Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/sched/mm.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "iostat.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43}
44
45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46{
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103#ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113#else
114 res = false;
115#endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121}
122
123static void clear_node_page_dirty(struct page *page)
124{
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131}
132
133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134{
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136}
137
138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165}
166
167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169{
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179}
180
181static void __free_nat_entry(struct nat_entry *e)
182{
183 kmem_cache_free(nat_entry_slab, e);
184}
185
186/* must be locked by nat_tree_lock */
187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189{
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205}
206
207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208{
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222}
223
224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226{
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228}
229
230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231{
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236}
237
238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240{
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256}
257
258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260{
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291}
292
293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295{
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304}
305
306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308{
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311}
312
313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314{
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317}
318
319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320{
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325}
326
327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329{
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349}
350
351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352{
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369}
370
371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378}
379
380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381{
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395}
396
397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398{
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409}
410
411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412{
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425}
426
427/* must be locked by nat_tree_lock */
428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430{
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454}
455
456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458{
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513}
514
515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516{
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544}
545
546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548{
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620}
621
622/*
623 * readahead MAX_RA_NODE number of node pages.
624 */
625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626{
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643}
644
645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646{
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676}
677
678/*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
682static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684{
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752got:
753 return level;
754}
755
756/*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762{
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
856 block_t blkaddr;
857
858 if (!c_len)
859 goto out;
860
861 blkaddr = f2fs_data_blkaddr(dn);
862 if (blkaddr == COMPRESS_ADDR)
863 blkaddr = data_blkaddr(dn->inode, dn->node_page,
864 dn->ofs_in_node + 1);
865
866 f2fs_update_read_extent_tree_range_compressed(dn->inode,
867 index, blkaddr,
868 F2FS_I(dn->inode)->i_cluster_size,
869 c_len);
870 }
871out:
872 return 0;
873
874release_pages:
875 f2fs_put_page(parent, 1);
876 if (i > 1)
877 f2fs_put_page(npage[0], 0);
878release_out:
879 dn->inode_page = NULL;
880 dn->node_page = NULL;
881 if (err == -ENOENT) {
882 dn->cur_level = i;
883 dn->max_level = level;
884 dn->ofs_in_node = offset[level];
885 }
886 return err;
887}
888
889static int truncate_node(struct dnode_of_data *dn)
890{
891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892 struct node_info ni;
893 int err;
894 pgoff_t index;
895
896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
897 if (err)
898 return err;
899
900 /* Deallocate node address */
901 f2fs_invalidate_blocks(sbi, ni.blk_addr);
902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
903 set_node_addr(sbi, &ni, NULL_ADDR, false);
904
905 if (dn->nid == dn->inode->i_ino) {
906 f2fs_remove_orphan_inode(sbi, dn->nid);
907 dec_valid_inode_count(sbi);
908 f2fs_inode_synced(dn->inode);
909 }
910
911 clear_node_page_dirty(dn->node_page);
912 set_sbi_flag(sbi, SBI_IS_DIRTY);
913
914 index = dn->node_page->index;
915 f2fs_put_page(dn->node_page, 1);
916
917 invalidate_mapping_pages(NODE_MAPPING(sbi),
918 index, index);
919
920 dn->node_page = NULL;
921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
922
923 return 0;
924}
925
926static int truncate_dnode(struct dnode_of_data *dn)
927{
928 struct page *page;
929 int err;
930
931 if (dn->nid == 0)
932 return 1;
933
934 /* get direct node */
935 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
936 if (PTR_ERR(page) == -ENOENT)
937 return 1;
938 else if (IS_ERR(page))
939 return PTR_ERR(page);
940
941 /* Make dnode_of_data for parameter */
942 dn->node_page = page;
943 dn->ofs_in_node = 0;
944 f2fs_truncate_data_blocks(dn);
945 err = truncate_node(dn);
946 if (err)
947 return err;
948
949 return 1;
950}
951
952static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
953 int ofs, int depth)
954{
955 struct dnode_of_data rdn = *dn;
956 struct page *page;
957 struct f2fs_node *rn;
958 nid_t child_nid;
959 unsigned int child_nofs;
960 int freed = 0;
961 int i, ret;
962
963 if (dn->nid == 0)
964 return NIDS_PER_BLOCK + 1;
965
966 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
967
968 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
969 if (IS_ERR(page)) {
970 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
971 return PTR_ERR(page);
972 }
973
974 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
975
976 rn = F2FS_NODE(page);
977 if (depth < 3) {
978 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
979 child_nid = le32_to_cpu(rn->in.nid[i]);
980 if (child_nid == 0)
981 continue;
982 rdn.nid = child_nid;
983 ret = truncate_dnode(&rdn);
984 if (ret < 0)
985 goto out_err;
986 if (set_nid(page, i, 0, false))
987 dn->node_changed = true;
988 }
989 } else {
990 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
991 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
992 child_nid = le32_to_cpu(rn->in.nid[i]);
993 if (child_nid == 0) {
994 child_nofs += NIDS_PER_BLOCK + 1;
995 continue;
996 }
997 rdn.nid = child_nid;
998 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
999 if (ret == (NIDS_PER_BLOCK + 1)) {
1000 if (set_nid(page, i, 0, false))
1001 dn->node_changed = true;
1002 child_nofs += ret;
1003 } else if (ret < 0 && ret != -ENOENT) {
1004 goto out_err;
1005 }
1006 }
1007 freed = child_nofs;
1008 }
1009
1010 if (!ofs) {
1011 /* remove current indirect node */
1012 dn->node_page = page;
1013 ret = truncate_node(dn);
1014 if (ret)
1015 goto out_err;
1016 freed++;
1017 } else {
1018 f2fs_put_page(page, 1);
1019 }
1020 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1021 return freed;
1022
1023out_err:
1024 f2fs_put_page(page, 1);
1025 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1026 return ret;
1027}
1028
1029static int truncate_partial_nodes(struct dnode_of_data *dn,
1030 struct f2fs_inode *ri, int *offset, int depth)
1031{
1032 struct page *pages[2];
1033 nid_t nid[3];
1034 nid_t child_nid;
1035 int err = 0;
1036 int i;
1037 int idx = depth - 2;
1038
1039 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1040 if (!nid[0])
1041 return 0;
1042
1043 /* get indirect nodes in the path */
1044 for (i = 0; i < idx + 1; i++) {
1045 /* reference count'll be increased */
1046 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1047 if (IS_ERR(pages[i])) {
1048 err = PTR_ERR(pages[i]);
1049 idx = i - 1;
1050 goto fail;
1051 }
1052 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1053 }
1054
1055 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1056
1057 /* free direct nodes linked to a partial indirect node */
1058 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1059 child_nid = get_nid(pages[idx], i, false);
1060 if (!child_nid)
1061 continue;
1062 dn->nid = child_nid;
1063 err = truncate_dnode(dn);
1064 if (err < 0)
1065 goto fail;
1066 if (set_nid(pages[idx], i, 0, false))
1067 dn->node_changed = true;
1068 }
1069
1070 if (offset[idx + 1] == 0) {
1071 dn->node_page = pages[idx];
1072 dn->nid = nid[idx];
1073 err = truncate_node(dn);
1074 if (err)
1075 goto fail;
1076 } else {
1077 f2fs_put_page(pages[idx], 1);
1078 }
1079 offset[idx]++;
1080 offset[idx + 1] = 0;
1081 idx--;
1082fail:
1083 for (i = idx; i >= 0; i--)
1084 f2fs_put_page(pages[i], 1);
1085
1086 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1087
1088 return err;
1089}
1090
1091/*
1092 * All the block addresses of data and nodes should be nullified.
1093 */
1094int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1095{
1096 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097 int err = 0, cont = 1;
1098 int level, offset[4], noffset[4];
1099 unsigned int nofs = 0;
1100 struct f2fs_inode *ri;
1101 struct dnode_of_data dn;
1102 struct page *page;
1103
1104 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1105
1106 level = get_node_path(inode, from, offset, noffset);
1107 if (level < 0) {
1108 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1109 return level;
1110 }
1111
1112 page = f2fs_get_node_page(sbi, inode->i_ino);
1113 if (IS_ERR(page)) {
1114 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1115 return PTR_ERR(page);
1116 }
1117
1118 set_new_dnode(&dn, inode, page, NULL, 0);
1119 unlock_page(page);
1120
1121 ri = F2FS_INODE(page);
1122 switch (level) {
1123 case 0:
1124 case 1:
1125 nofs = noffset[1];
1126 break;
1127 case 2:
1128 nofs = noffset[1];
1129 if (!offset[level - 1])
1130 goto skip_partial;
1131 err = truncate_partial_nodes(&dn, ri, offset, level);
1132 if (err < 0 && err != -ENOENT)
1133 goto fail;
1134 nofs += 1 + NIDS_PER_BLOCK;
1135 break;
1136 case 3:
1137 nofs = 5 + 2 * NIDS_PER_BLOCK;
1138 if (!offset[level - 1])
1139 goto skip_partial;
1140 err = truncate_partial_nodes(&dn, ri, offset, level);
1141 if (err < 0 && err != -ENOENT)
1142 goto fail;
1143 break;
1144 default:
1145 BUG();
1146 }
1147
1148skip_partial:
1149 while (cont) {
1150 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1151 switch (offset[0]) {
1152 case NODE_DIR1_BLOCK:
1153 case NODE_DIR2_BLOCK:
1154 err = truncate_dnode(&dn);
1155 break;
1156
1157 case NODE_IND1_BLOCK:
1158 case NODE_IND2_BLOCK:
1159 err = truncate_nodes(&dn, nofs, offset[1], 2);
1160 break;
1161
1162 case NODE_DIND_BLOCK:
1163 err = truncate_nodes(&dn, nofs, offset[1], 3);
1164 cont = 0;
1165 break;
1166
1167 default:
1168 BUG();
1169 }
1170 if (err < 0 && err != -ENOENT)
1171 goto fail;
1172 if (offset[1] == 0 &&
1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1174 lock_page(page);
1175 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1176 f2fs_wait_on_page_writeback(page, NODE, true, true);
1177 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1178 set_page_dirty(page);
1179 unlock_page(page);
1180 }
1181 offset[1] = 0;
1182 offset[0]++;
1183 nofs += err;
1184 }
1185fail:
1186 f2fs_put_page(page, 0);
1187 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1188 return err > 0 ? 0 : err;
1189}
1190
1191/* caller must lock inode page */
1192int f2fs_truncate_xattr_node(struct inode *inode)
1193{
1194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1195 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1196 struct dnode_of_data dn;
1197 struct page *npage;
1198 int err;
1199
1200 if (!nid)
1201 return 0;
1202
1203 npage = f2fs_get_node_page(sbi, nid);
1204 if (IS_ERR(npage))
1205 return PTR_ERR(npage);
1206
1207 set_new_dnode(&dn, inode, NULL, npage, nid);
1208 err = truncate_node(&dn);
1209 if (err) {
1210 f2fs_put_page(npage, 1);
1211 return err;
1212 }
1213
1214 f2fs_i_xnid_write(inode, 0);
1215
1216 return 0;
1217}
1218
1219/*
1220 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1221 * f2fs_unlock_op().
1222 */
1223int f2fs_remove_inode_page(struct inode *inode)
1224{
1225 struct dnode_of_data dn;
1226 int err;
1227
1228 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1229 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1230 if (err)
1231 return err;
1232
1233 err = f2fs_truncate_xattr_node(inode);
1234 if (err) {
1235 f2fs_put_dnode(&dn);
1236 return err;
1237 }
1238
1239 /* remove potential inline_data blocks */
1240 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1241 S_ISLNK(inode->i_mode))
1242 f2fs_truncate_data_blocks_range(&dn, 1);
1243
1244 /* 0 is possible, after f2fs_new_inode() has failed */
1245 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1246 f2fs_put_dnode(&dn);
1247 return -EIO;
1248 }
1249
1250 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1251 f2fs_warn(F2FS_I_SB(inode),
1252 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1253 inode->i_ino, (unsigned long long)inode->i_blocks);
1254 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1255 }
1256
1257 /* will put inode & node pages */
1258 err = truncate_node(&dn);
1259 if (err) {
1260 f2fs_put_dnode(&dn);
1261 return err;
1262 }
1263 return 0;
1264}
1265
1266struct page *f2fs_new_inode_page(struct inode *inode)
1267{
1268 struct dnode_of_data dn;
1269
1270 /* allocate inode page for new inode */
1271 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1272
1273 /* caller should f2fs_put_page(page, 1); */
1274 return f2fs_new_node_page(&dn, 0);
1275}
1276
1277struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1278{
1279 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1280 struct node_info new_ni;
1281 struct page *page;
1282 int err;
1283
1284 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1285 return ERR_PTR(-EPERM);
1286
1287 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1288 if (!page)
1289 return ERR_PTR(-ENOMEM);
1290
1291 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1292 goto fail;
1293
1294#ifdef CONFIG_F2FS_CHECK_FS
1295 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1296 if (err) {
1297 dec_valid_node_count(sbi, dn->inode, !ofs);
1298 goto fail;
1299 }
1300 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1301 err = -EFSCORRUPTED;
1302 set_sbi_flag(sbi, SBI_NEED_FSCK);
1303 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1304 goto fail;
1305 }
1306#endif
1307 new_ni.nid = dn->nid;
1308 new_ni.ino = dn->inode->i_ino;
1309 new_ni.blk_addr = NULL_ADDR;
1310 new_ni.flag = 0;
1311 new_ni.version = 0;
1312 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1313
1314 f2fs_wait_on_page_writeback(page, NODE, true, true);
1315 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1316 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1317 if (!PageUptodate(page))
1318 SetPageUptodate(page);
1319 if (set_page_dirty(page))
1320 dn->node_changed = true;
1321
1322 if (f2fs_has_xattr_block(ofs))
1323 f2fs_i_xnid_write(dn->inode, dn->nid);
1324
1325 if (ofs == 0)
1326 inc_valid_inode_count(sbi);
1327 return page;
1328
1329fail:
1330 clear_node_page_dirty(page);
1331 f2fs_put_page(page, 1);
1332 return ERR_PTR(err);
1333}
1334
1335/*
1336 * Caller should do after getting the following values.
