3. Move bit 1-4, 1 position to the left.
 386 *
 387 *  Nibble 2 (n2):
 388 *  1. Move bit 0 and 1, 4 positions to the right.
 389 *  2. Move bit 2 and 4, 2 positions to the right.
 390 *  3. Move bit 3-6, 1 position to the right.
 391 *
 392 *  Combine the two nibbles to a complete and swapped byte.
 393 */
 394static inline u8 ux500_swap_bits_in_byte(u8 b)
 395{
 396#define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
 397#define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
 398				  right shift 2 */
 399#define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
 400				  right shift 1 */
 401#define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
 402#define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
 403				  left shift 2 */
 404#define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
 405				  left shift 1 */
 406
 407	u8 n1;
 408	u8 n2;
 409
 410	/* Swap most significant nibble */
 411	/* Right shift 4, bits 6 and 7 */
 412	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
 413	/* Right shift 2, bits 3 and 5 */
 414	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
 415	/* Right shift 1, bits 1-4 */
 416	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
 417
 418	/* Swap least significant nibble */
 419	/* Left shift 4, bits 0 and 1 */
 420	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
 421	/* Left shift 2, bits 2 and 4 */
 422	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
 423	/* Left shift 1, bits 3-6 */
 424	n2 = (n2  & L_SHIFT_1_MASK) << 1;
 425
 426	return n1 | n2;
 427}
 428
 429/**
 430 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
 431 * @in: key to swizzle
 432 * @out: swizzled key
 433 * @len: length of key, in bytes
 434 *
 435 * This "key swizzling procedure" is described in the examples in the
 436 * DB8500 design specification. There is no real description of why
 437 * the bits have been arranged like this in the hardware.
 438 */
 439static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
 440{
 441	int i = 0;
 442	int bpw = sizeof(u32);
 443	int j;
 444	int index = 0;
 445
 446	j = len - bpw;
 447	while (j >= 0) {
 448		for (i = 0; i < bpw; i++) {
 449			index = len - j - bpw + i;
 450			out[j + i] =
 451				ux500_swap_bits_in_byte(in[index]);
 452		}
 453		j -= bpw;
 454	}
 455}
 456
 457static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 458{
 459	unsigned int i;
 460	int r_id;
 461
 462	if (is_des(c)) {
 463		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
 464		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
 465		return;
 466	}
 467
 468	/*
 469	 * On the Ux500 the AES key is considered as a single bit sequence
 470	 * of 128, 192 or 256 bits length. It is written linearly into the
 471	 * registers from K1L and down, and need to be processed to become
 472	 * a proper big-endian bit sequence.
 473	 */
 474	if (is_aes(c) && c->caps->linear_aes_key) {
 475		u32 tmpkey[8];
 476
 477		ux500_swizzle_key((u8 *)c->ctx->key,
 478				  (u8 *)tmpkey, c->ctx->keylen);
 479
 480		r_id = c->caps->k1l;
 481		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
 482			stm32_cryp_write(c, r_id, tmpkey[i]);
 483
 484		return;
 485	}
 486
 487	r_id = c->caps->k3r;
 488	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 489		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
 490}
 491
 492static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 493{
 494	if (is_aes(cryp) && is_ecb(cryp))
 495		return CR_AES_ECB;
 496
 497	if (is_aes(cryp) && is_cbc(cryp))
 498		return CR_AES_CBC;
 499
 500	if (is_aes(cryp) && is_ctr(cryp))
 501		return CR_AES_CTR;
 502
 503	if (is_aes(cryp) && is_gcm(cryp))
 504		return CR_AES_GCM;
 505
 506	if (is_aes(cryp) && is_ccm(cryp))
 507		return CR_AES_CCM;
 508
 509	if (is_des(cryp) && is_ecb(cryp))
 510		return CR_DES_ECB;
 511
 512	if (is_des(cryp) && is_cbc(cryp))
 513		return CR_DES_CBC;
 514
 515	if (is_tdes(cryp) && is_ecb(cryp))
 516		return CR_TDES_ECB;
 517
 518	if (is_tdes(cryp) && is_cbc(cryp))
 519		return CR_TDES_CBC;
 520
 521	dev_err(cryp->dev, "Unknown mode\n");
 522	return CR_AES_UNKNOWN;
 523}
 524
 525static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 526{
 527	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 528				  cryp->areq->cryptlen - cryp->authsize;
 529}
 530
 531static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 532{
 533	int ret;
 534	__be32 iv[4];
 535
 536	/* Phase 1 : init */
 537	memcpy(iv, cryp->areq->iv, 12);
 538	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 539	cryp->gcm_ctr = GCM_CTR_INIT;
 540	stm32_cryp_hw_write_iv(cryp, iv);
 541
 542	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 543
 544	/* Wait for end of processing */
 545	ret = stm32_cryp_wait_enable(cryp);
 546	if (ret) {
 547		dev_err(cryp->dev, "Timeout (gcm init)\n");
 548		return ret;
 549	}
 550
 551	/* Prepare next phase */
 552	if (cryp->areq->assoclen) {
 553		cfg |= CR_PH_HEADER;
 554		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 555	} else if (stm32_cryp_get_input_text_len(cryp)) {
 556		cfg |= CR_PH_PAYLOAD;
 557		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 558	}
 559
 560	return 0;
 561}
 562
 563static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
 564{
 565	u32 cfg;
 566	int err;
 567
 568	/* Check if whole header written */
 569	if (!cryp->header_in) {
 570		/* Wait for completion */
 571		err = stm32_cryp_wait_busy(cryp);
 572		if (err) {
 573			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
 574			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 575			stm32_cryp_finish_req(cryp, err);
 576			return;
 577		}
 578
 579		if (stm32_cryp_get_input_text_len(cryp)) {
 580			/* Phase 3 : payload */
 581			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 582			cfg &= ~CR_CRYPEN;
 583			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 584
 585			cfg &= ~CR_PH_MASK;
 586			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
 587			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 588		} else {
 589			/*
 590			 * Phase 4 : tag.
 591			 * Nothing to read, nothing to write, caller have to
 592			 * end request
 593			 */
 594		}
 595	}
 596}
 597
 598static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
 599{
 600	unsigned int i;
 601	size_t written;
 602	size_t len;
 603	u32 alen = cryp->areq->assoclen;
 604	u32 block[AES_BLOCK_32] = {0};
 605	u8 *b8 = (u8 *)block;
 606
 607	if (alen <= 65280) {
 608		/* Write first u32 of B1 */
 609		b8[0] = (alen >> 8) & 0xFF;
 610		b8[1] = alen & 0xFF;
 611		len = 2;
 612	} else {
 613		/* Build the two first u32 of B1 */
 614		b8[0] = 0xFF;
 615		b8[1] = 0xFE;
 616		b8[2] = (alen & 0xFF000000) >> 24;
 617		b8[3] = (alen & 0x00FF0000) >> 16;
 618		b8[4] = (alen & 0x0000FF00) >> 8;
 619		b8[5] = alen & 0x000000FF;
 620		len = 6;
 621	}
 622
 623	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
 624
 625	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
 626	for (i = 0; i < AES_BLOCK_32; i++)
 627		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
 628
 629	cryp->header_in -= written;
 630
 631	stm32_crypt_gcmccm_end_header(cryp);
 632}
 633
 634static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 635{
 636	int ret;
 637	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
 638	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
 639	__be32 *bd;
 640	u32 *d;
 641	unsigned int i, textlen;
 642
 643	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 644	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 645	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 646	iv[AES_BLOCK_SIZE - 1] = 1;
 647	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 648
 649	/* Build B0 */
 650	memcpy(b0, iv, AES_BLOCK_SIZE);
 651
 652	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 653
 654	if (cryp->areq->assoclen)
 655		b0[0] |= 0x40;
 656
 657	textlen = stm32_cryp_get_input_text_len(cryp);
 658
 659	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 660	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 661
 662	/* Enable HW */
 663	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 664
 665	/* Write B0 */
 666	d = (u32 *)b0;
 667	bd = (__be32 *)b0;
 668
 669	for (i = 0; i < AES_BLOCK_32; i++) {
 670		u32 xd = d[i];
 671
 672		if (!cryp->caps->padding_wa)
 673			xd = be32_to_cpu(bd[i]);
 674		stm32_cryp_write(cryp, cryp->caps->din, xd);
 675	}
 676
 677	/* Wait for end of processing */
 678	ret = stm32_cryp_wait_enable(cryp);
 679	if (ret) {
 680		dev_err(cryp->dev, "Timeout (ccm init)\n");
 681		return ret;
 682	}
 683
 684	/* Prepare next phase */
 685	if (cryp->areq->assoclen) {
 686		cfg |= CR_PH_HEADER | CR_CRYPEN;
 687		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 688
 689		/* Write first (special) block (may move to next phase [payload]) */
 690		stm32_cryp_write_ccm_first_header(cryp);
 691	} else if (stm32_cryp_get_input_text_len(cryp)) {
 692		cfg |= CR_PH_PAYLOAD;
 693		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 694	}
 695
 696	return 0;
 697}
 698
 699static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 700{
 701	int ret;
 702	u32 cfg, hw_mode;
 703
 704	pm_runtime_get_sync(cryp->dev);
 705
 706	/* Disable interrupt */
 707	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 708
 709	/* Set configuration */
 710	cfg = CR_DATA8 | CR_FFLUSH;
 711
 712	switch (cryp->ctx->keylen) {
 713	case AES_KEYSIZE_128:
 714		cfg |= CR_KEY128;
 715		break;
 716
 717	case AES_KEYSIZE_192:
 718		cfg |= CR_KEY192;
 719		break;
 720
 721	default:
 722	case AES_KEYSIZE_256:
 723		cfg |= CR_KEY256;
 724		break;
 725	}
 726
 727	hw_mode = stm32_cryp_get_hw_mode(cryp);
 728	if (hw_mode == CR_AES_UNKNOWN)
 729		return -EINVAL;
 730
 731	/* AES ECB/CBC decrypt: run key preparation first */
 732	if (is_decrypt(cryp) &&
 733	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 734		/* Configure in key preparation mode */
 735		if (cryp->caps->kp_mode)
 736			stm32_cryp_write(cryp, cryp->caps->cr,
 737				cfg | CR_AES_KP);
 738		else
 739			stm32_cryp_write(cryp,
 740				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
 741
 742		/* Set key only after full configuration done */
 743		stm32_cryp_hw_write_key(cryp);
 744
 745		/* Start prepare key */
 746		stm32_cryp_enable(cryp);
 747		/* Wait for end of processing */
 748		ret = stm32_cryp_wait_busy(cryp);
 749		if (ret) {
 750			dev_err(cryp->dev, "Timeout (key preparation)\n");
 751			return ret;
 752		}
 753
 754		cfg |= hw_mode | CR_DEC_NOT_ENC;
 755
 756		/* Apply updated config (Decrypt + algo) and flush */
 757		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 758	} else {
 759		cfg |= hw_mode;
 760		if (is_decrypt(cryp))
 761			cfg |= CR_DEC_NOT_ENC;
 762
 763		/* Apply config and flush */
 764		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 765
 766		/* Set key only after configuration done */
 767		stm32_cryp_hw_write_key(cryp);
 768	}
 769
 770	switch (hw_mode) {
 771	case CR_AES_GCM:
 772	case CR_AES_CCM:
 773		/* Phase 1 : init */
 774		if (hw_mode == CR_AES_CCM)
 775			ret = stm32_cryp_ccm_init(cryp, cfg);
 776		else
 777			ret = stm32_cryp_gcm_init(cryp, cfg);
 778
 779		if (ret)
 780			return ret;
 781
 782		break;
 783
 784	case CR_DES_CBC:
 785	case CR_TDES_CBC:
 786	case CR_AES_CBC:
 787	case CR_AES_CTR:
 788		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 789		break;
 790
 791	default:
 792		break;
 793	}
 794
 795	/* Enable now */
 796	stm32_cryp_enable(cryp);
 797
 798	return 0;
 799}
 800
 801static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 802{
 803	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 804		/* Phase 4 : output tag */
 805		err = stm32_cryp_read_auth_tag(cryp);
 806
 807	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
 808		stm32_cryp_get_iv(cryp);
 809
 810	pm_runtime_mark_last_busy(cryp->dev);
 811	pm_runtime_put_autosuspend(cryp->dev);
 812
 813	if (is_gcm(cryp) || is_ccm(cryp))
 814		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 815	else
 816		crypto_finalize_skcipher_request(cryp->engine, cryp->req,
 817						   err);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818}
 819
 820static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821{
 822	/* Enable interrupt and let the IRQ handler do everything */
 823	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
 824
 825	return 0;
 826}
 827
 828static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 829static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
 830					 void *areq);
 831
 832static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
 833{
 834	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 835
 836	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 837
 838	ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
 839	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
 840	ctx->enginectx.op.unprepare_request = NULL;
 841	return 0;
 842}
 843
 844static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 845static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
 846				       void *areq);
 847
 848static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
 849{
 850	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 851
 852	tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
 853
 854	ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
 855	ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
 856	ctx->enginectx.op.unprepare_request = NULL;
 857
 858	return 0;
 859}
 860
 861static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
 862{
 863	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
 864			crypto_skcipher_reqtfm(req));
 865	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
 866	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 867
 868	if (!cryp)
 869		return -ENODEV;
 870
 871	rctx->mode = mode;
 872
 873	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
 874}
 875
 876static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
 877{
 878	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
 879	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
 880	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
 881
 882	if (!cryp)
 883		return -ENODEV;
 884
 885	rctx->mode = mode;
 886
 887	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
 888}
 889
 890static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
 891			     unsigned int keylen)
 892{
 893	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
 894
 895	memcpy(ctx->key, key, keylen);
 896	ctx->keylen = keylen;
 897
 898	return 0;
 899}
 900
 901static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 902				 unsigned int keylen)
 903{
 904	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 905	    keylen != AES_KEYSIZE_256)
 906		return -EINVAL;
 907	else
 908		return stm32_cryp_setkey(tfm, key, keylen);
 909}
 910
 911static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
 912				 unsigned int keylen)
 913{
 914	return verify_skcipher_des_key(tfm, key) ?:
 915	       stm32_cryp_setkey(tfm, key, keylen);
 916}
 917
 918static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
 919				  unsigned int keylen)
 920{
 921	return verify_skcipher_des3_key(tfm, key) ?:
 922	       stm32_cryp_setkey(tfm, key, keylen);
 923}
 924
 925static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
 926				      unsigned int keylen)
 927{
 928	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
 929
 930	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
 931	    keylen != AES_KEYSIZE_256)
 932		return -EINVAL;
 933
 934	memcpy(ctx->key, key, keylen);
 935	ctx->keylen = keylen;
 936
 937	return 0;
 938}
 939
 940static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
 941					  unsigned int authsize)
 942{
 943	switch (authsize) {
 944	case 4:
 945	case 8:
 946	case 12:
 947	case 13:
 948	case 14:
 949	case 15:
 950	case 16:
 951		break;
 952	default:
 953		return -EINVAL;
 954	}
 955
 956	return 0;
 957}
 958
 959static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
 960					  unsigned int authsize)
 961{
 962	switch (authsize) {
 963	case 4:
 964	case 6:
 965	case 8:
 966	case 10:
 967	case 12:
 968	case 14:
 969	case 16:
 970		break;
 971	default:
 972		return -EINVAL;
 973	}
 974
 975	return 0;
 976}
 977
 978static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
 979{
 980	if (req->cryptlen % AES_BLOCK_SIZE)
 981		return -EINVAL;
 982
 983	if (req->cryptlen == 0)
 984		return 0;
 985
 986	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
 987}
 988
 989static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
 990{
 991	if (req->cryptlen % AES_BLOCK_SIZE)
 992		return -EINVAL;
 993
 994	if (req->cryptlen == 0)
 995		return 0;
 996
 997	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
 998}
 999
1000static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1001{
1002	if (req->cryptlen % AES_BLOCK_SIZE)
1003		return -EINVAL;
1004
1005	if (req->cryptlen == 0)
1006		return 0;
1007
1008	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1009}
1010
1011static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1012{
1013	if (req->cryptlen % AES_BLOCK_SIZE)
1014		return -EINVAL;
1015
1016	if (req->cryptlen == 0)
1017		return 0;
1018
1019	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1020}
1021
1022static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1023{
1024	if (req->cryptlen == 0)
1025		return 0;
1026
1027	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1028}
1029
1030static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1031{
1032	if (req->cryptlen == 0)
1033		return 0;
1034
1035	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1036}
1037
1038static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1039{
1040	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1041}
1042
1043static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1044{
1045	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1046}
1047
1048static inline int crypto_ccm_check_iv(const u8 *iv)
1049{
1050	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1051	if (iv[0] < 1 || iv[0] > 7)
1052		return -EINVAL;
1053
1054	return 0;
1055}
1056
1057static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1058{
1059	int err;
1060
1061	err = crypto_ccm_check_iv(req->iv);
1062	if (err)
1063		return err;
1064
1065	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1066}
1067
1068static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1069{
1070	int err;
1071
1072	err = crypto_ccm_check_iv(req->iv);
1073	if (err)
1074		return err;
1075
1076	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1077}
1078
1079static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1080{
1081	if (req->cryptlen % DES_BLOCK_SIZE)
1082		return -EINVAL;
1083
1084	if (req->cryptlen == 0)
1085		return 0;
1086
1087	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1088}
1089
1090static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1091{
1092	if (req->cryptlen % DES_BLOCK_SIZE)
1093		return -EINVAL;
1094
1095	if (req->cryptlen == 0)
1096		return 0;
1097
1098	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1099}
1100
1101static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1102{
1103	if (req->cryptlen % DES_BLOCK_SIZE)
1104		return -EINVAL;
1105
1106	if (req->cryptlen == 0)
1107		return 0;
1108
1109	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1110}
1111
1112static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1113{
1114	if (req->cryptlen % DES_BLOCK_SIZE)
1115		return -EINVAL;
1116
1117	if (req->cryptlen == 0)
1118		return 0;
1119
1120	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1121}
1122
1123static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1124{
1125	if (req->cryptlen % DES_BLOCK_SIZE)
1126		return -EINVAL;
1127
1128	if (req->cryptlen == 0)
1129		return 0;
1130
1131	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1132}
1133
1134static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1135{
1136	if (req->cryptlen % DES_BLOCK_SIZE)
1137		return -EINVAL;
1138
1139	if (req->cryptlen == 0)
1140		return 0;
1141
1142	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1143}
1144
1145static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1146{
1147	if (req->cryptlen % DES_BLOCK_SIZE)
1148		return -EINVAL;
1149
1150	if (req->cryptlen == 0)
1151		return 0;
1152
1153	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1154}
1155
1156static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1157{
1158	if (req->cryptlen % DES_BLOCK_SIZE)
1159		return -EINVAL;
1160
1161	if (req->cryptlen == 0)
1162		return 0;
1163
1164	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1165}
1166
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1167static int stm32_cryp_prepare_req(struct skcipher_request *req,
1168				  struct aead_request *areq)
1169{
1170	struct stm32_cryp_ctx *ctx;
1171	struct stm32_cryp *cryp;
1172	struct stm32_cryp_reqctx *rctx;
1173	struct scatterlist *in_sg;
1174	int ret;
1175
1176	if (!req && !areq)
1177		return -EINVAL;
1178
1179	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1180		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1181
1182	cryp = ctx->cryp;
1183
1184	if (!cryp)
1185		return -ENODEV;
1186
1187	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1188	rctx->mode &= FLG_MODE_MASK;
1189
1190	ctx->cryp = cryp;
1191
1192	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1193	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1194	cryp->ctx = ctx;
1195
1196	if (req) {
1197		cryp->req = req;
1198		cryp->areq = NULL;
1199		cryp->header_in = 0;
1200		cryp->payload_in = req->cryptlen;
1201		cryp->payload_out = req->cryptlen;
1202		cryp->authsize = 0;
 
