Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/init.h>
   3
   4#include <linux/mm.h>
   5#include <linux/spinlock.h>
   6#include <linux/smp.h>
   7#include <linux/interrupt.h>
   8#include <linux/export.h>
   9#include <linux/cpu.h>
  10#include <linux/debugfs.h>
  11#include <linux/sched/smt.h>
  12#include <linux/task_work.h>
  13
  14#include <asm/tlbflush.h>
  15#include <asm/mmu_context.h>
  16#include <asm/nospec-branch.h>
  17#include <asm/cache.h>
  18#include <asm/cacheflush.h>
  19#include <asm/apic.h>
  20#include <asm/perf_event.h>
  21
  22#include "mm_internal.h"
  23
  24#ifdef CONFIG_PARAVIRT
  25# define STATIC_NOPV
  26#else
  27# define STATIC_NOPV			static
  28# define __flush_tlb_local		native_flush_tlb_local
  29# define __flush_tlb_global		native_flush_tlb_global
  30# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
  31# define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
  32#endif
  33
  34/*
  35 *	TLB flushing, formerly SMP-only
  36 *		c/o Linus Torvalds.
  37 *
  38 *	These mean you can really definitely utterly forget about
  39 *	writing to user space from interrupts. (Its not allowed anyway).
  40 *
  41 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
  42 *
  43 *	More scalable flush, from Andi Kleen
  44 *
  45 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  46 */
  47
  48/*
  49 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
  50 * stored in cpu_tlb_state.last_user_mm_spec.
  51 */
  52#define LAST_USER_MM_IBPB	0x1UL
  53#define LAST_USER_MM_L1D_FLUSH	0x2UL
  54#define LAST_USER_MM_SPEC_MASK	(LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
  55
  56/* Bits to set when tlbstate and flush is (re)initialized */
  57#define LAST_USER_MM_INIT	LAST_USER_MM_IBPB
  58
  59/*
  60 * The x86 feature is called PCID (Process Context IDentifier). It is similar
  61 * to what is traditionally called ASID on the RISC processors.
  62 *
  63 * We don't use the traditional ASID implementation, where each process/mm gets
  64 * its own ASID and flush/restart when we run out of ASID space.
  65 *
  66 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  67 * that came by on this CPU, allowing cheaper switch_mm between processes on
  68 * this CPU.
  69 *
  70 * We end up with different spaces for different things. To avoid confusion we
  71 * use different names for each of them:
  72 *
  73 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  74 *         the canonical identifier for an mm
  75 *
  76 * kPCID - [1, TLB_NR_DYN_ASIDS]
  77 *         the value we write into the PCID part of CR3; corresponds to the
  78 *         ASID+1, because PCID 0 is special.
  79 *
  80 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  81 *         for KPTI each mm has two address spaces and thus needs two
  82 *         PCID values, but we can still do with a single ASID denomination
  83 *         for each mm. Corresponds to kPCID + 2048.
  84 *
  85 */
  86
  87/* There are 12 bits of space for ASIDS in CR3 */
  88#define CR3_HW_ASID_BITS		12
  89
  90/*
  91 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  92 * user/kernel switches
  93 */
  94#ifdef CONFIG_PAGE_TABLE_ISOLATION
  95# define PTI_CONSUMED_PCID_BITS	1
  96#else
  97# define PTI_CONSUMED_PCID_BITS	0
  98#endif
  99
 100#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
 101
 102/*
 103 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
 104 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
 105 * use by non-PCID-aware users.
 106 */
 107#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
 108
 109/*
 110 * Given @asid, compute kPCID
 111 */
 112static inline u16 kern_pcid(u16 asid)
 113{
 114	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 115
 116#ifdef CONFIG_PAGE_TABLE_ISOLATION
 117	/*
 118	 * Make sure that the dynamic ASID space does not conflict with the
 119	 * bit we are using to switch between user and kernel ASIDs.
 120	 */
 121	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
 122
 123	/*
 124	 * The ASID being passed in here should have respected the
 125	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
 126	 */
 127	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
 128#endif
 129	/*
 130	 * The dynamically-assigned ASIDs that get passed in are small
 131	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
 132	 * so do not bother to clear it.
 133	 *
 134	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
 135	 * PCID bits.  This serves two purposes.  It prevents a nasty
 136	 * situation in which PCID-unaware code saves CR3, loads some other
 137	 * value (with PCID == 0), and then restores CR3, thus corrupting
 138	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 139	 * that any bugs involving loading a PCID-enabled CR3 with
 140	 * CR4.PCIDE off will trigger deterministically.
 141	 */
 142	return asid + 1;
 143}
 144
 145/*
 146 * Given @asid, compute uPCID
 147 */
 148static inline u16 user_pcid(u16 asid)
 149{
 150	u16 ret = kern_pcid(asid);
 151#ifdef CONFIG_PAGE_TABLE_ISOLATION
 152	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 153#endif
 154	return ret;
 155}
 156
 157static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 158{
 159	if (static_cpu_has(X86_FEATURE_PCID)) {
 160		return __sme_pa(pgd) | kern_pcid(asid);
 161	} else {
 162		VM_WARN_ON_ONCE(asid != 0);
 163		return __sme_pa(pgd);
 164	}
 165}
 166
 167static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 168{
 169	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 170	/*
 171	 * Use boot_cpu_has() instead of this_cpu_has() as this function
 172	 * might be called during early boot. This should work even after
 173	 * boot because all CPU's the have same capabilities:
 174	 */
 175	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 176	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 177}
 178
 179/*
 180 * We get here when we do something requiring a TLB invalidation
 181 * but could not go invalidate all of the contexts.  We do the
 182 * necessary invalidation by clearing out the 'ctx_id' which
 183 * forces a TLB flush when the context is loaded.
 184 */
 185static void clear_asid_other(void)
 186{
 187	u16 asid;
 188
 189	/*
 190	 * This is only expected to be set if we have disabled
 191	 * kernel _PAGE_GLOBAL pages.
 192	 */
 193	if (!static_cpu_has(X86_FEATURE_PTI)) {
 194		WARN_ON_ONCE(1);
 195		return;
 196	}
 197
 198	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 199		/* Do not need to flush the current asid */
 200		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
 201			continue;
 202		/*
 203		 * Make sure the next time we go to switch to
 204		 * this asid, we do a flush:
 205		 */
 206		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
 207	}
 208	this_cpu_write(cpu_tlbstate.invalidate_other, false);
 209}
 210
 211atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 212
 213
 214static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 215			    u16 *new_asid, bool *need_flush)
 216{
 217	u16 asid;
 218
 219	if (!static_cpu_has(X86_FEATURE_PCID)) {
 220		*new_asid = 0;
 221		*need_flush = true;
 222		return;
 223	}
 224
 225	if (this_cpu_read(cpu_tlbstate.invalidate_other))
 226		clear_asid_other();
 227
 228	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 229		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
 230		    next->context.ctx_id)
 231			continue;
 232
 233		*new_asid = asid;
 234		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
 235			       next_tlb_gen);
 236		return;
 237	}
 238
 239	/*
 240	 * We don't currently own an ASID slot on this CPU.
 241	 * Allocate a slot.
 242	 */
 243	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 244	if (*new_asid >= TLB_NR_DYN_ASIDS) {
 245		*new_asid = 0;
 246		this_cpu_write(cpu_tlbstate.next_asid, 1);
 247	}
 248	*need_flush = true;
 249}
 250
 251/*
 252 * Given an ASID, flush the corresponding user ASID.  We can delay this
 253 * until the next time we switch to it.
 254 *
 255 * See SWITCH_TO_USER_CR3.
 256 */
 257static inline void invalidate_user_asid(u16 asid)
 258{
 259	/* There is no user ASID if address space separation is off */
 260	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 261		return;
 262
 263	/*
 264	 * We only have a single ASID if PCID is off and the CR3
 265	 * write will have flushed it.
 266	 */
 267	if (!cpu_feature_enabled(X86_FEATURE_PCID))
 268		return;
 269
 270	if (!static_cpu_has(X86_FEATURE_PTI))
 271		return;
 272
 273	__set_bit(kern_pcid(asid),
 274		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 275}
 276
 277static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 278{
 279	unsigned long new_mm_cr3;
 280
 281	if (need_flush) {
 282		invalidate_user_asid(new_asid);
 283		new_mm_cr3 = build_cr3(pgdir, new_asid);
 284	} else {
 285		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
 286	}
 287
 288	/*
 289	 * Caution: many callers of this function expect
 290	 * that load_cr3() is serializing and orders TLB
 291	 * fills with respect to the mm_cpumask writes.
 292	 */
 293	write_cr3(new_mm_cr3);
 294}
 295
 296void leave_mm(int cpu)
 297{
 298	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 299
 300	/*
 301	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
 302	 * If so, our callers still expect us to flush the TLB, but there
 303	 * aren't any user TLB entries in init_mm to worry about.
 304	 *
 305	 * This needs to happen before any other sanity checks due to
 306	 * intel_idle's shenanigans.
 307	 */
 308	if (loaded_mm == &init_mm)
 309		return;
 310
 311	/* Warn if we're not lazy. */
 312	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
 313
 314	switch_mm(NULL, &init_mm, NULL);
 315}
 316EXPORT_SYMBOL_GPL(leave_mm);
 317
 318void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 319	       struct task_struct *tsk)
 320{
 321	unsigned long flags;
 322
 323	local_irq_save(flags);
 324	switch_mm_irqs_off(prev, next, tsk);
 325	local_irq_restore(flags);
 326}
 327
 328/*
 329 * Invoked from return to user/guest by a task that opted-in to L1D
 330 * flushing but ended up running on an SMT enabled core due to wrong
 331 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
 332 * contract which this task requested.
 333 */
 334static void l1d_flush_force_sigbus(struct callback_head *ch)
 335{
 336	force_sig(SIGBUS);
 337}
 338
 339static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
 340				struct task_struct *next)
 341{
 342	/* Flush L1D if the outgoing task requests it */
 343	if (prev_mm & LAST_USER_MM_L1D_FLUSH)
 344		wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
 345
 346	/* Check whether the incoming task opted in for L1D flush */
 347	if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
 348		return;
 349
 350	/*
 351	 * Validate that it is not running on an SMT sibling as this would
 352	 * make the excercise pointless because the siblings share L1D. If
 353	 * it runs on a SMT sibling, notify it with SIGBUS on return to
 354	 * user/guest
 355	 */
 356	if (this_cpu_read(cpu_info.smt_active)) {
 357		clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
 358		next->l1d_flush_kill.func = l1d_flush_force_sigbus;
 359		task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
 360	}
 361}
 362
 363static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
 364{
 365	unsigned long next_tif = read_task_thread_flags(next);
 366	unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
 367
 368	/*
 369	 * Ensure that the bit shift above works as expected and the two flags
 370	 * end up in bit 0 and 1.
 371	 */
 372	BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
 373
 374	return (unsigned long)next->mm | spec_bits;
 375}
 376
 377static void cond_mitigation(struct task_struct *next)
 378{
 379	unsigned long prev_mm, next_mm;
 380
 381	if (!next || !next->mm)
 382		return;
 383
 384	next_mm = mm_mangle_tif_spec_bits(next);
 385	prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
 386
 387	/*
 388	 * Avoid user/user BTB poisoning by flushing the branch predictor
 389	 * when switching between processes. This stops one process from
 390	 * doing Spectre-v2 attacks on another.
 391	 *
 392	 * Both, the conditional and the always IBPB mode use the mm
 393	 * pointer to avoid the IBPB when switching between tasks of the
 394	 * same process. Using the mm pointer instead of mm->context.ctx_id
 395	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
 396	 * less impossible to control by an attacker. Aside of that it
 397	 * would only affect the first schedule so the theoretically
 398	 * exposed data is not really interesting.
 399	 */
 400	if (static_branch_likely(&switch_mm_cond_ibpb)) {
 
