Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/sched/mm.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "iostat.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
  40		return -EFSCORRUPTED;
  41	}
  42	return 0;
  43}
  44
  45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  46{
  47	struct f2fs_nm_info *nm_i = NM_I(sbi);
  48	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  49	struct sysinfo val;
  50	unsigned long avail_ram;
  51	unsigned long mem_size = 0;
  52	bool res = false;
  53
  54	if (!nm_i)
  55		return true;
  56
  57	si_meminfo(&val);
  58
  59	/* only uses low memory */
  60	avail_ram = val.totalram - val.totalhigh;
  61
  62	/*
  63	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
  64	 */
  65	if (type == FREE_NIDS) {
  66		mem_size = (nm_i->nid_cnt[FREE_NID] *
  67				sizeof(struct free_nid)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  69	} else if (type == NAT_ENTRIES) {
  70		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
  71				sizeof(struct nat_entry)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  73		if (excess_cached_nats(sbi))
  74			res = false;
  75	} else if (type == DIRTY_DENTS) {
  76		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return false;
  78		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  79		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  80	} else if (type == INO_ENTRIES) {
  81		int i;
  82
  83		for (i = 0; i < MAX_INO_ENTRY; i++)
  84			mem_size += sbi->im[i].ino_num *
  85						sizeof(struct ino_entry);
  86		mem_size >>= PAGE_SHIFT;
  87		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  88	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
  89		enum extent_type etype = type == READ_EXTENT_CACHE ?
  90						EX_READ : EX_BLOCK_AGE;
  91		struct extent_tree_info *eti = &sbi->extent_tree[etype];
  92
  93		mem_size = (atomic_read(&eti->total_ext_tree) *
  94				sizeof(struct extent_tree) +
  95				atomic_read(&eti->total_ext_node) *
  96				sizeof(struct extent_node)) >> PAGE_SHIFT;
  97		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  98	} else if (type == DISCARD_CACHE) {
  99		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
 100				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
 101		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
 102	} else if (type == COMPRESS_PAGE) {
 103#ifdef CONFIG_F2FS_FS_COMPRESSION
 104		unsigned long free_ram = val.freeram;
 105
 106		/*
 107		 * free memory is lower than watermark or cached page count
 108		 * exceed threshold, deny caching compress page.
 109		 */
 110		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
 111			(COMPRESS_MAPPING(sbi)->nrpages <
 112			 free_ram * sbi->compress_percent / 100);
 113#else
 114		res = false;
 115#endif
 116	} else {
 117		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 118			return true;
 119	}
 120	return res;
 121}
 122
 123static void clear_node_page_dirty(struct page *page)
 124{
 
 
 
 125	if (PageDirty(page)) {
 126		f2fs_clear_page_cache_dirty_tag(page);
 
 
 
 
 
 127		clear_page_dirty_for_io(page);
 128		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 129	}
 130	ClearPageUptodate(page);
 131}
 132
 133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 134{
 135	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
 
 136}
 137
 138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 139{
 140	struct page *src_page;
 141	struct page *dst_page;
 
 142	pgoff_t dst_off;
 143	void *src_addr;
 144	void *dst_addr;
 145	struct f2fs_nm_info *nm_i = NM_I(sbi);
 146
 147	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 148
 149	/* get current nat block page with lock */
 150	src_page = get_current_nat_page(sbi, nid);
 151	if (IS_ERR(src_page))
 152		return src_page;
 153	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 154	f2fs_bug_on(sbi, PageDirty(src_page));
 155
 156	src_addr = page_address(src_page);
 157	dst_addr = page_address(dst_page);
 158	memcpy(dst_addr, src_addr, PAGE_SIZE);
 159	set_page_dirty(dst_page);
 160	f2fs_put_page(src_page, 1);
 161
 162	set_to_next_nat(nm_i, nid);
 163
 164	return dst_page;
 165}
 166
 167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
 168						nid_t nid, bool no_fail)
 169{
 170	struct nat_entry *new;
 171
 172	new = f2fs_kmem_cache_alloc(nat_entry_slab,
 173					GFP_F2FS_ZERO, no_fail, sbi);
 174	if (new) {
 175		nat_set_nid(new, nid);
 176		nat_reset_flag(new);
 177	}
 178	return new;
 179}
 180
 181static void __free_nat_entry(struct nat_entry *e)
 182{
 183	kmem_cache_free(nat_entry_slab, e);
 184}
 185
 186/* must be locked by nat_tree_lock */
 187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 188	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 189{
 190	if (no_fail)
 191		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 192	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 193		return NULL;
 194
 195	if (raw_ne)
 196		node_info_from_raw_nat(&ne->ni, raw_ne);
 197
 198	spin_lock(&nm_i->nat_list_lock);
 199	list_add_tail(&ne->list, &nm_i->nat_entries);
 200	spin_unlock(&nm_i->nat_list_lock);
 201
 202	nm_i->nat_cnt[TOTAL_NAT]++;
 203	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 204	return ne;
 205}
 206
 207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 208{
 209	struct nat_entry *ne;
 210
 211	ne = radix_tree_lookup(&nm_i->nat_root, n);
 212
 213	/* for recent accessed nat entry, move it to tail of lru list */
 214	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 215		spin_lock(&nm_i->nat_list_lock);
 216		if (!list_empty(&ne->list))
 217			list_move_tail(&ne->list, &nm_i->nat_entries);
 218		spin_unlock(&nm_i->nat_list_lock);
 219	}
 220
 221	return ne;
 222}
 223
 224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 225		nid_t start, unsigned int nr, struct nat_entry **ep)
 226{
 227	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 228}
 229
 230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 231{
 
 232	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 233	nm_i->nat_cnt[TOTAL_NAT]--;
 234	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 235	__free_nat_entry(e);
 236}
 237
 238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 239							struct nat_entry *ne)
 240{
 241	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 242	struct nat_entry_set *head;
 243
 
 
 
 244	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 245	if (!head) {
 246		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
 247						GFP_NOFS, true, NULL);
 248
 249		INIT_LIST_HEAD(&head->entry_list);
 250		INIT_LIST_HEAD(&head->set_list);
 251		head->set = set;
 252		head->entry_cnt = 0;
 253		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 254	}
 255	return head;
 
 
 
 256}
 257
 258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 259						struct nat_entry *ne)
 260{
 
 261	struct nat_entry_set *head;
 262	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 263
 264	if (!new_ne)
 265		head = __grab_nat_entry_set(nm_i, ne);
 266
 267	/*
 268	 * update entry_cnt in below condition:
 269	 * 1. update NEW_ADDR to valid block address;
 270	 * 2. update old block address to new one;
 271	 */
 272	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 273				!get_nat_flag(ne, IS_DIRTY)))
 274		head->entry_cnt++;
 275
 276	set_nat_flag(ne, IS_PREALLOC, new_ne);
 277
 278	if (get_nat_flag(ne, IS_DIRTY))
 279		goto refresh_list;
 280
 281	nm_i->nat_cnt[DIRTY_NAT]++;
 282	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 283	set_nat_flag(ne, IS_DIRTY, true);
 284refresh_list:
 285	spin_lock(&nm_i->nat_list_lock);
 286	if (new_ne)
 287		list_del_init(&ne->list);
 288	else
 289		list_move_tail(&ne->list, &head->entry_list);
 290	spin_unlock(&nm_i->nat_list_lock);
 291}
 292
 293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 294		struct nat_entry_set *set, struct nat_entry *ne)
 295{
 296	spin_lock(&nm_i->nat_list_lock);
 297	list_move_tail(&ne->list, &nm_i->nat_entries);
 298	spin_unlock(&nm_i->nat_list_lock);
 299
 300	set_nat_flag(ne, IS_DIRTY, false);
 301	set->entry_cnt--;
 302	nm_i->nat_cnt[DIRTY_NAT]--;
 303	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 304}
 305
 306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 307		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 308{
 309	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 310							start, nr);
 311}
 312
 313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 314{
 315	return NODE_MAPPING(sbi) == page->mapping &&
 316			IS_DNODE(page) && is_cold_node(page);
 317}
 318
 319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 320{
 321	spin_lock_init(&sbi->fsync_node_lock);
 322	INIT_LIST_HEAD(&sbi->fsync_node_list);
 323	sbi->fsync_seg_id = 0;
 324	sbi->fsync_node_num = 0;
 325}
 326
 327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 328							struct page *page)
 329{
 330	struct fsync_node_entry *fn;
 331	unsigned long flags;
 332	unsigned int seq_id;
 333
 334	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
 335					GFP_NOFS, true, NULL);
 336
 337	get_page(page);
 338	fn->page = page;
 339	INIT_LIST_HEAD(&fn->list);
 340
 341	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 342	list_add_tail(&fn->list, &sbi->fsync_node_list);
 343	fn->seq_id = sbi->fsync_seg_id++;
 344	seq_id = fn->seq_id;
 345	sbi->fsync_node_num++;
 346	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 347
 348	return seq_id;
 349}
 350
 351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 352{
 353	struct fsync_node_entry *fn;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 357	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 358		if (fn->page == page) {
 359			list_del(&fn->list);
 360			sbi->fsync_node_num--;
 361			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 362			kmem_cache_free(fsync_node_entry_slab, fn);
 363			put_page(page);
 364			return;
 365		}
 366	}
 367	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 368	f2fs_bug_on(sbi, 1);
 369}
 370
 371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 372{
 373	unsigned long flags;
 374
 375	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 376	sbi->fsync_seg_id = 0;
 377	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 378}
 379
 380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 381{
 382	struct f2fs_nm_info *nm_i = NM_I(sbi);
 383	struct nat_entry *e;
 384	bool need = false;
 385
 386	f2fs_down_read(&nm_i->nat_tree_lock);
 387	e = __lookup_nat_cache(nm_i, nid);
 388	if (e) {
 389		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 390				!get_nat_flag(e, HAS_FSYNCED_INODE))
 391			need = true;
 392	}
 393	f2fs_up_read(&nm_i->nat_tree_lock);
 394	return need;
 395}
 396
 397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 398{
 399	struct f2fs_nm_info *nm_i = NM_I(sbi);
 400	struct nat_entry *e;
 401	bool is_cp = true;
 402
 403	f2fs_down_read(&nm_i->nat_tree_lock);
 404	e = __lookup_nat_cache(nm_i, nid);
 405	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 406		is_cp = false;
 407	f2fs_up_read(&nm_i->nat_tree_lock);
 408	return is_cp;
 409}
 410
 411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 412{
 413	struct f2fs_nm_info *nm_i = NM_I(sbi);
 414	struct nat_entry *e;
 415	bool need_update = true;
 416
 417	f2fs_down_read(&nm_i->nat_tree_lock);
 418	e = __lookup_nat_cache(nm_i, ino);
 419	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 420			(get_nat_flag(e, IS_CHECKPOINTED) ||
 421			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 422		need_update = false;
 423	f2fs_up_read(&nm_i->nat_tree_lock);
 424	return need_update;
 425}
 426
 427/* must be locked by nat_tree_lock */
 
 
 
 
 
 
 
 
 
 
 
 
 
 428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 429						struct f2fs_nat_entry *ne)
 430{
 431	struct f2fs_nm_info *nm_i = NM_I(sbi);
 432	struct nat_entry *new, *e;
 433
 434	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
 435	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
 436		return;
 437
 438	new = __alloc_nat_entry(sbi, nid, false);
 439	if (!new)
 440		return;
 441
 442	f2fs_down_write(&nm_i->nat_tree_lock);
 443	e = __lookup_nat_cache(nm_i, nid);
 444	if (!e)
 445		e = __init_nat_entry(nm_i, new, ne, false);
 446	else
 447		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 448				nat_get_blkaddr(e) !=
 449					le32_to_cpu(ne->block_addr) ||
 450				nat_get_version(e) != ne->version);
 451	f2fs_up_write(&nm_i->nat_tree_lock);
 452	if (e != new)
 453		__free_nat_entry(new);
 454}
 455
 456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 457			block_t new_blkaddr, bool fsync_done)
 458{
 459	struct f2fs_nm_info *nm_i = NM_I(sbi);
 460	struct nat_entry *e;
 461	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
 462
 463	f2fs_down_write(&nm_i->nat_tree_lock);
 464	e = __lookup_nat_cache(nm_i, ni->nid);
 465	if (!e) {
 466		e = __init_nat_entry(nm_i, new, NULL, true);
 467		copy_node_info(&e->ni, ni);
 468		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 469	} else if (new_blkaddr == NEW_ADDR) {
 470		/*
 471		 * when nid is reallocated,
 472		 * previous nat entry can be remained in nat cache.
 473		 * So, reinitialize it with new information.
 474		 */
 475		copy_node_info(&e->ni, ni);
 476		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 477	}
 478	/* let's free early to reduce memory consumption */
 479	if (e != new)
 480		__free_nat_entry(new);
 481
 482	/* sanity check */
 483	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 484	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 485			new_blkaddr == NULL_ADDR);
 486	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 487			new_blkaddr == NEW_ADDR);
 488	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 489			new_blkaddr == NEW_ADDR);
 490
 491	/* increment version no as node is removed */
 492	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 493		unsigned char version = nat_get_version(e);
 494
 495		nat_set_version(e, inc_node_version(version));
 
 
 
 
 496	}
 497
 498	/* change address */
 499	nat_set_blkaddr(e, new_blkaddr);
 500	if (!__is_valid_data_blkaddr(new_blkaddr))
 501		set_nat_flag(e, IS_CHECKPOINTED, false);
 502	__set_nat_cache_dirty(nm_i, e);
 503
 504	/* update fsync_mark if its inode nat entry is still alive */
 505	if (ni->nid != ni->ino)
 506		e = __lookup_nat_cache(nm_i, ni->ino);
 507	if (e) {
 508		if (fsync_done && ni->nid == ni->ino)
 509			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 510		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 511	}
 512	f2fs_up_write(&nm_i->nat_tree_lock);
 513}
 514
 515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 516{
 517	struct f2fs_nm_info *nm_i = NM_I(sbi);
 518	int nr = nr_shrink;
 519
 520	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
 521		return 0;
 522
 523	spin_lock(&nm_i->nat_list_lock);
 524	while (nr_shrink) {
 525		struct nat_entry *ne;
 526
 527		if (list_empty(&nm_i->nat_entries))
 528			break;
 529
 530		ne = list_first_entry(&nm_i->nat_entries,
 531					struct nat_entry, list);
 532		list_del(&ne->list);
 533		spin_unlock(&nm_i->nat_list_lock);
 534
 535		__del_from_nat_cache(nm_i, ne);
 536		nr_shrink--;
 537
 538		spin_lock(&nm_i->nat_list_lock);
 539	}
 540	spin_unlock(&nm_i->nat_list_lock);
 541
 542	f2fs_up_write(&nm_i->nat_tree_lock);
 543	return nr - nr_shrink;
 544}
 545
 546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 547				struct node_info *ni, bool checkpoint_context)
 
 
 548{
 549	struct f2fs_nm_info *nm_i = NM_I(sbi);
 550	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 551	struct f2fs_journal *journal = curseg->journal;
 552	nid_t start_nid = START_NID(nid);
 553	struct f2fs_nat_block *nat_blk;
 554	struct page *page = NULL;
 555	struct f2fs_nat_entry ne;
 556	struct nat_entry *e;
 557	pgoff_t index;
 558	block_t blkaddr;
 559	int i;
 560
 561	ni->nid = nid;
 562retry:
 563	/* Check nat cache */
 564	f2fs_down_read(&nm_i->nat_tree_lock);
 565	e = __lookup_nat_cache(nm_i, nid);
 566	if (e) {
 567		ni->ino = nat_get_ino(e);
 568		ni->blk_addr = nat_get_blkaddr(e);
 569		ni->version = nat_get_version(e);
 570		f2fs_up_read(&nm_i->nat_tree_lock);
 571		return 0;
 572	}
 573
 574	/*
 575	 * Check current segment summary by trying to grab journal_rwsem first.
 576	 * This sem is on the critical path on the checkpoint requiring the above
 577	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
 578	 * while not bothering checkpoint.
 579	 */
 580	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
 581		down_read(&curseg->journal_rwsem);
 582	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
 583				!down_read_trylock(&curseg->journal_rwsem)) {
 584		f2fs_up_read(&nm_i->nat_tree_lock);
 585		goto retry;
 586	}
 587
 588	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 
 
 589	if (i >= 0) {
 590		ne = nat_in_journal(journal, i);
 591		node_info_from_raw_nat(ni, &ne);
 592	}
 593	up_read(&curseg->journal_rwsem);
 594	if (i >= 0) {
 595		f2fs_up_read(&nm_i->nat_tree_lock);
 596		goto cache;
 597	}
 598
 599	/* Fill node_info from nat page */
 600	index = current_nat_addr(sbi, nid);
 601	f2fs_up_read(&nm_i->nat_tree_lock);
 602
 603	page = f2fs_get_meta_page(sbi, index);
 604	if (IS_ERR(page))
 605		return PTR_ERR(page);
 606
 607	nat_blk = (struct f2fs_nat_block *)page_address(page);
 608	ne = nat_blk->entries[nid - start_nid];
 609	node_info_from_raw_nat(ni, &ne);
 610	f2fs_put_page(page, 1);
 611cache:
 612	blkaddr = le32_to_cpu(ne.block_addr);
 613	if (__is_valid_data_blkaddr(blkaddr) &&
 614		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 615		return -EFAULT;
 616
 617	/* cache nat entry */
 