 
 
 
 
 
 
 
 
1203	} else {
1204		/*
1205		 * Length of input and output data:
1206		 * Encryption case:
1207		 *  INPUT  = AssocData   ||     PlainText
1208		 *          <- assoclen ->  <- cryptlen ->
1209		 *
1210		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1211		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1212		 *
1213		 * Decryption case:
1214		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1215		 *          <- assoclen --->  <---------- cryptlen ---------->
1216		 *
1217		 *  OUTPUT = AssocData    ||               PlainText
1218		 *          <- assoclen ->  <- cryptlen - authsize ->
1219		 */
1220		cryp->areq = areq;
1221		cryp->req = NULL;
1222		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1223		if (is_encrypt(cryp)) {
1224			cryp->payload_in = areq->cryptlen;
1225			cryp->header_in = areq->assoclen;
1226			cryp->payload_out = areq->cryptlen;
1227		} else {
1228			cryp->payload_in = areq->cryptlen - cryp->authsize;
1229			cryp->header_in = areq->assoclen;
1230			cryp->payload_out = cryp->payload_in;
1231		}
1232	}
1233
1234	in_sg = req ? req->src : areq->src;
1235	scatterwalk_start(&cryp->in_walk, in_sg);
1236
1237	cryp->out_sg = req ? req->dst : areq->dst;
1238	scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1239
1240	if (is_gcm(cryp) || is_ccm(cryp)) {
1241		/* In output, jump after assoc data */
1242		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1243	}
1244
1245	if (is_ctr(cryp))
1246		memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1247
1248	ret = stm32_cryp_hw_init(cryp);
1249	return ret;
1250}
1251
1252static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1253					 void *areq)
1254{
1255	struct skcipher_request *req = container_of(areq,
1256						      struct skcipher_request,
1257						      base);
1258
1259	return stm32_cryp_prepare_req(req, NULL);
1260}
1261
1262static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1263{
1264	struct skcipher_request *req = container_of(areq,
1265						      struct skcipher_request,
1266						      base);
1267	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1268			crypto_skcipher_reqtfm(req));
1269	struct stm32_cryp *cryp = ctx->cryp;
 
1270
1271	if (!cryp)
1272		return -ENODEV;
1273
1274	return stm32_cryp_cpu_start(cryp);
1275}
 
1276
1277static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1278{
1279	struct aead_request *req = container_of(areq, struct aead_request,
1280						base);
1281
1282	return stm32_cryp_prepare_req(NULL, req);
 
 
 
1283}
1284
1285static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1286{
1287	struct aead_request *req = container_of(areq, struct aead_request,
1288						base);
1289	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1290	struct stm32_cryp *cryp = ctx->cryp;
 
1291
1292	if (!cryp)
1293		return -ENODEV;
1294
1295	if (unlikely(!cryp->payload_in && !cryp->header_in)) {
 
 
 
 
 
1296		/* No input data to process: get tag and finish */
1297		stm32_cryp_finish_req(cryp, 0);
1298		return 0;
1299	}
1300
1301	return stm32_cryp_cpu_start(cryp);
 
 
 
 
 
 
1302}
1303
1304static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1305{
1306	u32 cfg, size_bit;
1307	unsigned int i;
1308	int ret = 0;
1309
1310	/* Update Config */
1311	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1312
1313	cfg &= ~CR_PH_MASK;
1314	cfg |= CR_PH_FINAL;
1315	cfg &= ~CR_DEC_NOT_ENC;
1316	cfg |= CR_CRYPEN;
1317
1318	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1319
1320	if (is_gcm(cryp)) {
1321		/* GCM: write aad and payload size (in bits) */
1322		size_bit = cryp->areq->assoclen * 8;
1323		if (cryp->caps->swap_final)
1324			size_bit = (__force u32)cpu_to_be32(size_bit);
1325
1326		stm32_cryp_write(cryp, cryp->caps->din, 0);
1327		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1328
1329		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1330				cryp->areq->cryptlen - cryp->authsize;
1331		size_bit *= 8;
1332		if (cryp->caps->swap_final)
1333			size_bit = (__force u32)cpu_to_be32(size_bit);
1334
1335		stm32_cryp_write(cryp, cryp->caps->din, 0);
1336		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1337	} else {
1338		/* CCM: write CTR0 */
1339		u32 iv32[AES_BLOCK_32];
1340		u8 *iv = (u8 *)iv32;
1341		__be32 *biv = (__be32 *)iv32;
1342
1343		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1344		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1345
1346		for (i = 0; i < AES_BLOCK_32; i++) {
1347			u32 xiv = iv32[i];
1348
1349			if (!cryp->caps->padding_wa)
1350				xiv = be32_to_cpu(biv[i]);
1351			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1352		}
1353	}
1354
1355	/* Wait for output data */
1356	ret = stm32_cryp_wait_output(cryp);
1357	if (ret) {
1358		dev_err(cryp->dev, "Timeout (read tag)\n");
1359		return ret;
1360	}
1361
1362	if (is_encrypt(cryp)) {
1363		u32 out_tag[AES_BLOCK_32];
1364
1365		/* Get and write tag */
1366		for (i = 0; i < AES_BLOCK_32; i++)
1367			out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1368
1369		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1370	} else {
1371		/* Get and check tag */
1372		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1373
1374		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1375
1376		for (i = 0; i < AES_BLOCK_32; i++)
1377			out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1378
1379		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1380			ret = -EBADMSG;
1381	}
1382
1383	/* Disable cryp */
1384	cfg &= ~CR_CRYPEN;
1385	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1386
1387	return ret;
1388}
1389
1390static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1391{
1392	u32 cr;
1393
1394	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1395		/*
1396		 * In this case, we need to increment manually the ctr counter,
1397		 * as HW doesn't handle the U32 carry.
1398		 */
1399		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1400
1401		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1402		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1403
1404		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1405
1406		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1407	}
1408
1409	/* The IV registers are BE  */
1410	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1411	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1412	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1413	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1414}
1415
1416static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1417{
1418	unsigned int i;
1419	u32 block[AES_BLOCK_32];
1420
1421	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1422		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1423
1424	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1425							     cryp->payload_out), 1);
1426	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1427				   cryp->payload_out);
1428}
1429
1430static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1431{
1432	unsigned int i;
1433	u32 block[AES_BLOCK_32] = {0};
1434
1435	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1436							    cryp->payload_in), 0);
1437	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1438		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1439
1440	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1441}
1442
1443static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1444{
1445	int err;
1446	u32 cfg, block[AES_BLOCK_32] = {0};
1447	unsigned int i;
1448
1449	/* 'Special workaround' procedure described in the datasheet */
1450
1451	/* a) disable ip */
1452	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1453	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1454	cfg &= ~CR_CRYPEN;
1455	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1456
1457	/* b) Update IV1R */
1458	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1459
1460	/* c) change mode to CTR */
1461	cfg &= ~CR_ALGO_MASK;
1462	cfg |= CR_AES_CTR;
1463	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1464
1465	/* a) enable IP */
1466	cfg |= CR_CRYPEN;
1467	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1468
1469	/* b) pad and write the last block */
1470	stm32_cryp_irq_write_block(cryp);
1471	/* wait end of process */
1472	err = stm32_cryp_wait_output(cryp);
1473	if (err) {
1474		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1475		return stm32_cryp_finish_req(cryp, err);
1476	}
1477
1478	/* c) get and store encrypted data */
1479	/*
1480	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1481	 * block value
1482	 */
1483	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1484		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1485
1486	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1487							     cryp->payload_out), 1);
1488	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1489				   cryp->payload_out);
1490
1491	/* d) change mode back to AES GCM */
1492	cfg &= ~CR_ALGO_MASK;
1493	cfg |= CR_AES_GCM;
1494	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1495
1496	/* e) change phase to Final */
1497	cfg &= ~CR_PH_MASK;
1498	cfg |= CR_PH_FINAL;
1499	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1500
1501	/* f) write padded data */
1502	for (i = 0; i < AES_BLOCK_32; i++)
1503		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1504
1505	/* g) Empty fifo out */
1506	err = stm32_cryp_wait_output(cryp);
1507	if (err) {
1508		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1509		return stm32_cryp_finish_req(cryp, err);
1510	}
1511
1512	for (i = 0; i < AES_BLOCK_32; i++)
1513		stm32_cryp_read(cryp, cryp->caps->dout);
1514
1515	/* h) run the he normal Final phase */
1516	stm32_cryp_finish_req(cryp, 0);
1517}
1518
1519static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1520{
1521	u32 cfg;
1522
1523	/* disable ip, set NPBLB and reneable ip */
1524	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1525	cfg &= ~CR_CRYPEN;
1526	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1527
1528	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1529	cfg |= CR_CRYPEN;
1530	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1531}
1532
1533static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1534{
1535	int err = 0;
1536	u32 cfg, iv1tmp;
1537	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1538	u32 block[AES_BLOCK_32] = {0};
1539	unsigned int i;
1540
1541	/* 'Special workaround' procedure described in the datasheet */
1542
1543	/* a) disable ip */
1544	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1545
1546	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1547	cfg &= ~CR_CRYPEN;
1548	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1549
1550	/* b) get IV1 from CRYP_CSGCMCCM7 */
1551	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1552
1553	/* c) Load CRYP_CSGCMCCMxR */
1554	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1555		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1556
1557	/* d) Write IV1R */
1558	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1559
1560	/* e) change mode to CTR */
1561	cfg &= ~CR_ALGO_MASK;
1562	cfg |= CR_AES_CTR;
1563	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1564
1565	/* a) enable IP */
1566	cfg |= CR_CRYPEN;
1567	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1568
1569	/* b) pad and write the last block */
1570	stm32_cryp_irq_write_block(cryp);
1571	/* wait end of process */
1572	err = stm32_cryp_wait_output(cryp);
1573	if (err) {
1574		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1575		return stm32_cryp_finish_req(cryp, err);
1576	}
1577
1578	/* c) get and store decrypted data */
1579	/*
1580	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1581	 * block value
1582	 */
1583	for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1584		block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1585
1586	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1587							     cryp->payload_out), 1);
1588	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1589
1590	/* d) Load again CRYP_CSGCMCCMxR */
1591	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1592		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1593
1594	/* e) change mode back to AES CCM */
1595	cfg &= ~CR_ALGO_MASK;
1596	cfg |= CR_AES_CCM;
1597	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1598
1599	/* f) change phase to header */
1600	cfg &= ~CR_PH_MASK;
1601	cfg |= CR_PH_HEADER;
1602	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1603
1604	/* g) XOR and write padded data */
1605	for (i = 0; i < ARRAY_SIZE(block); i++) {
1606		block[i] ^= cstmp1[i];
1607		block[i] ^= cstmp2[i];
1608		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1609	}
1610
1611	/* h) wait for completion */
1612	err = stm32_cryp_wait_busy(cryp);
1613	if (err)
1614		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1615
1616	/* i) run the he normal Final phase */
1617	stm32_cryp_finish_req(cryp, err);
1618}
1619
1620static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1621{
1622	if (unlikely(!cryp->payload_in)) {
1623		dev_warn(cryp->dev, "No more data to process\n");
1624		return;
1625	}
1626
1627	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1628		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1629		     is_encrypt(cryp))) {
1630		/* Padding for AES GCM encryption */
1631		if (cryp->caps->padding_wa) {
1632			/* Special case 1 */
1633			stm32_cryp_irq_write_gcm_padded_data(cryp);
1634			return;
1635		}
1636
1637		/* Setting padding bytes (NBBLB) */
1638		stm32_cryp_irq_set_npblb(cryp);
1639	}
1640
1641	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1642		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1643		     is_decrypt(cryp))) {
1644		/* Padding for AES CCM decryption */
1645		if (cryp->caps->padding_wa) {
1646			/* Special case 2 */
1647			stm32_cryp_irq_write_ccm_padded_data(cryp);
1648			return;
1649		}
1650
1651		/* Setting padding bytes (NBBLB) */
1652		stm32_cryp_irq_set_npblb(cryp);
1653	}
1654
1655	if (is_aes(cryp) && is_ctr(cryp))
1656		stm32_cryp_check_ctr_counter(cryp);
1657
1658	stm32_cryp_irq_write_block(cryp);
1659}
1660
1661static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1662{
1663	unsigned int i;
1664	u32 block[AES_BLOCK_32] = {0};
1665	size_t written;
1666
1667	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1668
1669	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1670	for (i = 0; i < AES_BLOCK_32; i++)
1671		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1672
1673	cryp->header_in -= written;
1674
1675	stm32_crypt_gcmccm_end_header(cryp);
1676}
1677
1678static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679{
1680	struct stm32_cryp *cryp = arg;
1681	u32 ph;
1682	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1683
1684	if (cryp->irq_status & MISR_OUT)
1685		/* Output FIFO IRQ: read data */
1686		stm32_cryp_irq_read_data(cryp);
1687
1688	if (cryp->irq_status & MISR_IN) {
1689		if (is_gcm(cryp) || is_ccm(cryp)) {
1690			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1691			if (unlikely(ph == CR_PH_HEADER))
1692				/* Write Header */
1693				stm32_cryp_irq_write_gcmccm_header(cryp);
1694			else
1695				/* Input FIFO IRQ: write data */
1696				stm32_cryp_irq_write_data(cryp);
1697			if (is_gcm(cryp))
1698				cryp->gcm_ctr++;
1699		} else {
1700			/* Input FIFO IRQ: write data */
1701			stm32_cryp_irq_write_data(cryp);
1702		}
1703	}
1704
1705	/* Mask useless interrupts */
1706	if (!cryp->payload_in && !cryp->header_in)
1707		it_mask &= ~IMSCR_IN;
1708	if (!cryp->payload_out)
1709		it_mask &= ~IMSCR_OUT;
1710	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1711
1712	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
 
1713		stm32_cryp_finish_req(cryp, 0);
 
 
1714
1715	return IRQ_HANDLED;
1716}
1717
1718static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719{
1720	struct stm32_cryp *cryp = arg;
1721
1722	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1723
1724	return IRQ_WAKE_THREAD;
1725}
1726
1727static struct skcipher_alg crypto_algs[] = {
1728{
1729	.base.cra_name		= "ecb(aes)",
1730	.base.cra_driver_name	= "stm32-ecb-aes",
1731	.base.cra_priority	= 200,
1732	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1733	.base.cra_blocksize	= AES_BLOCK_SIZE,
1734	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1735	.base.cra_alignmask	= 0,
1736	.base.cra_module	= THIS_MODULE,
1737
1738	.init			= stm32_cryp_init_tfm,
1739	.min_keysize		= AES_MIN_KEY_SIZE,
1740	.max_keysize		= AES_MAX_KEY_SIZE,
1741	.setkey			= stm32_cryp_aes_setkey,
1742	.encrypt		= stm32_cryp_aes_ecb_encrypt,
1743	.decrypt		= stm32_cryp_aes_ecb_decrypt,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744},
1745{
1746	.base.cra_name		= "cbc(aes)",
1747	.base.cra_driver_name	= "stm32-cbc-aes",
1748	.base.cra_priority	= 200,
1749	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1750	.base.cra_blocksize	= AES_BLOCK_SIZE,
1751	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1752	.base.cra_alignmask	= 0,
1753	.base.cra_module	= THIS_MODULE,
1754
1755	.init			= stm32_cryp_init_tfm,
1756	.min_keysize		= AES_MIN_KEY_SIZE,
1757	.max_keysize		= AES_MAX_KEY_SIZE,
1758	.ivsize			= AES_BLOCK_SIZE,
1759	.setkey			= stm32_cryp_aes_setkey,
1760	.encrypt		= stm32_cryp_aes_cbc_encrypt,
1761	.decrypt		= stm32_cryp_aes_cbc_decrypt,
 
