Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
  4 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
 
 
 
 
  5 */
  6
  7#include <linux/sched.h>
  8#include <linux/slab.h>
  9#include <linux/spinlock.h>
 10#include <linux/completion.h>
 11#include <linux/buffer_head.h>
 12#include <linux/pagemap.h>
 13#include <linux/pagevec.h>
 14#include <linux/mpage.h>
 15#include <linux/fs.h>
 16#include <linux/writeback.h>
 17#include <linux/swap.h>
 18#include <linux/gfs2_ondisk.h>
 19#include <linux/backing-dev.h>
 20#include <linux/uio.h>
 21#include <trace/events/writeback.h>
 22#include <linux/sched/signal.h>
 23
 24#include "gfs2.h"
 25#include "incore.h"
 26#include "bmap.h"
 27#include "glock.h"
 28#include "inode.h"
 29#include "log.h"
 30#include "meta_io.h"
 31#include "quota.h"
 32#include "trans.h"
 33#include "rgrp.h"
 34#include "super.h"
 35#include "util.h"
 36#include "glops.h"
 37#include "aops.h"
 38
 39
 40void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
 41			    unsigned int from, unsigned int len)
 42{
 43	struct buffer_head *head = page_buffers(page);
 44	unsigned int bsize = head->b_size;
 45	struct buffer_head *bh;
 46	unsigned int to = from + len;
 47	unsigned int start, end;
 48
 49	for (bh = head, start = 0; bh != head || !start;
 50	     bh = bh->b_this_page, start = end) {
 51		end = start + bsize;
 52		if (end <= from)
 53			continue;
 54		if (start >= to)
 55			break;
 56		set_buffer_uptodate(bh);
 57		gfs2_trans_add_data(ip->i_gl, bh);
 58	}
 59}
 60
 61/**
 62 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
 63 * @inode: The inode
 64 * @lblock: The block number to look up
 65 * @bh_result: The buffer head to return the result in
 66 * @create: Non-zero if we may add block to the file
 67 *
 68 * Returns: errno
 69 */
 70
 71static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
 72				  struct buffer_head *bh_result, int create)
 73{
 74	int error;
 75
 76	error = gfs2_block_map(inode, lblock, bh_result, 0);
 77	if (error)
 78		return error;
 79	if (!buffer_mapped(bh_result))
 80		return -ENODATA;
 81	return 0;
 82}
 83
 
 
 
 
 
 
 84/**
 85 * gfs2_write_jdata_page - gfs2 jdata-specific version of block_write_full_page
 86 * @page: The page to write
 87 * @wbc: The writeback control
 88 *
 89 * This is the same as calling block_write_full_page, but it also
 90 * writes pages outside of i_size
 91 */
 92static int gfs2_write_jdata_page(struct page *page,
 
 93				 struct writeback_control *wbc)
 94{
 95	struct inode * const inode = page->mapping->host;
 
 
 96	loff_t i_size = i_size_read(inode);
 97	const pgoff_t end_index = i_size >> PAGE_SHIFT;
 98	unsigned offset;
 99
100	/*
101	 * The page straddles i_size.  It must be zeroed out on each and every
102	 * writepage invocation because it may be mmapped.  "A file is mapped
103	 * in multiples of the page size.  For a file that is not a multiple of
104	 * the  page size, the remaining memory is zeroed when mapped, and
105	 * writes to that region are not written out to the file."
106	 */
107	offset = i_size & (PAGE_SIZE - 1);
108	if (page->index == end_index && offset)
109		zero_user_segment(page, offset, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
110
111	return __block_write_full_page(inode, page, gfs2_get_block_noalloc, wbc,
112				       end_buffer_async_write);
 
 
 
 
 
 
 
113}
114
115/**
116 * __gfs2_jdata_writepage - The core of jdata writepage
117 * @page: The page to write
118 * @wbc: The writeback control
119 *
120 * This is shared between writepage and writepages and implements the
121 * core of the writepage operation. If a transaction is required then
122 * PageChecked will have been set and the transaction will have
123 * already been started before this is called.
124 */
125
126static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
127{
128	struct inode *inode = page->mapping->host;
129	struct gfs2_inode *ip = GFS2_I(inode);
130	struct gfs2_sbd *sdp = GFS2_SB(inode);
131
132	if (PageChecked(page)) {
133		ClearPageChecked(page);
134		if (!page_has_buffers(page)) {
135			create_empty_buffers(page, inode->i_sb->s_blocksize,
136					     BIT(BH_Dirty)|BIT(BH_Uptodate));
137		}
138		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize);
139	}
140	return gfs2_write_jdata_page(page, wbc);
141}
142
143/**
144 * gfs2_jdata_writepage - Write complete page
145 * @page: Page to write
146 * @wbc: The writeback control
147 *
148 * Returns: errno
149 *
150 */
151
152static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
153{
154	struct inode *inode = page->mapping->host;
155	struct gfs2_inode *ip = GFS2_I(inode);
156	struct gfs2_sbd *sdp = GFS2_SB(inode);
 
 
157
158	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
159		goto out;
160	if (PageChecked(page) || current->journal_info)
161		goto out_ignore;
162	return __gfs2_jdata_writepage(page, wbc);
 
 
 
 
 
 
 
 
 
163
164out_ignore:
165	redirty_page_for_writepage(wbc, page);
166out:
167	unlock_page(page);
168	return 0;
169}
170
171/**
172 * gfs2_writepages - Write a bunch of dirty pages back to disk
173 * @mapping: The mapping to write
174 * @wbc: Write-back control
175 *
176 * Used for both ordered and writeback modes.
177 */
178static int gfs2_writepages(struct address_space *mapping,
179			   struct writeback_control *wbc)
180{
181	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
182	struct iomap_writepage_ctx wpc = { };
183	int ret;
184
185	/*
186	 * Even if we didn't write any pages here, we might still be holding
187	 * dirty pages in the ail. We forcibly flush the ail because we don't
188	 * want balance_dirty_pages() to loop indefinitely trying to write out
189	 * pages held in the ail that it can't find.
190	 */
191	ret = iomap_writepages(mapping, wbc, &wpc, &gfs2_writeback_ops);
192	if (ret == 0)
193		set_bit(SDF_FORCE_AIL_FLUSH, &sdp->sd_flags);
194	return ret;
195}
196
197/**
198 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
199 * @mapping: The mapping
200 * @wbc: The writeback control
201 * @pvec: The vector of pages
202 * @nr_pages: The number of pages to write
 
