Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * fs/f2fs/node.c
   4 *
   5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   6 *             http://www.samsung.com/
 
 
 
 
   7 */
   8#include <linux/fs.h>
   9#include <linux/f2fs_fs.h>
  10#include <linux/mpage.h>
  11#include <linux/sched/mm.h>
  12#include <linux/blkdev.h>
  13#include <linux/pagevec.h>
  14#include <linux/swap.h>
  15
  16#include "f2fs.h"
  17#include "node.h"
  18#include "segment.h"
  19#include "xattr.h"
  20#include "iostat.h"
  21#include <trace/events/f2fs.h>
  22
  23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
  24
  25static struct kmem_cache *nat_entry_slab;
  26static struct kmem_cache *free_nid_slab;
  27static struct kmem_cache *nat_entry_set_slab;
  28static struct kmem_cache *fsync_node_entry_slab;
  29
  30/*
  31 * Check whether the given nid is within node id range.
  32 */
  33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
  34{
  35	if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
  36		set_sbi_flag(sbi, SBI_NEED_FSCK);
  37		f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
  38			  __func__, nid);
  39		f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
  40		return -EFSCORRUPTED;
  41	}
  42	return 0;
  43}
  44
  45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
  46{
  47	struct f2fs_nm_info *nm_i = NM_I(sbi);
  48	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
  49	struct sysinfo val;
  50	unsigned long avail_ram;
  51	unsigned long mem_size = 0;
  52	bool res = false;
  53
  54	if (!nm_i)
  55		return true;
  56
  57	si_meminfo(&val);
 
 
 
 
 
  58
  59	/* only uses low memory */
  60	avail_ram = val.totalram - val.totalhigh;
  61
  62	/*
  63	 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
  64	 */
  65	if (type == FREE_NIDS) {
  66		mem_size = (nm_i->nid_cnt[FREE_NID] *
  67				sizeof(struct free_nid)) >> PAGE_SHIFT;
  68		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  69	} else if (type == NAT_ENTRIES) {
  70		mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
  71				sizeof(struct nat_entry)) >> PAGE_SHIFT;
  72		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  73		if (excess_cached_nats(sbi))
  74			res = false;
  75	} else if (type == DIRTY_DENTS) {
  76		if (sbi->sb->s_bdi->wb.dirty_exceeded)
  77			return false;
  78		mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
  79		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  80	} else if (type == INO_ENTRIES) {
  81		int i;
  82
  83		for (i = 0; i < MAX_INO_ENTRY; i++)
  84			mem_size += sbi->im[i].ino_num *
  85						sizeof(struct ino_entry);
  86		mem_size >>= PAGE_SHIFT;
  87		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
  88	} else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
  89		enum extent_type etype = type == READ_EXTENT_CACHE ?
  90						EX_READ : EX_BLOCK_AGE;
  91		struct extent_tree_info *eti = &sbi->extent_tree[etype];
  92
  93		mem_size = (atomic_read(&eti->total_ext_tree) *
  94				sizeof(struct extent_tree) +
  95				atomic_read(&eti->total_ext_node) *
  96				sizeof(struct extent_node)) >> PAGE_SHIFT;
  97		res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
  98	} else if (type == DISCARD_CACHE) {
  99		mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
 100				sizeof(struct discard_cmd)) >> PAGE_SHIFT;
 101		res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
 102	} else if (type == COMPRESS_PAGE) {
 103#ifdef CONFIG_F2FS_FS_COMPRESSION
 104		unsigned long free_ram = val.freeram;
 105
 106		/*
 107		 * free memory is lower than watermark or cached page count
 108		 * exceed threshold, deny caching compress page.
 109		 */
 110		res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
 111			(COMPRESS_MAPPING(sbi)->nrpages <
 112			 free_ram * sbi->compress_percent / 100);
 113#else
 114		res = false;
 115#endif
 116	} else {
 117		if (!sbi->sb->s_bdi->wb.dirty_exceeded)
 118			return true;
 119	}
 120	return res;
 121}
 122
 123static void clear_node_page_dirty(struct page *page)
 124{
 
 
 
 
 125	if (PageDirty(page)) {
 126		f2fs_clear_page_cache_dirty_tag(page);
 
 
 
 
 
 127		clear_page_dirty_for_io(page);
 128		dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
 129	}
 130	ClearPageUptodate(page);
 131}
 132
 133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 134{
 135	return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
 
 136}
 137
 138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
 139{
 140	struct page *src_page;
 141	struct page *dst_page;
 