 
 401		/*
 402		 * This is a bit more complex than the always mode because
 403		 * it has to handle two cases:
 404		 *
 405		 * 1) Switch from a user space task (potential attacker)
 406		 *    which has TIF_SPEC_IB set to a user space task
 407		 *    (potential victim) which has TIF_SPEC_IB not set.
 408		 *
 409		 * 2) Switch from a user space task (potential attacker)
 410		 *    which has TIF_SPEC_IB not set to a user space task
 411		 *    (potential victim) which has TIF_SPEC_IB set.
 412		 *
 413		 * This could be done by unconditionally issuing IBPB when
 414		 * a task which has TIF_SPEC_IB set is either scheduled in
 415		 * or out. Though that results in two flushes when:
 416		 *
 417		 * - the same user space task is scheduled out and later
 418		 *   scheduled in again and only a kernel thread ran in
 419		 *   between.
 420		 *
 421		 * - a user space task belonging to the same process is
 422		 *   scheduled in after a kernel thread ran in between
 423		 *
 424		 * - a user space task belonging to the same process is
 425		 *   scheduled in immediately.
 426		 *
 427		 * Optimize this with reasonably small overhead for the
 428		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
 429		 * pointer of the incoming task which is stored in
 430		 * cpu_tlbstate.last_user_mm_spec for comparison.
 431		 *
 
 
 
 
 432		 * Issue IBPB only if the mm's are different and one or
 433		 * both have the IBPB bit set.
 434		 */
 435		if (next_mm != prev_mm &&
 436		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
 437			indirect_branch_prediction_barrier();
 
 
 438	}
 439
 440	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
 441		/*
 442		 * Only flush when switching to a user space task with a
 443		 * different context than the user space task which ran
 444		 * last on this CPU.
 445		 */
 446		if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
 447					(unsigned long)next->mm)
 448			indirect_branch_prediction_barrier();
 
 
 449	}
 450
 451	if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
 452		/*
 453		 * Flush L1D when the outgoing task requested it and/or
 454		 * check whether the incoming task requested L1D flushing
 455		 * and ended up on an SMT sibling.
 456		 */
 457		if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
 458			l1d_flush_evaluate(prev_mm, next_mm, next);
 459	}
 460
 461	this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
 462}
 463
 464#ifdef CONFIG_PERF_EVENTS
 465static inline void cr4_update_pce_mm(struct mm_struct *mm)
 466{
 467	if (static_branch_unlikely(&rdpmc_always_available_key) ||
 468	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
 469	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
 470		/*
 471		 * Clear the existing dirty counters to
 472		 * prevent the leak for an RDPMC task.
 473		 */
 474		perf_clear_dirty_counters();
 475		cr4_set_bits_irqsoff(X86_CR4_PCE);
 476	} else
 477		cr4_clear_bits_irqsoff(X86_CR4_PCE);
 478}
 479
 480void cr4_update_pce(void *ignored)
 481{
 482	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
 483}
 484
 485#else
 486static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
 487#endif
 488
 489void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 490			struct task_struct *tsk)
 491{
 492	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 493	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 494	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
 495	unsigned cpu = smp_processor_id();
 496	u64 next_tlb_gen;
 497	bool need_flush;
 498	u16 new_asid;
 499
 500	/*
 501	 * NB: The scheduler will call us with prev == next when switching
 502	 * from lazy TLB mode to normal mode if active_mm isn't changing.
 503	 * When this happens, we don't assume that CR3 (and hence
 504	 * cpu_tlbstate.loaded_mm) matches next.
 505	 *
 506	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 507	 */
 508
 509	/* We don't want flush_tlb_func() to run concurrently with us. */
 510	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 511		WARN_ON_ONCE(!irqs_disabled());
 512
 513	/*
 514	 * Verify that CR3 is what we think it is.  This will catch
 515	 * hypothetical buggy code that directly switches to swapper_pg_dir
 516	 * without going through leave_mm() / switch_mm_irqs_off() or that
 517	 * does something like write_cr3(read_cr3_pa()).
 518	 *
 519	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 520	 * isn't free.
 521	 */
 522#ifdef CONFIG_DEBUG_VM
 523	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
 524		/*
 525		 * If we were to BUG here, we'd be very likely to kill
 526		 * the system so hard that we don't see the call trace.
 527		 * Try to recover instead by ignoring the error and doing
 528		 * a global flush to minimize the chance of corruption.
 529		 *
 530		 * (This is far from being a fully correct recovery.
 531		 *  Architecturally, the CPU could prefetch something
 532		 *  back into an incorrect ASID slot and leave it there
 533		 *  to cause trouble down the road.  It's better than
 534		 *  nothing, though.)
 535		 */
 536		__flush_tlb_all();
 537	}
 538#endif
 539	if (was_lazy)
 540		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
 541
 542	/*
 543	 * The membarrier system call requires a full memory barrier and
 544	 * core serialization before returning to user-space, after
 545	 * storing to rq->curr, when changing mm.  This is because
 546	 * membarrier() sends IPIs to all CPUs that are in the target mm
 547	 * to make them issue memory barriers.  However, if another CPU
 548	 * switches to/from the target mm concurrently with
 549	 * membarrier(), it can cause that CPU not to receive an IPI
 550	 * when it really should issue a memory barrier.  Writing to CR3
 551	 * provides that full memory barrier and core serializing
 552	 * instruction.
 553	 */
 554	if (real_prev == next) {
 555		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 556			   next->context.ctx_id);
 557
 558		/*
 559		 * Even in lazy TLB mode, the CPU should stay set in the
 560		 * mm_cpumask. The TLB shootdown code can figure out from
 561		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
 562		 */
 563		if (WARN_ON_ONCE(real_prev != &init_mm &&
 564				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 565			cpumask_set_cpu(cpu, mm_cpumask(next));
 566
 567		/*
 568		 * If the CPU is not in lazy TLB mode, we are just switching
 569		 * from one thread in a process to another thread in the same
 570		 * process. No TLB flush required.
 571		 */
 572		if (!was_lazy)
 573			return;
 574
 575		/*
 576		 * Read the tlb_gen to check whether a flush is needed.
 577		 * If the TLB is up to date, just use it.
 578		 * The barrier synchronizes with the tlb_gen increment in
 579		 * the TLB shootdown code.
 580		 */
 581		smp_mb();
 582		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 583		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
 584				next_tlb_gen)
 585			return;
 586
 587		/*
 588		 * TLB contents went out of date while we were in lazy
 589		 * mode. Fall through to the TLB switching code below.
 590		 */
 591		new_asid = prev_asid;
 592		need_flush = true;
 593	} else {
 594		/*
 595		 * Apply process to process speculation vulnerability
 596		 * mitigations if applicable.
 
