Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * srmmu.c:  SRMMU specific routines for memory management.
   4 *
   5 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   6 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   7 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   8 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   9 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
  10 */
  11
  12#include <linux/seq_file.h>
  13#include <linux/spinlock.h>
  14#include <linux/memblock.h>
  15#include <linux/pagemap.h>
  16#include <linux/vmalloc.h>
  17#include <linux/kdebug.h>
  18#include <linux/export.h>
  19#include <linux/kernel.h>
  20#include <linux/init.h>
  21#include <linux/log2.h>
  22#include <linux/gfp.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25
  26#include <asm/mmu_context.h>
  27#include <asm/cacheflush.h>
  28#include <asm/tlbflush.h>
  29#include <asm/io-unit.h>
  30#include <asm/pgalloc.h>
  31#include <asm/pgtable.h>
  32#include <asm/bitext.h>
  33#include <asm/vaddrs.h>
  34#include <asm/cache.h>
  35#include <asm/traps.h>
  36#include <asm/oplib.h>
  37#include <asm/mbus.h>
  38#include <asm/page.h>
  39#include <asm/asi.h>
 
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
  57EXPORT_SYMBOL(vac_cache_size);
  58int vac_line_size;
  59
  60extern struct resource sparc_iomap;
  61
  62extern unsigned long last_valid_pfn;
  63
  64static pgd_t *srmmu_swapper_pg_dir;
  65
  66const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  67EXPORT_SYMBOL(sparc32_cachetlb_ops);
  68
  69#ifdef CONFIG_SMP
  70const struct sparc32_cachetlb_ops *local_ops;
  71
  72#define FLUSH_BEGIN(mm)
  73#define FLUSH_END
  74#else
  75#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  76#define FLUSH_END	}
  77#endif
  78
  79int flush_page_for_dma_global = 1;
  80
  81char *srmmu_name;
  82
  83ctxd_t *srmmu_ctx_table_phys;
  84static ctxd_t *srmmu_context_table;
  85
  86int viking_mxcc_present;
  87static DEFINE_SPINLOCK(srmmu_context_spinlock);
  88
  89static int is_hypersparc;
  90
  91static int srmmu_cache_pagetables;
  92
  93/* these will be initialized in srmmu_nocache_calcsize() */
  94static unsigned long srmmu_nocache_size;
  95static unsigned long srmmu_nocache_end;
  96
  97/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  98#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  99
 100/* The context table is a nocache user with the biggest alignment needs. */
 101#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 102
 103void *srmmu_nocache_pool;
 104static struct bit_map srmmu_nocache_map;
 105
 106static inline int srmmu_pmd_none(pmd_t pmd)
 107{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 108
 109/* XXX should we hyper_flush_whole_icache here - Anton */
 110static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 
 
 
 111{
 112	pte_t pte;
 
 113
 114	pte = __pte((SRMMU_ET_PTD | (__nocache_pa(pgdp) >> 4)));
 115	set_pte((pte_t *)ctxp, pte);
 
 
 
 116}
 117
 118/*
 119 * Locations of MSI Registers.
 120 */
 121#define MSI_MBUS_ARBEN	0xe0001008	/* MBus Arbiter Enable register */
 122
 123/*
 124 * Useful bits in the MSI Registers.
 125 */
 126#define MSI_ASYNC_MODE  0x80000000	/* Operate the MSI asynchronously */
 127
 128static void msi_set_sync(void)
 129{
 130	__asm__ __volatile__ ("lda [%0] %1, %%g3\n\t"
 131			      "andn %%g3, %2, %%g3\n\t"
 132			      "sta %%g3, [%0] %1\n\t" : :
 133			      "r" (MSI_MBUS_ARBEN),
 134			      "i" (ASI_M_CTL), "r" (MSI_ASYNC_MODE) : "g3");
 
 
 
 135}
 136
 137void pmd_set(pmd_t *pmdp, pte_t *ptep)
 
 138{
 139	unsigned long ptp = __nocache_pa(ptep) >> 4;
 140	set_pte((pte_t *)&pmd_val(*pmdp), __pte(SRMMU_ET_PTD | ptp));
 
 
 
 141}
 142
 143/*
 144 * size: bytes to allocate in the nocache area.
 145 * align: bytes, number to align at.
 146 * Returns the virtual address of the allocated area.
 147 */
 148static void *__srmmu_get_nocache(int size, int align)
 149{
 150	int offset, minsz = 1 << SRMMU_NOCACHE_BITMAP_SHIFT;
 151	unsigned long addr;
 152
 153	if (size < minsz) {
 154		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 155		       size);
 156		size = minsz;
 157	}
 158	if (size & (minsz - 1)) {
 159		printk(KERN_ERR "Size 0x%x unaligned in nocache request\n",
 160		       size);
 161		size += minsz - 1;
 162	}
 163	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 164
 165	offset = bit_map_string_get(&srmmu_nocache_map,
 166				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 167				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 168	if (offset == -1) {
 169		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 170		       size, (int) srmmu_nocache_size,
 171		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 172		return NULL;
 173	}
 174
 175	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 176	return (void *)addr;
 177}
 178
 179void *srmmu_get_nocache(int size, int align)
 180{
 181	void *tmp;
 182
 183	tmp = __srmmu_get_nocache(size, align);
 184
 185	if (tmp)
 186		memset(tmp, 0, size);
 187
 188	return tmp;
 189}
 190
 191void srmmu_free_nocache(void *addr, int size)
 192{
 193	unsigned long vaddr;
 194	int offset;
 195
 196	vaddr = (unsigned long)addr;
 197	if (vaddr < SRMMU_NOCACHE_VADDR) {
 198		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 199		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 200		BUG();
 201	}
 202	if (vaddr + size > srmmu_nocache_end) {
 203		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 204		    vaddr, srmmu_nocache_end);
 205		BUG();
 206	}
 207	if (!is_power_of_2(size)) {
 208		printk("Size 0x%x is not a power of 2\n", size);
 209		BUG();
 210	}
 211	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 212		printk("Size 0x%x is too small\n", size);
 213		BUG();
 214	}
 215	if (vaddr & (size - 1)) {
 216		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 217		BUG();
 218	}
 219
 220	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 221	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 222
 223	bit_map_clear(&srmmu_nocache_map, offset, size);
 224}
 225
 226static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 227						 unsigned long end);
 228
 229/* Return how much physical memory we have.  */
 230static unsigned long __init probe_memory(void)
 231{
 232	unsigned long total = 0;
 233	int i;
 234
 235	for (i = 0; sp_banks[i].num_bytes; i++)
 236		total += sp_banks[i].num_bytes;
 237
 238	return total;
 239}
 240
 241/*
 242 * Reserve nocache dynamically proportionally to the amount of
 243 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 244 */
 245static void __init srmmu_nocache_calcsize(void)
 246{
 247	unsigned long sysmemavail = probe_memory() / 1024;
 248	int srmmu_nocache_npages;
 249
 250	srmmu_nocache_npages =
 251		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 252
 253 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 254	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 255	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 256		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 257
 258	/* anything above 1280 blows up */
 259	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 260		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 261
 262	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 263	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 264}
 265
 266static void __init srmmu_nocache_init(void)
 267{
 268	void *srmmu_nocache_bitmap;
 269	unsigned int bitmap_bits;
 270	pgd_t *pgd;
 271	p4d_t *p4d;
 272	pud_t *pud;
 273	pmd_t *pmd;
 274	pte_t *pte;
 275	unsigned long paddr, vaddr;
 276	unsigned long pteval;
 277
 278	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 279
 280	srmmu_nocache_pool = memblock_alloc(srmmu_nocache_size,
 281					    SRMMU_NOCACHE_ALIGN_MAX);
 282	if (!srmmu_nocache_pool)
 283		panic("%s: Failed to allocate %lu bytes align=0x%x\n",
 284		      __func__, srmmu_nocache_size, SRMMU_NOCACHE_ALIGN_MAX);
 285	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 286
 287	srmmu_nocache_bitmap =
 288		memblock_alloc(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 289			       SMP_CACHE_BYTES);
 290	if (!srmmu_nocache_bitmap)
 291		panic("%s: Failed to allocate %zu bytes\n", __func__,
 292		      BITS_TO_LONGS(bitmap_bits) * sizeof(long));
 293	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 294
 295	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 296	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 297	init_mm.pgd = srmmu_swapper_pg_dir;
 298
 299	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 300
 301	paddr = __pa((unsigned long)srmmu_nocache_pool);
 302	vaddr = SRMMU_NOCACHE_VADDR;
 303
 304	while (vaddr < srmmu_nocache_end) {
 305		pgd = pgd_offset_k(vaddr);
 306		p4d = p4d_offset(pgd, vaddr);
 307		pud = pud_offset(p4d, vaddr);
 308		pmd = pmd_offset(__nocache_fix(pud), vaddr);
 309		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 310
 311		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 312
 313		if (srmmu_cache_pagetables)
 314			pteval |= SRMMU_CACHE;
 315
 316		set_pte(__nocache_fix(pte), __pte(pteval));
 317
 318		vaddr += PAGE_SIZE;
 319		paddr += PAGE_SIZE;
 320	}
 321
 322	flush_cache_all();
 323	flush_tlb_all();
 324}
 325
 326pgd_t *get_pgd_fast(void)
 327{
 328	pgd_t *pgd = NULL;
 329
 330	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 331	if (pgd) {
 332		pgd_t *init = pgd_offset_k(0);
 333		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 334		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 335						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 336	}
 337
 338	return pgd;
 339}
 340
 341/*
 342 * Hardware needs alignment to 256 only, but we align to whole page size
 343 * to reduce fragmentation problems due to the buddy principle.
 344 * XXX Provide actual fragmentation statistics in /proc.
 345 *
 346 * Alignments up to the page size are the same for physical and virtual
 347 * addresses of the nocache area.
 348 */
 349pgtable_t pte_alloc_one(struct mm_struct *mm)
 350{
 351	pte_t *ptep;
 352	struct page *page;
 353
 354	if (!(ptep = pte_alloc_one_kernel(mm)))
 
 
 
 
 355		return NULL;
 356	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 357	spin_lock(&mm->page_table_lock);
 358	if (page_ref_inc_return(page) == 2 && !pgtable_pte_page_ctor(page)) {
 359		page_ref_dec(page);
 360		ptep = NULL;
 361	}
 362	spin_unlock(&mm->page_table_lock);
 363
 364	return ptep;
 365}
 366
 367void pte_free(struct mm_struct *mm, pgtable_t ptep)
 368{
 369	struct page *page;
 370
 371	page = pfn_to_page(__nocache_pa((unsigned long)ptep) >> PAGE_SHIFT);
 372	spin_lock(&mm->page_table_lock);
 373	if (page_ref_dec_return(page) == 1)
 374		pgtable_pte_page_dtor(page);
 375	spin_unlock(&mm->page_table_lock);
 376
 377	srmmu_free_nocache(ptep, SRMMU_PTE_TABLE_SIZE);
 