1337 * 0: f2fs_put_page(page, 0)
1338 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1339 */
1340static int read_node_page(struct page *page, blk_opf_t op_flags)
1341{
1342 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343 struct node_info ni;
1344 struct f2fs_io_info fio = {
1345 .sbi = sbi,
1346 .type = NODE,
1347 .op = REQ_OP_READ,
1348 .op_flags = op_flags,
1349 .page = page,
1350 .encrypted_page = NULL,
1351 };
1352 int err;
1353
1354 if (PageUptodate(page)) {
1355 if (!f2fs_inode_chksum_verify(sbi, page)) {
1356 ClearPageUptodate(page);
1357 return -EFSBADCRC;
1358 }
1359 return LOCKED_PAGE;
1360 }
1361
1362 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1363 if (err)
1364 return err;
1365
1366 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1367 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1368 ClearPageUptodate(page);
1369 return -ENOENT;
1370 }
1371
1372 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1373
1374 err = f2fs_submit_page_bio(&fio);
1375
1376 if (!err)
1377 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378
1379 return err;
1380}
1381
1382/*
1383 * Readahead a node page
1384 */
1385void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1386{
1387 struct page *apage;
1388 int err;
1389
1390 if (!nid)
1391 return;
1392 if (f2fs_check_nid_range(sbi, nid))
1393 return;
1394
1395 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1396 if (apage)
1397 return;
1398
1399 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1400 if (!apage)
1401 return;
1402
1403 err = read_node_page(apage, REQ_RAHEAD);
1404 f2fs_put_page(apage, err ? 1 : 0);
1405}
1406
1407static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1408 struct page *parent, int start)
1409{
1410 struct page *page;
1411 int err;
1412
1413 if (!nid)
1414 return ERR_PTR(-ENOENT);
1415 if (f2fs_check_nid_range(sbi, nid))
1416 return ERR_PTR(-EINVAL);
1417repeat:
1418 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1419 if (!page)
1420 return ERR_PTR(-ENOMEM);
1421
1422 err = read_node_page(page, 0);
1423 if (err < 0) {
1424 goto out_put_err;
1425 } else if (err == LOCKED_PAGE) {
1426 err = 0;
1427 goto page_hit;
1428 }
1429
1430 if (parent)
1431 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1432
1433 lock_page(page);
1434
1435 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1436 f2fs_put_page(page, 1);
1437 goto repeat;
1438 }
1439
1440 if (unlikely(!PageUptodate(page))) {
1441 err = -EIO;
1442 goto out_err;
1443 }
1444
1445 if (!f2fs_inode_chksum_verify(sbi, page)) {
1446 err = -EFSBADCRC;
1447 goto out_err;
1448 }
1449page_hit:
1450 if (likely(nid == nid_of_node(page)))
1451 return page;
1452
1453 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1454 nid, nid_of_node(page), ino_of_node(page),
1455 ofs_of_node(page), cpver_of_node(page),
1456 next_blkaddr_of_node(page));
1457 set_sbi_flag(sbi, SBI_NEED_FSCK);
1458 err = -EINVAL;
1459out_err:
1460 ClearPageUptodate(page);
1461out_put_err:
1462 /* ENOENT comes from read_node_page which is not an error. */
1463 if (err != -ENOENT)
1464 f2fs_handle_page_eio(sbi, page->index, NODE);
1465 f2fs_put_page(page, 1);
1466 return ERR_PTR(err);
1467}
1468
1469struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1470{
1471 return __get_node_page(sbi, nid, NULL, 0);
1472}
1473
1474struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1475{
1476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1477 nid_t nid = get_nid(parent, start, false);
1478
1479 return __get_node_page(sbi, nid, parent, start);
1480}
1481
1482static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1483{
1484 struct inode *inode;
1485 struct page *page;
1486 int ret;
1487
1488 /* should flush inline_data before evict_inode */
1489 inode = ilookup(sbi->sb, ino);
1490 if (!inode)
1491 return;
1492
1493 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1494 FGP_LOCK|FGP_NOWAIT, 0);
1495 if (!page)
1496 goto iput_out;
1497
1498 if (!PageUptodate(page))
1499 goto page_out;
1500
1501 if (!PageDirty(page))
1502 goto page_out;
1503
1504 if (!clear_page_dirty_for_io(page))
1505 goto page_out;
1506
1507 ret = f2fs_write_inline_data(inode, page);
1508 inode_dec_dirty_pages(inode);
1509 f2fs_remove_dirty_inode(inode);
1510 if (ret)
1511 set_page_dirty(page);
1512page_out:
1513 f2fs_put_page(page, 1);
1514iput_out:
1515 iput(inode);
1516}
1517
1518static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1519{
1520 pgoff_t index;
1521 struct pagevec pvec;
1522 struct page *last_page = NULL;
1523 int nr_pages;
1524
1525 pagevec_init(&pvec);
1526 index = 0;
1527
1528 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1529 PAGECACHE_TAG_DIRTY))) {
1530 int i;
1531
1532 for (i = 0; i < nr_pages; i++) {
1533 struct page *page = pvec.pages[i];
1534
1535 if (unlikely(f2fs_cp_error(sbi))) {
1536 f2fs_put_page(last_page, 0);
1537 pagevec_release(&pvec);
1538 return ERR_PTR(-EIO);
1539 }
1540
1541 if (!IS_DNODE(page) || !is_cold_node(page))
1542 continue;
1543 if (ino_of_node(page) != ino)
1544 continue;
1545
1546 lock_page(page);
1547
1548 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1549continue_unlock:
1550 unlock_page(page);
1551 continue;
1552 }
1553 if (ino_of_node(page) != ino)
1554 goto continue_unlock;
1555
1556 if (!PageDirty(page)) {
1557 /* someone wrote it for us */
1558 goto continue_unlock;
1559 }
1560
1561 if (last_page)
1562 f2fs_put_page(last_page, 0);
1563
1564 get_page(page);
1565 last_page = page;
1566 unlock_page(page);
1567 }
1568 pagevec_release(&pvec);
1569 cond_resched();
1570 }
1571 return last_page;
1572}
1573
1574static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1575 struct writeback_control *wbc, bool do_balance,
1576 enum iostat_type io_type, unsigned int *seq_id)
1577{
1578 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1579 nid_t nid;
1580 struct node_info ni;
1581 struct f2fs_io_info fio = {
1582 .sbi = sbi,
1583 .ino = ino_of_node(page),
1584 .type = NODE,
1585 .op = REQ_OP_WRITE,
1586 .op_flags = wbc_to_write_flags(wbc),
1587 .page = page,
1588 .encrypted_page = NULL,
1589 .submitted = false,
1590 .io_type = io_type,
1591 .io_wbc = wbc,
1592 };
1593 unsigned int seq;
1594
1595 trace_f2fs_writepage(page, NODE);
1596
1597 if (unlikely(f2fs_cp_error(sbi))) {
1598 ClearPageUptodate(page);
1599 dec_page_count(sbi, F2FS_DIRTY_NODES);
1600 unlock_page(page);
1601 return 0;
1602 }
1603
1604 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1605 goto redirty_out;
1606
1607 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1608 wbc->sync_mode == WB_SYNC_NONE &&
1609 IS_DNODE(page) && is_cold_node(page))
1610 goto redirty_out;
1611
1612 /* get old block addr of this node page */
1613 nid = nid_of_node(page);
1614 f2fs_bug_on(sbi, page->index != nid);
1615
1616 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1617 goto redirty_out;
1618
1619 if (wbc->for_reclaim) {
1620 if (!f2fs_down_read_trylock(&sbi->node_write))
1621 goto redirty_out;
1622 } else {
1623 f2fs_down_read(&sbi->node_write);
1624 }
1625
1626 /* This page is already truncated */
1627 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1628 ClearPageUptodate(page);
1629 dec_page_count(sbi, F2FS_DIRTY_NODES);
1630 f2fs_up_read(&sbi->node_write);
1631 unlock_page(page);
1632 return 0;
1633 }
1634
1635 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1636 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1637 DATA_GENERIC_ENHANCE)) {
1638 f2fs_up_read(&sbi->node_write);
1639 goto redirty_out;
1640 }
1641
1642 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1643 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1644
1645 /* should add to global list before clearing PAGECACHE status */
1646 if (f2fs_in_warm_node_list(sbi, page)) {
1647 seq = f2fs_add_fsync_node_entry(sbi, page);
1648 if (seq_id)
1649 *seq_id = seq;
1650 }
1651
1652 set_page_writeback(page);
1653 ClearPageError(page);
1654
1655 fio.old_blkaddr = ni.blk_addr;
1656 f2fs_do_write_node_page(nid, &fio);
1657 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1658 dec_page_count(sbi, F2FS_DIRTY_NODES);
1659 f2fs_up_read(&sbi->node_write);
1660
1661 if (wbc->for_reclaim) {
1662 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663 submitted = NULL;
1664 }
1665
1666 unlock_page(page);
1667
1668 if (unlikely(f2fs_cp_error(sbi))) {
1669 f2fs_submit_merged_write(sbi, NODE);
1670 submitted = NULL;
1671 }
1672 if (submitted)
1673 *submitted = fio.submitted;
1674
1675 if (do_balance)
1676 f2fs_balance_fs(sbi, false);
1677 return 0;
1678
1679redirty_out:
1680 redirty_page_for_writepage(wbc, page);
1681 return AOP_WRITEPAGE_ACTIVATE;
1682}
1683
1684int f2fs_move_node_page(struct page *node_page, int gc_type)
1685{
1686 int err = 0;
1687
1688 if (gc_type == FG_GC) {
1689 struct writeback_control wbc = {
1690 .sync_mode = WB_SYNC_ALL,
1691 .nr_to_write = 1,
1692 .for_reclaim = 0,
1693 };
1694
1695 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1696
1697 set_page_dirty(node_page);
1698
1699 if (!clear_page_dirty_for_io(node_page)) {
1700 err = -EAGAIN;
1701 goto out_page;
1702 }
1703
1704 if (__write_node_page(node_page, false, NULL,
1705 &wbc, false, FS_GC_NODE_IO, NULL)) {
1706 err = -EAGAIN;
1707 unlock_page(node_page);
1708 }
1709 goto release_page;
1710 } else {
1711 /* set page dirty and write it */
1712 if (!PageWriteback(node_page))
1713 set_page_dirty(node_page);
1714 }
1715out_page:
1716 unlock_page(node_page);
1717release_page:
1718 f2fs_put_page(node_page, 0);
1719 return err;
1720}
1721
1722static int f2fs_write_node_page(struct page *page,
1723 struct writeback_control *wbc)
1724{
1725 return __write_node_page(page, false, NULL, wbc, false,
1726 FS_NODE_IO, NULL);
1727}
1728
1729int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1730 struct writeback_control *wbc, bool atomic,
1731 unsigned int *seq_id)
1732{
1733 pgoff_t index;
1734 struct pagevec pvec;
1735 int ret = 0;
1736 struct page *last_page = NULL;
1737 bool marked = false;
1738 nid_t ino = inode->i_ino;
1739 int nr_pages;
1740 int nwritten = 0;
1741
1742 if (atomic) {
1743 last_page = last_fsync_dnode(sbi, ino);
1744 if (IS_ERR_OR_NULL(last_page))
1745 return PTR_ERR_OR_ZERO(last_page);
1746 }
1747retry:
1748 pagevec_init(&pvec);
1749 index = 0;
1750
1751 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1752 PAGECACHE_TAG_DIRTY))) {
1753 int i;
1754
1755 for (i = 0; i < nr_pages; i++) {
1756 struct page *page = pvec.pages[i];
1757 bool submitted = false;
1758
1759 if (unlikely(f2fs_cp_error(sbi))) {
1760 f2fs_put_page(last_page, 0);
1761 pagevec_release(&pvec);
1762 ret = -EIO;
1763 goto out;
1764 }
1765
1766 if (!IS_DNODE(page) || !is_cold_node(page))
1767 continue;
1768 if (ino_of_node(page) != ino)
1769 continue;
1770
1771 lock_page(page);
1772
1773 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1774continue_unlock:
1775 unlock_page(page);
1776 continue;
1777 }
1778 if (ino_of_node(page) != ino)
1779 goto continue_unlock;
1780
1781 if (!PageDirty(page) && page != last_page) {
1782 /* someone wrote it for us */
1783 goto continue_unlock;
1784 }
1785
1786 f2fs_wait_on_page_writeback(page, NODE, true, true);
1787
1788 set_fsync_mark(page, 0);
1789 set_dentry_mark(page, 0);
1790
1791 if (!atomic || page == last_page) {
1792 set_fsync_mark(page, 1);
1793 percpu_counter_inc(&sbi->rf_node_block_count);
1794 if (IS_INODE(page)) {
1795 if (is_inode_flag_set(inode,
1796 FI_DIRTY_INODE))
1797 f2fs_update_inode(inode, page);
1798 set_dentry_mark(page,
1799 f2fs_need_dentry_mark(sbi, ino));
1800 }
1801 /* may be written by other thread */
1802 if (!PageDirty(page))
1803 set_page_dirty(page);
1804 }
1805
1806 if (!clear_page_dirty_for_io(page))
1807 goto continue_unlock;
1808
1809 ret = __write_node_page(page, atomic &&
1810 page == last_page,
1811 &submitted, wbc, true,
1812 FS_NODE_IO, seq_id);
1813 if (ret) {
1814 unlock_page(page);
1815 f2fs_put_page(last_page, 0);
1816 break;
1817 } else if (submitted) {
1818 nwritten++;
1819 }
1820
1821 if (page == last_page) {
1822 f2fs_put_page(page, 0);
1823 marked = true;
1824 break;
1825 }
1826 }
1827 pagevec_release(&pvec);
1828 cond_resched();
1829
1830 if (ret || marked)
1831 break;
1832 }
1833 if (!ret && atomic && !marked) {
1834 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1835 ino, last_page->index);
1836 lock_page(last_page);
1837 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1838 set_page_dirty(last_page);
1839 unlock_page(last_page);
1840 goto retry;
1841 }
1842out:
1843 if (nwritten)
1844 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1845 return ret ? -EIO : 0;
1846}
1847
1848static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1849{
1850 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1851 bool clean;
1852
1853 if (inode->i_ino != ino)
1854 return 0;
1855
1856 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1857 return 0;
1858
1859 spin_lock(&sbi->inode_lock[DIRTY_META]);
1860 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1861 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1862
1863 if (clean)
1864 return 0;
1865
1866 inode = igrab(inode);
1867 if (!inode)
1868 return 0;
1869 return 1;
1870}
1871
1872static bool flush_dirty_inode(struct page *page)
1873{
1874 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1875 struct inode *inode;
1876 nid_t ino = ino_of_node(page);
1877
1878 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1879 if (!inode)
1880 return false;
1881
1882 f2fs_update_inode(inode, page);
1883 unlock_page(page);
1884
1885 iput(inode);
1886 return true;
1887}
1888
1889void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1890{
1891 pgoff_t index = 0;
1892 struct pagevec pvec;
1893 int nr_pages;
1894
1895 pagevec_init(&pvec);
1896
1897 while ((nr_pages = pagevec_lookup_tag(&pvec,
1898 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1899 int i;
1900
1901 for (i = 0; i < nr_pages; i++) {
1902 struct page *page = pvec.pages[i];
1903
1904 if (!IS_DNODE(page))
1905 continue;
1906
1907 lock_page(page);
1908
1909 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1910continue_unlock:
1911 unlock_page(page);
1912 continue;
1913 }
1914
1915 if (!PageDirty(page)) {
1916 /* someone wrote it for us */
1917 goto continue_unlock;
1918 }
1919
1920 /* flush inline_data, if it's async context. */
1921 if (page_private_inline(page)) {
1922 clear_page_private_inline(page);
1923 unlock_page(page);
1924 flush_inline_data(sbi, ino_of_node(page));
1925 continue;
1926 }
1927 unlock_page(page);
1928 }
1929 pagevec_release(&pvec);
1930 cond_resched();
1931 }
1932}
1933
1934int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1935 struct writeback_control *wbc,
1936 bool do_balance, enum iostat_type io_type)
1937{
1938 pgoff_t index;
1939 struct pagevec pvec;
1940 int step = 0;
1941 int nwritten = 0;
1942 int ret = 0;
1943 int nr_pages, done = 0;
1944
1945 pagevec_init(&pvec);
1946
1947next_step:
1948 index = 0;
1949
1950 while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1951 NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1952 int i;
1953
1954 for (i = 0; i < nr_pages; i++) {
1955 struct page *page = pvec.pages[i];
1956 bool submitted = false;
1957
1958 /* give a priority to WB_SYNC threads */
1959 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1960 wbc->sync_mode == WB_SYNC_NONE) {
1961 done = 1;
1962 break;
1963 }
1964
1965 /*
1966 * flushing sequence with step:
1967 * 0. indirect nodes
1968 * 1. dentry dnodes
1969 * 2. file dnodes
1970 */
1971 if (step == 0 && IS_DNODE(page))
1972 continue;
1973 if (step == 1 && (!IS_DNODE(page) ||
1974 is_cold_node(page)))
1975 continue;
1976 if (step == 2 && (!IS_DNODE(page) ||
1977 !is_cold_node(page)))
1978 continue;
1979lock_node:
1980 if (wbc->sync_mode == WB_SYNC_ALL)
1981 lock_page(page);
1982 else if (!trylock_page(page))
1983 continue;
1984
1985 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1986continue_unlock:
1987 unlock_page(page);
1988 continue;
1989 }
1990
1991 if (!PageDirty(page)) {
1992 /* someone wrote it for us */
1993 goto continue_unlock;
1994 }
1995
1996 /* flush inline_data/inode, if it's async context. */
1997 if (!do_balance)
1998 goto write_node;
1999
2000 /* flush inline_data */
2001 if (page_private_inline(page)) {
2002 clear_page_private_inline(page);
2003 unlock_page(page);
2004 flush_inline_data(sbi, ino_of_node(page));
2005 goto lock_node;
2006 }
2007
2008 /* flush dirty inode */
2009 if (IS_INODE(page) && flush_dirty_inode(page))
2010 goto lock_node;
2011write_node:
2012 f2fs_wait_on_page_writeback(page, NODE, true, true);
2013
2014 if (!clear_page_dirty_for_io(page))
2015 goto continue_unlock;
2016
2017 set_fsync_mark(page, 0);
2018 set_dentry_mark(page, 0);
2019
2020 ret = __write_node_page(page, false, &submitted,
2021 wbc, do_balance, io_type, NULL);
2022 if (ret)
2023 unlock_page(page);
2024 else if (submitted)
2025 nwritten++;
2026
2027 if (--wbc->nr_to_write == 0)
2028 break;
2029 }
2030 pagevec_release(&pvec);
2031 cond_resched();
2032
2033 if (wbc->nr_to_write == 0) {
2034 step = 2;
2035 break;
2036 }
2037 }
2038
2039 if (step < 2) {
2040 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2041 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2042 goto out;
2043 step++;
2044 goto next_step;
2045 }
2046out:
2047 if (nwritten)
2048 f2fs_submit_merged_write(sbi, NODE);
2049
2050 if (unlikely(f2fs_cp_error(sbi)))
2051 return -EIO;
2052 return ret;
2053}
2054
2055int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2056 unsigned int seq_id)
2057{
2058 struct fsync_node_entry *fn;
2059 struct page *page;
2060 struct list_head *head = &sbi->fsync_node_list;
2061 unsigned long flags;
2062 unsigned int cur_seq_id = 0;
2063 int ret2, ret = 0;
2064
2065 while (seq_id && cur_seq_id < seq_id) {
2066 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2067 if (list_empty(head)) {
2068 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069 break;
2070 }
2071 fn = list_first_entry(head, struct fsync_node_entry, list);
2072 if (fn->seq_id > seq_id) {
2073 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2074 break;
2075 }
2076 cur_seq_id = fn->seq_id;
2077 page = fn->page;
2078 get_page(page);
2079 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2080
2081 f2fs_wait_on_page_writeback(page, NODE, true, false);
2082 if (TestClearPageError(page))
2083 ret = -EIO;
2084
2085 put_page(page);
2086
2087 if (ret)
2088 break;
2089 }
2090
2091 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2092 if (!ret)
2093 ret = ret2;
2094
2095 return ret;
2096}
2097
2098static int f2fs_write_node_pages(struct address_space *mapping,
2099 struct writeback_control *wbc)
2100{
2101 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2102 struct blk_plug plug;
2103 long diff;
2104
2105 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2106 goto skip_write;
2107
2108 /* balancing f2fs's metadata in background */
2109 f2fs_balance_fs_bg(sbi, true);
2110
2111 /* collect a number of dirty node pages and write together */
2112 if (wbc->sync_mode != WB_SYNC_ALL &&
2113 get_pages(sbi, F2FS_DIRTY_NODES) <
2114 nr_pages_to_skip(sbi, NODE))
2115 goto skip_write;
2116
2117 if (wbc->sync_mode == WB_SYNC_ALL)
2118 atomic_inc(&sbi->wb_sync_req[NODE]);
2119 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2120 /* to avoid potential deadlock */
2121 if (current->plug)
2122 blk_finish_plug(current->plug);
2123 goto skip_write;
2124 }
2125
2126 trace_f2fs_writepages(mapping->host, wbc, NODE);
2127
2128 diff = nr_pages_to_write(sbi, NODE, wbc);
2129 blk_start_plug(&plug);
2130 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2131 blk_finish_plug(&plug);
2132 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2133
2134 if (wbc->sync_mode == WB_SYNC_ALL)
2135 atomic_dec(&sbi->wb_sync_req[NODE]);
2136 return 0;
2137
2138skip_write:
2139 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2140 trace_f2fs_writepages(mapping->host, wbc, NODE);
2141 return 0;
2142}
2143
2144static bool f2fs_dirty_node_folio(struct address_space *mapping,
2145 struct folio *folio)
2146{
2147 trace_f2fs_set_page_dirty(&folio->page, NODE);
2148
2149 if (!folio_test_uptodate(folio))
2150 folio_mark_uptodate(folio);
2151#ifdef CONFIG_F2FS_CHECK_FS
2152 if (IS_INODE(&folio->page))
2153 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2154#endif
2155 if (filemap_dirty_folio(mapping, folio)) {
2156 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2157 set_page_private_reference(&folio->page);
2158 return true;
2159 }
2160 return false;
2161}
2162
2163/*
2164 * Structure of the f2fs node operations
2165 */
2166const struct address_space_operations f2fs_node_aops = {
2167 .writepage = f2fs_write_node_page,
2168 .writepages = f2fs_write_node_pages,
2169 .dirty_folio = f2fs_dirty_node_folio,
2170 .invalidate_folio = f2fs_invalidate_folio,
2171 .release_folio = f2fs_release_folio,
2172 .migrate_folio = filemap_migrate_folio,
2173};
2174
2175static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2176 nid_t n)
2177{
2178 return radix_tree_lookup(&nm_i->free_nid_root, n);
2179}
2180
2181static int __insert_free_nid(struct f2fs_sb_info *sbi,
2182 struct free_nid *i)
2183{
2184 struct f2fs_nm_info *nm_i = NM_I(sbi);
2185 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2186
2187 if (err)
2188 return err;
2189
2190 nm_i->nid_cnt[FREE_NID]++;
2191 list_add_tail(&i->list, &nm_i->free_nid_list);
2192 return 0;
2193}
2194
2195static void __remove_free_nid(struct f2fs_sb_info *sbi,
2196 struct free_nid *i, enum nid_state state)
2197{
2198 struct f2fs_nm_info *nm_i = NM_I(sbi);
2199
2200 f2fs_bug_on(sbi, state != i->state);
2201 nm_i->nid_cnt[state]--;
2202 if (state == FREE_NID)
2203 list_del(&i->list);
2204 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2205}
2206