 597		 */
 598		cond_mitigation(tsk);
 599
 600		/*
 601		 * Stop remote flushes for the previous mm.
 602		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
 603		 * but the bitmap manipulation can cause cache line contention.
 604		 */
 605		if (real_prev != &init_mm) {
 606			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
 607						mm_cpumask(real_prev)));
 608			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 609		}
 610
 611		/*
 612		 * Start remote flushes and then read tlb_gen.
 613		 */
 614		if (next != &init_mm)
 615			cpumask_set_cpu(cpu, mm_cpumask(next));
 616		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 617
 618		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 619
 620		/* Let nmi_uaccess_okay() know that we're changing CR3. */
 621		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 622		barrier();
 623	}
 624
 625	if (need_flush) {
 626		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 627		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 628		load_new_mm_cr3(next->pgd, new_asid, true);
 629
 630		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 631	} else {
 632		/* The new ASID is already up to date. */
 633		load_new_mm_cr3(next->pgd, new_asid, false);
 634
 635		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
 636	}
 637
 638	/* Make sure we write CR3 before loaded_mm. */
 639	barrier();
 640
 641	this_cpu_write(cpu_tlbstate.loaded_mm, next);
 642	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 643
 644	if (next != real_prev) {
 645		cr4_update_pce_mm(next);
 646		switch_ldt(real_prev, next);
 647	}
 648}
 649
 650/*
 651 * Please ignore the name of this function.  It should be called
 652 * switch_to_kernel_thread().
 653 *
 654 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 655 * kernel thread or other context without an mm.  Acceptable implementations
 656 * include doing nothing whatsoever, switching to init_mm, or various clever
 657 * lazy tricks to try to minimize TLB flushes.
 658 *
 659 * The scheduler reserves the right to call enter_lazy_tlb() several times
 660 * in a row.  It will notify us that we're going back to a real mm by
 661 * calling switch_mm_irqs_off().
 662 */
 663void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 664{
 665	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 666		return;
 667
 668	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
 669}
 670
 671/*
 672 * Call this when reinitializing a CPU.  It fixes the following potential
 673 * problems:
 674 *
 675 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 676 *   because the CPU was taken down and came back up with CR3's PCID
 677 *   bits clear.  CPU hotplug can do this.
 678 *
 679 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 680 *
 681 * - The CPU went so far out to lunch that it may have missed a TLB
 682 *   flush.
 683 */
 684void initialize_tlbstate_and_flush(void)
 685{
 686	int i;
 687	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 688	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 689	unsigned long cr3 = __read_cr3();
 690
 691	/* Assert that CR3 already references the right mm. */
 692	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 693
 694	/*
 695	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 696	 * doesn't work like other CR4 bits because it can only be set from
 697	 * long mode.)
 698	 */
 699	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 700		!(cr4_read_shadow() & X86_CR4_PCIDE));
 701
 702	/* Force ASID 0 and force a TLB flush. */
 703	write_cr3(build_cr3(mm->pgd, 0));
 704
 705	/* Reinitialize tlbstate. */
 706	this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
 707	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 708	this_cpu_write(cpu_tlbstate.next_asid, 1);
 709	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 710	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 711
 712	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 713		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 714}
 715
 716/*
 717 * flush_tlb_func()'s memory ordering requirement is that any
 718 * TLB fills that happen after we flush the TLB are ordered after we
 719 * read active_mm's tlb_gen.  We don't need any explicit barriers
 720 * because all x86 flush operations are serializing and the
 721 * atomic64_read operation won't be reordered by the compiler.
 722 */
 723static void flush_tlb_func(void *info)
 724{
 725	/*
 726	 * We have three different tlb_gen values in here.  They are:
 727	 *
 728	 * - mm_tlb_gen:     the latest generation.
 729	 * - local_tlb_gen:  the generation that this CPU has already caught
 730	 *                   up to.
 731	 * - f->new_tlb_gen: the generation that the requester of the flush
 732	 *                   wants us to catch up to.
 733	 */
 734	const struct flush_tlb_info *f = info;
 735	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 736	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 
 737	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 738	bool local = smp_processor_id() == f->initiating_cpu;
 739	unsigned long nr_invalidate = 0;
 740	u64 mm_tlb_gen;
 741
 742	/* This code cannot presently handle being reentered. */
 743	VM_WARN_ON(!irqs_disabled());
 744
 745	if (!local) {
 746		inc_irq_stat(irq_tlb_count);
 747		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 748
 749		/* Can only happen on remote CPUs */
 750		if (f->mm && f->mm != loaded_mm)
 751			return;
 752	}
 753
 754	if (unlikely(loaded_mm == &init_mm))
 755		return;
 756
 757	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 758		   loaded_mm->context.ctx_id);
 759
 760	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
 761		/*
 762		 * We're in lazy mode.  We need to at least flush our
 763		 * paging-structure cache to avoid speculatively reading
 764		 * garbage into our TLB.  Since switching to init_mm is barely
 765		 * slower than a minimal flush, just switch to init_mm.
 766		 *
 767		 * This should be rare, with native_flush_tlb_multi() skipping
 768		 * IPIs to lazy TLB mode CPUs.
 769		 */
 770		switch_mm_irqs_off(NULL, &init_mm, NULL);
 771		return;
 772	}
 773
 774	if (unlikely(f->new_tlb_gen != TLB_GENERATION_INVALID &&
 775		     f->new_tlb_gen <= local_tlb_gen)) {
 776		/*
 777		 * The TLB is already up to date in respect to f->new_tlb_gen.
 778		 * While the core might be still behind mm_tlb_gen, checking
 779		 * mm_tlb_gen unnecessarily would have negative caching effects
 780		 * so avoid it.
 781		 */
 782		return;
 783	}
 784
 785	/*
 786	 * Defer mm_tlb_gen reading as long as possible to avoid cache
 787	 * contention.
 788	 */
 789	mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 790
 791	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 792		/*
 793		 * There's nothing to do: we're already up to date.  This can
 794		 * happen if two concurrent flushes happen -- the first flush to
 795		 * be handled can catch us all the way up, leaving no work for
 796		 * the second flush.
 797		 */
 798		goto done;
 799	}
 800
 801	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 802	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 803
 804	/*
 805	 * If we get to this point, we know that our TLB is out of date.
 806	 * This does not strictly imply that we need to flush (it's
 807	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 808	 * going to need to flush in the very near future, so we might
 809	 * as well get it over with.
 810	 *
 811	 * The only question is whether to do a full or partial flush.
 812	 *
 813	 * We do a partial flush if requested and two extra conditions
 814	 * are met:
 815	 *
 816	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 817	 *    we've always done all needed flushes to catch up to
 818	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 819	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 820	 *    us up to date for tlb_gen 3 is the partial flush we're
 821	 *    processing.
 822	 *
 823	 *    As an example of why this check is needed, suppose that there
 824	 *    are two concurrent flushes.  The first is a full flush that
 825	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
 826	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
 827	 *    processed on this CPU in reverse order, we'll see
 828	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 829	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
 830	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
 831	 *    1 without the full flush that's needed for tlb_gen 2.
 832	 *
 833	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
 834	 *    Partial TLB flushes are not all that much cheaper than full TLB
 835	 *    flushes, so it seems unlikely that it would be a performance win
 836	 *    to do a partial flush if that won't bring our TLB fully up to
 837	 *    date.  By doing a full flush instead, we can increase
 838	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 839	 *    avoid another flush in the very near future.
 840	 */
 841	if (f->end != TLB_FLUSH_ALL &&
 842	    f->new_tlb_gen == local_tlb_gen + 1 &&
 843	    f->new_tlb_gen == mm_tlb_gen) {
 844		/* Partial flush */
 845		unsigned long addr = f->start;
 846
 847		/* Partial flush cannot have invalid generations */
 848		VM_WARN_ON(f->new_tlb_gen == TLB_GENERATION_INVALID);
 849
 850		/* Partial flush must have valid mm */
 851		VM_WARN_ON(f->mm == NULL);
 852
 853		nr_invalidate = (f->end - f->start) >> f->stride_shift;
 854
 855		while (addr < f->end) {
 856			flush_tlb_one_user(addr);
 857			addr += 1UL << f->stride_shift;
 858		}
 859		if (local)
 860			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
 861	} else {
 862		/* Full flush. */
 863		nr_invalidate = TLB_FLUSH_ALL;
 864
 865		flush_tlb_local();
 866		if (local)
 867			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 868	}
 869
 870	/* Both paths above update our state to mm_tlb_gen. */
 871	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 872
 873	/* Tracing is done in a unified manner to reduce the code size */
 874done:
 875	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
 876				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
 877						  TLB_LOCAL_MM_SHOOTDOWN,
 878			nr_invalidate);
 879}
 880
 881static bool tlb_is_not_lazy(int cpu, void *data)
 882{
 883	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
 884}
 885
 