 142	pgoff_t dst_off;
 143	void *src_addr;
 144	void *dst_addr;
 145	struct f2fs_nm_info *nm_i = NM_I(sbi);
 146
 147	dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
 
 148
 149	/* get current nat block page with lock */
 150	src_page = get_current_nat_page(sbi, nid);
 151	if (IS_ERR(src_page))
 
 
 152		return src_page;
 153	dst_page = f2fs_grab_meta_page(sbi, dst_off);
 154	f2fs_bug_on(sbi, PageDirty(src_page));
 155
 156	src_addr = page_address(src_page);
 157	dst_addr = page_address(dst_page);
 158	memcpy(dst_addr, src_addr, PAGE_SIZE);
 159	set_page_dirty(dst_page);
 160	f2fs_put_page(src_page, 1);
 161
 162	set_to_next_nat(nm_i, nid);
 163
 164	return dst_page;
 165}
 166
 167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
 168						nid_t nid, bool no_fail)
 169{
 170	struct nat_entry *new;
 171
 172	new = f2fs_kmem_cache_alloc(nat_entry_slab,
 173					GFP_F2FS_ZERO, no_fail, sbi);
 174	if (new) {
 175		nat_set_nid(new, nid);
 176		nat_reset_flag(new);
 177	}
 178	return new;
 179}
 180
 181static void __free_nat_entry(struct nat_entry *e)
 182{
 183	kmem_cache_free(nat_entry_slab, e);
 184}
 185
 186/* must be locked by nat_tree_lock */
 187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
 188	struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
 189{
 190	if (no_fail)
 191		f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
 192	else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
 193		return NULL;
 194
 195	if (raw_ne)
 196		node_info_from_raw_nat(&ne->ni, raw_ne);
 197
 198	spin_lock(&nm_i->nat_list_lock);
 199	list_add_tail(&ne->list, &nm_i->nat_entries);
 200	spin_unlock(&nm_i->nat_list_lock);
 201
 202	nm_i->nat_cnt[TOTAL_NAT]++;
 203	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 204	return ne;
 205}
 206
 207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 208{
 209	struct nat_entry *ne;
 210
 211	ne = radix_tree_lookup(&nm_i->nat_root, n);
 212
 213	/* for recent accessed nat entry, move it to tail of lru list */
 214	if (ne && !get_nat_flag(ne, IS_DIRTY)) {
 215		spin_lock(&nm_i->nat_list_lock);
 216		if (!list_empty(&ne->list))
 217			list_move_tail(&ne->list, &nm_i->nat_entries);
 218		spin_unlock(&nm_i->nat_list_lock);
 219	}
 220
 221	return ne;
 222}
 223
 224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 225		nid_t start, unsigned int nr, struct nat_entry **ep)
 226{
 227	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 228}
 229
 230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 231{
 