2207static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2208 enum nid_state org_state, enum nid_state dst_state)
2209{
2210 struct f2fs_nm_info *nm_i = NM_I(sbi);
2211
2212 f2fs_bug_on(sbi, org_state != i->state);
2213 i->state = dst_state;
2214 nm_i->nid_cnt[org_state]--;
2215 nm_i->nid_cnt[dst_state]++;
2216
2217 switch (dst_state) {
2218 case PREALLOC_NID:
2219 list_del(&i->list);
2220 break;
2221 case FREE_NID:
2222 list_add_tail(&i->list, &nm_i->free_nid_list);
2223 break;
2224 default:
2225 BUG_ON(1);
2226 }
2227}
2228
2229bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2230{
2231 struct f2fs_nm_info *nm_i = NM_I(sbi);
2232 unsigned int i;
2233 bool ret = true;
2234
2235 f2fs_down_read(&nm_i->nat_tree_lock);
2236 for (i = 0; i < nm_i->nat_blocks; i++) {
2237 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2238 ret = false;
2239 break;
2240 }
2241 }
2242 f2fs_up_read(&nm_i->nat_tree_lock);
2243
2244 return ret;
2245}
2246
2247static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2248 bool set, bool build)
2249{
2250 struct f2fs_nm_info *nm_i = NM_I(sbi);
2251 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2252 unsigned int nid_ofs = nid - START_NID(nid);
2253
2254 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2255 return;
2256
2257 if (set) {
2258 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2259 return;
2260 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2261 nm_i->free_nid_count[nat_ofs]++;
2262 } else {
2263 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2264 return;
2265 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2266 if (!build)
2267 nm_i->free_nid_count[nat_ofs]--;
2268 }
2269}
2270
2271/* return if the nid is recognized as free */
2272static bool add_free_nid(struct f2fs_sb_info *sbi,
2273 nid_t nid, bool build, bool update)
2274{
2275 struct f2fs_nm_info *nm_i = NM_I(sbi);
2276 struct free_nid *i, *e;
2277 struct nat_entry *ne;
2278 int err = -EINVAL;
2279 bool ret = false;
2280
2281 /* 0 nid should not be used */
2282 if (unlikely(nid == 0))
2283 return false;
2284
2285 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2286 return false;
2287
2288 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2289 i->nid = nid;
2290 i->state = FREE_NID;
2291
2292 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2293
2294 spin_lock(&nm_i->nid_list_lock);
2295
2296 if (build) {
2297 /*
2298 * Thread A Thread B
2299 * - f2fs_create
2300 * - f2fs_new_inode
2301 * - f2fs_alloc_nid
2302 * - __insert_nid_to_list(PREALLOC_NID)
2303 * - f2fs_balance_fs_bg
2304 * - f2fs_build_free_nids
2305 * - __f2fs_build_free_nids
2306 * - scan_nat_page
2307 * - add_free_nid
2308 * - __lookup_nat_cache
2309 * - f2fs_add_link
2310 * - f2fs_init_inode_metadata
2311 * - f2fs_new_inode_page
2312 * - f2fs_new_node_page
2313 * - set_node_addr
2314 * - f2fs_alloc_nid_done
2315 * - __remove_nid_from_list(PREALLOC_NID)
2316 * - __insert_nid_to_list(FREE_NID)
2317 */
2318 ne = __lookup_nat_cache(nm_i, nid);
2319 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2320 nat_get_blkaddr(ne) != NULL_ADDR))
2321 goto err_out;
2322
2323 e = __lookup_free_nid_list(nm_i, nid);
2324 if (e) {
2325 if (e->state == FREE_NID)
2326 ret = true;
2327 goto err_out;
2328 }
2329 }
2330 ret = true;
2331 err = __insert_free_nid(sbi, i);
2332err_out:
2333 if (update) {
2334 update_free_nid_bitmap(sbi, nid, ret, build);
2335 if (!build)
2336 nm_i->available_nids++;
2337 }
2338 spin_unlock(&nm_i->nid_list_lock);
2339 radix_tree_preload_end();
2340
2341 if (err)
2342 kmem_cache_free(free_nid_slab, i);
2343 return ret;
2344}
2345
2346static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2347{
2348 struct f2fs_nm_info *nm_i = NM_I(sbi);
2349 struct free_nid *i;
2350 bool need_free = false;
2351
2352 spin_lock(&nm_i->nid_list_lock);
2353 i = __lookup_free_nid_list(nm_i, nid);
2354 if (i && i->state == FREE_NID) {
2355 __remove_free_nid(sbi, i, FREE_NID);
2356 need_free = true;
2357 }
2358 spin_unlock(&nm_i->nid_list_lock);
2359
2360 if (need_free)
2361 kmem_cache_free(free_nid_slab, i);
2362}
2363
2364static int scan_nat_page(struct f2fs_sb_info *sbi,
2365 struct page *nat_page, nid_t start_nid)
2366{
2367 struct f2fs_nm_info *nm_i = NM_I(sbi);
2368 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2369 block_t blk_addr;
2370 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2371 int i;
2372
2373 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2374
2375 i = start_nid % NAT_ENTRY_PER_BLOCK;
2376
2377 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2378 if (unlikely(start_nid >= nm_i->max_nid))
2379 break;
2380
2381 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2382
2383 if (blk_addr == NEW_ADDR)
2384 return -EINVAL;
2385
2386 if (blk_addr == NULL_ADDR) {
2387 add_free_nid(sbi, start_nid, true, true);
2388 } else {
2389 spin_lock(&NM_I(sbi)->nid_list_lock);
2390 update_free_nid_bitmap(sbi, start_nid, false, true);
2391 spin_unlock(&NM_I(sbi)->nid_list_lock);
2392 }
2393 }
2394
2395 return 0;
2396}
2397
2398static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2399{
2400 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2401 struct f2fs_journal *journal = curseg->journal;
2402 int i;
2403
2404 down_read(&curseg->journal_rwsem);
2405 for (i = 0; i < nats_in_cursum(journal); i++) {
2406 block_t addr;
2407 nid_t nid;
2408
2409 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2410 nid = le32_to_cpu(nid_in_journal(journal, i));
2411 if (addr == NULL_ADDR)
2412 add_free_nid(sbi, nid, true, false);
2413 else
2414 remove_free_nid(sbi, nid);
2415 }
2416 up_read(&curseg->journal_rwsem);
2417}
2418
2419static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2420{
2421 struct f2fs_nm_info *nm_i = NM_I(sbi);
2422 unsigned int i, idx;
2423 nid_t nid;
2424
2425 f2fs_down_read(&nm_i->nat_tree_lock);
2426
2427 for (i = 0; i < nm_i->nat_blocks; i++) {
2428 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2429 continue;
2430 if (!nm_i->free_nid_count[i])
2431 continue;
2432 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2433 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2434 NAT_ENTRY_PER_BLOCK, idx);
2435 if (idx >= NAT_ENTRY_PER_BLOCK)
2436 break;
2437
2438 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2439 add_free_nid(sbi, nid, true, false);
2440
2441 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2442 goto out;
2443 }
2444 }
2445out:
2446 scan_curseg_cache(sbi);
2447
2448 f2fs_up_read(&nm_i->nat_tree_lock);
2449}
2450
2451static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2452 bool sync, bool mount)
2453{
2454 struct f2fs_nm_info *nm_i = NM_I(sbi);
2455 int i = 0, ret;
2456 nid_t nid = nm_i->next_scan_nid;
2457
2458 if (unlikely(nid >= nm_i->max_nid))
2459 nid = 0;
2460
2461 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2462 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2463
2464 /* Enough entries */
2465 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2466 return 0;
2467
2468 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2469 return 0;
2470
2471 if (!mount) {
2472 /* try to find free nids in free_nid_bitmap */
2473 scan_free_nid_bits(sbi);
2474
2475 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2476 return 0;
2477 }
2478
2479 /* readahead nat pages to be scanned */
2480 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2481 META_NAT, true);
2482
2483 f2fs_down_read(&nm_i->nat_tree_lock);
2484
2485 while (1) {
2486 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2487 nm_i->nat_block_bitmap)) {
2488 struct page *page = get_current_nat_page(sbi, nid);
2489
2490 if (IS_ERR(page)) {
2491 ret = PTR_ERR(page);
2492 } else {
2493 ret = scan_nat_page(sbi, page, nid);
2494 f2fs_put_page(page, 1);
2495 }
2496
2497 if (ret) {
2498 f2fs_up_read(&nm_i->nat_tree_lock);
2499 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2500 return ret;
2501 }
2502 }
2503
2504 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2505 if (unlikely(nid >= nm_i->max_nid))
2506 nid = 0;
2507
2508 if (++i >= FREE_NID_PAGES)
2509 break;
2510 }
2511
2512 /* go to the next free nat pages to find free nids abundantly */
2513 nm_i->next_scan_nid = nid;
2514
2515 /* find free nids from current sum_pages */
2516 scan_curseg_cache(sbi);
2517
2518 f2fs_up_read(&nm_i->nat_tree_lock);
2519
2520 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2521 nm_i->ra_nid_pages, META_NAT, false);
2522
2523 return 0;
2524}
2525
2526int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2527{
2528 int ret;
2529
2530 mutex_lock(&NM_I(sbi)->build_lock);
2531 ret = __f2fs_build_free_nids(sbi, sync, mount);
2532 mutex_unlock(&NM_I(sbi)->build_lock);
2533
2534 return ret;
2535}
2536
2537/*
2538 * If this function returns success, caller can obtain a new nid
2539 * from second parameter of this function.
2540 * The returned nid could be used ino as well as nid when inode is created.
2541 */
2542bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2543{
2544 struct f2fs_nm_info *nm_i = NM_I(sbi);
2545 struct free_nid *i = NULL;
2546retry:
2547 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2548 f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2549 return false;
2550 }
2551
2552 spin_lock(&nm_i->nid_list_lock);
2553
2554 if (unlikely(nm_i->available_nids == 0)) {
2555 spin_unlock(&nm_i->nid_list_lock);
2556 return false;
2557 }
2558
2559 /* We should not use stale free nids created by f2fs_build_free_nids */
2560 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2561 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2562 i = list_first_entry(&nm_i->free_nid_list,
2563 struct free_nid, list);
2564 *nid = i->nid;
2565
2566 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2567 nm_i->available_nids--;
2568
2569 update_free_nid_bitmap(sbi, *nid, false, false);
2570
2571 spin_unlock(&nm_i->nid_list_lock);
2572 return true;
2573 }
2574 spin_unlock(&nm_i->nid_list_lock);
2575
2576 /* Let's scan nat pages and its caches to get free nids */
2577 if (!f2fs_build_free_nids(sbi, true, false))
2578 goto retry;
2579 return false;
2580}
2581
2582/*
2583 * f2fs_alloc_nid() should be called prior to this function.
2584 */
2585void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2586{
2587 struct f2fs_nm_info *nm_i = NM_I(sbi);
2588 struct free_nid *i;
2589
2590 spin_lock(&nm_i->nid_list_lock);
2591 i = __lookup_free_nid_list(nm_i, nid);
2592 f2fs_bug_on(sbi, !i);
2593 __remove_free_nid(sbi, i, PREALLOC_NID);
2594 spin_unlock(&nm_i->nid_list_lock);
2595
2596 kmem_cache_free(free_nid_slab, i);
2597}
2598
2599/*
2600 * f2fs_alloc_nid() should be called prior to this function.
2601 */
2602void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2603{
2604 struct f2fs_nm_info *nm_i = NM_I(sbi);
2605 struct free_nid *i;
2606 bool need_free = false;
2607
2608 if (!nid)
2609 return;
2610
2611 spin_lock(&nm_i->nid_list_lock);
2612 i = __lookup_free_nid_list(nm_i, nid);
2613 f2fs_bug_on(sbi, !i);
2614
2615 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2616 __remove_free_nid(sbi, i, PREALLOC_NID);
2617 need_free = true;
2618 } else {
2619 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2620 }
2621
2622 nm_i->available_nids++;
2623
2624 update_free_nid_bitmap(sbi, nid, true, false);
2625
2626 spin_unlock(&nm_i->nid_list_lock);
2627
2628 if (need_free)
2629 kmem_cache_free(free_nid_slab, i);
2630}
2631
2632int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2633{
2634 struct f2fs_nm_info *nm_i = NM_I(sbi);
2635 int nr = nr_shrink;
2636
2637 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2638 return 0;
2639
2640 if (!mutex_trylock(&nm_i->build_lock))
2641 return 0;
2642
2643 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2644 struct free_nid *i, *next;
2645 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2646
2647 spin_lock(&nm_i->nid_list_lock);
2648 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2649 if (!nr_shrink || !batch ||
2650 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2651 break;
2652 __remove_free_nid(sbi, i, FREE_NID);
2653 kmem_cache_free(free_nid_slab, i);
2654 nr_shrink--;
2655 batch--;
2656 }
2657 spin_unlock(&nm_i->nid_list_lock);
2658 }
2659
2660 mutex_unlock(&nm_i->build_lock);
2661
2662 return nr - nr_shrink;
2663}
2664
2665int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2666{
2667 void *src_addr, *dst_addr;
2668 size_t inline_size;
2669 struct page *ipage;
2670 struct f2fs_inode *ri;
2671
2672 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2673 if (IS_ERR(ipage))
2674 return PTR_ERR(ipage);
2675
2676 ri = F2FS_INODE(page);
2677 if (ri->i_inline & F2FS_INLINE_XATTR) {
2678 if (!f2fs_has_inline_xattr(inode)) {
2679 set_inode_flag(inode, FI_INLINE_XATTR);
2680 stat_inc_inline_xattr(inode);
2681 }
2682 } else {
2683 if (f2fs_has_inline_xattr(inode)) {
2684 stat_dec_inline_xattr(inode);
2685 clear_inode_flag(inode, FI_INLINE_XATTR);
2686 }
2687 goto update_inode;
2688 }
2689
2690 dst_addr = inline_xattr_addr(inode, ipage);
2691 src_addr = inline_xattr_addr(inode, page);
2692 inline_size = inline_xattr_size(inode);
2693
2694 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2695 memcpy(dst_addr, src_addr, inline_size);
2696update_inode:
2697 f2fs_update_inode(inode, ipage);
2698 f2fs_put_page(ipage, 1);
2699 return 0;
2700}
2701
2702int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2703{
2704 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2705 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2706 nid_t new_xnid;
2707 struct dnode_of_data dn;
2708 struct node_info ni;
2709 struct page *xpage;
2710 int err;
2711
2712 if (!prev_xnid)
2713 goto recover_xnid;
2714
2715 /* 1: invalidate the previous xattr nid */
2716 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2717 if (err)
2718 return err;
2719
2720 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2721 dec_valid_node_count(sbi, inode, false);
2722 set_node_addr(sbi, &ni, NULL_ADDR, false);
2723
2724recover_xnid:
2725 /* 2: update xattr nid in inode */
2726 if (!f2fs_alloc_nid(sbi, &new_xnid))
2727 return -ENOSPC;
2728
2729 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2730 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2731 if (IS_ERR(xpage)) {
2732 f2fs_alloc_nid_failed(sbi, new_xnid);
2733 return PTR_ERR(xpage);
2734 }
2735
2736 f2fs_alloc_nid_done(sbi, new_xnid);
2737 f2fs_update_inode_page(inode);
2738
2739 /* 3: update and set xattr node page dirty */
2740 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2741
2742 set_page_dirty(xpage);
2743 f2fs_put_page(xpage, 1);
2744
2745 return 0;
2746}
2747
2748int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2749{
2750 struct f2fs_inode *src, *dst;
2751 nid_t ino = ino_of_node(page);
2752 struct node_info old_ni, new_ni;
2753 struct page *ipage;
2754 int err;
2755
2756 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2757 if (err)
2758 return err;
2759
2760 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2761 return -EINVAL;
2762retry:
2763 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2764 if (!ipage) {
2765 memalloc_retry_wait(GFP_NOFS);
2766 goto retry;
2767 }
2768
2769 /* Should not use this inode from free nid list */
2770 remove_free_nid(sbi, ino);
2771
2772 if (!PageUptodate(ipage))
2773 SetPageUptodate(ipage);
2774 fill_node_footer(ipage, ino, ino, 0, true);
2775 set_cold_node(ipage, false);
2776
2777 src = F2FS_INODE(page);
2778 dst = F2FS_INODE(ipage);
2779
2780 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2781 dst->i_size = 0;
2782 dst->i_blocks = cpu_to_le64(1);
2783 dst->i_links = cpu_to_le32(1);
2784 dst->i_xattr_nid = 0;
2785 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2786 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2787 dst->i_extra_isize = src->i_extra_isize;
2788
2789 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2790 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2791 i_inline_xattr_size))
2792 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2793
2794 if (f2fs_sb_has_project_quota(sbi) &&
2795 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2796 i_projid))
2797 dst->i_projid = src->i_projid;
2798
2799 if (f2fs_sb_has_inode_crtime(sbi) &&
2800 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2801 i_crtime_nsec)) {
2802 dst->i_crtime = src->i_crtime;
2803 dst->i_crtime_nsec = src->i_crtime_nsec;
2804 }
2805 }
2806
2807 new_ni = old_ni;
2808 new_ni.ino = ino;
2809
2810 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2811 WARN_ON(1);
2812 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2813 inc_valid_inode_count(sbi);
2814 set_page_dirty(ipage);
2815 f2fs_put_page(ipage, 1);
2816 return 0;
2817}
2818
2819int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2820 unsigned int segno, struct f2fs_summary_block *sum)
2821{
2822 struct f2fs_node *rn;
2823 struct f2fs_summary *sum_entry;
2824 block_t addr;
2825 int i, idx, last_offset, nrpages;
2826
2827 /* scan the node segment */
2828 last_offset = sbi->blocks_per_seg;
2829 addr = START_BLOCK(sbi, segno);
2830 sum_entry = &sum->entries[0];
2831
2832 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2833 nrpages = bio_max_segs(last_offset - i);
2834
2835 /* readahead node pages */
2836 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2837
2838 for (idx = addr; idx < addr + nrpages; idx++) {
2839 struct page *page = f2fs_get_tmp_page(sbi, idx);
2840
2841 if (IS_ERR(page))
2842 return PTR_ERR(page);
2843
2844 rn = F2FS_NODE(page);
2845 sum_entry->nid = rn->footer.nid;
2846 sum_entry->version = 0;
2847 sum_entry->ofs_in_node = 0;
2848 sum_entry++;
2849 f2fs_put_page(page, 1);
2850 }
2851
2852 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2853 addr + nrpages);
2854 }
2855 return 0;
2856}
2857
2858static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2859{
2860 struct f2fs_nm_info *nm_i = NM_I(sbi);
2861 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2862 struct f2fs_journal *journal = curseg->journal;
2863 int i;
2864
2865 down_write(&curseg->journal_rwsem);
2866 for (i = 0; i < nats_in_cursum(journal); i++) {
2867 struct nat_entry *ne;
2868 struct f2fs_nat_entry raw_ne;
2869 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2870
2871 if (f2fs_check_nid_range(sbi, nid))
2872 continue;
2873
2874 raw_ne = nat_in_journal(journal, i);
2875
2876 ne = __lookup_nat_cache(nm_i, nid);
2877 if (!ne) {
2878 ne = __alloc_nat_entry(sbi, nid, true);
2879 __init_nat_entry(nm_i, ne, &raw_ne, true);
2880 }
2881
2882 /*
2883 * if a free nat in journal has not been used after last
2884 * checkpoint, we should remove it from available nids,
2885 * since later we will add it again.
2886 */
2887 if (!get_nat_flag(ne, IS_DIRTY) &&
2888 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2889 spin_lock(&nm_i->nid_list_lock);
2890 nm_i->available_nids--;
2891 spin_unlock(&nm_i->nid_list_lock);
2892 }
2893
2894 __set_nat_cache_dirty(nm_i, ne);
2895 }
2896 update_nats_in_cursum(journal, -i);
2897 up_write(&curseg->journal_rwsem);
2898}
2899
2900static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2901 struct list_head *head, int max)
2902{
2903 struct nat_entry_set *cur;
2904
2905 if (nes->entry_cnt >= max)
2906 goto add_out;
2907
2908 list_for_each_entry(cur, head, set_list) {
2909 if (cur->entry_cnt >= nes->entry_cnt) {
2910 list_add(&nes->set_list, cur->set_list.prev);
2911 return;
2912 }
2913 }
2914add_out:
2915 list_add_tail(&nes->set_list, head);
2916}
2917
2918static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2919 unsigned int valid)
2920{
2921 if (valid == 0) {
2922 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2923 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2924 return;
2925 }
2926
2927 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2928 if (valid == NAT_ENTRY_PER_BLOCK)
2929 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2930 else
2931 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2932}
2933
2934static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2935 struct page *page)
2936{
2937 struct f2fs_nm_info *nm_i = NM_I(sbi);
2938 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2939 struct f2fs_nat_block *nat_blk = page_address(page);
2940 int valid = 0;
2941 int i = 0;
2942
2943 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2944 return;
2945
2946 if (nat_index == 0) {
2947 valid = 1;
2948 i = 1;
2949 }
2950 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2951 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2952 valid++;
2953 }
2954
2955 __update_nat_bits(nm_i, nat_index, valid);
2956}
2957
2958void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2959{
2960 struct f2fs_nm_info *nm_i = NM_I(sbi);
2961 unsigned int nat_ofs;
2962
2963 f2fs_down_read(&nm_i->nat_tree_lock);
2964
2965 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2966 unsigned int valid = 0, nid_ofs = 0;
2967
2968 /* handle nid zero due to it should never be used */
2969 if (unlikely(nat_ofs == 0)) {
2970 valid = 1;
2971 nid_ofs = 1;
2972 }
2973
2974 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2975 if (!test_bit_le(nid_ofs,
2976 nm_i->free_nid_bitmap[nat_ofs]))
2977 valid++;
2978 }
2979
2980 __update_nat_bits(nm_i, nat_ofs, valid);
2981 }
2982
2983 f2fs_up_read(&nm_i->nat_tree_lock);
2984}
2985
2986static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2987 struct nat_entry_set *set, struct cp_control *cpc)
2988{
2989 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2990 struct f2fs_journal *journal = curseg->journal;
2991 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2992 bool to_journal = true;
2993 struct f2fs_nat_block *nat_blk;
2994 struct nat_entry *ne, *cur;
2995 struct page *page = NULL;
2996
2997 /*
2998 * there are two steps to flush nat entries:
2999 * #1, flush nat entries to journal in current hot data summary block.