 
 886DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
 887EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
 888
 889STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
 890					 const struct flush_tlb_info *info)
 891{
 892	/*
 893	 * Do accounting and tracing. Note that there are (and have always been)
 894	 * cases in which a remote TLB flush will be traced, but eventually
 895	 * would not happen.
 896	 */
 897	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 898	if (info->end == TLB_FLUSH_ALL)
 899		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 900	else
 901		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 902				(info->end - info->start) >> PAGE_SHIFT);
 903
 904	/*
 905	 * If no page tables were freed, we can skip sending IPIs to
 906	 * CPUs in lazy TLB mode. They will flush the CPU themselves
 907	 * at the next context switch.
 908	 *
 909	 * However, if page tables are getting freed, we need to send the
 910	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
 911	 * up on the new contents of what used to be page tables, while
 912	 * doing a speculative memory access.
 913	 */
 914	if (info->freed_tables)
 915		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
 916	else
 917		on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
 918				(void *)info, 1, cpumask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 919}
 920
 921void flush_tlb_multi(const struct cpumask *cpumask,
 922		      const struct flush_tlb_info *info)
 923{
 924	__flush_tlb_multi(cpumask, info);
 925}
 926
 927/*
 928 * See Documentation/x86/tlb.rst for details.  We choose 33
 929 * because it is large enough to cover the vast majority (at
 930 * least 95%) of allocations, and is small enough that we are
 931 * confident it will not cause too much overhead.  Each single
 932 * flush is about 100 ns, so this caps the maximum overhead at
 933 * _about_ 3,000 ns.
 934 *
 935 * This is in units of pages.
 936 */
 937unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 938
 939static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
 940
 941#ifdef CONFIG_DEBUG_VM
 942static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
 943#endif
 944
 945static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
 946			unsigned long start, unsigned long end,
 947			unsigned int stride_shift, bool freed_tables,
 948			u64 new_tlb_gen)
 949{
 950	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
 951
 952#ifdef CONFIG_DEBUG_VM
 953	/*
 954	 * Ensure that the following code is non-reentrant and flush_tlb_info
 955	 * is not overwritten. This means no TLB flushing is initiated by
 956	 * interrupt handlers and machine-check exception handlers.
 957	 */
 958	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
 959#endif
 960
 961	info->start		= start;
 962	info->end		= end;
 963	info->mm		= mm;
 964	info->stride_shift	= stride_shift;
 965	info->freed_tables	= freed_tables;
 966	info->new_tlb_gen	= new_tlb_gen;
 967	info->initiating_cpu	= smp_processor_id();
 968
 969	return info;
 970}
 971
 972static void put_flush_tlb_info(void)
 973{
 974#ifdef CONFIG_DEBUG_VM
 975	/* Complete reentrancy prevention checks */
 976	barrier();
 977	this_cpu_dec(flush_tlb_info_idx);
 978#endif
 979}
 980
 981void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 982				unsigned long end, unsigned int stride_shift,
 983				bool freed_tables)
 984{
 985	struct flush_tlb_info *info;
 986	u64 new_tlb_gen;
 987	int cpu;
 988
 989	cpu = get_cpu();
 990
 991	/* Should we flush just the requested range? */
 992	if ((end == TLB_FLUSH_ALL) ||
 993	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
 994		start = 0;
 995		end = TLB_FLUSH_ALL;
 996	}
 997
 998	/* This is also a barrier that synchronizes with switch_mm(). */
 999	new_tlb_gen = inc_mm_tlb_gen(mm);
1000
1001	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
1002				  new_tlb_gen);
1003
1004	/*
1005	 * flush_tlb_multi() is not optimized for the common case in which only
1006	 * a local TLB flush is needed. Optimize this use-case by calling
1007	 * flush_tlb_func_local() directly in this case.
1008	 */
1009	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
1010		flush_tlb_multi(mm_cpumask(mm), info);
1011	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
1012		lockdep_assert_irqs_enabled();
1013		local_irq_disable();
1014		flush_tlb_func(info);
1015		local_irq_enable();
1016	}
1017
1018	put_flush_tlb_info();
1019	put_cpu();
1020}
1021
1022
1023static void do_flush_tlb_all(void *info)
1024{
1025	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1026	__flush_tlb_all();
1027}
1028
1029void flush_tlb_all(void)
1030{
1031	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1032	on_each_cpu(do_flush_tlb_all, NULL, 1);
1033}
1034
1035static void do_kernel_range_flush(void *info)
1036{
1037	struct flush_tlb_info *f = info;
1038	unsigned long addr;
1039
1040	/* flush range by one by one 'invlpg' */
1041	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1042		flush_tlb_one_kernel(addr);
1043}
1044
1045void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1046{
1047	/* Balance as user space task's flush, a bit conservative */
1048	if (end == TLB_FLUSH_ALL ||
1049	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1050		on_each_cpu(do_flush_tlb_all, NULL, 1);
1051	} else {
1052		struct flush_tlb_info *info;
1053
1054		preempt_disable();
1055		info = get_flush_tlb_info(NULL, start, end, 0, false,
1056					  TLB_GENERATION_INVALID);
1057
1058		on_each_cpu(do_kernel_range_flush, info, 1);
1059
1060		put_flush_tlb_info();
1061		preempt_enable();
1062	}
1063}
1064
1065/*
1066 * This can be used from process context to figure out what the value of
1067 * CR3 is without needing to do a (slow) __read_cr3().
1068 *
1069 * It's intended to be used for code like KVM that sneakily changes CR3
1070 * and needs to restore it.  It needs to be used very carefully.
1071 */
1072unsigned long __get_current_cr3_fast(void)
1073{
1074	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1075		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1076
1077	/* For now, be very restrictive about when this can be called. */
1078	VM_WARN_ON(in_nmi() || preemptible());
1079
1080	VM_BUG_ON(cr3 != __read_cr3());
1081	return cr3;
1082}
1083EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1084
1085/*
1086 * Flush one page in the kernel mapping
1087 */
1088void flush_tlb_one_kernel(unsigned long addr)
1089{
1090	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1091
1092	/*
1093	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1094	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1095	 * use PCID if we also use global PTEs for the kernel mapping, and
1096	 * INVLPG flushes global translations across all address spaces.
1097	 *
1098	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1099	 * __flush_tlb_one_user() will flush the given address for the current
1100	 * kernel address space and for its usermode counterpart, but it does
1101	 * not flush it for other address spaces.
1102	 */
1103	flush_tlb_one_user(addr);
1104
1105	if (!static_cpu_has(X86_FEATURE_PTI))
1106		return;
1107
1108	/*
1109	 * See above.  We need to propagate the flush to all other address
1110	 * spaces.  In principle, we only need to propagate it to kernelmode
1111	 * address spaces, but the extra bookkeeping we would need is not
1112	 * worth it.
1113	 */
1114	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1115}
1116
1117/*
1118 * Flush one page in the user mapping
1119 */
1120STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1121{
1122	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1123
1124	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1125
1126	if (!static_cpu_has(X86_FEATURE_PTI))
1127		return;
1128
1129	/*
1130	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1131	 * Just use invalidate_user_asid() in case we are called early.
1132	 */
1133	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1134		invalidate_user_asid(loaded_mm_asid);
1135	else
1136		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1137}
1138
1139void flush_tlb_one_user(unsigned long addr)
1140{
1141	__flush_tlb_one_user(addr);
1142}
1143
1144/*
1145 * Flush everything
1146 */
1147STATIC_NOPV void native_flush_tlb_global(void)
1148{
1149	unsigned long flags;
1150
1151	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1152		/*
1153		 * Using INVPCID is considerably faster than a pair of writes
1154		 * to CR4 sandwiched inside an IRQ flag save/restore.
1155		 *
1156		 * Note, this works with CR4.PCIDE=0 or 1.
1157		 */
1158		invpcid_flush_all();
1159		return;
1160	}
1161
1162	/*
1163	 * Read-modify-write to CR4 - protect it from preemption and
1164	 * from interrupts. (Use the raw variant because this code can
1165	 * be called from deep inside debugging code.)
1166	 */
1167	raw_local_irq_save(flags);
1168
1169	__native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
 
 
 
 
1170
1171	raw_local_irq_restore(flags);
1172}
1173
1174/*
1175 * Flush the entire current user mapping
1176 */
1177STATIC_NOPV void native_flush_tlb_local(void)
1178{
1179	/*
1180	 * Preemption or interrupts must be disabled to protect the access
1181	 * to the per CPU variable and to prevent being preempted between
1182	 * read_cr3() and write_cr3().
1183	 */
1184	WARN_ON_ONCE(preemptible());
1185
1186	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1187
1188	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1189	native_write_cr3(__native_read_cr3());
1190}
1191
1192void flush_tlb_local(void)
1193{
1194	__flush_tlb_local();
1195}
1196
1197/*
1198 * Flush everything
1199 */
1200void __flush_tlb_all(void)
1201{
1202	/*
1203	 * This is to catch users with enabled preemption and the PGE feature
1204	 * and don't trigger the warning in __native_flush_tlb().
1205	 */
1206	VM_WARN_ON_ONCE(preemptible());
1207
1208	if (boot_cpu_has(X86_FEATURE_PGE)) {
1209		__flush_tlb_global();
1210	} else {
1211		/*
1212		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1213		 */
1214		flush_tlb_local();
1215	}
1216}
1217EXPORT_SYMBOL_GPL(__flush_tlb_all);
1218
1219void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1220{
1221	struct flush_tlb_info *info;
1222
1223	int cpu = get_cpu();
1224
1225	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false,
1226				  TLB_GENERATION_INVALID);
1227	/*
1228	 * flush_tlb_multi() is not optimized for the common case in which only
1229	 * a local TLB flush is needed. Optimize this use-case by calling
1230	 * flush_tlb_func_local() directly in this case.
1231	 */
1232	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1233		flush_tlb_multi(&batch->cpumask, info);
1234	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1235		lockdep_assert_irqs_enabled();
1236		local_irq_disable();
1237		flush_tlb_func(info);
1238		local_irq_enable();
1239	}
1240
1241	cpumask_clear(&batch->cpumask);
1242
1243	put_flush_tlb_info();
1244	put_cpu();
1245}
1246
1247/*
1248 * Blindly accessing user memory from NMI context can be dangerous
1249 * if we're in the middle of switching the current user task or
1250 * switching the loaded mm.  It can also be dangerous if we
1251 * interrupted some kernel code that was temporarily using a
1252 * different mm.
1253 */
1254bool nmi_uaccess_okay(void)
1255{
1256	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1257	struct mm_struct *current_mm = current->mm;
1258
1259	VM_WARN_ON_ONCE(!loaded_mm);
1260
1261	/*
1262	 * The condition we want to check is
1263	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1264	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1265	 * is supposed to be reasonably fast.
1266	 *
1267	 * Instead, we check the almost equivalent but somewhat conservative
1268	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1269	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1270	 */
1271	if (loaded_mm != current_mm)
1272		return false;
1273
1274	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1275
1276	return true;
1277}
1278
1279static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1280			     size_t count, loff_t *ppos)
1281{
1282	char buf[32];
1283	unsigned int len;
1284
1285	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1286	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1287}
1288
1289static ssize_t tlbflush_write_file(struct file *file,
1290		 const char __user *user_buf, size_t count, loff_t *ppos)
1291{
1292	char buf[32];
1293	ssize_t len;
1294	int ceiling;
1295
1296	len = min(count, sizeof(buf) - 1);
1297	if (copy_from_user(buf, user_buf, len))
1298		return -EFAULT;
1299
1300	buf[len] = '\0';
1301	if (kstrtoint(buf, 0, &ceiling))
1302		return -EINVAL;
1303
1304	if (ceiling < 0)
1305		return -EINVAL;
1306
1307	tlb_single_page_flush_ceiling = ceiling;
1308	return count;
1309}
1310
1311static const struct file_operations fops_tlbflush = {
1312	.read = tlbflush_read_file,
1313	.write = tlbflush_write_file,
1314	.llseek = default_llseek,
1315};
1316
1317static int __init create_tlb_single_page_flush_ceiling(void)
1318{
1319	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1320			    arch_debugfs_dir, NULL, &fops_tlbflush);
1321	return 0;
1322}
1323late_initcall(create_tlb_single_page_flush_ceiling);
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-only
   2#include <linux/init.h>
   3
   4#include <linux/mm.h>
   5#include <linux/spinlock.h>
   6#include <linux/smp.h>
   7#include <linux/interrupt.h>
   8#include <linux/export.h>
   9#include <linux/cpu.h>
  10#include <linux/debugfs.h>
 
 
  11
  12#include <asm/tlbflush.h>
  13#include <asm/mmu_context.h>
  14#include <asm/nospec-branch.h>
  15#include <asm/cache.h>
 