 618	cache_nat_entry(sbi, nid, &ne);
 619	return 0;
 620}
 621
 622/*
 623 * readahead MAX_RA_NODE number of node pages.
 624 */
 625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 626{
 627	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 628	struct blk_plug plug;
 629	int i, end;
 630	nid_t nid;
 631
 632	blk_start_plug(&plug);
 633
 634	/* Then, try readahead for siblings of the desired node */
 635	end = start + n;
 636	end = min(end, NIDS_PER_BLOCK);
 637	for (i = start; i < end; i++) {
 638		nid = get_nid(parent, i, false);
 639		f2fs_ra_node_page(sbi, nid);
 640	}
 641
 642	blk_finish_plug(&plug);
 643}
 644
 645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 646{
 647	const long direct_index = ADDRS_PER_INODE(dn->inode);
 648	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 649	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 650	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 651	int cur_level = dn->cur_level;
 652	int max_level = dn->max_level;
 653	pgoff_t base = 0;
 654
 655	if (!dn->max_level)
 656		return pgofs + 1;
 657
 658	while (max_level-- > cur_level)
 659		skipped_unit *= NIDS_PER_BLOCK;
 660
 661	switch (dn->max_level) {
 662	case 3:
 663		base += 2 * indirect_blks;
 664		fallthrough;
 665	case 2:
 666		base += 2 * direct_blks;
 667		fallthrough;
 668	case 1:
 669		base += direct_index;
 670		break;
 671	default:
 672		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 673	}
 674
 675	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 676}
 677
 678/*
 679 * The maximum depth is four.
 680 * Offset[0] will have raw inode offset.
 681 */
 682static int get_node_path(struct inode *inode, long block,
 683				int offset[4], unsigned int noffset[4])
 684{
 685	const long direct_index = ADDRS_PER_INODE(inode);
 686	const long direct_blks = ADDRS_PER_BLOCK(inode);
 687	const long dptrs_per_blk = NIDS_PER_BLOCK;
 688	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 689	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 690	int n = 0;
 691	int level = 0;
 692
 693	noffset[0] = 0;
 694
 695	if (block < direct_index) {
 696		offset[n] = block;
 697		goto got;
 698	}
 699	block -= direct_index;
 700	if (block < direct_blks) {
 701		offset[n++] = NODE_DIR1_BLOCK;
 702		noffset[n] = 1;
 703		offset[n] = block;
 704		level = 1;
 705		goto got;
 706	}
 707	block -= direct_blks;
 708	if (block < direct_blks) {
 709		offset[n++] = NODE_DIR2_BLOCK;
 710		noffset[n] = 2;
 711		offset[n] = block;
 712		level = 1;
 713		goto got;
 714	}
 715	block -= direct_blks;
 716	if (block < indirect_blks) {
 717		offset[n++] = NODE_IND1_BLOCK;
 718		noffset[n] = 3;
 719		offset[n++] = block / direct_blks;
 720		noffset[n] = 4 + offset[n - 1];
 721		offset[n] = block % direct_blks;
 722		level = 2;
 723		goto got;
 724	}
 725	block -= indirect_blks;
 726	if (block < indirect_blks) {
 727		offset[n++] = NODE_IND2_BLOCK;
 728		noffset[n] = 4 + dptrs_per_blk;
 729		offset[n++] = block / direct_blks;
 730		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 731		offset[n] = block % direct_blks;
 732		level = 2;
 733		goto got;
 734	}
 735	block -= indirect_blks;
 736	if (block < dindirect_blks) {
 737		offset[n++] = NODE_DIND_BLOCK;
 738		noffset[n] = 5 + (dptrs_per_blk * 2);
 739		offset[n++] = block / indirect_blks;
 740		noffset[n] = 6 + (dptrs_per_blk * 2) +
 741			      offset[n - 1] * (dptrs_per_blk + 1);
 742		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 743		noffset[n] = 7 + (dptrs_per_blk * 2) +
 744			      offset[n - 2] * (dptrs_per_blk + 1) +
 745			      offset[n - 1];
 746		offset[n] = block % direct_blks;
 747		level = 3;
 748		goto got;
 749	} else {
 750		return -E2BIG;
 751	}
 752got:
 753	return level;
 754}
 755
 756/*
 757 * Caller should call f2fs_put_dnode(dn).
 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 
 760 */
 761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 762{
 763	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 764	struct page *npage[4];
 765	struct page *parent = NULL;
 766	int offset[4];
 767	unsigned int noffset[4];
 768	nid_t nids[4];
 769	int level, i = 0;
 770	int err = 0;
 771
 772	level = get_node_path(dn->inode, index, offset, noffset);
 773	if (level < 0)
 774		return level;
 775
 776	nids[0] = dn->inode->i_ino;
 777	npage[0] = dn->inode_page;
 778
 779	if (!npage[0]) {
 780		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 781		if (IS_ERR(npage[0]))
 782			return PTR_ERR(npage[0]);
 783	}
 784
 785	/* if inline_data is set, should not report any block indices */
 786	if (f2fs_has_inline_data(dn->inode) && index) {
 787		err = -ENOENT;
 788		f2fs_put_page(npage[0], 1);
 789		goto release_out;
 790	}
 791
 792	parent = npage[0];
 793	if (level != 0)
 794		nids[1] = get_nid(parent, offset[0], true);
 795	dn->inode_page = npage[0];
 796	dn->inode_page_locked = true;
 797
 798	/* get indirect or direct nodes */
 799	for (i = 1; i <= level; i++) {
 800		bool done = false;
 801
 802		if (!nids[i] && mode == ALLOC_NODE) {
 803			/* alloc new node */
 804			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 805				err = -ENOSPC;
 806				goto release_pages;
 807			}
 808
 809			dn->nid = nids[i];
 810			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 811			if (IS_ERR(npage[i])) {
 812				f2fs_alloc_nid_failed(sbi, nids[i]);
 813				err = PTR_ERR(npage[i]);
 814				goto release_pages;
 815			}
 816
 817			set_nid(parent, offset[i - 1], nids[i], i == 1);
 818			f2fs_alloc_nid_done(sbi, nids[i]);
 819			done = true;
 820		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 821			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 822			if (IS_ERR(npage[i])) {
 823				err = PTR_ERR(npage[i]);
 824				goto release_pages;
 825			}
 826			done = true;
 827		}
 828		if (i == 1) {
 829			dn->inode_page_locked = false;
 830			unlock_page(parent);
 831		} else {
 832			f2fs_put_page(parent, 1);
 833		}
 834
 835		if (!done) {
 836			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 837			if (IS_ERR(npage[i])) {
 838				err = PTR_ERR(npage[i]);
 839				f2fs_put_page(npage[0], 0);
 840				goto release_out;
 841			}
 842		}
 843		if (i < level) {
 844			parent = npage[i];
 845			nids[i + 1] = get_nid(parent, offset[i], false);
 846		}
 847	}
 848	dn->nid = nids[level];
 849	dn->ofs_in_node = offset[level];
 850	dn->node_page = npage[level];
 851	dn->data_blkaddr = f2fs_data_blkaddr(dn);
 852
 853	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
 854					f2fs_sb_has_readonly(sbi)) {
 855		unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
 856		block_t blkaddr;
 857
 858		if (!c_len)
 859			goto out;
 860
 861		blkaddr = f2fs_data_blkaddr(dn);
 862		if (blkaddr == COMPRESS_ADDR)
 863			blkaddr = data_blkaddr(dn->inode, dn->node_page,
 864						dn->ofs_in_node + 1);
 865
 866		f2fs_update_read_extent_tree_range_compressed(dn->inode,
 867					index, blkaddr,
 868					F2FS_I(dn->inode)->i_cluster_size,
 869					c_len);
 870	}
 871out:
 872	return 0;
 873
 874release_pages:
 875	f2fs_put_page(parent, 1);
 876	if (i > 1)
 877		f2fs_put_page(npage[0], 0);
 878release_out:
 879	dn->inode_page = NULL;
 880	dn->node_page = NULL;
 881	if (err == -ENOENT) {
 882		dn->cur_level = i;
 883		dn->max_level = level;
 884		dn->ofs_in_node = offset[level];
 885	}
 886	return err;
 887}
 888
 889static int truncate_node(struct dnode_of_data *dn)
 890{
 891	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 892	struct node_info ni;
 893	int err;
 894	pgoff_t index;
 895
 896	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
 897	if (err)
 898		return err;
 
 
 
 899
 900	/* Deallocate node address */
 901	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 902	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 903	set_node_addr(sbi, &ni, NULL_ADDR, false);
 904
 905	if (dn->nid == dn->inode->i_ino) {
 906		f2fs_remove_orphan_inode(sbi, dn->nid);
 907		dec_valid_inode_count(sbi);
 908		f2fs_inode_synced(dn->inode);
 
 909	}
 910
 911	clear_node_page_dirty(dn->node_page);
 912	set_sbi_flag(sbi, SBI_IS_DIRTY);
 913
 914	index = dn->node_page->index;
 915	f2fs_put_page(dn->node_page, 1);
 916
 917	invalidate_mapping_pages(NODE_MAPPING(sbi),
 918			index, index);
 919
 920	dn->node_page = NULL;
 921	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 922
 923	return 0;
 924}
 925
 926static int truncate_dnode(struct dnode_of_data *dn)
 927{
 928	struct page *page;
 929	int err;
 930
 931	if (dn->nid == 0)
 932		return 1;
 933
 934	/* get direct node */
 935	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 936	if (PTR_ERR(page) == -ENOENT)
 937		return 1;
 938	else if (IS_ERR(page))
 939		return PTR_ERR(page);
 940
 941	/* Make dnode_of_data for parameter */
 942	dn->node_page = page;
 943	dn->ofs_in_node = 0;
 944	f2fs_truncate_data_blocks(dn);
 945	err = truncate_node(dn);
 946	if (err)
 947		return err;
 948
 949	return 1;
 950}
 951
 952static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 953						int ofs, int depth)
 954{
 955	struct dnode_of_data rdn = *dn;
 956	struct page *page;
 957	struct f2fs_node *rn;
 958	nid_t child_nid;
 959	unsigned int child_nofs;
 960	int freed = 0;
 961	int i, ret;
 962
 963	if (dn->nid == 0)
 964		return NIDS_PER_BLOCK + 1;
 965
 966	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 967
 968	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 969	if (IS_ERR(page)) {
 970		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 971		return PTR_ERR(page);
 972	}
 973
 974	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 975
 976	rn = F2FS_NODE(page);
 977	if (depth < 3) {
 978		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 979			child_nid = le32_to_cpu(rn->in.nid[i]);
 980			if (child_nid == 0)
 981				continue;
 982			rdn.nid = child_nid;
 983			ret = truncate_dnode(&rdn);
 984			if (ret < 0)
 985				goto out_err;
 986			if (set_nid(page, i, 0, false))
 987				dn->node_changed = true;
 988		}
 989	} else {
 990		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 991		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 992			child_nid = le32_to_cpu(rn->in.nid[i]);
 993			if (child_nid == 0) {
 994				child_nofs += NIDS_PER_BLOCK + 1;
 995				continue;
 996			}
 997			rdn.nid = child_nid;
 998			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 999			if (ret == (NIDS_PER_BLOCK + 1)) {
1000				if (set_nid(page, i, 0, false))
1001					dn->node_changed = true;
1002				child_nofs += ret;
1003			} else if (ret < 0 && ret != -ENOENT) {
1004				goto out_err;
1005			}
1006		}
1007		freed = child_nofs;
1008	}
1009
1010	if (!ofs) {
1011		/* remove current indirect node */
1012		dn->node_page = page;
1013		ret = truncate_node(dn);
1014		if (ret)
1015			goto out_err;
1016		freed++;
1017	} else {
1018		f2fs_put_page(page, 1);
1019	}
1020	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1021	return freed;
1022
1023out_err:
1024	f2fs_put_page(page, 1);
1025	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1026	return ret;
1027}
1028
1029static int truncate_partial_nodes(struct dnode_of_data *dn,
1030			struct f2fs_inode *ri, int *offset, int depth)
1031{
1032	struct page *pages[2];
1033	nid_t nid[3];
1034	nid_t child_nid;
1035	int err = 0;
1036	int i;
1037	int idx = depth - 2;
1038
1039	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1040	if (!nid[0])
1041		return 0;
1042
1043	/* get indirect nodes in the path */
1044	for (i = 0; i < idx + 1; i++) {
1045		/* reference count'll be increased */
1046		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1047		if (IS_ERR(pages[i])) {
1048			err = PTR_ERR(pages[i]);
1049			idx = i - 1;
1050			goto fail;
1051		}
1052		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1053	}
1054
1055	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1056
1057	/* free direct nodes linked to a partial indirect node */
1058	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1059		child_nid = get_nid(pages[idx], i, false);
1060		if (!child_nid)
1061			continue;
1062		dn->nid = child_nid;
1063		err = truncate_dnode(dn);
1064		if (err < 0)
1065			goto fail;
1066		if (set_nid(pages[idx], i, 0, false))
1067			dn->node_changed = true;
1068	}
1069
1070	if (offset[idx + 1] == 0) {
1071		dn->node_page = pages[idx];
1072		dn->nid = nid[idx];
1073		err = truncate_node(dn);
1074		if (err)
1075			goto fail;
1076	} else {
1077		f2fs_put_page(pages[idx], 1);
1078	}
1079	offset[idx]++;
1080	offset[idx + 1] = 0;
1081	idx--;
1082fail:
1083	for (i = idx; i >= 0; i--)
1084		f2fs_put_page(pages[i], 1);
1085
1086	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1087
1088	return err;
1089}
1090
1091/*
1092 * All the block addresses of data and nodes should be nullified.
1093 */
1094int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1095{
1096	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097	int err = 0, cont = 1;
1098	int level, offset[4], noffset[4];
1099	unsigned int nofs = 0;
1100	struct f2fs_inode *ri;
1101	struct dnode_of_data dn;
1102	struct page *page;
1103
1104	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1105
1106	level = get_node_path(inode, from, offset, noffset);
1107	if (level < 0) {
1108		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1109		return level;
1110	}
1111
1112	page = f2fs_get_node_page(sbi, inode->i_ino);
1113	if (IS_ERR(page)) {
1114		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1115		return PTR_ERR(page);
1116	}
1117
1118	set_new_dnode(&dn, inode, page, NULL, 0);
1119	unlock_page(page);
1120
1121	ri = F2FS_INODE(page);
1122	switch (level) {
1123	case 0:
1124	case 1:
1125		nofs = noffset[1];
1126		break;
1127	case 2:
1128		nofs = noffset[1];
1129		if (!offset[level - 1])
1130			goto skip_partial;
1131		err = truncate_partial_nodes(&dn, ri, offset, level);
1132		if (err < 0 && err != -ENOENT)
1133			goto fail;
1134		nofs += 1 + NIDS_PER_BLOCK;
1135		break;
1136	case 3:
1137		nofs = 5 + 2 * NIDS_PER_BLOCK;
1138		if (!offset[level - 1])
1139			goto skip_partial;
1140		err = truncate_partial_nodes(&dn, ri, offset, level);
1141		if (err < 0 && err != -ENOENT)
1142			goto fail;
1143		break;
1144	default:
1145		BUG();
1146	}
1147
1148skip_partial:
1149	while (cont) {
1150		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1151		switch (offset[0]) {
1152		case NODE_DIR1_BLOCK:
1153		case NODE_DIR2_BLOCK:
1154			err = truncate_dnode(&dn);
1155			break;
1156
1157		case NODE_IND1_BLOCK:
1158		case NODE_IND2_BLOCK:
1159			err = truncate_nodes(&dn, nofs, offset[1], 2);
1160			break;
1161
1162		case NODE_DIND_BLOCK:
1163			err = truncate_nodes(&dn, nofs, offset[1], 3);
1164			cont = 0;
1165			break;
1166
1167		default:
1168			BUG();
1169		}
1170		if (err < 0 && err != -ENOENT)
1171			goto fail;
1172		if (offset[1] == 0 &&
1173				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1174			lock_page(page);
1175			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1176			f2fs_wait_on_page_writeback(page, NODE, true, true);
 
 
 
1177			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1178			set_page_dirty(page);
1179			unlock_page(page);
1180		}
1181		offset[1] = 0;
1182		offset[0]++;
1183		nofs += err;
1184	}
1185fail:
1186	f2fs_put_page(page, 0);
1187	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1188	return err > 0 ? 0 : err;
1189}
1190
1191/* caller must lock inode page */
1192int f2fs_truncate_xattr_node(struct inode *inode)
1193{
1194	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1195	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1196	struct dnode_of_data dn;
1197	struct page *npage;
1198	int err;
1199
1200	if (!nid)
1201		return 0;
1202
1203	npage = f2fs_get_node_page(sbi, nid);
1204	if (IS_ERR(npage))
1205		return PTR_ERR(npage);
1206
1207	set_new_dnode(&dn, inode, NULL, npage, nid);
1208	err = truncate_node(&dn);
1209	if (err) {
1210		f2fs_put_page(npage, 1);
1211		return err;
1212	}
1213
1214	f2fs_i_xnid_write(inode, 0);
1215
 
 
 
1216	return 0;
1217}
1218
1219/*
1220 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1221 * f2fs_unlock_op().
1222 */
1223int f2fs_remove_inode_page(struct inode *inode)
1224{
1225	struct dnode_of_data dn;
1226	int err;
1227
1228	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1229	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1230	if (err)
1231		return err;
1232
1233	err = f2fs_truncate_xattr_node(inode);
1234	if (err) {
1235		f2fs_put_dnode(&dn);
1236		return err;
1237	}
1238
1239	/* remove potential inline_data blocks */
1240	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1241				S_ISLNK(inode->i_mode))
1242		f2fs_truncate_data_blocks_range(&dn, 1);
1243
1244	/* 0 is possible, after f2fs_new_inode() has failed */
1245	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1246		f2fs_put_dnode(&dn);
1247		return -EIO;
1248	}
1249
1250	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1251		f2fs_warn(F2FS_I_SB(inode),
1252			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1253			inode->i_ino, (unsigned long long)inode->i_blocks);
1254		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1255	}
1256
1257	/* will put inode & node pages */
1258	err = truncate_node(&dn);
1259	if (err) {
1260		f2fs_put_dnode(&dn);
1261		return err;
1262	}
1263	return 0;
1264}
1265
1266struct page *f2fs_new_inode_page(struct inode *inode)
1267{
1268	struct dnode_of_data dn;
1269
1270	/* allocate inode page for new inode */
1271	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1272
1273	/* caller should f2fs_put_page(page, 1); */
1274	return f2fs_new_node_page(&dn, 0);
1275}
1276
1277struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
 
1278{
1279	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1280	struct node_info new_ni;
1281	struct page *page;
1282	int err;
1283
1284	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1285		return ERR_PTR(-EPERM);
1286
1287	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1288	if (!page)
1289		return ERR_PTR(-ENOMEM);
1290
1291	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1292		goto fail;
1293
1294#ifdef CONFIG_F2FS_CHECK_FS
1295	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1296	if (err) {
1297		dec_valid_node_count(sbi, dn->inode, !ofs);
1298		goto fail;
1299	}
1300	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1301		err = -EFSCORRUPTED;
1302		set_sbi_flag(sbi, SBI_NEED_FSCK);
1303		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1304		goto fail;
1305	}
1306#endif
1307	new_ni.nid = dn->nid;
1308	new_ni.ino = dn->inode->i_ino;
1309	new_ni.blk_addr = NULL_ADDR;
1310	new_ni.flag = 0;
1311	new_ni.version = 0;
1312	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1313
1314	f2fs_wait_on_page_writeback(page, NODE, true, true);
1315	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1316	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1317	if (!PageUptodate(page))
1318		SetPageUptodate(page);
1319	if (set_page_dirty(page))
1320		dn->node_changed = true;
1321
1322	if (f2fs_has_xattr_block(ofs))
1323		f2fs_i_xnid_write(dn->inode, dn->nid);
1324
 
 
 
 
 
1325	if (ofs == 0)
1326		inc_valid_inode_count(sbi);
 
1327	return page;
1328
1329fail:
1330	clear_node_page_dirty(page);
1331	f2fs_put_page(page, 1);
1332	return ERR_PTR(err);
1333}
1334
1335/*
1336 * Caller should do after getting the following values.
1337 * 0: f2fs_put_page(page, 0)
1338 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1339 */
1340static int read_node_page(struct page *page, blk_opf_t op_flags)
1341{
1342	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343	struct node_info ni;
1344	struct f2fs_io_info fio = {
1345		.sbi = sbi,
1346		.type = NODE,
1347		.op = REQ_OP_READ,
1348		.op_flags = op_flags,
1349		.page = page,
1350		.encrypted_page = NULL,
1351	};
1352	int err;
1353
1354	if (PageUptodate(page)) {
1355		if (!f2fs_inode_chksum_verify(sbi, page)) {
1356			ClearPageUptodate(page);
1357			return -EFSBADCRC;
1358		}
1359		return LOCKED_PAGE;
1360	}
1361
1362	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1363	if (err)
1364		return err;
1365
1366	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1367	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1368		ClearPageUptodate(page);
1369		return -ENOENT;
1370	}
1371
1372	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1373
1374	err = f2fs_submit_page_bio(&fio);
1375
1376	if (!err)
1377		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378
1379	return err;
 
1380}
1381
1382/*
1383 * Readahead a node page
1384 */
1385void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1386{
1387	struct page *apage;
1388	int err;
1389
1390	if (!nid)
1391		return;
1392	if (f2fs_check_nid_range(sbi, nid))
1393		return;
1394
1395	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
 
 
1396	if (apage)
1397		return;
1398
1399	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1400	if (!apage)
1401		return;
1402
1403	err = read_node_page(apage, REQ_RAHEAD);
1404	f2fs_put_page(apage, err ? 1 : 0);
1405}
1406
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1407static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1408					struct page *parent, int start)
1409{
1410	struct page *page;
1411	int err;
1412
1413	if (!nid)
1414		return ERR_PTR(-ENOENT);
1415	if (f2fs_check_nid_range(sbi, nid))
1416		return ERR_PTR(-EINVAL);
1417repeat:
1418	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1419	if (!page)
1420		return ERR_PTR(-ENOMEM);
1421
1422	err = read_node_page(page, 0);
1423	if (err < 0) {
1424		goto out_put_err;
 
1425	} else if (err == LOCKED_PAGE) {
1426		err = 0;
1427		goto page_hit;
1428	}
1429
1430	if (parent)
1431		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1432
1433	lock_page(page);
1434
 
 
 
 
1435	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1436		f2fs_put_page(page, 1);
1437		goto repeat;
1438	}
1439
1440	if (unlikely(!PageUptodate(page))) {
1441		err = -EIO;
1442		goto out_err;
1443	}
1444
1445	if (!f2fs_inode_chksum_verify(sbi, page)) {
1446		err = -EFSBADCRC;
1447		goto out_err;
1448	}
1449page_hit:
1450	if (likely(nid == nid_of_node(page)))
1451		return page;
1452
1453	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1454			  nid, nid_of_node(page), ino_of_node(page),
1455			  ofs_of_node(page), cpver_of_node(page),
1456			  next_blkaddr_of_node(page));
1457	set_sbi_flag(sbi, SBI_NEED_FSCK);
1458	err = -EINVAL;
1459out_err:
1460	ClearPageUptodate(page);
1461out_put_err:
1462	/* ENOENT comes from read_node_page which is not an error. */
1463	if (err != -ENOENT)
1464		f2fs_handle_page_eio(sbi, page->index, NODE);
1465	f2fs_put_page(page, 1);
1466	return ERR_PTR(err);
1467}
1468
1469struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1470{
1471	return __get_node_page(sbi, nid, NULL, 0);
1472}
1473
1474struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1475{
1476	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1477	nid_t nid = get_nid(parent, start, false);
1478
1479	return __get_node_page(sbi, nid, parent, start);
1480}
1481
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1482static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1483{
1484	struct inode *inode;
1485	struct page *page;
1486	int ret;
1487
1488	/* should flush inline_data before evict_inode */
1489	inode = ilookup(sbi->sb, ino);
1490	if (!inode)
1491		return;
1492
1493	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1494					FGP_LOCK|FGP_NOWAIT, 0);
1495	if (!page)
1496		goto iput_out;
1497
 
 
 