 378}
 379
 380/* context handling - a dynamically sized pool is used */
 381#define NO_CONTEXT	-1
 382
 383struct ctx_list {
 384	struct ctx_list *next;
 385	struct ctx_list *prev;
 386	unsigned int ctx_number;
 387	struct mm_struct *ctx_mm;
 388};
 389
 390static struct ctx_list *ctx_list_pool;
 391static struct ctx_list ctx_free;
 392static struct ctx_list ctx_used;
 393
 394/* At boot time we determine the number of contexts */
 395static int num_contexts;
 396
 397static inline void remove_from_ctx_list(struct ctx_list *entry)
 398{
 399	entry->next->prev = entry->prev;
 400	entry->prev->next = entry->next;
 401}
 402
 403static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 404{
 405	entry->next = head;
 406	(entry->prev = head->prev)->next = entry;
 407	head->prev = entry;
 408}
 409#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 410#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 411
 412
 413static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 414{
 415	struct ctx_list *ctxp;
 416
 417	ctxp = ctx_free.next;
 418	if (ctxp != &ctx_free) {
 419		remove_from_ctx_list(ctxp);
 420		add_to_used_ctxlist(ctxp);
 421		mm->context = ctxp->ctx_number;
 422		ctxp->ctx_mm = mm;
 423		return;
 424	}
 425	ctxp = ctx_used.next;
 426	if (ctxp->ctx_mm == old_mm)
 427		ctxp = ctxp->next;
 428	if (ctxp == &ctx_used)
 429		panic("out of mmu contexts");
 430	flush_cache_mm(ctxp->ctx_mm);
 431	flush_tlb_mm(ctxp->ctx_mm);
 432	remove_from_ctx_list(ctxp);
 433	add_to_used_ctxlist(ctxp);
 434	ctxp->ctx_mm->context = NO_CONTEXT;
 435	ctxp->ctx_mm = mm;
 436	mm->context = ctxp->ctx_number;
 437}
 438
 439static inline void free_context(int context)
 440{
 441	struct ctx_list *ctx_old;
 442
 443	ctx_old = ctx_list_pool + context;
 444	remove_from_ctx_list(ctx_old);
 445	add_to_free_ctxlist(ctx_old);
 446}
 447
 448static void __init sparc_context_init(int numctx)
 449{
 450	int ctx;
 451	unsigned long size;
 452
 453	size = numctx * sizeof(struct ctx_list);
 454	ctx_list_pool = memblock_alloc(size, SMP_CACHE_BYTES);
 455	if (!ctx_list_pool)
 456		panic("%s: Failed to allocate %lu bytes\n", __func__, size);
 457
 458	for (ctx = 0; ctx < numctx; ctx++) {
 459		struct ctx_list *clist;
 460
 461		clist = (ctx_list_pool + ctx);
 462		clist->ctx_number = ctx;
 463		clist->ctx_mm = NULL;
 464	}
 465	ctx_free.next = ctx_free.prev = &ctx_free;
 466	ctx_used.next = ctx_used.prev = &ctx_used;
 467	for (ctx = 0; ctx < numctx; ctx++)
 468		add_to_free_ctxlist(ctx_list_pool + ctx);
 469}
 470
 471void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 472	       struct task_struct *tsk)
 473{
 474	unsigned long flags;
 475
 476	if (mm->context == NO_CONTEXT) {
 477		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 478		alloc_context(old_mm, mm);
 479		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 480		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 481	}
 482
 483	if (sparc_cpu_model == sparc_leon)
 484		leon_switch_mm();
 485
 486	if (is_hypersparc)
 487		hyper_flush_whole_icache();
 488
 489	srmmu_set_context(mm->context);
 490}
 491
 492/* Low level IO area allocation on the SRMMU. */
 493static inline void srmmu_mapioaddr(unsigned long physaddr,
 494				   unsigned long virt_addr, int bus_type)
 495{
 496	pgd_t *pgdp;
 497	p4d_t *p4dp;
 498	pud_t *pudp;
 499	pmd_t *pmdp;
 500	pte_t *ptep;
 501	unsigned long tmp;
 502
 503	physaddr &= PAGE_MASK;
 504	pgdp = pgd_offset_k(virt_addr);
 505	p4dp = p4d_offset(pgdp, virt_addr);
 506	pudp = pud_offset(p4dp, virt_addr);
 507	pmdp = pmd_offset(pudp, virt_addr);
 508	ptep = pte_offset_kernel(pmdp, virt_addr);
 509	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 510
 511	/* I need to test whether this is consistent over all
 512	 * sun4m's.  The bus_type represents the upper 4 bits of
 513	 * 36-bit physical address on the I/O space lines...
 514	 */
 515	tmp |= (bus_type << 28);
 516	tmp |= SRMMU_PRIV;
 517	__flush_page_to_ram(virt_addr);
 518	set_pte(ptep, __pte(tmp));
 519}
 520
 521void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 522		      unsigned long xva, unsigned int len)
 523{
 524	while (len != 0) {
 525		len -= PAGE_SIZE;
 526		srmmu_mapioaddr(xpa, xva, bus);
 527		xva += PAGE_SIZE;
 528		xpa += PAGE_SIZE;
 529	}
 530	flush_tlb_all();
 531}
 532
 533static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 534{
 535	pgd_t *pgdp;
 536	p4d_t *p4dp;
 537	pud_t *pudp;
 538	pmd_t *pmdp;
 539	pte_t *ptep;
 540
 541
 542	pgdp = pgd_offset_k(virt_addr);
 543	p4dp = p4d_offset(pgdp, virt_addr);
 544	pudp = pud_offset(p4dp, virt_addr);
 545	pmdp = pmd_offset(pudp, virt_addr);
 546	ptep = pte_offset_kernel(pmdp, virt_addr);
 547
 548	/* No need to flush uncacheable page. */
 549	__pte_clear(ptep);
 550}
 551
 552void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 553{
 554	while (len != 0) {
 555		len -= PAGE_SIZE;
 556		srmmu_unmapioaddr(virt_addr);
 557		virt_addr += PAGE_SIZE;
 558	}
 559	flush_tlb_all();
 560}
 561
 562/* tsunami.S */
 563extern void tsunami_flush_cache_all(void);
 564extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 565extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 566extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 567extern void tsunami_flush_page_to_ram(unsigned long page);
 568extern void tsunami_flush_page_for_dma(unsigned long page);
 569extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 570extern void tsunami_flush_tlb_all(void);
 571extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 572extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 573extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 574extern void tsunami_setup_blockops(void);
 575
 576/* swift.S */
 577extern void swift_flush_cache_all(void);
 578extern void swift_flush_cache_mm(struct mm_struct *mm);
 579extern void swift_flush_cache_range(struct vm_area_struct *vma,
 580				    unsigned long start, unsigned long end);
 581extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 582extern void swift_flush_page_to_ram(unsigned long page);
 583extern void swift_flush_page_for_dma(unsigned long page);
 584extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 585extern void swift_flush_tlb_all(void);
 586extern void swift_flush_tlb_mm(struct mm_struct *mm);
 587extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 588				  unsigned long start, unsigned long end);
 589extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 590
 591#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 592void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 593{
 594	int cctx, ctx1;
 595
 596	page &= PAGE_MASK;
 597	if ((ctx1 = vma->vm_mm->context) != -1) {
 598		cctx = srmmu_get_context();
 599/* Is context # ever different from current context? P3 */
 600		if (cctx != ctx1) {
 601			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 602			srmmu_set_context(ctx1);
 603			swift_flush_page(page);
 604			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 605					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 606			srmmu_set_context(cctx);
 607		} else {
 608			 /* Rm. prot. bits from virt. c. */
 609			/* swift_flush_cache_all(); */
 610			/* swift_flush_cache_page(vma, page); */
 611			swift_flush_page(page);
 612
 613			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 614				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 615			/* same as above: srmmu_flush_tlb_page() */
 616		}
 617	}
 618}
 619#endif
 620
 621/*
 622 * The following are all MBUS based SRMMU modules, and therefore could
 623 * be found in a multiprocessor configuration.  On the whole, these
 624 * chips seems to be much more touchy about DVMA and page tables
 625 * with respect to cache coherency.
 626 */
 627
 628/* viking.S */
 629extern void viking_flush_cache_all(void);
 630extern void viking_flush_cache_mm(struct mm_struct *mm);
 631extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 632				     unsigned long end);
 633extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 634extern void viking_flush_page_to_ram(unsigned long page);
 635extern void viking_flush_page_for_dma(unsigned long page);
 636extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 637extern void viking_flush_page(unsigned long page);
 638extern void viking_mxcc_flush_page(unsigned long page);
 639extern void viking_flush_tlb_all(void);
 640extern void viking_flush_tlb_mm(struct mm_struct *mm);
 641extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 642				   unsigned long end);
 643extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 644				  unsigned long page);
 645extern void sun4dsmp_flush_tlb_all(void);
 646extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 647extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 648				   unsigned long end);
 649extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 650				  unsigned long page);
 651
 652/* hypersparc.S */
 653extern void hypersparc_flush_cache_all(void);
 654extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 655extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 656extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 657extern void hypersparc_flush_page_to_ram(unsigned long page);
 658extern void hypersparc_flush_page_for_dma(unsigned long page);
 659extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 660extern void hypersparc_flush_tlb_all(void);
 661extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 662extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 663extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 664extern void hypersparc_setup_blockops(void);
 665
 666/*
 667 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 668 *       kernel mappings are done with one single contiguous chunk of
 669 *       ram.  On small ram machines (classics mainly) we only get
 670 *       around 8mb mapped for us.
 671 */
 672
 673static void __init early_pgtable_allocfail(char *type)
 674{
 675	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 676	prom_halt();
 677}
 678
 679static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 680							unsigned long end)
 681{
 682	pgd_t *pgdp;
 683	p4d_t *p4dp;
 684	pud_t *pudp;
 685	pmd_t *pmdp;
 686	pte_t *ptep;
 687
 688	while (start < end) {
 689		pgdp = pgd_offset_k(start);
 690		p4dp = p4d_offset(pgdp, start);
 691		pudp = pud_offset(p4dp, start);
 692		if (pud_none(*__nocache_fix(pudp))) {
 693			pmdp = __srmmu_get_nocache(
 694			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 695			if (pmdp == NULL)
 696				early_pgtable_allocfail("pmd");
 697			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 698			pud_set(__nocache_fix(pudp), pmdp);
 699		}
 700		pmdp = pmd_offset(__nocache_fix(pudp), start);
 701		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 702			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 703			if (ptep == NULL)
 704				early_pgtable_allocfail("pte");
 705			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 706			pmd_set(__nocache_fix(pmdp), ptep);
 707		}
 708		if (start > (0xffffffffUL - PMD_SIZE))
 709			break;
 710		start = (start + PMD_SIZE) & PMD_MASK;
 711	}
 712}
 713
 714static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 715						  unsigned long end)
 716{
 717	pgd_t *pgdp;
 718	p4d_t *p4dp;
 719	pud_t *pudp;
 720	pmd_t *pmdp;
 721	pte_t *ptep;
 722
 723	while (start < end) {
 724		pgdp = pgd_offset_k(start);
 725		p4dp = p4d_offset(pgdp, start);
 726		pudp = pud_offset(p4dp, start);
 727		if (pud_none(*pudp)) {
 728			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 729			if (pmdp == NULL)
 730				early_pgtable_allocfail("pmd");
 731			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 732			pud_set((pud_t *)pgdp, pmdp);
 733		}
 734		pmdp = pmd_offset(pudp, start);
 735		if (srmmu_pmd_none(*pmdp)) {
 736			ptep = __srmmu_get_nocache(PTE_SIZE,
 737							     PTE_SIZE);
 738			if (ptep == NULL)
 739				early_pgtable_allocfail("pte");
 740			memset(ptep, 0, PTE_SIZE);
 741			pmd_set(pmdp, ptep);
 742		}
 743		if (start > (0xffffffffUL - PMD_SIZE))
 744			break;
 745		start = (start + PMD_SIZE) & PMD_MASK;
 746	}
 747}
 748
 749/* These flush types are not available on all chips... */
 750static inline unsigned long srmmu_probe(unsigned long vaddr)
 751{
 752	unsigned long retval;
 753
 754	if (sparc_cpu_model != sparc_leon) {
 755
 756		vaddr &= PAGE_MASK;
 757		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 758				     "=r" (retval) :
 759				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 760	} else {
 761		retval = leon_swprobe(vaddr, NULL);
 762	}
 763	return retval;
 764}
 765
 766/*
 767 * This is much cleaner than poking around physical address space
 768 * looking at the prom's page table directly which is what most
 769 * other OS's do.  Yuck... this is much better.
 770 */
 771static void __init srmmu_inherit_prom_mappings(unsigned long start,
 772					       unsigned long end)
 773{
 774	unsigned long probed;
 775	unsigned long addr;
 776	pgd_t *pgdp;
 777	p4d_t *p4dp;
 778	pud_t *pudp;
 779	pmd_t *pmdp;
 780	pte_t *ptep;
 781	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 782
 783	while (start <= end) {
 784		if (start == 0)
 785			break; /* probably wrap around */
 786		if (start == 0xfef00000)
 787			start = KADB_DEBUGGER_BEGVM;
 788		probed = srmmu_probe(start);
 789		if (!probed) {
 790			/* continue probing until we find an entry */
 791			start += PAGE_SIZE;
 792			continue;
 793		}
 794
 795		/* A red snapper, see what it really is. */
 796		what = 0;
 797		addr = start - PAGE_SIZE;
 798
 799		if (!(start & ~(PMD_MASK))) {
 800			if (srmmu_probe(addr + PMD_SIZE) == probed)
 801				what = 1;
 802		}
 803
 804		if (!(start & ~(PGDIR_MASK))) {
 805			if (srmmu_probe(addr + PGDIR_SIZE) == probed)
 806				what = 2;
 807		}
 808
 809		pgdp = pgd_offset_k(start);
 810		p4dp = p4d_offset(pgdp, start);
 811		pudp = pud_offset(p4dp, start);
 812		if (what == 2) {
 813			*__nocache_fix(pgdp) = __pgd(probed);
 814			start += PGDIR_SIZE;
 815			continue;
 816		}
 817		if (pud_none(*__nocache_fix(pudp))) {
 818			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 819						   SRMMU_PMD_TABLE_SIZE);
 820			if (pmdp == NULL)
 821				early_pgtable_allocfail("pmd");
 822			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 823			pud_set(__nocache_fix(pudp), pmdp);
 824		}
 825		pmdp = pmd_offset(__nocache_fix(pudp), start);
 826		if (what == 1) {
 827			*(pmd_t *)__nocache_fix(pmdp) = __pmd(probed);
 828			start += PMD_SIZE;
 829			continue;
 830		}
 831		if (srmmu_pmd_none(*__nocache_fix(pmdp))) {
 
 832			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 833			if (ptep == NULL)
 834				early_pgtable_allocfail("pte");
 835			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 836			pmd_set(__nocache_fix(pmdp), ptep);
 837		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 838		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 839		*__nocache_fix(ptep) = __pte(probed);
 840		start += PAGE_SIZE;
 841	}
 842}
 843
 844#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 845
 846/* Create a third-level SRMMU 16MB page mapping. */
 847static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 848{
 849	pgd_t *pgdp = pgd_offset_k(vaddr);
 850	unsigned long big_pte;
 851
 852	big_pte = KERNEL_PTE(phys_base >> 4);
 853	*__nocache_fix(pgdp) = __pgd(big_pte);
 854}
 855
 856/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 857static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 858{
 859	unsigned long pstart = (sp_banks[sp_entry].base_addr & PGDIR_MASK);
 860	unsigned long vstart = (vbase & PGDIR_MASK);
 861	unsigned long vend = PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 862	/* Map "low" memory only */
 863	const unsigned long min_vaddr = PAGE_OFFSET;
 864	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 865
 866	if (vstart < min_vaddr || vstart >= max_vaddr)
 867		return vstart;
 868
 869	if (vend > max_vaddr || vend < min_vaddr)
 870		vend = max_vaddr;
 871
 872	while (vstart < vend) {
 873		do_large_mapping(vstart, pstart);
 874		vstart += PGDIR_SIZE; pstart += PGDIR_SIZE;
 875	}
 876	return vstart;
 877}
 878
 879static void __init map_kernel(void)
 880{
 881	int i;
 882
 883	if (phys_base > 0) {
 884		do_large_mapping(PAGE_OFFSET, phys_base);
 885	}
 886
 887	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 888		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 889	}
 890}
 891
 892void (*poke_srmmu)(void) = NULL;
 893
 894void __init srmmu_paging_init(void)
 895{
 896	int i;
 897	phandle cpunode;
 898	char node_str[128];
 899	pgd_t *pgd;
 900	p4d_t *p4d;
 901	pud_t *pud;
 902	pmd_t *pmd;
 903	pte_t *pte;
 904	unsigned long pages_avail;
 905
 906	init_mm.context = (unsigned long) NO_CONTEXT;
 907	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 908
 909	if (sparc_cpu_model == sun4d)
 910		num_contexts = 65536; /* We know it is Viking */
 911	else {
 912		/* Find the number of contexts on the srmmu. */
 913		cpunode = prom_getchild(prom_root_node);
 914		num_contexts = 0;
 915		while (cpunode != 0) {
 916			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 917			if (!strcmp(node_str, "cpu")) {
 918				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 919				break;
 920			}
 921			cpunode = prom_getsibling(cpunode);
 922		}
 923	}
 924
 925	if (!num_contexts) {
 926		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 927		prom_halt();
 928	}
 929
 930	pages_avail = 0;
 931	last_valid_pfn = bootmem_init(&pages_avail);
 932
 933	srmmu_nocache_calcsize();
 934	srmmu_nocache_init();
 935	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 936	map_kernel();
 937
 938	/* ctx table has to be physically aligned to its size */
 939	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 940	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa(srmmu_context_table);
 941
 942	for (i = 0; i < num_contexts; i++)
 943		srmmu_ctxd_set(__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 944
 945	flush_cache_all();
 946	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 947#ifdef CONFIG_SMP
 948	/* Stop from hanging here... */
 949	local_ops->tlb_all();
 950#else
 951	flush_tlb_all();
 952#endif
 953	poke_srmmu();
 954
 955	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 956	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 957
 958	srmmu_allocate_ptable_skeleton(
 959		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 960	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 961
 962	pgd = pgd_offset_k(PKMAP_BASE);
 963	p4d = p4d_offset(pgd, PKMAP_BASE);
 964	pud = pud_offset(p4d, PKMAP_BASE);
 965	pmd = pmd_offset(pud, PKMAP_BASE);
 966	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 967	pkmap_page_table = pte;
 968
 969	flush_cache_all();
 970	flush_tlb_all();
 971
 972	sparc_context_init(num_contexts);
 973
 
 
 974	{
 975		unsigned long max_zone_pfn[MAX_NR_ZONES] = { 0 };
 
 
 
 976
 977		max_zone_pfn[ZONE_DMA] = max_low_pfn;
 978		max_zone_pfn[ZONE_NORMAL] = max_low_pfn;
 979		max_zone_pfn[ZONE_HIGHMEM] = highend_pfn;
 980
 981		free_area_init(max_zone_pfn);
 
 
 
 
 
 
 
 
 