  16#include <asm/apic.h>
  17#include <asm/perf_event.h>
  18
  19#include "mm_internal.h"
  20
  21#ifdef CONFIG_PARAVIRT
  22# define STATIC_NOPV
  23#else
  24# define STATIC_NOPV			static
  25# define __flush_tlb_local		native_flush_tlb_local
  26# define __flush_tlb_global		native_flush_tlb_global
  27# define __flush_tlb_one_user(addr)	native_flush_tlb_one_user(addr)
  28# define __flush_tlb_multi(msk, info)	native_flush_tlb_multi(msk, info)
  29#endif
  30
  31/*
  32 *	TLB flushing, formerly SMP-only
  33 *		c/o Linus Torvalds.
  34 *
  35 *	These mean you can really definitely utterly forget about
  36 *	writing to user space from interrupts. (Its not allowed anyway).
  37 *
  38 *	Optimizations Manfred Spraul <manfred@colorfullife.com>
  39 *
  40 *	More scalable flush, from Andi Kleen
  41 *
  42 *	Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
  43 */
  44
  45/*
  46 * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
  47 * stored in cpu_tlb_state.last_user_mm_ibpb.
  48 */
  49#define LAST_USER_MM_IBPB	0x1UL
 
 
 
 
 
  50
  51/*
  52 * The x86 feature is called PCID (Process Context IDentifier). It is similar
  53 * to what is traditionally called ASID on the RISC processors.
  54 *
  55 * We don't use the traditional ASID implementation, where each process/mm gets
  56 * its own ASID and flush/restart when we run out of ASID space.
  57 *
  58 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
  59 * that came by on this CPU, allowing cheaper switch_mm between processes on
  60 * this CPU.
  61 *
  62 * We end up with different spaces for different things. To avoid confusion we
  63 * use different names for each of them:
  64 *
  65 * ASID  - [0, TLB_NR_DYN_ASIDS-1]
  66 *         the canonical identifier for an mm
  67 *
  68 * kPCID - [1, TLB_NR_DYN_ASIDS]
  69 *         the value we write into the PCID part of CR3; corresponds to the
  70 *         ASID+1, because PCID 0 is special.
  71 *
  72 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
  73 *         for KPTI each mm has two address spaces and thus needs two
  74 *         PCID values, but we can still do with a single ASID denomination
  75 *         for each mm. Corresponds to kPCID + 2048.
  76 *
  77 */
  78
  79/* There are 12 bits of space for ASIDS in CR3 */
  80#define CR3_HW_ASID_BITS		12
  81
  82/*
  83 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
  84 * user/kernel switches
  85 */
  86#ifdef CONFIG_PAGE_TABLE_ISOLATION
  87# define PTI_CONSUMED_PCID_BITS	1
  88#else
  89# define PTI_CONSUMED_PCID_BITS	0
  90#endif
  91
  92#define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
  93
  94/*
  95 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid.  -1 below to account
  96 * for them being zero-based.  Another -1 is because PCID 0 is reserved for
  97 * use by non-PCID-aware users.
  98 */
  99#define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
 100
 101/*
 102 * Given @asid, compute kPCID
 103 */
 104static inline u16 kern_pcid(u16 asid)
 105{
 106	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 107
 108#ifdef CONFIG_PAGE_TABLE_ISOLATION
 109	/*
 110	 * Make sure that the dynamic ASID space does not conflict with the
 111	 * bit we are using to switch between user and kernel ASIDs.
 112	 */
 113	BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
 114
 115	/*
 116	 * The ASID being passed in here should have respected the
 117	 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
 118	 */
 119	VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
 120#endif
 121	/*
 122	 * The dynamically-assigned ASIDs that get passed in are small
 123	 * (<TLB_NR_DYN_ASIDS).  They never have the high switch bit set,
 124	 * so do not bother to clear it.
 125	 *
 126	 * If PCID is on, ASID-aware code paths put the ASID+1 into the
 127	 * PCID bits.  This serves two purposes.  It prevents a nasty
 128	 * situation in which PCID-unaware code saves CR3, loads some other
 129	 * value (with PCID == 0), and then restores CR3, thus corrupting
 130	 * the TLB for ASID 0 if the saved ASID was nonzero.  It also means
 131	 * that any bugs involving loading a PCID-enabled CR3 with
 132	 * CR4.PCIDE off will trigger deterministically.
 133	 */
 134	return asid + 1;
 135}
 136
 137/*
 138 * Given @asid, compute uPCID
 139 */
 140static inline u16 user_pcid(u16 asid)
 141{
 142	u16 ret = kern_pcid(asid);
 143#ifdef CONFIG_PAGE_TABLE_ISOLATION
 144	ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
 145#endif
 146	return ret;
 147}
 148
 149static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
 150{
 151	if (static_cpu_has(X86_FEATURE_PCID)) {
 152		return __sme_pa(pgd) | kern_pcid(asid);
 153	} else {
 154		VM_WARN_ON_ONCE(asid != 0);
 155		return __sme_pa(pgd);
 156	}
 157}
 158
 159static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
 160{
 161	VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
 162	/*
 163	 * Use boot_cpu_has() instead of this_cpu_has() as this function
 164	 * might be called during early boot. This should work even after
 165	 * boot because all CPU's the have same capabilities:
 166	 */
 167	VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
 168	return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
 169}
 170
 171/*
 172 * We get here when we do something requiring a TLB invalidation
 173 * but could not go invalidate all of the contexts.  We do the
 174 * necessary invalidation by clearing out the 'ctx_id' which
 175 * forces a TLB flush when the context is loaded.
 176 */
 177static void clear_asid_other(void)
 178{
 179	u16 asid;
 180
 181	/*
 182	 * This is only expected to be set if we have disabled
 183	 * kernel _PAGE_GLOBAL pages.
 184	 */
 185	if (!static_cpu_has(X86_FEATURE_PTI)) {
 186		WARN_ON_ONCE(1);
 187		return;
 188	}
 189
 190	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 191		/* Do not need to flush the current asid */
 192		if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
 193			continue;
 194		/*
 195		 * Make sure the next time we go to switch to
 196		 * this asid, we do a flush:
 197		 */
 198		this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
 199	}
 200	this_cpu_write(cpu_tlbstate.invalidate_other, false);
 201}
 202
 203atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
 204
 205
 206static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
 207			    u16 *new_asid, bool *need_flush)
 208{
 209	u16 asid;
 210
 211	if (!static_cpu_has(X86_FEATURE_PCID)) {
 212		*new_asid = 0;
 213		*need_flush = true;
 214		return;
 215	}
 216
 217	if (this_cpu_read(cpu_tlbstate.invalidate_other))
 218		clear_asid_other();
 219
 220	for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
 221		if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
 222		    next->context.ctx_id)
 223			continue;
 224
 225		*new_asid = asid;
 226		*need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
 227			       next_tlb_gen);
 228		return;
 229	}
 230
 231	/*
 232	 * We don't currently own an ASID slot on this CPU.
 233	 * Allocate a slot.
 234	 */
 235	*new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
 236	if (*new_asid >= TLB_NR_DYN_ASIDS) {
 237		*new_asid = 0;
 238		this_cpu_write(cpu_tlbstate.next_asid, 1);
 239	}
 240	*need_flush = true;
 241}
 242
 243/*
 244 * Given an ASID, flush the corresponding user ASID.  We can delay this
 245 * until the next time we switch to it.
 246 *
 247 * See SWITCH_TO_USER_CR3.
 248 */
 249static inline void invalidate_user_asid(u16 asid)
 250{
 251	/* There is no user ASID if address space separation is off */
 252	if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
 253		return;
 254
 255	/*
 256	 * We only have a single ASID if PCID is off and the CR3
 257	 * write will have flushed it.
 258	 */
 259	if (!cpu_feature_enabled(X86_FEATURE_PCID))
 260		return;
 261
 262	if (!static_cpu_has(X86_FEATURE_PTI))
 263		return;
 264
 265	__set_bit(kern_pcid(asid),
 266		  (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
 267}
 268
 269static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
 270{
 271	unsigned long new_mm_cr3;
 272
 273	if (need_flush) {
 274		invalidate_user_asid(new_asid);
 275		new_mm_cr3 = build_cr3(pgdir, new_asid);
 276	} else {
 277		new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
 278	}
 279
 280	/*
 281	 * Caution: many callers of this function expect
 282	 * that load_cr3() is serializing and orders TLB
 283	 * fills with respect to the mm_cpumask writes.
 284	 */
 285	write_cr3(new_mm_cr3);
 286}
 287
 288void leave_mm(int cpu)
 289{
 290	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 291
 292	/*
 293	 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
 294	 * If so, our callers still expect us to flush the TLB, but there
 295	 * aren't any user TLB entries in init_mm to worry about.
 296	 *
 297	 * This needs to happen before any other sanity checks due to
 298	 * intel_idle's shenanigans.
 299	 */
 300	if (loaded_mm == &init_mm)
 301		return;
 302
 303	/* Warn if we're not lazy. */
 304	WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
 305
 306	switch_mm(NULL, &init_mm, NULL);
 307}
 308EXPORT_SYMBOL_GPL(leave_mm);
 309
 310void switch_mm(struct mm_struct *prev, struct mm_struct *next,
 311	       struct task_struct *tsk)
 312{
 313	unsigned long flags;
 314
 315	local_irq_save(flags);
 316	switch_mm_irqs_off(prev, next, tsk);
 317	local_irq_restore(flags);
 318}
 319
 320static unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 321{
 322	unsigned long next_tif = task_thread_info(next)->flags;
 323	unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
 
 
 
 
 
 
 324
 325	return (unsigned long)next->mm | ibpb;
 326}
 327
 328static void cond_ibpb(struct task_struct *next)
 329{
 
 
 330	if (!next || !next->mm)
 331		return;
 332
 
 
 
 333	/*
 
 
 