203 * @done_index: Page index
204 *
205 * Returns: non-zero if loop should terminate, zero otherwise
206 */
207
208static int gfs2_write_jdata_pagevec(struct address_space *mapping,
209				    struct writeback_control *wbc,
210				    struct pagevec *pvec,
211				    int nr_pages,
212				    pgoff_t *done_index)
213{
214	struct inode *inode = mapping->host;
215	struct gfs2_sbd *sdp = GFS2_SB(inode);
216	unsigned nrblocks = nr_pages * (PAGE_SIZE >> inode->i_blkbits);
217	int i;
218	int ret;
219
220	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
221	if (ret < 0)
222		return ret;
223
224	for(i = 0; i < nr_pages; i++) {
225		struct page *page = pvec->pages[i];
226
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
227		*done_index = page->index;
228
229		lock_page(page);
230
231		if (unlikely(page->mapping != mapping)) {
232continue_unlock:
233			unlock_page(page);
234			continue;
235		}
236
237		if (!PageDirty(page)) {
238			/* someone wrote it for us */
239			goto continue_unlock;
240		}
241
242		if (PageWriteback(page)) {
243			if (wbc->sync_mode != WB_SYNC_NONE)
244				wait_on_page_writeback(page);
245			else
246				goto continue_unlock;
247		}
248
249		BUG_ON(PageWriteback(page));
250		if (!clear_page_dirty_for_io(page))
251			goto continue_unlock;
252
253		trace_wbc_writepage(wbc, inode_to_bdi(inode));
254
255		ret = __gfs2_jdata_writepage(page, wbc);
256		if (unlikely(ret)) {
257			if (ret == AOP_WRITEPAGE_ACTIVATE) {
258				unlock_page(page);
259				ret = 0;
260			} else {
261
262				/*
263				 * done_index is set past this page,
264				 * so media errors will not choke
265				 * background writeout for the entire
266				 * file. This has consequences for
267				 * range_cyclic semantics (ie. it may
268				 * not be suitable for data integrity
269				 * writeout).
270				 */
271				*done_index = page->index + 1;
272				ret = 1;
273				break;
274			}
275		}
276
277		/*
278		 * We stop writing back only if we are not doing
279		 * integrity sync. In case of integrity sync we have to
280		 * keep going until we have written all the pages
281		 * we tagged for writeback prior to entering this loop.
282		 */
283		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
284			ret = 1;
285			break;
286		}
287
288	}
289	gfs2_trans_end(sdp);
290	return ret;
291}
292
293/**
294 * gfs2_write_cache_jdata - Like write_cache_pages but different
295 * @mapping: The mapping to write
296 * @wbc: The writeback control
297 *
298 * The reason that we use our own function here is that we need to
299 * start transactions before we grab page locks. This allows us
300 * to get the ordering right.
301 */
302
303static int gfs2_write_cache_jdata(struct address_space *mapping,
304				  struct writeback_control *wbc)
305{
306	int ret = 0;
307	int done = 0;
308	struct pagevec pvec;
309	int nr_pages;
310	pgoff_t writeback_index;
311	pgoff_t index;
312	pgoff_t end;
313	pgoff_t done_index;
314	int cycled;
315	int range_whole = 0;
316	xa_mark_t tag;
317
318	pagevec_init(&pvec);
319	if (wbc->range_cyclic) {
320		writeback_index = mapping->writeback_index; /* prev offset */
321		index = writeback_index;
322		if (index == 0)
323			cycled = 1;
324		else
325			cycled = 0;
326		end = -1;
327	} else {
328		index = wbc->range_start >> PAGE_SHIFT;
329		end = wbc->range_end >> PAGE_SHIFT;
330		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
331			range_whole = 1;
332		cycled = 1; /* ignore range_cyclic tests */
333	}
334	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
335		tag = PAGECACHE_TAG_TOWRITE;
336	else
337		tag = PAGECACHE_TAG_DIRTY;
338
339retry:
340	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
341		tag_pages_for_writeback(mapping, index, end);
342	done_index = index;
343	while (!done && (index <= end)) {
344		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
345				tag);
346		if (nr_pages == 0)
347			break;
348
349		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, &done_index);
350		if (ret)
351			done = 1;
352		if (ret > 0)
353			ret = 0;
354		pagevec_release(&pvec);
355		cond_resched();
356	}
357
358	if (!cycled && !done) {
359		/*
360		 * range_cyclic:
361		 * We hit the last page and there is more work to be done: wrap
362		 * back to the start of the file
363		 */
364		cycled = 1;
365		index = 0;
366		end = writeback_index - 1;
367		goto retry;
368	}
369
370	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
371		mapping->writeback_index = done_index;
372
373	return ret;
374}
375
376
377/**
378 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
379 * @mapping: The mapping to write
380 * @wbc: The writeback control
381 * 
382 */
383
384static int gfs2_jdata_writepages(struct address_space *mapping,
385				 struct writeback_control *wbc)
386{
387	struct gfs2_inode *ip = GFS2_I(mapping->host);
388	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
389	int ret;
390
391	ret = gfs2_write_cache_jdata(mapping, wbc);
392	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
393		gfs2_log_flush(sdp, ip->i_gl, GFS2_LOG_HEAD_FLUSH_NORMAL |
394			       GFS2_LFC_JDATA_WPAGES);
395		ret = gfs2_write_cache_jdata(mapping, wbc);
396	}
397	return ret;
398}
399
400/**
401 * stuffed_readpage - Fill in a Linux page with stuffed file data
402 * @ip: the inode
403 * @page: the page
404 *
405 * Returns: errno
406 */
 
407static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
408{
409	struct buffer_head *dibh;
410	u64 dsize = i_size_read(&ip->i_inode);
411	void *kaddr;
412	int error;
413
414	/*
415	 * Due to the order of unstuffing files and ->fault(), we can be
416	 * asked for a zero page in the case of a stuffed file being extended,
417	 * so we need to supply one here. It doesn't happen often.
418	 */
419	if (unlikely(page->index)) {
420		zero_user(page, 0, PAGE_SIZE);
421		SetPageUptodate(page);
422		return 0;
423	}
424
425	error = gfs2_meta_inode_buffer(ip, &dibh);
426	if (error)
427		return error;
428
429	kaddr = kmap_atomic(page);
 
 
430	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
431	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
432	kunmap_atomic(kaddr);
433	flush_dcache_page(page);
434	brelse(dibh);
435	SetPageUptodate(page);
436
437	return 0;
438}
439
 
440/**
441 * gfs2_read_folio - read a folio from a file
442 * @file: The file to read
443 * @folio: The folio in the file
 
 
 
 
 
444 */
445static int gfs2_read_folio(struct file *file, struct folio *folio)
 
446{
447	struct inode *inode = folio->mapping->host;
448	struct gfs2_inode *ip = GFS2_I(inode);
449	struct gfs2_sbd *sdp = GFS2_SB(inode);
450	int error;
451
452	if (!gfs2_is_jdata(ip) ||
453	    (i_blocksize(inode) == PAGE_SIZE && !folio_buffers(folio))) {
454		error = iomap_read_folio(folio, &gfs2_iomap_ops);
455	} else if (gfs2_is_stuffed(ip)) {
456		error = stuffed_readpage(ip, &folio->page);
457		folio_unlock(folio);
458	} else {
459		error = mpage_read_folio(folio, gfs2_block_map);
460	}
461
462	if (unlikely(gfs2_withdrawn(sdp)))
463		return -EIO;
464
465	return error;
466}
467
468/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469 * gfs2_internal_read - read an internal file
470 * @ip: The gfs2 inode
471 * @buf: The buffer to fill
472 * @pos: The file position
473 * @size: The amount to read
474 *
475 */
476
477int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
478                       unsigned size)
479{
480	struct address_space *mapping = ip->i_inode.i_mapping;
481	unsigned long index = *pos >> PAGE_SHIFT;
482	unsigned offset = *pos & (PAGE_SIZE - 1);
483	unsigned copied = 0;
484	unsigned amt;
485	struct page *page;
486	void *p;
487
488	do {
489		amt = size - copied;
490		if (offset + size > PAGE_SIZE)
491			amt = PAGE_SIZE - offset;
492		page = read_cache_page(mapping, index, gfs2_read_folio, NULL);
493		if (IS_ERR(page))
494			return PTR_ERR(page);
495		p = kmap_atomic(page);
496		memcpy(buf + copied, p + offset, amt);
497		kunmap_atomic(p);
498		put_page(page);
499		copied += amt;
500		index++;
501		offset = 0;
502	} while(copied < size);
503	(*pos) += size;
504	return size;
505}
506
507/**
508 * gfs2_readahead - Read a bunch of pages at once
509 * @rac: Read-ahead control structure
 
 
 
510 *
511 * Some notes:
512 * 1. This is only for readahead, so we can simply ignore any things
513 *    which are slightly inconvenient (such as locking conflicts between
514 *    the page lock and the glock) and return having done no I/O. Its
515 *    obviously not something we'd want to do on too regular a basis.
516 *    Any I/O we ignore at this time will be done via readpage later.
517 * 2. We don't handle stuffed files here we let readpage do the honours.
518 * 3. mpage_readahead() does most of the heavy lifting in the common case.
519 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
520 */
521
522static void gfs2_readahead(struct readahead_control *rac)
 
523{
524	struct inode *inode = rac->mapping->host;
525	struct gfs2_inode *ip = GFS2_I(inode);
 