 982	}
 983}
 984
 985void mmu_info(struct seq_file *m)
 986{
 987	seq_printf(m,
 988		   "MMU type\t: %s\n"
 989		   "contexts\t: %d\n"
 990		   "nocache total\t: %ld\n"
 991		   "nocache used\t: %d\n",
 992		   srmmu_name,
 993		   num_contexts,
 994		   srmmu_nocache_size,
 995		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 996}
 997
 998int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 999{
1000	mm->context = NO_CONTEXT;
1001	return 0;
1002}
1003
1004void destroy_context(struct mm_struct *mm)
1005{
1006	unsigned long flags;
1007
1008	if (mm->context != NO_CONTEXT) {
1009		flush_cache_mm(mm);
1010		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
1011		flush_tlb_mm(mm);
1012		spin_lock_irqsave(&srmmu_context_spinlock, flags);
1013		free_context(mm->context);
1014		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1015		mm->context = NO_CONTEXT;
1016	}
1017}
1018
1019/* Init various srmmu chip types. */
1020static void __init srmmu_is_bad(void)
1021{
1022	prom_printf("Could not determine SRMMU chip type.\n");
1023	prom_halt();
1024}
1025
1026static void __init init_vac_layout(void)
1027{
1028	phandle nd;
1029	int cache_lines;
1030	char node_str[128];
1031#ifdef CONFIG_SMP
1032	int cpu = 0;
1033	unsigned long max_size = 0;
1034	unsigned long min_line_size = 0x10000000;
1035#endif
1036
1037	nd = prom_getchild(prom_root_node);
1038	while ((nd = prom_getsibling(nd)) != 0) {
1039		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1040		if (!strcmp(node_str, "cpu")) {
1041			vac_line_size = prom_getint(nd, "cache-line-size");
1042			if (vac_line_size == -1) {
1043				prom_printf("can't determine cache-line-size, halting.\n");
1044				prom_halt();
1045			}
1046			cache_lines = prom_getint(nd, "cache-nlines");
1047			if (cache_lines == -1) {
1048				prom_printf("can't determine cache-nlines, halting.\n");
1049				prom_halt();
1050			}
1051
1052			vac_cache_size = cache_lines * vac_line_size;
1053#ifdef CONFIG_SMP
1054			if (vac_cache_size > max_size)
1055				max_size = vac_cache_size;
1056			if (vac_line_size < min_line_size)
1057				min_line_size = vac_line_size;
1058			//FIXME: cpus not contiguous!!
1059			cpu++;
1060			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1061				break;
1062#else
1063			break;
1064#endif
1065		}
1066	}
1067	if (nd == 0) {
1068		prom_printf("No CPU nodes found, halting.\n");
1069		prom_halt();
1070	}
1071#ifdef CONFIG_SMP
1072	vac_cache_size = max_size;
1073	vac_line_size = min_line_size;
1074#endif
1075	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1076	       (int)vac_cache_size, (int)vac_line_size);
1077}
1078
1079static void poke_hypersparc(void)
1080{
1081	volatile unsigned long clear;
1082	unsigned long mreg = srmmu_get_mmureg();
1083
1084	hyper_flush_unconditional_combined();
1085
1086	mreg &= ~(HYPERSPARC_CWENABLE);
1087	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1088	mreg |= (HYPERSPARC_CMODE);
1089
1090	srmmu_set_mmureg(mreg);
1091
1092#if 0 /* XXX I think this is bad news... -DaveM */
1093	hyper_clear_all_tags();
1094#endif
1095
1096	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1097	hyper_flush_whole_icache();
1098	clear = srmmu_get_faddr();
1099	clear = srmmu_get_fstatus();
1100}
1101
1102static const struct sparc32_cachetlb_ops hypersparc_ops = {
1103	.cache_all	= hypersparc_flush_cache_all,
1104	.cache_mm	= hypersparc_flush_cache_mm,
1105	.cache_page	= hypersparc_flush_cache_page,
1106	.cache_range	= hypersparc_flush_cache_range,
1107	.tlb_all	= hypersparc_flush_tlb_all,
1108	.tlb_mm		= hypersparc_flush_tlb_mm,
1109	.tlb_page	= hypersparc_flush_tlb_page,
1110	.tlb_range	= hypersparc_flush_tlb_range,
1111	.page_to_ram	= hypersparc_flush_page_to_ram,
1112	.sig_insns	= hypersparc_flush_sig_insns,
1113	.page_for_dma	= hypersparc_flush_page_for_dma,
1114};
1115
1116static void __init init_hypersparc(void)
1117{
1118	srmmu_name = "ROSS HyperSparc";
1119	srmmu_modtype = HyperSparc;
1120
1121	init_vac_layout();
1122
1123	is_hypersparc = 1;
1124	sparc32_cachetlb_ops = &hypersparc_ops;
1125
1126	poke_srmmu = poke_hypersparc;
1127
1128	hypersparc_setup_blockops();
1129}
1130
1131static void poke_swift(void)
1132{
1133	unsigned long mreg;
1134
1135	/* Clear any crap from the cache or else... */
1136	swift_flush_cache_all();
1137
1138	/* Enable I & D caches */
1139	mreg = srmmu_get_mmureg();
1140	mreg |= (SWIFT_IE | SWIFT_DE);
1141	/*
1142	 * The Swift branch folding logic is completely broken.  At
1143	 * trap time, if things are just right, if can mistakenly
1144	 * think that a trap is coming from kernel mode when in fact
1145	 * it is coming from user mode (it mis-executes the branch in
1146	 * the trap code).  So you see things like crashme completely
1147	 * hosing your machine which is completely unacceptable.  Turn
1148	 * this shit off... nice job Fujitsu.
1149	 */
1150	mreg &= ~(SWIFT_BF);
1151	srmmu_set_mmureg(mreg);
1152}
1153
1154static const struct sparc32_cachetlb_ops swift_ops = {
1155	.cache_all	= swift_flush_cache_all,
1156	.cache_mm	= swift_flush_cache_mm,
1157	.cache_page	= swift_flush_cache_page,
1158	.cache_range	= swift_flush_cache_range,
1159	.tlb_all	= swift_flush_tlb_all,
1160	.tlb_mm		= swift_flush_tlb_mm,
1161	.tlb_page	= swift_flush_tlb_page,
1162	.tlb_range	= swift_flush_tlb_range,
1163	.page_to_ram	= swift_flush_page_to_ram,
1164	.sig_insns	= swift_flush_sig_insns,
1165	.page_for_dma	= swift_flush_page_for_dma,
1166};
1167
1168#define SWIFT_MASKID_ADDR  0x10003018
1169static void __init init_swift(void)
1170{
1171	unsigned long swift_rev;
1172
1173	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1174			     "srl %0, 0x18, %0\n\t" :
1175			     "=r" (swift_rev) :
1176			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1177	srmmu_name = "Fujitsu Swift";
1178	switch (swift_rev) {
1179	case 0x11:
1180	case 0x20:
1181	case 0x23:
1182	case 0x30:
1183		srmmu_modtype = Swift_lots_o_bugs;
1184		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1185		/*
1186		 * Gee george, I wonder why Sun is so hush hush about
1187		 * this hardware bug... really braindamage stuff going
1188		 * on here.  However I think we can find a way to avoid
1189		 * all of the workaround overhead under Linux.  Basically,
1190		 * any page fault can cause kernel pages to become user
1191		 * accessible (the mmu gets confused and clears some of
1192		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1193		 * horrible eh?  But wait, after extensive testing it appears
1194		 * that if you use pgd_t level large kernel pte's (like the
1195		 * 4MB pages on the Pentium) the bug does not get tripped
1196		 * at all.  This avoids almost all of the major overhead.
1197		 * Welcome to a world where your vendor tells you to,
1198		 * "apply this kernel patch" instead of "sorry for the
1199		 * broken hardware, send it back and we'll give you
1200		 * properly functioning parts"
1201		 */
1202		break;
1203	case 0x25:
1204	case 0x31:
1205		srmmu_modtype = Swift_bad_c;
1206		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1207		/*
1208		 * You see Sun allude to this hardware bug but never
1209		 * admit things directly, they'll say things like,
1210		 * "the Swift chip cache problems" or similar.
1211		 */
1212		break;
1213	default:
1214		srmmu_modtype = Swift_ok;
1215		break;
1216	}
1217
1218	sparc32_cachetlb_ops = &swift_ops;
1219	flush_page_for_dma_global = 0;
1220
1221	/*
1222	 * Are you now convinced that the Swift is one of the
1223	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1224	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1225	 * you examined the microcode of the Swift you'd find
1226	 * XXX's all over the place.
1227	 */
1228	poke_srmmu = poke_swift;
1229}
1230
1231static void turbosparc_flush_cache_all(void)
1232{
1233	flush_user_windows();
1234	turbosparc_idflash_clear();
1235}
1236
1237static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1238{
1239	FLUSH_BEGIN(mm)
1240	flush_user_windows();
1241	turbosparc_idflash_clear();
1242	FLUSH_END
1243}
1244
1245static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1246{
1247	FLUSH_BEGIN(vma->vm_mm)
1248	flush_user_windows();
1249	turbosparc_idflash_clear();
1250	FLUSH_END
1251}
1252
1253static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1254{
1255	FLUSH_BEGIN(vma->vm_mm)
1256	flush_user_windows();
1257	if (vma->vm_flags & VM_EXEC)
1258		turbosparc_flush_icache();
1259	turbosparc_flush_dcache();
1260	FLUSH_END
1261}
1262
1263/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1264static void turbosparc_flush_page_to_ram(unsigned long page)
1265{
1266#ifdef TURBOSPARC_WRITEBACK
1267	volatile unsigned long clear;
1268
1269	if (srmmu_probe(page))
1270		turbosparc_flush_page_cache(page);
1271	clear = srmmu_get_fstatus();
1272#endif
1273}
1274
1275static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1276{
1277}
1278
1279static void turbosparc_flush_page_for_dma(unsigned long page)
1280{
1281	turbosparc_flush_dcache();
1282}
1283
1284static void turbosparc_flush_tlb_all(void)
1285{
1286	srmmu_flush_whole_tlb();
1287}
1288
1289static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1290{
1291	FLUSH_BEGIN(mm)
1292	srmmu_flush_whole_tlb();
1293	FLUSH_END
1294}
1295
1296static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1297{
1298	FLUSH_BEGIN(vma->vm_mm)
1299	srmmu_flush_whole_tlb();
1300	FLUSH_END
1301}
1302
1303static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1304{
1305	FLUSH_BEGIN(vma->vm_mm)
1306	srmmu_flush_whole_tlb();
1307	FLUSH_END
1308}
1309
1310
1311static void poke_turbosparc(void)
1312{
1313	unsigned long mreg = srmmu_get_mmureg();
1314	unsigned long ccreg;
1315
1316	/* Clear any crap from the cache or else... */
1317	turbosparc_flush_cache_all();
1318	/* Temporarily disable I & D caches */
1319	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1320	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1321	srmmu_set_mmureg(mreg);
1322
1323	ccreg = turbosparc_get_ccreg();
1324
1325#ifdef TURBOSPARC_WRITEBACK
1326	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1327	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1328			/* Write-back D-cache, emulate VLSI
1329			 * abortion number three, not number one */
1330#else
1331	/* For now let's play safe, optimize later */
1332	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1333			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1334	ccreg &= ~(TURBOSPARC_uS2);
1335			/* Emulate VLSI abortion number three, not number one */
1336#endif
1337
1338	switch (ccreg & 7) {
1339	case 0: /* No SE cache */
1340	case 7: /* Test mode */
1341		break;
1342	default:
1343		ccreg |= (TURBOSPARC_SCENABLE);
1344	}
1345	turbosparc_set_ccreg(ccreg);
1346
1347	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1348	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1349	srmmu_set_mmureg(mreg);
1350}
1351
1352static const struct sparc32_cachetlb_ops turbosparc_ops = {
1353	.cache_all	= turbosparc_flush_cache_all,
1354	.cache_mm	= turbosparc_flush_cache_mm,
1355	.cache_page	= turbosparc_flush_cache_page,
1356	.cache_range	= turbosparc_flush_cache_range,
1357	.tlb_all	= turbosparc_flush_tlb_all,
1358	.tlb_mm		= turbosparc_flush_tlb_mm,
1359	.tlb_page	= turbosparc_flush_tlb_page,
1360	.tlb_range	= turbosparc_flush_tlb_range,
1361	.page_to_ram	= turbosparc_flush_page_to_ram,
1362	.sig_insns	= turbosparc_flush_sig_insns,
1363	.page_for_dma	= turbosparc_flush_page_for_dma,
1364};
1365
1366static void __init init_turbosparc(void)
1367{
1368	srmmu_name = "Fujitsu TurboSparc";
1369	srmmu_modtype = TurboSparc;
1370	sparc32_cachetlb_ops = &turbosparc_ops;
1371	poke_srmmu = poke_turbosparc;
1372}
1373
1374static void poke_tsunami(void)
1375{
1376	unsigned long mreg = srmmu_get_mmureg();
1377
1378	tsunami_flush_icache();
1379	tsunami_flush_dcache();
1380	mreg &= ~TSUNAMI_ITD;
1381	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1382	srmmu_set_mmureg(mreg);
1383}
1384
1385static const struct sparc32_cachetlb_ops tsunami_ops = {
1386	.cache_all	= tsunami_flush_cache_all,
1387	.cache_mm	= tsunami_flush_cache_mm,
1388	.cache_page	= tsunami_flush_cache_page,
1389	.cache_range	= tsunami_flush_cache_range,
1390	.tlb_all	= tsunami_flush_tlb_all,
1391	.tlb_mm		= tsunami_flush_tlb_mm,
1392	.tlb_page	= tsunami_flush_tlb_page,
1393	.tlb_range	= tsunami_flush_tlb_range,
1394	.page_to_ram	= tsunami_flush_page_to_ram,
1395	.sig_insns	= tsunami_flush_sig_insns,
1396	.page_for_dma	= tsunami_flush_page_for_dma,
1397};
1398
1399static void __init init_tsunami(void)
1400{
1401	/*
1402	 * Tsunami's pretty sane, Sun and TI actually got it
1403	 * somewhat right this time.  Fujitsu should have
1404	 * taken some lessons from them.
1405	 */
1406
1407	srmmu_name = "TI Tsunami";
1408	srmmu_modtype = Tsunami;
1409	sparc32_cachetlb_ops = &tsunami_ops;
1410	poke_srmmu = poke_tsunami;
1411
1412	tsunami_setup_blockops();
1413}
1414
1415static void poke_viking(void)
1416{
1417	unsigned long mreg = srmmu_get_mmureg();
1418	static int smp_catch;
1419
1420	if (viking_mxcc_present) {
1421		unsigned long mxcc_control = mxcc_get_creg();
1422
1423		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1424		mxcc_control &= ~(MXCC_CTL_RRC);
1425		mxcc_set_creg(mxcc_control);
1426
1427		/*
1428		 * We don't need memory parity checks.
1429		 * XXX This is a mess, have to dig out later. ecd.
1430		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1431		 */
1432
1433		/* We do cache ptables on MXCC. */
1434		mreg |= VIKING_TCENABLE;
1435	} else {
1436		unsigned long bpreg;
1437
1438		mreg &= ~(VIKING_TCENABLE);
1439		if (smp_catch++) {
1440			/* Must disable mixed-cmd mode here for other cpu's. */
1441			bpreg = viking_get_bpreg();
1442			bpreg &= ~(VIKING_ACTION_MIX);
1443			viking_set_bpreg(bpreg);
1444
1445			/* Just in case PROM does something funny. */
1446			msi_set_sync();
1447		}
1448	}
1449
1450	mreg |= VIKING_SPENABLE;
1451	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1452	mreg |= VIKING_SBENABLE;
1453	mreg &= ~(VIKING_ACENABLE);
1454	srmmu_set_mmureg(mreg);
1455}
1456
1457static struct sparc32_cachetlb_ops viking_ops __ro_after_init = {
1458	.cache_all	= viking_flush_cache_all,
1459	.cache_mm	= viking_flush_cache_mm,
1460	.cache_page	= viking_flush_cache_page,
1461	.cache_range	= viking_flush_cache_range,
1462	.tlb_all	= viking_flush_tlb_all,
1463	.tlb_mm		= viking_flush_tlb_mm,
1464	.tlb_page	= viking_flush_tlb_page,
1465	.tlb_range	= viking_flush_tlb_range,
1466	.page_to_ram	= viking_flush_page_to_ram,
1467	.sig_insns	= viking_flush_sig_insns,
1468	.page_for_dma	= viking_flush_page_for_dma,
1469};
1470
1471#ifdef CONFIG_SMP
1472/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1473 * perform the local TLB flush and all the other cpus will see it.
1474 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1475 * that requires that we add some synchronization to these flushes.
1476 *
1477 * The bug is that the fifo which keeps track of all the pending TLB
1478 * broadcasts in the system is an entry or two too small, so if we
1479 * have too many going at once we'll overflow that fifo and lose a TLB
1480 * flush resulting in corruption.
1481 *
1482 * Our workaround is to take a global spinlock around the TLB flushes,
1483 * which guarentees we won't ever have too many pending.  It's a big
1484 * hammer, but a semaphore like system to make sure we only have N TLB
1485 * flushes going at once will require SMP locking anyways so there's
1486 * no real value in trying any harder than this.
1487 */
1488static struct sparc32_cachetlb_ops viking_sun4d_smp_ops __ro_after_init = {
1489	.cache_all	= viking_flush_cache_all,
1490	.cache_mm	= viking_flush_cache_mm,
1491	.cache_page	= viking_flush_cache_page,
1492	.cache_range	= viking_flush_cache_range,
1493	.tlb_all	= sun4dsmp_flush_tlb_all,
1494	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1495	.tlb_page	= sun4dsmp_flush_tlb_page,
1496	.tlb_range	= sun4dsmp_flush_tlb_range,
1497	.page_to_ram	= viking_flush_page_to_ram,
1498	.sig_insns	= viking_flush_sig_insns,
1499	.page_for_dma	= viking_flush_page_for_dma,
1500};
1501#endif
1502
1503static void __init init_viking(void)
1504{
1505	unsigned long mreg = srmmu_get_mmureg();
1506
1507	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1508	if (mreg & VIKING_MMODE) {
1509		srmmu_name = "TI Viking";
1510		viking_mxcc_present = 0;
1511		msi_set_sync();
1512
1513		/*
1514		 * We need this to make sure old viking takes no hits
1515		 * on it's cache for dma snoops to workaround the
1516		 * "load from non-cacheable memory" interrupt bug.
1517		 * This is only necessary because of the new way in
1518		 * which we use the IOMMU.
1519		 */
1520		viking_ops.page_for_dma = viking_flush_page;
1521#ifdef CONFIG_SMP
1522		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1523#endif
1524		flush_page_for_dma_global = 0;
1525	} else {
1526		srmmu_name = "TI Viking/MXCC";
1527		viking_mxcc_present = 1;
1528		srmmu_cache_pagetables = 1;
1529	}
1530
1531	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1532		&viking_ops;
1533#ifdef CONFIG_SMP
1534	if (sparc_cpu_model == sun4d)
1535		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1536			&viking_sun4d_smp_ops;
1537#endif
1538
1539	poke_srmmu = poke_viking;
1540}
1541
1542/* Probe for the srmmu chip version. */
1543static void __init get_srmmu_type(void)
1544{
1545	unsigned long mreg, psr;
1546	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1547
1548	srmmu_modtype = SRMMU_INVAL_MOD;
1549	hwbug_bitmask = 0;
1550
1551	mreg = srmmu_get_mmureg(); psr = get_psr();
1552	mod_typ = (mreg & 0xf0000000) >> 28;
1553	mod_rev = (mreg & 0x0f000000) >> 24;
1554	psr_typ = (psr >> 28) & 0xf;
1555	psr_vers = (psr >> 24) & 0xf;
1556
1557	/* First, check for sparc-leon. */
1558	if (sparc_cpu_model == sparc_leon) {
1559		init_leon();
1560		return;
1561	}
1562
1563	/* Second, check for HyperSparc or Cypress. */
1564	if (mod_typ == 1) {
1565		switch (mod_rev) {
1566		case 7:
1567			/* UP or MP Hypersparc */
1568			init_hypersparc();
1569			break;
1570		case 0:
1571		case 2:
1572		case 10:
1573		case 11:
1574		case 12:
1575		case 13:
1576		case 14:
1577		case 15:
1578		default:
1579			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1580			prom_halt();
1581			break;
1582		}
1583		return;
1584	}
1585
1586	/* Now Fujitsu TurboSparc. It might happen that it is
1587	 * in Swift emulation mode, so we will check later...
1588	 */
1589	if (psr_typ == 0 && psr_vers == 5) {
1590		init_turbosparc();
1591		return;
1592	}
1593
1594	/* Next check for Fujitsu Swift. */
1595	if (psr_typ == 0 && psr_vers == 4) {
1596		phandle cpunode;
1597		char node_str[128];
1598
1599		/* Look if it is not a TurboSparc emulating Swift... */
1600		cpunode = prom_getchild(prom_root_node);
1601		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1602			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1603			if (!strcmp(node_str, "cpu")) {
1604				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1605				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1606					init_turbosparc();
1607					return;
1608				}
1609				break;
1610			}
1611		}
1612
1613		init_swift();
1614		return;
1615	}
1616
1617	/* Now the Viking family of srmmu. */
1618	if (psr_typ == 4 &&
1619	   ((psr_vers == 0) ||
1620	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1621		init_viking();
1622		return;
1623	}
1624
1625	/* Finally the Tsunami. */
1626	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1627		init_tsunami();
1628		return;
1629	}
1630
1631	/* Oh well */
1632	srmmu_is_bad();
1633}
1634
1635#ifdef CONFIG_SMP
1636/* Local cross-calls. */
1637static void smp_flush_page_for_dma(unsigned long page)
1638{
1639	xc1(local_ops->page_for_dma, page);
1640	local_ops->page_for_dma(page);
1641}
1642
1643static void smp_flush_cache_all(void)
1644{
1645	xc0(local_ops->cache_all);
1646	local_ops->cache_all();
1647}
1648
1649static void smp_flush_tlb_all(void)
1650{
1651	xc0(local_ops->tlb_all);
1652	local_ops->tlb_all();
1653}
1654
1655static void smp_flush_cache_mm(struct mm_struct *mm)
1656{
1657	if (mm->context != NO_CONTEXT) {
1658		cpumask_t cpu_mask;
1659		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1660		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1661		if (!cpumask_empty(&cpu_mask))
1662			xc1(local_ops->cache_mm, (unsigned long)mm);
1663		local_ops->cache_mm(mm);
1664	}
1665}
1666
1667static void smp_flush_tlb_mm(struct mm_struct *mm)
1668{
1669	if (mm->context != NO_CONTEXT) {
1670		cpumask_t cpu_mask;
1671		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1672		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1673		if (!cpumask_empty(&cpu_mask)) {
1674			xc1(local_ops->tlb_mm, (unsigned long)mm);
1675			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1676				cpumask_copy(mm_cpumask(mm),
1677					     cpumask_of(smp_processor_id()));
1678		}
1679		local_ops->tlb_mm(mm);
1680	}
1681}
1682
1683static void smp_flush_cache_range(struct vm_area_struct *vma,
1684				  unsigned long start,
1685				  unsigned long end)
1686{
1687	struct mm_struct *mm = vma->vm_mm;
1688
1689	if (mm->context != NO_CONTEXT) {
1690		cpumask_t cpu_mask;
1691		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1692		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1693		if (!cpumask_empty(&cpu_mask))
1694			xc3(local_ops->cache_range, (unsigned long)vma, start,
1695			    end);
1696		local_ops->cache_range(vma, start, end);
1697	}
1698}
1699
1700static void smp_flush_tlb_range(struct vm_area_struct *vma,
1701				unsigned long start,
1702				unsigned long end)
1703{
1704	struct mm_struct *mm = vma->vm_mm;
1705
1706	if (mm->context != NO_CONTEXT) {
1707		cpumask_t cpu_mask;
1708		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710		if (!cpumask_empty(&cpu_mask))
1711			xc3(local_ops->tlb_range, (unsigned long)vma, start,
1712			    end);
1713		local_ops->tlb_range(vma, start, end);
1714	}
1715}
1716
1717static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719	struct mm_struct *mm = vma->vm_mm;
1720
1721	if (mm->context != NO_CONTEXT) {
1722		cpumask_t cpu_mask;
1723		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725		if (!cpumask_empty(&cpu_mask))
1726			xc2(local_ops->cache_page, (unsigned long)vma, page);
 