 
 
 
 
1762},
1763{
1764	.base.cra_name		= "ctr(aes)",
1765	.base.cra_driver_name	= "stm32-ctr-aes",
1766	.base.cra_priority	= 200,
1767	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1768	.base.cra_blocksize	= 1,
1769	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1770	.base.cra_alignmask	= 0,
1771	.base.cra_module	= THIS_MODULE,
1772
1773	.init			= stm32_cryp_init_tfm,
1774	.min_keysize		= AES_MIN_KEY_SIZE,
1775	.max_keysize		= AES_MAX_KEY_SIZE,
1776	.ivsize			= AES_BLOCK_SIZE,
1777	.setkey			= stm32_cryp_aes_setkey,
1778	.encrypt		= stm32_cryp_aes_ctr_encrypt,
1779	.decrypt		= stm32_cryp_aes_ctr_decrypt,
 
 
 
 
 
1780},
1781{
1782	.base.cra_name		= "ecb(des)",
1783	.base.cra_driver_name	= "stm32-ecb-des",
1784	.base.cra_priority	= 200,
1785	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1786	.base.cra_blocksize	= DES_BLOCK_SIZE,
1787	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1788	.base.cra_alignmask	= 0,
1789	.base.cra_module	= THIS_MODULE,
1790
1791	.init			= stm32_cryp_init_tfm,
1792	.min_keysize		= DES_BLOCK_SIZE,
1793	.max_keysize		= DES_BLOCK_SIZE,
1794	.setkey			= stm32_cryp_des_setkey,
1795	.encrypt		= stm32_cryp_des_ecb_encrypt,
1796	.decrypt		= stm32_cryp_des_ecb_decrypt,
 
 
 
 
 
1797},
1798{
1799	.base.cra_name		= "cbc(des)",
1800	.base.cra_driver_name	= "stm32-cbc-des",
1801	.base.cra_priority	= 200,
1802	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1803	.base.cra_blocksize	= DES_BLOCK_SIZE,
1804	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1805	.base.cra_alignmask	= 0,
1806	.base.cra_module	= THIS_MODULE,
1807
1808	.init			= stm32_cryp_init_tfm,
1809	.min_keysize		= DES_BLOCK_SIZE,
1810	.max_keysize		= DES_BLOCK_SIZE,
1811	.ivsize			= DES_BLOCK_SIZE,
1812	.setkey			= stm32_cryp_des_setkey,
1813	.encrypt		= stm32_cryp_des_cbc_encrypt,
1814	.decrypt		= stm32_cryp_des_cbc_decrypt,
 
 
 
 
 
1815},
1816{
1817	.base.cra_name		= "ecb(des3_ede)",
1818	.base.cra_driver_name	= "stm32-ecb-des3",
1819	.base.cra_priority	= 200,
1820	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1821	.base.cra_blocksize	= DES_BLOCK_SIZE,
1822	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1823	.base.cra_alignmask	= 0,
1824	.base.cra_module	= THIS_MODULE,
1825
1826	.init			= stm32_cryp_init_tfm,
1827	.min_keysize		= 3 * DES_BLOCK_SIZE,
1828	.max_keysize		= 3 * DES_BLOCK_SIZE,
1829	.setkey			= stm32_cryp_tdes_setkey,
1830	.encrypt		= stm32_cryp_tdes_ecb_encrypt,
1831	.decrypt		= stm32_cryp_tdes_ecb_decrypt,
 
 
 
 
 
1832},
1833{
1834	.base.cra_name		= "cbc(des3_ede)",
1835	.base.cra_driver_name	= "stm32-cbc-des3",
1836	.base.cra_priority	= 200,
1837	.base.cra_flags		= CRYPTO_ALG_ASYNC,
1838	.base.cra_blocksize	= DES_BLOCK_SIZE,
1839	.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
1840	.base.cra_alignmask	= 0,
1841	.base.cra_module	= THIS_MODULE,
1842
1843	.init			= stm32_cryp_init_tfm,
1844	.min_keysize		= 3 * DES_BLOCK_SIZE,
1845	.max_keysize		= 3 * DES_BLOCK_SIZE,
1846	.ivsize			= DES_BLOCK_SIZE,
1847	.setkey			= stm32_cryp_tdes_setkey,
1848	.encrypt		= stm32_cryp_tdes_cbc_encrypt,
1849	.decrypt		= stm32_cryp_tdes_cbc_decrypt,
 
 
 
 
 
1850},
1851};
1852
1853static struct aead_alg aead_algs[] = {
1854{
1855	.setkey		= stm32_cryp_aes_aead_setkey,
1856	.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
1857	.encrypt	= stm32_cryp_aes_gcm_encrypt,
1858	.decrypt	= stm32_cryp_aes_gcm_decrypt,
1859	.init		= stm32_cryp_aes_aead_init,
1860	.ivsize		= 12,
1861	.maxauthsize	= AES_BLOCK_SIZE,
1862
1863	.base = {
1864		.cra_name		= "gcm(aes)",
1865		.cra_driver_name	= "stm32-gcm-aes",
1866		.cra_priority		= 200,
1867		.cra_flags		= CRYPTO_ALG_ASYNC,
1868		.cra_blocksize		= 1,
1869		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1870		.cra_alignmask		= 0,
1871		.cra_module		= THIS_MODULE,
1872	},
 
 
 
1873},
1874{
1875	.setkey		= stm32_cryp_aes_aead_setkey,
1876	.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
1877	.encrypt	= stm32_cryp_aes_ccm_encrypt,
1878	.decrypt	= stm32_cryp_aes_ccm_decrypt,
1879	.init		= stm32_cryp_aes_aead_init,
1880	.ivsize		= AES_BLOCK_SIZE,
1881	.maxauthsize	= AES_BLOCK_SIZE,
1882
1883	.base = {
1884		.cra_name		= "ccm(aes)",
1885		.cra_driver_name	= "stm32-ccm-aes",
1886		.cra_priority		= 200,
1887		.cra_flags		= CRYPTO_ALG_ASYNC,
1888		.cra_blocksize		= 1,
1889		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
1890		.cra_alignmask		= 0,
1891		.cra_module		= THIS_MODULE,
1892	},
 
 
 
1893},
1894};
1895
1896static const struct stm32_cryp_caps ux500_data = {
1897	.aeads_support = false,
1898	.linear_aes_key = true,
1899	.kp_mode = false,
1900	.iv_protection = true,
1901	.swap_final = true,
1902	.padding_wa = true,
1903	.cr = UX500_CRYP_CR,
1904	.sr = UX500_CRYP_SR,
1905	.din = UX500_CRYP_DIN,
1906	.dout = UX500_CRYP_DOUT,
 
1907	.imsc = UX500_CRYP_IMSC,
1908	.mis = UX500_CRYP_MIS,
1909	.k1l = UX500_CRYP_K1L,
1910	.k1r = UX500_CRYP_K1R,
1911	.k3r = UX500_CRYP_K3R,
1912	.iv0l = UX500_CRYP_IV0L,
1913	.iv0r = UX500_CRYP_IV0R,
1914	.iv1l = UX500_CRYP_IV1L,
1915	.iv1r = UX500_CRYP_IV1R,
1916};
1917
1918static const struct stm32_cryp_caps f7_data = {
1919	.aeads_support = true,
1920	.linear_aes_key = false,
1921	.kp_mode = true,
1922	.iv_protection = false,
1923	.swap_final = true,
1924	.padding_wa = true,
1925	.cr = CRYP_CR,
1926	.sr = CRYP_SR,
1927	.din = CRYP_DIN,
1928	.dout = CRYP_DOUT,
 
1929	.imsc = CRYP_IMSCR,
1930	.mis = CRYP_MISR,
1931	.k1l = CRYP_K1LR,
1932	.k1r = CRYP_K1RR,
1933	.k3r = CRYP_K3RR,
1934	.iv0l = CRYP_IV0LR,
1935	.iv0r = CRYP_IV0RR,
1936	.iv1l = CRYP_IV1LR,
1937	.iv1r = CRYP_IV1RR,
1938};
1939
1940static const struct stm32_cryp_caps mp1_data = {
1941	.aeads_support = true,
1942	.linear_aes_key = false,
1943	.kp_mode = true,
1944	.iv_protection = false,
1945	.swap_final = false,
1946	.padding_wa = false,
1947	.cr = CRYP_CR,
1948	.sr = CRYP_SR,
1949	.din = CRYP_DIN,
1950	.dout = CRYP_DOUT,
 
1951	.imsc = CRYP_IMSCR,
1952	.mis = CRYP_MISR,
1953	.k1l = CRYP_K1LR,
1954	.k1r = CRYP_K1RR,
1955	.k3r = CRYP_K3RR,
1956	.iv0l = CRYP_IV0LR,
1957	.iv0r = CRYP_IV0RR,
1958	.iv1l = CRYP_IV1LR,
1959	.iv1r = CRYP_IV1RR,
1960};
1961
1962static const struct of_device_id stm32_dt_ids[] = {
1963	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1964	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
1965	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1966	{},
1967};
1968MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1969
1970static int stm32_cryp_probe(struct platform_device *pdev)
1971{
1972	struct device *dev = &pdev->dev;
1973	struct stm32_cryp *cryp;
1974	struct reset_control *rst;
1975	int irq, ret;
1976
1977	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1978	if (!cryp)
1979		return -ENOMEM;
1980
1981	cryp->caps = of_device_get_match_data(dev);
1982	if (!cryp->caps)
1983		return -ENODEV;
1984
1985	cryp->dev = dev;
1986
1987	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1988	if (IS_ERR(cryp->regs))
1989		return PTR_ERR(cryp->regs);
1990
 
 
1991	irq = platform_get_irq(pdev, 0);
1992	if (irq < 0)
1993		return irq;
1994
1995	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1996					stm32_cryp_irq_thread, IRQF_ONESHOT,
1997					dev_name(dev), cryp);
1998	if (ret) {
1999		dev_err(dev, "Cannot grab IRQ\n");
2000		return ret;
2001	}
2002
2003	cryp->clk = devm_clk_get(dev, NULL);
2004	if (IS_ERR(cryp->clk)) {
2005		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2006
2007		return PTR_ERR(cryp->clk);
2008	}
2009
2010	ret = clk_prepare_enable(cryp->clk);
2011	if (ret) {
2012		dev_err(cryp->dev, "Failed to enable clock\n");
2013		return ret;
2014	}
2015
2016	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2017	pm_runtime_use_autosuspend(dev);
2018
2019	pm_runtime_get_noresume(dev);
2020	pm_runtime_set_active(dev);
2021	pm_runtime_enable(dev);
2022
2023	rst = devm_reset_control_get(dev, NULL);
2024	if (IS_ERR(rst)) {
2025		ret = PTR_ERR(rst);
2026		if (ret == -EPROBE_DEFER)
2027			goto err_rst;
2028	} else {
2029		reset_control_assert(rst);
2030		udelay(2);
2031		reset_control_deassert(rst);
2032	}
2033
2034	platform_set_drvdata(pdev, cryp);
2035
 
 
 
 
 
 
 
 
 
 
 
2036	spin_lock(&cryp_list.lock);
2037	list_add(&cryp->list, &cryp_list.dev_list);
2038	spin_unlock(&cryp_list.lock);
2039
2040	/* Initialize crypto engine */
2041	cryp->engine = crypto_engine_alloc_init(dev, 1);
2042	if (!cryp->engine) {
2043		dev_err(dev, "Could not init crypto engine\n");
2044		ret = -ENOMEM;
2045		goto err_engine1;
2046	}
2047
2048	ret = crypto_engine_start(cryp->engine);
2049	if (ret) {
2050		dev_err(dev, "Could not start crypto engine\n");
2051		goto err_engine2;
2052	}
2053
2054	ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2055	if (ret) {
2056		dev_err(dev, "Could not register algs\n");
2057		goto err_algs;
2058	}
2059
2060	if (cryp->caps->aeads_support) {
2061		ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062		if (ret)
2063			goto err_aead_algs;
2064	}
2065
2066	dev_info(dev, "Initialized\n");
2067
2068	pm_runtime_put_sync(dev);
2069
2070	return 0;
2071
2072err_aead_algs:
2073	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2074err_algs:
2075err_engine2:
2076	crypto_engine_exit(cryp->engine);
2077err_engine1:
2078	spin_lock(&cryp_list.lock);
2079	list_del(&cryp->list);
2080	spin_unlock(&cryp_list.lock);
 
 
 
 
 
 
2081err_rst:
2082	pm_runtime_disable(dev);
2083	pm_runtime_put_noidle(dev);
2084
2085	clk_disable_unprepare(cryp->clk);
2086
2087	return ret;
2088}
2089
2090static int stm32_cryp_remove(struct platform_device *pdev)
2091{
2092	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2093	int ret;
2094
2095	if (!cryp)
2096		return -ENODEV;
2097
2098	ret = pm_runtime_resume_and_get(cryp->dev);
2099	if (ret < 0)
2100		return ret;
2101
2102	if (cryp->caps->aeads_support)
2103		crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2104	crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2105
2106	crypto_engine_exit(cryp->engine);
2107
2108	spin_lock(&cryp_list.lock);
2109	list_del(&cryp->list);
2110	spin_unlock(&cryp_list.lock);
2111
 
 
 
 
 
 
2112	pm_runtime_disable(cryp->dev);
2113	pm_runtime_put_noidle(cryp->dev);
2114
2115	clk_disable_unprepare(cryp->clk);
2116
2117	return 0;
2118}
2119
2120#ifdef CONFIG_PM
2121static int stm32_cryp_runtime_suspend(struct device *dev)
2122{
2123	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124
2125	clk_disable_unprepare(cryp->clk);
2126
2127	return 0;
2128}
2129
2130static int stm32_cryp_runtime_resume(struct device *dev)
2131{
2132	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2133	int ret;
2134
2135	ret = clk_prepare_enable(cryp->clk);
2136	if (ret) {
2137		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2138		return ret;
2139	}
2140
2141	return 0;
2142}
2143#endif
2144
2145static const struct dev_pm_ops stm32_cryp_pm_ops = {
2146	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2147				pm_runtime_force_resume)
2148	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2149			   stm32_cryp_runtime_resume, NULL)
2150};
2151
2152static struct platform_driver stm32_cryp_driver = {
2153	.probe  = stm32_cryp_probe,
2154	.remove = stm32_cryp_remove,
2155	.driver = {
2156		.name           = DRIVER_NAME,
2157		.pm		= &stm32_cryp_pm_ops,
2158		.of_match_table = stm32_dt_ids,
2159	},
2160};
2161
2162module_platform_driver(stm32_cryp_driver);
2163
2164MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2165MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2166MODULE_LICENSE("GPL");
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Copyright (C) STMicroelectronics SA 2017
   4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
   5 * Ux500 support taken from snippets in the old Ux500 cryp driver
   6 */
   7
   8#include <crypto/aes.h>
   9#include <crypto/engine.h>
  10#include <crypto/internal/aead.h>
  11#include <crypto/internal/des.h>
  12#include <crypto/internal/skcipher.h>
  13#include <crypto/scatterwalk.h>
  14#include <linux/bottom_half.h>
  15#include <linux/clk.h>
  16#include <linux/delay.h>
  17#include <linux/dma-mapping.h>
  18#include <linux/dmaengine.h>
  19#include <linux/err.h>
  20#include <linux/iopoll.h>
  21#include <linux/interrupt.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/of.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/reset.h>
  28#include <linux/string.h>
 
 
 
 
 