 
 334	 * Both, the conditional and the always IBPB mode use the mm
 335	 * pointer to avoid the IBPB when switching between tasks of the
 336	 * same process. Using the mm pointer instead of mm->context.ctx_id
 337	 * opens a hypothetical hole vs. mm_struct reuse, which is more or
 338	 * less impossible to control by an attacker. Aside of that it
 339	 * would only affect the first schedule so the theoretically
 340	 * exposed data is not really interesting.
 341	 */
 342	if (static_branch_likely(&switch_mm_cond_ibpb)) {
 343		unsigned long prev_mm, next_mm;
 344
 345		/*
 346		 * This is a bit more complex than the always mode because
 347		 * it has to handle two cases:
 348		 *
 349		 * 1) Switch from a user space task (potential attacker)
 350		 *    which has TIF_SPEC_IB set to a user space task
 351		 *    (potential victim) which has TIF_SPEC_IB not set.
 352		 *
 353		 * 2) Switch from a user space task (potential attacker)
 354		 *    which has TIF_SPEC_IB not set to a user space task
 355		 *    (potential victim) which has TIF_SPEC_IB set.
 356		 *
 357		 * This could be done by unconditionally issuing IBPB when
 358		 * a task which has TIF_SPEC_IB set is either scheduled in
 359		 * or out. Though that results in two flushes when:
 360		 *
 361		 * - the same user space task is scheduled out and later
 362		 *   scheduled in again and only a kernel thread ran in
 363		 *   between.
 364		 *
 365		 * - a user space task belonging to the same process is
 366		 *   scheduled in after a kernel thread ran in between
 367		 *
 368		 * - a user space task belonging to the same process is
 369		 *   scheduled in immediately.
 370		 *
 371		 * Optimize this with reasonably small overhead for the
 372		 * above cases. Mangle the TIF_SPEC_IB bit into the mm
 373		 * pointer of the incoming task which is stored in
 374		 * cpu_tlbstate.last_user_mm_ibpb for comparison.
 375		 */
 376		next_mm = mm_mangle_tif_spec_ib(next);
 377		prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
 378
 379		/*
 380		 * Issue IBPB only if the mm's are different and one or
 381		 * both have the IBPB bit set.
 382		 */
 383		if (next_mm != prev_mm &&
 384		    (next_mm | prev_mm) & LAST_USER_MM_IBPB)
 385			indirect_branch_prediction_barrier();
 386
 387		this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
 388	}
 389
 390	if (static_branch_unlikely(&switch_mm_always_ibpb)) {
 391		/*
 392		 * Only flush when switching to a user space task with a
 393		 * different context than the user space task which ran
 394		 * last on this CPU.
 395		 */
 396		if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
 
 397			indirect_branch_prediction_barrier();
 398			this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
 399		}
 400	}
 
 
 
 
 
 
 
 
 
 
 
 
 401}
 402
 403#ifdef CONFIG_PERF_EVENTS
 404static inline void cr4_update_pce_mm(struct mm_struct *mm)
 405{
 406	if (static_branch_unlikely(&rdpmc_always_available_key) ||
 407	    (!static_branch_unlikely(&rdpmc_never_available_key) &&
 408	     atomic_read(&mm->context.perf_rdpmc_allowed))) {
 409		/*
 410		 * Clear the existing dirty counters to
 411		 * prevent the leak for an RDPMC task.
 412		 */
 413		perf_clear_dirty_counters();
 414		cr4_set_bits_irqsoff(X86_CR4_PCE);
 415	} else
 416		cr4_clear_bits_irqsoff(X86_CR4_PCE);
 417}
 418
 419void cr4_update_pce(void *ignored)
 420{
 421	cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
 422}
 423
 424#else
 425static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
 426#endif
 427
 428void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
 429			struct task_struct *tsk)
 430{
 431	struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
 432	u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 433	bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
 434	unsigned cpu = smp_processor_id();
 435	u64 next_tlb_gen;
 436	bool need_flush;
 437	u16 new_asid;
 438
 439	/*
 440	 * NB: The scheduler will call us with prev == next when switching
 441	 * from lazy TLB mode to normal mode if active_mm isn't changing.
 442	 * When this happens, we don't assume that CR3 (and hence
 443	 * cpu_tlbstate.loaded_mm) matches next.
 444	 *
 445	 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
 446	 */
 447
 448	/* We don't want flush_tlb_func() to run concurrently with us. */
 449	if (IS_ENABLED(CONFIG_PROVE_LOCKING))
 450		WARN_ON_ONCE(!irqs_disabled());
 451
 452	/*
 453	 * Verify that CR3 is what we think it is.  This will catch
 454	 * hypothetical buggy code that directly switches to swapper_pg_dir
 455	 * without going through leave_mm() / switch_mm_irqs_off() or that
 456	 * does something like write_cr3(read_cr3_pa()).
 457	 *
 458	 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
 459	 * isn't free.
 460	 */
 461#ifdef CONFIG_DEBUG_VM
 462	if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
 463		/*
 464		 * If we were to BUG here, we'd be very likely to kill
 465		 * the system so hard that we don't see the call trace.
 466		 * Try to recover instead by ignoring the error and doing
 467		 * a global flush to minimize the chance of corruption.
 468		 *
 469		 * (This is far from being a fully correct recovery.
 470		 *  Architecturally, the CPU could prefetch something
 471		 *  back into an incorrect ASID slot and leave it there
 472		 *  to cause trouble down the road.  It's better than
 473		 *  nothing, though.)
 474		 */
 475		__flush_tlb_all();
 476	}
 477#endif
 478	if (was_lazy)
 479		this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
 480
 481	/*
 482	 * The membarrier system call requires a full memory barrier and
 483	 * core serialization before returning to user-space, after
 484	 * storing to rq->curr, when changing mm.  This is because
 485	 * membarrier() sends IPIs to all CPUs that are in the target mm
 486	 * to make them issue memory barriers.  However, if another CPU
 487	 * switches to/from the target mm concurrently with
 488	 * membarrier(), it can cause that CPU not to receive an IPI
 489	 * when it really should issue a memory barrier.  Writing to CR3
 490	 * provides that full memory barrier and core serializing
 491	 * instruction.
 492	 */
 493	if (real_prev == next) {
 494		VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
 495			   next->context.ctx_id);
 496
 497		/*
 498		 * Even in lazy TLB mode, the CPU should stay set in the
 499		 * mm_cpumask. The TLB shootdown code can figure out from
 500		 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
 501		 */
 502		if (WARN_ON_ONCE(real_prev != &init_mm &&
 503				 !cpumask_test_cpu(cpu, mm_cpumask(next))))
 504			cpumask_set_cpu(cpu, mm_cpumask(next));
 505
 506		/*
 507		 * If the CPU is not in lazy TLB mode, we are just switching
 508		 * from one thread in a process to another thread in the same
 509		 * process. No TLB flush required.
 510		 */
 511		if (!was_lazy)
 512			return;
 513
 514		/*
 515		 * Read the tlb_gen to check whether a flush is needed.
 516		 * If the TLB is up to date, just use it.
 517		 * The barrier synchronizes with the tlb_gen increment in
 518		 * the TLB shootdown code.
 519		 */
 520		smp_mb();
 521		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 522		if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
 523				next_tlb_gen)
 524			return;
 525
 526		/*
 527		 * TLB contents went out of date while we were in lazy
 528		 * mode. Fall through to the TLB switching code below.
 529		 */
 530		new_asid = prev_asid;
 531		need_flush = true;
 532	} else {
 533		/*
 534		 * Avoid user/user BTB poisoning by flushing the branch
 535		 * predictor when switching between processes. This stops
 536		 * one process from doing Spectre-v2 attacks on another.
 537		 */
 538		cond_ibpb(tsk);
 539
 540		/*
 541		 * Stop remote flushes for the previous mm.
 542		 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
 543		 * but the bitmap manipulation can cause cache line contention.
 544		 */
 545		if (real_prev != &init_mm) {
 546			VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
 547						mm_cpumask(real_prev)));
 548			cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
 549		}
 550
 551		/*
 552		 * Start remote flushes and then read tlb_gen.
 553		 */
 554		if (next != &init_mm)
 555			cpumask_set_cpu(cpu, mm_cpumask(next));
 556		next_tlb_gen = atomic64_read(&next->context.tlb_gen);
 557
 558		choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
 559
 560		/* Let nmi_uaccess_okay() know that we're changing CR3. */
 561		this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
 562		barrier();
 563	}
 564
 565	if (need_flush) {
 566		this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
 567		this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
 568		load_new_mm_cr3(next->pgd, new_asid, true);
 569
 570		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
 571	} else {
 572		/* The new ASID is already up to date. */
 573		load_new_mm_cr3(next->pgd, new_asid, false);
 574
 575		trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
 576	}
 577
 578	/* Make sure we write CR3 before loaded_mm. */
 579	barrier();
 580
 581	this_cpu_write(cpu_tlbstate.loaded_mm, next);
 582	this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
 583
 584	if (next != real_prev) {
 585		cr4_update_pce_mm(next);
 586		switch_ldt(real_prev, next);
 587	}
 588}
 589
 590/*
 591 * Please ignore the name of this function.  It should be called
 592 * switch_to_kernel_thread().
 593 *
 594 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
 595 * kernel thread or other context without an mm.  Acceptable implementations
 596 * include doing nothing whatsoever, switching to init_mm, or various clever
 597 * lazy tricks to try to minimize TLB flushes.
 598 *
 599 * The scheduler reserves the right to call enter_lazy_tlb() several times
 600 * in a row.  It will notify us that we're going back to a real mm by
 601 * calling switch_mm_irqs_off().
 602 */
 603void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
 604{
 605	if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
 606		return;
 607
 608	this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
 609}
 610
 611/*
 612 * Call this when reinitializing a CPU.  It fixes the following potential
 613 * problems:
 614 *
 615 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
 616 *   because the CPU was taken down and came back up with CR3's PCID
 617 *   bits clear.  CPU hotplug can do this.
 618 *
 619 * - The TLB contains junk in slots corresponding to inactive ASIDs.
 620 *
 621 * - The CPU went so far out to lunch that it may have missed a TLB
 622 *   flush.
 623 */
 624void initialize_tlbstate_and_flush(void)
 625{
 626	int i;
 627	struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 628	u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
 629	unsigned long cr3 = __read_cr3();
 630
 631	/* Assert that CR3 already references the right mm. */
 632	WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
 633
 634	/*
 635	 * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
 636	 * doesn't work like other CR4 bits because it can only be set from
 637	 * long mode.)
 638	 */
 639	WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
 640		!(cr4_read_shadow() & X86_CR4_PCIDE));
 641
 642	/* Force ASID 0 and force a TLB flush. */
 643	write_cr3(build_cr3(mm->pgd, 0));
 644
 645	/* Reinitialize tlbstate. */
 646	this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
 647	this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
 648	this_cpu_write(cpu_tlbstate.next_asid, 1);
 649	this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
 650	this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
 651
 652	for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
 653		this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
 654}
 655
 656/*
 657 * flush_tlb_func()'s memory ordering requirement is that any
 658 * TLB fills that happen after we flush the TLB are ordered after we
 659 * read active_mm's tlb_gen.  We don't need any explicit barriers
 660 * because all x86 flush operations are serializing and the
 661 * atomic64_read operation won't be reordered by the compiler.
 662 */
 663static void flush_tlb_func(void *info)
 664{
 665	/*
 666	 * We have three different tlb_gen values in here.  They are:
 667	 *
 668	 * - mm_tlb_gen:     the latest generation.
 669	 * - local_tlb_gen:  the generation that this CPU has already caught
 670	 *                   up to.
 671	 * - f->new_tlb_gen: the generation that the requester of the flush
 672	 *                   wants us to catch up to.
 673	 */
 674	const struct flush_tlb_info *f = info;
 675	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
 676	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
 677	u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
 678	u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
 679	bool local = smp_processor_id() == f->initiating_cpu;
 680	unsigned long nr_invalidate = 0;
 