 
 
526
527	if (gfs2_is_stuffed(ip))
528		;
529	else if (gfs2_is_jdata(ip))
530		mpage_readahead(rac, gfs2_block_map);
531	else
532		iomap_readahead(rac, &gfs2_iomap_ops);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
533}
534
535/**
536 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
537 * @inode: the rindex inode
538 */
539void adjust_fs_space(struct inode *inode)
540{
541	struct gfs2_sbd *sdp = GFS2_SB(inode);
542	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 
543	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
544	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
545	struct buffer_head *m_bh;
546	u64 fs_total, new_free;
547
548	if (gfs2_trans_begin(sdp, 2 * RES_STATFS, 0) != 0)
549		return;
550
551	/* Total up the file system space, according to the latest rindex. */
552	fs_total = gfs2_ri_total(sdp);
553	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
554		goto out;
555
556	spin_lock(&sdp->sd_statfs_spin);
557	gfs2_statfs_change_in(m_sc, m_bh->b_data +
558			      sizeof(struct gfs2_dinode));
559	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
560		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
561	else
562		new_free = 0;
563	spin_unlock(&sdp->sd_statfs_spin);
564	fs_warn(sdp, "File system extended by %llu blocks.\n",
565		(unsigned long long)new_free);
566	gfs2_statfs_change(sdp, new_free, new_free, 0);
567
568	update_statfs(sdp, m_bh);
569	brelse(m_bh);
 
 
570out:
571	sdp->sd_rindex_uptodate = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572	gfs2_trans_end(sdp);
 
 
 
 
 
 
 
573}
574
575static bool jdata_dirty_folio(struct address_space *mapping,
576		struct folio *folio)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577{
578	if (current->journal_info)
579		folio_set_checked(folio);
580	return block_dirty_folio(mapping, folio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
581}
582
583/**
584 * gfs2_bmap - Block map function
585 * @mapping: Address space info
586 * @lblock: The block to map
587 *
588 * Returns: The disk address for the block or 0 on hole or error
589 */
590
591static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
592{
593	struct gfs2_inode *ip = GFS2_I(mapping->host);
594	struct gfs2_holder i_gh;
595	sector_t dblock = 0;
596	int error;
597
598	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
599	if (error)
600		return 0;
601
602	if (!gfs2_is_stuffed(ip))
603		dblock = iomap_bmap(mapping, lblock, &gfs2_iomap_ops);
604
605	gfs2_glock_dq_uninit(&i_gh);
606
607	return dblock;
608}
609
610static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
611{
612	struct gfs2_bufdata *bd;
613
614	lock_buffer(bh);
615	gfs2_log_lock(sdp);
616	clear_buffer_dirty(bh);
617	bd = bh->b_private;
618	if (bd) {
619		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
620			list_del_init(&bd->bd_list);
621		else {
622			spin_lock(&sdp->sd_ail_lock);
623			gfs2_remove_from_journal(bh, REMOVE_JDATA);
624			spin_unlock(&sdp->sd_ail_lock);
625		}
626	}
627	bh->b_bdev = NULL;
628	clear_buffer_mapped(bh);
629	clear_buffer_req(bh);
630	clear_buffer_new(bh);
631	gfs2_log_unlock(sdp);
632	unlock_buffer(bh);
633}
634
635static void gfs2_invalidate_folio(struct folio *folio, size_t offset,
636				size_t length)
637{
638	struct gfs2_sbd *sdp = GFS2_SB(folio->mapping->host);
639	size_t stop = offset + length;
640	int partial_page = (offset || length < folio_size(folio));
641	struct buffer_head *bh, *head;
642	unsigned long pos = 0;
643
644	BUG_ON(!folio_test_locked(folio));
645	if (!partial_page)
646		folio_clear_checked(folio);
647	head = folio_buffers(folio);
648	if (!head)
649		goto out;
650
651	bh = head;
652	do {
653		if (pos + bh->b_size > stop)
654			return;
655
656		if (offset <= pos)
657			gfs2_discard(sdp, bh);
658		pos += bh->b_size;
659		bh = bh->b_this_page;
660	} while (bh != head);
661out:
662	if (!partial_page)
663		filemap_release_folio(folio, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
664}
665
666/**
667 * gfs2_release_folio - free the metadata associated with a folio
668 * @folio: the folio that's being released
669 * @gfp_mask: passed from Linux VFS, ignored by us
670 *
671 * Calls try_to_free_buffers() to free the buffers and put the folio if the
672 * buffers can be released.
673 *
674 * Returns: true if the folio was put or else false
675 */
676
677bool gfs2_release_folio(struct folio *folio, gfp_t gfp_mask)
678{
679	struct address_space *mapping = folio->mapping;
680	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
681	struct buffer_head *bh, *head;
682	struct gfs2_bufdata *bd;
683
684	head = folio_buffers(folio);
685	if (!head)
686		return false;
687
688	/*
689	 * mm accommodates an old ext3 case where clean folios might
690	 * not have had the dirty bit cleared.	Thus, it can send actual
691	 * dirty folios to ->release_folio() via shrink_active_list().
692	 *
693	 * As a workaround, we skip folios that contain dirty buffers
694	 * below.  Once ->release_folio isn't called on dirty folios
695	 * anymore, we can warn on dirty buffers like we used to here
696	 * again.
697	 */
698
699	gfs2_log_lock(sdp);
700	bh = head;
 
701	do {
702		if (atomic_read(&bh->b_count))
703			goto cannot_release;
704		bd = bh->b_private;
705		if (bd && bd->bd_tr)
706			goto cannot_release;
707		if (buffer_dirty(bh) || WARN_ON(buffer_pinned(bh)))
708			goto cannot_release;
709		bh = bh->b_this_page;
710	} while (bh != head);
 
711
712	bh = head;
713	do {
714		bd = bh->b_private;
715		if (bd) {
716			gfs2_assert_warn(sdp, bd->bd_bh == bh);
 
 
717			bd->bd_bh = NULL;
718			bh->b_private = NULL;
719			/*
720			 * The bd may still be queued as a revoke, in which
721			 * case we must not dequeue nor free it.
722			 */
723			if (!bd->bd_blkno && !list_empty(&bd->bd_list))
724				list_del_init(&bd->bd_list);
725			if (list_empty(&bd->bd_list))
726				kmem_cache_free(gfs2_bufdata_cachep, bd);
727		}
728
729		bh = bh->b_this_page;
730	} while (bh != head);
731	gfs2_log_unlock(sdp);
732
733	return try_to_free_buffers(folio);
734
 
 
 
735cannot_release:
 
736	gfs2_log_unlock(sdp);
737	return false;
738}
739
740static const struct address_space_operations gfs2_aops = {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
741	.writepages = gfs2_writepages,
742	.read_folio = gfs2_read_folio,
743	.readahead = gfs2_readahead,
744	.dirty_folio = filemap_dirty_folio,
745	.release_folio = iomap_release_folio,
746	.invalidate_folio = iomap_invalidate_folio,
747	.bmap = gfs2_bmap,
748	.direct_IO = noop_direct_IO,
749	.migrate_folio = filemap_migrate_folio,
750	.is_partially_uptodate = iomap_is_partially_uptodate,
 
 
751	.error_remove_page = generic_error_remove_page,
752};
753
754static const struct address_space_operations gfs2_jdata_aops = {
755	.writepage = gfs2_jdata_writepage,
756	.writepages = gfs2_jdata_writepages,
757	.read_folio = gfs2_read_folio,
758	.readahead = gfs2_readahead,
759	.dirty_folio = jdata_dirty_folio,
 
 
760	.bmap = gfs2_bmap,
761	.invalidate_folio = gfs2_invalidate_folio,
762	.release_folio = gfs2_release_folio,
763	.is_partially_uptodate = block_is_partially_uptodate,
764	.error_remove_page = generic_error_remove_page,
765};
766
767void gfs2_set_aops(struct inode *inode)
768{
769	if (gfs2_is_jdata(GFS2_I(inode)))
 