3000 * #2, flush nat entries to nat page.
3001 */
3002 if ((cpc->reason & CP_UMOUNT) ||
3003 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3004 to_journal = false;
3005
3006 if (to_journal) {
3007 down_write(&curseg->journal_rwsem);
3008 } else {
3009 page = get_next_nat_page(sbi, start_nid);
3010 if (IS_ERR(page))
3011 return PTR_ERR(page);
3012
3013 nat_blk = page_address(page);
3014 f2fs_bug_on(sbi, !nat_blk);
3015 }
3016
3017 /* flush dirty nats in nat entry set */
3018 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3019 struct f2fs_nat_entry *raw_ne;
3020 nid_t nid = nat_get_nid(ne);
3021 int offset;
3022
3023 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3024
3025 if (to_journal) {
3026 offset = f2fs_lookup_journal_in_cursum(journal,
3027 NAT_JOURNAL, nid, 1);
3028 f2fs_bug_on(sbi, offset < 0);
3029 raw_ne = &nat_in_journal(journal, offset);
3030 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3031 } else {
3032 raw_ne = &nat_blk->entries[nid - start_nid];
3033 }
3034 raw_nat_from_node_info(raw_ne, &ne->ni);
3035 nat_reset_flag(ne);
3036 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3037 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3038 add_free_nid(sbi, nid, false, true);
3039 } else {
3040 spin_lock(&NM_I(sbi)->nid_list_lock);
3041 update_free_nid_bitmap(sbi, nid, false, false);
3042 spin_unlock(&NM_I(sbi)->nid_list_lock);
3043 }
3044 }
3045
3046 if (to_journal) {
3047 up_write(&curseg->journal_rwsem);
3048 } else {
3049 update_nat_bits(sbi, start_nid, page);
3050 f2fs_put_page(page, 1);
3051 }
3052
3053 /* Allow dirty nats by node block allocation in write_begin */
3054 if (!set->entry_cnt) {
3055 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3056 kmem_cache_free(nat_entry_set_slab, set);
3057 }
3058 return 0;
3059}
3060
3061/*
3062 * This function is called during the checkpointing process.
3063 */
3064int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3065{
3066 struct f2fs_nm_info *nm_i = NM_I(sbi);
3067 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3068 struct f2fs_journal *journal = curseg->journal;
3069 struct nat_entry_set *setvec[SETVEC_SIZE];
3070 struct nat_entry_set *set, *tmp;
3071 unsigned int found;
3072 nid_t set_idx = 0;
3073 LIST_HEAD(sets);
3074 int err = 0;
3075
3076 /*
3077 * during unmount, let's flush nat_bits before checking
3078 * nat_cnt[DIRTY_NAT].
3079 */
3080 if (cpc->reason & CP_UMOUNT) {
3081 f2fs_down_write(&nm_i->nat_tree_lock);
3082 remove_nats_in_journal(sbi);
3083 f2fs_up_write(&nm_i->nat_tree_lock);
3084 }
3085
3086 if (!nm_i->nat_cnt[DIRTY_NAT])
3087 return 0;
3088
3089 f2fs_down_write(&nm_i->nat_tree_lock);
3090
3091 /*
3092 * if there are no enough space in journal to store dirty nat
3093 * entries, remove all entries from journal and merge them
3094 * into nat entry set.
3095 */
3096 if (cpc->reason & CP_UMOUNT ||
3097 !__has_cursum_space(journal,
3098 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3099 remove_nats_in_journal(sbi);
3100
3101 while ((found = __gang_lookup_nat_set(nm_i,
3102 set_idx, SETVEC_SIZE, setvec))) {
3103 unsigned idx;
3104
3105 set_idx = setvec[found - 1]->set + 1;
3106 for (idx = 0; idx < found; idx++)
3107 __adjust_nat_entry_set(setvec[idx], &sets,
3108 MAX_NAT_JENTRIES(journal));
3109 }
3110
3111 /* flush dirty nats in nat entry set */
3112 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3113 err = __flush_nat_entry_set(sbi, set, cpc);
3114 if (err)
3115 break;
3116 }
3117
3118 f2fs_up_write(&nm_i->nat_tree_lock);
3119 /* Allow dirty nats by node block allocation in write_begin */
3120
3121 return err;
3122}
3123
3124static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3125{
3126 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3127 struct f2fs_nm_info *nm_i = NM_I(sbi);
3128 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3129 unsigned int i;
3130 __u64 cp_ver = cur_cp_version(ckpt);
3131 block_t nat_bits_addr;
3132
3133 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3134 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3135 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3136 if (!nm_i->nat_bits)
3137 return -ENOMEM;
3138
3139 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3140 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3141
3142 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3143 return 0;
3144
3145 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3146 nm_i->nat_bits_blocks;
3147 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3148 struct page *page;
3149
3150 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3151 if (IS_ERR(page))
3152 return PTR_ERR(page);
3153
3154 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3155 page_address(page), F2FS_BLKSIZE);
3156 f2fs_put_page(page, 1);
3157 }
3158
3159 cp_ver |= (cur_cp_crc(ckpt) << 32);
3160 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3161 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3162 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3163 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3164 return 0;
3165 }
3166
3167 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3168 return 0;
3169}
3170
3171static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3172{
3173 struct f2fs_nm_info *nm_i = NM_I(sbi);
3174 unsigned int i = 0;
3175 nid_t nid, last_nid;
3176
3177 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3178 return;
3179
3180 for (i = 0; i < nm_i->nat_blocks; i++) {
3181 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3182 if (i >= nm_i->nat_blocks)
3183 break;
3184
3185 __set_bit_le(i, nm_i->nat_block_bitmap);
3186
3187 nid = i * NAT_ENTRY_PER_BLOCK;
3188 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3189
3190 spin_lock(&NM_I(sbi)->nid_list_lock);
3191 for (; nid < last_nid; nid++)
3192 update_free_nid_bitmap(sbi, nid, true, true);
3193 spin_unlock(&NM_I(sbi)->nid_list_lock);
3194 }
3195
3196 for (i = 0; i < nm_i->nat_blocks; i++) {
3197 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3198 if (i >= nm_i->nat_blocks)
3199 break;
3200
3201 __set_bit_le(i, nm_i->nat_block_bitmap);
3202 }
3203}
3204
3205static int init_node_manager(struct f2fs_sb_info *sbi)
3206{
3207 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3208 struct f2fs_nm_info *nm_i = NM_I(sbi);
3209 unsigned char *version_bitmap;
3210 unsigned int nat_segs;
3211 int err;
3212
3213 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3214
3215 /* segment_count_nat includes pair segment so divide to 2. */
3216 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3217 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3218 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3219
3220 /* not used nids: 0, node, meta, (and root counted as valid node) */
3221 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3222 F2FS_RESERVED_NODE_NUM;
3223 nm_i->nid_cnt[FREE_NID] = 0;
3224 nm_i->nid_cnt[PREALLOC_NID] = 0;
3225 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3226 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3227 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3228 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3229
3230 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3231 INIT_LIST_HEAD(&nm_i->free_nid_list);
3232 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3233 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3234 INIT_LIST_HEAD(&nm_i->nat_entries);
3235 spin_lock_init(&nm_i->nat_list_lock);
3236
3237 mutex_init(&nm_i->build_lock);
3238 spin_lock_init(&nm_i->nid_list_lock);
3239 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3240
3241 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3242 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3243 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3244 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3245 GFP_KERNEL);
3246 if (!nm_i->nat_bitmap)
3247 return -ENOMEM;
3248
3249 err = __get_nat_bitmaps(sbi);
3250 if (err)
3251 return err;
3252
3253#ifdef CONFIG_F2FS_CHECK_FS
3254 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3255 GFP_KERNEL);
3256 if (!nm_i->nat_bitmap_mir)
3257 return -ENOMEM;
3258#endif
3259
3260 return 0;
3261}
3262
3263static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3264{
3265 struct f2fs_nm_info *nm_i = NM_I(sbi);
3266 int i;
3267
3268 nm_i->free_nid_bitmap =
3269 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3270 nm_i->nat_blocks),
3271 GFP_KERNEL);
3272 if (!nm_i->free_nid_bitmap)
3273 return -ENOMEM;
3274
3275 for (i = 0; i < nm_i->nat_blocks; i++) {
3276 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3277 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3278 if (!nm_i->free_nid_bitmap[i])
3279 return -ENOMEM;
3280 }
3281
3282 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3283 GFP_KERNEL);
3284 if (!nm_i->nat_block_bitmap)
3285 return -ENOMEM;
3286
3287 nm_i->free_nid_count =
3288 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3289 nm_i->nat_blocks),
3290 GFP_KERNEL);
3291 if (!nm_i->free_nid_count)
3292 return -ENOMEM;
3293 return 0;
3294}
3295
3296int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3297{
3298 int err;
3299
3300 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3301 GFP_KERNEL);
3302 if (!sbi->nm_info)
3303 return -ENOMEM;
3304
3305 err = init_node_manager(sbi);
3306 if (err)
3307 return err;
3308
3309 err = init_free_nid_cache(sbi);
3310 if (err)
3311 return err;
3312
3313 /* load free nid status from nat_bits table */
3314 load_free_nid_bitmap(sbi);
3315
3316 return f2fs_build_free_nids(sbi, true, true);
3317}
3318
3319void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3320{
3321 struct f2fs_nm_info *nm_i = NM_I(sbi);
3322 struct free_nid *i, *next_i;
3323 struct nat_entry *natvec[NATVEC_SIZE];
3324 struct nat_entry_set *setvec[SETVEC_SIZE];
3325 nid_t nid = 0;
3326 unsigned int found;
3327
3328 if (!nm_i)
3329 return;
3330
3331 /* destroy free nid list */
3332 spin_lock(&nm_i->nid_list_lock);
3333 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3334 __remove_free_nid(sbi, i, FREE_NID);
3335 spin_unlock(&nm_i->nid_list_lock);
3336 kmem_cache_free(free_nid_slab, i);
3337 spin_lock(&nm_i->nid_list_lock);
3338 }
3339 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3340 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3341 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3342 spin_unlock(&nm_i->nid_list_lock);
3343
3344 /* destroy nat cache */
3345 f2fs_down_write(&nm_i->nat_tree_lock);
3346 while ((found = __gang_lookup_nat_cache(nm_i,
3347 nid, NATVEC_SIZE, natvec))) {
3348 unsigned idx;
3349
3350 nid = nat_get_nid(natvec[found - 1]) + 1;
3351 for (idx = 0; idx < found; idx++) {
3352 spin_lock(&nm_i->nat_list_lock);
3353 list_del(&natvec[idx]->list);
3354 spin_unlock(&nm_i->nat_list_lock);
3355
3356 __del_from_nat_cache(nm_i, natvec[idx]);
3357 }
3358 }
3359 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3360
3361 /* destroy nat set cache */
3362 nid = 0;
3363 while ((found = __gang_lookup_nat_set(nm_i,
3364 nid, SETVEC_SIZE, setvec))) {
3365 unsigned idx;
3366
3367 nid = setvec[found - 1]->set + 1;
3368 for (idx = 0; idx < found; idx++) {
3369 /* entry_cnt is not zero, when cp_error was occurred */
3370 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3371 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3372 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3373 }
3374 }
3375 f2fs_up_write(&nm_i->nat_tree_lock);
3376
3377 kvfree(nm_i->nat_block_bitmap);
3378 if (nm_i->free_nid_bitmap) {
3379 int i;
3380
3381 for (i = 0; i < nm_i->nat_blocks; i++)
3382 kvfree(nm_i->free_nid_bitmap[i]);
3383 kvfree(nm_i->free_nid_bitmap);
3384 }
3385 kvfree(nm_i->free_nid_count);
3386
3387 kvfree(nm_i->nat_bitmap);
3388 kvfree(nm_i->nat_bits);
3389#ifdef CONFIG_F2FS_CHECK_FS
3390 kvfree(nm_i->nat_bitmap_mir);
3391#endif
3392 sbi->nm_info = NULL;
3393 kfree(nm_i);
3394}
3395
3396int __init f2fs_create_node_manager_caches(void)
3397{
3398 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3399 sizeof(struct nat_entry));
3400 if (!nat_entry_slab)
3401 goto fail;
3402
3403 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3404 sizeof(struct free_nid));
3405 if (!free_nid_slab)
3406 goto destroy_nat_entry;
3407
3408 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3409 sizeof(struct nat_entry_set));
3410 if (!nat_entry_set_slab)
3411 goto destroy_free_nid;
3412
3413 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3414 sizeof(struct fsync_node_entry));
3415 if (!fsync_node_entry_slab)
3416 goto destroy_nat_entry_set;
3417 return 0;
3418
3419destroy_nat_entry_set:
3420 kmem_cache_destroy(nat_entry_set_slab);
3421destroy_free_nid:
3422 kmem_cache_destroy(free_nid_slab);
3423destroy_nat_entry:
3424 kmem_cache_destroy(nat_entry_slab);
3425fail:
3426 return -ENOMEM;
3427}
3428
3429void f2fs_destroy_node_manager_caches(void)
3430{
3431 kmem_cache_destroy(fsync_node_entry_slab);
3432 kmem_cache_destroy(nat_entry_set_slab);
3433 kmem_cache_destroy(free_nid_slab);
3434 kmem_cache_destroy(nat_entry_slab);
3435}
1/*
2 * fs/f2fs/node.c
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/fs.h>
12#include <linux/f2fs_fs.h>
13#include <linux/mpage.h>
14#include <linux/backing-dev.h>
15#include <linux/blkdev.h>
16#include <linux/pagevec.h>
17#include <linux/swap.h>
18
19#include "f2fs.h"
20#include "node.h"
21#include "segment.h"
22#include "xattr.h"
23#include "trace.h"
24#include <trace/events/f2fs.h>
25
26#define on_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
27
28static struct kmem_cache *nat_entry_slab;
29static struct kmem_cache *free_nid_slab;
30static struct kmem_cache *nat_entry_set_slab;
31
32bool available_free_memory(struct f2fs_sb_info *sbi, int type)
33{
34 struct f2fs_nm_info *nm_i = NM_I(sbi);
35 struct sysinfo val;
36 unsigned long avail_ram;
37 unsigned long mem_size = 0;
38 bool res = false;
39
40 si_meminfo(&val);
41
42 /* only uses low memory */
43 avail_ram = val.totalram - val.totalhigh;
44
45 /*
46 * give 25%, 25%, 50%, 50%, 50% memory for each components respectively
47 */
48 if (type == FREE_NIDS) {
49 mem_size = (nm_i->nid_cnt[FREE_NID] *
50 sizeof(struct free_nid)) >> PAGE_SHIFT;
51 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
52 } else if (type == NAT_ENTRIES) {
53 mem_size = (nm_i->nat_cnt * sizeof(struct nat_entry)) >>
54 PAGE_SHIFT;
55 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
56 if (excess_cached_nats(sbi))
57 res = false;
58 } else if (type == DIRTY_DENTS) {
59 if (sbi->sb->s_bdi->wb.dirty_exceeded)
60 return false;
61 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
62 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
63 } else if (type == INO_ENTRIES) {
64 int i;
65
66 for (i = 0; i < MAX_INO_ENTRY; i++)
67 mem_size += sbi->im[i].ino_num *
68 sizeof(struct ino_entry);
69 mem_size >>= PAGE_SHIFT;
70 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
71 } else if (type == EXTENT_CACHE) {
72 mem_size = (atomic_read(&sbi->total_ext_tree) *
73 sizeof(struct extent_tree) +
74 atomic_read(&sbi->total_ext_node) *
75 sizeof(struct extent_node)) >> PAGE_SHIFT;
76 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
77 } else if (type == INMEM_PAGES) {
78 /* it allows 20% / total_ram for inmemory pages */
79 mem_size = get_pages(sbi, F2FS_INMEM_PAGES);
80 res = mem_size < (val.totalram / 5);
81 } else {
82 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
83 return true;
84 }
85 return res;
86}
87
88static void clear_node_page_dirty(struct page *page)
89{
90 struct address_space *mapping = page->mapping;
91 unsigned int long flags;
92
93 if (PageDirty(page)) {
94 xa_lock_irqsave(&mapping->i_pages, flags);
95 radix_tree_tag_clear(&mapping->i_pages,
96 page_index(page),
97 PAGECACHE_TAG_DIRTY);
98 xa_unlock_irqrestore(&mapping->i_pages, flags);
99
100 clear_page_dirty_for_io(page);
101 dec_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
102 }
103 ClearPageUptodate(page);
104}
105
106static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
107{
108 pgoff_t index = current_nat_addr(sbi, nid);
109 return get_meta_page(sbi, index);
110}
111
112static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
113{
114 struct page *src_page;
115 struct page *dst_page;
116 pgoff_t src_off;
117 pgoff_t dst_off;
118 void *src_addr;
119 void *dst_addr;
120 struct f2fs_nm_info *nm_i = NM_I(sbi);
121
122 src_off = current_nat_addr(sbi, nid);
123 dst_off = next_nat_addr(sbi, src_off);
124
125 /* get current nat block page with lock */
126 src_page = get_meta_page(sbi, src_off);
127 dst_page = grab_meta_page(sbi, dst_off);
128 f2fs_bug_on(sbi, PageDirty(src_page));
129
130 src_addr = page_address(src_page);
131 dst_addr = page_address(dst_page);
132 memcpy(dst_addr, src_addr, PAGE_SIZE);
133 set_page_dirty(dst_page);
134 f2fs_put_page(src_page, 1);
135
136 set_to_next_nat(nm_i, nid);
137
138 return dst_page;
139}
140
141static struct nat_entry *__alloc_nat_entry(nid_t nid, bool no_fail)
142{
143 struct nat_entry *new;
144
145 if (no_fail)
146 new = f2fs_kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
147 else
148 new = kmem_cache_alloc(nat_entry_slab, GFP_F2FS_ZERO);
149 if (new) {
150 nat_set_nid(new, nid);
151 nat_reset_flag(new);
152 }
153 return new;
154}
155
156static void __free_nat_entry(struct nat_entry *e)
157{
158 kmem_cache_free(nat_entry_slab, e);
159}
160
161/* must be locked by nat_tree_lock */
162static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
163 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
164{
165 if (no_fail)
166 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
167 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
168 return NULL;
169
170 if (raw_ne)
171 node_info_from_raw_nat(&ne->ni, raw_ne);
172 list_add_tail(&ne->list, &nm_i->nat_entries);
173 nm_i->nat_cnt++;
174 return ne;
175}
176
177static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
178{
179 return radix_tree_lookup(&nm_i->nat_root, n);
180}
181
182static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
183 nid_t start, unsigned int nr, struct nat_entry **ep)
184{
185 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
186}
187
188static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
189{
190 list_del(&e->list);
191 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
192 nm_i->nat_cnt--;
193 __free_nat_entry(e);
194}
195
196static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
197 struct nat_entry *ne)
198{
199 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
200 struct nat_entry_set *head;
201
202 head = radix_tree_lookup(&nm_i->nat_set_root, set);
203 if (!head) {
204 head = f2fs_kmem_cache_alloc(nat_entry_set_slab, GFP_NOFS);
205
206 INIT_LIST_HEAD(&head->entry_list);
207 INIT_LIST_HEAD(&head->set_list);
208 head->set = set;
209 head->entry_cnt = 0;
210 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
211 }
212 return head;
213}
214
215static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
216 struct nat_entry *ne)
217{
218 struct nat_entry_set *head;
219 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
220
221 if (!new_ne)
222 head = __grab_nat_entry_set(nm_i, ne);
223
224 /*
225 * update entry_cnt in below condition:
226 * 1. update NEW_ADDR to valid block address;
227 * 2. update old block address to new one;
228 */
229 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
230 !get_nat_flag(ne, IS_DIRTY)))
231 head->entry_cnt++;
232
233 set_nat_flag(ne, IS_PREALLOC, new_ne);
234
235 if (get_nat_flag(ne, IS_DIRTY))
236 goto refresh_list;
237
238 nm_i->dirty_nat_cnt++;
239 set_nat_flag(ne, IS_DIRTY, true);
240refresh_list:
241 if (new_ne)
242 list_del_init(&ne->list);
243 else
244 list_move_tail(&ne->list, &head->entry_list);
245}
246
247static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
248 struct nat_entry_set *set, struct nat_entry *ne)
249{
250 list_move_tail(&ne->list, &nm_i->nat_entries);
251 set_nat_flag(ne, IS_DIRTY, false);
252 set->entry_cnt--;
253 nm_i->dirty_nat_cnt--;
254}
255
256static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
257 nid_t start, unsigned int nr, struct nat_entry_set **ep)
258{
259 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
260 start, nr);
261}
262
263int need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
264{
265 struct f2fs_nm_info *nm_i = NM_I(sbi);
266 struct nat_entry *e;
267 bool need = false;
268
269 down_read(&nm_i->nat_tree_lock);
270 e = __lookup_nat_cache(nm_i, nid);
271 if (e) {
272 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
273 !get_nat_flag(e, HAS_FSYNCED_INODE))
274 need = true;
275 }
276 up_read(&nm_i->nat_tree_lock);
277 return need;
278}
279
280bool is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
281{
282 struct f2fs_nm_info *nm_i = NM_I(sbi);
283 struct nat_entry *e;
284 bool is_cp = true;
285
286 down_read(&nm_i->nat_tree_lock);
287 e = __lookup_nat_cache(nm_i, nid);
288 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
289 is_cp = false;
290 up_read(&nm_i->nat_tree_lock);
291 return is_cp;
292}
293
294bool need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
295{
296 struct f2fs_nm_info *nm_i = NM_I(sbi);
297 struct nat_entry *e;
298 bool need_update = true;
299
300 down_read(&nm_i->nat_tree_lock);
301 e = __lookup_nat_cache(nm_i, ino);
302 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
303 (get_nat_flag(e, IS_CHECKPOINTED) ||
304 get_nat_flag(e, HAS_FSYNCED_INODE)))
305 need_update = false;
306 up_read(&nm_i->nat_tree_lock);
307 return need_update;
308}
309
310/* must be locked by nat_tree_lock */
311static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
312 struct f2fs_nat_entry *ne)
313{
314 struct f2fs_nm_info *nm_i = NM_I(sbi);
315 struct nat_entry *new, *e;
316
317 new = __alloc_nat_entry(nid, false);
318 if (!new)
319 return;
320
321 down_write(&nm_i->nat_tree_lock);
322 e = __lookup_nat_cache(nm_i, nid);
323 if (!e)
324 e = __init_nat_entry(nm_i, new, ne, false);
325 else
326 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
327 nat_get_blkaddr(e) !=
328 le32_to_cpu(ne->block_addr) ||
329 nat_get_version(e) != ne->version);
330 up_write(&nm_i->nat_tree_lock);
331 if (e != new)
332 __free_nat_entry(new);
333}
334
335static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
336 block_t new_blkaddr, bool fsync_done)
337{
338 struct f2fs_nm_info *nm_i = NM_I(sbi);
339 struct nat_entry *e;
340 struct nat_entry *new = __alloc_nat_entry(ni->nid, true);
341
342 down_write(&nm_i->nat_tree_lock);
343 e = __lookup_nat_cache(nm_i, ni->nid);
344 if (!e) {
345 e = __init_nat_entry(nm_i, new, NULL, true);
346 copy_node_info(&e->ni, ni);
347 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
348 } else if (new_blkaddr == NEW_ADDR) {
349 /*
350 * when nid is reallocated,
351 * previous nat entry can be remained in nat cache.