 
  29
  30#define DRIVER_NAME             "stm32-cryp"
  31
  32/* Bit [0] encrypt / decrypt */
  33#define FLG_ENCRYPT             BIT(0)
  34/* Bit [8..1] algo & operation mode */
  35#define FLG_AES                 BIT(1)
  36#define FLG_DES                 BIT(2)
  37#define FLG_TDES                BIT(3)
  38#define FLG_ECB                 BIT(4)
  39#define FLG_CBC                 BIT(5)
  40#define FLG_CTR                 BIT(6)
  41#define FLG_GCM                 BIT(7)
  42#define FLG_CCM                 BIT(8)
  43/* Mode mask = bits [15..0] */
  44#define FLG_MODE_MASK           GENMASK(15, 0)
  45/* Bit [31..16] status  */
  46#define FLG_IN_OUT_DMA          BIT(16)
  47#define FLG_HEADER_DMA          BIT(17)
  48
  49/* Registers */
  50#define CRYP_CR                 0x00000000
  51#define CRYP_SR                 0x00000004
  52#define CRYP_DIN                0x00000008
  53#define CRYP_DOUT               0x0000000C
  54#define CRYP_DMACR              0x00000010
  55#define CRYP_IMSCR              0x00000014
  56#define CRYP_RISR               0x00000018
  57#define CRYP_MISR               0x0000001C
  58#define CRYP_K0LR               0x00000020
  59#define CRYP_K0RR               0x00000024
  60#define CRYP_K1LR               0x00000028
  61#define CRYP_K1RR               0x0000002C
  62#define CRYP_K2LR               0x00000030
  63#define CRYP_K2RR               0x00000034
  64#define CRYP_K3LR               0x00000038
  65#define CRYP_K3RR               0x0000003C
  66#define CRYP_IV0LR              0x00000040
  67#define CRYP_IV0RR              0x00000044
  68#define CRYP_IV1LR              0x00000048
  69#define CRYP_IV1RR              0x0000004C
  70#define CRYP_CSGCMCCM0R         0x00000050
  71#define CRYP_CSGCM0R            0x00000070
  72
  73#define UX500_CRYP_CR		0x00000000
  74#define UX500_CRYP_SR		0x00000004
  75#define UX500_CRYP_DIN		0x00000008
  76#define UX500_CRYP_DINSIZE	0x0000000C
  77#define UX500_CRYP_DOUT		0x00000010
  78#define UX500_CRYP_DOUSIZE	0x00000014
  79#define UX500_CRYP_DMACR	0x00000018
  80#define UX500_CRYP_IMSC		0x0000001C
  81#define UX500_CRYP_RIS		0x00000020
  82#define UX500_CRYP_MIS		0x00000024
  83#define UX500_CRYP_K1L		0x00000028
  84#define UX500_CRYP_K1R		0x0000002C
  85#define UX500_CRYP_K2L		0x00000030
  86#define UX500_CRYP_K2R		0x00000034
  87#define UX500_CRYP_K3L		0x00000038
  88#define UX500_CRYP_K3R		0x0000003C
  89#define UX500_CRYP_K4L		0x00000040
  90#define UX500_CRYP_K4R		0x00000044
  91#define UX500_CRYP_IV0L		0x00000048
  92#define UX500_CRYP_IV0R		0x0000004C
  93#define UX500_CRYP_IV1L		0x00000050
  94#define UX500_CRYP_IV1R		0x00000054
  95
  96/* Registers values */
  97#define CR_DEC_NOT_ENC          0x00000004
  98#define CR_TDES_ECB             0x00000000
  99#define CR_TDES_CBC             0x00000008
 100#define CR_DES_ECB              0x00000010
 101#define CR_DES_CBC              0x00000018
 102#define CR_AES_ECB              0x00000020
 103#define CR_AES_CBC              0x00000028
 104#define CR_AES_CTR              0x00000030
 105#define CR_AES_KP               0x00000038 /* Not on Ux500 */
 106#define CR_AES_XTS              0x00000038 /* Only on Ux500 */
 107#define CR_AES_GCM              0x00080000
 108#define CR_AES_CCM              0x00080008
 109#define CR_AES_UNKNOWN          0xFFFFFFFF
 110#define CR_ALGO_MASK            0x00080038
 111#define CR_DATA32               0x00000000
 112#define CR_DATA16               0x00000040
 113#define CR_DATA8                0x00000080
 114#define CR_DATA1                0x000000C0
 115#define CR_KEY128               0x00000000
 116#define CR_KEY192               0x00000100
 117#define CR_KEY256               0x00000200
 118#define CR_KEYRDEN              0x00000400 /* Only on Ux500 */
 119#define CR_KSE                  0x00000800 /* Only on Ux500 */
 120#define CR_FFLUSH               0x00004000
 121#define CR_CRYPEN               0x00008000
 122#define CR_PH_INIT              0x00000000
 123#define CR_PH_HEADER            0x00010000
 124#define CR_PH_PAYLOAD           0x00020000
 125#define CR_PH_FINAL             0x00030000
 126#define CR_PH_MASK              0x00030000
 127#define CR_NBPBL_SHIFT          20
 128
 129#define SR_IFNF                 BIT(1)
 130#define SR_OFNE                 BIT(2)
 131#define SR_BUSY                 BIT(8)
 132
 133#define DMACR_DIEN              BIT(0)
 134#define DMACR_DOEN              BIT(1)
 135
 136#define IMSCR_IN                BIT(0)
 137#define IMSCR_OUT               BIT(1)
 138
 139#define MISR_IN                 BIT(0)
 140#define MISR_OUT                BIT(1)
 141
 142/* Misc */
 143#define AES_BLOCK_32            (AES_BLOCK_SIZE / sizeof(u32))
 144#define GCM_CTR_INIT            2
 145#define CRYP_AUTOSUSPEND_DELAY  50
 146
 147#define CRYP_DMA_BURST_REG      4
 148
 149enum stm32_dma_mode {
 150	NO_DMA,
 151	DMA_PLAIN_SG,
 152	DMA_NEED_SG_TRUNC
 153};
 154
 155struct stm32_cryp_caps {
 156	bool			aeads_support;
 157	bool			linear_aes_key;
 158	bool			kp_mode;
 159	bool			iv_protection;
 160	bool			swap_final;
 161	bool			padding_wa;
 162	u32			cr;
 163	u32			sr;
 164	u32			din;
 165	u32			dout;
 166	u32			dmacr;
 167	u32			imsc;
 168	u32			mis;
 169	u32			k1l;
 170	u32			k1r;
 171	u32			k3r;
 172	u32			iv0l;
 173	u32			iv0r;
 174	u32			iv1l;
 175	u32			iv1r;
 176};
 177
 178struct stm32_cryp_ctx {
 
 179	struct stm32_cryp       *cryp;
 180	int                     keylen;
 181	__be32                  key[AES_KEYSIZE_256 / sizeof(u32)];
 182	unsigned long           flags;
 183};
 184
 185struct stm32_cryp_reqctx {
 186	unsigned long mode;
 187};
 188
 189struct stm32_cryp {
 190	struct list_head        list;
 191	struct device           *dev;
 192	void __iomem            *regs;
 193	phys_addr_t             phys_base;
 194	struct clk              *clk;
 195	unsigned long           flags;
 196	u32                     irq_status;
 197	const struct stm32_cryp_caps *caps;
 198	struct stm32_cryp_ctx   *ctx;
 199
 200	struct crypto_engine    *engine;
 201
 202	struct skcipher_request *req;
 203	struct aead_request     *areq;
 204
 205	size_t                  authsize;
 206	size_t                  hw_blocksize;
 207
 208	size_t                  payload_in;
 209	size_t                  header_in;
 210	size_t                  payload_out;
 211
 212	/* DMA process fields */
 213	struct scatterlist      *in_sg;
 214	struct scatterlist      *header_sg;
 215	struct scatterlist      *out_sg;
 216	size_t                  in_sg_len;
 217	size_t                  header_sg_len;
 218	size_t                  out_sg_len;
 219	struct completion	dma_completion;
 220
 221	struct dma_chan         *dma_lch_in;
 222	struct dma_chan         *dma_lch_out;
 223	enum stm32_dma_mode     dma_mode;
 224
 225	/* IT process fields */
 226	struct scatter_walk     in_walk;
 227	struct scatter_walk     out_walk;
 228
 229	__be32                  last_ctr[4];
 230	u32                     gcm_ctr;
 231};
 232
 233struct stm32_cryp_list {
 234	struct list_head        dev_list;
 235	spinlock_t              lock; /* protect dev_list */
 236};
 237
 238static struct stm32_cryp_list cryp_list = {
 239	.dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
 240	.lock     = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
 241};
 242
 243static inline bool is_aes(struct stm32_cryp *cryp)
 244{
 245	return cryp->flags & FLG_AES;
 246}
 247
 248static inline bool is_des(struct stm32_cryp *cryp)
 249{
 250	return cryp->flags & FLG_DES;
 251}
 252
 253static inline bool is_tdes(struct stm32_cryp *cryp)
 254{
 255	return cryp->flags & FLG_TDES;
 256}
 257
 258static inline bool is_ecb(struct stm32_cryp *cryp)
 259{
 260	return cryp->flags & FLG_ECB;
 261}
 262
 263static inline bool is_cbc(struct stm32_cryp *cryp)
 264{
 265	return cryp->flags & FLG_CBC;
 266}
 267
 268static inline bool is_ctr(struct stm32_cryp *cryp)
 269{
 270	return cryp->flags & FLG_CTR;
 271}
 272
 273static inline bool is_gcm(struct stm32_cryp *cryp)
 274{
 275	return cryp->flags & FLG_GCM;
 276}
 277
 278static inline bool is_ccm(struct stm32_cryp *cryp)
 279{
 280	return cryp->flags & FLG_CCM;
 281}
 282
 283static inline bool is_encrypt(struct stm32_cryp *cryp)
 284{
 285	return cryp->flags & FLG_ENCRYPT;
 286}
 287
 288static inline bool is_decrypt(struct stm32_cryp *cryp)
 289{
 290	return !is_encrypt(cryp);
 291}
 292
 293static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
 294{
 295	return readl_relaxed(cryp->regs + ofst);
 296}
 297
 298static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
 299{
 300	writel_relaxed(val, cryp->regs + ofst);
 301}
 302
 303static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
 304{
 305	u32 status;
 306
 307	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
 308			!(status & SR_BUSY), 10, 100000);
 309}
 310
 311static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
 312{
 313	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
 314		       cryp->regs + cryp->caps->cr);
 315}
 316
 317static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
 318{
 319	u32 status;
 320
 321	return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
 322			!(status & CR_CRYPEN), 10, 100000);
 323}
 324
 325static inline int stm32_cryp_wait_input(struct stm32_cryp *cryp)
 326{
 327	u32 status;
 328
 329	return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status,
 330			status & SR_IFNF, 1, 10);
 331}
 332
 333static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
 334{
 335	u32 status;
 336
 337	return readl_relaxed_poll_timeout_atomic(cryp->regs + cryp->caps->sr, status,
 338			status & SR_OFNE, 1, 10);
 339}
 340
 341static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
 342{
 343	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
 344		       cryp->regs + cryp->caps->cr);
 345}
 346
 347static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
 348{
 349	writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
 350		       cryp->regs + cryp->caps->cr);
 351}
 352
 353static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp);
 354static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp);
 355static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp);
 356static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
 357static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
 358static int stm32_cryp_dma_start(struct stm32_cryp *cryp);
 359static int stm32_cryp_it_start(struct stm32_cryp *cryp);
 360
 361static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
 362{
 363	struct stm32_cryp *tmp, *cryp = NULL;
 364
 365	spin_lock_bh(&cryp_list.lock);
 366	if (!ctx->cryp) {
 367		list_for_each_entry(tmp, &cryp_list.dev_list, list) {
 368			cryp = tmp;
 369			break;
 370		}
 371		ctx->cryp = cryp;
 372	} else {
 373		cryp = ctx->cryp;
 374	}
 375
 376	spin_unlock_bh(&cryp_list.lock);
 377
 378	return cryp;
 379}
 380
 381static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
 382{
 383	if (!iv)
 384		return;
 385
 386	stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
 387	stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
 388
 389	if (is_aes(cryp)) {
 390		stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
 391		stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
 392	}
 393}
 394
 395static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
 396{
 397	struct skcipher_request *req = cryp->req;
 398	__be32 *tmp = (void *)req->iv;
 399
 400	if (!tmp)
 401		return;
 402
 403	if (cryp->caps->iv_protection)
 404		stm32_cryp_key_read_enable(cryp);
 405
 406	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
 407	*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
 408
 409	if (is_aes(cryp)) {
 410		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
 411		*tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
 412	}
 413
 414	if (cryp->caps->iv_protection)
 415		stm32_cryp_key_read_disable(cryp);
 416}
 417
 418/**
 419 * ux500_swap_bits_in_byte() - mirror the bits in a byte
 420 * @b: the byte to be mirrored
 421 *
 422 * The bits are swapped the following way:
 423 *  Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
 424 *  nibble 2 (n2) bits 4-7.
 425 *
 426 *  Nibble 1 (n1):
 427 *  (The "old" (moved) bit is replaced with a zero)
 428 *  1. Move bit 6 and 7, 4 positions to the left.
 429 *  2. Move bit 3 and 5, 2 positions to the left.
 430 *  3. Move bit 1-4, 1 position to the left.
 431 *
 432 *  Nibble 2 (n2):
 433 *  1. Move bit 0 and 1, 4 positions to the right.
 434 *  2. Move bit 2 and 4, 2 positions to the right.
 435 *  3. Move bit 3-6, 1 position to the right.
 436 *
 437 *  Combine the two nibbles to a complete and swapped byte.
 438 */
 439static inline u8 ux500_swap_bits_in_byte(u8 b)
 440{
 441#define R_SHIFT_4_MASK  0xc0 /* Bits 6 and 7, right shift 4 */
 442#define R_SHIFT_2_MASK  0x28 /* (After right shift 4) Bits 3 and 5,
 443				  right shift 2 */
 444#define R_SHIFT_1_MASK  0x1e /* (After right shift 2) Bits 1-4,
 445				  right shift 1 */
 446#define L_SHIFT_4_MASK  0x03 /* Bits 0 and 1, left shift 4 */
 447#define L_SHIFT_2_MASK  0x14 /* (After left shift 4) Bits 2 and 4,
 448				  left shift 2 */
 449#define L_SHIFT_1_MASK  0x78 /* (After left shift 1) Bits 3-6,
 450				  left shift 1 */
 451
 452	u8 n1;
 453	u8 n2;
 454
 455	/* Swap most significant nibble */
 456	/* Right shift 4, bits 6 and 7 */
 457	n1 = ((b  & R_SHIFT_4_MASK) >> 4) | (b  & ~(R_SHIFT_4_MASK >> 4));
 458	/* Right shift 2, bits 3 and 5 */
 459	n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
 460	/* Right shift 1, bits 1-4 */
 461	n1 = (n1  & R_SHIFT_1_MASK) >> 1;
 462
 463	/* Swap least significant nibble */
 464	/* Left shift 4, bits 0 and 1 */
 465	n2 = ((b  & L_SHIFT_4_MASK) << 4) | (b  & ~(L_SHIFT_4_MASK << 4));
 466	/* Left shift 2, bits 2 and 4 */
 467	n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
 468	/* Left shift 1, bits 3-6 */
 469	n2 = (n2  & L_SHIFT_1_MASK) << 1;
 470
 471	return n1 | n2;
 472}
 473
 474/**
 475 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
 476 * @in: key to swizzle
 477 * @out: swizzled key
 478 * @len: length of key, in bytes
 479 *
 480 * This "key swizzling procedure" is described in the examples in the
 481 * DB8500 design specification. There is no real description of why
 482 * the bits have been arranged like this in the hardware.
 483 */
 484static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
 485{
 486	int i = 0;
 487	int bpw = sizeof(u32);
 488	int j;
 489	int index = 0;
 490
 491	j = len - bpw;
 492	while (j >= 0) {
 493		for (i = 0; i < bpw; i++) {
 494			index = len - j - bpw + i;
 495			out[j + i] =
 496				ux500_swap_bits_in_byte(in[index]);
 497		}
 498		j -= bpw;
 499	}
 500}
 501
 502static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
 503{
 504	unsigned int i;
 505	int r_id;
 506
 507	if (is_des(c)) {
 508		stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
 509		stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
 510		return;
 511	}
 512
 513	/*
 514	 * On the Ux500 the AES key is considered as a single bit sequence
 515	 * of 128, 192 or 256 bits length. It is written linearly into the
 516	 * registers from K1L and down, and need to be processed to become
 517	 * a proper big-endian bit sequence.
 518	 */
 519	if (is_aes(c) && c->caps->linear_aes_key) {
 520		u32 tmpkey[8];
 521
 522		ux500_swizzle_key((u8 *)c->ctx->key,
 523				  (u8 *)tmpkey, c->ctx->keylen);
 524
 525		r_id = c->caps->k1l;
 526		for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
 527			stm32_cryp_write(c, r_id, tmpkey[i]);
 528
 529		return;
 530	}
 531
 532	r_id = c->caps->k3r;
 533	for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
 534		stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
 535}
 536
 537static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
 538{
 539	if (is_aes(cryp) && is_ecb(cryp))
 540		return CR_AES_ECB;
 541
 542	if (is_aes(cryp) && is_cbc(cryp))
 543		return CR_AES_CBC;
 544
 545	if (is_aes(cryp) && is_ctr(cryp))
 546		return CR_AES_CTR;
 547
 548	if (is_aes(cryp) && is_gcm(cryp))
 549		return CR_AES_GCM;
 550
 551	if (is_aes(cryp) && is_ccm(cryp))
 552		return CR_AES_CCM;
 553
 554	if (is_des(cryp) && is_ecb(cryp))
 555		return CR_DES_ECB;
 556
 557	if (is_des(cryp) && is_cbc(cryp))
 558		return CR_DES_CBC;
 559
 560	if (is_tdes(cryp) && is_ecb(cryp))
 561		return CR_TDES_ECB;
 562
 563	if (is_tdes(cryp) && is_cbc(cryp))
 564		return CR_TDES_CBC;
 565
 566	dev_err(cryp->dev, "Unknown mode\n");
 567	return CR_AES_UNKNOWN;
 568}
 569
 570static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
 571{
 572	return is_encrypt(cryp) ? cryp->areq->cryptlen :
 573				  cryp->areq->cryptlen - cryp->authsize;
 574}
 575
 576static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
 577{
 578	int ret;
 579	__be32 iv[4];
 580
 581	/* Phase 1 : init */
 582	memcpy(iv, cryp->areq->iv, 12);
 583	iv[3] = cpu_to_be32(GCM_CTR_INIT);
 584	cryp->gcm_ctr = GCM_CTR_INIT;
 585	stm32_cryp_hw_write_iv(cryp, iv);
 586
 587	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 588
 589	/* Wait for end of processing */
 590	ret = stm32_cryp_wait_enable(cryp);
 591	if (ret) {
 592		dev_err(cryp->dev, "Timeout (gcm init)\n");
 593		return ret;
 594	}
 595
 596	/* Prepare next phase */
 597	if (cryp->areq->assoclen) {
 598		cfg |= CR_PH_HEADER;
 599		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 600	} else if (stm32_cryp_get_input_text_len(cryp)) {
 601		cfg |= CR_PH_PAYLOAD;
 602		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 603	}
 604
 605	return 0;
 606}
 607
 608static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
 609{
 610	u32 cfg;
 611	int err;
 612
 613	/* Check if whole header written */
 614	if (!cryp->header_in) {
 615		/* Wait for completion */
 616		err = stm32_cryp_wait_busy(cryp);
 617		if (err) {
 618			dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
 619			stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 620			stm32_cryp_finish_req(cryp, err);
 621			return;
 622		}
 623
 624		if (stm32_cryp_get_input_text_len(cryp)) {
 625			/* Phase 3 : payload */
 626			cfg = stm32_cryp_read(cryp, cryp->caps->cr);
 627			cfg &= ~CR_CRYPEN;
 628			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 629
 630			cfg &= ~CR_PH_MASK;
 631			cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
 632			stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 633		} else {
 634			/*
 635			 * Phase 4 : tag.
 636			 * Nothing to read, nothing to write, caller have to
 637			 * end request
 638			 */
 639		}
 640	}
 641}
 642
 643static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
 644{
 