 
 
 
 
 
770		inode->i_mapping->a_ops = &gfs2_jdata_aops;
771	else
772		inode->i_mapping->a_ops = &gfs2_aops;
773}
v4.6
 
   1/*
   2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
   3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
   4 *
   5 * This copyrighted material is made available to anyone wishing to use,
   6 * modify, copy, or redistribute it subject to the terms and conditions
   7 * of the GNU General Public License version 2.
   8 */
   9
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12#include <linux/spinlock.h>
  13#include <linux/completion.h>
  14#include <linux/buffer_head.h>
  15#include <linux/pagemap.h>
  16#include <linux/pagevec.h>
  17#include <linux/mpage.h>
  18#include <linux/fs.h>
  19#include <linux/writeback.h>
  20#include <linux/swap.h>
  21#include <linux/gfs2_ondisk.h>
  22#include <linux/backing-dev.h>
  23#include <linux/uio.h>
  24#include <trace/events/writeback.h>
 
  25
  26#include "gfs2.h"
  27#include "incore.h"
  28#include "bmap.h"
  29#include "glock.h"
  30#include "inode.h"
  31#include "log.h"
  32#include "meta_io.h"
  33#include "quota.h"
  34#include "trans.h"
  35#include "rgrp.h"
  36#include "super.h"
  37#include "util.h"
  38#include "glops.h"
 
  39
  40
  41static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
  42				   unsigned int from, unsigned int to)
  43{
  44	struct buffer_head *head = page_buffers(page);
  45	unsigned int bsize = head->b_size;
  46	struct buffer_head *bh;
 
  47	unsigned int start, end;
  48
  49	for (bh = head, start = 0; bh != head || !start;
  50	     bh = bh->b_this_page, start = end) {
  51		end = start + bsize;
  52		if (end <= from || start >= to)
  53			continue;
  54		if (gfs2_is_jdata(ip))
  55			set_buffer_uptodate(bh);
 
  56		gfs2_trans_add_data(ip->i_gl, bh);
  57	}
  58}
  59
  60/**
  61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
  62 * @inode: The inode
  63 * @lblock: The block number to look up
  64 * @bh_result: The buffer head to return the result in
  65 * @create: Non-zero if we may add block to the file
  66 *
  67 * Returns: errno
  68 */
  69
  70static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
  71				  struct buffer_head *bh_result, int create)
  72{
  73	int error;
  74
  75	error = gfs2_block_map(inode, lblock, bh_result, 0);
  76	if (error)
  77		return error;
  78	if (!buffer_mapped(bh_result))
  79		return -EIO;
  80	return 0;
  81}
  82
  83static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
  84				 struct buffer_head *bh_result, int create)
  85{
  86	return gfs2_block_map(inode, lblock, bh_result, 0);
  87}
  88
  89/**
  90 * gfs2_writepage_common - Common bits of writepage
  91 * @page: The page to be written
  92 * @wbc: The writeback control
  93 *
  94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
 
  95 */
  96
  97static int gfs2_writepage_common(struct page *page,
  98				 struct writeback_control *wbc)
  99{
 100	struct inode *inode = page->mapping->host;
 101	struct gfs2_inode *ip = GFS2_I(inode);
 102	struct gfs2_sbd *sdp = GFS2_SB(inode);
 103	loff_t i_size = i_size_read(inode);
 104	pgoff_t end_index = i_size >> PAGE_SHIFT;
 105	unsigned offset;
 106
 107	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
 108		goto out;
 109	if (current->journal_info)
 110		goto redirty;
 111	/* Is the page fully outside i_size? (truncate in progress) */
 112	offset = i_size & (PAGE_SIZE-1);
 113	if (page->index > end_index || (page->index == end_index && !offset)) {
 114		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
 115		goto out;
 116	}
 117	return 1;
 118redirty:
 119	redirty_page_for_writepage(wbc, page);
 120out:
 121	unlock_page(page);
 122	return 0;
 123}
 124
 125/**
 126 * gfs2_writepage - Write page for writeback mappings
 127 * @page: The page
 128 * @wbc: The writeback control
 129 *
 130 */
 131
 132static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
 133{
 134	int ret;
 135
 136	ret = gfs2_writepage_common(page, wbc);
 137	if (ret <= 0)
 138		return ret;
 139
 140	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
 141}
 142
 143/**
 144 * __gfs2_jdata_writepage - The core of jdata writepage
 145 * @page: The page to write
 146 * @wbc: The writeback control
 147 *
 148 * This is shared between writepage and writepages and implements the
 149 * core of the writepage operation. If a transaction is required then
 150 * PageChecked will have been set and the transaction will have
 151 * already been started before this is called.
 152 */
 153
 154static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 155{
 156	struct inode *inode = page->mapping->host;
 157	struct gfs2_inode *ip = GFS2_I(inode);
 158	struct gfs2_sbd *sdp = GFS2_SB(inode);
 159
 160	if (PageChecked(page)) {
 161		ClearPageChecked(page);
 162		if (!page_has_buffers(page)) {
 163			create_empty_buffers(page, inode->i_sb->s_blocksize,
 164					     (1 << BH_Dirty)|(1 << BH_Uptodate));
 165		}
 166		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
 167	}
 168	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
 169}
 170
 171/**
 172 * gfs2_jdata_writepage - Write complete page
 173 * @page: Page to write
 174 * @wbc: The writeback control
 175 *
 176 * Returns: errno
 177 *
 178 */
 179
 180static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
 181{
 182	struct inode *inode = page->mapping->host;
 
 183	struct gfs2_sbd *sdp = GFS2_SB(inode);
 184	int ret;
 185	int done_trans = 0;
 186
 187	if (PageChecked(page)) {
 188		if (wbc->sync_mode != WB_SYNC_ALL)
 189			goto out_ignore;
 190		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
 191		if (ret)
 192			goto out_ignore;
 193		done_trans = 1;
 194	}
 195	ret = gfs2_writepage_common(page, wbc);
 196	if (ret > 0)
 197		ret = __gfs2_jdata_writepage(page, wbc);
 198	if (done_trans)
 199		gfs2_trans_end(sdp);
 200	return ret;
 201
 202out_ignore:
 203	redirty_page_for_writepage(wbc, page);
 