 232	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 233	nm_i->nat_cnt[TOTAL_NAT]--;
 234	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 235	__free_nat_entry(e);
 236}
 237
 238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
 239							struct nat_entry *ne)
 240{
 241	nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
 242	struct nat_entry_set *head;
 243
 244	head = radix_tree_lookup(&nm_i->nat_set_root, set);
 245	if (!head) {
 246		head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
 247						GFP_NOFS, true, NULL);
 248
 249		INIT_LIST_HEAD(&head->entry_list);
 250		INIT_LIST_HEAD(&head->set_list);
 251		head->set = set;
 252		head->entry_cnt = 0;
 253		f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
 254	}
 255	return head;
 256}
 257
 258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 259						struct nat_entry *ne)
 260{
 261	struct nat_entry_set *head;
 262	bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
 263
 264	if (!new_ne)
 265		head = __grab_nat_entry_set(nm_i, ne);
 266
 267	/*
 268	 * update entry_cnt in below condition:
 269	 * 1. update NEW_ADDR to valid block address;
 270	 * 2. update old block address to new one;
 271	 */
 272	if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
 273				!get_nat_flag(ne, IS_DIRTY)))
 274		head->entry_cnt++;
 275
 276	set_nat_flag(ne, IS_PREALLOC, new_ne);
 277
 278	if (get_nat_flag(ne, IS_DIRTY))
 279		goto refresh_list;
 280
 281	nm_i->nat_cnt[DIRTY_NAT]++;
 282	nm_i->nat_cnt[RECLAIMABLE_NAT]--;
 283	set_nat_flag(ne, IS_DIRTY, true);
 284refresh_list:
 285	spin_lock(&nm_i->nat_list_lock);
 286	if (new_ne)
 287		list_del_init(&ne->list);
 288	else
 289		list_move_tail(&ne->list, &head->entry_list);
 290	spin_unlock(&nm_i->nat_list_lock);
 291}
 292
 293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
 294		struct nat_entry_set *set, struct nat_entry *ne)
 295{
 296	spin_lock(&nm_i->nat_list_lock);
 297	list_move_tail(&ne->list, &nm_i->nat_entries);
 298	spin_unlock(&nm_i->nat_list_lock);
 299
 300	set_nat_flag(ne, IS_DIRTY, false);
 301	set->entry_cnt--;
 302	nm_i->nat_cnt[DIRTY_NAT]--;
 303	nm_i->nat_cnt[RECLAIMABLE_NAT]++;
 304}
 305
 306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
 307		nid_t start, unsigned int nr, struct nat_entry_set **ep)
 308{
 309	return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
 310							start, nr);
 311}
 312
 313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
 314{
 315	return NODE_MAPPING(sbi) == page->mapping &&
 316			IS_DNODE(page) && is_cold_node(page);
 317}
 318
 319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
 320{
 321	spin_lock_init(&sbi->fsync_node_lock);
 322	INIT_LIST_HEAD(&sbi->fsync_node_list);
 323	sbi->fsync_seg_id = 0;
 324	sbi->fsync_node_num = 0;
 325}
 326
 327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
 328							struct page *page)
 329{
 330	struct fsync_node_entry *fn;
 331	unsigned long flags;
 332	unsigned int seq_id;
 333
 334	fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
 335					GFP_NOFS, true, NULL);
 336
 337	get_page(page);
 338	fn->page = page;
 339	INIT_LIST_HEAD(&fn->list);
 340
 341	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 342	list_add_tail(&fn->list, &sbi->fsync_node_list);
 343	fn->seq_id = sbi->fsync_seg_id++;
 344	seq_id = fn->seq_id;
 345	sbi->fsync_node_num++;
 346	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 347
 348	return seq_id;
 349}
 350
 351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
 352{
 353	struct fsync_node_entry *fn;
 354	unsigned long flags;
 355
 356	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 357	list_for_each_entry(fn, &sbi->fsync_node_list, list) {
 358		if (fn->page == page) {
 359			list_del(&fn->list);
 360			sbi->fsync_node_num--;
 361			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 362			kmem_cache_free(fsync_node_entry_slab, fn);
 363			put_page(page);
 364			return;
 365		}
 366	}
 367	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 368	f2fs_bug_on(sbi, 1);
 369}
 370
 371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
 372{
 373	unsigned long flags;
 374
 375	spin_lock_irqsave(&sbi->fsync_node_lock, flags);
 376	sbi->fsync_seg_id = 0;
 377	spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
 378}
 379
 380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
 381{
 382	struct f2fs_nm_info *nm_i = NM_I(sbi);
 383	struct nat_entry *e;
 384	bool need = false;
 385
 386	f2fs_down_read(&nm_i->nat_tree_lock);
 387	e = __lookup_nat_cache(nm_i, nid);
 388	if (e) {
 389		if (!get_nat_flag(e, IS_CHECKPOINTED) &&
 390				!get_nat_flag(e, HAS_FSYNCED_INODE))
 391			need = true;
 392	}
 393	f2fs_up_read(&nm_i->nat_tree_lock);
 394	return need;
 395}
 396
 397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 398{
 399	struct f2fs_nm_info *nm_i = NM_I(sbi);
 400	struct nat_entry *e;
 401	bool is_cp = true;
 402
 403	f2fs_down_read(&nm_i->nat_tree_lock);
 404	e = __lookup_nat_cache(nm_i, nid);
 405	if (e && !get_nat_flag(e, IS_CHECKPOINTED))
 406		is_cp = false;
 407	f2fs_up_read(&nm_i->nat_tree_lock);
 408	return is_cp;
 409}
 410
 411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
 412{
 413	struct f2fs_nm_info *nm_i = NM_I(sbi);
 414	struct nat_entry *e;
 415	bool need_update = true;
 416
 417	f2fs_down_read(&nm_i->nat_tree_lock);
 418	e = __lookup_nat_cache(nm_i, ino);
 419	if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
 420			(get_nat_flag(e, IS_CHECKPOINTED) ||
 421			 get_nat_flag(e, HAS_FSYNCED_INODE)))
 422		need_update = false;
 423	f2fs_up_read(&nm_i->nat_tree_lock);
 424	return need_update;
 