 681
 682	/* This code cannot presently handle being reentered. */
 683	VM_WARN_ON(!irqs_disabled());
 684
 685	if (!local) {
 686		inc_irq_stat(irq_tlb_count);
 687		count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 688
 689		/* Can only happen on remote CPUs */
 690		if (f->mm && f->mm != loaded_mm)
 691			return;
 692	}
 693
 694	if (unlikely(loaded_mm == &init_mm))
 695		return;
 696
 697	VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
 698		   loaded_mm->context.ctx_id);
 699
 700	if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
 701		/*
 702		 * We're in lazy mode.  We need to at least flush our
 703		 * paging-structure cache to avoid speculatively reading
 704		 * garbage into our TLB.  Since switching to init_mm is barely
 705		 * slower than a minimal flush, just switch to init_mm.
 706		 *
 707		 * This should be rare, with native_flush_tlb_multi() skipping
 708		 * IPIs to lazy TLB mode CPUs.
 709		 */
 710		switch_mm_irqs_off(NULL, &init_mm, NULL);
 711		return;
 712	}
 713
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 714	if (unlikely(local_tlb_gen == mm_tlb_gen)) {
 715		/*
 716		 * There's nothing to do: we're already up to date.  This can
 717		 * happen if two concurrent flushes happen -- the first flush to
 718		 * be handled can catch us all the way up, leaving no work for
 719		 * the second flush.
 720		 */
 721		goto done;
 722	}
 723
 724	WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
 725	WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
 726
 727	/*
 728	 * If we get to this point, we know that our TLB is out of date.
 729	 * This does not strictly imply that we need to flush (it's
 730	 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
 731	 * going to need to flush in the very near future, so we might
 732	 * as well get it over with.
 733	 *
 734	 * The only question is whether to do a full or partial flush.
 735	 *
 736	 * We do a partial flush if requested and two extra conditions
 737	 * are met:
 738	 *
 739	 * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
 740	 *    we've always done all needed flushes to catch up to
 741	 *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
 742	 *    f->new_tlb_gen == 3, then we know that the flush needed to bring
 743	 *    us up to date for tlb_gen 3 is the partial flush we're
 744	 *    processing.
 745	 *
 746	 *    As an example of why this check is needed, suppose that there
 747	 *    are two concurrent flushes.  The first is a full flush that
 748	 *    changes context.tlb_gen from 1 to 2.  The second is a partial
 749	 *    flush that changes context.tlb_gen from 2 to 3.  If they get
 750	 *    processed on this CPU in reverse order, we'll see
 751	 *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
 752	 *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
 753	 *    3, we'd be break the invariant: we'd update local_tlb_gen above
 754	 *    1 without the full flush that's needed for tlb_gen 2.
 755	 *
 756	 * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimization.
 757	 *    Partial TLB flushes are not all that much cheaper than full TLB
 758	 *    flushes, so it seems unlikely that it would be a performance win
 759	 *    to do a partial flush if that won't bring our TLB fully up to
 760	 *    date.  By doing a full flush instead, we can increase
 761	 *    local_tlb_gen all the way to mm_tlb_gen and we can probably
 762	 *    avoid another flush in the very near future.
 763	 */
 764	if (f->end != TLB_FLUSH_ALL &&
 765	    f->new_tlb_gen == local_tlb_gen + 1 &&
 766	    f->new_tlb_gen == mm_tlb_gen) {
 767		/* Partial flush */
 768		unsigned long addr = f->start;
 769
 
 
 
 
 
 
 770		nr_invalidate = (f->end - f->start) >> f->stride_shift;
 771
 772		while (addr < f->end) {
 773			flush_tlb_one_user(addr);
 774			addr += 1UL << f->stride_shift;
 775		}
 776		if (local)
 777			count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
 778	} else {
 779		/* Full flush. */
 780		nr_invalidate = TLB_FLUSH_ALL;
 781
 782		flush_tlb_local();
 783		if (local)
 784			count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
 785	}
 786
 787	/* Both paths above update our state to mm_tlb_gen. */
 788	this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
 789
 790	/* Tracing is done in a unified manner to reduce the code size */
 791done:
 792	trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
 793				(f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
 794						  TLB_LOCAL_MM_SHOOTDOWN,
 795			nr_invalidate);
 796}
 797
 798static bool tlb_is_not_lazy(int cpu)
 799{
 800	return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
 801}
 802
 803static DEFINE_PER_CPU(cpumask_t, flush_tlb_mask);
 804
 805DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
 806EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
 807
 808STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
 809					 const struct flush_tlb_info *info)
 810{
 811	/*
 812	 * Do accounting and tracing. Note that there are (and have always been)
 813	 * cases in which a remote TLB flush will be traced, but eventually
 814	 * would not happen.
 815	 */
 816	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 817	if (info->end == TLB_FLUSH_ALL)
 818		trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
 819	else
 820		trace_tlb_flush(TLB_REMOTE_SEND_IPI,
 821				(info->end - info->start) >> PAGE_SHIFT);
 822
 823	/*
 824	 * If no page tables were freed, we can skip sending IPIs to
 825	 * CPUs in lazy TLB mode. They will flush the CPU themselves
 826	 * at the next context switch.
 827	 *
 828	 * However, if page tables are getting freed, we need to send the
 829	 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
 830	 * up on the new contents of what used to be page tables, while
 831	 * doing a speculative memory access.
 832	 */
 833	if (info->freed_tables) {
 834		on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
 835	} else {
 836		/*
 837		 * Although we could have used on_each_cpu_cond_mask(),
 838		 * open-coding it has performance advantages, as it eliminates
 839		 * the need for indirect calls or retpolines. In addition, it
 840		 * allows to use a designated cpumask for evaluating the
 841		 * condition, instead of allocating one.
 842		 *
 843		 * This code works under the assumption that there are no nested
 844		 * TLB flushes, an assumption that is already made in
 845		 * flush_tlb_mm_range().
 846		 *
 847		 * cond_cpumask is logically a stack-local variable, but it is
 848		 * more efficient to have it off the stack and not to allocate
 849		 * it on demand. Preemption is disabled and this code is
 850		 * non-reentrant.
 851		 */
 852		struct cpumask *cond_cpumask = this_cpu_ptr(&flush_tlb_mask);
 853		int cpu;
 854
 855		cpumask_clear(cond_cpumask);
 856
 857		for_each_cpu(cpu, cpumask) {
 858			if (tlb_is_not_lazy(cpu))
 859				__cpumask_set_cpu(cpu, cond_cpumask);
 860		}
 861		on_each_cpu_mask(cond_cpumask, flush_tlb_func, (void *)info, true);
 862	}
 863}
 864
 865void flush_tlb_multi(const struct cpumask *cpumask,
 866		      const struct flush_tlb_info *info)
 867{
 868	__flush_tlb_multi(cpumask, info);
 869}
 870
 871/*
 872 * See Documentation/x86/tlb.rst for details.  We choose 33
 873 * because it is large enough to cover the vast majority (at
 874 * least 95%) of allocations, and is small enough that we are
 875 * confident it will not cause too much overhead.  Each single
 876 * flush is about 100 ns, so this caps the maximum overhead at
 877 * _about_ 3,000 ns.
 878 *
 879 * This is in units of pages.
 880 */
 881unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
 882
 883static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
 884
 885#ifdef CONFIG_DEBUG_VM
 886static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
 887#endif
 888
 889static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
 890			unsigned long start, unsigned long end,
 891			unsigned int stride_shift, bool freed_tables,
 892			u64 new_tlb_gen)
 893{
 894	struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
 895
 896#ifdef CONFIG_DEBUG_VM
 897	/*
 898	 * Ensure that the following code is non-reentrant and flush_tlb_info
 899	 * is not overwritten. This means no TLB flushing is initiated by
 900	 * interrupt handlers and machine-check exception handlers.
 901	 */
 902	BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
 903#endif
 904
 905	info->start		= start;
 906	info->end		= end;
 907	info->mm		= mm;
 908	info->stride_shift	= stride_shift;
 909	info->freed_tables	= freed_tables;
 910	info->new_tlb_gen	= new_tlb_gen;
 911	info->initiating_cpu	= smp_processor_id();
 912
 913	return info;
 914}
 915
 916static void put_flush_tlb_info(void)
 917{
 918#ifdef CONFIG_DEBUG_VM
 919	/* Complete reentrancy prevention checks */
 920	barrier();
 921	this_cpu_dec(flush_tlb_info_idx);
 922#endif
 923}
 924
 925void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
 926				unsigned long end, unsigned int stride_shift,
 927				bool freed_tables)
 928{
 929	struct flush_tlb_info *info;
 930	u64 new_tlb_gen;
 931	int cpu;
 932
 933	cpu = get_cpu();
 934
 935	/* Should we flush just the requested range? */
 936	if ((end == TLB_FLUSH_ALL) ||
 937	    ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
 938		start = 0;
 939		end = TLB_FLUSH_ALL;
 940	}
 941
 942	/* This is also a barrier that synchronizes with switch_mm(). */
 943	new_tlb_gen = inc_mm_tlb_gen(mm);
 944
 945	info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
 946				  new_tlb_gen);
 947
 948	/*
 949	 * flush_tlb_multi() is not optimized for the common case in which only
 950	 * a local TLB flush is needed. Optimize this use-case by calling
 951	 * flush_tlb_func_local() directly in this case.
 952	 */
 953	if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
 954		flush_tlb_multi(mm_cpumask(mm), info);
 955	} else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
 956		lockdep_assert_irqs_enabled();
 957		local_irq_disable();
 958		flush_tlb_func(info);
 959		local_irq_enable();
 960	}
 961
 962	put_flush_tlb_info();
 963	put_cpu();
 964}
 965
 966
 967static void do_flush_tlb_all(void *info)
 968{
 969	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
 970	__flush_tlb_all();
 971}
 972
 973void flush_tlb_all(void)
 974{
 975	count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
 976	on_each_cpu(do_flush_tlb_all, NULL, 1);
 977}
 978
 979static void do_kernel_range_flush(void *info)
 980{
 981	struct flush_tlb_info *f = info;
 982	unsigned long addr;
 983
 984	/* flush range by one by one 'invlpg' */
 985	for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
 986		flush_tlb_one_kernel(addr);
 987}
 988
 989void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 990{
 991	/* Balance as user space task's flush, a bit conservative */
 992	if (end == TLB_FLUSH_ALL ||
 993	    (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
 994		on_each_cpu(do_flush_tlb_all, NULL, 1);
 995	} else {
 996		struct flush_tlb_info *info;
 997
 998		preempt_disable();
 999		info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
 