 204	unlock_page(page);
 205	return 0;
 206}
 207
 208/**
 209 * gfs2_writepages - Write a bunch of dirty pages back to disk
 210 * @mapping: The mapping to write
 211 * @wbc: Write-back control
 212 *
 213 * Used for both ordered and writeback modes.
 214 */
 215static int gfs2_writepages(struct address_space *mapping,
 216			   struct writeback_control *wbc)
 217{
 218	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 219}
 220
 221/**
 222 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
 223 * @mapping: The mapping
 224 * @wbc: The writeback control
 225 * @pvec: The vector of pages
 226 * @nr_pages: The number of pages to write
 227 * @end: End position
 228 * @done_index: Page index
 229 *
 230 * Returns: non-zero if loop should terminate, zero otherwise
 231 */
 232
 233static int gfs2_write_jdata_pagevec(struct address_space *mapping,
 234				    struct writeback_control *wbc,
 235				    struct pagevec *pvec,
 236				    int nr_pages, pgoff_t end,
 237				    pgoff_t *done_index)
 238{
 239	struct inode *inode = mapping->host;
 240	struct gfs2_sbd *sdp = GFS2_SB(inode);
 241	unsigned nrblocks = nr_pages * (PAGE_SIZE/inode->i_sb->s_blocksize);
 242	int i;
 243	int ret;
 244
 245	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
 246	if (ret < 0)
 247		return ret;
 248
 249	for(i = 0; i < nr_pages; i++) {
 250		struct page *page = pvec->pages[i];
 251
 252		/*
 253		 * At this point, the page may be truncated or
 254		 * invalidated (changing page->mapping to NULL), or
 255		 * even swizzled back from swapper_space to tmpfs file
 256		 * mapping. However, page->index will not change
 257		 * because we have a reference on the page.
 258		 */
 259		if (page->index > end) {
 260			/*
 261			 * can't be range_cyclic (1st pass) because
 262			 * end == -1 in that case.
 263			 */
 264			ret = 1;
 265			break;
 266		}
 267
 268		*done_index = page->index;
 269
 270		lock_page(page);
 271
 272		if (unlikely(page->mapping != mapping)) {
 273continue_unlock:
 274			unlock_page(page);
 275			continue;
 276		}
 277
 278		if (!PageDirty(page)) {
 279			/* someone wrote it for us */
 280			goto continue_unlock;
 281		}
 282
 283		if (PageWriteback(page)) {
 284			if (wbc->sync_mode != WB_SYNC_NONE)
 285				wait_on_page_writeback(page);
 286			else
 287				goto continue_unlock;
 288		}
 289
 290		BUG_ON(PageWriteback(page));
 291		if (!clear_page_dirty_for_io(page))
 292			goto continue_unlock;
 293
 294		trace_wbc_writepage(wbc, inode_to_bdi(inode));
 295
 296		ret = __gfs2_jdata_writepage(page, wbc);
 297		if (unlikely(ret)) {
 298			if (ret == AOP_WRITEPAGE_ACTIVATE) {
 299				unlock_page(page);
 300				ret = 0;
 301			} else {
 302
 303				/*
 304				 * done_index is set past this page,
 305				 * so media errors will not choke
 306				 * background writeout for the entire
 307				 * file. This has consequences for
 308				 * range_cyclic semantics (ie. it may
 309				 * not be suitable for data integrity
 310				 * writeout).
 311				 */
 312				*done_index = page->index + 1;
 313				ret = 1;
 314				break;
 315			}
 316		}
 317
 318		/*
 319		 * We stop writing back only if we are not doing
 320		 * integrity sync. In case of integrity sync we have to
 321		 * keep going until we have written all the pages
 322		 * we tagged for writeback prior to entering this loop.
 323		 */
 324		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
 325			ret = 1;
 326			break;
 327		}
 328
 329	}
 330	gfs2_trans_end(sdp);
 331	return ret;
 332}
 333
 334/**
 335 * gfs2_write_cache_jdata - Like write_cache_pages but different
 336 * @mapping: The mapping to write
 337 * @wbc: The writeback control
 338 *
 339 * The reason that we use our own function here is that we need to
 340 * start transactions before we grab page locks. This allows us
 341 * to get the ordering right.
 342 */
 343
 344static int gfs2_write_cache_jdata(struct address_space *mapping,
 345				  struct writeback_control *wbc)
 346{
 347	int ret = 0;
 348	int done = 0;
 349	struct pagevec pvec;
 350	int nr_pages;
 351	pgoff_t uninitialized_var(writeback_index);
 352	pgoff_t index;
 353	pgoff_t end;
 354	pgoff_t done_index;
 355	int cycled;
 356	int range_whole = 0;
 357	int tag;
 358
 359	pagevec_init(&pvec, 0);
 360	if (wbc->range_cyclic) {
 361		writeback_index = mapping->writeback_index; /* prev offset */
 362		index = writeback_index;
 363		if (index == 0)
 364			cycled = 1;
 365		else
 366			cycled = 0;
 367		end = -1;
 368	} else {
 369		index = wbc->range_start >> PAGE_SHIFT;
 370		end = wbc->range_end >> PAGE_SHIFT;
 371		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
 372			range_whole = 1;
 373		cycled = 1; /* ignore range_cyclic tests */
 374	}
 375	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 376		tag = PAGECACHE_TAG_TOWRITE;
 377	else
 378		tag = PAGECACHE_TAG_DIRTY;
 379
 380retry:
 381	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
 382		tag_pages_for_writeback(mapping, index, end);
 383	done_index = index;
 384	while (!done && (index <= end)) {
 385		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
 386			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
 387		if (nr_pages == 0)
 388			break;
 389
 390		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
 391		if (ret)
 392			done = 1;
 393		if (ret > 0)
 394			ret = 0;
 395		pagevec_release(&pvec);
 396		cond_resched();
 397	}
 398
 399	if (!cycled && !done) {
 400		/*
 401		 * range_cyclic:
 402		 * We hit the last page and there is more work to be done: wrap
 403		 * back to the start of the file
 404		 */
 405		cycled = 1;
 406		index = 0;
 407		end = writeback_index - 1;
 408		goto retry;
 409	}
 410
 411	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
 412		mapping->writeback_index = done_index;
 413
 414	return ret;
 415}
 416
 417
 418/**
 419 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
 420 * @mapping: The mapping to write
 421 * @wbc: The writeback control
 422 * 
 423 */
 424
 425static int gfs2_jdata_writepages(struct address_space *mapping,
 426				 struct writeback_control *wbc)
 427{
 428	struct gfs2_inode *ip = GFS2_I(mapping->host);
 429	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 430	int ret;
 431
 432	ret = gfs2_write_cache_jdata(mapping, wbc);
 433	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
 434		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
 
 435		ret = gfs2_write_cache_jdata(mapping, wbc);
 436	}
 437	return ret;
 438}
 439
 440/**
 441 * stuffed_readpage - Fill in a Linux page with stuffed file data
 442 * @ip: the inode
 443 * @page: the page
 444 *
 445 * Returns: errno
 446 */
 447
 448static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
 449{
 450	struct buffer_head *dibh;
 451	u64 dsize = i_size_read(&ip->i_inode);
 452	void *kaddr;
 453	int error;
 454
 455	/*
 456	 * Due to the order of unstuffing files and ->fault(), we can be
 457	 * asked for a zero page in the case of a stuffed file being extended,
 458	 * so we need to supply one here. It doesn't happen often.
 459	 */
 460	if (unlikely(page->index)) {
 461		zero_user(page, 0, PAGE_SIZE);
 462		SetPageUptodate(page);
 463		return 0;
 464	}
 465
 466	error = gfs2_meta_inode_buffer(ip, &dibh);
 467	if (error)
 468		return error;
 469
 470	kaddr = kmap_atomic(page);
 471	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
 472		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
 473	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
 474	memset(kaddr + dsize, 0, PAGE_SIZE - dsize);
 475	kunmap_atomic(kaddr);
 476	flush_dcache_page(page);
 477	brelse(dibh);
 478	SetPageUptodate(page);
 479
 480	return 0;
 481}
 482
 483
 484/**
 485 * __gfs2_readpage - readpage
 486 * @file: The file to read a page for
 487 * @page: The page to read
 488 *
 489 * This is the core of gfs2's readpage. Its used by the internal file
 490 * reading code as in that case we already hold the glock. Also its
 491 * called by gfs2_readpage() once the required lock has been granted.
 492 *
 493 */
 494
 495static int __gfs2_readpage(void *file, struct page *page)
 496{
 497	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
 498	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 
 499	int error;
 500
 501	if (gfs2_is_stuffed(ip)) {
 502		error = stuffed_readpage(ip, page);
 503		unlock_page(page);
 
 
 