 645	size_t written;
 646	size_t len;
 647	u32 alen = cryp->areq->assoclen;
 648	u32 block[AES_BLOCK_32] = {0};
 649	u8 *b8 = (u8 *)block;
 650
 651	if (alen <= 65280) {
 652		/* Write first u32 of B1 */
 653		b8[0] = (alen >> 8) & 0xFF;
 654		b8[1] = alen & 0xFF;
 655		len = 2;
 656	} else {
 657		/* Build the two first u32 of B1 */
 658		b8[0] = 0xFF;
 659		b8[1] = 0xFE;
 660		b8[2] = (alen & 0xFF000000) >> 24;
 661		b8[3] = (alen & 0x00FF0000) >> 16;
 662		b8[4] = (alen & 0x0000FF00) >> 8;
 663		b8[5] = alen & 0x000000FF;
 664		len = 6;
 665	}
 666
 667	written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
 668
 669	scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
 670
 671	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
 672
 673	cryp->header_in -= written;
 674
 675	stm32_crypt_gcmccm_end_header(cryp);
 676}
 677
 678static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
 679{
 680	int ret;
 681	u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
 682	u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
 683	__be32 *bd;
 684	u32 *d;
 685	unsigned int i, textlen;
 686
 687	/* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
 688	memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
 689	memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
 690	iv[AES_BLOCK_SIZE - 1] = 1;
 691	stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
 692
 693	/* Build B0 */
 694	memcpy(b0, iv, AES_BLOCK_SIZE);
 695
 696	b0[0] |= (8 * ((cryp->authsize - 2) / 2));
 697
 698	if (cryp->areq->assoclen)
 699		b0[0] |= 0x40;
 700
 701	textlen = stm32_cryp_get_input_text_len(cryp);
 702
 703	b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
 704	b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
 705
 706	/* Enable HW */
 707	stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
 708
 709	/* Write B0 */
 710	d = (u32 *)b0;
 711	bd = (__be32 *)b0;
 712
 713	for (i = 0; i < AES_BLOCK_32; i++) {
 714		u32 xd = d[i];
 715
 716		if (!cryp->caps->padding_wa)
 717			xd = be32_to_cpu(bd[i]);
 718		stm32_cryp_write(cryp, cryp->caps->din, xd);
 719	}
 720
 721	/* Wait for end of processing */
 722	ret = stm32_cryp_wait_enable(cryp);
 723	if (ret) {
 724		dev_err(cryp->dev, "Timeout (ccm init)\n");
 725		return ret;
 726	}
 727
 728	/* Prepare next phase */
 729	if (cryp->areq->assoclen) {
 730		cfg |= CR_PH_HEADER | CR_CRYPEN;
 731		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 732
 733		/* Write first (special) block (may move to next phase [payload]) */
 734		stm32_cryp_write_ccm_first_header(cryp);
 735	} else if (stm32_cryp_get_input_text_len(cryp)) {
 736		cfg |= CR_PH_PAYLOAD;
 737		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 738	}
 739
 740	return 0;
 741}
 742
 743static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
 744{
 745	int ret;
 746	u32 cfg, hw_mode;
 747
 748	pm_runtime_get_sync(cryp->dev);
 749
 750	/* Disable interrupt */
 751	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
 752
 753	/* Set configuration */
 754	cfg = CR_DATA8 | CR_FFLUSH;
 755
 756	switch (cryp->ctx->keylen) {
 757	case AES_KEYSIZE_128:
 758		cfg |= CR_KEY128;
 759		break;
 760
 761	case AES_KEYSIZE_192:
 762		cfg |= CR_KEY192;
 763		break;
 764
 765	default:
 766	case AES_KEYSIZE_256:
 767		cfg |= CR_KEY256;
 768		break;
 769	}
 770
 771	hw_mode = stm32_cryp_get_hw_mode(cryp);
 772	if (hw_mode == CR_AES_UNKNOWN)
 773		return -EINVAL;
 774
 775	/* AES ECB/CBC decrypt: run key preparation first */
 776	if (is_decrypt(cryp) &&
 777	    ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
 778		/* Configure in key preparation mode */
 779		if (cryp->caps->kp_mode)
 780			stm32_cryp_write(cryp, cryp->caps->cr,
 781				cfg | CR_AES_KP);
 782		else
 783			stm32_cryp_write(cryp,
 784				cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
 785
 786		/* Set key only after full configuration done */
 787		stm32_cryp_hw_write_key(cryp);
 788
 789		/* Start prepare key */
 790		stm32_cryp_enable(cryp);
 791		/* Wait for end of processing */
 792		ret = stm32_cryp_wait_busy(cryp);
 793		if (ret) {
 794			dev_err(cryp->dev, "Timeout (key preparation)\n");
 795			return ret;
 796		}
 797
 798		cfg |= hw_mode | CR_DEC_NOT_ENC;
 799
 800		/* Apply updated config (Decrypt + algo) and flush */
 801		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 802	} else {
 803		cfg |= hw_mode;
 804		if (is_decrypt(cryp))
 805			cfg |= CR_DEC_NOT_ENC;
 806
 807		/* Apply config and flush */
 808		stm32_cryp_write(cryp, cryp->caps->cr, cfg);
 809
 810		/* Set key only after configuration done */
 811		stm32_cryp_hw_write_key(cryp);
 812	}
 813
 814	switch (hw_mode) {
 815	case CR_AES_GCM:
 816	case CR_AES_CCM:
 817		/* Phase 1 : init */
 818		if (hw_mode == CR_AES_CCM)
 819			ret = stm32_cryp_ccm_init(cryp, cfg);
 820		else
 821			ret = stm32_cryp_gcm_init(cryp, cfg);
 822
 823		if (ret)
 824			return ret;
 825
 826		break;
 827
 828	case CR_DES_CBC:
 829	case CR_TDES_CBC:
 830	case CR_AES_CBC:
 831	case CR_AES_CTR:
 832		stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
 833		break;
 834
 835	default:
 836		break;
 837	}
 838
 839	/* Enable now */
 840	stm32_cryp_enable(cryp);
 841
 842	return 0;
 843}
 844
 845static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
 846{
 847	if (!err && (is_gcm(cryp) || is_ccm(cryp)))
 848		/* Phase 4 : output tag */
 849		err = stm32_cryp_read_auth_tag(cryp);
 850
 851	if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
 852		stm32_cryp_get_iv(cryp);
 853
 854	pm_runtime_mark_last_busy(cryp->dev);
 855	pm_runtime_put_autosuspend(cryp->dev);
 856
 857	if (is_gcm(cryp) || is_ccm(cryp))
 858		crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
 859	else
 860		crypto_finalize_skcipher_request(cryp->engine, cryp->req, err);
 861}
 862
 863static void stm32_cryp_header_dma_callback(void *param)
 864{
 865	struct stm32_cryp *cryp = (struct stm32_cryp *)param;
 866	int ret;
 867	u32 reg;
 868
 869	dma_unmap_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
 870
 871	reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
 872	stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN));
 873
 874	kfree(cryp->header_sg);
 875
 876	reg = stm32_cryp_read(cryp, cryp->caps->cr);
 877
 878	if (cryp->header_in) {
 879		stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN);
 880
 881		ret = stm32_cryp_wait_input(cryp);
 882		if (ret) {
 883			dev_err(cryp->dev, "input header ready timeout after dma\n");
 884			stm32_cryp_finish_req(cryp, ret);
 885			return;
 886		}
 887		stm32_cryp_irq_write_gcmccm_header(cryp);
 888		WARN_ON(cryp->header_in);
 889	}
 890
 891	if (stm32_cryp_get_input_text_len(cryp)) {
 892		/* Phase 3 : payload */
 893		reg = stm32_cryp_read(cryp, cryp->caps->cr);
 894		stm32_cryp_write(cryp, cryp->caps->cr, reg & ~CR_CRYPEN);
 895
 896		reg &= ~CR_PH_MASK;
 897		reg |= CR_PH_PAYLOAD | CR_CRYPEN;
 898		stm32_cryp_write(cryp, cryp->caps->cr, reg);
 899
 900		if (cryp->flags & FLG_IN_OUT_DMA) {
 901			ret = stm32_cryp_dma_start(cryp);
 902			if (ret)
 903				stm32_cryp_finish_req(cryp, ret);
 904		} else {
 905			stm32_cryp_it_start(cryp);
 906		}
 907	} else {
 908		/*
 909		 * Phase 4 : tag.
 910		 * Nothing to read, nothing to write => end request
 911		 */
 912		stm32_cryp_finish_req(cryp, 0);
 913	}
 914}
 915
 916static void stm32_cryp_dma_callback(void *param)
 917{
 918	struct stm32_cryp *cryp = (struct stm32_cryp *)param;
 919	int ret;
 920	u32 reg;
 921
 922	complete(&cryp->dma_completion); /* completion to indicate no timeout */
 923
 924	dma_sync_sg_for_device(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
 925
 926	if (cryp->in_sg != cryp->out_sg)
 927		dma_unmap_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
 928
 929	dma_unmap_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
 930
 931	reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
 932	stm32_cryp_write(cryp, cryp->caps->dmacr, reg & ~(DMACR_DOEN | DMACR_DIEN));
 933
 934	reg = stm32_cryp_read(cryp, cryp->caps->cr);
 935
 936	if (is_gcm(cryp) || is_ccm(cryp)) {
 937		kfree(cryp->in_sg);
 938		kfree(cryp->out_sg);
 939	} else {
 940		if (cryp->in_sg != cryp->req->src)
 941			kfree(cryp->in_sg);
 942		if (cryp->out_sg != cryp->req->dst)
 943			kfree(cryp->out_sg);
 944	}
 945
 946	if (cryp->payload_in) {
 947		stm32_cryp_write(cryp, cryp->caps->cr, reg | CR_CRYPEN);
 948
 949		ret = stm32_cryp_wait_input(cryp);
 950		if (ret) {
 951			dev_err(cryp->dev, "input ready timeout after dma\n");
 952			stm32_cryp_finish_req(cryp, ret);
 953			return;
 954		}
 955		stm32_cryp_irq_write_data(cryp);
 956
 957		ret = stm32_cryp_wait_output(cryp);
 958		if (ret) {
 959			dev_err(cryp->dev, "output ready timeout after dma\n");
 960			stm32_cryp_finish_req(cryp, ret);
 961			return;
 962		}
 963		stm32_cryp_irq_read_data(cryp);
 964	}
 965
 966	stm32_cryp_finish_req(cryp, 0);
 967}
 968
 969static int stm32_cryp_header_dma_start(struct stm32_cryp *cryp)
 970{
 971	int ret;
 972	struct dma_async_tx_descriptor *tx_in;
 973	u32 reg;
 974	size_t align_size;
 975
 976	ret = dma_map_sg(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
 977	if (!ret) {
 978		dev_err(cryp->dev, "dma_map_sg() error\n");
 979		return -ENOMEM;
 980	}
 981
 982	dma_sync_sg_for_device(cryp->dev, cryp->header_sg, cryp->header_sg_len, DMA_TO_DEVICE);
 983
 984	tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->header_sg, cryp->header_sg_len,
 985					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
 986	if (!tx_in) {
 987		dev_err(cryp->dev, "IN prep_slave_sg() failed\n");
 988		return -EINVAL;
 989	}
 990
 991	tx_in->callback_param = cryp;
 992	tx_in->callback = stm32_cryp_header_dma_callback;
 993
 994	/* Advance scatterwalk to not DMA'ed data */
 995	align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize);
 996	scatterwalk_copychunks(NULL, &cryp->in_walk, align_size, 2);
 997	cryp->header_in -= align_size;
 998
 999	ret = dma_submit_error(dmaengine_submit(tx_in));
1000	if (ret < 0) {
1001		dev_err(cryp->dev, "DMA in submit failed\n");
1002		return ret;
1003	}
1004	dma_async_issue_pending(cryp->dma_lch_in);
1005
1006	reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
1007	stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DIEN);
1008
1009	return 0;
1010}
1011
1012static int stm32_cryp_dma_start(struct stm32_cryp *cryp)
1013{
1014	int ret;
1015	size_t align_size;
1016	struct dma_async_tx_descriptor *tx_in, *tx_out;
1017	u32 reg;
1018
1019	if (cryp->in_sg != cryp->out_sg) {
1020		ret = dma_map_sg(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
1021		if (!ret) {
1022			dev_err(cryp->dev, "dma_map_sg() error\n");
1023			return -ENOMEM;
1024		}
1025	}
1026
1027	ret = dma_map_sg(cryp->dev, cryp->out_sg, cryp->out_sg_len, DMA_FROM_DEVICE);
1028	if (!ret) {
1029		dev_err(cryp->dev, "dma_map_sg() error\n");
1030		return -ENOMEM;
1031	}
1032
1033	dma_sync_sg_for_device(cryp->dev, cryp->in_sg, cryp->in_sg_len, DMA_TO_DEVICE);
1034
1035	tx_in = dmaengine_prep_slave_sg(cryp->dma_lch_in, cryp->in_sg, cryp->in_sg_len,
1036					DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1037	if (!tx_in) {
1038		dev_err(cryp->dev, "IN prep_slave_sg() failed\n");
1039		return -EINVAL;
1040	}
1041
1042	/* No callback necessary */
1043	tx_in->callback_param = cryp;
1044	tx_in->callback = NULL;
1045
1046	tx_out = dmaengine_prep_slave_sg(cryp->dma_lch_out, cryp->out_sg, cryp->out_sg_len,
1047					 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1048	if (!tx_out) {
1049		dev_err(cryp->dev, "OUT prep_slave_sg() failed\n");
1050		return -EINVAL;
1051	}
1052
1053	reinit_completion(&cryp->dma_completion);
1054	tx_out->callback = stm32_cryp_dma_callback;
1055	tx_out->callback_param = cryp;
1056
1057	/* Advance scatterwalk to not DMA'ed data */
1058	align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
1059	scatterwalk_copychunks(NULL, &cryp->in_walk, align_size, 2);
1060	cryp->payload_in -= align_size;
1061
1062	ret = dma_submit_error(dmaengine_submit(tx_in));
1063	if (ret < 0) {
1064		dev_err(cryp->dev, "DMA in submit failed\n");
1065		return ret;
1066	}
1067	dma_async_issue_pending(cryp->dma_lch_in);
1068
1069	/* Advance scatterwalk to not DMA'ed data */
1070	scatterwalk_copychunks(NULL, &cryp->out_walk, align_size, 2);
1071	cryp->payload_out -= align_size;
1072	ret = dma_submit_error(dmaengine_submit(tx_out));
1073	if (ret < 0) {
1074		dev_err(cryp->dev, "DMA out submit failed\n");
1075		return ret;
1076	}
1077	dma_async_issue_pending(cryp->dma_lch_out);
1078
1079	reg = stm32_cryp_read(cryp, cryp->caps->dmacr);
1080	stm32_cryp_write(cryp, cryp->caps->dmacr, reg | DMACR_DOEN | DMACR_DIEN);
1081
1082	if (!wait_for_completion_timeout(&cryp->dma_completion, msecs_to_jiffies(1000))) {
1083		dev_err(cryp->dev, "DMA out timed out\n");
1084		dmaengine_terminate_sync(cryp->dma_lch_out);
1085		return -ETIMEDOUT;
1086	}
1087
1088	return 0;
1089}
1090
1091static int stm32_cryp_it_start(struct stm32_cryp *cryp)
1092{
1093	/* Enable interrupt and let the IRQ handler do everything */
1094	stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
1095
1096	return 0;
1097}
1098
1099static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
 
 
1100
1101static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
1102{
 
 
1103	crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
1104
 
 
 
1105	return 0;
1106}
1107
1108static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
 
 
1109
1110static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
1111{
1112	crypto_aead_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
 
 
 
 
 