352 * So, reinitialize it with new information.
353 */
354 copy_node_info(&e->ni, ni);
355 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
356 }
357 /* let's free early to reduce memory consumption */
358 if (e != new)
359 __free_nat_entry(new);
360
361 /* sanity check */
362 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
363 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
364 new_blkaddr == NULL_ADDR);
365 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
366 new_blkaddr == NEW_ADDR);
367 f2fs_bug_on(sbi, nat_get_blkaddr(e) != NEW_ADDR &&
368 nat_get_blkaddr(e) != NULL_ADDR &&
369 new_blkaddr == NEW_ADDR);
370
371 /* increment version no as node is removed */
372 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
373 unsigned char version = nat_get_version(e);
374 nat_set_version(e, inc_node_version(version));
375 }
376
377 /* change address */
378 nat_set_blkaddr(e, new_blkaddr);
379 if (new_blkaddr == NEW_ADDR || new_blkaddr == NULL_ADDR)
380 set_nat_flag(e, IS_CHECKPOINTED, false);
381 __set_nat_cache_dirty(nm_i, e);
382
383 /* update fsync_mark if its inode nat entry is still alive */
384 if (ni->nid != ni->ino)
385 e = __lookup_nat_cache(nm_i, ni->ino);
386 if (e) {
387 if (fsync_done && ni->nid == ni->ino)
388 set_nat_flag(e, HAS_FSYNCED_INODE, true);
389 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
390 }
391 up_write(&nm_i->nat_tree_lock);
392}
393
394int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
395{
396 struct f2fs_nm_info *nm_i = NM_I(sbi);
397 int nr = nr_shrink;
398
399 if (!down_write_trylock(&nm_i->nat_tree_lock))
400 return 0;
401
402 while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
403 struct nat_entry *ne;
404 ne = list_first_entry(&nm_i->nat_entries,
405 struct nat_entry, list);
406 __del_from_nat_cache(nm_i, ne);
407 nr_shrink--;
408 }
409 up_write(&nm_i->nat_tree_lock);
410 return nr - nr_shrink;
411}
412
413/*
414 * This function always returns success
415 */
416void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
417{
418 struct f2fs_nm_info *nm_i = NM_I(sbi);
419 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
420 struct f2fs_journal *journal = curseg->journal;
421 nid_t start_nid = START_NID(nid);
422 struct f2fs_nat_block *nat_blk;
423 struct page *page = NULL;
424 struct f2fs_nat_entry ne;
425 struct nat_entry *e;
426 pgoff_t index;
427 int i;
428
429 ni->nid = nid;
430
431 /* Check nat cache */
432 down_read(&nm_i->nat_tree_lock);
433 e = __lookup_nat_cache(nm_i, nid);
434 if (e) {
435 ni->ino = nat_get_ino(e);
436 ni->blk_addr = nat_get_blkaddr(e);
437 ni->version = nat_get_version(e);
438 up_read(&nm_i->nat_tree_lock);
439 return;
440 }
441
442 memset(&ne, 0, sizeof(struct f2fs_nat_entry));
443
444 /* Check current segment summary */
445 down_read(&curseg->journal_rwsem);
446 i = lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
447 if (i >= 0) {
448 ne = nat_in_journal(journal, i);
449 node_info_from_raw_nat(ni, &ne);
450 }
451 up_read(&curseg->journal_rwsem);
452 if (i >= 0) {
453 up_read(&nm_i->nat_tree_lock);
454 goto cache;
455 }
456
457 /* Fill node_info from nat page */
458 index = current_nat_addr(sbi, nid);
459 up_read(&nm_i->nat_tree_lock);
460
461 page = get_meta_page(sbi, index);
462 nat_blk = (struct f2fs_nat_block *)page_address(page);
463 ne = nat_blk->entries[nid - start_nid];
464 node_info_from_raw_nat(ni, &ne);
465 f2fs_put_page(page, 1);
466cache:
467 /* cache nat entry */
468 cache_nat_entry(sbi, nid, &ne);
469}
470
471/*
472 * readahead MAX_RA_NODE number of node pages.
473 */
474static void ra_node_pages(struct page *parent, int start, int n)
475{
476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
477 struct blk_plug plug;
478 int i, end;
479 nid_t nid;
480
481 blk_start_plug(&plug);
482
483 /* Then, try readahead for siblings of the desired node */
484 end = start + n;
485 end = min(end, NIDS_PER_BLOCK);
486 for (i = start; i < end; i++) {
487 nid = get_nid(parent, i, false);
488 ra_node_page(sbi, nid);
489 }
490
491 blk_finish_plug(&plug);
492}
493
494pgoff_t get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
495{
496 const long direct_index = ADDRS_PER_INODE(dn->inode);
497 const long direct_blks = ADDRS_PER_BLOCK;
498 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
499 unsigned int skipped_unit = ADDRS_PER_BLOCK;
500 int cur_level = dn->cur_level;
501 int max_level = dn->max_level;
502 pgoff_t base = 0;
503
504 if (!dn->max_level)
505 return pgofs + 1;
506
507 while (max_level-- > cur_level)
508 skipped_unit *= NIDS_PER_BLOCK;
509
510 switch (dn->max_level) {
511 case 3:
512 base += 2 * indirect_blks;
513 case 2:
514 base += 2 * direct_blks;
515 case 1:
516 base += direct_index;
517 break;
518 default:
519 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
520 }
521
522 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
523}
524
525/*
526 * The maximum depth is four.
527 * Offset[0] will have raw inode offset.
528 */
529static int get_node_path(struct inode *inode, long block,
530 int offset[4], unsigned int noffset[4])
531{
532 const long direct_index = ADDRS_PER_INODE(inode);
533 const long direct_blks = ADDRS_PER_BLOCK;
534 const long dptrs_per_blk = NIDS_PER_BLOCK;
535 const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
536 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
537 int n = 0;
538 int level = 0;
539
540 noffset[0] = 0;
541
542 if (block < direct_index) {
543 offset[n] = block;
544 goto got;
545 }
546 block -= direct_index;
547 if (block < direct_blks) {
548 offset[n++] = NODE_DIR1_BLOCK;
549 noffset[n] = 1;
550 offset[n] = block;
551 level = 1;
552 goto got;
553 }
554 block -= direct_blks;
555 if (block < direct_blks) {
556 offset[n++] = NODE_DIR2_BLOCK;
557 noffset[n] = 2;
558 offset[n] = block;
559 level = 1;
560 goto got;
561 }
562 block -= direct_blks;
563 if (block < indirect_blks) {
564 offset[n++] = NODE_IND1_BLOCK;
565 noffset[n] = 3;
566 offset[n++] = block / direct_blks;
567 noffset[n] = 4 + offset[n - 1];
568 offset[n] = block % direct_blks;
569 level = 2;
570 goto got;
571 }
572 block -= indirect_blks;
573 if (block < indirect_blks) {
574 offset[n++] = NODE_IND2_BLOCK;
575 noffset[n] = 4 + dptrs_per_blk;
576 offset[n++] = block / direct_blks;
577 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
578 offset[n] = block % direct_blks;
579 level = 2;
580 goto got;
581 }
582 block -= indirect_blks;
583 if (block < dindirect_blks) {
584 offset[n++] = NODE_DIND_BLOCK;
585 noffset[n] = 5 + (dptrs_per_blk * 2);
586 offset[n++] = block / indirect_blks;
587 noffset[n] = 6 + (dptrs_per_blk * 2) +
588 offset[n - 1] * (dptrs_per_blk + 1);
589 offset[n++] = (block / direct_blks) % dptrs_per_blk;
590 noffset[n] = 7 + (dptrs_per_blk * 2) +
591 offset[n - 2] * (dptrs_per_blk + 1) +
592 offset[n - 1];
593 offset[n] = block % direct_blks;
594 level = 3;
595 goto got;
596 } else {
597 return -E2BIG;
598 }
599got:
600 return level;
601}
602
603/*
604 * Caller should call f2fs_put_dnode(dn).
605 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
606 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
607 * In the case of RDONLY_NODE, we don't need to care about mutex.
608 */
609int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
610{
611 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
612 struct page *npage[4];
613 struct page *parent = NULL;
614 int offset[4];
615 unsigned int noffset[4];
616 nid_t nids[4];
617 int level, i = 0;
618 int err = 0;
619
620 level = get_node_path(dn->inode, index, offset, noffset);
621 if (level < 0)
622 return level;
623
624 nids[0] = dn->inode->i_ino;
625 npage[0] = dn->inode_page;
626
627 if (!npage[0]) {
628 npage[0] = get_node_page(sbi, nids[0]);
629 if (IS_ERR(npage[0]))
630 return PTR_ERR(npage[0]);
631 }
632
633 /* if inline_data is set, should not report any block indices */
634 if (f2fs_has_inline_data(dn->inode) && index) {
635 err = -ENOENT;
636 f2fs_put_page(npage[0], 1);
637 goto release_out;
638 }
639
640 parent = npage[0];
641 if (level != 0)
642 nids[1] = get_nid(parent, offset[0], true);
643 dn->inode_page = npage[0];
644 dn->inode_page_locked = true;
645
646 /* get indirect or direct nodes */
647 for (i = 1; i <= level; i++) {
648 bool done = false;
649
650 if (!nids[i] && mode == ALLOC_NODE) {
651 /* alloc new node */
652 if (!alloc_nid(sbi, &(nids[i]))) {
653 err = -ENOSPC;
654 goto release_pages;
655 }
656
657 dn->nid = nids[i];
658 npage[i] = new_node_page(dn, noffset[i]);
659 if (IS_ERR(npage[i])) {
660 alloc_nid_failed(sbi, nids[i]);
661 err = PTR_ERR(npage[i]);
662 goto release_pages;
663 }
664
665 set_nid(parent, offset[i - 1], nids[i], i == 1);
666 alloc_nid_done(sbi, nids[i]);
667 done = true;
668 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
669 npage[i] = get_node_page_ra(parent, offset[i - 1]);
670 if (IS_ERR(npage[i])) {
671 err = PTR_ERR(npage[i]);
672 goto release_pages;
673 }
674 done = true;
675 }
676 if (i == 1) {
677 dn->inode_page_locked = false;
678 unlock_page(parent);
679 } else {
680 f2fs_put_page(parent, 1);
681 }
682
683 if (!done) {
684 npage[i] = get_node_page(sbi, nids[i]);
685 if (IS_ERR(npage[i])) {
686 err = PTR_ERR(npage[i]);
687 f2fs_put_page(npage[0], 0);
688 goto release_out;
689 }
690 }
691 if (i < level) {
692 parent = npage[i];
693 nids[i + 1] = get_nid(parent, offset[i], false);
694 }
695 }
696 dn->nid = nids[level];
697 dn->ofs_in_node = offset[level];
698 dn->node_page = npage[level];
699 dn->data_blkaddr = datablock_addr(dn->inode,
700 dn->node_page, dn->ofs_in_node);
701 return 0;
702
703release_pages:
704 f2fs_put_page(parent, 1);
705 if (i > 1)
706 f2fs_put_page(npage[0], 0);
707release_out:
708 dn->inode_page = NULL;
709 dn->node_page = NULL;
710 if (err == -ENOENT) {
711 dn->cur_level = i;
712 dn->max_level = level;
713 dn->ofs_in_node = offset[level];
714 }
715 return err;
716}
717
718static void truncate_node(struct dnode_of_data *dn)
719{
720 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
721 struct node_info ni;
722
723 get_node_info(sbi, dn->nid, &ni);
724
725 /* Deallocate node address */
726 invalidate_blocks(sbi, ni.blk_addr);
727 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
728 set_node_addr(sbi, &ni, NULL_ADDR, false);
729
730 if (dn->nid == dn->inode->i_ino) {
731 remove_orphan_inode(sbi, dn->nid);
732 dec_valid_inode_count(sbi);
733 f2fs_inode_synced(dn->inode);
734 }
735
736 clear_node_page_dirty(dn->node_page);
737 set_sbi_flag(sbi, SBI_IS_DIRTY);
738
739 f2fs_put_page(dn->node_page, 1);
740
741 invalidate_mapping_pages(NODE_MAPPING(sbi),
742 dn->node_page->index, dn->node_page->index);
743
744 dn->node_page = NULL;
745 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
746}
747
748static int truncate_dnode(struct dnode_of_data *dn)
749{
750 struct page *page;
751
752 if (dn->nid == 0)
753 return 1;
754
755 /* get direct node */
756 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
757 if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
758 return 1;
759 else if (IS_ERR(page))
760 return PTR_ERR(page);
761
762 /* Make dnode_of_data for parameter */
763 dn->node_page = page;
764 dn->ofs_in_node = 0;
765 truncate_data_blocks(dn);
766 truncate_node(dn);
767 return 1;
768}
769
770static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
771 int ofs, int depth)
772{
773 struct dnode_of_data rdn = *dn;
774 struct page *page;
775 struct f2fs_node *rn;
776 nid_t child_nid;
777 unsigned int child_nofs;
778 int freed = 0;
779 int i, ret;
780
781 if (dn->nid == 0)
782 return NIDS_PER_BLOCK + 1;
783
784 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
785
786 page = get_node_page(F2FS_I_SB(dn->inode), dn->nid);
787 if (IS_ERR(page)) {
788 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
789 return PTR_ERR(page);
790 }
791
792 ra_node_pages(page, ofs, NIDS_PER_BLOCK);
793
794 rn = F2FS_NODE(page);
795 if (depth < 3) {
796 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
797 child_nid = le32_to_cpu(rn->in.nid[i]);
798 if (child_nid == 0)
799 continue;
800 rdn.nid = child_nid;
801 ret = truncate_dnode(&rdn);
802 if (ret < 0)
803 goto out_err;
804 if (set_nid(page, i, 0, false))
805 dn->node_changed = true;
806 }
807 } else {
808 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
809 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
810 child_nid = le32_to_cpu(rn->in.nid[i]);
811 if (child_nid == 0) {
812 child_nofs += NIDS_PER_BLOCK + 1;
813 continue;
814 }
815 rdn.nid = child_nid;
816 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
817 if (ret == (NIDS_PER_BLOCK + 1)) {
818 if (set_nid(page, i, 0, false))
819 dn->node_changed = true;
820 child_nofs += ret;
821 } else if (ret < 0 && ret != -ENOENT) {
822 goto out_err;
823 }
824 }
825 freed = child_nofs;
826 }
827
828 if (!ofs) {
829 /* remove current indirect node */
830 dn->node_page = page;
831 truncate_node(dn);
832 freed++;
833 } else {
834 f2fs_put_page(page, 1);
835 }
836 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
837 return freed;
838
839out_err:
840 f2fs_put_page(page, 1);
841 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
842 return ret;
843}
844
845static int truncate_partial_nodes(struct dnode_of_data *dn,
846 struct f2fs_inode *ri, int *offset, int depth)
847{
848 struct page *pages[2];
849 nid_t nid[3];
850 nid_t child_nid;
851 int err = 0;
852 int i;
853 int idx = depth - 2;
854
855 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
856 if (!nid[0])
857 return 0;
858
859 /* get indirect nodes in the path */
860 for (i = 0; i < idx + 1; i++) {
861 /* reference count'll be increased */
862 pages[i] = get_node_page(F2FS_I_SB(dn->inode), nid[i]);
863 if (IS_ERR(pages[i])) {
864 err = PTR_ERR(pages[i]);
865 idx = i - 1;
866 goto fail;
867 }
868 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
869 }
870
871 ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
872
873 /* free direct nodes linked to a partial indirect node */
874 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
875 child_nid = get_nid(pages[idx], i, false);
876 if (!child_nid)
877 continue;
878 dn->nid = child_nid;
879 err = truncate_dnode(dn);
880 if (err < 0)
881 goto fail;
882 if (set_nid(pages[idx], i, 0, false))
883 dn->node_changed = true;
884 }
885
886 if (offset[idx + 1] == 0) {
887 dn->node_page = pages[idx];
888 dn->nid = nid[idx];
889 truncate_node(dn);
890 } else {
891 f2fs_put_page(pages[idx], 1);
892 }
893 offset[idx]++;
894 offset[idx + 1] = 0;
895 idx--;
896fail:
897 for (i = idx; i >= 0; i--)
898 f2fs_put_page(pages[i], 1);
899
900 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
901
902 return err;
903}
904
905/*
906 * All the block addresses of data and nodes should be nullified.