 504	} else {
 505		error = mpage_readpage(page, gfs2_block_map);
 506	}
 507
 508	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 509		return -EIO;
 510
 511	return error;
 512}
 513
 514/**
 515 * gfs2_readpage - read a page of a file
 516 * @file: The file to read
 517 * @page: The page of the file
 518 *
 519 * This deals with the locking required. We have to unlock and
 520 * relock the page in order to get the locking in the right
 521 * order.
 522 */
 523
 524static int gfs2_readpage(struct file *file, struct page *page)
 525{
 526	struct address_space *mapping = page->mapping;
 527	struct gfs2_inode *ip = GFS2_I(mapping->host);
 528	struct gfs2_holder gh;
 529	int error;
 530
 531	unlock_page(page);
 532	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 533	error = gfs2_glock_nq(&gh);
 534	if (unlikely(error))
 535		goto out;
 536	error = AOP_TRUNCATED_PAGE;
 537	lock_page(page);
 538	if (page->mapping == mapping && !PageUptodate(page))
 539		error = __gfs2_readpage(file, page);
 540	else
 541		unlock_page(page);
 542	gfs2_glock_dq(&gh);
 543out:
 544	gfs2_holder_uninit(&gh);
 545	if (error && error != AOP_TRUNCATED_PAGE)
 546		lock_page(page);
 547	return error;
 548}
 549
 550/**
 551 * gfs2_internal_read - read an internal file
 552 * @ip: The gfs2 inode
 553 * @buf: The buffer to fill
 554 * @pos: The file position
 555 * @size: The amount to read
 556 *
 557 */
 558
 559int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
 560                       unsigned size)
 561{
 562	struct address_space *mapping = ip->i_inode.i_mapping;
 563	unsigned long index = *pos / PAGE_SIZE;
 564	unsigned offset = *pos & (PAGE_SIZE - 1);
 565	unsigned copied = 0;
 566	unsigned amt;
 567	struct page *page;
 568	void *p;
 569
 570	do {
 571		amt = size - copied;
 572		if (offset + size > PAGE_SIZE)
 573			amt = PAGE_SIZE - offset;
 574		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
 575		if (IS_ERR(page))
 576			return PTR_ERR(page);
 577		p = kmap_atomic(page);
 578		memcpy(buf + copied, p + offset, amt);
 579		kunmap_atomic(p);
 580		put_page(page);
 581		copied += amt;
 582		index++;
 583		offset = 0;
 584	} while(copied < size);
 585	(*pos) += size;
 586	return size;
 587}
 588
 589/**
 590 * gfs2_readpages - Read a bunch of pages at once
 591 * @file: The file to read from
 592 * @mapping: Address space info
 593 * @pages: List of pages to read
 594 * @nr_pages: Number of pages to read
 595 *
 596 * Some notes:
 597 * 1. This is only for readahead, so we can simply ignore any things
 598 *    which are slightly inconvenient (such as locking conflicts between
 599 *    the page lock and the glock) and return having done no I/O. Its
 600 *    obviously not something we'd want to do on too regular a basis.
 601 *    Any I/O we ignore at this time will be done via readpage later.
 602 * 2. We don't handle stuffed files here we let readpage do the honours.
 603 * 3. mpage_readpages() does most of the heavy lifting in the common case.
 604 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
 605 */
 606
 607static int gfs2_readpages(struct file *file, struct address_space *mapping,
 608			  struct list_head *pages, unsigned nr_pages)
 609{
 610	struct inode *inode = mapping->host;
 611	struct gfs2_inode *ip = GFS2_I(inode);
 612	struct gfs2_sbd *sdp = GFS2_SB(inode);
 613	struct gfs2_holder gh;
 614	int ret;
 615
 616	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
 617	ret = gfs2_glock_nq(&gh);
 618	if (unlikely(ret))
 619		goto out_uninit;
 620	if (!gfs2_is_stuffed(ip))
 621		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
 622	gfs2_glock_dq(&gh);
 623out_uninit:
 624	gfs2_holder_uninit(&gh);
 625	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
 626		ret = -EIO;
 627	return ret;
 628}
 629
 630/**
 631 * gfs2_write_begin - Begin to write to a file
 632 * @file: The file to write to
 633 * @mapping: The mapping in which to write
 634 * @pos: The file offset at which to start writing
 635 * @len: Length of the write
 636 * @flags: Various flags
 637 * @pagep: Pointer to return the page
 638 * @fsdata: Pointer to return fs data (unused by GFS2)
 639 *
 640 * Returns: errno
 641 */
 642
 643static int gfs2_write_begin(struct file *file, struct address_space *mapping,
 644			    loff_t pos, unsigned len, unsigned flags,
 645			    struct page **pagep, void **fsdata)
 646{
 647	struct gfs2_inode *ip = GFS2_I(mapping->host);
 648	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
 649	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 650	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
 651	unsigned requested = 0;
 652	int alloc_required;
 653	int error = 0;
 654	pgoff_t index = pos >> PAGE_SHIFT;
 655	unsigned from = pos & (PAGE_SIZE - 1);
 656	struct page *page;
 657
 658	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
 659	error = gfs2_glock_nq(&ip->i_gh);
 660	if (unlikely(error))
 661		goto out_uninit;
 662	if (&ip->i_inode == sdp->sd_rindex) {
 663		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
 664					   GL_NOCACHE, &m_ip->i_gh);
 665		if (unlikely(error)) {
 666			gfs2_glock_dq(&ip->i_gh);
 667			goto out_uninit;
 668		}
 669	}
 670
 671	alloc_required = gfs2_write_alloc_required(ip, pos, len);
 672
 673	if (alloc_required || gfs2_is_jdata(ip))
 674		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
 675
 676	if (alloc_required) {
 677		struct gfs2_alloc_parms ap = { .aflags = 0, };
 678		requested = data_blocks + ind_blocks;
 679		ap.target = requested;
 680		error = gfs2_quota_lock_check(ip, &ap);
 681		if (error)
 682			goto out_unlock;
 683
 684		error = gfs2_inplace_reserve(ip, &ap);
 685		if (error)
 686			goto out_qunlock;
 687	}
 688
 689	rblocks = RES_DINODE + ind_blocks;
 690	if (gfs2_is_jdata(ip))
 691		rblocks += data_blocks ? data_blocks : 1;
 692	if (ind_blocks || data_blocks)
 693		rblocks += RES_STATFS + RES_QUOTA;
 694	if (&ip->i_inode == sdp->sd_rindex)
 695		rblocks += 2 * RES_STATFS;
 696	if (alloc_required)
 697		rblocks += gfs2_rg_blocks(ip, requested);
 698
 699	error = gfs2_trans_begin(sdp, rblocks,
 700				 PAGE_SIZE/sdp->sd_sb.sb_bsize);
 701	if (error)
 702		goto out_trans_fail;
 703
 704	error = -ENOMEM;
 705	flags |= AOP_FLAG_NOFS;
 706	page = grab_cache_page_write_begin(mapping, index, flags);
 707	*pagep = page;
 708	if (unlikely(!page))
 709		goto out_endtrans;
 710
 711	if (gfs2_is_stuffed(ip)) {
 712		error = 0;
 713		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
 714			error = gfs2_unstuff_dinode(ip, page);
 715			if (error == 0)
 716				goto prepare_write;
 717		} else if (!PageUptodate(page)) {
 718			error = stuffed_readpage(ip, page);
 719		}
 720		goto out;
 721	}
 722
 723prepare_write:
 724	error = __block_write_begin(page, from, len, gfs2_block_map);
 725out:
 726	if (error == 0)
 727		return 0;
 728
 729	unlock_page(page);
 730	put_page(page);
 731
 732	gfs2_trans_end(sdp);
 733	if (pos + len > ip->i_inode.i_size)
 734		gfs2_trim_blocks(&ip->i_inode);
 735	goto out_trans_fail;
 736
 737out_endtrans:
 738	gfs2_trans_end(sdp);
 739out_trans_fail:
 740	if (alloc_required) {
 741		gfs2_inplace_release(ip);
 742out_qunlock:
 743		gfs2_quota_unlock(ip);
 744	}
 745out_unlock:
 746	if (&ip->i_inode == sdp->sd_rindex) {
 747		gfs2_glock_dq(&m_ip->i_gh);
 748		gfs2_holder_uninit(&m_ip->i_gh);
 749	}
 750	gfs2_glock_dq(&ip->i_gh);
 751out_uninit:
 752	gfs2_holder_uninit(&ip->i_gh);
 753	return error;
 754}
 755
 756/**
 757 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
 758 * @inode: the rindex inode
 759 */
 760static void adjust_fs_space(struct inode *inode)
 761{
 762	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
 763	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 764	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
 765	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
 766	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
 767	struct buffer_head *m_bh, *l_bh;
 768	u64 fs_total, new_free;
 769
 
 
 