 
1113
1114	return 0;
1115}
1116
1117static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
1118{
1119	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1120			crypto_skcipher_reqtfm(req));
1121	struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
1122	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
1123
1124	if (!cryp)
1125		return -ENODEV;
1126
1127	rctx->mode = mode;
1128
1129	return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
1130}
1131
1132static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
1133{
1134	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1135	struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
1136	struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
1137
1138	if (!cryp)
1139		return -ENODEV;
1140
1141	rctx->mode = mode;
1142
1143	return crypto_transfer_aead_request_to_engine(cryp->engine, req);
1144}
1145
1146static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
1147			     unsigned int keylen)
1148{
1149	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
1150
1151	memcpy(ctx->key, key, keylen);
1152	ctx->keylen = keylen;
1153
1154	return 0;
1155}
1156
1157static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1158				 unsigned int keylen)
1159{
1160	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
1161	    keylen != AES_KEYSIZE_256)
1162		return -EINVAL;
1163	else
1164		return stm32_cryp_setkey(tfm, key, keylen);
1165}
1166
1167static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
1168				 unsigned int keylen)
1169{
1170	return verify_skcipher_des_key(tfm, key) ?:
1171	       stm32_cryp_setkey(tfm, key, keylen);
1172}
1173
1174static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
1175				  unsigned int keylen)
1176{
1177	return verify_skcipher_des3_key(tfm, key) ?:
1178	       stm32_cryp_setkey(tfm, key, keylen);
1179}
1180
1181static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
1182				      unsigned int keylen)
1183{
1184	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
1185
1186	if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
1187	    keylen != AES_KEYSIZE_256)
1188		return -EINVAL;
1189
1190	memcpy(ctx->key, key, keylen);
1191	ctx->keylen = keylen;
1192
1193	return 0;
1194}
1195
1196static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
1197					  unsigned int authsize)
1198{
1199	switch (authsize) {
1200	case 4:
1201	case 8:
1202	case 12:
1203	case 13:
1204	case 14:
1205	case 15:
1206	case 16:
1207		break;
1208	default:
1209		return -EINVAL;
1210	}
1211
1212	return 0;
1213}
1214
1215static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
1216					  unsigned int authsize)
1217{
1218	switch (authsize) {
1219	case 4:
1220	case 6:
1221	case 8:
1222	case 10:
1223	case 12:
1224	case 14:
1225	case 16:
1226		break;
1227	default:
1228		return -EINVAL;
1229	}
1230
1231	return 0;
1232}
1233
1234static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
1235{
1236	if (req->cryptlen % AES_BLOCK_SIZE)
1237		return -EINVAL;
1238
1239	if (req->cryptlen == 0)
1240		return 0;
1241
1242	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
1243}
1244
1245static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
1246{
1247	if (req->cryptlen % AES_BLOCK_SIZE)
1248		return -EINVAL;
1249
1250	if (req->cryptlen == 0)
1251		return 0;
1252
1253	return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
1254}
1255
1256static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1257{
1258	if (req->cryptlen % AES_BLOCK_SIZE)
1259		return -EINVAL;
1260
1261	if (req->cryptlen == 0)
1262		return 0;
1263
1264	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1265}
1266
1267static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1268{
1269	if (req->cryptlen % AES_BLOCK_SIZE)
1270		return -EINVAL;
1271
1272	if (req->cryptlen == 0)
1273		return 0;
1274
1275	return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1276}
1277
1278static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1279{
1280	if (req->cryptlen == 0)
1281		return 0;
1282
1283	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1284}
1285
1286static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1287{
1288	if (req->cryptlen == 0)
1289		return 0;
1290
1291	return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1292}
1293
1294static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1295{
1296	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1297}
1298
1299static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1300{
1301	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1302}
1303
1304static inline int crypto_ccm_check_iv(const u8 *iv)
1305{
1306	/* 2 <= L <= 8, so 1 <= L' <= 7. */
1307	if (iv[0] < 1 || iv[0] > 7)
1308		return -EINVAL;
1309
1310	return 0;
1311}
1312
1313static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1314{
1315	int err;
1316
1317	err = crypto_ccm_check_iv(req->iv);
1318	if (err)
1319		return err;
1320
1321	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1322}
1323
1324static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1325{
1326	int err;
1327
1328	err = crypto_ccm_check_iv(req->iv);
1329	if (err)
1330		return err;
1331
1332	return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1333}
1334
1335static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1336{
1337	if (req->cryptlen % DES_BLOCK_SIZE)
1338		return -EINVAL;
1339
1340	if (req->cryptlen == 0)
1341		return 0;
1342
1343	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1344}
1345
1346static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1347{
1348	if (req->cryptlen % DES_BLOCK_SIZE)
1349		return -EINVAL;
1350
1351	if (req->cryptlen == 0)
1352		return 0;
1353
1354	return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1355}
1356
1357static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1358{
1359	if (req->cryptlen % DES_BLOCK_SIZE)
1360		return -EINVAL;
1361
1362	if (req->cryptlen == 0)
1363		return 0;
1364
1365	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1366}
1367
1368static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1369{
1370	if (req->cryptlen % DES_BLOCK_SIZE)
1371		return -EINVAL;
1372
1373	if (req->cryptlen == 0)
1374		return 0;
1375
1376	return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1377}
1378
1379static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1380{
1381	if (req->cryptlen % DES_BLOCK_SIZE)
1382		return -EINVAL;
1383
1384	if (req->cryptlen == 0)
1385		return 0;
1386
1387	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1388}
1389
1390static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1391{
1392	if (req->cryptlen % DES_BLOCK_SIZE)
1393		return -EINVAL;
1394
1395	if (req->cryptlen == 0)
1396		return 0;
1397
1398	return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1399}
1400
1401static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1402{
1403	if (req->cryptlen % DES_BLOCK_SIZE)
1404		return -EINVAL;
1405
1406	if (req->cryptlen == 0)
1407		return 0;
1408
1409	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1410}
1411
1412static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1413{
1414	if (req->cryptlen % DES_BLOCK_SIZE)
1415		return -EINVAL;
1416
1417	if (req->cryptlen == 0)
1418		return 0;
1419
1420	return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1421}
1422
1423static enum stm32_dma_mode stm32_cryp_dma_check_sg(struct scatterlist *test_sg, size_t len,
1424						   size_t block_size)
1425{
1426	struct scatterlist *sg;
1427	int i;
1428
1429	if (len <= 16)
1430		return NO_DMA; /* Faster */
1431
1432	for_each_sg(test_sg, sg, sg_nents(test_sg), i) {
1433		if (!IS_ALIGNED(sg->length, block_size) && !sg_is_last(sg))
1434			return NO_DMA;
1435
1436		if (sg->offset % sizeof(u32))
1437			return NO_DMA;
1438
1439		if (sg_is_last(sg) && !IS_ALIGNED(sg->length, AES_BLOCK_SIZE))
1440			return DMA_NEED_SG_TRUNC;
1441	}
1442
1443	return DMA_PLAIN_SG;
1444}
1445
1446static enum stm32_dma_mode stm32_cryp_dma_check(struct stm32_cryp *cryp, struct scatterlist *in_sg,
1447						struct scatterlist *out_sg)
1448{
1449	enum stm32_dma_mode ret = DMA_PLAIN_SG;
1450
1451	if (!is_aes(cryp))
1452		return NO_DMA;
1453
1454	if (!cryp->dma_lch_in || !cryp->dma_lch_out)
1455		return NO_DMA;
1456
1457	ret = stm32_cryp_dma_check_sg(in_sg, cryp->payload_in, AES_BLOCK_SIZE);
1458	if (ret == NO_DMA)
1459		return ret;
1460
1461	ret = stm32_cryp_dma_check_sg(out_sg, cryp->payload_out, AES_BLOCK_SIZE);
1462	if (ret == NO_DMA)
1463		return ret;
1464
1465	/* Check CTR counter overflow */
1466	if (is_aes(cryp) && is_ctr(cryp)) {
1467		u32 c;
1468		__be32 iv3;
1469
1470		memcpy(&iv3, &cryp->req->iv[3 * sizeof(u32)], sizeof(iv3));
1471		c = be32_to_cpu(iv3);
1472		if ((c + cryp->payload_in) < cryp->payload_in)
1473			return NO_DMA;
1474	}
1475
1476	/* Workaround */
1477	if (is_aes(cryp) && is_ctr(cryp) && ret == DMA_NEED_SG_TRUNC)
1478		return NO_DMA;
1479
1480	return ret;
1481}
1482
1483static int stm32_cryp_truncate_sg(struct scatterlist **new_sg, size_t *new_sg_len,
1484				  struct scatterlist *sg, off_t skip, size_t size)
1485{
1486	struct scatterlist *cur;
1487	int alloc_sg_len;
1488
1489	*new_sg_len = 0;
1490
1491	if (!sg || !size) {
1492		*new_sg = NULL;
1493		return 0;
1494	}
1495
1496	alloc_sg_len = sg_nents_for_len(sg, skip + size);
1497	if (alloc_sg_len < 0)
1498		return alloc_sg_len;
1499
1500	/* We allocate to much sg entry, but it is easier */
1501	*new_sg = kmalloc_array((size_t)alloc_sg_len, sizeof(struct scatterlist), GFP_KERNEL);
1502	if (!*new_sg)
1503		return -ENOMEM;
1504
1505	sg_init_table(*new_sg, (unsigned int)alloc_sg_len);
1506
1507	cur = *new_sg;
1508	while (sg && size) {
1509		unsigned int len = sg->length;
1510		unsigned int offset = sg->offset;
1511
1512		if (skip > len) {
1513			skip -= len;
1514			sg = sg_next(sg);
1515			continue;
1516		}
1517
1518		if (skip) {
1519			len -= skip;
1520			offset += skip;
1521			skip = 0;
1522		}
1523
1524		if (size < len)
1525			len = size;
1526
1527		if (len > 0) {
1528			(*new_sg_len)++;
1529			size -= len;
1530			sg_set_page(cur, sg_page(sg), len, offset);
1531			if (size == 0)
1532				sg_mark_end(cur);
1533			cur = sg_next(cur);
1534		}
1535
1536		sg = sg_next(sg);
1537	}
1538
1539	return 0;
1540}
1541
1542static int stm32_cryp_cipher_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg,
1543				     struct scatterlist *out_sg)
1544{
1545	size_t align_size;
1546	int ret;
1547
1548	cryp->dma_mode = stm32_cryp_dma_check(cryp, in_sg, out_sg);
1549
1550	scatterwalk_start(&cryp->in_walk, in_sg);
1551	scatterwalk_start(&cryp->out_walk, out_sg);
1552
1553	if (cryp->dma_mode == NO_DMA) {
1554		cryp->flags &= ~FLG_IN_OUT_DMA;
1555
1556		if (is_ctr(cryp))
1557			memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1558
1559	} else if (cryp->dma_mode == DMA_NEED_SG_TRUNC) {
1560
1561		cryp->flags |= FLG_IN_OUT_DMA;
1562
1563		align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
1564		ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, 0, align_size);
1565		if (ret)
1566			return ret;
1567
1568		ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, 0,
1569					     align_size);
1570		if (ret) {
1571			kfree(cryp->in_sg);
1572			return ret;
1573		}
1574	} else {
1575		cryp->flags |= FLG_IN_OUT_DMA;
1576
1577		cryp->in_sg = in_sg;
1578		cryp->out_sg = out_sg;
1579
1580		ret = sg_nents_for_len(cryp->in_sg, cryp->payload_in);
1581		if (ret < 0)
1582			return ret;
1583		cryp->in_sg_len = (size_t)ret;
1584
1585		ret = sg_nents_for_len(out_sg, cryp->payload_out);
1586		if (ret < 0)
1587			return ret;
1588		cryp->out_sg_len = (size_t)ret;
1589	}
1590
1591	return 0;
1592}
1593
1594static int stm32_cryp_aead_prepare(struct stm32_cryp *cryp, struct scatterlist *in_sg,
1595				   struct scatterlist *out_sg)
1596{
1597	size_t align_size;
1598	off_t skip;
1599	int ret, ret2;
1600
1601	cryp->header_sg = NULL;
1602	cryp->in_sg = NULL;
1603	cryp->out_sg = NULL;
1604
1605	if (!cryp->dma_lch_in || !cryp->dma_lch_out) {
1606		cryp->dma_mode = NO_DMA;
1607		cryp->flags &= ~(FLG_IN_OUT_DMA | FLG_HEADER_DMA);
1608
1609		return 0;
1610	}
1611
1612	/* CCM hw_init may have advanced in header */
1613	skip = cryp->areq->assoclen - cryp->header_in;
1614
1615	align_size = ALIGN_DOWN(cryp->header_in, cryp->hw_blocksize);
1616	ret = stm32_cryp_truncate_sg(&cryp->header_sg, &cryp->header_sg_len, in_sg, skip,
1617				     align_size);
1618	if (ret)
1619		return ret;
1620
1621	ret = stm32_cryp_dma_check_sg(cryp->header_sg, align_size, AES_BLOCK_SIZE);
1622	if (ret == NO_DMA) {
1623		/* We cannot DMA the header */
1624		kfree(cryp->header_sg);
1625		cryp->header_sg = NULL;
1626
1627		cryp->flags &= ~FLG_HEADER_DMA;
1628	} else {
1629		cryp->flags |= FLG_HEADER_DMA;
1630	}
1631
1632	/* Now skip all header to be at payload start */
1633	skip = cryp->areq->assoclen;
1634	align_size = ALIGN_DOWN(cryp->payload_in, cryp->hw_blocksize);
1635	ret = stm32_cryp_truncate_sg(&cryp->in_sg, &cryp->in_sg_len, in_sg, skip, align_size);
1636	if (ret) {
1637		kfree(cryp->header_sg);
1638		return ret;
1639	}
1640
1641	/* For out buffer align_size is same as in buffer */
1642	ret = stm32_cryp_truncate_sg(&cryp->out_sg, &cryp->out_sg_len, out_sg, skip, align_size);
1643	if (ret) {
1644		kfree(cryp->header_sg);
1645		kfree(cryp->in_sg);
1646		return ret;
1647	}
1648
1649	ret = stm32_cryp_dma_check_sg(cryp->in_sg, align_size, AES_BLOCK_SIZE);
1650	ret2 = stm32_cryp_dma_check_sg(cryp->out_sg, align_size, AES_BLOCK_SIZE);
1651	if (ret == NO_DMA || ret2 == NO_DMA) {
1652		kfree(cryp->in_sg);
1653		cryp->in_sg = NULL;
1654
1655		kfree(cryp->out_sg);
1656		cryp->out_sg = NULL;
1657
1658		cryp->flags &= ~FLG_IN_OUT_DMA;
1659	} else {
1660		cryp->flags |= FLG_IN_OUT_DMA;
1661	}
1662
1663	return 0;
1664}
1665
1666static int stm32_cryp_prepare_req(struct skcipher_request *req,
1667				  struct aead_request *areq)
1668{
1669	struct stm32_cryp_ctx *ctx;
1670	struct stm32_cryp *cryp;
1671	struct stm32_cryp_reqctx *rctx;
1672	struct scatterlist *in_sg, *out_sg;
1673	int ret;
1674
1675	if (!req && !areq)
1676		return -EINVAL;
1677
1678	ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1679		    crypto_aead_ctx(crypto_aead_reqtfm(areq));
1680
1681	cryp = ctx->cryp;
1682
 
 
 
1683	rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1684	rctx->mode &= FLG_MODE_MASK;
1685
 
 
1686	cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1687	cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1688	cryp->ctx = ctx;
1689
1690	if (req) {
1691		cryp->req = req;
1692		cryp->areq = NULL;
1693		cryp->header_in = 0;
1694		cryp->payload_in = req->cryptlen;
1695		cryp->payload_out = req->cryptlen;
1696		cryp->authsize = 0;
1697
1698		in_sg = req->src;
1699		out_sg = req->dst;
1700
1701		ret = stm32_cryp_cipher_prepare(cryp, in_sg, out_sg);
1702		if (ret)
1703			return ret;
1704
1705		ret = stm32_cryp_hw_init(cryp);
1706	} else {
1707		/*
1708		 * Length of input and output data:
1709		 * Encryption case:
1710		 *  INPUT  = AssocData   ||     PlainText
1711		 *          <- assoclen ->  <- cryptlen ->
1712		 *
1713		 *  OUTPUT = AssocData    ||   CipherText   ||      AuthTag
1714		 *          <- assoclen ->  <-- cryptlen -->  <- authsize ->
1715		 *
1716		 * Decryption case:
1717		 *  INPUT  =  AssocData     ||    CipherTex   ||       AuthTag
1718		 *          <- assoclen --->  <---------- cryptlen ---------->
1719		 *
1720		 *  OUTPUT = AssocData    ||               PlainText
1721		 *          <- assoclen ->  <- cryptlen - authsize ->
1722		 */
1723		cryp->areq = areq;
1724		cryp->req = NULL;
1725		cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1726		if (is_encrypt(cryp)) {
1727			cryp->payload_in = areq->cryptlen;
1728			cryp->header_in = areq->assoclen;
1729			cryp->payload_out = areq->cryptlen;
1730		} else {
1731			cryp->payload_in = areq->cryptlen - cryp->authsize;
1732			cryp->header_in = areq->assoclen;
1733			cryp->payload_out = cryp->payload_in;
1734		}
 
1735
1736		in_sg = areq->src;
1737		out_sg = areq->dst;
1738
1739		scatterwalk_start(&cryp->in_walk, in_sg);
1740		scatterwalk_start(&cryp->out_walk, out_sg);
 
 
1741		/* In output, jump after assoc data */
1742		scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
 
1743
1744		ret = stm32_cryp_hw_init(cryp);
1745		if (ret)
1746			return ret;
 
 
 
1747
1748		ret = stm32_cryp_aead_prepare(cryp, in_sg, out_sg);
1749	}
 
 
 