907 */
908int truncate_inode_blocks(struct inode *inode, pgoff_t from)
909{
910 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
911 int err = 0, cont = 1;
912 int level, offset[4], noffset[4];
913 unsigned int nofs = 0;
914 struct f2fs_inode *ri;
915 struct dnode_of_data dn;
916 struct page *page;
917
918 trace_f2fs_truncate_inode_blocks_enter(inode, from);
919
920 level = get_node_path(inode, from, offset, noffset);
921 if (level < 0)
922 return level;
923
924 page = get_node_page(sbi, inode->i_ino);
925 if (IS_ERR(page)) {
926 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
927 return PTR_ERR(page);
928 }
929
930 set_new_dnode(&dn, inode, page, NULL, 0);
931 unlock_page(page);
932
933 ri = F2FS_INODE(page);
934 switch (level) {
935 case 0:
936 case 1:
937 nofs = noffset[1];
938 break;
939 case 2:
940 nofs = noffset[1];
941 if (!offset[level - 1])
942 goto skip_partial;
943 err = truncate_partial_nodes(&dn, ri, offset, level);
944 if (err < 0 && err != -ENOENT)
945 goto fail;
946 nofs += 1 + NIDS_PER_BLOCK;
947 break;
948 case 3:
949 nofs = 5 + 2 * NIDS_PER_BLOCK;
950 if (!offset[level - 1])
951 goto skip_partial;
952 err = truncate_partial_nodes(&dn, ri, offset, level);
953 if (err < 0 && err != -ENOENT)
954 goto fail;
955 break;
956 default:
957 BUG();
958 }
959
960skip_partial:
961 while (cont) {
962 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
963 switch (offset[0]) {
964 case NODE_DIR1_BLOCK:
965 case NODE_DIR2_BLOCK:
966 err = truncate_dnode(&dn);
967 break;
968
969 case NODE_IND1_BLOCK:
970 case NODE_IND2_BLOCK:
971 err = truncate_nodes(&dn, nofs, offset[1], 2);
972 break;
973
974 case NODE_DIND_BLOCK:
975 err = truncate_nodes(&dn, nofs, offset[1], 3);
976 cont = 0;
977 break;
978
979 default:
980 BUG();
981 }
982 if (err < 0 && err != -ENOENT)
983 goto fail;
984 if (offset[1] == 0 &&
985 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
986 lock_page(page);
987 BUG_ON(page->mapping != NODE_MAPPING(sbi));
988 f2fs_wait_on_page_writeback(page, NODE, true);
989 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
990 set_page_dirty(page);
991 unlock_page(page);
992 }
993 offset[1] = 0;
994 offset[0]++;
995 nofs += err;
996 }
997fail:
998 f2fs_put_page(page, 0);
999 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1000 return err > 0 ? 0 : err;
1001}
1002
1003/* caller must lock inode page */
1004int truncate_xattr_node(struct inode *inode)
1005{
1006 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1007 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1008 struct dnode_of_data dn;
1009 struct page *npage;
1010
1011 if (!nid)
1012 return 0;
1013
1014 npage = get_node_page(sbi, nid);
1015 if (IS_ERR(npage))
1016 return PTR_ERR(npage);
1017
1018 f2fs_i_xnid_write(inode, 0);
1019
1020 set_new_dnode(&dn, inode, NULL, npage, nid);
1021 truncate_node(&dn);
1022 return 0;
1023}
1024
1025/*
1026 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1027 * f2fs_unlock_op().
1028 */
1029int remove_inode_page(struct inode *inode)
1030{
1031 struct dnode_of_data dn;
1032 int err;
1033
1034 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1035 err = get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1036 if (err)
1037 return err;
1038
1039 err = truncate_xattr_node(inode);
1040 if (err) {
1041 f2fs_put_dnode(&dn);
1042 return err;
1043 }
1044
1045 /* remove potential inline_data blocks */
1046 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1047 S_ISLNK(inode->i_mode))
1048 truncate_data_blocks_range(&dn, 1);
1049
1050 /* 0 is possible, after f2fs_new_inode() has failed */
1051 f2fs_bug_on(F2FS_I_SB(inode),
1052 inode->i_blocks != 0 && inode->i_blocks != 8);
1053
1054 /* will put inode & node pages */
1055 truncate_node(&dn);
1056 return 0;
1057}
1058
1059struct page *new_inode_page(struct inode *inode)
1060{
1061 struct dnode_of_data dn;
1062
1063 /* allocate inode page for new inode */
1064 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1065
1066 /* caller should f2fs_put_page(page, 1); */
1067 return new_node_page(&dn, 0);
1068}
1069
1070struct page *new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1071{
1072 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1073 struct node_info new_ni;
1074 struct page *page;
1075 int err;
1076
1077 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1078 return ERR_PTR(-EPERM);
1079
1080 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1081 if (!page)
1082 return ERR_PTR(-ENOMEM);
1083
1084 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1085 goto fail;
1086
1087#ifdef CONFIG_F2FS_CHECK_FS
1088 get_node_info(sbi, dn->nid, &new_ni);
1089 f2fs_bug_on(sbi, new_ni.blk_addr != NULL_ADDR);
1090#endif
1091 new_ni.nid = dn->nid;
1092 new_ni.ino = dn->inode->i_ino;
1093 new_ni.blk_addr = NULL_ADDR;
1094 new_ni.flag = 0;
1095 new_ni.version = 0;
1096 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1097
1098 f2fs_wait_on_page_writeback(page, NODE, true);
1099 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1100 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1101 if (!PageUptodate(page))
1102 SetPageUptodate(page);
1103 if (set_page_dirty(page))
1104 dn->node_changed = true;
1105
1106 if (f2fs_has_xattr_block(ofs))
1107 f2fs_i_xnid_write(dn->inode, dn->nid);
1108
1109 if (ofs == 0)
1110 inc_valid_inode_count(sbi);
1111 return page;
1112
1113fail:
1114 clear_node_page_dirty(page);
1115 f2fs_put_page(page, 1);
1116 return ERR_PTR(err);
1117}
1118
1119/*
1120 * Caller should do after getting the following values.
1121 * 0: f2fs_put_page(page, 0)
1122 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1123 */
1124static int read_node_page(struct page *page, int op_flags)
1125{
1126 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1127 struct node_info ni;
1128 struct f2fs_io_info fio = {
1129 .sbi = sbi,
1130 .type = NODE,
1131 .op = REQ_OP_READ,
1132 .op_flags = op_flags,
1133 .page = page,
1134 .encrypted_page = NULL,
1135 };
1136
1137 if (PageUptodate(page))
1138 return LOCKED_PAGE;
1139
1140 get_node_info(sbi, page->index, &ni);
1141
1142 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1143 ClearPageUptodate(page);
1144 return -ENOENT;
1145 }
1146
1147 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1148 return f2fs_submit_page_bio(&fio);
1149}
1150
1151/*
1152 * Readahead a node page
1153 */
1154void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1155{
1156 struct page *apage;
1157 int err;
1158
1159 if (!nid)
1160 return;
1161 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1162
1163 rcu_read_lock();
1164 apage = radix_tree_lookup(&NODE_MAPPING(sbi)->i_pages, nid);
1165 rcu_read_unlock();
1166 if (apage)
1167 return;
1168
1169 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1170 if (!apage)
1171 return;
1172
1173 err = read_node_page(apage, REQ_RAHEAD);
1174 f2fs_put_page(apage, err ? 1 : 0);
1175}
1176
1177static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1178 struct page *parent, int start)
1179{
1180 struct page *page;
1181 int err;
1182
1183 if (!nid)
1184 return ERR_PTR(-ENOENT);
1185 f2fs_bug_on(sbi, check_nid_range(sbi, nid));
1186repeat:
1187 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1188 if (!page)
1189 return ERR_PTR(-ENOMEM);
1190
1191 err = read_node_page(page, 0);
1192 if (err < 0) {
1193 f2fs_put_page(page, 1);
1194 return ERR_PTR(err);
1195 } else if (err == LOCKED_PAGE) {
1196 err = 0;
1197 goto page_hit;
1198 }
1199
1200 if (parent)
1201 ra_node_pages(parent, start + 1, MAX_RA_NODE);
1202
1203 lock_page(page);
1204
1205 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1206 f2fs_put_page(page, 1);
1207 goto repeat;
1208 }
1209
1210 if (unlikely(!PageUptodate(page))) {
1211 err = -EIO;
1212 goto out_err;
1213 }
1214
1215 if (!f2fs_inode_chksum_verify(sbi, page)) {
1216 err = -EBADMSG;
1217 goto out_err;
1218 }
1219page_hit:
1220 if(unlikely(nid != nid_of_node(page))) {
1221 f2fs_msg(sbi->sb, KERN_WARNING, "inconsistent node block, "
1222 "nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1223 nid, nid_of_node(page), ino_of_node(page),
1224 ofs_of_node(page), cpver_of_node(page),
1225 next_blkaddr_of_node(page));
1226 err = -EINVAL;
1227out_err:
1228 ClearPageUptodate(page);
1229 f2fs_put_page(page, 1);
1230 return ERR_PTR(err);
1231 }
1232 return page;
1233}
1234
1235struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1236{
1237 return __get_node_page(sbi, nid, NULL, 0);
1238}
1239
1240struct page *get_node_page_ra(struct page *parent, int start)
1241{
1242 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1243 nid_t nid = get_nid(parent, start, false);
1244
1245 return __get_node_page(sbi, nid, parent, start);
1246}
1247
1248static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1249{
1250 struct inode *inode;
1251 struct page *page;
1252 int ret;
1253
1254 /* should flush inline_data before evict_inode */
1255 inode = ilookup(sbi->sb, ino);
1256 if (!inode)
1257 return;
1258
1259 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1260 FGP_LOCK|FGP_NOWAIT, 0);
1261 if (!page)
1262 goto iput_out;
1263
1264 if (!PageUptodate(page))
1265 goto page_out;
1266
1267 if (!PageDirty(page))
1268 goto page_out;
1269
1270 if (!clear_page_dirty_for_io(page))
1271 goto page_out;
1272
1273 ret = f2fs_write_inline_data(inode, page);
1274 inode_dec_dirty_pages(inode);
1275 remove_dirty_inode(inode);
1276 if (ret)
1277 set_page_dirty(page);
1278page_out:
1279 f2fs_put_page(page, 1);
1280iput_out:
1281 iput(inode);
1282}
1283
1284static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1285{
1286 pgoff_t index;
1287 struct pagevec pvec;
1288 struct page *last_page = NULL;
1289 int nr_pages;
1290
1291 pagevec_init(&pvec);
1292 index = 0;
1293
1294 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1295 PAGECACHE_TAG_DIRTY))) {
1296 int i;
1297
1298 for (i = 0; i < nr_pages; i++) {
1299 struct page *page = pvec.pages[i];
1300
1301 if (unlikely(f2fs_cp_error(sbi))) {
1302 f2fs_put_page(last_page, 0);
1303 pagevec_release(&pvec);
1304 return ERR_PTR(-EIO);
1305 }
1306
1307 if (!IS_DNODE(page) || !is_cold_node(page))
1308 continue;
1309 if (ino_of_node(page) != ino)
1310 continue;
1311
1312 lock_page(page);
1313
1314 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1315continue_unlock:
1316 unlock_page(page);
1317 continue;
1318 }
1319 if (ino_of_node(page) != ino)
1320 goto continue_unlock;
1321
1322 if (!PageDirty(page)) {
1323 /* someone wrote it for us */
1324 goto continue_unlock;
1325 }
1326
1327 if (last_page)
1328 f2fs_put_page(last_page, 0);
1329
1330 get_page(page);
1331 last_page = page;
1332 unlock_page(page);
1333 }
1334 pagevec_release(&pvec);
1335 cond_resched();
1336 }
1337 return last_page;
1338}
1339
1340static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1341 struct writeback_control *wbc, bool do_balance,
1342 enum iostat_type io_type)
1343{
1344 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1345 nid_t nid;
1346 struct node_info ni;
1347 struct f2fs_io_info fio = {
1348 .sbi = sbi,
1349 .ino = ino_of_node(page),
1350 .type = NODE,
1351 .op = REQ_OP_WRITE,
1352 .op_flags = wbc_to_write_flags(wbc),
1353 .page = page,
1354 .encrypted_page = NULL,
1355 .submitted = false,
1356 .io_type = io_type,
1357 .io_wbc = wbc,
1358 };
1359
1360 trace_f2fs_writepage(page, NODE);
1361
1362 if (unlikely(f2fs_cp_error(sbi))) {
1363 dec_page_count(sbi, F2FS_DIRTY_NODES);
1364 unlock_page(page);
1365 return 0;
1366 }
1367
1368 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1369 goto redirty_out;
1370
1371 /* get old block addr of this node page */
1372 nid = nid_of_node(page);
1373 f2fs_bug_on(sbi, page->index != nid);
1374
1375 if (wbc->for_reclaim) {
1376 if (!down_read_trylock(&sbi->node_write))
1377 goto redirty_out;
1378 } else {
1379 down_read(&sbi->node_write);
1380 }
1381
1382 get_node_info(sbi, nid, &ni);
1383
1384 /* This page is already truncated */
1385 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1386 ClearPageUptodate(page);
1387 dec_page_count(sbi, F2FS_DIRTY_NODES);
1388 up_read(&sbi->node_write);
1389 unlock_page(page);
1390 return 0;
1391 }
1392
1393 if (atomic && !test_opt(sbi, NOBARRIER))
1394 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1395
1396 set_page_writeback(page);
1397 fio.old_blkaddr = ni.blk_addr;
1398 write_node_page(nid, &fio);
1399 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1400 dec_page_count(sbi, F2FS_DIRTY_NODES);
1401 up_read(&sbi->node_write);
1402
1403 if (wbc->for_reclaim) {
1404 f2fs_submit_merged_write_cond(sbi, page->mapping->host, 0,
1405 page->index, NODE);
1406 submitted = NULL;
1407 }
1408
1409 unlock_page(page);
1410
1411 if (unlikely(f2fs_cp_error(sbi))) {
1412 f2fs_submit_merged_write(sbi, NODE);
1413 submitted = NULL;
1414 }
1415 if (submitted)
1416 *submitted = fio.submitted;
1417
1418 if (do_balance)
1419 f2fs_balance_fs(sbi, false);
1420 return 0;
1421
1422redirty_out:
1423 redirty_page_for_writepage(wbc, page);
1424 return AOP_WRITEPAGE_ACTIVATE;
1425}
1426
1427void move_node_page(struct page *node_page, int gc_type)
1428{
1429 if (gc_type == FG_GC) {
1430 struct writeback_control wbc = {
1431 .sync_mode = WB_SYNC_ALL,
1432 .nr_to_write = 1,
1433 .for_reclaim = 0,
1434 };
1435
1436 set_page_dirty(node_page);
1437 f2fs_wait_on_page_writeback(node_page, NODE, true);
1438
1439 f2fs_bug_on(F2FS_P_SB(node_page), PageWriteback(node_page));
1440 if (!clear_page_dirty_for_io(node_page))
1441 goto out_page;
1442
1443 if (__write_node_page(node_page, false, NULL,
1444 &wbc, false, FS_GC_NODE_IO))
1445 unlock_page(node_page);
1446 goto release_page;
1447 } else {
1448 /* set page dirty and write it */
1449 if (!PageWriteback(node_page))
1450 set_page_dirty(node_page);
1451 }
1452out_page:
1453 unlock_page(node_page);
1454release_page:
1455 f2fs_put_page(node_page, 0);
1456}
1457
1458static int f2fs_write_node_page(struct page *page,
1459 struct writeback_control *wbc)
1460{
1461 return __write_node_page(page, false, NULL, wbc, false, FS_NODE_IO);
1462}
1463
1464int fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1465 struct writeback_control *wbc, bool atomic)
1466{
1467 pgoff_t index;
1468 pgoff_t last_idx = ULONG_MAX;
1469 struct pagevec pvec;
1470 int ret = 0;
1471 struct page *last_page = NULL;
1472 bool marked = false;
1473 nid_t ino = inode->i_ino;
1474 int nr_pages;
1475
1476 if (atomic) {
1477 last_page = last_fsync_dnode(sbi, ino);
1478 if (IS_ERR_OR_NULL(last_page))
1479 return PTR_ERR_OR_ZERO(last_page);
1480 }
1481retry:
1482 pagevec_init(&pvec);
1483 index = 0;
1484
1485 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1486 PAGECACHE_TAG_DIRTY))) {
1487 int i;
1488
1489 for (i = 0; i < nr_pages; i++) {
1490 struct page *page = pvec.pages[i];
1491 bool submitted = false;
1492
1493 if (unlikely(f2fs_cp_error(sbi))) {
1494 f2fs_put_page(last_page, 0);
1495 pagevec_release(&pvec);
1496 ret = -EIO;
1497 goto out;
1498 }
1499
1500 if (!IS_DNODE(page) || !is_cold_node(page))
1501 continue;
1502 if (ino_of_node(page) != ino)
1503 continue;
1504
1505 lock_page(page);
1506
1507 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1508continue_unlock:
1509 unlock_page(page);
1510 continue;
1511 }
1512 if (ino_of_node(page) != ino)
1513 goto continue_unlock;
1514
1515 if (!PageDirty(page) && page != last_page) {
1516 /* someone wrote it for us */
1517 goto continue_unlock;
1518 }
1519
1520 f2fs_wait_on_page_writeback(page, NODE, true);
1521 BUG_ON(PageWriteback(page));
1522
1523 set_fsync_mark(page, 0);
1524 set_dentry_mark(page, 0);
1525
1526 if (!atomic || page == last_page) {
1527 set_fsync_mark(page, 1);
1528 if (IS_INODE(page)) {
1529 if (is_inode_flag_set(inode,
1530 FI_DIRTY_INODE))
1531 update_inode(inode, page);
1532 set_dentry_mark(page,
1533 need_dentry_mark(sbi, ino));
1534 }
1535 /* may be written by other thread */
1536 if (!PageDirty(page))
1537 set_page_dirty(page);
1538 }
1539
1540 if (!clear_page_dirty_for_io(page))
1541 goto continue_unlock;
1542
1543 ret = __write_node_page(page, atomic &&
1544 page == last_page,
1545 &submitted, wbc, true,
1546 FS_NODE_IO);
1547 if (ret) {
1548 unlock_page(page);
1549 f2fs_put_page(last_page, 0);