 770	/* Total up the file system space, according to the latest rindex. */
 771	fs_total = gfs2_ri_total(sdp);
 772	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
 773		return;
 774
 775	spin_lock(&sdp->sd_statfs_spin);
 776	gfs2_statfs_change_in(m_sc, m_bh->b_data +
 777			      sizeof(struct gfs2_dinode));
 778	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
 779		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
 780	else
 781		new_free = 0;
 782	spin_unlock(&sdp->sd_statfs_spin);
 783	fs_warn(sdp, "File system extended by %llu blocks.\n",
 784		(unsigned long long)new_free);
 785	gfs2_statfs_change(sdp, new_free, new_free, 0);
 786
 787	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
 788		goto out;
 789	update_statfs(sdp, m_bh, l_bh);
 790	brelse(l_bh);
 791out:
 792	brelse(m_bh);
 793}
 794
 795/**
 796 * gfs2_stuffed_write_end - Write end for stuffed files
 797 * @inode: The inode
 798 * @dibh: The buffer_head containing the on-disk inode
 799 * @pos: The file position
 800 * @len: The length of the write
 801 * @copied: How much was actually copied by the VFS
 802 * @page: The page
 803 *
 804 * This copies the data from the page into the inode block after
 805 * the inode data structure itself.
 806 *
 807 * Returns: errno
 808 */
 809static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
 810				  loff_t pos, unsigned len, unsigned copied,
 811				  struct page *page)
 812{
 813	struct gfs2_inode *ip = GFS2_I(inode);
 814	struct gfs2_sbd *sdp = GFS2_SB(inode);
 815	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 816	u64 to = pos + copied;
 817	void *kaddr;
 818	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
 819
 820	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
 821	kaddr = kmap_atomic(page);
 822	memcpy(buf + pos, kaddr + pos, copied);
 823	memset(kaddr + pos + copied, 0, len - copied);
 824	flush_dcache_page(page);
 825	kunmap_atomic(kaddr);
 826
 827	if (!PageUptodate(page))
 828		SetPageUptodate(page);
 829	unlock_page(page);
 830	put_page(page);
 831
 832	if (copied) {
 833		if (inode->i_size < to)
 834			i_size_write(inode, to);
 835		mark_inode_dirty(inode);
 836	}
 837
 838	if (inode == sdp->sd_rindex) {
 839		adjust_fs_space(inode);
 840		sdp->sd_rindex_uptodate = 0;
 841	}
 842
 843	brelse(dibh);
 844	gfs2_trans_end(sdp);
 845	if (inode == sdp->sd_rindex) {
 846		gfs2_glock_dq(&m_ip->i_gh);
 847		gfs2_holder_uninit(&m_ip->i_gh);
 848	}
 849	gfs2_glock_dq(&ip->i_gh);
 850	gfs2_holder_uninit(&ip->i_gh);
 851	return copied;
 852}
 853
 854/**
 855 * gfs2_write_end
 856 * @file: The file to write to
 857 * @mapping: The address space to write to
 858 * @pos: The file position
 859 * @len: The length of the data
 860 * @copied: How much was actually copied by the VFS
 861 * @page: The page that has been written
 862 * @fsdata: The fsdata (unused in GFS2)
 863 *
 864 * The main write_end function for GFS2. We have a separate one for
 865 * stuffed files as they are slightly different, otherwise we just
 866 * put our locking around the VFS provided functions.
 867 *
 868 * Returns: errno
 869 */
 870
 871static int gfs2_write_end(struct file *file, struct address_space *mapping,
 872			  loff_t pos, unsigned len, unsigned copied,
 873			  struct page *page, void *fsdata)
 874{
 875	struct inode *inode = page->mapping->host;
 876	struct gfs2_inode *ip = GFS2_I(inode);
 877	struct gfs2_sbd *sdp = GFS2_SB(inode);
 878	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
 879	struct buffer_head *dibh;
 880	unsigned int from = pos & (PAGE_SIZE - 1);
 881	unsigned int to = from + len;
 882	int ret;
 883	struct gfs2_trans *tr = current->journal_info;
 884	BUG_ON(!tr);
 885
 886	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
 887
 888	ret = gfs2_meta_inode_buffer(ip, &dibh);
 889	if (unlikely(ret)) {
 890		unlock_page(page);
 891		put_page(page);
 892		goto failed;
 893	}
 894
 895	if (gfs2_is_stuffed(ip))
 896		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
 897
 898	if (!gfs2_is_writeback(ip))
 899		gfs2_page_add_databufs(ip, page, from, to);
 900
 901	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
 902	if (tr->tr_num_buf_new)
 903		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
 904	else
 905		gfs2_trans_add_meta(ip->i_gl, dibh);
 906
 907
 908	if (inode == sdp->sd_rindex) {
 909		adjust_fs_space(inode);
 910		sdp->sd_rindex_uptodate = 0;
 911	}
 912
 913	brelse(dibh);
 914failed:
 915	gfs2_trans_end(sdp);
 916	gfs2_inplace_release(ip);
 917	if (ip->i_qadata && ip->i_qadata->qa_qd_num)
 918		gfs2_quota_unlock(ip);
 919	if (inode == sdp->sd_rindex) {
 920		gfs2_glock_dq(&m_ip->i_gh);
 921		gfs2_holder_uninit(&m_ip->i_gh);
 922	}
 923	gfs2_glock_dq(&ip->i_gh);
 924	gfs2_holder_uninit(&ip->i_gh);
 925	return ret;
 926}
 927
 928/**
 929 * gfs2_set_page_dirty - Page dirtying function
 930 * @page: The page to dirty
 931 *
 932 * Returns: 1 if it dirtyed the page, or 0 otherwise
 933 */
 934 
 935static int gfs2_set_page_dirty(struct page *page)
 936{
 937	SetPageChecked(page);
 938	return __set_page_dirty_buffers(page);
 939}
 940
 941/**
 942 * gfs2_bmap - Block map function
 943 * @mapping: Address space info
 944 * @lblock: The block to map
 945 *
 946 * Returns: The disk address for the block or 0 on hole or error
 947 */
 948
 949static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
 950{
 951	struct gfs2_inode *ip = GFS2_I(mapping->host);
 952	struct gfs2_holder i_gh;
 953	sector_t dblock = 0;
 954	int error;
 955
 956	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
 957	if (error)
 958		return 0;
 959
 960	if (!gfs2_is_stuffed(ip))
 961		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
 962
 963	gfs2_glock_dq_uninit(&i_gh);
 964
 965	return dblock;
 966}
 967
 968static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
 969{
 970	struct gfs2_bufdata *bd;
 971
 972	lock_buffer(bh);
 973	gfs2_log_lock(sdp);
 974	clear_buffer_dirty(bh);
 975	bd = bh->b_private;
 976	if (bd) {
 977		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
 978			list_del_init(&bd->bd_list);
 979		else
 980			gfs2_remove_from_journal(bh, current->journal_info, 0);
 
 
 
 981	}
 982	bh->b_bdev = NULL;
 983	clear_buffer_mapped(bh);
 984	clear_buffer_req(bh);
 985	clear_buffer_new(bh);
 986	gfs2_log_unlock(sdp);
 987	unlock_buffer(bh);
 988}
 989
 990static void gfs2_invalidatepage(struct page *page, unsigned int offset,
 991				unsigned int length)
 992{
 993	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
 994	unsigned int stop = offset + length;
 995	int partial_page = (offset || length < PAGE_SIZE);
 996	struct buffer_head *bh, *head;
 997	unsigned long pos = 0;
 998
 999	BUG_ON(!PageLocked(page));
1000	if (!partial_page)
1001		ClearPageChecked(page);
1002	if (!page_has_buffers(page))
 