 
1750
1751	return ret;
1752}
1753
1754static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1755{
1756	struct skcipher_request *req = container_of(areq,
1757						      struct skcipher_request,
1758						      base);
1759	struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1760			crypto_skcipher_reqtfm(req));
1761	struct stm32_cryp *cryp = ctx->cryp;
1762	int ret;
1763
1764	if (!cryp)
1765		return -ENODEV;
1766
1767	ret = stm32_cryp_prepare_req(req, NULL);
1768	if (ret)
1769		return ret;
1770
1771	if (cryp->flags & FLG_IN_OUT_DMA)
1772		ret = stm32_cryp_dma_start(cryp);
1773	else
1774		ret = stm32_cryp_it_start(cryp);
1775
1776	if (ret == -ETIMEDOUT)
1777		stm32_cryp_finish_req(cryp, ret);
1778
1779	return ret;
1780}
1781
1782static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1783{
1784	struct aead_request *req = container_of(areq, struct aead_request,
1785						base);
1786	struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1787	struct stm32_cryp *cryp = ctx->cryp;
1788	int err;
1789
1790	if (!cryp)
1791		return -ENODEV;
1792
1793	err = stm32_cryp_prepare_req(NULL, req);
1794	if (err)
1795		return err;
1796
1797	if (!stm32_cryp_get_input_text_len(cryp) && !cryp->header_in &&
1798	    !(cryp->flags & FLG_HEADER_DMA)) {
1799		/* No input data to process: get tag and finish */
1800		stm32_cryp_finish_req(cryp, 0);
1801		return 0;
1802	}
1803
1804	if (cryp->flags & FLG_HEADER_DMA)
1805		return stm32_cryp_header_dma_start(cryp);
1806
1807	if (!cryp->header_in && cryp->flags & FLG_IN_OUT_DMA)
1808		return stm32_cryp_dma_start(cryp);
1809
1810	return stm32_cryp_it_start(cryp);
1811}
1812
1813static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1814{
1815	u32 cfg, size_bit;
1816	unsigned int i;
1817	int ret = 0;
1818
1819	/* Update Config */
1820	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1821
1822	cfg &= ~CR_PH_MASK;
1823	cfg |= CR_PH_FINAL;
1824	cfg &= ~CR_DEC_NOT_ENC;
1825	cfg |= CR_CRYPEN;
1826
1827	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1828
1829	if (is_gcm(cryp)) {
1830		/* GCM: write aad and payload size (in bits) */
1831		size_bit = cryp->areq->assoclen * 8;
1832		if (cryp->caps->swap_final)
1833			size_bit = (__force u32)cpu_to_be32(size_bit);
1834
1835		stm32_cryp_write(cryp, cryp->caps->din, 0);
1836		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1837
1838		size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1839				cryp->areq->cryptlen - cryp->authsize;
1840		size_bit *= 8;
1841		if (cryp->caps->swap_final)
1842			size_bit = (__force u32)cpu_to_be32(size_bit);
1843
1844		stm32_cryp_write(cryp, cryp->caps->din, 0);
1845		stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1846	} else {
1847		/* CCM: write CTR0 */
1848		u32 iv32[AES_BLOCK_32];
1849		u8 *iv = (u8 *)iv32;
1850		__be32 *biv = (__be32 *)iv32;
1851
1852		memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1853		memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1854
1855		for (i = 0; i < AES_BLOCK_32; i++) {
1856			u32 xiv = iv32[i];
1857
1858			if (!cryp->caps->padding_wa)
1859				xiv = be32_to_cpu(biv[i]);
1860			stm32_cryp_write(cryp, cryp->caps->din, xiv);
1861		}
1862	}
1863
1864	/* Wait for output data */
1865	ret = stm32_cryp_wait_output(cryp);
1866	if (ret) {
1867		dev_err(cryp->dev, "Timeout (read tag)\n");
1868		return ret;
1869	}
1870
1871	if (is_encrypt(cryp)) {
1872		u32 out_tag[AES_BLOCK_32];
1873
1874		/* Get and write tag */
1875		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
 
 
1876		scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1877	} else {
1878		/* Get and check tag */
1879		u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1880
1881		scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1882		readsl(cryp->regs + cryp->caps->dout, out_tag, AES_BLOCK_32);
 
 
1883
1884		if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1885			ret = -EBADMSG;
1886	}
1887
1888	/* Disable cryp */
1889	cfg &= ~CR_CRYPEN;
1890	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1891
1892	return ret;
1893}
1894
1895static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1896{
1897	u32 cr;
1898
1899	if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1900		/*
1901		 * In this case, we need to increment manually the ctr counter,
1902		 * as HW doesn't handle the U32 carry.
1903		 */
1904		crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1905
1906		cr = stm32_cryp_read(cryp, cryp->caps->cr);
1907		stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1908
1909		stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1910
1911		stm32_cryp_write(cryp, cryp->caps->cr, cr);
1912	}
1913
1914	/* The IV registers are BE  */
1915	cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1916	cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1917	cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1918	cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1919}
1920
1921static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1922{
 
1923	u32 block[AES_BLOCK_32];
1924
1925	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
 
 
1926	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1927							     cryp->payload_out), 1);
1928	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1929				   cryp->payload_out);
1930}
1931
1932static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1933{
 
1934	u32 block[AES_BLOCK_32] = {0};
1935
1936	scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1937							    cryp->payload_in), 0);
1938	writesl(cryp->regs + cryp->caps->din, block, cryp->hw_blocksize / sizeof(u32));
 
 
1939	cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1940}
1941
1942static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1943{
1944	int err;
1945	u32 cfg, block[AES_BLOCK_32] = {0};
1946	unsigned int i;
1947
1948	/* 'Special workaround' procedure described in the datasheet */
1949
1950	/* a) disable ip */
1951	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1952	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1953	cfg &= ~CR_CRYPEN;
1954	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1955
1956	/* b) Update IV1R */
1957	stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1958
1959	/* c) change mode to CTR */
1960	cfg &= ~CR_ALGO_MASK;
1961	cfg |= CR_AES_CTR;
1962	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1963
1964	/* a) enable IP */
1965	cfg |= CR_CRYPEN;
1966	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1967
1968	/* b) pad and write the last block */
1969	stm32_cryp_irq_write_block(cryp);
1970	/* wait end of process */
1971	err = stm32_cryp_wait_output(cryp);
1972	if (err) {
1973		dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1974		return stm32_cryp_finish_req(cryp, err);
1975	}
1976
1977	/* c) get and store encrypted data */
1978	/*
1979	 * Same code as stm32_cryp_irq_read_data(), but we want to store
1980	 * block value
1981	 */
1982	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
 
1983
1984	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1985							     cryp->payload_out), 1);
1986	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1987				   cryp->payload_out);
1988
1989	/* d) change mode back to AES GCM */
1990	cfg &= ~CR_ALGO_MASK;
1991	cfg |= CR_AES_GCM;
1992	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1993
1994	/* e) change phase to Final */
1995	cfg &= ~CR_PH_MASK;
1996	cfg |= CR_PH_FINAL;
1997	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1998
1999	/* f) write padded data */
2000	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
 
2001
2002	/* g) Empty fifo out */
2003	err = stm32_cryp_wait_output(cryp);
2004	if (err) {
2005		dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
2006		return stm32_cryp_finish_req(cryp, err);
2007	}
2008
2009	for (i = 0; i < AES_BLOCK_32; i++)
2010		stm32_cryp_read(cryp, cryp->caps->dout);
2011
2012	/* h) run the he normal Final phase */
2013	stm32_cryp_finish_req(cryp, 0);
2014}
2015
2016static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
2017{
2018	u32 cfg;
2019
2020	/* disable ip, set NPBLB and reneable ip */
2021	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
2022	cfg &= ~CR_CRYPEN;
2023	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
2024
2025	cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
2026	cfg |= CR_CRYPEN;
2027	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
2028}
2029
2030static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
2031{
2032	int err = 0;
2033	u32 cfg, iv1tmp;
2034	u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
2035	u32 block[AES_BLOCK_32] = {0};
2036	unsigned int i;
2037
2038	/* 'Special workaround' procedure described in the datasheet */
2039
2040	/* a) disable ip */
2041	stm32_cryp_write(cryp, cryp->caps->imsc, 0);
2042
2043	cfg = stm32_cryp_read(cryp, cryp->caps->cr);
2044	cfg &= ~CR_CRYPEN;
2045	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
2046
2047	/* b) get IV1 from CRYP_CSGCMCCM7 */
2048	iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
2049
2050	/* c) Load CRYP_CSGCMCCMxR */
2051	for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
2052		cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
2053
2054	/* d) Write IV1R */
2055	stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
2056
2057	/* e) change mode to CTR */
2058	cfg &= ~CR_ALGO_MASK;
2059	cfg |= CR_AES_CTR;
2060	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
2061
2062	/* a) enable IP */
2063	cfg |= CR_CRYPEN;
2064	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
2065
2066	/* b) pad and write the last block */
2067	stm32_cryp_irq_write_block(cryp);
2068	/* wait end of process */
2069	err = stm32_cryp_wait_output(cryp);
2070	if (err) {
2071		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
2072		return stm32_cryp_finish_req(cryp, err);
2073	}
2074
2075	/* c) get and store decrypted data */
2076	/*
2077	 * Same code as stm32_cryp_irq_read_data(), but we want to store
2078	 * block value
2079	 */
2080	readsl(cryp->regs + cryp->caps->dout, block, cryp->hw_blocksize / sizeof(u32));
 
2081
2082	scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
2083							     cryp->payload_out), 1);
2084	cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
2085
2086	/* d) Load again CRYP_CSGCMCCMxR */
2087	for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
2088		cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
2089
2090	/* e) change mode back to AES CCM */
2091	cfg &= ~CR_ALGO_MASK;
2092	cfg |= CR_AES_CCM;
2093	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
2094
2095	/* f) change phase to header */
2096	cfg &= ~CR_PH_MASK;
2097	cfg |= CR_PH_HEADER;
2098	stm32_cryp_write(cryp, cryp->caps->cr, cfg);
2099
2100	/* g) XOR and write padded data */
2101	for (i = 0; i < ARRAY_SIZE(block); i++) {
2102		block[i] ^= cstmp1[i];
2103		block[i] ^= cstmp2[i];
2104		stm32_cryp_write(cryp, cryp->caps->din, block[i]);
2105	}
2106
2107	/* h) wait for completion */
2108	err = stm32_cryp_wait_busy(cryp);
2109	if (err)
2110		dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
2111
2112	/* i) run the he normal Final phase */
2113	stm32_cryp_finish_req(cryp, err);
2114}
2115
2116static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
2117{
2118	if (unlikely(!cryp->payload_in)) {
2119		dev_warn(cryp->dev, "No more data to process\n");
2120		return;
2121	}
2122
2123	if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
2124		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
2125		     is_encrypt(cryp))) {
2126		/* Padding for AES GCM encryption */
2127		if (cryp->caps->padding_wa) {
2128			/* Special case 1 */
2129			stm32_cryp_irq_write_gcm_padded_data(cryp);
2130			return;
2131		}
2132
2133		/* Setting padding bytes (NBBLB) */
2134		stm32_cryp_irq_set_npblb(cryp);
2135	}
2136
2137	if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
2138		     (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
2139		     is_decrypt(cryp))) {
2140		/* Padding for AES CCM decryption */
2141		if (cryp->caps->padding_wa) {
2142			/* Special case 2 */
2143			stm32_cryp_irq_write_ccm_padded_data(cryp);
2144			return;
2145		}
2146
2147		/* Setting padding bytes (NBBLB) */
2148		stm32_cryp_irq_set_npblb(cryp);
2149	}
2150
2151	if (is_aes(cryp) && is_ctr(cryp))
2152		stm32_cryp_check_ctr_counter(cryp);
2153
2154	stm32_cryp_irq_write_block(cryp);
2155}
2156
2157static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
2158{
 