1550 break;
1551 } else if (submitted) {
1552 last_idx = page->index;
1553 }
1554
1555 if (page == last_page) {
1556 f2fs_put_page(page, 0);
1557 marked = true;
1558 break;
1559 }
1560 }
1561 pagevec_release(&pvec);
1562 cond_resched();
1563
1564 if (ret || marked)
1565 break;
1566 }
1567 if (!ret && atomic && !marked) {
1568 f2fs_msg(sbi->sb, KERN_DEBUG,
1569 "Retry to write fsync mark: ino=%u, idx=%lx",
1570 ino, last_page->index);
1571 lock_page(last_page);
1572 f2fs_wait_on_page_writeback(last_page, NODE, true);
1573 set_page_dirty(last_page);
1574 unlock_page(last_page);
1575 goto retry;
1576 }
1577out:
1578 if (last_idx != ULONG_MAX)
1579 f2fs_submit_merged_write_cond(sbi, NULL, ino, last_idx, NODE);
1580 return ret ? -EIO: 0;
1581}
1582
1583int sync_node_pages(struct f2fs_sb_info *sbi, struct writeback_control *wbc,
1584 bool do_balance, enum iostat_type io_type)
1585{
1586 pgoff_t index;
1587 struct pagevec pvec;
1588 int step = 0;
1589 int nwritten = 0;
1590 int ret = 0;
1591 int nr_pages;
1592
1593 pagevec_init(&pvec);
1594
1595next_step:
1596 index = 0;
1597
1598 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1599 PAGECACHE_TAG_DIRTY))) {
1600 int i;
1601
1602 for (i = 0; i < nr_pages; i++) {
1603 struct page *page = pvec.pages[i];
1604 bool submitted = false;
1605
1606 /*
1607 * flushing sequence with step:
1608 * 0. indirect nodes
1609 * 1. dentry dnodes
1610 * 2. file dnodes
1611 */
1612 if (step == 0 && IS_DNODE(page))
1613 continue;
1614 if (step == 1 && (!IS_DNODE(page) ||
1615 is_cold_node(page)))
1616 continue;
1617 if (step == 2 && (!IS_DNODE(page) ||
1618 !is_cold_node(page)))
1619 continue;
1620lock_node:
1621 if (!trylock_page(page))
1622 continue;
1623
1624 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1625continue_unlock:
1626 unlock_page(page);
1627 continue;
1628 }
1629
1630 if (!PageDirty(page)) {
1631 /* someone wrote it for us */
1632 goto continue_unlock;
1633 }
1634
1635 /* flush inline_data */
1636 if (is_inline_node(page)) {
1637 clear_inline_node(page);
1638 unlock_page(page);
1639 flush_inline_data(sbi, ino_of_node(page));
1640 goto lock_node;
1641 }
1642
1643 f2fs_wait_on_page_writeback(page, NODE, true);
1644
1645 BUG_ON(PageWriteback(page));
1646 if (!clear_page_dirty_for_io(page))
1647 goto continue_unlock;
1648
1649 set_fsync_mark(page, 0);
1650 set_dentry_mark(page, 0);
1651
1652 ret = __write_node_page(page, false, &submitted,
1653 wbc, do_balance, io_type);
1654 if (ret)
1655 unlock_page(page);
1656 else if (submitted)
1657 nwritten++;
1658
1659 if (--wbc->nr_to_write == 0)
1660 break;
1661 }
1662 pagevec_release(&pvec);
1663 cond_resched();
1664
1665 if (wbc->nr_to_write == 0) {
1666 step = 2;
1667 break;
1668 }
1669 }
1670
1671 if (step < 2) {
1672 step++;
1673 goto next_step;
1674 }
1675
1676 if (nwritten)
1677 f2fs_submit_merged_write(sbi, NODE);
1678
1679 if (unlikely(f2fs_cp_error(sbi)))
1680 return -EIO;
1681 return ret;
1682}
1683
1684int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
1685{
1686 pgoff_t index = 0;
1687 struct pagevec pvec;
1688 int ret2, ret = 0;
1689 int nr_pages;
1690
1691 pagevec_init(&pvec);
1692
1693 while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1694 PAGECACHE_TAG_WRITEBACK))) {
1695 int i;
1696
1697 for (i = 0; i < nr_pages; i++) {
1698 struct page *page = pvec.pages[i];
1699
1700 if (ino && ino_of_node(page) == ino) {
1701 f2fs_wait_on_page_writeback(page, NODE, true);
1702 if (TestClearPageError(page))
1703 ret = -EIO;
1704 }
1705 }
1706 pagevec_release(&pvec);
1707 cond_resched();
1708 }
1709
1710 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
1711 if (!ret)
1712 ret = ret2;
1713 return ret;
1714}
1715
1716static int f2fs_write_node_pages(struct address_space *mapping,
1717 struct writeback_control *wbc)
1718{
1719 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
1720 struct blk_plug plug;
1721 long diff;
1722
1723 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1724 goto skip_write;
1725
1726 /* balancing f2fs's metadata in background */
1727 f2fs_balance_fs_bg(sbi);
1728
1729 /* collect a number of dirty node pages and write together */
1730 if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
1731 goto skip_write;
1732
1733 trace_f2fs_writepages(mapping->host, wbc, NODE);
1734
1735 diff = nr_pages_to_write(sbi, NODE, wbc);
1736 wbc->sync_mode = WB_SYNC_NONE;
1737 blk_start_plug(&plug);
1738 sync_node_pages(sbi, wbc, true, FS_NODE_IO);
1739 blk_finish_plug(&plug);
1740 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
1741 return 0;
1742
1743skip_write:
1744 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
1745 trace_f2fs_writepages(mapping->host, wbc, NODE);
1746 return 0;
1747}
1748
1749static int f2fs_set_node_page_dirty(struct page *page)
1750{
1751 trace_f2fs_set_page_dirty(page, NODE);
1752
1753 if (!PageUptodate(page))
1754 SetPageUptodate(page);
1755 if (!PageDirty(page)) {
1756 f2fs_set_page_dirty_nobuffers(page);
1757 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
1758 SetPagePrivate(page);
1759 f2fs_trace_pid(page);
1760 return 1;
1761 }
1762 return 0;
1763}
1764
1765/*
1766 * Structure of the f2fs node operations
1767 */
1768const struct address_space_operations f2fs_node_aops = {
1769 .writepage = f2fs_write_node_page,
1770 .writepages = f2fs_write_node_pages,
1771 .set_page_dirty = f2fs_set_node_page_dirty,
1772 .invalidatepage = f2fs_invalidate_page,
1773 .releasepage = f2fs_release_page,
1774#ifdef CONFIG_MIGRATION
1775 .migratepage = f2fs_migrate_page,
1776#endif
1777};
1778
1779static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1780 nid_t n)
1781{
1782 return radix_tree_lookup(&nm_i->free_nid_root, n);
1783}
1784
1785static int __insert_free_nid(struct f2fs_sb_info *sbi,
1786 struct free_nid *i, enum nid_state state)
1787{
1788 struct f2fs_nm_info *nm_i = NM_I(sbi);
1789
1790 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
1791 if (err)
1792 return err;
1793
1794 f2fs_bug_on(sbi, state != i->state);
1795 nm_i->nid_cnt[state]++;
1796 if (state == FREE_NID)
1797 list_add_tail(&i->list, &nm_i->free_nid_list);
1798 return 0;
1799}
1800
1801static void __remove_free_nid(struct f2fs_sb_info *sbi,
1802 struct free_nid *i, enum nid_state state)
1803{
1804 struct f2fs_nm_info *nm_i = NM_I(sbi);
1805
1806 f2fs_bug_on(sbi, state != i->state);
1807 nm_i->nid_cnt[state]--;
1808 if (state == FREE_NID)
1809 list_del(&i->list);
1810 radix_tree_delete(&nm_i->free_nid_root, i->nid);
1811}
1812
1813static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
1814 enum nid_state org_state, enum nid_state dst_state)
1815{
1816 struct f2fs_nm_info *nm_i = NM_I(sbi);
1817
1818 f2fs_bug_on(sbi, org_state != i->state);
1819 i->state = dst_state;
1820 nm_i->nid_cnt[org_state]--;
1821 nm_i->nid_cnt[dst_state]++;
1822
1823 switch (dst_state) {
1824 case PREALLOC_NID:
1825 list_del(&i->list);
1826 break;
1827 case FREE_NID:
1828 list_add_tail(&i->list, &nm_i->free_nid_list);
1829 break;
1830 default:
1831 BUG_ON(1);
1832 }
1833}
1834
1835static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
1836 bool set, bool build)
1837{
1838 struct f2fs_nm_info *nm_i = NM_I(sbi);
1839 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
1840 unsigned int nid_ofs = nid - START_NID(nid);
1841
1842 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
1843 return;
1844
1845 if (set) {
1846 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1847 return;
1848 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1849 nm_i->free_nid_count[nat_ofs]++;
1850 } else {
1851 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
1852 return;
1853 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
1854 if (!build)
1855 nm_i->free_nid_count[nat_ofs]--;
1856 }
1857}
1858
1859/* return if the nid is recognized as free */
1860static bool add_free_nid(struct f2fs_sb_info *sbi,
1861 nid_t nid, bool build, bool update)
1862{
1863 struct f2fs_nm_info *nm_i = NM_I(sbi);
1864 struct free_nid *i, *e;
1865 struct nat_entry *ne;
1866 int err = -EINVAL;
1867 bool ret = false;
1868
1869 /* 0 nid should not be used */
1870 if (unlikely(nid == 0))
1871 return false;
1872
1873 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1874 i->nid = nid;
1875 i->state = FREE_NID;
1876
1877 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
1878
1879 spin_lock(&nm_i->nid_list_lock);
1880
1881 if (build) {
1882 /*
1883 * Thread A Thread B
1884 * - f2fs_create
1885 * - f2fs_new_inode
1886 * - alloc_nid
1887 * - __insert_nid_to_list(PREALLOC_NID)
1888 * - f2fs_balance_fs_bg
1889 * - build_free_nids
1890 * - __build_free_nids
1891 * - scan_nat_page
1892 * - add_free_nid
1893 * - __lookup_nat_cache
1894 * - f2fs_add_link
1895 * - init_inode_metadata
1896 * - new_inode_page
1897 * - new_node_page
1898 * - set_node_addr
1899 * - alloc_nid_done
1900 * - __remove_nid_from_list(PREALLOC_NID)
1901 * - __insert_nid_to_list(FREE_NID)
1902 */
1903 ne = __lookup_nat_cache(nm_i, nid);
1904 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
1905 nat_get_blkaddr(ne) != NULL_ADDR))
1906 goto err_out;
1907
1908 e = __lookup_free_nid_list(nm_i, nid);
1909 if (e) {
1910 if (e->state == FREE_NID)
1911 ret = true;
1912 goto err_out;
1913 }
1914 }
1915 ret = true;
1916 err = __insert_free_nid(sbi, i, FREE_NID);
1917err_out:
1918 if (update) {
1919 update_free_nid_bitmap(sbi, nid, ret, build);
1920 if (!build)
1921 nm_i->available_nids++;
1922 }
1923 spin_unlock(&nm_i->nid_list_lock);
1924 radix_tree_preload_end();
1925
1926 if (err)
1927 kmem_cache_free(free_nid_slab, i);
1928 return ret;
1929}
1930
1931static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
1932{
1933 struct f2fs_nm_info *nm_i = NM_I(sbi);
1934 struct free_nid *i;
1935 bool need_free = false;
1936
1937 spin_lock(&nm_i->nid_list_lock);
1938 i = __lookup_free_nid_list(nm_i, nid);
1939 if (i && i->state == FREE_NID) {
1940 __remove_free_nid(sbi, i, FREE_NID);
1941 need_free = true;
1942 }
1943 spin_unlock(&nm_i->nid_list_lock);
1944
1945 if (need_free)
1946 kmem_cache_free(free_nid_slab, i);
1947}
1948
1949static void scan_nat_page(struct f2fs_sb_info *sbi,
1950 struct page *nat_page, nid_t start_nid)
1951{
1952 struct f2fs_nm_info *nm_i = NM_I(sbi);
1953 struct f2fs_nat_block *nat_blk = page_address(nat_page);
1954 block_t blk_addr;
1955 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
1956 int i;
1957
1958 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
1959
1960 i = start_nid % NAT_ENTRY_PER_BLOCK;
1961
1962 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1963 if (unlikely(start_nid >= nm_i->max_nid))
1964 break;
1965
1966 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1967 f2fs_bug_on(sbi, blk_addr == NEW_ADDR);
1968 if (blk_addr == NULL_ADDR) {
1969 add_free_nid(sbi, start_nid, true, true);
1970 } else {
1971 spin_lock(&NM_I(sbi)->nid_list_lock);
1972 update_free_nid_bitmap(sbi, start_nid, false, true);
1973 spin_unlock(&NM_I(sbi)->nid_list_lock);
1974 }
1975 }
1976}
1977
1978static void scan_curseg_cache(struct f2fs_sb_info *sbi)
1979{
1980 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1981 struct f2fs_journal *journal = curseg->journal;
1982 int i;
1983
1984 down_read(&curseg->journal_rwsem);
1985 for (i = 0; i < nats_in_cursum(journal); i++) {
1986 block_t addr;
1987 nid_t nid;
1988
1989 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
1990 nid = le32_to_cpu(nid_in_journal(journal, i));
1991 if (addr == NULL_ADDR)
1992 add_free_nid(sbi, nid, true, false);
1993 else
1994 remove_free_nid(sbi, nid);
1995 }
1996 up_read(&curseg->journal_rwsem);
1997}
1998
1999static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2000{
2001 struct f2fs_nm_info *nm_i = NM_I(sbi);
2002 unsigned int i, idx;
2003 nid_t nid;
2004
2005 down_read(&nm_i->nat_tree_lock);
2006
2007 for (i = 0; i < nm_i->nat_blocks; i++) {
2008 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2009 continue;
2010 if (!nm_i->free_nid_count[i])
2011 continue;
2012 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2013 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2014 NAT_ENTRY_PER_BLOCK, idx);
2015 if (idx >= NAT_ENTRY_PER_BLOCK)
2016 break;
2017
2018 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2019 add_free_nid(sbi, nid, true, false);
2020
2021 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2022 goto out;
2023 }
2024 }
2025out:
2026 scan_curseg_cache(sbi);
2027
2028 up_read(&nm_i->nat_tree_lock);
2029}
2030
2031static void __build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2032{
2033 struct f2fs_nm_info *nm_i = NM_I(sbi);
2034 int i = 0;
2035 nid_t nid = nm_i->next_scan_nid;
2036
2037 if (unlikely(nid >= nm_i->max_nid))
2038 nid = 0;
2039
2040 /* Enough entries */
2041 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2042 return;
2043
2044 if (!sync && !available_free_memory(sbi, FREE_NIDS))
2045 return;
2046
2047 if (!mount) {
2048 /* try to find free nids in free_nid_bitmap */
2049 scan_free_nid_bits(sbi);
2050
2051 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2052 return;
2053 }
2054
2055 /* readahead nat pages to be scanned */
2056 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2057 META_NAT, true);
2058
2059 down_read(&nm_i->nat_tree_lock);
2060
2061 while (1) {
2062 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2063 nm_i->nat_block_bitmap)) {
2064 struct page *page = get_current_nat_page(sbi, nid);
2065
2066 scan_nat_page(sbi, page, nid);
2067 f2fs_put_page(page, 1);
2068 }
2069
2070 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2071 if (unlikely(nid >= nm_i->max_nid))
2072 nid = 0;
2073
2074 if (++i >= FREE_NID_PAGES)
2075 break;
2076 }
2077
2078 /* go to the next free nat pages to find free nids abundantly */
2079 nm_i->next_scan_nid = nid;
2080
2081 /* find free nids from current sum_pages */
2082 scan_curseg_cache(sbi);
2083
2084 up_read(&nm_i->nat_tree_lock);
2085
2086 ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2087 nm_i->ra_nid_pages, META_NAT, false);
2088}
2089
2090void build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2091{
2092 mutex_lock(&NM_I(sbi)->build_lock);
2093 __build_free_nids(sbi, sync, mount);
2094 mutex_unlock(&NM_I(sbi)->build_lock);
2095}
2096
2097/*
2098 * If this function returns success, caller can obtain a new nid
2099 * from second parameter of this function.
2100 * The returned nid could be used ino as well as nid when inode is created.
2101 */
2102bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2103{
2104 struct f2fs_nm_info *nm_i = NM_I(sbi);
2105 struct free_nid *i = NULL;
2106retry:
2107#ifdef CONFIG_F2FS_FAULT_INJECTION
2108 if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2109 f2fs_show_injection_info(FAULT_ALLOC_NID);
2110 return false;
2111 }
2112#endif
2113 spin_lock(&nm_i->nid_list_lock);
2114
2115 if (unlikely(nm_i->available_nids == 0)) {
2116 spin_unlock(&nm_i->nid_list_lock);
2117 return false;
2118 }
2119
2120 /* We should not use stale free nids created by build_free_nids */
2121 if (nm_i->nid_cnt[FREE_NID] && !on_build_free_nids(nm_i)) {
2122 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2123 i = list_first_entry(&nm_i->free_nid_list,
2124 struct free_nid, list);
2125 *nid = i->nid;
2126
2127 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2128 nm_i->available_nids--;
2129
2130 update_free_nid_bitmap(sbi, *nid, false, false);
2131
2132 spin_unlock(&nm_i->nid_list_lock);
2133 return true;
2134 }
2135 spin_unlock(&nm_i->nid_list_lock);
2136
2137 /* Let's scan nat pages and its caches to get free nids */
2138 build_free_nids(sbi, true, false);
2139 goto retry;
2140}
2141
2142/*
2143 * alloc_nid() should be called prior to this function.
2144 */
2145void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2146{
2147 struct f2fs_nm_info *nm_i = NM_I(sbi);
2148 struct free_nid *i;
2149
2150 spin_lock(&nm_i->nid_list_lock);
2151 i = __lookup_free_nid_list(nm_i, nid);
2152 f2fs_bug_on(sbi, !i);
2153 __remove_free_nid(sbi, i, PREALLOC_NID);
2154 spin_unlock(&nm_i->nid_list_lock);
2155
2156 kmem_cache_free(free_nid_slab, i);
2157}
2158
2159/*
2160 * alloc_nid() should be called prior to this function.