1000
1001		on_each_cpu(do_kernel_range_flush, info, 1);
1002
1003		put_flush_tlb_info();
1004		preempt_enable();
1005	}
1006}
1007
1008/*
1009 * This can be used from process context to figure out what the value of
1010 * CR3 is without needing to do a (slow) __read_cr3().
1011 *
1012 * It's intended to be used for code like KVM that sneakily changes CR3
1013 * and needs to restore it.  It needs to be used very carefully.
1014 */
1015unsigned long __get_current_cr3_fast(void)
1016{
1017	unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1018		this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1019
1020	/* For now, be very restrictive about when this can be called. */
1021	VM_WARN_ON(in_nmi() || preemptible());
1022
1023	VM_BUG_ON(cr3 != __read_cr3());
1024	return cr3;
1025}
1026EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1027
1028/*
1029 * Flush one page in the kernel mapping
1030 */
1031void flush_tlb_one_kernel(unsigned long addr)
1032{
1033	count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1034
1035	/*
1036	 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1037	 * paravirt equivalent.  Even with PCID, this is sufficient: we only
1038	 * use PCID if we also use global PTEs for the kernel mapping, and
1039	 * INVLPG flushes global translations across all address spaces.
1040	 *
1041	 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1042	 * __flush_tlb_one_user() will flush the given address for the current
1043	 * kernel address space and for its usermode counterpart, but it does
1044	 * not flush it for other address spaces.
1045	 */
1046	flush_tlb_one_user(addr);
1047
1048	if (!static_cpu_has(X86_FEATURE_PTI))
1049		return;
1050
1051	/*
1052	 * See above.  We need to propagate the flush to all other address
1053	 * spaces.  In principle, we only need to propagate it to kernelmode
1054	 * address spaces, but the extra bookkeeping we would need is not
1055	 * worth it.
1056	 */
1057	this_cpu_write(cpu_tlbstate.invalidate_other, true);
1058}
1059
1060/*
1061 * Flush one page in the user mapping
1062 */
1063STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1064{
1065	u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1066
1067	asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1068
1069	if (!static_cpu_has(X86_FEATURE_PTI))
1070		return;
1071
1072	/*
1073	 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1074	 * Just use invalidate_user_asid() in case we are called early.
1075	 */
1076	if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1077		invalidate_user_asid(loaded_mm_asid);
1078	else
1079		invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1080}
1081
1082void flush_tlb_one_user(unsigned long addr)
1083{
1084	__flush_tlb_one_user(addr);
1085}
1086
1087/*
1088 * Flush everything
1089 */
1090STATIC_NOPV void native_flush_tlb_global(void)
1091{
1092	unsigned long cr4, flags;
1093
1094	if (static_cpu_has(X86_FEATURE_INVPCID)) {
1095		/*
1096		 * Using INVPCID is considerably faster than a pair of writes
1097		 * to CR4 sandwiched inside an IRQ flag save/restore.
1098		 *
1099		 * Note, this works with CR4.PCIDE=0 or 1.
1100		 */
1101		invpcid_flush_all();
1102		return;
1103	}
1104
1105	/*
1106	 * Read-modify-write to CR4 - protect it from preemption and
1107	 * from interrupts. (Use the raw variant because this code can
1108	 * be called from deep inside debugging code.)
1109	 */
1110	raw_local_irq_save(flags);
1111
1112	cr4 = this_cpu_read(cpu_tlbstate.cr4);
1113	/* toggle PGE */
1114	native_write_cr4(cr4 ^ X86_CR4_PGE);
1115	/* write old PGE again and flush TLBs */
1116	native_write_cr4(cr4);
1117
1118	raw_local_irq_restore(flags);
1119}
1120
1121/*
1122 * Flush the entire current user mapping
1123 */
1124STATIC_NOPV void native_flush_tlb_local(void)
1125{
1126	/*
1127	 * Preemption or interrupts must be disabled to protect the access
1128	 * to the per CPU variable and to prevent being preempted between
1129	 * read_cr3() and write_cr3().
1130	 */
1131	WARN_ON_ONCE(preemptible());
1132
1133	invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1134
1135	/* If current->mm == NULL then the read_cr3() "borrows" an mm */
1136	native_write_cr3(__native_read_cr3());
1137}
1138
1139void flush_tlb_local(void)
1140{
1141	__flush_tlb_local();
1142}
1143
1144/*
1145 * Flush everything
1146 */
1147void __flush_tlb_all(void)
1148{
1149	/*
1150	 * This is to catch users with enabled preemption and the PGE feature
1151	 * and don't trigger the warning in __native_flush_tlb().
1152	 */
1153	VM_WARN_ON_ONCE(preemptible());
1154
1155	if (boot_cpu_has(X86_FEATURE_PGE)) {
1156		__flush_tlb_global();
1157	} else {
1158		/*
1159		 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1160		 */
1161		flush_tlb_local();
1162	}
1163}
1164EXPORT_SYMBOL_GPL(__flush_tlb_all);
1165
1166void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1167{
1168	struct flush_tlb_info *info;
1169
1170	int cpu = get_cpu();
1171
1172	info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0);
 
1173	/*
1174	 * flush_tlb_multi() is not optimized for the common case in which only
1175	 * a local TLB flush is needed. Optimize this use-case by calling
1176	 * flush_tlb_func_local() directly in this case.
1177	 */
1178	if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1179		flush_tlb_multi(&batch->cpumask, info);
1180	} else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1181		lockdep_assert_irqs_enabled();
1182		local_irq_disable();
1183		flush_tlb_func(info);
1184		local_irq_enable();
1185	}
1186
1187	cpumask_clear(&batch->cpumask);
1188
1189	put_flush_tlb_info();
1190	put_cpu();
1191}
1192
1193/*
1194 * Blindly accessing user memory from NMI context can be dangerous
1195 * if we're in the middle of switching the current user task or
1196 * switching the loaded mm.  It can also be dangerous if we
1197 * interrupted some kernel code that was temporarily using a
1198 * different mm.
1199 */
1200bool nmi_uaccess_okay(void)
1201{
1202	struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1203	struct mm_struct *current_mm = current->mm;
1204
1205	VM_WARN_ON_ONCE(!loaded_mm);
1206
1207	/*
1208	 * The condition we want to check is
1209	 * current_mm->pgd == __va(read_cr3_pa()).  This may be slow, though,
1210	 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1211	 * is supposed to be reasonably fast.
1212	 *
1213	 * Instead, we check the almost equivalent but somewhat conservative
1214	 * condition below, and we rely on the fact that switch_mm_irqs_off()
1215	 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1216	 */
1217	if (loaded_mm != current_mm)
1218		return false;
1219
1220	VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1221
1222	return true;
1223}
1224
1225static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1226			     size_t count, loff_t *ppos)
1227{
1228	char buf[32];
1229	unsigned int len;
1230
1231	len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1232	return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1233}
1234
1235static ssize_t tlbflush_write_file(struct file *file,
1236		 const char __user *user_buf, size_t count, loff_t *ppos)
1237{
1238	char buf[32];
1239	ssize_t len;
1240	int ceiling;
1241
1242	len = min(count, sizeof(buf) - 1);
1243	if (copy_from_user(buf, user_buf, len))
1244		return -EFAULT;
1245
1246	buf[len] = '\0';
1247	if (kstrtoint(buf, 0, &ceiling))
1248		return -EINVAL;
1249
1250	if (ceiling < 0)
1251		return -EINVAL;
1252
1253	tlb_single_page_flush_ceiling = ceiling;
1254	return count;
1255}
1256
1257static const struct file_operations fops_tlbflush = {
1258	.read = tlbflush_read_file,
1259	.write = tlbflush_write_file,
1260	.llseek = default_llseek,
1261};
1262
1263static int __init create_tlb_single_page_flush_ceiling(void)
1264{
1265	debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1266			    arch_debugfs_dir, NULL, &fops_tlbflush);
1267	return 0;
1268}
1269late_initcall(create_tlb_single_page_flush_ceiling);