1498	if (!PageUptodate(page))
1499		goto page_out;
1500
1501	if (!PageDirty(page))
1502		goto page_out;
1503
1504	if (!clear_page_dirty_for_io(page))
1505		goto page_out;
1506
1507	ret = f2fs_write_inline_data(inode, page);
1508	inode_dec_dirty_pages(inode);
1509	f2fs_remove_dirty_inode(inode);
1510	if (ret)
1511		set_page_dirty(page);
1512page_out:
1513	f2fs_put_page(page, 1);
1514iput_out:
1515	iput(inode);
1516}
1517
1518static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1519{
1520	pgoff_t index;
1521	struct pagevec pvec;
1522	struct page *last_page = NULL;
1523	int nr_pages;
1524
1525	pagevec_init(&pvec);
1526	index = 0;
1527
1528	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1529				PAGECACHE_TAG_DIRTY))) {
1530		int i;
1531
1532		for (i = 0; i < nr_pages; i++) {
1533			struct page *page = pvec.pages[i];
1534
1535			if (unlikely(f2fs_cp_error(sbi))) {
1536				f2fs_put_page(last_page, 0);
1537				pagevec_release(&pvec);
1538				return ERR_PTR(-EIO);
1539			}
1540
1541			if (!IS_DNODE(page) || !is_cold_node(page))
1542				continue;
1543			if (ino_of_node(page) != ino)
1544				continue;
1545
1546			lock_page(page);
1547
1548			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1549continue_unlock:
1550				unlock_page(page);
1551				continue;
1552			}
1553			if (ino_of_node(page) != ino)
1554				goto continue_unlock;
1555
1556			if (!PageDirty(page)) {
1557				/* someone wrote it for us */
1558				goto continue_unlock;
1559			}
1560
1561			if (last_page)
1562				f2fs_put_page(last_page, 0);
1563
1564			get_page(page);
1565			last_page = page;
1566			unlock_page(page);
1567		}
1568		pagevec_release(&pvec);
1569		cond_resched();
1570	}
1571	return last_page;
1572}
1573
1574static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1575				struct writeback_control *wbc, bool do_balance,
1576				enum iostat_type io_type, unsigned int *seq_id)
1577{
1578	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1579	nid_t nid;
1580	struct node_info ni;
1581	struct f2fs_io_info fio = {
1582		.sbi = sbi,
1583		.ino = ino_of_node(page),
1584		.type = NODE,
1585		.op = REQ_OP_WRITE,
1586		.op_flags = wbc_to_write_flags(wbc),
1587		.page = page,
1588		.encrypted_page = NULL,
1589		.submitted = false,
1590		.io_type = io_type,
1591		.io_wbc = wbc,
1592	};
1593	unsigned int seq;
1594
1595	trace_f2fs_writepage(page, NODE);
1596
1597	if (unlikely(f2fs_cp_error(sbi))) {
1598		ClearPageUptodate(page);
1599		dec_page_count(sbi, F2FS_DIRTY_NODES);
1600		unlock_page(page);
1601		return 0;
1602	}
1603
1604	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1605		goto redirty_out;
1606
1607	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1608			wbc->sync_mode == WB_SYNC_NONE &&
1609			IS_DNODE(page) && is_cold_node(page))
1610		goto redirty_out;
1611
1612	/* get old block addr of this node page */
1613	nid = nid_of_node(page);
1614	f2fs_bug_on(sbi, page->index != nid);
1615
1616	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1617		goto redirty_out;
1618
1619	if (wbc->for_reclaim) {
1620		if (!f2fs_down_read_trylock(&sbi->node_write))
1621			goto redirty_out;
1622	} else {
1623		f2fs_down_read(&sbi->node_write);
1624	}
1625
1626	/* This page is already truncated */
1627	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1628		ClearPageUptodate(page);
1629		dec_page_count(sbi, F2FS_DIRTY_NODES);
1630		f2fs_up_read(&sbi->node_write);
1631		unlock_page(page);
1632		return 0;
1633	}
1634
1635	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1636		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1637					DATA_GENERIC_ENHANCE)) {
1638		f2fs_up_read(&sbi->node_write);
1639		goto redirty_out;
1640	}
1641
1642	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1643		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1644
1645	/* should add to global list before clearing PAGECACHE status */
1646	if (f2fs_in_warm_node_list(sbi, page)) {
1647		seq = f2fs_add_fsync_node_entry(sbi, page);
1648		if (seq_id)
1649			*seq_id = seq;
1650	}
1651
1652	set_page_writeback(page);
1653	ClearPageError(page);
1654
1655	fio.old_blkaddr = ni.blk_addr;
1656	f2fs_do_write_node_page(nid, &fio);
1657	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1658	dec_page_count(sbi, F2FS_DIRTY_NODES);
1659	f2fs_up_read(&sbi->node_write);
1660
1661	if (wbc->for_reclaim) {
1662		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663		submitted = NULL;
1664	}
1665
1666	unlock_page(page);
1667
1668	if (unlikely(f2fs_cp_error(sbi))) {
1669		f2fs_submit_merged_write(sbi, NODE);
1670		submitted = NULL;
1671	}
1672	if (submitted)
1673		*submitted = fio.submitted;
1674
1675	if (do_balance)
1676		f2fs_balance_fs(sbi, false);
1677	return 0;
1678
1679redirty_out:
1680	redirty_page_for_writepage(wbc, page);
1681	return AOP_WRITEPAGE_ACTIVATE;
1682}
1683
1684int f2fs_move_node_page(struct page *node_page, int gc_type)
1685{
1686	int err = 0;
1687
1688	if (gc_type == FG_GC) {
1689		struct writeback_control wbc = {
1690			.sync_mode = WB_SYNC_ALL,
1691			.nr_to_write = 1,
1692			.for_reclaim = 0,
1693		};
1694
1695		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1696
1697		set_page_dirty(node_page);
1698
1699		if (!clear_page_dirty_for_io(node_page)) {
1700			err = -EAGAIN;
1701			goto out_page;
1702		}
1703
1704		if (__write_node_page(node_page, false, NULL,
1705					&wbc, false, FS_GC_NODE_IO, NULL)) {
1706			err = -EAGAIN;
1707			unlock_page(node_page);
1708		}
1709		goto release_page;
1710	} else {
1711		/* set page dirty and write it */
1712		if (!PageWriteback(node_page))
1713			set_page_dirty(node_page);
1714	}
1715out_page:
1716	unlock_page(node_page);
1717release_page:
1718	f2fs_put_page(node_page, 0);
1719	return err;
1720}
1721
1722static int f2fs_write_node_page(struct page *page,
1723				struct writeback_control *wbc)
1724{
1725	return __write_node_page(page, false, NULL, wbc, false,
1726						FS_NODE_IO, NULL);
1727}
1728
1729int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1730			struct writeback_control *wbc, bool atomic,
1731			unsigned int *seq_id)
1732{
1733	pgoff_t index;
1734	struct pagevec pvec;
1735	int ret = 0;
1736	struct page *last_page = NULL;
1737	bool marked = false;
1738	nid_t ino = inode->i_ino;
1739	int nr_pages;
1740	int nwritten = 0;
1741
1742	if (atomic) {
1743		last_page = last_fsync_dnode(sbi, ino);
1744		if (IS_ERR_OR_NULL(last_page))
1745			return PTR_ERR_OR_ZERO(last_page);
1746	}
1747retry:
1748	pagevec_init(&pvec);
1749	index = 0;
1750
1751	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1752				PAGECACHE_TAG_DIRTY))) {
1753		int i;
1754
1755		for (i = 0; i < nr_pages; i++) {
1756			struct page *page = pvec.pages[i];
1757			bool submitted = false;
1758
1759			if (unlikely(f2fs_cp_error(sbi))) {
1760				f2fs_put_page(last_page, 0);
1761				pagevec_release(&pvec);
1762				ret = -EIO;
1763				goto out;
1764			}
1765
1766			if (!IS_DNODE(page) || !is_cold_node(page))
1767				continue;
1768			if (ino_of_node(page) != ino)
1769				continue;
1770
1771			lock_page(page);
1772
1773			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1774continue_unlock:
1775				unlock_page(page);
1776				continue;
1777			}
1778			if (ino_of_node(page) != ino)
1779				goto continue_unlock;
1780
1781			if (!PageDirty(page) && page != last_page) {
1782				/* someone wrote it for us */
1783				goto continue_unlock;
1784			}
1785
1786			f2fs_wait_on_page_writeback(page, NODE, true, true);
1787
1788			set_fsync_mark(page, 0);
1789			set_dentry_mark(page, 0);
1790
1791			if (!atomic || page == last_page) {
1792				set_fsync_mark(page, 1);
1793				percpu_counter_inc(&sbi->rf_node_block_count);
1794				if (IS_INODE(page)) {
1795					if (is_inode_flag_set(inode,
1796								FI_DIRTY_INODE))
1797						f2fs_update_inode(inode, page);
1798					set_dentry_mark(page,
1799						f2fs_need_dentry_mark(sbi, ino));
1800				}
1801				/* may be written by other thread */
1802				if (!PageDirty(page))
1803					set_page_dirty(page);
1804			}
1805
1806			if (!clear_page_dirty_for_io(page))
1807				goto continue_unlock;
1808
1809			ret = __write_node_page(page, atomic &&
1810						page == last_page,
1811						&submitted, wbc, true,
1812						FS_NODE_IO, seq_id);
1813			if (ret) {
1814				unlock_page(page);
1815				f2fs_put_page(last_page, 0);
1816				break;
1817			} else if (submitted) {
1818				nwritten++;
1819			}
1820
1821			if (page == last_page) {
1822				f2fs_put_page(page, 0);
1823				marked = true;
1824				break;
1825			}
1826		}
1827		pagevec_release(&pvec);
1828		cond_resched();
1829
1830		if (ret || marked)
1831			break;
1832	}
1833	if (!ret && atomic && !marked) {
1834		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1835			   ino, last_page->index);
1836		lock_page(last_page);
1837		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1838		set_page_dirty(last_page);
1839		unlock_page(last_page);
1840		goto retry;
1841	}
1842out:
1843	if (nwritten)
1844		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1845	return ret ? -EIO : 0;
1846}
1847
1848static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1849{
1850	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1851	bool clean;
1852
1853	if (inode->i_ino != ino)
1854		return 0;
1855
1856	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1857		return 0;
1858
1859	spin_lock(&sbi->inode_lock[DIRTY_META]);
1860	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1861	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1862
1863	if (clean)
1864		return 0;
1865
1866	inode = igrab(inode);
1867	if (!inode)
1868		return 0;
1869	return 1;
1870}
1871
1872static bool flush_dirty_inode(struct page *page)
1873{
1874	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1875	struct inode *inode;
1876	nid_t ino = ino_of_node(page);
1877
1878	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1879	if (!inode)
1880		return false;
1881
1882	f2fs_update_inode(inode, page);
1883	unlock_page(page);
1884
1885	iput(inode);
1886	return true;
1887}
1888
1889void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
 
1890{
1891	pgoff_t index = 0;
1892	struct pagevec pvec;
1893	int nr_pages;
1894
1895	pagevec_init(&pvec);
1896
1897	while ((nr_pages = pagevec_lookup_tag(&pvec,
1898			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1899		int i;
1900
1901		for (i = 0; i < nr_pages; i++) {
1902			struct page *page = pvec.pages[i];
1903
1904			if (!IS_DNODE(page))
1905				continue;
1906
1907			lock_page(page);
1908
1909			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1910continue_unlock:
1911				unlock_page(page);
1912				continue;
1913			}
1914
1915			if (!PageDirty(page)) {
1916				/* someone wrote it for us */
1917				goto continue_unlock;
1918			}
1919
1920			/* flush inline_data, if it's async context. */
1921			if (page_private_inline(page)) {
1922				clear_page_private_inline(page);
1923				unlock_page(page);
1924				flush_inline_data(sbi, ino_of_node(page));
1925				continue;
1926			}
1927			unlock_page(page);
1928		}
1929		pagevec_release(&pvec);
1930		cond_resched();
1931	}
1932}
1933
1934int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1935				struct writeback_control *wbc,
1936				bool do_balance, enum iostat_type io_type)
1937{
1938	pgoff_t index;
1939	struct pagevec pvec;
1940	int step = 0;
1941	int nwritten = 0;
1942	int ret = 0;
1943	int nr_pages, done = 0;
1944
1945	pagevec_init(&pvec);
1946
1947next_step:
1948	index = 0;
 
1949
1950	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1951			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1952		int i;
 
 
 
 
1953
1954		for (i = 0; i < nr_pages; i++) {
1955			struct page *page = pvec.pages[i];
1956			bool submitted = false;
1957
1958			/* give a priority to WB_SYNC threads */
1959			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1960					wbc->sync_mode == WB_SYNC_NONE) {
1961				done = 1;
1962				break;
1963			}
1964
1965			/*
1966			 * flushing sequence with step:
1967			 * 0. indirect nodes
1968			 * 1. dentry dnodes
1969			 * 2. file dnodes
1970			 */
1971			if (step == 0 && IS_DNODE(page))
1972				continue;
1973			if (step == 1 && (!IS_DNODE(page) ||
1974						is_cold_node(page)))
1975				continue;
1976			if (step == 2 && (!IS_DNODE(page) ||
1977						!is_cold_node(page)))
1978				continue;
 
 
 
 
 
1979lock_node:
1980			if (wbc->sync_mode == WB_SYNC_ALL)
1981				lock_page(page);
1982			else if (!trylock_page(page))
1983				continue;
1984
1985			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1986continue_unlock:
1987				unlock_page(page);
1988				continue;
1989			}
 
 
1990
1991			if (!PageDirty(page)) {
1992				/* someone wrote it for us */
1993				goto continue_unlock;
1994			}
1995
1996			/* flush inline_data/inode, if it's async context. */
1997			if (!do_balance)
1998				goto write_node;
1999
2000			/* flush inline_data */
2001			if (page_private_inline(page)) {
2002				clear_page_private_inline(page);
2003				unlock_page(page);
2004				flush_inline_data(sbi, ino_of_node(page));
2005				goto lock_node;
2006			}
2007
2008			/* flush dirty inode */
2009			if (IS_INODE(page) && flush_dirty_inode(page))
2010				goto lock_node;
2011write_node:
2012			f2fs_wait_on_page_writeback(page, NODE, true, true);
2013
 
2014			if (!clear_page_dirty_for_io(page))
2015				goto continue_unlock;
2016
2017			set_fsync_mark(page, 0);
2018			set_dentry_mark(page, 0);
 
 
 
 
 
 
 
 
 
2019
2020			ret = __write_node_page(page, false, &submitted,
2021						wbc, do_balance, io_type, NULL);
2022			if (ret)
2023				unlock_page(page);
2024			else if (submitted)
2025				nwritten++;
2026
2027			if (--wbc->nr_to_write == 0)
2028				break;
2029		}
2030		pagevec_release(&pvec);
2031		cond_resched();
2032
2033		if (wbc->nr_to_write == 0) {
2034			step = 2;
2035			break;
2036		}
2037	}
2038
2039	if (step < 2) {
2040		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2041				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2042			goto out;
2043		step++;
2044		goto next_step;
2045	}
2046out:
2047	if (nwritten)
2048		f2fs_submit_merged_write(sbi, NODE);
2049
2050	if (unlikely(f2fs_cp_error(sbi)))
2051		return -EIO;
2052	return ret;
2053}
2054
2055int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2056						unsigned int seq_id)
2057{
2058	struct fsync_node_entry *fn;
2059	struct page *page;
2060	struct list_head *head = &sbi->fsync_node_list;
2061	unsigned long flags;
2062	unsigned int cur_seq_id = 0;
2063	int ret2, ret = 0;
2064
2065	while (seq_id && cur_seq_id < seq_id) {
2066		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2067		if (list_empty(head)) {
2068			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069			break;
2070		}
2071		fn = list_first_entry(head, struct fsync_node_entry, list);
2072		if (fn->seq_id > seq_id) {
2073			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2074			break;
2075		}
2076		cur_seq_id = fn->seq_id;
2077		page = fn->page;
2078		get_page(page);
2079		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2080
2081		f2fs_wait_on_page_writeback(page, NODE, true, false);
2082		if (TestClearPageError(page))
2083			ret = -EIO;
2084
2085		put_page(page);
2086
2087		if (ret)
 
 
 
 
 
2088			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089	}
2090
2091	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
2092	if (!ret)
2093		ret = ret2;
2094
2095	return ret;
2096}
2097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098static int f2fs_write_node_pages(struct address_space *mapping,
2099			    struct writeback_control *wbc)
2100{
2101	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2102	struct blk_plug plug;
2103	long diff;
2104
2105	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2106		goto skip_write;
2107
2108	/* balancing f2fs's metadata in background */
2109	f2fs_balance_fs_bg(sbi, true);
2110
2111	/* collect a number of dirty node pages and write together */
2112	if (wbc->sync_mode != WB_SYNC_ALL &&
2113			get_pages(sbi, F2FS_DIRTY_NODES) <
2114					nr_pages_to_skip(sbi, NODE))
2115		goto skip_write;
2116
2117	if (wbc->sync_mode == WB_SYNC_ALL)
2118		atomic_inc(&sbi->wb_sync_req[NODE]);
2119	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2120		/* to avoid potential deadlock */
2121		if (current->plug)
2122			blk_finish_plug(current->plug);
2123		goto skip_write;
2124	}
2125
2126	trace_f2fs_writepages(mapping->host, wbc, NODE);
2127
2128	diff = nr_pages_to_write(sbi, NODE, wbc);
2129	blk_start_plug(&plug);
2130	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2131	blk_finish_plug(&plug);
2132	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2133
2134	if (wbc->sync_mode == WB_SYNC_ALL)
2135		atomic_dec(&sbi->wb_sync_req[NODE]);
2136	return 0;
2137
2138skip_write:
2139	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2140	trace_f2fs_writepages(mapping->host, wbc, NODE);
2141	return 0;
2142}
2143
2144static bool f2fs_dirty_node_folio(struct address_space *mapping,
2145		struct folio *folio)
2146{
2147	trace_f2fs_set_page_dirty(&folio->page, NODE);
2148
2149	if (!folio_test_uptodate(folio))
2150		folio_mark_uptodate(folio);
2151#ifdef CONFIG_F2FS_CHECK_FS
2152	if (IS_INODE(&folio->page))
2153		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2154#endif
2155	if (filemap_dirty_folio(mapping, folio)) {
2156		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2157		set_page_private_reference(&folio->page);
2158		return true;
2159	}
2160	return false;
2161}
2162
2163/*
2164 * Structure of the f2fs node operations
2165 */
2166const struct address_space_operations f2fs_node_aops = {
2167	.writepage	= f2fs_write_node_page,
2168	.writepages	= f2fs_write_node_pages,
2169	.dirty_folio	= f2fs_dirty_node_folio,
2170	.invalidate_folio = f2fs_invalidate_folio,
2171	.release_folio	= f2fs_release_folio,
2172	.migrate_folio	= filemap_migrate_folio,
2173};
2174
2175static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2176						nid_t n)
2177{
2178	return radix_tree_lookup(&nm_i->free_nid_root, n);
2179}
2180
2181static int __insert_free_nid(struct f2fs_sb_info *sbi,
2182				struct free_nid *i)
2183{
2184	struct f2fs_nm_info *nm_i = NM_I(sbi);
2185	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2186
2187	if (err)
2188		return err;
2189
2190	nm_i->nid_cnt[FREE_NID]++;
2191	list_add_tail(&i->list, &nm_i->free_nid_list);
2192	return 0;
2193}
2194
2195static void __remove_free_nid(struct f2fs_sb_info *sbi,
2196			struct free_nid *i, enum nid_state state)
2197{
2198	struct f2fs_nm_info *nm_i = NM_I(sbi);
2199
2200	f2fs_bug_on(sbi, state != i->state);
2201	nm_i->nid_cnt[state]--;
2202	if (state == FREE_NID)
2203		list_del(&i->list);
2204	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2205}
2206
2207static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2208			enum nid_state org_state, enum nid_state dst_state)
2209{
2210	struct f2fs_nm_info *nm_i = NM_I(sbi);
2211
2212	f2fs_bug_on(sbi, org_state != i->state);
2213	i->state = dst_state;
2214	nm_i->nid_cnt[org_state]--;
2215	nm_i->nid_cnt[dst_state]++;
2216
2217	switch (dst_state) {
2218	case PREALLOC_NID:
2219		list_del(&i->list);
2220		break;
2221	case FREE_NID:
2222		list_add_tail(&i->list, &nm_i->free_nid_list);
2223		break;
2224	default:
2225		BUG_ON(1);
2226	}
2227}
2228
2229bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2230{
2231	struct f2fs_nm_info *nm_i = NM_I(sbi);
2232	unsigned int i;
2233	bool ret = true;
2234
2235	f2fs_down_read(&nm_i->nat_tree_lock);
2236	for (i = 0; i < nm_i->nat_blocks; i++) {
2237		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2238			ret = false;
2239			break;
2240		}
2241	}
2242	f2fs_up_read(&nm_i->nat_tree_lock);
2243
2244	return ret;
2245}
2246
2247static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2248							bool set, bool build)
2249{
2250	struct f2fs_nm_info *nm_i = NM_I(sbi);
2251	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2252	unsigned int nid_ofs = nid - START_NID(nid);
2253
2254	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2255		return;
2256
2257	if (set) {
2258		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2259			return;
2260		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2261		nm_i->free_nid_count[nat_ofs]++;
2262	} else {
2263		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2264			return;
2265		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2266		if (!build)
2267			nm_i->free_nid_count[nat_ofs]--;
2268	}
2269}
2270
2271/* return if the nid is recognized as free */
2272static bool add_free_nid(struct f2fs_sb_info *sbi,
2273				nid_t nid, bool build, bool update)
2274{
2275	struct f2fs_nm_info *nm_i = NM_I(sbi);
2276	struct free_nid *i, *e;
2277	struct nat_entry *ne;
2278	int err = -EINVAL;
2279	bool ret = false;
 