2159	u32 block[AES_BLOCK_32] = {0};
2160	size_t written;
2161
2162	written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
2163
2164	scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
2165
2166	writesl(cryp->regs + cryp->caps->din, block, AES_BLOCK_32);
2167
2168	cryp->header_in -= written;
2169
2170	stm32_crypt_gcmccm_end_header(cryp);
2171}
2172
2173static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
2174{
2175	struct stm32_cryp *cryp = arg;
2176	u32 ph;
2177	u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
2178
2179	if (cryp->irq_status & MISR_OUT)
2180		/* Output FIFO IRQ: read data */
2181		stm32_cryp_irq_read_data(cryp);
2182
2183	if (cryp->irq_status & MISR_IN) {
2184		if (is_gcm(cryp) || is_ccm(cryp)) {
2185			ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
2186			if (unlikely(ph == CR_PH_HEADER))
2187				/* Write Header */
2188				stm32_cryp_irq_write_gcmccm_header(cryp);
2189			else
2190				/* Input FIFO IRQ: write data */
2191				stm32_cryp_irq_write_data(cryp);
2192			if (is_gcm(cryp))
2193				cryp->gcm_ctr++;
2194		} else {
2195			/* Input FIFO IRQ: write data */
2196			stm32_cryp_irq_write_data(cryp);
2197		}
2198	}
2199
2200	/* Mask useless interrupts */
2201	if (!cryp->payload_in && !cryp->header_in)
2202		it_mask &= ~IMSCR_IN;
2203	if (!cryp->payload_out)
2204		it_mask &= ~IMSCR_OUT;
2205	stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
2206
2207	if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out) {
2208		local_bh_disable();
2209		stm32_cryp_finish_req(cryp, 0);
2210		local_bh_enable();
2211	}
2212
2213	return IRQ_HANDLED;
2214}
2215
2216static irqreturn_t stm32_cryp_irq(int irq, void *arg)
2217{
2218	struct stm32_cryp *cryp = arg;
2219
2220	cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
2221
2222	return IRQ_WAKE_THREAD;
2223}
2224
2225static int stm32_cryp_dma_init(struct stm32_cryp *cryp)
2226{
2227	struct dma_slave_config dma_conf;
2228	struct dma_chan *chan;
2229	int ret;
2230
2231	memset(&dma_conf, 0, sizeof(dma_conf));
2232
2233	dma_conf.direction = DMA_MEM_TO_DEV;
2234	dma_conf.dst_addr = cryp->phys_base + cryp->caps->din;
2235	dma_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2236	dma_conf.dst_maxburst = CRYP_DMA_BURST_REG;
2237	dma_conf.device_fc = false;
2238
2239	chan = dma_request_chan(cryp->dev, "in");
2240	if (IS_ERR(chan))
2241		return PTR_ERR(chan);
2242
2243	cryp->dma_lch_in = chan;
2244	ret = dmaengine_slave_config(cryp->dma_lch_in, &dma_conf);
2245	if (ret) {
2246		dma_release_channel(cryp->dma_lch_in);
2247		cryp->dma_lch_in = NULL;
2248		dev_err(cryp->dev, "Couldn't configure DMA in slave.\n");
2249		return ret;
2250	}
2251
2252	memset(&dma_conf, 0, sizeof(dma_conf));
2253
2254	dma_conf.direction = DMA_DEV_TO_MEM;
2255	dma_conf.src_addr = cryp->phys_base + cryp->caps->dout;
2256	dma_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
2257	dma_conf.src_maxburst = CRYP_DMA_BURST_REG;
2258	dma_conf.device_fc = false;
2259
2260	chan = dma_request_chan(cryp->dev, "out");
2261	if (IS_ERR(chan)) {
2262		dma_release_channel(cryp->dma_lch_in);
2263		cryp->dma_lch_in = NULL;
2264		return PTR_ERR(chan);
2265	}
2266
2267	cryp->dma_lch_out = chan;
2268
2269	ret = dmaengine_slave_config(cryp->dma_lch_out, &dma_conf);
2270	if (ret) {
2271		dma_release_channel(cryp->dma_lch_out);
2272		cryp->dma_lch_out = NULL;
2273		dev_err(cryp->dev, "Couldn't configure DMA out slave.\n");
2274		dma_release_channel(cryp->dma_lch_in);
2275		cryp->dma_lch_in = NULL;
2276		return ret;
2277	}
2278
2279	init_completion(&cryp->dma_completion);
2280
2281	return 0;
2282}
2283
2284static struct skcipher_engine_alg crypto_algs[] = {
2285{
2286	.base = {
2287		.base.cra_name		= "ecb(aes)",
2288		.base.cra_driver_name	= "stm32-ecb-aes",
2289		.base.cra_priority	= 300,
2290		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2291		.base.cra_blocksize	= AES_BLOCK_SIZE,
2292		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
2293		.base.cra_alignmask	= 0,
2294		.base.cra_module	= THIS_MODULE,
2295
2296		.init			= stm32_cryp_init_tfm,
2297		.min_keysize		= AES_MIN_KEY_SIZE,
2298		.max_keysize		= AES_MAX_KEY_SIZE,
2299		.setkey			= stm32_cryp_aes_setkey,
2300		.encrypt		= stm32_cryp_aes_ecb_encrypt,
2301		.decrypt		= stm32_cryp_aes_ecb_decrypt,
2302	},
2303	.op = {
2304		.do_one_request = stm32_cryp_cipher_one_req,
2305	},
2306},
2307{
2308	.base = {
2309		.base.cra_name		= "cbc(aes)",
2310		.base.cra_driver_name	= "stm32-cbc-aes",
2311		.base.cra_priority	= 300,
2312		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2313		.base.cra_blocksize	= AES_BLOCK_SIZE,
2314		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
2315		.base.cra_alignmask	= 0,
2316		.base.cra_module	= THIS_MODULE,
2317
2318		.init			= stm32_cryp_init_tfm,
2319		.min_keysize		= AES_MIN_KEY_SIZE,
2320		.max_keysize		= AES_MAX_KEY_SIZE,
2321		.ivsize			= AES_BLOCK_SIZE,
2322		.setkey			= stm32_cryp_aes_setkey,
2323		.encrypt		= stm32_cryp_aes_cbc_encrypt,
2324		.decrypt		= stm32_cryp_aes_cbc_decrypt,
2325	},
2326	.op = {
2327		.do_one_request = stm32_cryp_cipher_one_req,
2328	},
2329},
2330{
2331	.base = {
2332		.base.cra_name		= "ctr(aes)",
2333		.base.cra_driver_name	= "stm32-ctr-aes",
2334		.base.cra_priority	= 300,
2335		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2336		.base.cra_blocksize	= 1,
2337		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
2338		.base.cra_alignmask	= 0,
2339		.base.cra_module	= THIS_MODULE,
2340
2341		.init			= stm32_cryp_init_tfm,
2342		.min_keysize		= AES_MIN_KEY_SIZE,
2343		.max_keysize		= AES_MAX_KEY_SIZE,
2344		.ivsize			= AES_BLOCK_SIZE,
2345		.setkey			= stm32_cryp_aes_setkey,
2346		.encrypt		= stm32_cryp_aes_ctr_encrypt,
2347		.decrypt		= stm32_cryp_aes_ctr_decrypt,
2348	},
2349	.op = {
2350		.do_one_request = stm32_cryp_cipher_one_req,
2351	},
2352},
2353{
2354	.base = {
2355		.base.cra_name		= "ecb(des)",
2356		.base.cra_driver_name	= "stm32-ecb-des",
2357		.base.cra_priority	= 300,
2358		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2359		.base.cra_blocksize	= DES_BLOCK_SIZE,
2360		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
2361		.base.cra_alignmask	= 0,
2362		.base.cra_module	= THIS_MODULE,
2363
2364		.init			= stm32_cryp_init_tfm,
2365		.min_keysize		= DES_BLOCK_SIZE,
2366		.max_keysize		= DES_BLOCK_SIZE,
2367		.setkey			= stm32_cryp_des_setkey,
2368		.encrypt		= stm32_cryp_des_ecb_encrypt,
2369		.decrypt		= stm32_cryp_des_ecb_decrypt,
2370	},
2371	.op = {
2372		.do_one_request = stm32_cryp_cipher_one_req,
2373	},
2374},
2375{
2376	.base = {
2377		.base.cra_name		= "cbc(des)",
2378		.base.cra_driver_name	= "stm32-cbc-des",
2379		.base.cra_priority	= 300,
2380		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2381		.base.cra_blocksize	= DES_BLOCK_SIZE,
2382		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
2383		.base.cra_alignmask	= 0,
2384		.base.cra_module	= THIS_MODULE,
2385
2386		.init			= stm32_cryp_init_tfm,
2387		.min_keysize		= DES_BLOCK_SIZE,
2388		.max_keysize		= DES_BLOCK_SIZE,
2389		.ivsize			= DES_BLOCK_SIZE,
2390		.setkey			= stm32_cryp_des_setkey,
2391		.encrypt		= stm32_cryp_des_cbc_encrypt,
2392		.decrypt		= stm32_cryp_des_cbc_decrypt,
2393	},
2394	.op = {
2395		.do_one_request = stm32_cryp_cipher_one_req,
2396	},
2397},
2398{
2399	.base = {
2400		.base.cra_name		= "ecb(des3_ede)",
2401		.base.cra_driver_name	= "stm32-ecb-des3",
2402		.base.cra_priority	= 300,
2403		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2404		.base.cra_blocksize	= DES_BLOCK_SIZE,
2405		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
2406		.base.cra_alignmask	= 0,
2407		.base.cra_module	= THIS_MODULE,
2408
2409		.init			= stm32_cryp_init_tfm,
2410		.min_keysize		= 3 * DES_BLOCK_SIZE,
2411		.max_keysize		= 3 * DES_BLOCK_SIZE,
2412		.setkey			= stm32_cryp_tdes_setkey,
2413		.encrypt		= stm32_cryp_tdes_ecb_encrypt,
2414		.decrypt		= stm32_cryp_tdes_ecb_decrypt,
2415	},
2416	.op = {
2417		.do_one_request = stm32_cryp_cipher_one_req,
2418	},
2419},
2420{
2421	.base = {
2422		.base.cra_name		= "cbc(des3_ede)",
2423		.base.cra_driver_name	= "stm32-cbc-des3",
2424		.base.cra_priority	= 300,
2425		.base.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2426		.base.cra_blocksize	= DES_BLOCK_SIZE,
2427		.base.cra_ctxsize	= sizeof(struct stm32_cryp_ctx),
2428		.base.cra_alignmask	= 0,
2429		.base.cra_module	= THIS_MODULE,
2430
2431		.init			= stm32_cryp_init_tfm,
2432		.min_keysize		= 3 * DES_BLOCK_SIZE,
2433		.max_keysize		= 3 * DES_BLOCK_SIZE,
2434		.ivsize			= DES_BLOCK_SIZE,
2435		.setkey			= stm32_cryp_tdes_setkey,
2436		.encrypt		= stm32_cryp_tdes_cbc_encrypt,
2437		.decrypt		= stm32_cryp_tdes_cbc_decrypt,
2438	},
2439	.op = {
2440		.do_one_request = stm32_cryp_cipher_one_req,
2441	},
2442},
2443};
2444
2445static struct aead_engine_alg aead_algs[] = {
2446{
2447	.base.setkey		= stm32_cryp_aes_aead_setkey,
2448	.base.setauthsize	= stm32_cryp_aes_gcm_setauthsize,
2449	.base.encrypt		= stm32_cryp_aes_gcm_encrypt,
2450	.base.decrypt		= stm32_cryp_aes_gcm_decrypt,
2451	.base.init		= stm32_cryp_aes_aead_init,
2452	.base.ivsize		= 12,
2453	.base.maxauthsize	= AES_BLOCK_SIZE,
2454
2455	.base.base = {
2456		.cra_name		= "gcm(aes)",
2457		.cra_driver_name	= "stm32-gcm-aes",
2458		.cra_priority		= 300,
2459		.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2460		.cra_blocksize		= 1,
2461		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
2462		.cra_alignmask		= 0,
2463		.cra_module		= THIS_MODULE,
2464	},
2465	.op = {
2466		.do_one_request = stm32_cryp_aead_one_req,
2467	},
2468},
2469{
2470	.base.setkey		= stm32_cryp_aes_aead_setkey,
2471	.base.setauthsize	= stm32_cryp_aes_ccm_setauthsize,
2472	.base.encrypt		= stm32_cryp_aes_ccm_encrypt,
2473	.base.decrypt		= stm32_cryp_aes_ccm_decrypt,
2474	.base.init		= stm32_cryp_aes_aead_init,
2475	.base.ivsize		= AES_BLOCK_SIZE,
2476	.base.maxauthsize	= AES_BLOCK_SIZE,
2477
2478	.base.base = {
2479		.cra_name		= "ccm(aes)",
2480		.cra_driver_name	= "stm32-ccm-aes",
2481		.cra_priority		= 300,
2482		.cra_flags		= CRYPTO_ALG_ASYNC | CRYPTO_ALG_KERN_DRIVER_ONLY,
2483		.cra_blocksize		= 1,
2484		.cra_ctxsize		= sizeof(struct stm32_cryp_ctx),
2485		.cra_alignmask		= 0,
2486		.cra_module		= THIS_MODULE,
2487	},
2488	.op = {
2489		.do_one_request = stm32_cryp_aead_one_req,
2490	},
2491},
2492};
2493
2494static const struct stm32_cryp_caps ux500_data = {
2495	.aeads_support = false,
2496	.linear_aes_key = true,
2497	.kp_mode = false,
2498	.iv_protection = true,
2499	.swap_final = true,
2500	.padding_wa = true,
2501	.cr = UX500_CRYP_CR,
2502	.sr = UX500_CRYP_SR,
2503	.din = UX500_CRYP_DIN,
2504	.dout = UX500_CRYP_DOUT,
2505	.dmacr = UX500_CRYP_DMACR,
2506	.imsc = UX500_CRYP_IMSC,
2507	.mis = UX500_CRYP_MIS,
2508	.k1l = UX500_CRYP_K1L,
2509	.k1r = UX500_CRYP_K1R,
2510	.k3r = UX500_CRYP_K3R,
2511	.iv0l = UX500_CRYP_IV0L,
2512	.iv0r = UX500_CRYP_IV0R,
2513	.iv1l = UX500_CRYP_IV1L,
2514	.iv1r = UX500_CRYP_IV1R,
2515};
2516
2517static const struct stm32_cryp_caps f7_data = {
2518	.aeads_support = true,
2519	.linear_aes_key = false,
2520	.kp_mode = true,
2521	.iv_protection = false,
2522	.swap_final = true,
2523	.padding_wa = true,
2524	.cr = CRYP_CR,
2525	.sr = CRYP_SR,
2526	.din = CRYP_DIN,
2527	.dout = CRYP_DOUT,
2528	.dmacr = CRYP_DMACR,
2529	.imsc = CRYP_IMSCR,
2530	.mis = CRYP_MISR,
2531	.k1l = CRYP_K1LR,
2532	.k1r = CRYP_K1RR,
2533	.k3r = CRYP_K3RR,
2534	.iv0l = CRYP_IV0LR,
2535	.iv0r = CRYP_IV0RR,
2536	.iv1l = CRYP_IV1LR,
2537	.iv1r = CRYP_IV1RR,
2538};
2539
2540static const struct stm32_cryp_caps mp1_data = {
2541	.aeads_support = true,
2542	.linear_aes_key = false,
2543	.kp_mode = true,
2544	.iv_protection = false,
2545	.swap_final = false,
2546	.padding_wa = false,
2547	.cr = CRYP_CR,
2548	.sr = CRYP_SR,
2549	.din = CRYP_DIN,
2550	.dout = CRYP_DOUT,
2551	.dmacr = CRYP_DMACR,
2552	.imsc = CRYP_IMSCR,
2553	.mis = CRYP_MISR,
2554	.k1l = CRYP_K1LR,
2555	.k1r = CRYP_K1RR,
2556	.k3r = CRYP_K3RR,
2557	.iv0l = CRYP_IV0LR,
2558	.iv0r = CRYP_IV0RR,
2559	.iv1l = CRYP_IV1LR,
2560	.iv1r = CRYP_IV1RR,
2561};
2562
2563static const struct of_device_id stm32_dt_ids[] = {
2564	{ .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
2565	{ .compatible = "st,stm32f756-cryp", .data = &f7_data},
2566	{ .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
2567	{},
2568};
2569MODULE_DEVICE_TABLE(of, stm32_dt_ids);
2570
2571static int stm32_cryp_probe(struct platform_device *pdev)
2572{
2573	struct device *dev = &pdev->dev;
2574	struct stm32_cryp *cryp;
2575	struct reset_control *rst;
2576	int irq, ret;
2577
2578	cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
2579	if (!cryp)
2580		return -ENOMEM;
2581
2582	cryp->caps = of_device_get_match_data(dev);
2583	if (!cryp->caps)
2584		return -ENODEV;
2585
2586	cryp->dev = dev;
2587
2588	cryp->regs = devm_platform_ioremap_resource(pdev, 0);
2589	if (IS_ERR(cryp->regs))
2590		return PTR_ERR(cryp->regs);
2591
2592	cryp->phys_base = platform_get_resource(pdev, IORESOURCE_MEM, 0)->start;
2593
2594	irq = platform_get_irq(pdev, 0);
2595	if (irq < 0)
2596		return irq;
2597
2598	ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
2599					stm32_cryp_irq_thread, IRQF_ONESHOT,
2600					dev_name(dev), cryp);
2601	if (ret) {
2602		dev_err(dev, "Cannot grab IRQ\n");
2603		return ret;
2604	}
2605
2606	cryp->clk = devm_clk_get(dev, NULL);
2607	if (IS_ERR(cryp->clk)) {
2608		dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2609
2610		return PTR_ERR(cryp->clk);
2611	}
2612
2613	ret = clk_prepare_enable(cryp->clk);
2614	if (ret) {
2615		dev_err(cryp->dev, "Failed to enable clock\n");
2616		return ret;
2617	}
2618
2619	pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2620	pm_runtime_use_autosuspend(dev);
2621
2622	pm_runtime_get_noresume(dev);
2623	pm_runtime_set_active(dev);
2624	pm_runtime_enable(dev);
2625
2626	rst = devm_reset_control_get(dev, NULL);
2627	if (IS_ERR(rst)) {
2628		ret = PTR_ERR(rst);
2629		if (ret == -EPROBE_DEFER)
2630			goto err_rst;
2631	} else {
2632		reset_control_assert(rst);
2633		udelay(2);
2634		reset_control_deassert(rst);
2635	}
2636
2637	platform_set_drvdata(pdev, cryp);
2638
2639	ret = stm32_cryp_dma_init(cryp);
2640	switch (ret) {
2641	case 0:
2642		break;
2643	case -ENODEV:
2644		dev_dbg(dev, "DMA mode not available\n");
2645		break;
2646	default:
2647		goto err_dma;
2648	}
2649
2650	spin_lock(&cryp_list.lock);
2651	list_add(&cryp->list, &cryp_list.dev_list);
2652	spin_unlock(&cryp_list.lock);
2653
2654	/* Initialize crypto engine */
2655	cryp->engine = crypto_engine_alloc_init(dev, 1);
2656	if (!cryp->engine) {
2657		dev_err(dev, "Could not init crypto engine\n");
2658		ret = -ENOMEM;
2659		goto err_engine1;
2660	}
2661
2662	ret = crypto_engine_start(cryp->engine);
2663	if (ret) {
2664		dev_err(dev, "Could not start crypto engine\n");
2665		goto err_engine2;
2666	}
2667
2668	ret = crypto_engine_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2669	if (ret) {
2670		dev_err(dev, "Could not register algs\n");
2671		goto err_algs;
2672	}
2673
2674	if (cryp->caps->aeads_support) {
2675		ret = crypto_engine_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2676		if (ret)
2677			goto err_aead_algs;
2678	}
2679
2680	dev_info(dev, "Initialized\n");
2681
2682	pm_runtime_put_sync(dev);
2683
2684	return 0;
2685
2686err_aead_algs:
2687	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2688err_algs:
2689err_engine2:
2690	crypto_engine_exit(cryp->engine);
2691err_engine1:
2692	spin_lock(&cryp_list.lock);
2693	list_del(&cryp->list);
2694	spin_unlock(&cryp_list.lock);
2695
2696	if (cryp->dma_lch_in)
2697		dma_release_channel(cryp->dma_lch_in);
2698	if (cryp->dma_lch_out)
2699		dma_release_channel(cryp->dma_lch_out);
2700err_dma:
2701err_rst:
2702	pm_runtime_disable(dev);
2703	pm_runtime_put_noidle(dev);
2704
2705	clk_disable_unprepare(cryp->clk);
2706
2707	return ret;
2708}
2709
2710static void stm32_cryp_remove(struct platform_device *pdev)
2711{
2712	struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2713	int ret;
2714
2715	ret = pm_runtime_get_sync(cryp->dev);
 
 
 
 
 
2716
2717	if (cryp->caps->aeads_support)
2718		crypto_engine_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2719	crypto_engine_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2720
2721	crypto_engine_exit(cryp->engine);
2722
2723	spin_lock(&cryp_list.lock);
2724	list_del(&cryp->list);
2725	spin_unlock(&cryp_list.lock);
2726
2727	if (cryp->dma_lch_in)
2728		dma_release_channel(cryp->dma_lch_in);
2729
2730	if (cryp->dma_lch_out)
2731		dma_release_channel(cryp->dma_lch_out);
2732
2733	pm_runtime_disable(cryp->dev);
2734	pm_runtime_put_noidle(cryp->dev);
2735
2736	if (ret >= 0)
2737		clk_disable_unprepare(cryp->clk);
 
2738}
2739
2740#ifdef CONFIG_PM
2741static int stm32_cryp_runtime_suspend(struct device *dev)
2742{
2743	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2744
2745	clk_disable_unprepare(cryp->clk);
2746
2747	return 0;
2748}
2749
2750static int stm32_cryp_runtime_resume(struct device *dev)
2751{
2752	struct stm32_cryp *cryp = dev_get_drvdata(dev);
2753	int ret;
2754
2755	ret = clk_prepare_enable(cryp->clk);
2756	if (ret) {
2757		dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2758		return ret;
2759	}
2760
2761	return 0;
2762}
2763#endif
2764
2765static const struct dev_pm_ops stm32_cryp_pm_ops = {
2766	SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2767				pm_runtime_force_resume)
2768	SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2769			   stm32_cryp_runtime_resume, NULL)
2770};
2771
2772static struct platform_driver stm32_cryp_driver = {
2773	.probe  = stm32_cryp_probe,
2774	.remove = stm32_cryp_remove,
2775	.driver = {
2776		.name           = DRIVER_NAME,
2777		.pm		= &stm32_cryp_pm_ops,
2778		.of_match_table = stm32_dt_ids,
2779	},
2780};
2781
2782module_platform_driver(stm32_cryp_driver);
2783
2784MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2785MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2786MODULE_LICENSE("GPL");