2161 */
2162void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2163{
2164 struct f2fs_nm_info *nm_i = NM_I(sbi);
2165 struct free_nid *i;
2166 bool need_free = false;
2167
2168 if (!nid)
2169 return;
2170
2171 spin_lock(&nm_i->nid_list_lock);
2172 i = __lookup_free_nid_list(nm_i, nid);
2173 f2fs_bug_on(sbi, !i);
2174
2175 if (!available_free_memory(sbi, FREE_NIDS)) {
2176 __remove_free_nid(sbi, i, PREALLOC_NID);
2177 need_free = true;
2178 } else {
2179 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2180 }
2181
2182 nm_i->available_nids++;
2183
2184 update_free_nid_bitmap(sbi, nid, true, false);
2185
2186 spin_unlock(&nm_i->nid_list_lock);
2187
2188 if (need_free)
2189 kmem_cache_free(free_nid_slab, i);
2190}
2191
2192int try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2193{
2194 struct f2fs_nm_info *nm_i = NM_I(sbi);
2195 struct free_nid *i, *next;
2196 int nr = nr_shrink;
2197
2198 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2199 return 0;
2200
2201 if (!mutex_trylock(&nm_i->build_lock))
2202 return 0;
2203
2204 spin_lock(&nm_i->nid_list_lock);
2205 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2206 if (nr_shrink <= 0 ||
2207 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2208 break;
2209
2210 __remove_free_nid(sbi, i, FREE_NID);
2211 kmem_cache_free(free_nid_slab, i);
2212 nr_shrink--;
2213 }
2214 spin_unlock(&nm_i->nid_list_lock);
2215 mutex_unlock(&nm_i->build_lock);
2216
2217 return nr - nr_shrink;
2218}
2219
2220void recover_inline_xattr(struct inode *inode, struct page *page)
2221{
2222 void *src_addr, *dst_addr;
2223 size_t inline_size;
2224 struct page *ipage;
2225 struct f2fs_inode *ri;
2226
2227 ipage = get_node_page(F2FS_I_SB(inode), inode->i_ino);
2228 f2fs_bug_on(F2FS_I_SB(inode), IS_ERR(ipage));
2229
2230 ri = F2FS_INODE(page);
2231 if (ri->i_inline & F2FS_INLINE_XATTR) {
2232 set_inode_flag(inode, FI_INLINE_XATTR);
2233 } else {
2234 clear_inode_flag(inode, FI_INLINE_XATTR);
2235 goto update_inode;
2236 }
2237
2238 dst_addr = inline_xattr_addr(inode, ipage);
2239 src_addr = inline_xattr_addr(inode, page);
2240 inline_size = inline_xattr_size(inode);
2241
2242 f2fs_wait_on_page_writeback(ipage, NODE, true);
2243 memcpy(dst_addr, src_addr, inline_size);
2244update_inode:
2245 update_inode(inode, ipage);
2246 f2fs_put_page(ipage, 1);
2247}
2248
2249int recover_xattr_data(struct inode *inode, struct page *page)
2250{
2251 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2252 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2253 nid_t new_xnid;
2254 struct dnode_of_data dn;
2255 struct node_info ni;
2256 struct page *xpage;
2257
2258 if (!prev_xnid)
2259 goto recover_xnid;
2260
2261 /* 1: invalidate the previous xattr nid */
2262 get_node_info(sbi, prev_xnid, &ni);
2263 invalidate_blocks(sbi, ni.blk_addr);
2264 dec_valid_node_count(sbi, inode, false);
2265 set_node_addr(sbi, &ni, NULL_ADDR, false);
2266
2267recover_xnid:
2268 /* 2: update xattr nid in inode */
2269 if (!alloc_nid(sbi, &new_xnid))
2270 return -ENOSPC;
2271
2272 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2273 xpage = new_node_page(&dn, XATTR_NODE_OFFSET);
2274 if (IS_ERR(xpage)) {
2275 alloc_nid_failed(sbi, new_xnid);
2276 return PTR_ERR(xpage);
2277 }
2278
2279 alloc_nid_done(sbi, new_xnid);
2280 update_inode_page(inode);
2281
2282 /* 3: update and set xattr node page dirty */
2283 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2284
2285 set_page_dirty(xpage);
2286 f2fs_put_page(xpage, 1);
2287
2288 return 0;
2289}
2290
2291int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2292{
2293 struct f2fs_inode *src, *dst;
2294 nid_t ino = ino_of_node(page);
2295 struct node_info old_ni, new_ni;
2296 struct page *ipage;
2297
2298 get_node_info(sbi, ino, &old_ni);
2299
2300 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2301 return -EINVAL;
2302retry:
2303 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2304 if (!ipage) {
2305 congestion_wait(BLK_RW_ASYNC, HZ/50);
2306 goto retry;
2307 }
2308
2309 /* Should not use this inode from free nid list */
2310 remove_free_nid(sbi, ino);
2311
2312 if (!PageUptodate(ipage))
2313 SetPageUptodate(ipage);
2314 fill_node_footer(ipage, ino, ino, 0, true);
2315 set_cold_node(page, false);
2316
2317 src = F2FS_INODE(page);
2318 dst = F2FS_INODE(ipage);
2319
2320 memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
2321 dst->i_size = 0;
2322 dst->i_blocks = cpu_to_le64(1);
2323 dst->i_links = cpu_to_le32(1);
2324 dst->i_xattr_nid = 0;
2325 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2326 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2327 dst->i_extra_isize = src->i_extra_isize;
2328
2329 if (f2fs_sb_has_flexible_inline_xattr(sbi->sb) &&
2330 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2331 i_inline_xattr_size))
2332 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2333
2334 if (f2fs_sb_has_project_quota(sbi->sb) &&
2335 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2336 i_projid))
2337 dst->i_projid = src->i_projid;
2338 }
2339
2340 new_ni = old_ni;
2341 new_ni.ino = ino;
2342
2343 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2344 WARN_ON(1);
2345 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2346 inc_valid_inode_count(sbi);
2347 set_page_dirty(ipage);
2348 f2fs_put_page(ipage, 1);
2349 return 0;
2350}
2351
2352void restore_node_summary(struct f2fs_sb_info *sbi,
2353 unsigned int segno, struct f2fs_summary_block *sum)
2354{
2355 struct f2fs_node *rn;
2356 struct f2fs_summary *sum_entry;
2357 block_t addr;
2358 int i, idx, last_offset, nrpages;
2359
2360 /* scan the node segment */
2361 last_offset = sbi->blocks_per_seg;
2362 addr = START_BLOCK(sbi, segno);
2363 sum_entry = &sum->entries[0];
2364
2365 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2366 nrpages = min(last_offset - i, BIO_MAX_PAGES);
2367
2368 /* readahead node pages */
2369 ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2370
2371 for (idx = addr; idx < addr + nrpages; idx++) {
2372 struct page *page = get_tmp_page(sbi, idx);
2373
2374 rn = F2FS_NODE(page);
2375 sum_entry->nid = rn->footer.nid;
2376 sum_entry->version = 0;
2377 sum_entry->ofs_in_node = 0;
2378 sum_entry++;
2379 f2fs_put_page(page, 1);
2380 }
2381
2382 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2383 addr + nrpages);
2384 }
2385}
2386
2387static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2388{
2389 struct f2fs_nm_info *nm_i = NM_I(sbi);
2390 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2391 struct f2fs_journal *journal = curseg->journal;
2392 int i;
2393
2394 down_write(&curseg->journal_rwsem);
2395 for (i = 0; i < nats_in_cursum(journal); i++) {
2396 struct nat_entry *ne;
2397 struct f2fs_nat_entry raw_ne;
2398 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2399
2400 raw_ne = nat_in_journal(journal, i);
2401
2402 ne = __lookup_nat_cache(nm_i, nid);
2403 if (!ne) {
2404 ne = __alloc_nat_entry(nid, true);
2405 __init_nat_entry(nm_i, ne, &raw_ne, true);
2406 }
2407
2408 /*
2409 * if a free nat in journal has not been used after last
2410 * checkpoint, we should remove it from available nids,
2411 * since later we will add it again.
2412 */
2413 if (!get_nat_flag(ne, IS_DIRTY) &&
2414 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2415 spin_lock(&nm_i->nid_list_lock);
2416 nm_i->available_nids--;
2417 spin_unlock(&nm_i->nid_list_lock);
2418 }
2419
2420 __set_nat_cache_dirty(nm_i, ne);
2421 }
2422 update_nats_in_cursum(journal, -i);
2423 up_write(&curseg->journal_rwsem);
2424}
2425
2426static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2427 struct list_head *head, int max)
2428{
2429 struct nat_entry_set *cur;
2430
2431 if (nes->entry_cnt >= max)
2432 goto add_out;
2433
2434 list_for_each_entry(cur, head, set_list) {
2435 if (cur->entry_cnt >= nes->entry_cnt) {
2436 list_add(&nes->set_list, cur->set_list.prev);
2437 return;
2438 }
2439 }
2440add_out:
2441 list_add_tail(&nes->set_list, head);
2442}
2443
2444static void __update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2445 struct page *page)
2446{
2447 struct f2fs_nm_info *nm_i = NM_I(sbi);
2448 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2449 struct f2fs_nat_block *nat_blk = page_address(page);
2450 int valid = 0;
2451 int i = 0;
2452
2453 if (!enabled_nat_bits(sbi, NULL))
2454 return;
2455
2456 if (nat_index == 0) {
2457 valid = 1;
2458 i = 1;
2459 }
2460 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2461 if (nat_blk->entries[i].block_addr != NULL_ADDR)
2462 valid++;
2463 }
2464 if (valid == 0) {
2465 __set_bit_le(nat_index, nm_i->empty_nat_bits);
2466 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2467 return;
2468 }
2469
2470 __clear_bit_le(nat_index, nm_i->empty_nat_bits);
2471 if (valid == NAT_ENTRY_PER_BLOCK)
2472 __set_bit_le(nat_index, nm_i->full_nat_bits);
2473 else
2474 __clear_bit_le(nat_index, nm_i->full_nat_bits);
2475}
2476
2477static void __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2478 struct nat_entry_set *set, struct cp_control *cpc)
2479{
2480 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2481 struct f2fs_journal *journal = curseg->journal;
2482 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2483 bool to_journal = true;
2484 struct f2fs_nat_block *nat_blk;
2485 struct nat_entry *ne, *cur;
2486 struct page *page = NULL;
2487
2488 /*
2489 * there are two steps to flush nat entries:
2490 * #1, flush nat entries to journal in current hot data summary block.
2491 * #2, flush nat entries to nat page.
2492 */
2493 if (enabled_nat_bits(sbi, cpc) ||
2494 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
2495 to_journal = false;
2496
2497 if (to_journal) {
2498 down_write(&curseg->journal_rwsem);
2499 } else {
2500 page = get_next_nat_page(sbi, start_nid);
2501 nat_blk = page_address(page);
2502 f2fs_bug_on(sbi, !nat_blk);
2503 }
2504
2505 /* flush dirty nats in nat entry set */
2506 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
2507 struct f2fs_nat_entry *raw_ne;
2508 nid_t nid = nat_get_nid(ne);
2509 int offset;
2510
2511 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
2512
2513 if (to_journal) {
2514 offset = lookup_journal_in_cursum(journal,
2515 NAT_JOURNAL, nid, 1);
2516 f2fs_bug_on(sbi, offset < 0);
2517 raw_ne = &nat_in_journal(journal, offset);
2518 nid_in_journal(journal, offset) = cpu_to_le32(nid);
2519 } else {
2520 raw_ne = &nat_blk->entries[nid - start_nid];
2521 }
2522 raw_nat_from_node_info(raw_ne, &ne->ni);
2523 nat_reset_flag(ne);
2524 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
2525 if (nat_get_blkaddr(ne) == NULL_ADDR) {
2526 add_free_nid(sbi, nid, false, true);
2527 } else {
2528 spin_lock(&NM_I(sbi)->nid_list_lock);
2529 update_free_nid_bitmap(sbi, nid, false, false);
2530 spin_unlock(&NM_I(sbi)->nid_list_lock);
2531 }
2532 }
2533
2534 if (to_journal) {
2535 up_write(&curseg->journal_rwsem);
2536 } else {
2537 __update_nat_bits(sbi, start_nid, page);
2538 f2fs_put_page(page, 1);
2539 }
2540
2541 /* Allow dirty nats by node block allocation in write_begin */
2542 if (!set->entry_cnt) {
2543 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
2544 kmem_cache_free(nat_entry_set_slab, set);
2545 }
2546}
2547
2548/*
2549 * This function is called during the checkpointing process.
2550 */
2551void flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
2552{
2553 struct f2fs_nm_info *nm_i = NM_I(sbi);
2554 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2555 struct f2fs_journal *journal = curseg->journal;
2556 struct nat_entry_set *setvec[SETVEC_SIZE];
2557 struct nat_entry_set *set, *tmp;
2558 unsigned int found;
2559 nid_t set_idx = 0;
2560 LIST_HEAD(sets);
2561
2562 if (!nm_i->dirty_nat_cnt)
2563 return;
2564
2565 down_write(&nm_i->nat_tree_lock);
2566
2567 /*
2568 * if there are no enough space in journal to store dirty nat
2569 * entries, remove all entries from journal and merge them
2570 * into nat entry set.
2571 */
2572 if (enabled_nat_bits(sbi, cpc) ||
2573 !__has_cursum_space(journal, nm_i->dirty_nat_cnt, NAT_JOURNAL))
2574 remove_nats_in_journal(sbi);
2575
2576 while ((found = __gang_lookup_nat_set(nm_i,
2577 set_idx, SETVEC_SIZE, setvec))) {
2578 unsigned idx;
2579 set_idx = setvec[found - 1]->set + 1;
2580 for (idx = 0; idx < found; idx++)
2581 __adjust_nat_entry_set(setvec[idx], &sets,
2582 MAX_NAT_JENTRIES(journal));
2583 }
2584
2585 /* flush dirty nats in nat entry set */
2586 list_for_each_entry_safe(set, tmp, &sets, set_list)
2587 __flush_nat_entry_set(sbi, set, cpc);
2588
2589 up_write(&nm_i->nat_tree_lock);
2590 /* Allow dirty nats by node block allocation in write_begin */
2591}
2592
2593static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
2594{
2595 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2596 struct f2fs_nm_info *nm_i = NM_I(sbi);
2597 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
2598 unsigned int i;
2599 __u64 cp_ver = cur_cp_version(ckpt);
2600 block_t nat_bits_addr;
2601
2602 if (!enabled_nat_bits(sbi, NULL))
2603 return 0;
2604
2605 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
2606 nm_i->nat_bits = f2fs_kzalloc(sbi,
2607 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
2608 if (!nm_i->nat_bits)
2609 return -ENOMEM;
2610
2611 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
2612 nm_i->nat_bits_blocks;
2613 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
2614 struct page *page = get_meta_page(sbi, nat_bits_addr++);
2615
2616 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
2617 page_address(page), F2FS_BLKSIZE);
2618 f2fs_put_page(page, 1);
2619 }
2620
2621 cp_ver |= (cur_cp_crc(ckpt) << 32);
2622 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
2623 disable_nat_bits(sbi, true);
2624 return 0;
2625 }
2626
2627 nm_i->full_nat_bits = nm_i->nat_bits + 8;
2628 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
2629
2630 f2fs_msg(sbi->sb, KERN_NOTICE, "Found nat_bits in checkpoint");
2631 return 0;
2632}
2633
2634static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
2635{
2636 struct f2fs_nm_info *nm_i = NM_I(sbi);
2637 unsigned int i = 0;
2638 nid_t nid, last_nid;
2639
2640 if (!enabled_nat_bits(sbi, NULL))
2641 return;
2642
2643 for (i = 0; i < nm_i->nat_blocks; i++) {
2644 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
2645 if (i >= nm_i->nat_blocks)
2646 break;
2647
2648 __set_bit_le(i, nm_i->nat_block_bitmap);
2649
2650 nid = i * NAT_ENTRY_PER_BLOCK;
2651 last_nid = nid + NAT_ENTRY_PER_BLOCK;
2652
2653 spin_lock(&NM_I(sbi)->nid_list_lock);
2654 for (; nid < last_nid; nid++)
2655 update_free_nid_bitmap(sbi, nid, true, true);
2656 spin_unlock(&NM_I(sbi)->nid_list_lock);
2657 }
2658
2659 for (i = 0; i < nm_i->nat_blocks; i++) {
2660 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
2661 if (i >= nm_i->nat_blocks)
2662 break;
2663
2664 __set_bit_le(i, nm_i->nat_block_bitmap);
2665 }
2666}
2667
2668static int init_node_manager(struct f2fs_sb_info *sbi)
2669{
2670 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
2671 struct f2fs_nm_info *nm_i = NM_I(sbi);
2672 unsigned char *version_bitmap;
2673 unsigned int nat_segs;
2674 int err;
2675
2676 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
2677
2678 /* segment_count_nat includes pair segment so divide to 2. */
2679 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
2680 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
2681 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
2682
2683 /* not used nids: 0, node, meta, (and root counted as valid node) */
2684 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
2685 sbi->nquota_files - F2FS_RESERVED_NODE_NUM;
2686 nm_i->nid_cnt[FREE_NID] = 0;
2687 nm_i->nid_cnt[PREALLOC_NID] = 0;
2688 nm_i->nat_cnt = 0;
2689 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
2690 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
2691 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
2692
2693 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
2694 INIT_LIST_HEAD(&nm_i->free_nid_list);
2695 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
2696 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
2697 INIT_LIST_HEAD(&nm_i->nat_entries);
2698
2699 mutex_init(&nm_i->build_lock);
2700 spin_lock_init(&nm_i->nid_list_lock);
2701 init_rwsem(&nm_i->nat_tree_lock);
2702
2703 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
2704 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
2705 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
2706 if (!version_bitmap)
2707 return -EFAULT;
2708
2709 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
2710 GFP_KERNEL);
2711 if (!nm_i->nat_bitmap)
2712 return -ENOMEM;
2713
2714 err = __get_nat_bitmaps(sbi);
2715 if (err)
2716 return err;
2717
2718#ifdef CONFIG_F2FS_CHECK_FS
2719 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
2720 GFP_KERNEL);
2721 if (!nm_i->nat_bitmap_mir)
2722 return -ENOMEM;
2723#endif
2724
2725 return 0;
2726}
2727
2728static int init_free_nid_cache(struct f2fs_sb_info *sbi)
2729{
2730 struct f2fs_nm_info *nm_i = NM_I(sbi);
2731 int i;
2732
2733 nm_i->free_nid_bitmap = f2fs_kzalloc(sbi, nm_i->nat_blocks *
2734 sizeof(unsigned char *), GFP_KERNEL);
2735 if (!nm_i->free_nid_bitmap)
2736 return -ENOMEM;
2737
2738 for (i = 0; i < nm_i->nat_blocks; i++) {
2739 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
2740 NAT_ENTRY_BITMAP_SIZE_ALIGNED, GFP_KERNEL);
2741 if (!nm_i->free_nid_bitmap)
2742 return -ENOMEM;
2743 }
2744
2745 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
2746 GFP_KERNEL);
2747 if (!nm_i->nat_block_bitmap)
2748 return -ENOMEM;
2749
2750 nm_i->free_nid_count = f2fs_kvzalloc(sbi, nm_i->nat_blocks *
2751 sizeof(unsigned short), GFP_KERNEL);
2752 if (!nm_i->free_nid_count)
2753 return -ENOMEM;
2754 return 0;
2755}
2756
2757int build_node_manager(struct f2fs_sb_info *sbi)
2758{
2759 int err;
2760
2761 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
2762 GFP_KERNEL);
2763 if (!sbi->nm_info)
2764 return -ENOMEM;
2765
2766 err = init_node_manager(sbi);
2767 if (err)
2768 return err;
2769
2770 err = init_free_nid_cache(sbi);
2771 if (err)
2772 return err;
2773
2774 /* load free nid status from nat_bits table */
2775 load_free_nid_bitmap(sbi);
2776
2777 build_free_nids(sbi, true, true);
2778 return 0;
2779}
2780
2781void destroy_node_manager(struct f2fs_sb_info *sbi)
2782{
2783 struct f2fs_nm_info *nm_i = NM_I(sbi);
2784 struct free_nid *i, *next_i;
2785 struct nat_entry *natvec[NATVEC_SIZE];
2786 struct nat_entry_set *setvec[SETVEC_SIZE];
2787 nid_t nid = 0;
2788 unsigned int found;
2789
2790 if (!nm_i)
2791 return;
2792
2793 /* destroy free nid list */
2794 spin_lock(&nm_i->nid_list_lock);
2795 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
2796 __remove_free_nid(sbi, i, FREE_NID);
2797 spin_unlock(&nm_i->nid_list_lock);
2798 kmem_cache_free(free_nid_slab, i);
2799 spin_lock(&nm_i->nid_list_lock);
2800 }
2801 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
2802 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
2803 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
2804 spin_unlock(&nm_i->nid_list_lock);
2805
2806 /* destroy nat cache */
2807 down_write(&nm_i->nat_tree_lock);
2808 while ((found = __gang_lookup_nat_cache(nm_i,
2809 nid, NATVEC_SIZE, natvec))) {
2810 unsigned idx;
2811
2812 nid = nat_get_nid(natvec[found - 1]) + 1;
2813 for (idx = 0; idx < found; idx++)
2814 __del_from_nat_cache(nm_i, natvec[idx]);
2815 }
2816 f2fs_bug_on(sbi, nm_i->nat_cnt);
2817
2818 /* destroy nat set cache */
2819 nid = 0;
2820 while ((found = __gang_lookup_nat_set(nm_i,
2821 nid, SETVEC_SIZE, setvec))) {
2822 unsigned idx;
2823
2824 nid = setvec[found - 1]->set + 1;
2825 for (idx = 0; idx < found; idx++) {
2826 /* entry_cnt is not zero, when cp_error was occurred */
2827 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
2828 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
2829 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
2830 }
2831 }
2832 up_write(&nm_i->nat_tree_lock);
2833
2834 kvfree(nm_i->nat_block_bitmap);
2835 if (nm_i->free_nid_bitmap) {
2836 int i;
2837
2838 for (i = 0; i < nm_i->nat_blocks; i++)
2839 kvfree(nm_i->free_nid_bitmap[i]);
2840 kfree(nm_i->free_nid_bitmap);
2841 }
2842 kvfree(nm_i->free_nid_count);
2843
2844 kfree(nm_i->nat_bitmap);
2845 kfree(nm_i->nat_bits);
2846#ifdef CONFIG_F2FS_CHECK_FS
2847 kfree(nm_i->nat_bitmap_mir);
2848#endif
2849 sbi->nm_info = NULL;
2850 kfree(nm_i);
2851}
2852
2853int __init create_node_manager_caches(void)
2854{
2855 nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
2856 sizeof(struct nat_entry));
2857 if (!nat_entry_slab)
2858 goto fail;
2859
2860 free_nid_slab = f2fs_kmem_cache_create("free_nid",
2861 sizeof(struct free_nid));
2862 if (!free_nid_slab)
2863 goto destroy_nat_entry;
2864
2865 nat_entry_set_slab = f2fs_kmem_cache_create("nat_entry_set",
2866 sizeof(struct nat_entry_set));
2867 if (!nat_entry_set_slab)
2868 goto destroy_free_nid;
2869 return 0;
2870
2871destroy_free_nid:
2872 kmem_cache_destroy(free_nid_slab);
2873destroy_nat_entry:
2874 kmem_cache_destroy(nat_entry_slab);
2875fail:
2876 return -ENOMEM;
2877}
2878
2879void destroy_node_manager_caches(void)
2880{
2881 kmem_cache_destroy(nat_entry_set_slab);
2882 kmem_cache_destroy(free_nid_slab);
2883 kmem_cache_destroy(nat_entry_slab);
2884}