1727		local_ops->cache_page(vma, page);
1728	}
1729}
1730
1731static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1732{
1733	struct mm_struct *mm = vma->vm_mm;
1734
1735	if (mm->context != NO_CONTEXT) {
1736		cpumask_t cpu_mask;
1737		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1738		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1739		if (!cpumask_empty(&cpu_mask))
1740			xc2(local_ops->tlb_page, (unsigned long)vma, page);
 
1741		local_ops->tlb_page(vma, page);
1742	}
1743}
1744
1745static void smp_flush_page_to_ram(unsigned long page)
1746{
1747	/* Current theory is that those who call this are the one's
1748	 * who have just dirtied their cache with the pages contents
1749	 * in kernel space, therefore we only run this on local cpu.
1750	 *
1751	 * XXX This experiment failed, research further... -DaveM
1752	 */
1753#if 1
1754	xc1(local_ops->page_to_ram, page);
1755#endif
1756	local_ops->page_to_ram(page);
1757}
1758
1759static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1760{
1761	cpumask_t cpu_mask;
1762	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1763	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1764	if (!cpumask_empty(&cpu_mask))
1765		xc2(local_ops->sig_insns, (unsigned long)mm, insn_addr);
 
1766	local_ops->sig_insns(mm, insn_addr);
1767}
1768
1769static struct sparc32_cachetlb_ops smp_cachetlb_ops __ro_after_init = {
1770	.cache_all	= smp_flush_cache_all,
1771	.cache_mm	= smp_flush_cache_mm,
1772	.cache_page	= smp_flush_cache_page,
1773	.cache_range	= smp_flush_cache_range,
1774	.tlb_all	= smp_flush_tlb_all,
1775	.tlb_mm		= smp_flush_tlb_mm,
1776	.tlb_page	= smp_flush_tlb_page,
1777	.tlb_range	= smp_flush_tlb_range,
1778	.page_to_ram	= smp_flush_page_to_ram,
1779	.sig_insns	= smp_flush_sig_insns,
1780	.page_for_dma	= smp_flush_page_for_dma,
1781};
1782#endif
1783
1784/* Load up routines and constants for sun4m and sun4d mmu */
1785void __init load_mmu(void)
1786{
1787	/* Functions */
1788	get_srmmu_type();
1789
1790#ifdef CONFIG_SMP
1791	/* El switcheroo... */
1792	local_ops = sparc32_cachetlb_ops;
1793
1794	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1795		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1796		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1797		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1798		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1799	}
1800
1801	if (poke_srmmu == poke_viking) {
1802		/* Avoid unnecessary cross calls. */
1803		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1804		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1805		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1806		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1807
1808		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1809		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1810		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1811	}
1812
1813	/* It really is const after this point. */
1814	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1815		&smp_cachetlb_ops;
1816#endif
1817
1818	if (sparc_cpu_model != sun4d)
 
 
1819		ld_mmu_iommu();
1820#ifdef CONFIG_SMP
1821	if (sparc_cpu_model == sun4d)
1822		sun4d_init_smp();
1823	else if (sparc_cpu_model == sparc_leon)
1824		leon_init_smp();
1825	else
1826		sun4m_init_smp();
1827#endif
1828}
v4.6
 
   1/*
   2 * srmmu.c:  SRMMU specific routines for memory management.
   3 *
   4 * Copyright (C) 1995 David S. Miller  (davem@caip.rutgers.edu)
   5 * Copyright (C) 1995,2002 Pete Zaitcev (zaitcev@yahoo.com)
   6 * Copyright (C) 1996 Eddie C. Dost    (ecd@skynet.be)
   7 * Copyright (C) 1997,1998 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   8 * Copyright (C) 1999,2000 Anton Blanchard (anton@samba.org)
   9 */
  10
  11#include <linux/seq_file.h>
  12#include <linux/spinlock.h>
  13#include <linux/bootmem.h>
  14#include <linux/pagemap.h>
  15#include <linux/vmalloc.h>
  16#include <linux/kdebug.h>
  17#include <linux/export.h>
  18#include <linux/kernel.h>
  19#include <linux/init.h>
  20#include <linux/log2.h>
  21#include <linux/gfp.h>
  22#include <linux/fs.h>
  23#include <linux/mm.h>
  24
  25#include <asm/mmu_context.h>
  26#include <asm/cacheflush.h>
  27#include <asm/tlbflush.h>
  28#include <asm/io-unit.h>
  29#include <asm/pgalloc.h>
  30#include <asm/pgtable.h>
  31#include <asm/bitext.h>
  32#include <asm/vaddrs.h>
  33#include <asm/cache.h>
  34#include <asm/traps.h>
  35#include <asm/oplib.h>
  36#include <asm/mbus.h>
  37#include <asm/page.h>
  38#include <asm/asi.h>
  39#include <asm/msi.h>
  40#include <asm/smp.h>
  41#include <asm/io.h>
  42
  43/* Now the cpu specific definitions. */
  44#include <asm/turbosparc.h>
  45#include <asm/tsunami.h>
  46#include <asm/viking.h>
  47#include <asm/swift.h>
  48#include <asm/leon.h>
  49#include <asm/mxcc.h>
  50#include <asm/ross.h>
  51
  52#include "mm_32.h"
  53
  54enum mbus_module srmmu_modtype;
  55static unsigned int hwbug_bitmask;
  56int vac_cache_size;
 
  57int vac_line_size;
  58
  59extern struct resource sparc_iomap;
  60
  61extern unsigned long last_valid_pfn;
  62
  63static pgd_t *srmmu_swapper_pg_dir;
  64
  65const struct sparc32_cachetlb_ops *sparc32_cachetlb_ops;
  66EXPORT_SYMBOL(sparc32_cachetlb_ops);
  67
  68#ifdef CONFIG_SMP
  69const struct sparc32_cachetlb_ops *local_ops;
  70
  71#define FLUSH_BEGIN(mm)
  72#define FLUSH_END
  73#else
  74#define FLUSH_BEGIN(mm) if ((mm)->context != NO_CONTEXT) {
  75#define FLUSH_END	}
  76#endif
  77
  78int flush_page_for_dma_global = 1;
  79
  80char *srmmu_name;
  81
  82ctxd_t *srmmu_ctx_table_phys;
  83static ctxd_t *srmmu_context_table;
  84
  85int viking_mxcc_present;
  86static DEFINE_SPINLOCK(srmmu_context_spinlock);
  87
  88static int is_hypersparc;
  89
  90static int srmmu_cache_pagetables;
  91
  92/* these will be initialized in srmmu_nocache_calcsize() */
  93static unsigned long srmmu_nocache_size;
  94static unsigned long srmmu_nocache_end;
  95
  96/* 1 bit <=> 256 bytes of nocache <=> 64 PTEs */
  97#define SRMMU_NOCACHE_BITMAP_SHIFT (PAGE_SHIFT - 4)
  98
  99/* The context table is a nocache user with the biggest alignment needs. */
 100#define SRMMU_NOCACHE_ALIGN_MAX (sizeof(ctxd_t)*SRMMU_MAX_CONTEXTS)
 101
 102void *srmmu_nocache_pool;
 103static struct bit_map srmmu_nocache_map;
 104
 105static inline int srmmu_pmd_none(pmd_t pmd)
 106{ return !(pmd_val(pmd) & 0xFFFFFFF); }
 107
 108/* XXX should we hyper_flush_whole_icache here - Anton */
 109static inline void srmmu_ctxd_set(ctxd_t *ctxp, pgd_t *pgdp)
 110{ set_pte((pte_t *)ctxp, (SRMMU_ET_PTD | (__nocache_pa((unsigned long) pgdp) >> 4))); }
 111
 112void pmd_set(pmd_t *pmdp, pte_t *ptep)
 113{
 114	unsigned long ptp;	/* Physical address, shifted right by 4 */
 115	int i;
 116
 117	ptp = __nocache_pa((unsigned long) ptep) >> 4;
 118	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 119		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 120		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 121	}
 122}
 123
 124void pmd_populate(struct mm_struct *mm, pmd_t *pmdp, struct page *ptep)
 
 
 
 
 
 
 
 
 