 
 
 
 
 425}
 426
 427/* must be locked by nat_tree_lock */
 428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
 429						struct f2fs_nat_entry *ne)
 430{
 431	struct f2fs_nm_info *nm_i = NM_I(sbi);
 432	struct nat_entry *new, *e;
 433
 434	/* Let's mitigate lock contention of nat_tree_lock during checkpoint */
 435	if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
 436		return;
 437
 438	new = __alloc_nat_entry(sbi, nid, false);
 439	if (!new)
 440		return;
 441
 442	f2fs_down_write(&nm_i->nat_tree_lock);
 443	e = __lookup_nat_cache(nm_i, nid);
 444	if (!e)
 445		e = __init_nat_entry(nm_i, new, ne, false);
 446	else
 447		f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
 448				nat_get_blkaddr(e) !=
 449					le32_to_cpu(ne->block_addr) ||
 450				nat_get_version(e) != ne->version);
 451	f2fs_up_write(&nm_i->nat_tree_lock);
 452	if (e != new)
 453		__free_nat_entry(new);
 
 454}
 455
 456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 457			block_t new_blkaddr, bool fsync_done)
 458{
 459	struct f2fs_nm_info *nm_i = NM_I(sbi);
 460	struct nat_entry *e;
 461	struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
 462
 463	f2fs_down_write(&nm_i->nat_tree_lock);
 464	e = __lookup_nat_cache(nm_i, ni->nid);
 465	if (!e) {
 466		e = __init_nat_entry(nm_i, new, NULL, true);
 467		copy_node_info(&e->ni, ni);
 468		f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
 
 
 
 
 469	} else if (new_blkaddr == NEW_ADDR) {
 470		/*
 471		 * when nid is reallocated,
 472		 * previous nat entry can be remained in nat cache.
 473		 * So, reinitialize it with new information.
 474		 */
 475		copy_node_info(&e->ni, ni);
 476		f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
 477	}
 478	/* let's free early to reduce memory consumption */
 479	if (e != new)
 480		__free_nat_entry(new);
 481
 482	/* sanity check */
 483	f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
 484	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
 485			new_blkaddr == NULL_ADDR);
 486	f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
 487			new_blkaddr == NEW_ADDR);
 488	f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
 
 489			new_blkaddr == NEW_ADDR);
 490
 491	/* increment version no as node is removed */
 492	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 493		unsigned char version = nat_get_version(e);
 494
 495		nat_set_version(e, inc_node_version(version));
 496	}
 497
 498	/* change address */
 499	nat_set_blkaddr(e, new_blkaddr);
 500	if (!__is_valid_data_blkaddr(new_blkaddr))
 501		set_nat_flag(e, IS_CHECKPOINTED, false);
 502	__set_nat_cache_dirty(nm_i, e);
 503
 504	/* update fsync_mark if its inode nat entry is still alive */
 505	if (ni->nid != ni->ino)
 506		e = __lookup_nat_cache(nm_i, ni->ino);
 507	if (e) {
 508		if (fsync_done && ni->nid == ni->ino)
 509			set_nat_flag(e, HAS_FSYNCED_INODE, true);
 510		set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
 511	}
 512	f2fs_up_write(&nm_i->nat_tree_lock);
 513}
 514
 515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 516{
 517	struct f2fs_nm_info *nm_i = NM_I(sbi);
 518	int nr = nr_shrink;
 519
 520	if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
 521		return 0;
 522
 523	spin_lock(&nm_i->nat_list_lock);
 524	while (nr_shrink) {
 525		struct nat_entry *ne;
 526
 527		if (list_empty(&nm_i->nat_entries))
 528			break;
 529
 530		ne = list_first_entry(&nm_i->nat_entries,
 531					struct nat_entry, list);
 532		list_del(&ne->list);
 533		spin_unlock(&nm_i->nat_list_lock);
 534
 535		__del_from_nat_cache(nm_i, ne);
 536		nr_shrink--;
 537
 538		spin_lock(&nm_i->nat_list_lock);
 539	}
 540	spin_unlock(&nm_i->nat_list_lock);
 541
 542	f2fs_up_write(&nm_i->nat_tree_lock);
 543	return nr - nr_shrink;
 544}
 545
 546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
 547				struct node_info *ni, bool checkpoint_context)
 