1003		goto out;
1004
1005	bh = head = page_buffers(page);
1006	do {
1007		if (pos + bh->b_size > stop)
1008			return;
1009
1010		if (offset <= pos)
1011			gfs2_discard(sdp, bh);
1012		pos += bh->b_size;
1013		bh = bh->b_this_page;
1014	} while (bh != head);
1015out:
1016	if (!partial_page)
1017		try_to_release_page(page, 0);
1018}
1019
1020/**
1021 * gfs2_ok_for_dio - check that dio is valid on this file
1022 * @ip: The inode
1023 * @offset: The offset at which we are reading or writing
1024 *
1025 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1026 *          1 (to accept the i/o request)
1027 */
1028static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1029{
1030	/*
1031	 * Should we return an error here? I can't see that O_DIRECT for
1032	 * a stuffed file makes any sense. For now we'll silently fall
1033	 * back to buffered I/O
1034	 */
1035	if (gfs2_is_stuffed(ip))
1036		return 0;
1037
1038	if (offset >= i_size_read(&ip->i_inode))
1039		return 0;
1040	return 1;
1041}
1042
1043
1044
1045static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1046			      loff_t offset)
1047{
1048	struct file *file = iocb->ki_filp;
1049	struct inode *inode = file->f_mapping->host;
1050	struct address_space *mapping = inode->i_mapping;
1051	struct gfs2_inode *ip = GFS2_I(inode);
1052	struct gfs2_holder gh;
1053	int rv;
1054
1055	/*
1056	 * Deferred lock, even if its a write, since we do no allocation
1057	 * on this path. All we need change is atime, and this lock mode
1058	 * ensures that other nodes have flushed their buffered read caches
1059	 * (i.e. their page cache entries for this inode). We do not,
1060	 * unfortunately have the option of only flushing a range like
1061	 * the VFS does.
1062	 */
1063	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1064	rv = gfs2_glock_nq(&gh);
1065	if (rv)
1066		return rv;
1067	rv = gfs2_ok_for_dio(ip, offset);
1068	if (rv != 1)
1069		goto out; /* dio not valid, fall back to buffered i/o */
1070
1071	/*
1072	 * Now since we are holding a deferred (CW) lock at this point, you
1073	 * might be wondering why this is ever needed. There is a case however
1074	 * where we've granted a deferred local lock against a cached exclusive
1075	 * glock. That is ok provided all granted local locks are deferred, but
1076	 * it also means that it is possible to encounter pages which are
1077	 * cached and possibly also mapped. So here we check for that and sort
1078	 * them out ahead of the dio. The glock state machine will take care of
1079	 * everything else.
1080	 *
1081	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1082	 * the first place, mapping->nr_pages will always be zero.
1083	 */
1084	if (mapping->nrpages) {
1085		loff_t lstart = offset & ~(PAGE_SIZE - 1);
1086		loff_t len = iov_iter_count(iter);
1087		loff_t end = PAGE_ALIGN(offset + len) - 1;
1088
1089		rv = 0;
1090		if (len == 0)
1091			goto out;
1092		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1093			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1094		rv = filemap_write_and_wait_range(mapping, lstart, end);
1095		if (rv)
1096			goto out;
1097		if (iov_iter_rw(iter) == WRITE)
1098			truncate_inode_pages_range(mapping, lstart, end);
1099	}
1100
1101	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1102				  offset, gfs2_get_block_direct, NULL, NULL, 0);
1103out:
1104	gfs2_glock_dq(&gh);
1105	gfs2_holder_uninit(&gh);
1106	return rv;
1107}
1108
1109/**
1110 * gfs2_releasepage - free the metadata associated with a page
1111 * @page: the page that's being released
1112 * @gfp_mask: passed from Linux VFS, ignored by us
1113 *
1114 * Call try_to_free_buffers() if the buffers in this page can be
1115 * released.
1116 *
1117 * Returns: 0
1118 */
1119
1120int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1121{
1122	struct address_space *mapping = page->mapping;
1123	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1124	struct buffer_head *bh, *head;
1125	struct gfs2_bufdata *bd;
1126
1127	if (!page_has_buffers(page))
1128		return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1129
1130	gfs2_log_lock(sdp);
1131	spin_lock(&sdp->sd_ail_lock);
1132	head = bh = page_buffers(page);
1133	do {
1134		if (atomic_read(&bh->b_count))
1135			goto cannot_release;
1136		bd = bh->b_private;
1137		if (bd && bd->bd_tr)
1138			goto cannot_release;
1139		if (buffer_pinned(bh) || buffer_dirty(bh))
1140			goto not_possible;
1141		bh = bh->b_this_page;
1142	} while(bh != head);
1143	spin_unlock(&sdp->sd_ail_lock);
1144
1145	head = bh = page_buffers(page);
1146	do {
1147		bd = bh->b_private;
1148		if (bd) {
1149			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1150			if (!list_empty(&bd->bd_list))
1151				list_del_init(&bd->bd_list);
1152			bd->bd_bh = NULL;
1153			bh->b_private = NULL;
1154			kmem_cache_free(gfs2_bufdata_cachep, bd);
 
 
 
 
 
 
 
1155		}
1156
1157		bh = bh->b_this_page;
1158	} while (bh != head);
1159	gfs2_log_unlock(sdp);
1160
1161	return try_to_free_buffers(page);
1162
1163not_possible: /* Should never happen */
1164	WARN_ON(buffer_dirty(bh));
1165	WARN_ON(buffer_pinned(bh));
1166cannot_release:
1167	spin_unlock(&sdp->sd_ail_lock);
1168	gfs2_log_unlock(sdp);
1169	return 0;
1170}
1171
1172static const struct address_space_operations gfs2_writeback_aops = {
1173	.writepage = gfs2_writepage,
1174	.writepages = gfs2_writepages,
1175	.readpage = gfs2_readpage,
1176	.readpages = gfs2_readpages,
1177	.write_begin = gfs2_write_begin,
1178	.write_end = gfs2_write_end,
1179	.bmap = gfs2_bmap,
1180	.invalidatepage = gfs2_invalidatepage,
1181	.releasepage = gfs2_releasepage,
1182	.direct_IO = gfs2_direct_IO,
1183	.migratepage = buffer_migrate_page,
1184	.is_partially_uptodate = block_is_partially_uptodate,
1185	.error_remove_page = generic_error_remove_page,
1186};
1187
1188static const struct address_space_operations gfs2_ordered_aops = {
1189	.writepage = gfs2_writepage,
1190	.writepages = gfs2_writepages,
1191	.readpage = gfs2_readpage,
1192	.readpages = gfs2_readpages,
1193	.write_begin = gfs2_write_begin,
1194	.write_end = gfs2_write_end,
1195	.set_page_dirty = gfs2_set_page_dirty,
1196	.bmap = gfs2_bmap,
1197	.invalidatepage = gfs2_invalidatepage,
1198	.releasepage = gfs2_releasepage,
1199	.direct_IO = gfs2_direct_IO,
1200	.migratepage = buffer_migrate_page,
1201	.is_partially_uptodate = block_is_partially_uptodate,
1202	.error_remove_page = generic_error_remove_page,
1203};
1204
1205static const struct address_space_operations gfs2_jdata_aops = {
1206	.writepage = gfs2_jdata_writepage,
1207	.writepages = gfs2_jdata_writepages,
1208	.readpage = gfs2_readpage,
1209	.readpages = gfs2_readpages,
1210	.write_begin = gfs2_write_begin,
1211	.write_end = gfs2_write_end,
1212	.set_page_dirty = gfs2_set_page_dirty,
1213	.bmap = gfs2_bmap,
1214	.invalidatepage = gfs2_invalidatepage,
1215	.releasepage = gfs2_releasepage,
1216	.is_partially_uptodate = block_is_partially_uptodate,
1217	.error_remove_page = generic_error_remove_page,
1218};
1219
1220void gfs2_set_aops(struct inode *inode)
1221{
1222	struct gfs2_inode *ip = GFS2_I(inode);
1223
1224	if (gfs2_is_writeback(ip))
1225		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1226	else if (gfs2_is_ordered(ip))
1227		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1228	else if (gfs2_is_jdata(ip))
1229		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1230	else
1231		BUG();
1232}
1233