 
 125{
 126	unsigned long ptp;	/* Physical address, shifted right by 4 */
 127	int i;
 128
 129	ptp = page_to_pfn(ptep) << (PAGE_SHIFT-4);	/* watch for overflow */
 130	for (i = 0; i < PTRS_PER_PTE/SRMMU_REAL_PTRS_PER_PTE; i++) {
 131		set_pte((pte_t *)&pmdp->pmdv[i], SRMMU_ET_PTD | ptp);
 132		ptp += (SRMMU_REAL_PTRS_PER_PTE*sizeof(pte_t) >> 4);
 133	}
 134}
 135
 136/* Find an entry in the third-level page table.. */
 137pte_t *pte_offset_kernel(pmd_t *dir, unsigned long address)
 138{
 139	void *pte;
 140
 141	pte = __nocache_va((dir->pmdv[0] & SRMMU_PTD_PMASK) << 4);
 142	return (pte_t *) pte +
 143	    ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1));
 144}
 145
 146/*
 147 * size: bytes to allocate in the nocache area.
 148 * align: bytes, number to align at.
 149 * Returns the virtual address of the allocated area.
 150 */
 151static void *__srmmu_get_nocache(int size, int align)
 152{
 153	int offset;
 154	unsigned long addr;
 155
 156	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 157		printk(KERN_ERR "Size 0x%x too small for nocache request\n",
 158		       size);
 159		size = SRMMU_NOCACHE_BITMAP_SHIFT;
 160	}
 161	if (size & (SRMMU_NOCACHE_BITMAP_SHIFT - 1)) {
 162		printk(KERN_ERR "Size 0x%x unaligned int nocache request\n",
 163		       size);
 164		size += SRMMU_NOCACHE_BITMAP_SHIFT - 1;
 165	}
 166	BUG_ON(align > SRMMU_NOCACHE_ALIGN_MAX);
 167
 168	offset = bit_map_string_get(&srmmu_nocache_map,
 169				    size >> SRMMU_NOCACHE_BITMAP_SHIFT,
 170				    align >> SRMMU_NOCACHE_BITMAP_SHIFT);
 171	if (offset == -1) {
 172		printk(KERN_ERR "srmmu: out of nocache %d: %d/%d\n",
 173		       size, (int) srmmu_nocache_size,
 174		       srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 175		return NULL;
 176	}
 177
 178	addr = SRMMU_NOCACHE_VADDR + (offset << SRMMU_NOCACHE_BITMAP_SHIFT);
 179	return (void *)addr;
 180}
 181
 182void *srmmu_get_nocache(int size, int align)
 183{
 184	void *tmp;
 185
 186	tmp = __srmmu_get_nocache(size, align);
 187
 188	if (tmp)
 189		memset(tmp, 0, size);
 190
 191	return tmp;
 192}
 193
 194void srmmu_free_nocache(void *addr, int size)
 195{
 196	unsigned long vaddr;
 197	int offset;
 198
 199	vaddr = (unsigned long)addr;
 200	if (vaddr < SRMMU_NOCACHE_VADDR) {
 201		printk("Vaddr %lx is smaller than nocache base 0x%lx\n",
 202		    vaddr, (unsigned long)SRMMU_NOCACHE_VADDR);
 203		BUG();
 204	}
 205	if (vaddr + size > srmmu_nocache_end) {
 206		printk("Vaddr %lx is bigger than nocache end 0x%lx\n",
 207		    vaddr, srmmu_nocache_end);
 208		BUG();
 209	}
 210	if (!is_power_of_2(size)) {
 211		printk("Size 0x%x is not a power of 2\n", size);
 212		BUG();
 213	}
 214	if (size < SRMMU_NOCACHE_BITMAP_SHIFT) {
 215		printk("Size 0x%x is too small\n", size);
 216		BUG();
 217	}
 218	if (vaddr & (size - 1)) {
 219		printk("Vaddr %lx is not aligned to size 0x%x\n", vaddr, size);
 220		BUG();
 221	}
 222
 223	offset = (vaddr - SRMMU_NOCACHE_VADDR) >> SRMMU_NOCACHE_BITMAP_SHIFT;
 224	size = size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 225
 226	bit_map_clear(&srmmu_nocache_map, offset, size);
 227}
 228
 229static void srmmu_early_allocate_ptable_skeleton(unsigned long start,
 230						 unsigned long end);
 231
 232/* Return how much physical memory we have.  */
 233static unsigned long __init probe_memory(void)
 234{
 235	unsigned long total = 0;
 236	int i;
 237
 238	for (i = 0; sp_banks[i].num_bytes; i++)
 239		total += sp_banks[i].num_bytes;
 240
 241	return total;
 242}
 243
 244/*
 245 * Reserve nocache dynamically proportionally to the amount of
 246 * system RAM. -- Tomas Szepe <szepe@pinerecords.com>, June 2002
 247 */
 248static void __init srmmu_nocache_calcsize(void)
 249{
 250	unsigned long sysmemavail = probe_memory() / 1024;
 251	int srmmu_nocache_npages;
 252
 253	srmmu_nocache_npages =
 254		sysmemavail / SRMMU_NOCACHE_ALCRATIO / 1024 * 256;
 255
 256 /* P3 XXX The 4x overuse: corroborated by /proc/meminfo. */
 257	// if (srmmu_nocache_npages < 256) srmmu_nocache_npages = 256;
 258	if (srmmu_nocache_npages < SRMMU_MIN_NOCACHE_PAGES)
 259		srmmu_nocache_npages = SRMMU_MIN_NOCACHE_PAGES;
 260
 261	/* anything above 1280 blows up */
 262	if (srmmu_nocache_npages > SRMMU_MAX_NOCACHE_PAGES)
 263		srmmu_nocache_npages = SRMMU_MAX_NOCACHE_PAGES;
 264
 265	srmmu_nocache_size = srmmu_nocache_npages * PAGE_SIZE;
 266	srmmu_nocache_end = SRMMU_NOCACHE_VADDR + srmmu_nocache_size;
 267}
 268
 269static void __init srmmu_nocache_init(void)
 270{
 271	void *srmmu_nocache_bitmap;
 272	unsigned int bitmap_bits;
 273	pgd_t *pgd;
 
 
 274	pmd_t *pmd;
 275	pte_t *pte;
 276	unsigned long paddr, vaddr;
 277	unsigned long pteval;
 278
 279	bitmap_bits = srmmu_nocache_size >> SRMMU_NOCACHE_BITMAP_SHIFT;
 280
 281	srmmu_nocache_pool = __alloc_bootmem(srmmu_nocache_size,
 282		SRMMU_NOCACHE_ALIGN_MAX, 0UL);
 
 
 
 283	memset(srmmu_nocache_pool, 0, srmmu_nocache_size);
 284
 285	srmmu_nocache_bitmap =
 286		__alloc_bootmem(BITS_TO_LONGS(bitmap_bits) * sizeof(long),
 287				SMP_CACHE_BYTES, 0UL);
 
 
 
 288	bit_map_init(&srmmu_nocache_map, srmmu_nocache_bitmap, bitmap_bits);
 289
 290	srmmu_swapper_pg_dir = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 291	memset(__nocache_fix(srmmu_swapper_pg_dir), 0, SRMMU_PGD_TABLE_SIZE);
 292	init_mm.pgd = srmmu_swapper_pg_dir;
 293
 294	srmmu_early_allocate_ptable_skeleton(SRMMU_NOCACHE_VADDR, srmmu_nocache_end);
 295
 296	paddr = __pa((unsigned long)srmmu_nocache_pool);
 297	vaddr = SRMMU_NOCACHE_VADDR;
 298
 299	while (vaddr < srmmu_nocache_end) {
 300		pgd = pgd_offset_k(vaddr);
 301		pmd = pmd_offset(__nocache_fix(pgd), vaddr);
 
 
 302		pte = pte_offset_kernel(__nocache_fix(pmd), vaddr);
 303
 304		pteval = ((paddr >> 4) | SRMMU_ET_PTE | SRMMU_PRIV);
 305
 306		if (srmmu_cache_pagetables)
 307			pteval |= SRMMU_CACHE;
 308
 309		set_pte(__nocache_fix(pte), __pte(pteval));
 310
 311		vaddr += PAGE_SIZE;
 312		paddr += PAGE_SIZE;
 313	}
 314
 315	flush_cache_all();
 316	flush_tlb_all();
 317}
 318
 319pgd_t *get_pgd_fast(void)
 320{
 321	pgd_t *pgd = NULL;
 322
 323	pgd = __srmmu_get_nocache(SRMMU_PGD_TABLE_SIZE, SRMMU_PGD_TABLE_SIZE);
 324	if (pgd) {
 325		pgd_t *init = pgd_offset_k(0);
 326		memset(pgd, 0, USER_PTRS_PER_PGD * sizeof(pgd_t));
 327		memcpy(pgd + USER_PTRS_PER_PGD, init + USER_PTRS_PER_PGD,
 328						(PTRS_PER_PGD - USER_PTRS_PER_PGD) * sizeof(pgd_t));
 329	}
 330
 331	return pgd;
 332}
 333
 334/*
 335 * Hardware needs alignment to 256 only, but we align to whole page size
 336 * to reduce fragmentation problems due to the buddy principle.
 337 * XXX Provide actual fragmentation statistics in /proc.
 338 *
 339 * Alignments up to the page size are the same for physical and virtual
 340 * addresses of the nocache area.
 341 */
 342pgtable_t pte_alloc_one(struct mm_struct *mm, unsigned long address)
 343{
 344	unsigned long pte;
 345	struct page *page;
 346
 347	if ((pte = (unsigned long)pte_alloc_one_kernel(mm, address)) == 0)
 348		return NULL;
 349	page = pfn_to_page(__nocache_pa(pte) >> PAGE_SHIFT);
 350	if (!pgtable_page_ctor(page)) {
 351		__free_page(page);
 352		return NULL;
 
 
 
 
 
 353	}
 354	return page;
 
 
 355}
 356
 357void pte_free(struct mm_struct *mm, pgtable_t pte)
 358{
 359	unsigned long p;
 360
 361	pgtable_page_dtor(pte);
 362	p = (unsigned long)page_address(pte);	/* Cached address (for test) */
 363	if (p == 0)
 364		BUG();
 365	p = page_to_pfn(pte) << PAGE_SHIFT;	/* Physical address */
 366
 367	/* free non cached virtual address*/
 368	srmmu_free_nocache(__nocache_va(p), PTE_SIZE);
 369}
 370
 371/* context handling - a dynamically sized pool is used */
 372#define NO_CONTEXT	-1
 373
 374struct ctx_list {
 375	struct ctx_list *next;
 376	struct ctx_list *prev;
 377	unsigned int ctx_number;
 378	struct mm_struct *ctx_mm;
 379};
 380
 381static struct ctx_list *ctx_list_pool;
 382static struct ctx_list ctx_free;
 383static struct ctx_list ctx_used;
 384
 385/* At boot time we determine the number of contexts */
 386static int num_contexts;
 387
 388static inline void remove_from_ctx_list(struct ctx_list *entry)
 389{
 390	entry->next->prev = entry->prev;
 391	entry->prev->next = entry->next;
 392}
 393
 394static inline void add_to_ctx_list(struct ctx_list *head, struct ctx_list *entry)
 395{
 396	entry->next = head;
 397	(entry->prev = head->prev)->next = entry;
 398	head->prev = entry;
 399}
 400#define add_to_free_ctxlist(entry) add_to_ctx_list(&ctx_free, entry)
 401#define add_to_used_ctxlist(entry) add_to_ctx_list(&ctx_used, entry)
 402
 403
 404static inline void alloc_context(struct mm_struct *old_mm, struct mm_struct *mm)
 405{
 406	struct ctx_list *ctxp;
 407
 408	ctxp = ctx_free.next;
 409	if (ctxp != &ctx_free) {
 410		remove_from_ctx_list(ctxp);
 411		add_to_used_ctxlist(ctxp);
 412		mm->context = ctxp->ctx_number;
 413		ctxp->ctx_mm = mm;
 414		return;
 415	}
 416	ctxp = ctx_used.next;
 417	if (ctxp->ctx_mm == old_mm)
 418		ctxp = ctxp->next;
 419	if (ctxp == &ctx_used)
 420		panic("out of mmu contexts");
 421	flush_cache_mm(ctxp->ctx_mm);
 422	flush_tlb_mm(ctxp->ctx_mm);
 423	remove_from_ctx_list(ctxp);
 424	add_to_used_ctxlist(ctxp);
 425	ctxp->ctx_mm->context = NO_CONTEXT;
 426	ctxp->ctx_mm = mm;
 427	mm->context = ctxp->ctx_number;
 428}
 429
 430static inline void free_context(int context)
 431{
 432	struct ctx_list *ctx_old;
 433
 434	ctx_old = ctx_list_pool + context;
 435	remove_from_ctx_list(ctx_old);
 436	add_to_free_ctxlist(ctx_old);
 437}
 438
 439static void __init sparc_context_init(int numctx)
 440{
 441	int ctx;
 442	unsigned long size;
 443
 444	size = numctx * sizeof(struct ctx_list);
 445	ctx_list_pool = __alloc_bootmem(size, SMP_CACHE_BYTES, 0UL);
 
 
 446
 447	for (ctx = 0; ctx < numctx; ctx++) {
 448		struct ctx_list *clist;
 449
 450		clist = (ctx_list_pool + ctx);
 451		clist->ctx_number = ctx;
 452		clist->ctx_mm = NULL;
 453	}
 454	ctx_free.next = ctx_free.prev = &ctx_free;
 455	ctx_used.next = ctx_used.prev = &ctx_used;
 456	for (ctx = 0; ctx < numctx; ctx++)
 457		add_to_free_ctxlist(ctx_list_pool + ctx);
 458}
 459
 460void switch_mm(struct mm_struct *old_mm, struct mm_struct *mm,
 461	       struct task_struct *tsk)
 462{
 463	unsigned long flags;
 464
 465	if (mm->context == NO_CONTEXT) {
 466		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 467		alloc_context(old_mm, mm);
 468		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
 469		srmmu_ctxd_set(&srmmu_context_table[mm->context], mm->pgd);
 470	}
 471
 472	if (sparc_cpu_model == sparc_leon)
 473		leon_switch_mm();
 474
 475	if (is_hypersparc)
 476		hyper_flush_whole_icache();
 477
 478	srmmu_set_context(mm->context);
 479}
 480
 481/* Low level IO area allocation on the SRMMU. */
 482static inline void srmmu_mapioaddr(unsigned long physaddr,
 483				   unsigned long virt_addr, int bus_type)
 484{
 485	pgd_t *pgdp;
 
 
 486	pmd_t *pmdp;
 487	pte_t *ptep;
 488	unsigned long tmp;
 489
 490	physaddr &= PAGE_MASK;
 491	pgdp = pgd_offset_k(virt_addr);
 492	pmdp = pmd_offset(pgdp, virt_addr);
 
 
 493	ptep = pte_offset_kernel(pmdp, virt_addr);
 494	tmp = (physaddr >> 4) | SRMMU_ET_PTE;
 495
 496	/* I need to test whether this is consistent over all
 497	 * sun4m's.  The bus_type represents the upper 4 bits of
 498	 * 36-bit physical address on the I/O space lines...
 499	 */
 500	tmp |= (bus_type << 28);
 501	tmp |= SRMMU_PRIV;
 502	__flush_page_to_ram(virt_addr);
 503	set_pte(ptep, __pte(tmp));
 504}
 505
 506void srmmu_mapiorange(unsigned int bus, unsigned long xpa,
 507		      unsigned long xva, unsigned int len)
 508{
 509	while (len != 0) {
 510		len -= PAGE_SIZE;
 511		srmmu_mapioaddr(xpa, xva, bus);
 512		xva += PAGE_SIZE;
 513		xpa += PAGE_SIZE;
 514	}
 515	flush_tlb_all();
 516}
 517
 518static inline void srmmu_unmapioaddr(unsigned long virt_addr)
 519{
 520	pgd_t *pgdp;
 
 
 521	pmd_t *pmdp;
 522	pte_t *ptep;
 523
 
 524	pgdp = pgd_offset_k(virt_addr);
 525	pmdp = pmd_offset(pgdp, virt_addr);
 