 
2280
2281	/* 0 nid should not be used */
2282	if (unlikely(nid == 0))
2283		return false;
2284
2285	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2286		return false;
2287
2288	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2289	i->nid = nid;
2290	i->state = FREE_NID;
2291
2292	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2293
2294	spin_lock(&nm_i->nid_list_lock);
2295
2296	if (build) {
2297		/*
2298		 *   Thread A             Thread B
2299		 *  - f2fs_create
2300		 *   - f2fs_new_inode
2301		 *    - f2fs_alloc_nid
2302		 *     - __insert_nid_to_list(PREALLOC_NID)
2303		 *                     - f2fs_balance_fs_bg
2304		 *                      - f2fs_build_free_nids
2305		 *                       - __f2fs_build_free_nids
2306		 *                        - scan_nat_page
2307		 *                         - add_free_nid
2308		 *                          - __lookup_nat_cache
2309		 *  - f2fs_add_link
2310		 *   - f2fs_init_inode_metadata
2311		 *    - f2fs_new_inode_page
2312		 *     - f2fs_new_node_page
2313		 *      - set_node_addr
2314		 *  - f2fs_alloc_nid_done
2315		 *   - __remove_nid_from_list(PREALLOC_NID)
2316		 *                         - __insert_nid_to_list(FREE_NID)
2317		 */
2318		ne = __lookup_nat_cache(nm_i, nid);
2319		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2320				nat_get_blkaddr(ne) != NULL_ADDR))
2321			goto err_out;
2322
2323		e = __lookup_free_nid_list(nm_i, nid);
2324		if (e) {
2325			if (e->state == FREE_NID)
2326				ret = true;
2327			goto err_out;
2328		}
2329	}
2330	ret = true;
2331	err = __insert_free_nid(sbi, i);
2332err_out:
2333	if (update) {
2334		update_free_nid_bitmap(sbi, nid, ret, build);
2335		if (!build)
2336			nm_i->available_nids++;
 
2337	}
2338	spin_unlock(&nm_i->nid_list_lock);
2339	radix_tree_preload_end();
2340
2341	if (err)
 
 
 
2342		kmem_cache_free(free_nid_slab, i);
2343	return ret;
 
 
 
 
 
 
2344}
2345
2346static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2347{
2348	struct f2fs_nm_info *nm_i = NM_I(sbi);
2349	struct free_nid *i;
2350	bool need_free = false;
2351
2352	spin_lock(&nm_i->nid_list_lock);
2353	i = __lookup_free_nid_list(nm_i, nid);
2354	if (i && i->state == FREE_NID) {
2355		__remove_free_nid(sbi, i, FREE_NID);
 
2356		need_free = true;
2357	}
2358	spin_unlock(&nm_i->nid_list_lock);
2359
2360	if (need_free)
2361		kmem_cache_free(free_nid_slab, i);
2362}
2363
2364static int scan_nat_page(struct f2fs_sb_info *sbi,
2365			struct page *nat_page, nid_t start_nid)
2366{
2367	struct f2fs_nm_info *nm_i = NM_I(sbi);
2368	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2369	block_t blk_addr;
2370	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2371	int i;
2372
2373	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2374
2375	i = start_nid % NAT_ENTRY_PER_BLOCK;
2376
2377	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
 
2378		if (unlikely(start_nid >= nm_i->max_nid))
2379			break;
2380
2381		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2382
2383		if (blk_addr == NEW_ADDR)
2384			return -EINVAL;
2385
2386		if (blk_addr == NULL_ADDR) {
2387			add_free_nid(sbi, start_nid, true, true);
2388		} else {
2389			spin_lock(&NM_I(sbi)->nid_list_lock);
2390			update_free_nid_bitmap(sbi, start_nid, false, true);
2391			spin_unlock(&NM_I(sbi)->nid_list_lock);
2392		}
2393	}
2394
2395	return 0;
2396}
2397
2398static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2399{
2400	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2401	struct f2fs_journal *journal = curseg->journal;
2402	int i;
2403
2404	down_read(&curseg->journal_rwsem);
2405	for (i = 0; i < nats_in_cursum(journal); i++) {
2406		block_t addr;
2407		nid_t nid;
2408
2409		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2410		nid = le32_to_cpu(nid_in_journal(journal, i));
2411		if (addr == NULL_ADDR)
2412			add_free_nid(sbi, nid, true, false);
2413		else
2414			remove_free_nid(sbi, nid);
2415	}
2416	up_read(&curseg->journal_rwsem);
2417}
2418
2419static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2420{
2421	struct f2fs_nm_info *nm_i = NM_I(sbi);
2422	unsigned int i, idx;
2423	nid_t nid;
2424
2425	f2fs_down_read(&nm_i->nat_tree_lock);
2426
2427	for (i = 0; i < nm_i->nat_blocks; i++) {
2428		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2429			continue;
2430		if (!nm_i->free_nid_count[i])
2431			continue;
2432		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2433			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2434						NAT_ENTRY_PER_BLOCK, idx);
2435			if (idx >= NAT_ENTRY_PER_BLOCK)
2436				break;
2437
2438			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2439			add_free_nid(sbi, nid, true, false);
2440
2441			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2442				goto out;
2443		}
2444	}
2445out:
2446	scan_curseg_cache(sbi);
2447
2448	f2fs_up_read(&nm_i->nat_tree_lock);
2449}
2450
2451static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2452						bool sync, bool mount)
2453{
2454	struct f2fs_nm_info *nm_i = NM_I(sbi);
2455	int i = 0, ret;
 
 
2456	nid_t nid = nm_i->next_scan_nid;
2457
2458	if (unlikely(nid >= nm_i->max_nid))
2459		nid = 0;
2460
2461	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2462		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2463
2464	/* Enough entries */
2465	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2466		return 0;
2467
2468	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2469		return 0;
2470
2471	if (!mount) {
2472		/* try to find free nids in free_nid_bitmap */
2473		scan_free_nid_bits(sbi);
2474
2475		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2476			return 0;
2477	}
2478
2479	/* readahead nat pages to be scanned */
2480	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2481							META_NAT, true);
2482
2483	f2fs_down_read(&nm_i->nat_tree_lock);
2484
2485	while (1) {
2486		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2487						nm_i->nat_block_bitmap)) {
2488			struct page *page = get_current_nat_page(sbi, nid);
2489
2490			if (IS_ERR(page)) {
2491				ret = PTR_ERR(page);
2492			} else {
2493				ret = scan_nat_page(sbi, page, nid);
2494				f2fs_put_page(page, 1);
2495			}
2496
2497			if (ret) {
2498				f2fs_up_read(&nm_i->nat_tree_lock);
2499				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2500				return ret;
2501			}
2502		}
2503
2504		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2505		if (unlikely(nid >= nm_i->max_nid))
2506			nid = 0;
2507
2508		if (++i >= FREE_NID_PAGES)
2509			break;
2510	}
2511
2512	/* go to the next free nat pages to find free nids abundantly */
2513	nm_i->next_scan_nid = nid;
2514
2515	/* find free nids from current sum_pages */
2516	scan_curseg_cache(sbi);
 
 
2517
2518	f2fs_up_read(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
2519
2520	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2521					nm_i->ra_nid_pages, META_NAT, false);
2522
2523	return 0;
2524}
2525
2526int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2527{
2528	int ret;
2529
2530	mutex_lock(&NM_I(sbi)->build_lock);
2531	ret = __f2fs_build_free_nids(sbi, sync, mount);
2532	mutex_unlock(&NM_I(sbi)->build_lock);
2533
2534	return ret;
2535}
2536
2537/*
2538 * If this function returns success, caller can obtain a new nid
2539 * from second parameter of this function.
2540 * The returned nid could be used ino as well as nid when inode is created.
2541 */
2542bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2543{
2544	struct f2fs_nm_info *nm_i = NM_I(sbi);
2545	struct free_nid *i = NULL;
2546retry:
2547	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2548		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2549		return false;
2550	}
2551
2552	spin_lock(&nm_i->nid_list_lock);
2553
2554	if (unlikely(nm_i->available_nids == 0)) {
2555		spin_unlock(&nm_i->nid_list_lock);
2556		return false;
2557	}
2558
2559	/* We should not use stale free nids created by f2fs_build_free_nids */
2560	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2561		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2562		i = list_first_entry(&nm_i->free_nid_list,
2563					struct free_nid, list);
2564		*nid = i->nid;
2565
2566		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2567		nm_i->available_nids--;
2568
2569		update_free_nid_bitmap(sbi, *nid, false, false);
2570
2571		spin_unlock(&nm_i->nid_list_lock);
 
 
 
 
2572		return true;
2573	}
2574	spin_unlock(&nm_i->nid_list_lock);
2575
2576	/* Let's scan nat pages and its caches to get free nids */
2577	if (!f2fs_build_free_nids(sbi, true, false))
2578		goto retry;
2579	return false;
 
2580}
2581
2582/*
2583 * f2fs_alloc_nid() should be called prior to this function.
2584 */
2585void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2586{
2587	struct f2fs_nm_info *nm_i = NM_I(sbi);
2588	struct free_nid *i;
2589
2590	spin_lock(&nm_i->nid_list_lock);
2591	i = __lookup_free_nid_list(nm_i, nid);
2592	f2fs_bug_on(sbi, !i);
2593	__remove_free_nid(sbi, i, PREALLOC_NID);
2594	spin_unlock(&nm_i->nid_list_lock);
2595
2596	kmem_cache_free(free_nid_slab, i);
2597}
2598
2599/*
2600 * f2fs_alloc_nid() should be called prior to this function.
2601 */
2602void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2603{
2604	struct f2fs_nm_info *nm_i = NM_I(sbi);
2605	struct free_nid *i;
2606	bool need_free = false;
2607
2608	if (!nid)
2609		return;
2610
2611	spin_lock(&nm_i->nid_list_lock);
2612	i = __lookup_free_nid_list(nm_i, nid);
2613	f2fs_bug_on(sbi, !i);
2614
2615	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2616		__remove_free_nid(sbi, i, PREALLOC_NID);
2617		need_free = true;
2618	} else {
2619		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
 
2620	}
2621
2622	nm_i->available_nids++;
2623
2624	update_free_nid_bitmap(sbi, nid, true, false);
2625
2626	spin_unlock(&nm_i->nid_list_lock);
2627
2628	if (need_free)
2629		kmem_cache_free(free_nid_slab, i);
2630}
2631
2632int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2633{
2634	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
2635	int nr = nr_shrink;
2636
2637	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2638		return 0;
2639
2640	if (!mutex_trylock(&nm_i->build_lock))
2641		return 0;
2642
2643	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2644		struct free_nid *i, *next;
2645		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2646
2647		spin_lock(&nm_i->nid_list_lock);
2648		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2649			if (!nr_shrink || !batch ||
2650				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2651				break;
2652			__remove_free_nid(sbi, i, FREE_NID);
2653			kmem_cache_free(free_nid_slab, i);
2654			nr_shrink--;
2655			batch--;
2656		}
2657		spin_unlock(&nm_i->nid_list_lock);
2658	}
2659
2660	mutex_unlock(&nm_i->build_lock);
2661
2662	return nr - nr_shrink;
2663}
2664
2665int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2666{
2667	void *src_addr, *dst_addr;
2668	size_t inline_size;
2669	struct page *ipage;
2670	struct f2fs_inode *ri;
2671
2672	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2673	if (IS_ERR(ipage))
2674		return PTR_ERR(ipage);
2675
2676	ri = F2FS_INODE(page);
2677	if (ri->i_inline & F2FS_INLINE_XATTR) {
2678		if (!f2fs_has_inline_xattr(inode)) {
2679			set_inode_flag(inode, FI_INLINE_XATTR);
2680			stat_inc_inline_xattr(inode);
2681		}
2682	} else {
2683		if (f2fs_has_inline_xattr(inode)) {
2684			stat_dec_inline_xattr(inode);
2685			clear_inode_flag(inode, FI_INLINE_XATTR);
2686		}
2687		goto update_inode;
2688	}
2689
2690	dst_addr = inline_xattr_addr(inode, ipage);
2691	src_addr = inline_xattr_addr(inode, page);
2692	inline_size = inline_xattr_size(inode);
2693
2694	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2695	memcpy(dst_addr, src_addr, inline_size);
2696update_inode:
2697	f2fs_update_inode(inode, ipage);
2698	f2fs_put_page(ipage, 1);
2699	return 0;
2700}
2701
2702int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2703{
2704	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2705	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2706	nid_t new_xnid;
2707	struct dnode_of_data dn;
2708	struct node_info ni;
2709	struct page *xpage;
2710	int err;
2711
 
2712	if (!prev_xnid)
2713		goto recover_xnid;
2714
2715	/* 1: invalidate the previous xattr nid */
2716	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2717	if (err)
2718		return err;
2719
2720	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2721	dec_valid_node_count(sbi, inode, false);
2722	set_node_addr(sbi, &ni, NULL_ADDR, false);
2723
2724recover_xnid:
2725	/* 2: update xattr nid in inode */
2726	if (!f2fs_alloc_nid(sbi, &new_xnid))
2727		return -ENOSPC;
2728
2729	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2730	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2731	if (IS_ERR(xpage)) {
2732		f2fs_alloc_nid_failed(sbi, new_xnid);
2733		return PTR_ERR(xpage);
2734	}
2735
2736	f2fs_alloc_nid_done(sbi, new_xnid);
2737	f2fs_update_inode_page(inode);
2738
2739	/* 3: update and set xattr node page dirty */
2740	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
 
 
 
2741
2742	set_page_dirty(xpage);
2743	f2fs_put_page(xpage, 1);
 
2744
2745	return 0;
2746}
2747
2748int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2749{
2750	struct f2fs_inode *src, *dst;
2751	nid_t ino = ino_of_node(page);
2752	struct node_info old_ni, new_ni;
2753	struct page *ipage;
2754	int err;
2755
2756	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2757	if (err)
2758		return err;
2759
2760	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2761		return -EINVAL;
2762retry:
2763	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2764	if (!ipage) {
2765		memalloc_retry_wait(GFP_NOFS);
2766		goto retry;
2767	}
2768
2769	/* Should not use this inode from free nid list */
2770	remove_free_nid(sbi, ino);
2771
2772	if (!PageUptodate(ipage))
2773		SetPageUptodate(ipage);
2774	fill_node_footer(ipage, ino, ino, 0, true);
2775	set_cold_node(ipage, false);
2776
2777	src = F2FS_INODE(page);
2778	dst = F2FS_INODE(ipage);
2779
2780	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2781	dst->i_size = 0;
2782	dst->i_blocks = cpu_to_le64(1);
2783	dst->i_links = cpu_to_le32(1);
2784	dst->i_xattr_nid = 0;
2785	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2786	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2787		dst->i_extra_isize = src->i_extra_isize;
2788
2789		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2790			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2791							i_inline_xattr_size))
2792			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2793
2794		if (f2fs_sb_has_project_quota(sbi) &&
2795			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2796								i_projid))
2797			dst->i_projid = src->i_projid;
2798
2799		if (f2fs_sb_has_inode_crtime(sbi) &&
2800			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2801							i_crtime_nsec)) {
2802			dst->i_crtime = src->i_crtime;
2803			dst->i_crtime_nsec = src->i_crtime_nsec;
2804		}
2805	}
2806
2807	new_ni = old_ni;
2808	new_ni.ino = ino;
2809
2810	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2811		WARN_ON(1);
2812	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2813	inc_valid_inode_count(sbi);
2814	set_page_dirty(ipage);
2815	f2fs_put_page(ipage, 1);
2816	return 0;
2817}
2818
2819int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2820			unsigned int segno, struct f2fs_summary_block *sum)
2821{
2822	struct f2fs_node *rn;
2823	struct f2fs_summary *sum_entry;
2824	block_t addr;
 
2825	int i, idx, last_offset, nrpages;
2826
2827	/* scan the node segment */
2828	last_offset = sbi->blocks_per_seg;
2829	addr = START_BLOCK(sbi, segno);
2830	sum_entry = &sum->entries[0];
2831
2832	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2833		nrpages = bio_max_segs(last_offset - i);
2834
2835		/* readahead node pages */
2836		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2837
2838		for (idx = addr; idx < addr + nrpages; idx++) {
2839			struct page *page = f2fs_get_tmp_page(sbi, idx);
2840
2841			if (IS_ERR(page))
2842				return PTR_ERR(page);
2843
2844			rn = F2FS_NODE(page);
2845			sum_entry->nid = rn->footer.nid;
2846			sum_entry->version = 0;
2847			sum_entry->ofs_in_node = 0;
2848			sum_entry++;
2849			f2fs_put_page(page, 1);
2850		}
2851
2852		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2853							addr + nrpages);
2854	}
2855	return 0;
2856}
2857
2858static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2859{
2860	struct f2fs_nm_info *nm_i = NM_I(sbi);
2861	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2862	struct f2fs_journal *journal = curseg->journal;
2863	int i;
2864
2865	down_write(&curseg->journal_rwsem);
2866	for (i = 0; i < nats_in_cursum(journal); i++) {
2867		struct nat_entry *ne;
2868		struct f2fs_nat_entry raw_ne;
2869		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2870
2871		if (f2fs_check_nid_range(sbi, nid))
2872			continue;
2873
2874		raw_ne = nat_in_journal(journal, i);
2875
2876		ne = __lookup_nat_cache(nm_i, nid);
2877		if (!ne) {
2878			ne = __alloc_nat_entry(sbi, nid, true);
2879			__init_nat_entry(nm_i, ne, &raw_ne, true);
2880		}
2881
2882		/*
2883		 * if a free nat in journal has not been used after last
2884		 * checkpoint, we should remove it from available nids,
2885		 * since later we will add it again.
2886		 */
2887		if (!get_nat_flag(ne, IS_DIRTY) &&
2888				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2889			spin_lock(&nm_i->nid_list_lock);
2890			nm_i->available_nids--;
2891			spin_unlock(&nm_i->nid_list_lock);
2892		}
2893
2894		__set_nat_cache_dirty(nm_i, ne);
2895	}
2896	update_nats_in_cursum(journal, -i);
2897	up_write(&curseg->journal_rwsem);
2898}
2899
2900static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2901						struct list_head *head, int max)
2902{
2903	struct nat_entry_set *cur;
2904
2905	if (nes->entry_cnt >= max)
2906		goto add_out;
2907
2908	list_for_each_entry(cur, head, set_list) {
2909		if (cur->entry_cnt >= nes->entry_cnt) {
2910			list_add(&nes->set_list, cur->set_list.prev);
2911			return;
2912		}
2913	}
2914add_out:
2915	list_add_tail(&nes->set_list, head);
2916}
2917
2918static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2919							unsigned int valid)
2920{
2921	if (valid == 0) {
2922		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2923		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2924		return;
2925	}
2926
2927	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2928	if (valid == NAT_ENTRY_PER_BLOCK)
2929		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2930	else
2931		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2932}
2933
2934static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2935						struct page *page)
2936{
2937	struct f2fs_nm_info *nm_i = NM_I(sbi);
2938	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2939	struct f2fs_nat_block *nat_blk = page_address(page);
2940	int valid = 0;
2941	int i = 0;
2942
2943	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2944		return;
2945
2946	if (nat_index == 0) {
2947		valid = 1;
2948		i = 1;
2949	}
2950	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2951		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2952			valid++;
2953	}
2954
2955	__update_nat_bits(nm_i, nat_index, valid);
2956}
2957
2958void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2959{
2960	struct f2fs_nm_info *nm_i = NM_I(sbi);
2961	unsigned int nat_ofs;
2962
2963	f2fs_down_read(&nm_i->nat_tree_lock);
2964
2965	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2966		unsigned int valid = 0, nid_ofs = 0;
2967
2968		/* handle nid zero due to it should never be used */
2969		if (unlikely(nat_ofs == 0)) {
2970			valid = 1;
2971			nid_ofs = 1;
2972		}
2973
2974		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2975			if (!test_bit_le(nid_ofs,
2976					nm_i->free_nid_bitmap[nat_ofs]))
2977				valid++;
2978		}
2979
2980		__update_nat_bits(nm_i, nat_ofs, valid);
2981	}
2982
2983	f2fs_up_read(&nm_i->nat_tree_lock);
2984}
2985
2986static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2987		struct nat_entry_set *set, struct cp_control *cpc)
2988{
2989	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2990	struct f2fs_journal *journal = curseg->journal;
2991	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2992	bool to_journal = true;
2993	struct f2fs_nat_block *nat_blk;
2994	struct nat_entry *ne, *cur;
2995	struct page *page = NULL;
2996
2997	/*
2998	 * there are two steps to flush nat entries:
2999	 * #1, flush nat entries to journal in current hot data summary block.
3000	 * #2, flush nat entries to nat page.
3001	 */
3002	if ((cpc->reason & CP_UMOUNT) ||
3003		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3004		to_journal = false;
3005
3006	if (to_journal) {
3007		down_write(&curseg->journal_rwsem);
3008	} else {
3009		page = get_next_nat_page(sbi, start_nid);
3010		if (IS_ERR(page))
3011			return PTR_ERR(page);
3012
3013		nat_blk = page_address(page);
3014		f2fs_bug_on(sbi, !nat_blk);
3015	}
3016
3017	/* flush dirty nats in nat entry set */
3018	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3019		struct f2fs_nat_entry *raw_ne;
3020		nid_t nid = nat_get_nid(ne);
3021		int offset;
3022
3023		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
 