 
 548{
 549	struct f2fs_nm_info *nm_i = NM_I(sbi);
 550	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 551	struct f2fs_journal *journal = curseg->journal;
 552	nid_t start_nid = START_NID(nid);
 553	struct f2fs_nat_block *nat_blk;
 554	struct page *page = NULL;
 555	struct f2fs_nat_entry ne;
 556	struct nat_entry *e;
 557	pgoff_t index;
 558	block_t blkaddr;
 559	int i;
 560
 
 561	ni->nid = nid;
 562retry:
 563	/* Check nat cache */
 564	f2fs_down_read(&nm_i->nat_tree_lock);
 565	e = __lookup_nat_cache(nm_i, nid);
 566	if (e) {
 567		ni->ino = nat_get_ino(e);
 568		ni->blk_addr = nat_get_blkaddr(e);
 569		ni->version = nat_get_version(e);
 570		f2fs_up_read(&nm_i->nat_tree_lock);
 571		return 0;
 572	}
 573
 574	/*
 575	 * Check current segment summary by trying to grab journal_rwsem first.
 576	 * This sem is on the critical path on the checkpoint requiring the above
 577	 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
 578	 * while not bothering checkpoint.
 579	 */
 580	if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
 581		down_read(&curseg->journal_rwsem);
 582	} else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
 583				!down_read_trylock(&curseg->journal_rwsem)) {
 584		f2fs_up_read(&nm_i->nat_tree_lock);
 585		goto retry;
 586	}
 
 
 
 587
 588	i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
 
 
 589	if (i >= 0) {
 590		ne = nat_in_journal(journal, i);
 591		node_info_from_raw_nat(ni, &ne);
 592	}
 593	up_read(&curseg->journal_rwsem);
 594	if (i >= 0) {
 595		f2fs_up_read(&nm_i->nat_tree_lock);
 596		goto cache;
 597	}
 598
 599	/* Fill node_info from nat page */
 600	index = current_nat_addr(sbi, nid);
 601	f2fs_up_read(&nm_i->nat_tree_lock);
 602
 603	page = f2fs_get_meta_page(sbi, index);
 604	if (IS_ERR(page))
 605		return PTR_ERR(page);
 606
 607	nat_blk = (struct f2fs_nat_block *)page_address(page);
 608	ne = nat_blk->entries[nid - start_nid];
 609	node_info_from_raw_nat(ni, &ne);
 610	f2fs_put_page(page, 1);
 611cache:
 612	blkaddr = le32_to_cpu(ne.block_addr);
 613	if (__is_valid_data_blkaddr(blkaddr) &&
 614		!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
 615		return -EFAULT;
 616
 617	/* cache nat entry */
 618	cache_nat_entry(sbi, nid, &ne);
 619	return 0;
 620}
 621
 622/*
 623 * readahead MAX_RA_NODE number of node pages.
 624 */
 625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
 626{
 627	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
 628	struct blk_plug plug;
 629	int i, end;
 630	nid_t nid;
 631
 632	blk_start_plug(&plug);
 633
 634	/* Then, try readahead for siblings of the desired node */
 635	end = start + n;
 636	end = min(end, NIDS_PER_BLOCK);
 637	for (i = start; i < end; i++) {
 638		nid = get_nid(parent, i, false);
 639		f2fs_ra_node_page(sbi, nid);
 640	}
 641
 642	blk_finish_plug(&plug);
 643}
 644
 645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
 646{
 647	const long direct_index = ADDRS_PER_INODE(dn->inode);
 648	const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
 649	const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
 650	unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
 651	int cur_level = dn->cur_level;
 652	int max_level = dn->max_level;
 653	pgoff_t base = 0;
 654
 655	if (!dn->max_level)
 656		return pgofs + 1;
 657
 658	while (max_level-- > cur_level)
 659		skipped_unit *= NIDS_PER_BLOCK;
 660
 661	switch (dn->max_level) {
 662	case 3:
 663		base += 2 * indirect_blks;
 664		fallthrough;
 665	case 2:
 666		base += 2 * direct_blks;
 667		fallthrough;
 668	case 1:
 669		base += direct_index;
 670		break;
 671	default:
 672		f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
 673	}
 674
 675	return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
 676}
 677
 678/*
 679 * The maximum depth is four.
 680 * Offset[0] will have raw inode offset.
 681 */
 682static int get_node_path(struct inode *inode, long block,
 683				int offset[4], unsigned int noffset[4])
 684{
 685	const long direct_index = ADDRS_PER_INODE(inode);
 686	const long direct_blks = ADDRS_PER_BLOCK(inode);
 687	const long dptrs_per_blk = NIDS_PER_BLOCK;
 688	const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
 689	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 690	int n = 0;
 691	int level = 0;
 692
 693	noffset[0] = 0;
 694
 695	if (block < direct_index) {
 696		offset[n] = block;
 697		goto got;
 698	}
 699	block -= direct_index;
 700	if (block < direct_blks) {
 701		offset[n++] = NODE_DIR1_BLOCK;
 702		noffset[n] = 1;
 703		offset[n] = block;
 704		level = 1;
 705		goto got;
 706	}
 707	block -= direct_blks;
 708	if (block < direct_blks) {
 709		offset[n++] = NODE_DIR2_BLOCK;
 710		noffset[n] = 2;
 711		offset[n] = block;
 712		level = 1;
 713		goto got;
 714	}
 715	block -= direct_blks;
 716	if (block < indirect_blks) {
 717		offset[n++] = NODE_IND1_BLOCK;
 718		noffset[n] = 3;
 719		offset[n++] = block / direct_blks;
 720		noffset[n] = 4 + offset[n - 1];
 721		offset[n] = block % direct_blks;
 722		level = 2;
 723		goto got;
 724	}
 725	block -= indirect_blks;
 726	if (block < indirect_blks) {
 727		offset[n++] = NODE_IND2_BLOCK;
 728		noffset[n] = 4 + dptrs_per_blk;
 729		offset[n++] = block / direct_blks;
 730		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 731		offset[n] = block % direct_blks;
 732		level = 2;
 733		goto got;
 734	}
 735	block -= indirect_blks;
 736	if (block < dindirect_blks) {
 737		offset[n++] = NODE_DIND_BLOCK;
 738		noffset[n] = 5 + (dptrs_per_blk * 2);
 739		offset[n++] = block / indirect_blks;
 740		noffset[n] = 6 + (dptrs_per_blk * 2) +
 741			      offset[n - 1] * (dptrs_per_blk + 1);
 742		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 743		noffset[n] = 7 + (dptrs_per_blk * 2) +
 744			      offset[n - 2] * (dptrs_per_blk + 1) +
 745			      offset[n - 1];
 746		offset[n] = block % direct_blks;
 747		level = 3;
 748		goto got;
 749	} else {
 750		return -E2BIG;
 751	}
 752got:
 753	return level;
 754}
 755
 756/*
 757 * Caller should call f2fs_put_dnode(dn).
 758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
 