 
 526	ptep = pte_offset_kernel(pmdp, virt_addr);
 527
 528	/* No need to flush uncacheable page. */
 529	__pte_clear(ptep);
 530}
 531
 532void srmmu_unmapiorange(unsigned long virt_addr, unsigned int len)
 533{
 534	while (len != 0) {
 535		len -= PAGE_SIZE;
 536		srmmu_unmapioaddr(virt_addr);
 537		virt_addr += PAGE_SIZE;
 538	}
 539	flush_tlb_all();
 540}
 541
 542/* tsunami.S */
 543extern void tsunami_flush_cache_all(void);
 544extern void tsunami_flush_cache_mm(struct mm_struct *mm);
 545extern void tsunami_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 546extern void tsunami_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 547extern void tsunami_flush_page_to_ram(unsigned long page);
 548extern void tsunami_flush_page_for_dma(unsigned long page);
 549extern void tsunami_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 550extern void tsunami_flush_tlb_all(void);
 551extern void tsunami_flush_tlb_mm(struct mm_struct *mm);
 552extern void tsunami_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 553extern void tsunami_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 554extern void tsunami_setup_blockops(void);
 555
 556/* swift.S */
 557extern void swift_flush_cache_all(void);
 558extern void swift_flush_cache_mm(struct mm_struct *mm);
 559extern void swift_flush_cache_range(struct vm_area_struct *vma,
 560				    unsigned long start, unsigned long end);
 561extern void swift_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 562extern void swift_flush_page_to_ram(unsigned long page);
 563extern void swift_flush_page_for_dma(unsigned long page);
 564extern void swift_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 565extern void swift_flush_tlb_all(void);
 566extern void swift_flush_tlb_mm(struct mm_struct *mm);
 567extern void swift_flush_tlb_range(struct vm_area_struct *vma,
 568				  unsigned long start, unsigned long end);
 569extern void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 570
 571#if 0  /* P3: deadwood to debug precise flushes on Swift. */
 572void swift_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 573{
 574	int cctx, ctx1;
 575
 576	page &= PAGE_MASK;
 577	if ((ctx1 = vma->vm_mm->context) != -1) {
 578		cctx = srmmu_get_context();
 579/* Is context # ever different from current context? P3 */
 580		if (cctx != ctx1) {
 581			printk("flush ctx %02x curr %02x\n", ctx1, cctx);
 582			srmmu_set_context(ctx1);
 583			swift_flush_page(page);
 584			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 585					"r" (page), "i" (ASI_M_FLUSH_PROBE));
 586			srmmu_set_context(cctx);
 587		} else {
 588			 /* Rm. prot. bits from virt. c. */
 589			/* swift_flush_cache_all(); */
 590			/* swift_flush_cache_page(vma, page); */
 591			swift_flush_page(page);
 592
 593			__asm__ __volatile__("sta %%g0, [%0] %1\n\t" : :
 594				"r" (page), "i" (ASI_M_FLUSH_PROBE));
 595			/* same as above: srmmu_flush_tlb_page() */
 596		}
 597	}
 598}
 599#endif
 600
 601/*
 602 * The following are all MBUS based SRMMU modules, and therefore could
 603 * be found in a multiprocessor configuration.  On the whole, these
 604 * chips seems to be much more touchy about DVMA and page tables
 605 * with respect to cache coherency.
 606 */
 607
 608/* viking.S */
 609extern void viking_flush_cache_all(void);
 610extern void viking_flush_cache_mm(struct mm_struct *mm);
 611extern void viking_flush_cache_range(struct vm_area_struct *vma, unsigned long start,
 612				     unsigned long end);
 613extern void viking_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 614extern void viking_flush_page_to_ram(unsigned long page);
 615extern void viking_flush_page_for_dma(unsigned long page);
 616extern void viking_flush_sig_insns(struct mm_struct *mm, unsigned long addr);
 617extern void viking_flush_page(unsigned long page);
 618extern void viking_mxcc_flush_page(unsigned long page);
 619extern void viking_flush_tlb_all(void);
 620extern void viking_flush_tlb_mm(struct mm_struct *mm);
 621extern void viking_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 622				   unsigned long end);
 623extern void viking_flush_tlb_page(struct vm_area_struct *vma,
 624				  unsigned long page);
 625extern void sun4dsmp_flush_tlb_all(void);
 626extern void sun4dsmp_flush_tlb_mm(struct mm_struct *mm);
 627extern void sun4dsmp_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 628				   unsigned long end);
 629extern void sun4dsmp_flush_tlb_page(struct vm_area_struct *vma,
 630				  unsigned long page);
 631
 632/* hypersparc.S */
 633extern void hypersparc_flush_cache_all(void);
 634extern void hypersparc_flush_cache_mm(struct mm_struct *mm);
 635extern void hypersparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 636extern void hypersparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page);
 637extern void hypersparc_flush_page_to_ram(unsigned long page);
 638extern void hypersparc_flush_page_for_dma(unsigned long page);
 639extern void hypersparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr);
 640extern void hypersparc_flush_tlb_all(void);
 641extern void hypersparc_flush_tlb_mm(struct mm_struct *mm);
 642extern void hypersparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
 643extern void hypersparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page);
 644extern void hypersparc_setup_blockops(void);
 645
 646/*
 647 * NOTE: All of this startup code assumes the low 16mb (approx.) of
 648 *       kernel mappings are done with one single contiguous chunk of
 649 *       ram.  On small ram machines (classics mainly) we only get
 650 *       around 8mb mapped for us.
 651 */
 652
 653static void __init early_pgtable_allocfail(char *type)
 654{
 655	prom_printf("inherit_prom_mappings: Cannot alloc kernel %s.\n", type);
 656	prom_halt();
 657}
 658
 659static void __init srmmu_early_allocate_ptable_skeleton(unsigned long start,
 660							unsigned long end)
 661{
 662	pgd_t *pgdp;
 
 
 663	pmd_t *pmdp;
 664	pte_t *ptep;
 665
 666	while (start < end) {
 667		pgdp = pgd_offset_k(start);
 668		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 
 
 669			pmdp = __srmmu_get_nocache(
 670			    SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 671			if (pmdp == NULL)
 672				early_pgtable_allocfail("pmd");
 673			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 674			pgd_set(__nocache_fix(pgdp), pmdp);
 675		}
 676		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 677		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 678			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 679			if (ptep == NULL)
 680				early_pgtable_allocfail("pte");
 681			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 682			pmd_set(__nocache_fix(pmdp), ptep);
 683		}
 684		if (start > (0xffffffffUL - PMD_SIZE))
 685			break;
 686		start = (start + PMD_SIZE) & PMD_MASK;
 687	}
 688}
 689
 690static void __init srmmu_allocate_ptable_skeleton(unsigned long start,
 691						  unsigned long end)
 692{
 693	pgd_t *pgdp;
 
 
 694	pmd_t *pmdp;
 695	pte_t *ptep;
 696
 697	while (start < end) {
 698		pgdp = pgd_offset_k(start);
 699		if (pgd_none(*pgdp)) {
 
 
 700			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE, SRMMU_PMD_TABLE_SIZE);
 701			if (pmdp == NULL)
 702				early_pgtable_allocfail("pmd");
 703			memset(pmdp, 0, SRMMU_PMD_TABLE_SIZE);
 704			pgd_set(pgdp, pmdp);
 705		}
 706		pmdp = pmd_offset(pgdp, start);
 707		if (srmmu_pmd_none(*pmdp)) {
 708			ptep = __srmmu_get_nocache(PTE_SIZE,
 709							     PTE_SIZE);
 710			if (ptep == NULL)
 711				early_pgtable_allocfail("pte");
 712			memset(ptep, 0, PTE_SIZE);
 713			pmd_set(pmdp, ptep);
 714		}
 715		if (start > (0xffffffffUL - PMD_SIZE))
 716			break;
 717		start = (start + PMD_SIZE) & PMD_MASK;
 718	}
 719}
 720
 721/* These flush types are not available on all chips... */
 722static inline unsigned long srmmu_probe(unsigned long vaddr)
 723{
 724	unsigned long retval;
 725
 726	if (sparc_cpu_model != sparc_leon) {
 727
 728		vaddr &= PAGE_MASK;
 729		__asm__ __volatile__("lda [%1] %2, %0\n\t" :
 730				     "=r" (retval) :
 731				     "r" (vaddr | 0x400), "i" (ASI_M_FLUSH_PROBE));
 732	} else {
 733		retval = leon_swprobe(vaddr, NULL);
 734	}
 735	return retval;
 736}
 737
 738/*
 739 * This is much cleaner than poking around physical address space
 740 * looking at the prom's page table directly which is what most
 741 * other OS's do.  Yuck... this is much better.
 742 */
 743static void __init srmmu_inherit_prom_mappings(unsigned long start,
 744					       unsigned long end)
 745{
 746	unsigned long probed;
 747	unsigned long addr;
 748	pgd_t *pgdp;
 
 
 749	pmd_t *pmdp;
 750	pte_t *ptep;
 751	int what; /* 0 = normal-pte, 1 = pmd-level pte, 2 = pgd-level pte */
 752
 753	while (start <= end) {
 754		if (start == 0)
 755			break; /* probably wrap around */
 756		if (start == 0xfef00000)
 757			start = KADB_DEBUGGER_BEGVM;
 758		probed = srmmu_probe(start);
 759		if (!probed) {
 760			/* continue probing until we find an entry */
 761			start += PAGE_SIZE;
 762			continue;
 763		}
 764
 765		/* A red snapper, see what it really is. */
 766		what = 0;
 767		addr = start - PAGE_SIZE;
 768
 769		if (!(start & ~(SRMMU_REAL_PMD_MASK))) {
 770			if (srmmu_probe(addr + SRMMU_REAL_PMD_SIZE) == probed)
 771				what = 1;
 772		}
 773
 774		if (!(start & ~(SRMMU_PGDIR_MASK))) {
 775			if (srmmu_probe(addr + SRMMU_PGDIR_SIZE) == probed)
 776				what = 2;
 777		}
 778
 779		pgdp = pgd_offset_k(start);
 
 
 780		if (what == 2) {
 781			*(pgd_t *)__nocache_fix(pgdp) = __pgd(probed);
 782			start += SRMMU_PGDIR_SIZE;
 783			continue;
 784		}
 785		if (pgd_none(*(pgd_t *)__nocache_fix(pgdp))) {
 786			pmdp = __srmmu_get_nocache(SRMMU_PMD_TABLE_SIZE,
 787						   SRMMU_PMD_TABLE_SIZE);
 788			if (pmdp == NULL)
 789				early_pgtable_allocfail("pmd");
 790			memset(__nocache_fix(pmdp), 0, SRMMU_PMD_TABLE_SIZE);
 791			pgd_set(__nocache_fix(pgdp), pmdp);
 
 
 
 
 
 
 792		}
 793		pmdp = pmd_offset(__nocache_fix(pgdp), start);
 794		if (srmmu_pmd_none(*(pmd_t *)__nocache_fix(pmdp))) {
 795			ptep = __srmmu_get_nocache(PTE_SIZE, PTE_SIZE);
 796			if (ptep == NULL)
 797				early_pgtable_allocfail("pte");
 798			memset(__nocache_fix(ptep), 0, PTE_SIZE);
 799			pmd_set(__nocache_fix(pmdp), ptep);
 800		}
 801		if (what == 1) {
 802			/* We bend the rule where all 16 PTPs in a pmd_t point
 803			 * inside the same PTE page, and we leak a perfectly
 804			 * good hardware PTE piece. Alternatives seem worse.
 805			 */
 806			unsigned int x;	/* Index of HW PMD in soft cluster */
 807			unsigned long *val;
 808			x = (start >> PMD_SHIFT) & 15;
 809			val = &pmdp->pmdv[x];
 810			*(unsigned long *)__nocache_fix(val) = probed;
 811			start += SRMMU_REAL_PMD_SIZE;
 812			continue;
 813		}
 814		ptep = pte_offset_kernel(__nocache_fix(pmdp), start);
 815		*(pte_t *)__nocache_fix(ptep) = __pte(probed);
 816		start += PAGE_SIZE;
 817	}
 818}
 819
 820#define KERNEL_PTE(page_shifted) ((page_shifted)|SRMMU_CACHE|SRMMU_PRIV|SRMMU_VALID)
 821
 822/* Create a third-level SRMMU 16MB page mapping. */
 823static void __init do_large_mapping(unsigned long vaddr, unsigned long phys_base)
 824{
 825	pgd_t *pgdp = pgd_offset_k(vaddr);
 826	unsigned long big_pte;
 827
 828	big_pte = KERNEL_PTE(phys_base >> 4);
 829	*(pgd_t *)__nocache_fix(pgdp) = __pgd(big_pte);
 830}
 831
 832/* Map sp_bank entry SP_ENTRY, starting at virtual address VBASE. */
 833static unsigned long __init map_spbank(unsigned long vbase, int sp_entry)
 834{
 835	unsigned long pstart = (sp_banks[sp_entry].base_addr & SRMMU_PGDIR_MASK);
 836	unsigned long vstart = (vbase & SRMMU_PGDIR_MASK);
 837	unsigned long vend = SRMMU_PGDIR_ALIGN(vbase + sp_banks[sp_entry].num_bytes);
 838	/* Map "low" memory only */
 839	const unsigned long min_vaddr = PAGE_OFFSET;
 840	const unsigned long max_vaddr = PAGE_OFFSET + SRMMU_MAXMEM;
 841
 842	if (vstart < min_vaddr || vstart >= max_vaddr)
 843		return vstart;
 844
 845	if (vend > max_vaddr || vend < min_vaddr)
 846		vend = max_vaddr;
 847
 848	while (vstart < vend) {
 849		do_large_mapping(vstart, pstart);
 850		vstart += SRMMU_PGDIR_SIZE; pstart += SRMMU_PGDIR_SIZE;
 851	}
 852	return vstart;
 853}
 854
 855static void __init map_kernel(void)
 856{
 857	int i;
 858
 859	if (phys_base > 0) {
 860		do_large_mapping(PAGE_OFFSET, phys_base);
 861	}
 862
 863	for (i = 0; sp_banks[i].num_bytes != 0; i++) {
 864		map_spbank((unsigned long)__va(sp_banks[i].base_addr), i);
 865	}
 866}
 867
 868void (*poke_srmmu)(void) = NULL;
 869
 870void __init srmmu_paging_init(void)
 871{
 872	int i;
 873	phandle cpunode;
 874	char node_str[128];
 875	pgd_t *pgd;
 
 
 876	pmd_t *pmd;
 877	pte_t *pte;
 878	unsigned long pages_avail;
 879
 880	init_mm.context = (unsigned long) NO_CONTEXT;
 881	sparc_iomap.start = SUN4M_IOBASE_VADDR;	/* 16MB of IOSPACE on all sun4m's. */
 882
 883	if (sparc_cpu_model == sun4d)
 884		num_contexts = 65536; /* We know it is Viking */
 885	else {
 886		/* Find the number of contexts on the srmmu. */
 887		cpunode = prom_getchild(prom_root_node);
 888		num_contexts = 0;
 889		while (cpunode != 0) {
 890			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
 891			if (!strcmp(node_str, "cpu")) {
 892				num_contexts = prom_getintdefault(cpunode, "mmu-nctx", 0x8);
 893				break;
 894			}
 895			cpunode = prom_getsibling(cpunode);
 896		}
 897	}
 898
 899	if (!num_contexts) {
 900		prom_printf("Something wrong, can't find cpu node in paging_init.\n");
 901		prom_halt();
 902	}
 903
 904	pages_avail = 0;
 905	last_valid_pfn = bootmem_init(&pages_avail);
 906
 907	srmmu_nocache_calcsize();
 908	srmmu_nocache_init();
 909	srmmu_inherit_prom_mappings(0xfe400000, (LINUX_OPPROM_ENDVM - PAGE_SIZE));
 910	map_kernel();
 911
 912	/* ctx table has to be physically aligned to its size */
 913	srmmu_context_table = __srmmu_get_nocache(num_contexts * sizeof(ctxd_t), num_contexts * sizeof(ctxd_t));
 914	srmmu_ctx_table_phys = (ctxd_t *)__nocache_pa((unsigned long)srmmu_context_table);
 915
 916	for (i = 0; i < num_contexts; i++)
 917		srmmu_ctxd_set((ctxd_t *)__nocache_fix(&srmmu_context_table[i]), srmmu_swapper_pg_dir);
 918
 919	flush_cache_all();
 920	srmmu_set_ctable_ptr((unsigned long)srmmu_ctx_table_phys);
 921#ifdef CONFIG_SMP
 922	/* Stop from hanging here... */
 923	local_ops->tlb_all();
 924#else
 925	flush_tlb_all();
 926#endif
 927	poke_srmmu();
 928
 929	srmmu_allocate_ptable_skeleton(sparc_iomap.start, IOBASE_END);
 930	srmmu_allocate_ptable_skeleton(DVMA_VADDR, DVMA_END);
 931
 932	srmmu_allocate_ptable_skeleton(
 933		__fix_to_virt(__end_of_fixed_addresses - 1), FIXADDR_TOP);
 934	srmmu_allocate_ptable_skeleton(PKMAP_BASE, PKMAP_END);
 935
 936	pgd = pgd_offset_k(PKMAP_BASE);
 937	pmd = pmd_offset(pgd, PKMAP_BASE);
 
 
 938	pte = pte_offset_kernel(pmd, PKMAP_BASE);
 939	pkmap_page_table = pte;
 940
 941	flush_cache_all();
 942	flush_tlb_all();
 943
 944	sparc_context_init(num_contexts);
 945
 946	kmap_init();
 947
 948	{
 949		unsigned long zones_size[MAX_NR_ZONES];
 950		unsigned long zholes_size[MAX_NR_ZONES];
 951		unsigned long npages;
 952		int znum;
 953
 954		for (znum = 0; znum < MAX_NR_ZONES; znum++)
 955			zones_size[znum] = zholes_size[znum] = 0;
 