3024
3025		if (to_journal) {
3026			offset = f2fs_lookup_journal_in_cursum(journal,
3027							NAT_JOURNAL, nid, 1);
3028			f2fs_bug_on(sbi, offset < 0);
3029			raw_ne = &nat_in_journal(journal, offset);
3030			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3031		} else {
3032			raw_ne = &nat_blk->entries[nid - start_nid];
3033		}
3034		raw_nat_from_node_info(raw_ne, &ne->ni);
3035		nat_reset_flag(ne);
3036		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3037		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3038			add_free_nid(sbi, nid, false, true);
3039		} else {
3040			spin_lock(&NM_I(sbi)->nid_list_lock);
3041			update_free_nid_bitmap(sbi, nid, false, false);
3042			spin_unlock(&NM_I(sbi)->nid_list_lock);
3043		}
3044	}
3045
3046	if (to_journal) {
3047		up_write(&curseg->journal_rwsem);
3048	} else {
3049		update_nat_bits(sbi, start_nid, page);
3050		f2fs_put_page(page, 1);
3051	}
3052
3053	/* Allow dirty nats by node block allocation in write_begin */
3054	if (!set->entry_cnt) {
3055		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3056		kmem_cache_free(nat_entry_set_slab, set);
3057	}
3058	return 0;
3059}
3060
3061/*
3062 * This function is called during the checkpointing process.
3063 */
3064int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3065{
3066	struct f2fs_nm_info *nm_i = NM_I(sbi);
3067	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3068	struct f2fs_journal *journal = curseg->journal;
3069	struct nat_entry_set *setvec[SETVEC_SIZE];
3070	struct nat_entry_set *set, *tmp;
3071	unsigned int found;
3072	nid_t set_idx = 0;
3073	LIST_HEAD(sets);
3074	int err = 0;
3075
3076	/*
3077	 * during unmount, let's flush nat_bits before checking
3078	 * nat_cnt[DIRTY_NAT].
3079	 */
3080	if (cpc->reason & CP_UMOUNT) {
3081		f2fs_down_write(&nm_i->nat_tree_lock);
3082		remove_nats_in_journal(sbi);
3083		f2fs_up_write(&nm_i->nat_tree_lock);
3084	}
3085
3086	if (!nm_i->nat_cnt[DIRTY_NAT])
3087		return 0;
3088
3089	f2fs_down_write(&nm_i->nat_tree_lock);
3090
3091	/*
3092	 * if there are no enough space in journal to store dirty nat
3093	 * entries, remove all entries from journal and merge them
3094	 * into nat entry set.
3095	 */
3096	if (cpc->reason & CP_UMOUNT ||
3097		!__has_cursum_space(journal,
3098			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3099		remove_nats_in_journal(sbi);
3100
3101	while ((found = __gang_lookup_nat_set(nm_i,
3102					set_idx, SETVEC_SIZE, setvec))) {
3103		unsigned idx;
3104
3105		set_idx = setvec[found - 1]->set + 1;
3106		for (idx = 0; idx < found; idx++)
3107			__adjust_nat_entry_set(setvec[idx], &sets,
3108						MAX_NAT_JENTRIES(journal));
3109	}
3110
3111	/* flush dirty nats in nat entry set */
3112	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3113		err = __flush_nat_entry_set(sbi, set, cpc);
3114		if (err)
3115			break;
3116	}
3117
3118	f2fs_up_write(&nm_i->nat_tree_lock);
3119	/* Allow dirty nats by node block allocation in write_begin */
3120
3121	return err;
3122}
3123
3124static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3125{
3126	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3127	struct f2fs_nm_info *nm_i = NM_I(sbi);
3128	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3129	unsigned int i;
3130	__u64 cp_ver = cur_cp_version(ckpt);
3131	block_t nat_bits_addr;
3132
3133	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3134	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3135			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3136	if (!nm_i->nat_bits)
3137		return -ENOMEM;
3138
3139	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3140	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3141
3142	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3143		return 0;
3144
3145	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3146						nm_i->nat_bits_blocks;
3147	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3148		struct page *page;
3149
3150		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3151		if (IS_ERR(page))
3152			return PTR_ERR(page);
3153
3154		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3155					page_address(page), F2FS_BLKSIZE);
3156		f2fs_put_page(page, 1);
3157	}
3158
3159	cp_ver |= (cur_cp_crc(ckpt) << 32);
3160	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3161		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3162		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3163			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3164		return 0;
3165	}
3166
3167	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3168	return 0;
3169}
3170
3171static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3172{
3173	struct f2fs_nm_info *nm_i = NM_I(sbi);
3174	unsigned int i = 0;
3175	nid_t nid, last_nid;
3176
3177	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3178		return;
3179
3180	for (i = 0; i < nm_i->nat_blocks; i++) {
3181		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3182		if (i >= nm_i->nat_blocks)
3183			break;
3184
3185		__set_bit_le(i, nm_i->nat_block_bitmap);
3186
3187		nid = i * NAT_ENTRY_PER_BLOCK;
3188		last_nid = nid + NAT_ENTRY_PER_BLOCK;
3189
3190		spin_lock(&NM_I(sbi)->nid_list_lock);
3191		for (; nid < last_nid; nid++)
3192			update_free_nid_bitmap(sbi, nid, true, true);
3193		spin_unlock(&NM_I(sbi)->nid_list_lock);
3194	}
3195
3196	for (i = 0; i < nm_i->nat_blocks; i++) {
3197		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3198		if (i >= nm_i->nat_blocks)
3199			break;
3200
3201		__set_bit_le(i, nm_i->nat_block_bitmap);
3202	}
3203}
3204
3205static int init_node_manager(struct f2fs_sb_info *sbi)
3206{
3207	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3208	struct f2fs_nm_info *nm_i = NM_I(sbi);
3209	unsigned char *version_bitmap;
3210	unsigned int nat_segs;
3211	int err;
3212
3213	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3214
3215	/* segment_count_nat includes pair segment so divide to 2. */
3216	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3217	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3218	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
 
3219
3220	/* not used nids: 0, node, meta, (and root counted as valid node) */
3221	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3222						F2FS_RESERVED_NODE_NUM;
3223	nm_i->nid_cnt[FREE_NID] = 0;
3224	nm_i->nid_cnt[PREALLOC_NID] = 0;
3225	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3226	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3227	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3228	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3229
3230	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3231	INIT_LIST_HEAD(&nm_i->free_nid_list);
3232	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3233	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3234	INIT_LIST_HEAD(&nm_i->nat_entries);
3235	spin_lock_init(&nm_i->nat_list_lock);
3236
3237	mutex_init(&nm_i->build_lock);
3238	spin_lock_init(&nm_i->nid_list_lock);
3239	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3240
3241	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3242	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3243	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
 
 
 
3244	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3245					GFP_KERNEL);
3246	if (!nm_i->nat_bitmap)
3247		return -ENOMEM;
3248
3249	err = __get_nat_bitmaps(sbi);
3250	if (err)
3251		return err;
3252
3253#ifdef CONFIG_F2FS_CHECK_FS
3254	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3255					GFP_KERNEL);
3256	if (!nm_i->nat_bitmap_mir)
3257		return -ENOMEM;
3258#endif
3259
3260	return 0;
3261}
3262
3263static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3264{
3265	struct f2fs_nm_info *nm_i = NM_I(sbi);
3266	int i;
3267
3268	nm_i->free_nid_bitmap =
3269		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3270					      nm_i->nat_blocks),
3271			      GFP_KERNEL);
3272	if (!nm_i->free_nid_bitmap)
3273		return -ENOMEM;
3274
3275	for (i = 0; i < nm_i->nat_blocks; i++) {
3276		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3277			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3278		if (!nm_i->free_nid_bitmap[i])
3279			return -ENOMEM;
3280	}
3281
3282	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3283								GFP_KERNEL);
3284	if (!nm_i->nat_block_bitmap)
3285		return -ENOMEM;
3286
3287	nm_i->free_nid_count =
3288		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3289					      nm_i->nat_blocks),
3290			      GFP_KERNEL);
3291	if (!nm_i->free_nid_count)
3292		return -ENOMEM;
3293	return 0;
3294}
3295
3296int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3297{
3298	int err;
3299
3300	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3301							GFP_KERNEL);
3302	if (!sbi->nm_info)
3303		return -ENOMEM;
3304
3305	err = init_node_manager(sbi);
3306	if (err)
3307		return err;
3308
3309	err = init_free_nid_cache(sbi);
3310	if (err)
3311		return err;
3312
3313	/* load free nid status from nat_bits table */
3314	load_free_nid_bitmap(sbi);
3315
3316	return f2fs_build_free_nids(sbi, true, true);
3317}
3318
3319void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3320{
3321	struct f2fs_nm_info *nm_i = NM_I(sbi);
3322	struct free_nid *i, *next_i;
3323	struct nat_entry *natvec[NATVEC_SIZE];
3324	struct nat_entry_set *setvec[SETVEC_SIZE];
3325	nid_t nid = 0;
3326	unsigned int found;
3327
3328	if (!nm_i)
3329		return;
3330
3331	/* destroy free nid list */
3332	spin_lock(&nm_i->nid_list_lock);
3333	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3334		__remove_free_nid(sbi, i, FREE_NID);
3335		spin_unlock(&nm_i->nid_list_lock);
 
 
3336		kmem_cache_free(free_nid_slab, i);
3337		spin_lock(&nm_i->nid_list_lock);
3338	}
3339	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3340	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3341	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3342	spin_unlock(&nm_i->nid_list_lock);
3343
3344	/* destroy nat cache */
3345	f2fs_down_write(&nm_i->nat_tree_lock);
3346	while ((found = __gang_lookup_nat_cache(nm_i,
3347					nid, NATVEC_SIZE, natvec))) {
3348		unsigned idx;
3349
3350		nid = nat_get_nid(natvec[found - 1]) + 1;
3351		for (idx = 0; idx < found; idx++) {
3352			spin_lock(&nm_i->nat_list_lock);
3353			list_del(&natvec[idx]->list);
3354			spin_unlock(&nm_i->nat_list_lock);
3355
3356			__del_from_nat_cache(nm_i, natvec[idx]);
3357		}
3358	}
3359	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3360
3361	/* destroy nat set cache */
3362	nid = 0;
3363	while ((found = __gang_lookup_nat_set(nm_i,
3364					nid, SETVEC_SIZE, setvec))) {
3365		unsigned idx;
3366
3367		nid = setvec[found - 1]->set + 1;
3368		for (idx = 0; idx < found; idx++) {
3369			/* entry_cnt is not zero, when cp_error was occurred */
3370			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3371			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3372			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3373		}
3374	}
3375	f2fs_up_write(&nm_i->nat_tree_lock);
3376
3377	kvfree(nm_i->nat_block_bitmap);
3378	if (nm_i->free_nid_bitmap) {
3379		int i;
3380
3381		for (i = 0; i < nm_i->nat_blocks; i++)
3382			kvfree(nm_i->free_nid_bitmap[i]);
3383		kvfree(nm_i->free_nid_bitmap);
3384	}
3385	kvfree(nm_i->free_nid_count);
3386
3387	kvfree(nm_i->nat_bitmap);
3388	kvfree(nm_i->nat_bits);
3389#ifdef CONFIG_F2FS_CHECK_FS
3390	kvfree(nm_i->nat_bitmap_mir);
3391#endif
3392	sbi->nm_info = NULL;
3393	kfree(nm_i);
3394}
3395
3396int __init f2fs_create_node_manager_caches(void)
3397{
3398	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3399			sizeof(struct nat_entry));
3400	if (!nat_entry_slab)
3401		goto fail;
3402
3403	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3404			sizeof(struct free_nid));
3405	if (!free_nid_slab)
3406		goto destroy_nat_entry;
3407
3408	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3409			sizeof(struct nat_entry_set));
3410	if (!nat_entry_set_slab)
3411		goto destroy_free_nid;
3412
3413	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3414			sizeof(struct fsync_node_entry));
3415	if (!fsync_node_entry_slab)
3416		goto destroy_nat_entry_set;
3417	return 0;
3418
3419destroy_nat_entry_set:
3420	kmem_cache_destroy(nat_entry_set_slab);
3421destroy_free_nid:
3422	kmem_cache_destroy(free_nid_slab);
3423destroy_nat_entry:
3424	kmem_cache_destroy(nat_entry_slab);
3425fail:
3426	return -ENOMEM;
3427}
3428
3429void f2fs_destroy_node_manager_caches(void)
3430{
3431	kmem_cache_destroy(fsync_node_entry_slab);
3432	kmem_cache_destroy(nat_entry_set_slab);
3433	kmem_cache_destroy(free_nid_slab);
3434	kmem_cache_destroy(nat_entry_slab);
3435}
v4.6
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
  22#include "trace.h"
 
  23#include <trace/events/f2fs.h>
  24
  25#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  26
  27static struct kmem_cache *nat_entry_slab;
  28static struct kmem_cache *free_nid_slab;
  29static struct kmem_cache *nat_entry_set_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  30
  31bool available_free_memory(struct f2fs_sb_info *sbi, int type)
  32{
  33	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
  34	struct sysinfo val;
  35	unsigned long avail_ram;
  36	unsigned long mem_size = 0;
  37	bool res = false;
  38
 
 
 
  39	si_meminfo(&val);
  40
  41	/* only uses low memory */
  42	avail_ram = val.totalram - val.totalhigh;
  43
  44	/*
  45	 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
  46	 */
  47	if (type == FREE_NIDS) {
  48		mem_size = (nm_i->fcnt * sizeof(struct free_nid)) >>
  49							PAGE_SHIFT;
  50		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  51	} else if (type == NAT_ENTRIES) {
  52		mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
  53							PAGE_SHIFT;
  54		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
 
 
  55	} else if (type == DIRTY_DENTS) {
  56		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  57			return false;
  58		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  59		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  60	} else if (type == INO_ENTRIES) {
  61		int i;
  62
  63		for (i = 0; i <= UPDATE_INO; i++)
  64			mem_size += (sbi->im[i].ino_num *
  65				sizeof(struct ino_entry)) >> PAGE_SHIFT;
 
  66		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  67	} else if (type == EXTENT_CACHE) {
  68		mem_size = (atomic_read(&sbi->total_ext_tree) *
 
 
 
 
  69				sizeof(struct extent_tree) +
  70				atomic_read(&sbi->total_ext_node) *
  71				sizeof(struct extent_node)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73	} else {
  74		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
  75			return true;
  76	}
  77	return res;
  78}
  79
  80static void clear_node_page_dirty(struct page *page)
  81{
  82	struct address_space *mapping = page->mapping;
  83	unsigned int long flags;
  84
  85	if (PageDirty(page)) {
  86		spin_lock_irqsave(&mapping->tree_lock, flags);
  87		radix_tree_tag_clear(&mapping->page_tree,
  88				page_index(page),
  89				PAGECACHE_TAG_DIRTY);
  90		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  91
  92		clear_page_dirty_for_io(page);
  93		dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
  94	}
  95	ClearPageUptodate(page);
  96}
  97
  98static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  99{
 100	pgoff_t index = current_nat_addr(sbi, nid);
 101	return get_meta_page(sbi, index);
 102}
 103
 104static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 105{
 106	struct page *src_page;
 107	struct page *dst_page;
 108	pgoff_t src_off;
 109	pgoff_t dst_off;
 110	void *src_addr;
 111	void *dst_addr;
 112	struct f2fs_nm_info *nm_i = NM_I(sbi);
 113
 114	src_off = current_nat_addr(sbi, nid);
 115	dst_off = next_nat_addr(sbi, src_off);
 116
 117	/* get current nat block page with lock */
 118	src_page = get_meta_page(sbi, src_off);
 119	dst_page = grab_meta_page(sbi, dst_off);
 
 
 120	f2fs_bug_on(sbi, PageDirty(src_page));
 121
 122	src_addr = page_address(src_page);
 123	dst_addr = page_address(dst_page);
 124	memcpy(dst_addr, src_addr, PAGE_SIZE);
 125	set_page_dirty(dst_page);
 126	f2fs_put_page(src_page, 1);
 127
 128	set_to_next_nat(nm_i, nid);
 129
 130	return dst_page;
 131}
 132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 133static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 134{
 135	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 136}
 137
 138static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 139		nid_t start, unsigned int nr, struct nat_entry **ep)
 140{
 141	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 142}
 143
 144static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 145{
 146	list_del(&e->list);
 147	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 148	nm_i->nat_cnt--;
 149	kmem_cache_free(nat_entry_slab, e);
 
 150}
 151
 152static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 153						struct nat_entry *ne)
 154{
 155	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 156	struct nat_entry_set *head;
 157
 158	if (get_nat_flag(ne, IS_DIRTY))
 159		return;
 160
 161	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 162	if (!head) {
 163		head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
 
 164
 165		INIT_LIST_HEAD(&head->entry_list);
 166		INIT_LIST_HEAD(&head->set_list);
 167		head->set = set;
 168		head->entry_cnt = 0;
 169		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 170	}
 171	list_move_tail(&ne->list, &head->entry_list);
 172	nm_i->dirty_nat_cnt++;
 173	head->entry_cnt++;
 174	set_nat_flag(ne, IS_DIRTY, true);
 175}
 176
 177static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 178						struct nat_entry *ne)
 179{
 180	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 181	struct nat_entry_set *head;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 182
 183	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 184	if (head) {
 185		list_move_tail(&ne->list, &nm_i->nat_entries);
 186		set_nat_flag(ne, IS_DIRTY, false);
 187		head->entry_cnt--;
 188		nm_i->dirty_nat_cnt--;
 189	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 190}
 191
 192static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 193		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 194{
 195	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 196							start, nr);
 197}
 198
 199int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200{
 201	struct f2fs_nm_info *nm_i = NM_I(sbi);
 202	struct nat_entry *e;
 203	bool need = false;
 204
 205	down_read(&nm_i->nat_tree_lock);
 206	e = __lookup_nat_cache(nm_i, nid);
 207	if (e) {
 208		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 209				!get_nat_flag(e, HAS_FSYNCED_INODE))
 210			need = true;
 211	}
 212	up_read(&nm_i->nat_tree_lock);
 213	return need;
 214}
 215
 216bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 217{
 218	struct f2fs_nm_info *nm_i = NM_I(sbi);
 219	struct nat_entry *e;
 220	bool is_cp = true;
 221
 222	down_read(&nm_i->nat_tree_lock);
 223	e = __lookup_nat_cache(nm_i, nid);
 224	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 225		is_cp = false;
 226	up_read(&nm_i->nat_tree_lock);
 227	return is_cp;
 228}
 229
 230bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 231{
 232	struct f2fs_nm_info *nm_i = NM_I(sbi);
 233	struct nat_entry *e;
 234	bool need_update = true;
 235
 236	down_read(&nm_i->nat_tree_lock);
 237	e = __lookup_nat_cache(nm_i, ino);
 238	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 239			(get_nat_flag(e, IS_CHECKPOINTED) ||
 240			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 241		need_update = false;
 242	up_read(&nm_i->nat_tree_lock);
 243	return need_update;
 244}
 245
 246static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 247{
 248	struct nat_entry *new;
 249
 250	new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_NOFS);
 251	f2fs_radix_tree_insert(&nm_i->nat_root, nid, new);
 252	memset(new, 0, sizeof(struct nat_entry));
 253	nat_set_nid(new, nid);
 254	nat_reset_flag(new);
 255	list_add_tail(&new->list, &nm_i->nat_entries);
 256	nm_i->nat_cnt++;
 257	return new;
 258}
 259
 260static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 261						struct f2fs_nat_entry *ne)
 262{
 263	struct f2fs_nm_info *nm_i = NM_I(sbi);
 264	struct nat_entry *e;
 