 956
 957		npages = max_low_pfn - pfn_base;
 958
 959		zones_size[ZONE_DMA] = npages;
 960		zholes_size[ZONE_DMA] = npages - pages_avail;
 961
 962		npages = highend_pfn - max_low_pfn;
 963		zones_size[ZONE_HIGHMEM] = npages;
 964		zholes_size[ZONE_HIGHMEM] = npages - calc_highpages();
 965
 966		free_area_init_node(0, zones_size, pfn_base, zholes_size);
 967	}
 968}
 969
 970void mmu_info(struct seq_file *m)
 971{
 972	seq_printf(m,
 973		   "MMU type\t: %s\n"
 974		   "contexts\t: %d\n"
 975		   "nocache total\t: %ld\n"
 976		   "nocache used\t: %d\n",
 977		   srmmu_name,
 978		   num_contexts,
 979		   srmmu_nocache_size,
 980		   srmmu_nocache_map.used << SRMMU_NOCACHE_BITMAP_SHIFT);
 981}
 982
 983int init_new_context(struct task_struct *tsk, struct mm_struct *mm)
 984{
 985	mm->context = NO_CONTEXT;
 986	return 0;
 987}
 988
 989void destroy_context(struct mm_struct *mm)
 990{
 991	unsigned long flags;
 992
 993	if (mm->context != NO_CONTEXT) {
 994		flush_cache_mm(mm);
 995		srmmu_ctxd_set(&srmmu_context_table[mm->context], srmmu_swapper_pg_dir);
 996		flush_tlb_mm(mm);
 997		spin_lock_irqsave(&srmmu_context_spinlock, flags);
 998		free_context(mm->context);
 999		spin_unlock_irqrestore(&srmmu_context_spinlock, flags);
1000		mm->context = NO_CONTEXT;
1001	}
1002}
1003
1004/* Init various srmmu chip types. */
1005static void __init srmmu_is_bad(void)
1006{
1007	prom_printf("Could not determine SRMMU chip type.\n");
1008	prom_halt();
1009}
1010
1011static void __init init_vac_layout(void)
1012{
1013	phandle nd;
1014	int cache_lines;
1015	char node_str[128];
1016#ifdef CONFIG_SMP
1017	int cpu = 0;
1018	unsigned long max_size = 0;
1019	unsigned long min_line_size = 0x10000000;
1020#endif
1021
1022	nd = prom_getchild(prom_root_node);
1023	while ((nd = prom_getsibling(nd)) != 0) {
1024		prom_getstring(nd, "device_type", node_str, sizeof(node_str));
1025		if (!strcmp(node_str, "cpu")) {
1026			vac_line_size = prom_getint(nd, "cache-line-size");
1027			if (vac_line_size == -1) {
1028				prom_printf("can't determine cache-line-size, halting.\n");
1029				prom_halt();
1030			}
1031			cache_lines = prom_getint(nd, "cache-nlines");
1032			if (cache_lines == -1) {
1033				prom_printf("can't determine cache-nlines, halting.\n");
1034				prom_halt();
1035			}
1036
1037			vac_cache_size = cache_lines * vac_line_size;
1038#ifdef CONFIG_SMP
1039			if (vac_cache_size > max_size)
1040				max_size = vac_cache_size;
1041			if (vac_line_size < min_line_size)
1042				min_line_size = vac_line_size;
1043			//FIXME: cpus not contiguous!!
1044			cpu++;
1045			if (cpu >= nr_cpu_ids || !cpu_online(cpu))
1046				break;
1047#else
1048			break;
1049#endif
1050		}
1051	}
1052	if (nd == 0) {
1053		prom_printf("No CPU nodes found, halting.\n");
1054		prom_halt();
1055	}
1056#ifdef CONFIG_SMP
1057	vac_cache_size = max_size;
1058	vac_line_size = min_line_size;
1059#endif
1060	printk("SRMMU: Using VAC size of %d bytes, line size %d bytes.\n",
1061	       (int)vac_cache_size, (int)vac_line_size);
1062}
1063
1064static void poke_hypersparc(void)
1065{
1066	volatile unsigned long clear;
1067	unsigned long mreg = srmmu_get_mmureg();
1068
1069	hyper_flush_unconditional_combined();
1070
1071	mreg &= ~(HYPERSPARC_CWENABLE);
1072	mreg |= (HYPERSPARC_CENABLE | HYPERSPARC_WBENABLE);
1073	mreg |= (HYPERSPARC_CMODE);
1074
1075	srmmu_set_mmureg(mreg);
1076
1077#if 0 /* XXX I think this is bad news... -DaveM */
1078	hyper_clear_all_tags();
1079#endif
1080
1081	put_ross_icr(HYPERSPARC_ICCR_FTD | HYPERSPARC_ICCR_ICE);
1082	hyper_flush_whole_icache();
1083	clear = srmmu_get_faddr();
1084	clear = srmmu_get_fstatus();
1085}
1086
1087static const struct sparc32_cachetlb_ops hypersparc_ops = {
1088	.cache_all	= hypersparc_flush_cache_all,
1089	.cache_mm	= hypersparc_flush_cache_mm,
1090	.cache_page	= hypersparc_flush_cache_page,
1091	.cache_range	= hypersparc_flush_cache_range,
1092	.tlb_all	= hypersparc_flush_tlb_all,
1093	.tlb_mm		= hypersparc_flush_tlb_mm,
1094	.tlb_page	= hypersparc_flush_tlb_page,
1095	.tlb_range	= hypersparc_flush_tlb_range,
1096	.page_to_ram	= hypersparc_flush_page_to_ram,
1097	.sig_insns	= hypersparc_flush_sig_insns,
1098	.page_for_dma	= hypersparc_flush_page_for_dma,
1099};
1100
1101static void __init init_hypersparc(void)
1102{
1103	srmmu_name = "ROSS HyperSparc";
1104	srmmu_modtype = HyperSparc;
1105
1106	init_vac_layout();
1107
1108	is_hypersparc = 1;
1109	sparc32_cachetlb_ops = &hypersparc_ops;
1110
1111	poke_srmmu = poke_hypersparc;
1112
1113	hypersparc_setup_blockops();
1114}
1115
1116static void poke_swift(void)
1117{
1118	unsigned long mreg;
1119
1120	/* Clear any crap from the cache or else... */
1121	swift_flush_cache_all();
1122
1123	/* Enable I & D caches */
1124	mreg = srmmu_get_mmureg();
1125	mreg |= (SWIFT_IE | SWIFT_DE);
1126	/*
1127	 * The Swift branch folding logic is completely broken.  At
1128	 * trap time, if things are just right, if can mistakenly
1129	 * think that a trap is coming from kernel mode when in fact
1130	 * it is coming from user mode (it mis-executes the branch in
1131	 * the trap code).  So you see things like crashme completely
1132	 * hosing your machine which is completely unacceptable.  Turn
1133	 * this shit off... nice job Fujitsu.
1134	 */
1135	mreg &= ~(SWIFT_BF);
1136	srmmu_set_mmureg(mreg);
1137}
1138
1139static const struct sparc32_cachetlb_ops swift_ops = {
1140	.cache_all	= swift_flush_cache_all,
1141	.cache_mm	= swift_flush_cache_mm,
1142	.cache_page	= swift_flush_cache_page,
1143	.cache_range	= swift_flush_cache_range,
1144	.tlb_all	= swift_flush_tlb_all,
1145	.tlb_mm		= swift_flush_tlb_mm,
1146	.tlb_page	= swift_flush_tlb_page,
1147	.tlb_range	= swift_flush_tlb_range,
1148	.page_to_ram	= swift_flush_page_to_ram,
1149	.sig_insns	= swift_flush_sig_insns,
1150	.page_for_dma	= swift_flush_page_for_dma,
1151};
1152
1153#define SWIFT_MASKID_ADDR  0x10003018
1154static void __init init_swift(void)
1155{
1156	unsigned long swift_rev;
1157
1158	__asm__ __volatile__("lda [%1] %2, %0\n\t"
1159			     "srl %0, 0x18, %0\n\t" :
1160			     "=r" (swift_rev) :
1161			     "r" (SWIFT_MASKID_ADDR), "i" (ASI_M_BYPASS));
1162	srmmu_name = "Fujitsu Swift";
1163	switch (swift_rev) {
1164	case 0x11:
1165	case 0x20:
1166	case 0x23:
1167	case 0x30:
1168		srmmu_modtype = Swift_lots_o_bugs;
1169		hwbug_bitmask |= (HWBUG_KERN_ACCBROKEN | HWBUG_KERN_CBITBROKEN);
1170		/*
1171		 * Gee george, I wonder why Sun is so hush hush about
1172		 * this hardware bug... really braindamage stuff going
1173		 * on here.  However I think we can find a way to avoid
1174		 * all of the workaround overhead under Linux.  Basically,
1175		 * any page fault can cause kernel pages to become user
1176		 * accessible (the mmu gets confused and clears some of
1177		 * the ACC bits in kernel ptes).  Aha, sounds pretty
1178		 * horrible eh?  But wait, after extensive testing it appears
1179		 * that if you use pgd_t level large kernel pte's (like the
1180		 * 4MB pages on the Pentium) the bug does not get tripped
1181		 * at all.  This avoids almost all of the major overhead.
1182		 * Welcome to a world where your vendor tells you to,
1183		 * "apply this kernel patch" instead of "sorry for the
1184		 * broken hardware, send it back and we'll give you
1185		 * properly functioning parts"
1186		 */
1187		break;
1188	case 0x25:
1189	case 0x31:
1190		srmmu_modtype = Swift_bad_c;
1191		hwbug_bitmask |= HWBUG_KERN_CBITBROKEN;
1192		/*
1193		 * You see Sun allude to this hardware bug but never
1194		 * admit things directly, they'll say things like,
1195		 * "the Swift chip cache problems" or similar.
1196		 */
1197		break;
1198	default:
1199		srmmu_modtype = Swift_ok;
1200		break;
1201	}
1202
1203	sparc32_cachetlb_ops = &swift_ops;
1204	flush_page_for_dma_global = 0;
1205
1206	/*
1207	 * Are you now convinced that the Swift is one of the
1208	 * biggest VLSI abortions of all time?  Bravo Fujitsu!
1209	 * Fujitsu, the !#?!%$'d up processor people.  I bet if
1210	 * you examined the microcode of the Swift you'd find
1211	 * XXX's all over the place.
1212	 */
1213	poke_srmmu = poke_swift;
1214}
1215
1216static void turbosparc_flush_cache_all(void)
1217{
1218	flush_user_windows();
1219	turbosparc_idflash_clear();
1220}
1221
1222static void turbosparc_flush_cache_mm(struct mm_struct *mm)
1223{
1224	FLUSH_BEGIN(mm)
1225	flush_user_windows();
1226	turbosparc_idflash_clear();
1227	FLUSH_END
1228}
1229
1230static void turbosparc_flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1231{
1232	FLUSH_BEGIN(vma->vm_mm)
1233	flush_user_windows();
1234	turbosparc_idflash_clear();
1235	FLUSH_END
1236}
1237
1238static void turbosparc_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1239{
1240	FLUSH_BEGIN(vma->vm_mm)
1241	flush_user_windows();
1242	if (vma->vm_flags & VM_EXEC)
1243		turbosparc_flush_icache();
1244	turbosparc_flush_dcache();
1245	FLUSH_END
1246}
1247
1248/* TurboSparc is copy-back, if we turn it on, but this does not work. */
1249static void turbosparc_flush_page_to_ram(unsigned long page)
1250{
1251#ifdef TURBOSPARC_WRITEBACK
1252	volatile unsigned long clear;
1253
1254	if (srmmu_probe(page))
1255		turbosparc_flush_page_cache(page);
1256	clear = srmmu_get_fstatus();
1257#endif
1258}
1259
1260static void turbosparc_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1261{
1262}
1263
1264static void turbosparc_flush_page_for_dma(unsigned long page)
1265{
1266	turbosparc_flush_dcache();
1267}
1268
1269static void turbosparc_flush_tlb_all(void)
1270{
1271	srmmu_flush_whole_tlb();
1272}
1273
1274static void turbosparc_flush_tlb_mm(struct mm_struct *mm)
1275{
1276	FLUSH_BEGIN(mm)
1277	srmmu_flush_whole_tlb();
1278	FLUSH_END
1279}
1280
1281static void turbosparc_flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1282{
1283	FLUSH_BEGIN(vma->vm_mm)
1284	srmmu_flush_whole_tlb();
1285	FLUSH_END
1286}
1287
1288static void turbosparc_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1289{
1290	FLUSH_BEGIN(vma->vm_mm)
1291	srmmu_flush_whole_tlb();
1292	FLUSH_END
1293}
1294
1295
1296static void poke_turbosparc(void)
1297{
1298	unsigned long mreg = srmmu_get_mmureg();
1299	unsigned long ccreg;
1300
1301	/* Clear any crap from the cache or else... */
1302	turbosparc_flush_cache_all();
1303	/* Temporarily disable I & D caches */
1304	mreg &= ~(TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE);
1305	mreg &= ~(TURBOSPARC_PCENABLE);		/* Don't check parity */
1306	srmmu_set_mmureg(mreg);
1307
1308	ccreg = turbosparc_get_ccreg();
1309
1310#ifdef TURBOSPARC_WRITEBACK
1311	ccreg |= (TURBOSPARC_SNENABLE);		/* Do DVMA snooping in Dcache */
1312	ccreg &= ~(TURBOSPARC_uS2 | TURBOSPARC_WTENABLE);
1313			/* Write-back D-cache, emulate VLSI
1314			 * abortion number three, not number one */
1315#else
1316	/* For now let's play safe, optimize later */
1317	ccreg |= (TURBOSPARC_SNENABLE | TURBOSPARC_WTENABLE);
1318			/* Do DVMA snooping in Dcache, Write-thru D-cache */
1319	ccreg &= ~(TURBOSPARC_uS2);
1320			/* Emulate VLSI abortion number three, not number one */
1321#endif
1322
1323	switch (ccreg & 7) {
1324	case 0: /* No SE cache */
1325	case 7: /* Test mode */
1326		break;
1327	default:
1328		ccreg |= (TURBOSPARC_SCENABLE);
1329	}
1330	turbosparc_set_ccreg(ccreg);
1331
1332	mreg |= (TURBOSPARC_ICENABLE | TURBOSPARC_DCENABLE); /* I & D caches on */
1333	mreg |= (TURBOSPARC_ICSNOOP);		/* Icache snooping on */
1334	srmmu_set_mmureg(mreg);
1335}
1336
1337static const struct sparc32_cachetlb_ops turbosparc_ops = {
1338	.cache_all	= turbosparc_flush_cache_all,
1339	.cache_mm	= turbosparc_flush_cache_mm,
1340	.cache_page	= turbosparc_flush_cache_page,
1341	.cache_range	= turbosparc_flush_cache_range,
1342	.tlb_all	= turbosparc_flush_tlb_all,
1343	.tlb_mm		= turbosparc_flush_tlb_mm,
1344	.tlb_page	= turbosparc_flush_tlb_page,
1345	.tlb_range	= turbosparc_flush_tlb_range,
1346	.page_to_ram	= turbosparc_flush_page_to_ram,
1347	.sig_insns	= turbosparc_flush_sig_insns,
1348	.page_for_dma	= turbosparc_flush_page_for_dma,
1349};
1350
1351static void __init init_turbosparc(void)
1352{
1353	srmmu_name = "Fujitsu TurboSparc";
1354	srmmu_modtype = TurboSparc;
1355	sparc32_cachetlb_ops = &turbosparc_ops;
1356	poke_srmmu = poke_turbosparc;
1357}
1358
1359static void poke_tsunami(void)
1360{
1361	unsigned long mreg = srmmu_get_mmureg();
1362
1363	tsunami_flush_icache();
1364	tsunami_flush_dcache();
1365	mreg &= ~TSUNAMI_ITD;
1366	mreg |= (TSUNAMI_IENAB | TSUNAMI_DENAB);
1367	srmmu_set_mmureg(mreg);
1368}
1369
1370static const struct sparc32_cachetlb_ops tsunami_ops = {
1371	.cache_all	= tsunami_flush_cache_all,
1372	.cache_mm	= tsunami_flush_cache_mm,
1373	.cache_page	= tsunami_flush_cache_page,
1374	.cache_range	= tsunami_flush_cache_range,
1375	.tlb_all	= tsunami_flush_tlb_all,
1376	.tlb_mm		= tsunami_flush_tlb_mm,
1377	.tlb_page	= tsunami_flush_tlb_page,
1378	.tlb_range	= tsunami_flush_tlb_range,
1379	.page_to_ram	= tsunami_flush_page_to_ram,
1380	.sig_insns	= tsunami_flush_sig_insns,
1381	.page_for_dma	= tsunami_flush_page_for_dma,
1382};
1383
1384static void __init init_tsunami(void)
1385{
1386	/*
1387	 * Tsunami's pretty sane, Sun and TI actually got it
1388	 * somewhat right this time.  Fujitsu should have
1389	 * taken some lessons from them.
1390	 */
1391