 
 
 
 
 
 
 
 265
 
 266	e = __lookup_nat_cache(nm_i, nid);
 267	if (!e) {
 268		e = grab_nat_entry(nm_i, nid);
 269		node_info_from_raw_nat(&e->ni, ne);
 270	} else {
 271		f2fs_bug_on(sbi, nat_get_ino(e) != ne->ino ||
 272				nat_get_blkaddr(e) != ne->block_addr ||
 273				nat_get_version(e) != ne->version);
 274	}
 
 
 275}
 276
 277static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 278			block_t new_blkaddr, bool fsync_done)
 279{
 280	struct f2fs_nm_info *nm_i = NM_I(sbi);
 281	struct nat_entry *e;
 
 282
 283	down_write(&nm_i->nat_tree_lock);
 284	e = __lookup_nat_cache(nm_i, ni->nid);
 285	if (!e) {
 286		e = grab_nat_entry(nm_i, ni->nid);
 287		copy_node_info(&e->ni, ni);
 288		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 289	} else if (new_blkaddr == NEW_ADDR) {
 290		/*
 291		 * when nid is reallocated,
 292		 * previous nat entry can be remained in nat cache.
 293		 * So, reinitialize it with new information.
 294		 */
 295		copy_node_info(&e->ni, ni);
 296		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 297	}
 
 
 
 298
 299	/* sanity check */
 300	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 301	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 302			new_blkaddr == NULL_ADDR);
 303	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 304			new_blkaddr == NEW_ADDR);
 305	f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
 306			nat_get_blkaddr(e) != NULL_ADDR &&
 307			new_blkaddr == NEW_ADDR);
 308
 309	/* increment version no as node is removed */
 310	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 311		unsigned char version = nat_get_version(e);
 
 312		nat_set_version(e, inc_node_version(version));
 313
 314		/* in order to reuse the nid */
 315		if (nm_i->next_scan_nid > ni->nid)
 316			nm_i->next_scan_nid = ni->nid;
 317	}
 318
 319	/* change address */
 320	nat_set_blkaddr(e, new_blkaddr);
 321	if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
 322		set_nat_flag(e, IS_CHECKPOINTED, false);
 323	__set_nat_cache_dirty(nm_i, e);
 324
 325	/* update fsync_mark if its inode nat entry is still alive */
 326	if (ni->nid != ni->ino)
 327		e = __lookup_nat_cache(nm_i, ni->ino);
 328	if (e) {
 329		if (fsync_done && ni->nid == ni->ino)
 330			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 331		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 332	}
 333	up_write(&nm_i->nat_tree_lock);
 334}
 335
 336int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 337{
 338	struct f2fs_nm_info *nm_i = NM_I(sbi);
 339	int nr = nr_shrink;
 340
 341	if (!down_write_trylock(&nm_i->nat_tree_lock))
 342		return 0;
 343
 344	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 
 345		struct nat_entry *ne;
 
 
 
 
 346		ne = list_first_entry(&nm_i->nat_entries,
 347					struct nat_entry, list);
 
 
 
 348		__del_from_nat_cache(nm_i, ne);
 349		nr_shrink--;
 
 
 350	}
 351	up_write(&nm_i->nat_tree_lock);
 
 
 352	return nr - nr_shrink;
 353}
 354
 355/*
 356 * This function always returns success
 357 */
 358void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 359{
 360	struct f2fs_nm_info *nm_i = NM_I(sbi);
 361	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 362	struct f2fs_journal *journal = curseg->journal;
 363	nid_t start_nid = START_NID(nid);
 364	struct f2fs_nat_block *nat_blk;
 365	struct page *page = NULL;
 366	struct f2fs_nat_entry ne;
 367	struct nat_entry *e;
 
 
 368	int i;
 369
 370	ni->nid = nid;
 371
 372	/* Check nat cache */
 373	down_read(&nm_i->nat_tree_lock);
 374	e = __lookup_nat_cache(nm_i, nid);
 375	if (e) {
 376		ni->ino = nat_get_ino(e);
 377		ni->blk_addr = nat_get_blkaddr(e);
 378		ni->version = nat_get_version(e);
 379		up_read(&nm_i->nat_tree_lock);
 380		return;
 381	}
 382
 383	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 
 
 
 
 
 
 
 
 
 
 
 
 384
 385	/* Check current segment summary */
 386	down_read(&curseg->journal_rwsem);
 387	i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 388	if (i >= 0) {
 389		ne = nat_in_journal(journal, i);
 390		node_info_from_raw_nat(ni, &ne);
 391	}
 392	up_read(&curseg->journal_rwsem);
 393	if (i >= 0)
 
 394		goto cache;
 
 395
 396	/* Fill node_info from nat page */
 397	page = get_current_nat_page(sbi, start_nid);
 
 
 
 
 
 
 398	nat_blk = (struct f2fs_nat_block *)page_address(page);
 399	ne = nat_blk->entries[nid - start_nid];
 400	node_info_from_raw_nat(ni, &ne);
 401	f2fs_put_page(page, 1);
 402cache:
 403	up_read(&nm_i->nat_tree_lock);
 
 
 
 
 404	/* cache nat entry */
 405	down_write(&nm_i->nat_tree_lock);
 406	cache_nat_entry(sbi, nid, &ne);
 407	up_write(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 408}
 409
 410pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 411{
 412	const long direct_index = ADDRS_PER_INODE(dn->inode);
 413	const long direct_blks = ADDRS_PER_BLOCK;
 414	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 415	unsigned int skipped_unit = ADDRS_PER_BLOCK;
 416	int cur_level = dn->cur_level;
 417	int max_level = dn->max_level;
 418	pgoff_t base = 0;
 419
 420	if (!dn->max_level)
 421		return pgofs + 1;
 422
 423	while (max_level-- > cur_level)
 424		skipped_unit *= NIDS_PER_BLOCK;
 425
 426	switch (dn->max_level) {
 427	case 3:
 428		base += 2 * indirect_blks;
 
 429	case 2:
 430		base += 2 * direct_blks;
 
 431	case 1:
 432		base += direct_index;
 433		break;
 434	default:
 435		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 436	}
 437
 438	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 439}
 440
 441/*
 442 * The maximum depth is four.
 443 * Offset[0] will have raw inode offset.
 444 */
 445static int get_node_path(struct inode *inode, long block,
 446				int offset[4], unsigned int noffset[4])
 447{
 448	const long direct_index = ADDRS_PER_INODE(inode);
 449	const long direct_blks = ADDRS_PER_BLOCK;
 450	const long dptrs_per_blk = NIDS_PER_BLOCK;
 451	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 452	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 453	int n = 0;
 454	int level = 0;
 455
 456	noffset[0] = 0;
 457
 458	if (block < direct_index) {
 459		offset[n] = block;
 460		goto got;
 461	}
 462	block -= direct_index;
 463	if (block < direct_blks) {
 464		offset[n++] = NODE_DIR1_BLOCK;
 465		noffset[n] = 1;
 466		offset[n] = block;
 467		level = 1;
 468		goto got;
 469	}
 470	block -= direct_blks;
 471	if (block < direct_blks) {
 472		offset[n++] = NODE_DIR2_BLOCK;
 473		noffset[n] = 2;
 474		offset[n] = block;
 475		level = 1;
 476		goto got;
 477	}
 478	block -= direct_blks;
 479	if (block < indirect_blks) {
 480		offset[n++] = NODE_IND1_BLOCK;
 481		noffset[n] = 3;
 482		offset[n++] = block / direct_blks;
 483		noffset[n] = 4 + offset[n - 1];
 484		offset[n] = block % direct_blks;
 485		level = 2;
 486		goto got;
 487	}
 488	block -= indirect_blks;
 489	if (block < indirect_blks) {
 490		offset[n++] = NODE_IND2_BLOCK;
 491		noffset[n] = 4 + dptrs_per_blk;
 492		offset[n++] = block / direct_blks;
 493		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 494		offset[n] = block % direct_blks;
 495		level = 2;
 496		goto got;
 497	}
 498	block -= indirect_blks;
 499	if (block < dindirect_blks) {
 500		offset[n++] = NODE_DIND_BLOCK;
 501		noffset[n] = 5 + (dptrs_per_blk * 2);
 502		offset[n++] = block / indirect_blks;
 503		noffset[n] = 6 + (dptrs_per_blk * 2) +
 504			      offset[n - 1] * (dptrs_per_blk + 1);
 505		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 506		noffset[n] = 7 + (dptrs_per_blk * 2) +
 507			      offset[n - 2] * (dptrs_per_blk + 1) +
 508			      offset[n - 1];
 509		offset[n] = block % direct_blks;
 510		level = 3;
 511		goto got;
 512	} else {
 513		BUG();
 514	}
 515got:
 516	return level;
 517}
 518
 519/*
 520 * Caller should call f2fs_put_dnode(dn).
 521 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 522 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 523 * In the case of RDONLY_NODE, we don't need to care about mutex.
 524 */
 525int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 526{
 527	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 528	struct page *npage[4];
 529	struct page *parent = NULL;
 530	int offset[4];
 531	unsigned int noffset[4];
 532	nid_t nids[4];
 533	int level, i = 0;
 534	int err = 0;
 535
 536	level = get_node_path(dn->inode, index, offset, noffset);
 
 
 537
 538	nids[0] = dn->inode->i_ino;
 539	npage[0] = dn->inode_page;
 540
 541	if (!npage[0]) {
 542		npage[0] = get_node_page(sbi, nids[0]);
 543		if (IS_ERR(npage[0]))
 544			return PTR_ERR(npage[0]);
 545	}
 546
 547	/* if inline_data is set, should not report any block indices */
 548	if (f2fs_has_inline_data(dn->inode) && index) {
 549		err = -ENOENT;
 550		f2fs_put_page(npage[0], 1);
 551		goto release_out;
 552	}
 553
 554	parent = npage[0];
 555	if (level != 0)
 556		nids[1] = get_nid(parent, offset[0], true);
 557	dn->inode_page = npage[0];
 558	dn->inode_page_locked = true;
 559
 560	/* get indirect or direct nodes */
 561	for (i = 1; i <= level; i++) {
 562		bool done = false;
 563
 564		if (!nids[i] && mode == ALLOC_NODE) {
 565			/* alloc new node */
 566			if (!alloc_nid(sbi, &(nids[i]))) {
 567				err = -ENOSPC;
 568				goto release_pages;
 569			}
 570
 571			dn->nid = nids[i];
 572			npage[i] = new_node_page(dn, noffset[i], NULL);
 573			if (IS_ERR(npage[i])) {
 574				alloc_nid_failed(sbi, nids[i]);
 575				err = PTR_ERR(npage[i]);
 576				goto release_pages;
 577			}
 578
 579			set_nid(parent, offset[i - 1], nids[i], i == 1);
 580			alloc_nid_done(sbi, nids[i]);
 581			done = true;
 582		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 583			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 584			if (IS_ERR(npage[i])) {
 585				err = PTR_ERR(npage[i]);
 586				goto release_pages;
 587			}
 588			done = true;
 589		}
 590		if (i == 1) {
 591			dn->inode_page_locked = false;
 592			unlock_page(parent);
 593		} else {
 594			f2fs_put_page(parent, 1);
 595		}
 596
 597		if (!done) {
 598			npage[i] = get_node_page(sbi, nids[i]);
 599			if (IS_ERR(npage[i])) {
 600				err = PTR_ERR(npage[i]);
 601				f2fs_put_page(npage[0], 0);
 602				goto release_out;
 603			}
 604		}
 605		if (i < level) {
 606			parent = npage[i];
 607			nids[i + 1] = get_nid(parent, offset[i], false);
 608		}
 609	}
 610	dn->nid = nids[level];
 611	dn->ofs_in_node = offset[level];
 612	dn->node_page = npage[level];
 613	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 614	return 0;
 615
 616release_pages:
 617	f2fs_put_page(parent, 1);
 618	if (i > 1)
 619		f2fs_put_page(npage[0], 0);
 620release_out:
 621	dn->inode_page = NULL;
 622	dn->node_page = NULL;
 623	if (err == -ENOENT) {
 624		dn->cur_level = i;
 625		dn->max_level = level;
 
 626	}
 627	return err;
 628}
 629
 630static void truncate_node(struct dnode_of_data *dn)
 631{
 632	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 633	struct node_info ni;
 
 
 634
 635	get_node_info(sbi, dn->nid, &ni);
 636	if (dn->inode->i_blocks == 0) {
 637		f2fs_bug_on(sbi, ni.blk_addr != NULL_ADDR);
 638		goto invalidate;
 639	}
 640	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
 641
 642	/* Deallocate node address */
 643	invalidate_blocks(sbi, ni.blk_addr);
 644	dec_valid_node_count(sbi, dn->inode);
 645	set_node_addr(sbi, &ni, NULL_ADDR, false);
 646
 647	if (dn->nid == dn->inode->i_ino) {
 648		remove_orphan_inode(sbi, dn->nid);
 649		dec_valid_inode_count(sbi);
 650	} else {
 651		sync_inode_page(dn);
 652	}
 653invalidate:
 654	clear_node_page_dirty(dn->node_page);
 655	set_sbi_flag(sbi, SBI_IS_DIRTY);
 656
 
 657	f2fs_put_page(dn->node_page, 1);
 658
 659	invalidate_mapping_pages(NODE_MAPPING(sbi),
 660			dn->node_page->index, dn->node_page->index);
 661
 662	dn->node_page = NULL;
 663	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 664}
 665
 666static int truncate_dnode(struct dnode_of_data *dn)
 667{
 668	struct page *page;
 
 669
 670	if (dn->nid == 0)
 671		return 1;
 672
 673	/* get direct node */
 674	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 675	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 676		return 1;
 677	else if (IS_ERR(page))
 678		return PTR_ERR(page);
 679
 680	/* Make dnode_of_data for parameter */
 681	dn->node_page = page;
 682	dn->ofs_in_node = 0;
 683	truncate_data_blocks(dn);
 684	truncate_node(dn);
 
 
 
 685	return 1;
 686}
 687
 688static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 689						int ofs, int depth)
 690{
 691	struct dnode_of_data rdn = *dn;
 692	struct page *page;
 693	struct f2fs_node *rn;
 694	nid_t child_nid;
 695	unsigned int child_nofs;
 696	int freed = 0;
 697	int i, ret;
 698
 699	if (dn->nid == 0)
 700		return NIDS_PER_BLOCK + 1;
 701
 702	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 703
 704	page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 705	if (IS_ERR(page)) {
 706		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 707		return PTR_ERR(page);
 708	}
 709
 
 
 710	rn = F2FS_NODE(page);
 711	if (depth < 3) {
 712		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 713			child_nid = le32_to_cpu(rn->in.nid[i]);
 714			if (child_nid == 0)
 715				continue;
 716			rdn.nid = child_nid;
 717			ret = truncate_dnode(&rdn);
 718			if (ret < 0)
 719				goto out_err;
 720			if (set_nid(page, i, 0, false))
 721				dn->node_changed = true;
 722		}
 723	} else {
 724		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 725		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 726			child_nid = le32_to_cpu(rn->in.nid[i]);
 727			if (child_nid == 0) {
 728				child_nofs += NIDS_PER_BLOCK + 1;
 729				continue;
 730			}
 731			rdn.nid = child_nid;
 732			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 733			if (ret == (NIDS_PER_BLOCK + 1)) {
 734				if (set_nid(page, i, 0, false))
 735					dn->node_changed = true;
 736				child_nofs += ret;
 737			} else if (ret < 0 && ret != -ENOENT) {
 738				goto out_err;
 739			}
 740		}
 741		freed = child_nofs;
 742	}
 743
 744	if (!ofs) {
 745		/* remove current indirect node */
 746		dn->node_page = page;
 747		truncate_node(dn);
 
 
 748		freed++;
 749	} else {
 750		f2fs_put_page(page, 1);
 751	}
 752	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 753	return freed;
 754
 755out_err:
 756	f2fs_put_page(page, 1);
 757	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 758	return ret;
 759}
 760
 761static int truncate_partial_nodes(struct dnode_of_data *dn,
 762			struct f2fs_inode *ri, int *offset, int depth)
 763{
 764	struct page *pages[2];
 765	nid_t nid[3];
 766	nid_t child_nid;
 767	int err = 0;
 768	int i;
 769	int idx = depth - 2;
 770
 771	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 772	if (!nid[0])
 773		return 0;
 774
 775	/* get indirect nodes in the path */
 776	for (i = 0; i < idx + 1; i++) {
 777		/* reference count'll be increased */
 778		pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
 779		if (IS_ERR(pages[i])) {
 780			err = PTR_ERR(pages[i]);
 781			idx = i - 1;
 782			goto fail;
 783		}
 784		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 785	}
 786
 
 
 787	/* free direct nodes linked to a partial indirect node */
 788	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 789		child_nid = get_nid(pages[idx], i, false);
 790		if (!child_nid)
 791			continue;
 792		dn->nid = child_nid;
 793		err = truncate_dnode(dn);
 794		if (err < 0)
 795			goto fail;
 796		if (set_nid(pages[idx], i, 0, false))
 797			dn->node_changed = true;
 798	}
 799
 800	if (offset[idx + 1] == 0) {
 801		dn->node_page = pages[idx];
 802		dn->nid = nid[idx];
 803		truncate_node(dn);
 
 
 804	} else {
 805		f2fs_put_page(pages[idx], 1);
 806	}
 807	offset[idx]++;
 808	offset[idx + 1] = 0;
 809	idx--;
 810fail:
 811	for (i = idx; i >= 0; i--)
 812		f2fs_put_page(pages[i], 1);
 813
 814	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 815
 816	return err;
 817}
 818
 819/*
 820 * All the block addresses of data and nodes should be nullified.
 821 */
 822int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 823{
 824	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 825	int err = 0, cont = 1;
 826	int level, offset[4], noffset[4];
 827	unsigned int nofs = 0;
 828	struct f2fs_inode *ri;
 829	struct dnode_of_data dn;
 830	struct page *page;
 831
 832	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 833
 834	level = get_node_path(inode, from, offset, noffset);
 835restart:
 836	page = get_node_page(sbi, inode->i_ino);
 
 
 
 
 837	if (IS_ERR(page)) {
 838		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 839		return PTR_ERR(page);
 840	}
 841
 842	set_new_dnode(&dn, inode, page, NULL, 0);
 843	unlock_page(page);
 844
 845	ri = F2FS_INODE(page);
 846	switch (level) {
 847	case 0:
 848	case 1:
 849		nofs = noffset[1];
 850		break;
 851	case 2:
 852		nofs = noffset[1];
 853		if (!offset[level - 1])
 854			goto skip_partial;
 855		err = truncate_partial_nodes(&dn, ri, offset, level);
 856		if (err < 0 && err != -ENOENT)
 857			goto fail;
 858		nofs += 1 + NIDS_PER_BLOCK;
 859		break;
 860	case 3:
 861		nofs = 5 + 2 * NIDS_PER_BLOCK;
 862		if (!offset[level - 1])
 863			goto skip_partial;
 864		err = truncate_partial_nodes(&dn, ri, offset, level);
 865		if (err < 0 && err != -ENOENT)
 866			goto fail;
 867		break;
 868	default:
 869		BUG();
 870	}
 871
 872skip_partial:
 873	while (cont) {
 874		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 875		switch (offset[0]) {
 876		case NODE_DIR1_BLOCK:
 877		case NODE_DIR2_BLOCK:
 878			err = truncate_dnode(&dn);
 879			break;
 880
 881		case NODE_IND1_BLOCK:
 882		case NODE_IND2_BLOCK:
 883			err = truncate_nodes(&dn, nofs, offset[1], 2);
 884			break;
 885
 886		case NODE_DIND_BLOCK:
 887			err = truncate_nodes(&dn, nofs, offset[1], 3);
 888			cont = 0;
 889			break;
 890
 891		default:
 892			BUG();
 893		}
 894		if (err < 0 && err != -ENOENT)
 895			goto fail;
 896		if (offset[1] == 0 &&
 897				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 898			lock_page(page);
 899			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 900				f2fs_put_page(page, 1);
 901				goto restart;
 902			}
 903			f2fs_wait_on_page_writeback(page, NODE, true);
 904			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 905			set_page_dirty(page);
 906			unlock_page(page);
 907		}
 908		offset[1] = 0;
 909		offset[0]++;
 910		nofs += err;
 911	}
 912fail:
 913	f2fs_put_page(page, 0);
 914	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 915	return err > 0 ? 0 : err;
 916}
 917
 918int truncate_xattr_node(struct inode *inode, struct page *page)
 
 919{
 920	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 921	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 922	struct dnode_of_data dn;
 923	struct page *npage;
 
 924
 925	if (!nid)
 926		return 0;
 927
 928	npage = get_node_page(sbi, nid);
 929	if (IS_ERR(npage))
 930		return PTR_ERR(npage);
 931
 932	F2FS_I(inode)->i_xattr_nid = 0;
 933
 934	/* need to do checkpoint during fsync */
 935	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 
 
 936
 937	set_new_dnode(&dn, inode, page, npage, nid);
 938
 939	if (page)
 940		dn.inode_page_locked = true;
 941	truncate_node(&dn);
 942	return 0;
 943}
 944
 945/*
 946 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 947 * f2fs_unlock_op().
 948 */
 949int remove_inode_page(struct inode *inode)
 950{
 951	struct dnode_of_data dn;
 952	int err;
 953
 954	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 955	err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
 956	if (err)
 957		return err;
 958
 959	err = truncate_xattr_node(inode, dn.inode_page);
 960	if (err) {
 961		f2fs_put_dnode(&dn);
 962		return err;
 963	}
 964
 965	/* remove potential inline_data blocks */
 966	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
 967				S_ISLNK(inode->i_mode))
 968		truncate_data_blocks_range(&dn, 1);
 969
 970	/* 0 is possible, after f2fs_new_inode() has failed */
 971	f2fs_bug_on(F2FS_I_SB(inode),
 972			inode->i_blocks != 0 && inode->i_blocks != 1);
 
 
 
 
 
 
 
 
 
 973
 974	/* will put inode & node pages */
 975	truncate_node(&dn);
 
 
 
 
 976	return 0;
 977}
 978
 979struct page *new_inode_page(struct inode *inode)
 980{
 981	struct dnode_of_data dn;
 982
 983	/* allocate inode page for new inode */
 984	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 985
 986	/* caller should f2fs_put_page(page, 1); */
 987	return new_node_page(&dn, 0, NULL);
 988}
 989
 990struct page *new_node_page(struct dnode_of_data *dn,
 991				unsigned int ofs, struct page *ipage)
 992{
 993	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 994	struct node_info old_ni, new_ni;
 995	struct page *page;
 996	int err;
 997
 998	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 999		return ERR_PTR(-EPERM);
1000
1001	page = grab_cache_page(NODE_MAPPING(sbi), dn->nid);
1002	if (!page)
1003		return ERR_PTR(-ENOMEM);
1004
1005	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
1006		err = -ENOSPC;
 
 
 
 
 
1007		goto fail;
1008	}
1009
1010	get_node_info(sbi, dn->nid, &old_ni);
1011
1012	/* Reinitialize old_ni with new node page */
1013	f2fs_bug_on(sbi, old_ni.blk_addr != NULL_ADDR);
1014	new_ni = old_ni;
 
 
1015	new_ni.ino = dn->inode->i_ino;
 
 
 
1016	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1017
1018	f2fs_wait_on_page_writeback(page, NODE, true);
1019	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1020	set_cold_node(dn->inode, page);
1021	SetPageUptodate(page);
 
1022	if (set_page_dirty(page))
1023		dn->node_changed = true;
1024
1025	if (f2fs_has_xattr_block(ofs))
1026		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
1027
1028	dn->node_page = page;
1029	if (ipage)
1030		update_inode(dn->inode, ipage);
1031	else
1032		sync_inode_page(dn);
1033	if (ofs == 0)
1034		inc_valid_inode_count(sbi);
1035
1036	return page;
1037
1038fail:
1039	clear_node_page_dirty(page);
1040	f2fs_put_page(page, 1);
1041	return ERR_PTR(err);
1042}
1043
1044/*
1045 * Caller should do after getting the following values.
1046 * 0: f2fs_put_page(page, 0)
1047 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1048 */
1049static int read_node_page(struct page *page, int rw)
1050{
1051	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1052	struct node_info ni;
1053	struct f2fs_io_info fio = {
1054		.sbi = sbi,
1055		.type = NODE,
1056		.rw = rw,
 
1057		.page = page,
1058		.encrypted_page = NULL,
1059	};
 
 
 
 
 
 
 
 
 
1060
1061	get_node_info(sbi, page->index, &ni);
 
 
1062
1063	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 
1064		ClearPageUptodate(page);
1065		return -ENOENT;
1066	}
1067
1068	if (PageUptodate(page))
1069		return LOCKED_PAGE;
 
 
 
 
1070
1071	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1072	return f2fs_submit_page_bio(&fio);
1073}
1074
1075/*
1076 * Readahead a node page
1077 */
1078void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1079{
1080	struct page *apage;
1081	int err;
1082
1083	if (!nid)
1084		return;
1085	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1086
1087	rcu_read_lock();
1088	apage = radix_tree_lookup(&NODE_MAPPING(sbi)->page_tree, nid);
1089	rcu_read_unlock();
1090	if (apage)
1091		return;
1092
1093	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
1094	if (!apage)
1095		return;
1096
1097	err = read_node_page(apage, READA);
1098	f2fs_put_page(apage, err ? 1 : 0);
1099}
1100
1101/*
1102 * readahead MAX_RA_NODE number of node pages.
1103 */
1104static void ra_node_pages(struct page *parent, int start)
1105{
1106	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1107	struct blk_plug plug;
1108	int i, end;
1109	nid_t nid;
1110
1111	blk_start_plug(&plug);
1112
1113	/* Then, try readahead for siblings of the desired node */
1114	end = start + MAX_RA_NODE;
1115	end = min(end, NIDS_PER_BLOCK);
1116	for (i = start; i < end; i++) {
1117		nid = get_nid(parent, i, false);
1118		ra_node_page(sbi, nid);
1119	}
1120
1121	blk_finish_plug(&plug);
1122}
1123
1124static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1125					struct page *parent, int start)
1126{
1127	struct page *page;
1128	int err;
1129
1130	if (!nid)
1131		return ERR_PTR(-ENOENT);
1132	f2fs_bug_on(sbi, check_nid_range(sbi, nid));
 
1133repeat:
1134	page = grab_cache_page(NODE_MAPPING(sbi), nid);
1135	if (!page)
1136		return ERR_PTR(-ENOMEM);
1137
1138	err = read_node_page(page, READ_SYNC);
1139	if (err < 0) {
1140		f2fs_put_page(page, 1);
1141		return ERR_PTR(err);
1142	} else if (err == LOCKED_PAGE) {
 
1143		goto page_hit;
1144	}
1145
1146	if (parent)
1147		ra_node_pages(parent, start + 1);
1148
1149	lock_page(page);
1150
1151	if (unlikely(!PageUptodate(page))) {
1152		f2fs_put_page(page, 1);
1153		return ERR_PTR(-EIO);
1154	}
1155	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1156		f2fs_put_page(page, 1);
1157		goto repeat;
1158	}
 
 
 
 
 
 
 
 
 
 
1159page_hit:
1160	f2fs_bug_on(sbi, nid != nid_of_node(page));
1161	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162}
1163
1164struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1165{
1166	return __get_node_page(sbi, nid, NULL, 0);
1167}
1168
1169struct page *get_node_page_ra(struct page *parent, int start)
1170{
1171	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1172	nid_t nid = get_nid(parent, start, false);
1173
1174	return __get_node_page(sbi, nid, parent, start);
1175}
1176
1177void sync_inode_page(struct dnode_of_data *dn)
1178{
1179	int ret = 0;
1180
1181	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1182		ret = update_inode(dn->inode, dn->node_page);
1183	} else if (dn->inode_page) {
1184		if (!dn->inode_page_locked)
1185			lock_page(dn->inode_page);
1186		ret = update_inode(dn->inode, dn->inode_page);
1187		if (!dn->inode_page_locked)
1188			unlock_page(dn->inode_page);
1189	} else {
1190		ret = update_inode_page(dn->inode);
1191	}
1192	dn->node_changed = ret ? true: false;
1193}
1194
1195static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1196{
1197	struct inode *inode;
1198	struct page *page;
 
1199
1200	/* should flush inline_data before evict_inode */
1201	inode = ilookup(sbi->sb, ino);
1202	if (!inode)
1203		return;
1204
1205	page = pagecache_get_page(inode->i_mapping, 0, FGP_NOWAIT, 0);
 
1206	if (!page)
1207		goto iput_out;
1208
1209	if (!trylock_page(page))
1210		goto release_out;
1211
1212	if (!PageUptodate(page))
1213		goto page_out;
1214
1215	if (!PageDirty(page))
1216		goto page_out;
1217
1218	if (!clear_page_dirty_for_io(page))
1219		goto page_out;
1220
1221	if (!f2fs_write_inline_data(inode, page))
1222		inode_dec_dirty_pages(inode);
1223	else
 
1224		set_page_dirty(page);
1225page_out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1226	unlock_page(page);
1227release_out:
1228	f2fs_put_page(page, 0);
1229iput_out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1230	iput(inode);
 
1231}
1232
1233int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1234					struct writeback_control *wbc)
1235{
1236	pgoff_t index, end;
1237	struct pagevec pvec;
1238	int step = ino ? 2 : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1239	int nwritten = 0;
 
 
1240
1241	pagevec_init(&pvec, 0);
1242
1243next_step:
1244	index = 0;
1245	end = ULONG_MAX;
1246
1247	while (index <= end) {
1248		int i, nr_pages;
1249		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1250				PAGECACHE_TAG_DIRTY,
1251				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1252		if (nr_pages == 0)
1253			break;
1254
1255		for (i = 0; i < nr_pages; i++) {
1256			struct page *page = pvec.pages[i];
 
1257
1258			if (unlikely(f2fs_cp_error(sbi))) {
1259				pagevec_release(&pvec);
1260				return -EIO;
 
 
1261			}
1262
1263			/*
1264			 * flushing sequence with step:
1265			 * 0. indirect nodes
1266			 * 1. dentry dnodes
1267			 * 2. file dnodes
1268			 */
1269			if (step == 0 && IS_DNODE(page))
1270				continue;
1271			if (step == 1 && (!IS_DNODE(page) ||
1272						is_cold_node(page)))
1273				continue;
1274			if (step == 2 && (!IS_DNODE(page) ||
1275						!is_cold_node(page)))
1276				continue;
1277
1278			/*
1279			 * If an fsync mode,
1280			 * we should not skip writing node pages.
1281			 */
1282lock_node:
1283			if (ino && ino_of_node(page) == ino)
1284				lock_page(page);
1285			else if (!trylock_page(page))
1286				continue;
1287
1288			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1289continue_unlock:
1290				unlock_page(page);
1291				continue;
1292			}
1293			if (ino && ino_of_node(page) != ino)
1294				goto continue_unlock;
1295
1296			if (!PageDirty(page)) {
1297				/* someone wrote it for us */
1298				goto continue_unlock;
1299			}
1300
 
 
 
 
1301			/* flush inline_data */
1302			if (!ino && is_inline_node(page)) {
1303				clear_inline_node(page);
1304				unlock_page(page);
1305				flush_inline_data(sbi, ino_of_node(page));
1306				goto lock_node;
1307			}
1308
1309			f2fs_wait_on_page_writeback(page, NODE, true);
 
 
 
 
1310
1311			BUG_ON(PageWriteback(page));
1312			if (!clear_page_dirty_for_io(page))
1313				goto continue_unlock;
1314
1315			/* called by fsync() */
1316			if (ino && IS_DNODE(page)) {
1317				set_fsync_mark(page, 1);
1318				if (IS_INODE(page))
1319					set_dentry_mark(page,
1320						need_dentry_mark(sbi, ino));
1321				nwritten++;
1322			} else {
1323				set_fsync_mark(page, 0);
1324				set_dentry_mark(page, 0);
1325			}
1326
1327			if (NODE_MAPPING(sbi)->a_ops->writepage(page, wbc))
 
 
1328				unlock_page(page);
 
 
1329
1330			if (--wbc->nr_to_write == 0)
1331				break;
1332		}
1333		pagevec_release(&pvec);
1334		cond_resched();
1335
1336		if (wbc->nr_to_write == 0) {
1337			step = 2;
1338			break;
1339		}
1340	}
1341
1342	if (step < 2) {
 
 
 
1343		step++;
1344		goto next_step;
1345	}
1346	return nwritten;
 
 
 
 
 
 
1347}
1348
1349int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 
1350{
1351	pgoff_t index = 0, end = ULONG_MAX;
1352	struct pagevec pvec;
1353	int ret2 = 0, ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1354
1355	pagevec_init(&pvec, 0);
1356
1357	while (index <= end) {
1358		int i, nr_pages;
1359		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1360				PAGECACHE_TAG_WRITEBACK,
1361				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1362		if (nr_pages == 0)
1363			break;
1364
1365		for (i = 0; i < nr_pages; i++) {
1366			struct page *page = pvec.pages[i];
1367
1368			/* until radix tree lookup accepts end_index */
1369			if (unlikely(page->index > end))
1370				continue;
1371
1372			if (ino && ino_of_node(page) == ino) {
1373				f2fs_wait_on_page_writeback(page, NODE, true);
1374				if (TestClearPageError(page))
1375					ret = -EIO;
1376			}
1377		}
1378		pagevec_release(&pvec);
1379		cond_resched();
1380	}
1381
1382	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1383		ret2 = -ENOSPC;
1384	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1385		ret2 = -EIO;
1386	if (!ret)
1387		ret = ret2;
 
1388	return ret;
1389}
1390
1391static int f2fs_write_node_page(struct page *page,
1392				struct writeback_control *wbc)
1393{
1394	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1395	nid_t nid;
1396	struct node_info ni;
1397	struct f2fs_io_info fio = {
1398		.sbi = sbi,
1399		.type = NODE,
1400		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1401		.page = page,
1402		.encrypted_page = NULL,
1403	};
1404
1405	trace_f2fs_writepage(page, NODE);
1406
1407	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1408		goto redirty_out;
1409	if (unlikely(f2fs_cp_error(sbi)))
1410		goto redirty_out;
1411
1412	/* get old block addr of this node page */
1413	nid = nid_of_node(page);
1414	f2fs_bug_on(sbi, page->index != nid);
1415
1416	if (wbc->for_reclaim) {
1417		if (!down_read_trylock(&sbi->node_write))
1418			goto redirty_out;
1419	} else {
1420		down_read(&sbi->node_write);
1421	}
1422
1423	get_node_info(sbi, nid, &ni);
1424
1425	/* This page is already truncated */
1426	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1427		ClearPageUptodate(page);
1428		dec_page_count(sbi, F2FS_DIRTY_NODES);
1429		up_read(&sbi->node_write);
1430		unlock_page(page);
1431		return 0;
1432	}
1433
1434	set_page_writeback(page);
1435	fio.old_blkaddr = ni.blk_addr;
1436	write_node_page(nid, &fio);
1437	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1438	dec_page_count(sbi, F2FS_DIRTY_NODES);
1439	up_read(&sbi->node_write);
1440
1441	if (wbc->for_reclaim)
1442		f2fs_submit_merged_bio_cond(sbi, NULL, page, 0, NODE, WRITE);
1443
1444	unlock_page(page);
1445
1446	if (unlikely(f2fs_cp_error(sbi)))
1447		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1448
1449	return 0;
1450
1451redirty_out:
1452	redirty_page_for_writepage(wbc, page);
1453	return AOP_WRITEPAGE_ACTIVATE;
1454}
1455
1456static int f2fs_write_node_pages(struct address_space *mapping,
1457			    struct writeback_control *wbc)
1458{
1459	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
 
1460	long diff;
1461
 
 
 
1462	/* balancing f2fs's metadata in background */
1463	f2fs_balance_fs_bg(sbi);
1464
1465	/* collect a number of dirty node pages and write together */
1466	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
 
 
 
 
 
 
 
 
1467		goto skip_write;
 
1468
1469	trace_f2fs_writepages(mapping->host, wbc, NODE);
1470
1471	diff = nr_pages_to_write(sbi, NODE, wbc);
1472	wbc->sync_mode = WB_SYNC_NONE;
1473	sync_node_pages(sbi, 0, wbc);
 
1474	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1475	return 0;
1476
1477skip_write:
1478	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1479	trace_f2fs_writepages(mapping->host, wbc, NODE);
1480	return 0;
1481}
1482
1483static int f2fs_set_node_page_dirty(struct page *page)
 
1484{
1485	trace_f2fs_set_page_dirty(page, NODE);
1486
1487	SetPageUptodate(page);
1488	if (!PageDirty(page)) {
1489		__set_page_dirty_nobuffers(page);
1490		inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1491		SetPagePrivate(page);
1492		f2fs_trace_pid(page);
1493		return 1;
 
 
 
1494	}
1495	return 0;
1496}
1497
1498/*
1499 * Structure of the f2fs node operations
1500 */
1501const struct address_space_operations f2fs_node_aops = {
1502	.writepage	= f2fs_write_node_page,
1503	.writepages	= f2fs_write_node_pages,
1504	.set_page_dirty	= f2fs_set_node_page_dirty,
1505	.invalidatepage	= f2fs_invalidate_page,
1506	.releasepage	= f2fs_release_page,
 
1507};
1508
1509static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1510						nid_t n)
1511{
1512	return radix_tree_lookup(&nm_i->free_nid_root, n);
1513}
1514
1515static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1516						struct free_nid *i)
1517{
1518	list_del(&i->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1520}
1521
1522static int add_free_nid(struct f2fs_sb_info *sbi, nid_t nid, bool build)
 
1523{
1524	struct f2fs_nm_info *nm_i = NM_I(sbi);
1525	struct free_nid *i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1526	struct nat_entry *ne;
1527	bool allocated = false;
1528
1529	if (!available_free_memory(sbi, FREE_NIDS))
1530		return -1;
1531
1532	/* 0 nid should not be used */
1533	if (unlikely(nid == 0))
1534		return 0;
 
 
 
 
 
 
 
 
 
 
 
1535
1536	if (build) {
1537		/* do not add allocated nids */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1538		ne = __lookup_nat_cache(nm_i, nid);
1539		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1540				nat_get_blkaddr(ne) != NULL_ADDR))
1541			allocated = true;
1542		if (allocated)
1543			return 0;
 
 
 
 
 
1544	}
1545
1546	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1547	i->nid = nid;
1548	i->state = NID_NEW;
1549
1550	if (radix_tree_preload(GFP_NOFS)) {
1551		kmem_cache_free(free_nid_slab, i);
1552		return 0;
1553	}
 
 
1554
1555	spin_lock(&nm_i->free_nid_list_lock);
1556	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1557		spin_unlock(&nm_i->free_nid_list_lock);
1558		radix_tree_preload_end();
1559		kmem_cache_free(free_nid_slab, i);
1560		return 0;
1561	}
1562	list_add_tail(&i->list, &nm_i->free_nid_list);
1563	nm_i->fcnt++;
1564	spin_unlock(&nm_i->free_nid_list_lock);
1565	radix_tree_preload_end();
1566	return 1;
1567}
1568
1569static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1570{
 
1571	struct free_nid *i;
1572	bool need_free = false;
1573
1574	spin_lock(&nm_i->free_nid_list_lock);
1575	i = __lookup_free_nid_list(nm_i, nid);
1576	if (i && i->state == NID_NEW) {
1577		__del_from_free_nid_list(nm_i, i);
1578		nm_i->fcnt--;
1579		need_free = true;
1580	}
1581	spin_unlock(&nm_i->free_nid_list_lock);
1582
1583	if (need_free)
1584		kmem_cache_free(free_nid_slab, i);
1585}
1586
1587static void scan_nat_page(struct f2fs_sb_info *sbi,
1588			struct page *nat_page, nid_t start_nid)
1589{
1590	struct f2fs_nm_info *nm_i = NM_I(sbi);
1591	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1592	block_t blk_addr;
 
1593	int i;
1594
 
 
1595	i = start_nid % NAT_ENTRY_PER_BLOCK;
1596
1597	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1598
1599		if (unlikely(start_nid >= nm_i->max_nid))
1600			break;
1601
1602		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1603		f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
 
 
 
1604		if (blk_addr == NULL_ADDR) {
1605			if (add_free_nid(sbi, start_nid, true) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1606				break;
 
 
 
 
 
 
1607		}
1608	}
 
 
 
 
1609}
1610
1611static void build_free_nids(struct f2fs_sb_info *sbi)
 
1612{
1613	struct f2fs_nm_info *nm_i = NM_I(sbi);
1614	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1615	struct f2fs_journal *journal = curseg->journal;
1616	int i = 0;
1617	nid_t nid = nm_i->next_scan_nid;
1618
 
 
 
 
 
 
1619	/* Enough entries */
1620	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1621		return;
 
 
 
 
 
 
 
 
 
 
 