1392	srmmu_name = "TI Tsunami";
1393	srmmu_modtype = Tsunami;
1394	sparc32_cachetlb_ops = &tsunami_ops;
1395	poke_srmmu = poke_tsunami;
1396
1397	tsunami_setup_blockops();
1398}
1399
1400static void poke_viking(void)
1401{
1402	unsigned long mreg = srmmu_get_mmureg();
1403	static int smp_catch;
1404
1405	if (viking_mxcc_present) {
1406		unsigned long mxcc_control = mxcc_get_creg();
1407
1408		mxcc_control |= (MXCC_CTL_ECE | MXCC_CTL_PRE | MXCC_CTL_MCE);
1409		mxcc_control &= ~(MXCC_CTL_RRC);
1410		mxcc_set_creg(mxcc_control);
1411
1412		/*
1413		 * We don't need memory parity checks.
1414		 * XXX This is a mess, have to dig out later. ecd.
1415		viking_mxcc_turn_off_parity(&mreg, &mxcc_control);
1416		 */
1417
1418		/* We do cache ptables on MXCC. */
1419		mreg |= VIKING_TCENABLE;
1420	} else {
1421		unsigned long bpreg;
1422
1423		mreg &= ~(VIKING_TCENABLE);
1424		if (smp_catch++) {
1425			/* Must disable mixed-cmd mode here for other cpu's. */
1426			bpreg = viking_get_bpreg();
1427			bpreg &= ~(VIKING_ACTION_MIX);
1428			viking_set_bpreg(bpreg);
1429
1430			/* Just in case PROM does something funny. */
1431			msi_set_sync();
1432		}
1433	}
1434
1435	mreg |= VIKING_SPENABLE;
1436	mreg |= (VIKING_ICENABLE | VIKING_DCENABLE);
1437	mreg |= VIKING_SBENABLE;
1438	mreg &= ~(VIKING_ACENABLE);
1439	srmmu_set_mmureg(mreg);
1440}
1441
1442static struct sparc32_cachetlb_ops viking_ops = {
1443	.cache_all	= viking_flush_cache_all,
1444	.cache_mm	= viking_flush_cache_mm,
1445	.cache_page	= viking_flush_cache_page,
1446	.cache_range	= viking_flush_cache_range,
1447	.tlb_all	= viking_flush_tlb_all,
1448	.tlb_mm		= viking_flush_tlb_mm,
1449	.tlb_page	= viking_flush_tlb_page,
1450	.tlb_range	= viking_flush_tlb_range,
1451	.page_to_ram	= viking_flush_page_to_ram,
1452	.sig_insns	= viking_flush_sig_insns,
1453	.page_for_dma	= viking_flush_page_for_dma,
1454};
1455
1456#ifdef CONFIG_SMP
1457/* On sun4d the cpu broadcasts local TLB flushes, so we can just
1458 * perform the local TLB flush and all the other cpus will see it.
1459 * But, unfortunately, there is a bug in the sun4d XBUS backplane
1460 * that requires that we add some synchronization to these flushes.
1461 *
1462 * The bug is that the fifo which keeps track of all the pending TLB
1463 * broadcasts in the system is an entry or two too small, so if we
1464 * have too many going at once we'll overflow that fifo and lose a TLB
1465 * flush resulting in corruption.
1466 *
1467 * Our workaround is to take a global spinlock around the TLB flushes,
1468 * which guarentees we won't ever have too many pending.  It's a big
1469 * hammer, but a semaphore like system to make sure we only have N TLB
1470 * flushes going at once will require SMP locking anyways so there's
1471 * no real value in trying any harder than this.
1472 */
1473static struct sparc32_cachetlb_ops viking_sun4d_smp_ops = {
1474	.cache_all	= viking_flush_cache_all,
1475	.cache_mm	= viking_flush_cache_mm,
1476	.cache_page	= viking_flush_cache_page,
1477	.cache_range	= viking_flush_cache_range,
1478	.tlb_all	= sun4dsmp_flush_tlb_all,
1479	.tlb_mm		= sun4dsmp_flush_tlb_mm,
1480	.tlb_page	= sun4dsmp_flush_tlb_page,
1481	.tlb_range	= sun4dsmp_flush_tlb_range,
1482	.page_to_ram	= viking_flush_page_to_ram,
1483	.sig_insns	= viking_flush_sig_insns,
1484	.page_for_dma	= viking_flush_page_for_dma,
1485};
1486#endif
1487
1488static void __init init_viking(void)
1489{
1490	unsigned long mreg = srmmu_get_mmureg();
1491
1492	/* Ahhh, the viking.  SRMMU VLSI abortion number two... */
1493	if (mreg & VIKING_MMODE) {
1494		srmmu_name = "TI Viking";
1495		viking_mxcc_present = 0;
1496		msi_set_sync();
1497
1498		/*
1499		 * We need this to make sure old viking takes no hits
1500		 * on it's cache for dma snoops to workaround the
1501		 * "load from non-cacheable memory" interrupt bug.
1502		 * This is only necessary because of the new way in
1503		 * which we use the IOMMU.
1504		 */
1505		viking_ops.page_for_dma = viking_flush_page;
1506#ifdef CONFIG_SMP
1507		viking_sun4d_smp_ops.page_for_dma = viking_flush_page;
1508#endif
1509		flush_page_for_dma_global = 0;
1510	} else {
1511		srmmu_name = "TI Viking/MXCC";
1512		viking_mxcc_present = 1;
1513		srmmu_cache_pagetables = 1;
1514	}
1515
1516	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1517		&viking_ops;
1518#ifdef CONFIG_SMP
1519	if (sparc_cpu_model == sun4d)
1520		sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1521			&viking_sun4d_smp_ops;
1522#endif
1523
1524	poke_srmmu = poke_viking;
1525}
1526
1527/* Probe for the srmmu chip version. */
1528static void __init get_srmmu_type(void)
1529{
1530	unsigned long mreg, psr;
1531	unsigned long mod_typ, mod_rev, psr_typ, psr_vers;
1532
1533	srmmu_modtype = SRMMU_INVAL_MOD;
1534	hwbug_bitmask = 0;
1535
1536	mreg = srmmu_get_mmureg(); psr = get_psr();
1537	mod_typ = (mreg & 0xf0000000) >> 28;
1538	mod_rev = (mreg & 0x0f000000) >> 24;
1539	psr_typ = (psr >> 28) & 0xf;
1540	psr_vers = (psr >> 24) & 0xf;
1541
1542	/* First, check for sparc-leon. */
1543	if (sparc_cpu_model == sparc_leon) {
1544		init_leon();
1545		return;
1546	}
1547
1548	/* Second, check for HyperSparc or Cypress. */
1549	if (mod_typ == 1) {
1550		switch (mod_rev) {
1551		case 7:
1552			/* UP or MP Hypersparc */
1553			init_hypersparc();
1554			break;
1555		case 0:
1556		case 2:
1557		case 10:
1558		case 11:
1559		case 12:
1560		case 13:
1561		case 14:
1562		case 15:
1563		default:
1564			prom_printf("Sparc-Linux Cypress support does not longer exit.\n");
1565			prom_halt();
1566			break;
1567		}
1568		return;
1569	}
1570
1571	/* Now Fujitsu TurboSparc. It might happen that it is
1572	 * in Swift emulation mode, so we will check later...
1573	 */
1574	if (psr_typ == 0 && psr_vers == 5) {
1575		init_turbosparc();
1576		return;
1577	}
1578
1579	/* Next check for Fujitsu Swift. */
1580	if (psr_typ == 0 && psr_vers == 4) {
1581		phandle cpunode;
1582		char node_str[128];
1583
1584		/* Look if it is not a TurboSparc emulating Swift... */
1585		cpunode = prom_getchild(prom_root_node);
1586		while ((cpunode = prom_getsibling(cpunode)) != 0) {
1587			prom_getstring(cpunode, "device_type", node_str, sizeof(node_str));
1588			if (!strcmp(node_str, "cpu")) {
1589				if (!prom_getintdefault(cpunode, "psr-implementation", 1) &&
1590				    prom_getintdefault(cpunode, "psr-version", 1) == 5) {
1591					init_turbosparc();
1592					return;
1593				}
1594				break;
1595			}
1596		}
1597
1598		init_swift();
1599		return;
1600	}
1601
1602	/* Now the Viking family of srmmu. */
1603	if (psr_typ == 4 &&
1604	   ((psr_vers == 0) ||
1605	    ((psr_vers == 1) && (mod_typ == 0) && (mod_rev == 0)))) {
1606		init_viking();
1607		return;
1608	}
1609
1610	/* Finally the Tsunami. */
1611	if (psr_typ == 4 && psr_vers == 1 && (mod_typ || mod_rev)) {
1612		init_tsunami();
1613		return;
1614	}
1615
1616	/* Oh well */
1617	srmmu_is_bad();
1618}
1619
1620#ifdef CONFIG_SMP
1621/* Local cross-calls. */
1622static void smp_flush_page_for_dma(unsigned long page)
1623{
1624	xc1((smpfunc_t) local_ops->page_for_dma, page);
1625	local_ops->page_for_dma(page);
1626}
1627
1628static void smp_flush_cache_all(void)
1629{
1630	xc0((smpfunc_t) local_ops->cache_all);
1631	local_ops->cache_all();
1632}
1633
1634static void smp_flush_tlb_all(void)
1635{
1636	xc0((smpfunc_t) local_ops->tlb_all);
1637	local_ops->tlb_all();
1638}
1639
1640static void smp_flush_cache_mm(struct mm_struct *mm)
1641{
1642	if (mm->context != NO_CONTEXT) {
1643		cpumask_t cpu_mask;
1644		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1645		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1646		if (!cpumask_empty(&cpu_mask))
1647			xc1((smpfunc_t) local_ops->cache_mm, (unsigned long) mm);
1648		local_ops->cache_mm(mm);
1649	}
1650}
1651
1652static void smp_flush_tlb_mm(struct mm_struct *mm)
1653{
1654	if (mm->context != NO_CONTEXT) {
1655		cpumask_t cpu_mask;
1656		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1657		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1658		if (!cpumask_empty(&cpu_mask)) {
1659			xc1((smpfunc_t) local_ops->tlb_mm, (unsigned long) mm);
1660			if (atomic_read(&mm->mm_users) == 1 && current->active_mm == mm)
1661				cpumask_copy(mm_cpumask(mm),
1662					     cpumask_of(smp_processor_id()));
1663		}
1664		local_ops->tlb_mm(mm);
1665	}
1666}
1667
1668static void smp_flush_cache_range(struct vm_area_struct *vma,
1669				  unsigned long start,
1670				  unsigned long end)
1671{
1672	struct mm_struct *mm = vma->vm_mm;
1673
1674	if (mm->context != NO_CONTEXT) {
1675		cpumask_t cpu_mask;
1676		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1677		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1678		if (!cpumask_empty(&cpu_mask))
1679			xc3((smpfunc_t) local_ops->cache_range,
1680			    (unsigned long) vma, start, end);
1681		local_ops->cache_range(vma, start, end);
1682	}
1683}
1684
1685static void smp_flush_tlb_range(struct vm_area_struct *vma,
1686				unsigned long start,
1687				unsigned long end)
1688{
1689	struct mm_struct *mm = vma->vm_mm;
1690
1691	if (mm->context != NO_CONTEXT) {
1692		cpumask_t cpu_mask;
1693		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1694		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1695		if (!cpumask_empty(&cpu_mask))
1696			xc3((smpfunc_t) local_ops->tlb_range,
1697			    (unsigned long) vma, start, end);
1698		local_ops->tlb_range(vma, start, end);
1699	}
1700}
1701
1702static void smp_flush_cache_page(struct vm_area_struct *vma, unsigned long page)
1703{
1704	struct mm_struct *mm = vma->vm_mm;
1705
1706	if (mm->context != NO_CONTEXT) {
1707		cpumask_t cpu_mask;
1708		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1709		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1710		if (!cpumask_empty(&cpu_mask))
1711			xc2((smpfunc_t) local_ops->cache_page,
1712			    (unsigned long) vma, page);
1713		local_ops->cache_page(vma, page);
1714	}
1715}
1716
1717static void smp_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
1718{
1719	struct mm_struct *mm = vma->vm_mm;
1720
1721	if (mm->context != NO_CONTEXT) {
1722		cpumask_t cpu_mask;
1723		cpumask_copy(&cpu_mask, mm_cpumask(mm));
1724		cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1725		if (!cpumask_empty(&cpu_mask))
1726			xc2((smpfunc_t) local_ops->tlb_page,
1727			    (unsigned long) vma, page);
1728		local_ops->tlb_page(vma, page);
1729	}
1730}
1731
1732static void smp_flush_page_to_ram(unsigned long page)
1733{
1734	/* Current theory is that those who call this are the one's
1735	 * who have just dirtied their cache with the pages contents
1736	 * in kernel space, therefore we only run this on local cpu.
1737	 *
1738	 * XXX This experiment failed, research further... -DaveM
1739	 */
1740#if 1
1741	xc1((smpfunc_t) local_ops->page_to_ram, page);
1742#endif
1743	local_ops->page_to_ram(page);
1744}
1745
1746static void smp_flush_sig_insns(struct mm_struct *mm, unsigned long insn_addr)
1747{
1748	cpumask_t cpu_mask;
1749	cpumask_copy(&cpu_mask, mm_cpumask(mm));
1750	cpumask_clear_cpu(smp_processor_id(), &cpu_mask);
1751	if (!cpumask_empty(&cpu_mask))
1752		xc2((smpfunc_t) local_ops->sig_insns,
1753		    (unsigned long) mm, insn_addr);
1754	local_ops->sig_insns(mm, insn_addr);
1755}
1756
1757static struct sparc32_cachetlb_ops smp_cachetlb_ops = {
1758	.cache_all	= smp_flush_cache_all,
1759	.cache_mm	= smp_flush_cache_mm,
1760	.cache_page	= smp_flush_cache_page,
1761	.cache_range	= smp_flush_cache_range,
1762	.tlb_all	= smp_flush_tlb_all,
1763	.tlb_mm		= smp_flush_tlb_mm,
1764	.tlb_page	= smp_flush_tlb_page,
1765	.tlb_range	= smp_flush_tlb_range,
1766	.page_to_ram	= smp_flush_page_to_ram,
1767	.sig_insns	= smp_flush_sig_insns,
1768	.page_for_dma	= smp_flush_page_for_dma,
1769};
1770#endif
1771
1772/* Load up routines and constants for sun4m and sun4d mmu */
1773void __init load_mmu(void)
1774{
1775	/* Functions */
1776	get_srmmu_type();
1777
1778#ifdef CONFIG_SMP
1779	/* El switcheroo... */
1780	local_ops = sparc32_cachetlb_ops;
1781
1782	if (sparc_cpu_model == sun4d || sparc_cpu_model == sparc_leon) {
1783		smp_cachetlb_ops.tlb_all = local_ops->tlb_all;
1784		smp_cachetlb_ops.tlb_mm = local_ops->tlb_mm;
1785		smp_cachetlb_ops.tlb_range = local_ops->tlb_range;
1786		smp_cachetlb_ops.tlb_page = local_ops->tlb_page;
1787	}
1788
1789	if (poke_srmmu == poke_viking) {
1790		/* Avoid unnecessary cross calls. */
1791		smp_cachetlb_ops.cache_all = local_ops->cache_all;
1792		smp_cachetlb_ops.cache_mm = local_ops->cache_mm;
1793		smp_cachetlb_ops.cache_range = local_ops->cache_range;
1794		smp_cachetlb_ops.cache_page = local_ops->cache_page;
1795
1796		smp_cachetlb_ops.page_to_ram = local_ops->page_to_ram;
1797		smp_cachetlb_ops.sig_insns = local_ops->sig_insns;
1798		smp_cachetlb_ops.page_for_dma = local_ops->page_for_dma;
1799	}
1800
1801	/* It really is const after this point. */
1802	sparc32_cachetlb_ops = (const struct sparc32_cachetlb_ops *)
1803		&smp_cachetlb_ops;
1804#endif
1805
1806	if (sparc_cpu_model == sun4d)
1807		ld_mmu_iounit();
1808	else
1809		ld_mmu_iommu();
1810#ifdef CONFIG_SMP
1811	if (sparc_cpu_model == sun4d)
1812		sun4d_init_smp();
1813	else if (sparc_cpu_model == sparc_leon)
1814		leon_init_smp();
1815	else
1816		sun4m_init_smp();
1817#endif
1818}