1622
1623	/* readahead nat pages to be scanned */
1624	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
1625							META_NAT, true);
1626
1627	down_read(&nm_i->nat_tree_lock);
1628
1629	while (1) {
1630		struct page *page = get_current_nat_page(sbi, nid);
 
 
1631
1632		scan_nat_page(sbi, page, nid);
1633		f2fs_put_page(page, 1);
 
 
 
 
 
 
 
 
 
 
 
1634
1635		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1636		if (unlikely(nid >= nm_i->max_nid))
1637			nid = 0;
1638
1639		if (++i >= FREE_NID_PAGES)
1640			break;
1641	}
1642
1643	/* go to the next free nat pages to find free nids abundantly */
1644	nm_i->next_scan_nid = nid;
1645
1646	/* find free nids from current sum_pages */
1647	down_read(&curseg->journal_rwsem);
1648	for (i = 0; i < nats_in_cursum(journal); i++) {
1649		block_t addr;
1650
1651		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1652		nid = le32_to_cpu(nid_in_journal(journal, i));
1653		if (addr == NULL_ADDR)
1654			add_free_nid(sbi, nid, true);
1655		else
1656			remove_free_nid(nm_i, nid);
1657	}
1658	up_read(&curseg->journal_rwsem);
1659	up_read(&nm_i->nat_tree_lock);
1660
1661	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
1662					nm_i->ra_nid_pages, META_NAT, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
1663}
1664
1665/*
1666 * If this function returns success, caller can obtain a new nid
1667 * from second parameter of this function.
1668 * The returned nid could be used ino as well as nid when inode is created.
1669 */
1670bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1671{
1672	struct f2fs_nm_info *nm_i = NM_I(sbi);
1673	struct free_nid *i = NULL;
1674retry:
1675	if (unlikely(sbi->total_valid_node_count + 1 > nm_i->available_nids))
 
1676		return false;
 
1677
1678	spin_lock(&nm_i->free_nid_list_lock);
1679
1680	/* We should not use stale free nids created by build_free_nids */
1681	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
 
 
 
 
 
1682		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
1683		list_for_each_entry(i, &nm_i->free_nid_list, list)
1684			if (i->state == NID_NEW)
1685				break;
 
 
 
 
 
1686
1687		f2fs_bug_on(sbi, i->state != NID_NEW);
1688		*nid = i->nid;
1689		i->state = NID_ALLOC;
1690		nm_i->fcnt--;
1691		spin_unlock(&nm_i->free_nid_list_lock);
1692		return true;
1693	}
1694	spin_unlock(&nm_i->free_nid_list_lock);
1695
1696	/* Let's scan nat pages and its caches to get free nids */
1697	mutex_lock(&nm_i->build_lock);
1698	build_free_nids(sbi);
1699	mutex_unlock(&nm_i->build_lock);
1700	goto retry;
1701}
1702
1703/*
1704 * alloc_nid() should be called prior to this function.
1705 */
1706void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1707{
1708	struct f2fs_nm_info *nm_i = NM_I(sbi);
1709	struct free_nid *i;
1710
1711	spin_lock(&nm_i->free_nid_list_lock);
1712	i = __lookup_free_nid_list(nm_i, nid);
1713	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1714	__del_from_free_nid_list(nm_i, i);
1715	spin_unlock(&nm_i->free_nid_list_lock);
1716
1717	kmem_cache_free(free_nid_slab, i);
1718}
1719
1720/*
1721 * alloc_nid() should be called prior to this function.
1722 */
1723void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1724{
1725	struct f2fs_nm_info *nm_i = NM_I(sbi);
1726	struct free_nid *i;
1727	bool need_free = false;
1728
1729	if (!nid)
1730		return;
1731
1732	spin_lock(&nm_i->free_nid_list_lock);
1733	i = __lookup_free_nid_list(nm_i, nid);
1734	f2fs_bug_on(sbi, !i || i->state != NID_ALLOC);
1735	if (!available_free_memory(sbi, FREE_NIDS)) {
1736		__del_from_free_nid_list(nm_i, i);
 
1737		need_free = true;
1738	} else {
1739		i->state = NID_NEW;
1740		nm_i->fcnt++;
1741	}
1742	spin_unlock(&nm_i->free_nid_list_lock);
 
 
 
 
 
1743
1744	if (need_free)
1745		kmem_cache_free(free_nid_slab, i);
1746}
1747
1748int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
1749{
1750	struct f2fs_nm_info *nm_i = NM_I(sbi);
1751	struct free_nid *i, *next;
1752	int nr = nr_shrink;
1753
 
 
 
1754	if (!mutex_trylock(&nm_i->build_lock))
1755		return 0;
1756
1757	spin_lock(&nm_i->free_nid_list_lock);
1758	list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
1759		if (nr_shrink <= 0 || nm_i->fcnt <= NAT_ENTRY_PER_BLOCK)
1760			break;
1761		if (i->state == NID_ALLOC)
1762			continue;
1763		__del_from_free_nid_list(nm_i, i);
1764		kmem_cache_free(free_nid_slab, i);
1765		nm_i->fcnt--;
1766		nr_shrink--;
 
 
 
 
 
1767	}
1768	spin_unlock(&nm_i->free_nid_list_lock);
1769	mutex_unlock(&nm_i->build_lock);
1770
1771	return nr - nr_shrink;
1772}
1773
1774void recover_inline_xattr(struct inode *inode, struct page *page)
1775{
1776	void *src_addr, *dst_addr;
1777	size_t inline_size;
1778	struct page *ipage;
1779	struct f2fs_inode *ri;
1780
1781	ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
1782	f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
 
1783
1784	ri = F2FS_INODE(page);
1785	if (!(ri->i_inline & F2FS_INLINE_XATTR)) {
1786		clear_inode_flag(F2FS_I(inode), FI_INLINE_XATTR);
 
 
 
 
 
 
 
 
1787		goto update_inode;
1788	}
1789
1790	dst_addr = inline_xattr_addr(ipage);
1791	src_addr = inline_xattr_addr(page);
1792	inline_size = inline_xattr_size(inode);
1793
1794	f2fs_wait_on_page_writeback(ipage, NODE, true);
1795	memcpy(dst_addr, src_addr, inline_size);
1796update_inode:
1797	update_inode(inode, ipage);
1798	f2fs_put_page(ipage, 1);
 
1799}
1800
1801void recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1802{
1803	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1804	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1805	nid_t new_xnid = nid_of_node(page);
 
1806	struct node_info ni;
 
 
1807
1808	/* 1: invalidate the previous xattr nid */
1809	if (!prev_xnid)
1810		goto recover_xnid;
1811
1812	/* Deallocate node address */
1813	get_node_info(sbi, prev_xnid, &ni);
1814	f2fs_bug_on(sbi, ni.blk_addr == NULL_ADDR);
1815	invalidate_blocks(sbi, ni.blk_addr);
1816	dec_valid_node_count(sbi, inode);
 
 
1817	set_node_addr(sbi, &ni, NULL_ADDR, false);
1818
1819recover_xnid:
1820	/* 2: allocate new xattr nid */
1821	if (unlikely(!inc_valid_node_count(sbi, inode)))
1822		f2fs_bug_on(sbi, 1);
 
 
 
 
 
 
 
 
 
 
1823
1824	remove_free_nid(NM_I(sbi), new_xnid);
1825	get_node_info(sbi, new_xnid, &ni);
1826	ni.ino = inode->i_ino;
1827	set_node_addr(sbi, &ni, NEW_ADDR, false);
1828	F2FS_I(inode)->i_xattr_nid = new_xnid;
1829
1830	/* 3: update xattr blkaddr */
1831	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1832	set_node_addr(sbi, &ni, blkaddr, false);
1833
1834	update_inode_page(inode);
1835}
1836
1837int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1838{
1839	struct f2fs_inode *src, *dst;
1840	nid_t ino = ino_of_node(page);
1841	struct node_info old_ni, new_ni;
1842	struct page *ipage;
 
1843
1844	get_node_info(sbi, ino, &old_ni);
 
 
1845
1846	if (unlikely(old_ni.blk_addr != NULL_ADDR))
1847		return -EINVAL;
1848
1849	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1850	if (!ipage)
1851		return -ENOMEM;
 
 
1852
1853	/* Should not use this inode from free nid list */
1854	remove_free_nid(NM_I(sbi), ino);
1855
1856	SetPageUptodate(ipage);
 
1857	fill_node_footer(ipage, ino, ino, 0, true);
 
1858
1859	src = F2FS_INODE(page);
1860	dst = F2FS_INODE(ipage);
1861
1862	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1863	dst->i_size = 0;
1864	dst->i_blocks = cpu_to_le64(1);
1865	dst->i_links = cpu_to_le32(1);
1866	dst->i_xattr_nid = 0;
1867	dst->i_inline = src->i_inline & F2FS_INLINE_XATTR;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1868
1869	new_ni = old_ni;
1870	new_ni.ino = ino;
1871
1872	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1873		WARN_ON(1);
1874	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1875	inc_valid_inode_count(sbi);
1876	set_page_dirty(ipage);
1877	f2fs_put_page(ipage, 1);
1878	return 0;
1879}
1880
1881int restore_node_summary(struct f2fs_sb_info *sbi,
1882			unsigned int segno, struct f2fs_summary_block *sum)
1883{
1884	struct f2fs_node *rn;
1885	struct f2fs_summary *sum_entry;
1886	block_t addr;
1887	int bio_blocks = MAX_BIO_BLOCKS(sbi);
1888	int i, idx, last_offset, nrpages;
1889
1890	/* scan the node segment */
1891	last_offset = sbi->blocks_per_seg;
1892	addr = START_BLOCK(sbi, segno);
1893	sum_entry = &sum->entries[0];
1894
1895	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
1896		nrpages = min(last_offset - i, bio_blocks);
1897
1898		/* readahead node pages */
1899		ra_meta_pages(sbi, addr, nrpages, META_POR, true);
1900
1901		for (idx = addr; idx < addr + nrpages; idx++) {
1902			struct page *page = get_tmp_page(sbi, idx);
 
 
 
1903
1904			rn = F2FS_NODE(page);
1905			sum_entry->nid = rn->footer.nid;
1906			sum_entry->version = 0;
1907			sum_entry->ofs_in_node = 0;
1908			sum_entry++;
1909			f2fs_put_page(page, 1);
1910		}
1911
1912		invalidate_mapping_pages(META_MAPPING(sbi), addr,
1913							addr + nrpages);
1914	}
1915	return 0;
1916}
1917
1918static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
1919{
1920	struct f2fs_nm_info *nm_i = NM_I(sbi);
1921	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1922	struct f2fs_journal *journal = curseg->journal;
1923	int i;
1924
1925	down_write(&curseg->journal_rwsem);
1926	for (i = 0; i < nats_in_cursum(journal); i++) {
1927		struct nat_entry *ne;
1928		struct f2fs_nat_entry raw_ne;
1929		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
1930
 
 
 
1931		raw_ne = nat_in_journal(journal, i);
1932
1933		ne = __lookup_nat_cache(nm_i, nid);
1934		if (!ne) {
1935			ne = grab_nat_entry(nm_i, nid);
1936			node_info_from_raw_nat(&ne->ni, &raw_ne);
1937		}
 
 
 
 
 
 
 
 
 
 
 
 
 
1938		__set_nat_cache_dirty(nm_i, ne);
1939	}
1940	update_nats_in_cursum(journal, -i);
1941	up_write(&curseg->journal_rwsem);
1942}
1943
1944static void __adjust_nat_entry_set(struct nat_entry_set *nes,
1945						struct list_head *head, int max)
1946{
1947	struct nat_entry_set *cur;
1948
1949	if (nes->entry_cnt >= max)
1950		goto add_out;
1951
1952	list_for_each_entry(cur, head, set_list) {
1953		if (cur->entry_cnt >= nes->entry_cnt) {
1954			list_add(&nes->set_list, cur->set_list.prev);
1955			return;
1956		}
1957	}
1958add_out:
1959	list_add_tail(&nes->set_list, head);
1960}
1961
1962static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
1963					struct nat_entry_set *set)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1964{
1965	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1966	struct f2fs_journal *journal = curseg->journal;
1967	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
1968	bool to_journal = true;
1969	struct f2fs_nat_block *nat_blk;
1970	struct nat_entry *ne, *cur;
1971	struct page *page = NULL;
1972
1973	/*
1974	 * there are two steps to flush nat entries:
1975	 * #1, flush nat entries to journal in current hot data summary block.
1976	 * #2, flush nat entries to nat page.
1977	 */
1978	if (!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
 
1979		to_journal = false;
1980
1981	if (to_journal) {
1982		down_write(&curseg->journal_rwsem);
1983	} else {
1984		page = get_next_nat_page(sbi, start_nid);
 
 
 
1985		nat_blk = page_address(page);
1986		f2fs_bug_on(sbi, !nat_blk);
1987	}
1988
1989	/* flush dirty nats in nat entry set */
1990	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
1991		struct f2fs_nat_entry *raw_ne;
1992		nid_t nid = nat_get_nid(ne);
1993		int offset;
1994
1995		if (nat_get_blkaddr(ne) == NEW_ADDR)
1996			continue;
1997
1998		if (to_journal) {
1999			offset = lookup_journal_in_cursum(journal,
2000							NAT_JOURNAL, nid, 1);
2001			f2fs_bug_on(sbi, offset < 0);
2002			raw_ne = &nat_in_journal(journal, offset);
2003			nid_in_journal(journal, offset) = cpu_to_le32(nid);
2004		} else {
2005			raw_ne = &nat_blk->entries[nid - start_nid];
2006		}
2007		raw_nat_from_node_info(raw_ne, &ne->ni);
2008		nat_reset_flag(ne);
2009		__clear_nat_cache_dirty(NM_I(sbi), ne);
2010		if (nat_get_blkaddr(ne) == NULL_ADDR)
2011			add_free_nid(sbi, nid, false);
 
 
 
 
 
2012	}
2013
2014	if (to_journal)
2015		up_write(&curseg->journal_rwsem);
2016	else
 
2017		f2fs_put_page(page, 1);
 
2018
2019	f2fs_bug_on(sbi, set->entry_cnt);
2020
2021	radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2022	kmem_cache_free(nat_entry_set_slab, set);
 
 
2023}
2024
2025/*
2026 * This function is called during the checkpointing process.
2027 */
2028void flush_nat_entries(struct f2fs_sb_info *sbi)
2029{
2030	struct f2fs_nm_info *nm_i = NM_I(sbi);
2031	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2032	struct f2fs_journal *journal = curseg->journal;
2033	struct nat_entry_set *setvec[SETVEC_SIZE];
2034	struct nat_entry_set *set, *tmp;
2035	unsigned int found;
2036	nid_t set_idx = 0;
2037	LIST_HEAD(sets);
 
2038
2039	if (!nm_i->dirty_nat_cnt)
2040		return;
 
 
 
 
 
 
 
 
 
 
2041
2042	down_write(&nm_i->nat_tree_lock);
2043
2044	/*
2045	 * if there are no enough space in journal to store dirty nat
2046	 * entries, remove all entries from journal and merge them
2047	 * into nat entry set.
2048	 */
2049	if (!__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
 
 
2050		remove_nats_in_journal(sbi);
2051
2052	while ((found = __gang_lookup_nat_set(nm_i,
2053					set_idx, SETVEC_SIZE, setvec))) {
2054		unsigned idx;
 
2055		set_idx = setvec[found - 1]->set + 1;
2056		for (idx = 0; idx < found; idx++)
2057			__adjust_nat_entry_set(setvec[idx], &sets,
2058						MAX_NAT_JENTRIES(journal));
2059	}
2060
2061	/* flush dirty nats in nat entry set */
2062	list_for_each_entry_safe(set, tmp, &sets, set_list)
2063		__flush_nat_entry_set(sbi, set);
 
 
 
2064
2065	up_write(&nm_i->nat_tree_lock);
 
2066
2067	f2fs_bug_on(sbi, nm_i->dirty_nat_cnt);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2068}
2069
2070static int init_node_manager(struct f2fs_sb_info *sbi)
2071{
2072	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2073	struct f2fs_nm_info *nm_i = NM_I(sbi);
2074	unsigned char *version_bitmap;
2075	unsigned int nat_segs, nat_blocks;
 
2076
2077	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2078
2079	/* segment_count_nat includes pair segment so divide to 2. */
2080	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2081	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2082
2083	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks;
2084
2085	/* not used nids: 0, node, meta, (and root counted as valid node) */
2086	nm_i->available_nids = nm_i->max_nid - F2FS_RESERVED_NODE_NUM;
2087	nm_i->fcnt = 0;
2088	nm_i->nat_cnt = 0;
 
2089	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2090	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2091	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
 
2092
2093	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2094	INIT_LIST_HEAD(&nm_i->free_nid_list);
2095	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2096	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2097	INIT_LIST_HEAD(&nm_i->nat_entries);
 
2098
2099	mutex_init(&nm_i->build_lock);
2100	spin_lock_init(&nm_i->free_nid_list_lock);
2101	init_rwsem(&nm_i->nat_tree_lock);
2102
2103	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2104	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2105	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2106	if (!version_bitmap)
2107		return -EFAULT;
2108
2109	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2110					GFP_KERNEL);
2111	if (!nm_i->nat_bitmap)
2112		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
2113	return 0;
2114}
2115
2116int build_node_manager(struct f2fs_sb_info *sbi)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2117{
2118	int err;
2119
2120	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
 
2121	if (!sbi->nm_info)
2122		return -ENOMEM;
2123
2124	err = init_node_manager(sbi);
2125	if (err)
2126		return err;
2127
2128	build_free_nids(sbi);
2129	return 0;
 
 
 
 
 
 
2130}
2131
2132void destroy_node_manager(struct f2fs_sb_info *sbi)
2133{
2134	struct f2fs_nm_info *nm_i = NM_I(sbi);
2135	struct free_nid *i, *next_i;
2136	struct nat_entry *natvec[NATVEC_SIZE];
2137	struct nat_entry_set *setvec[SETVEC_SIZE];
2138	nid_t nid = 0;
2139	unsigned int found;
2140
2141	if (!nm_i)
2142		return;
2143
2144	/* destroy free nid list */
2145	spin_lock(&nm_i->free_nid_list_lock);
2146	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2147		f2fs_bug_on(sbi, i->state == NID_ALLOC);
2148		__del_from_free_nid_list(nm_i, i);
2149		nm_i->fcnt--;
2150		spin_unlock(&nm_i->free_nid_list_lock);
2151		kmem_cache_free(free_nid_slab, i);
2152		spin_lock(&nm_i->free_nid_list_lock);
2153	}
2154	f2fs_bug_on(sbi, nm_i->fcnt);
2155	spin_unlock(&nm_i->free_nid_list_lock);
 
 
2156
2157	/* destroy nat cache */
2158	down_write(&nm_i->nat_tree_lock);
2159	while ((found = __gang_lookup_nat_cache(nm_i,
2160					nid, NATVEC_SIZE, natvec))) {
2161		unsigned idx;
2162
2163		nid = nat_get_nid(natvec[found - 1]) + 1;
2164		for (idx = 0; idx < found; idx++)
 
 
 
 
2165			__del_from_nat_cache(nm_i, natvec[idx]);
 
2166	}
2167	f2fs_bug_on(sbi, nm_i->nat_cnt);
2168
2169	/* destroy nat set cache */
2170	nid = 0;
2171	while ((found = __gang_lookup_nat_set(nm_i,
2172					nid, SETVEC_SIZE, setvec))) {
2173		unsigned idx;
2174
2175		nid = setvec[found - 1]->set + 1;
2176		for (idx = 0; idx < found; idx++) {
2177			/* entry_cnt is not zero, when cp_error was occurred */
2178			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2179			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2180			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2181		}
2182	}
2183	up_write(&nm_i->nat_tree_lock);
2184
2185	kfree(nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2186	sbi->nm_info = NULL;
2187	kfree(nm_i);
2188}
2189
2190int __init create_node_manager_caches(void)
2191{
2192	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2193			sizeof(struct nat_entry));
2194	if (!nat_entry_slab)
2195		goto fail;
2196
2197	free_nid_slab = f2fs_kmem_cache_create("free_nid",
2198			sizeof(struct free_nid));
2199	if (!free_nid_slab)
2200		goto destroy_nat_entry;
2201
2202	nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2203			sizeof(struct nat_entry_set));
2204	if (!nat_entry_set_slab)
2205		goto destroy_free_nid;
 
 
 
 
 
2206	return 0;
2207
 
 
2208destroy_free_nid:
2209	kmem_cache_destroy(free_nid_slab);
2210destroy_nat_entry:
2211	kmem_cache_destroy(nat_entry_slab);
2212fail:
2213	return -ENOMEM;
2214}
2215
2216void destroy_node_manager_caches(void)
2217{
 
2218	kmem_cache_destroy(nat_entry_set_slab);
2219	kmem_cache_destroy(free_nid_slab);
2220	kmem_cache_destroy(nat_entry_slab);
2221}