 760 */
 761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 762{
 763	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 764	struct page *npage[4];
 765	struct page *parent = NULL;
 766	int offset[4];
 767	unsigned int noffset[4];
 768	nid_t nids[4];
 769	int level, i = 0;
 770	int err = 0;
 771
 772	level = get_node_path(dn->inode, index, offset, noffset);
 773	if (level < 0)
 774		return level;
 775
 776	nids[0] = dn->inode->i_ino;
 777	npage[0] = dn->inode_page;
 778
 779	if (!npage[0]) {
 780		npage[0] = f2fs_get_node_page(sbi, nids[0]);
 781		if (IS_ERR(npage[0]))
 782			return PTR_ERR(npage[0]);
 783	}
 784
 785	/* if inline_data is set, should not report any block indices */
 786	if (f2fs_has_inline_data(dn->inode) && index) {
 787		err = -ENOENT;
 788		f2fs_put_page(npage[0], 1);
 789		goto release_out;
 790	}
 791
 792	parent = npage[0];
 793	if (level != 0)
 794		nids[1] = get_nid(parent, offset[0], true);
 795	dn->inode_page = npage[0];
 796	dn->inode_page_locked = true;
 797
 798	/* get indirect or direct nodes */
 799	for (i = 1; i <= level; i++) {
 800		bool done = false;
 801
 802		if (!nids[i] && mode == ALLOC_NODE) {
 803			/* alloc new node */
 804			if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
 805				err = -ENOSPC;
 806				goto release_pages;
 807			}
 808
 809			dn->nid = nids[i];
 810			npage[i] = f2fs_new_node_page(dn, noffset[i]);
 811			if (IS_ERR(npage[i])) {
 812				f2fs_alloc_nid_failed(sbi, nids[i]);
 813				err = PTR_ERR(npage[i]);
 814				goto release_pages;
 815			}
 816
 817			set_nid(parent, offset[i - 1], nids[i], i == 1);
 818			f2fs_alloc_nid_done(sbi, nids[i]);
 819			done = true;
 820		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 821			npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
 822			if (IS_ERR(npage[i])) {
 823				err = PTR_ERR(npage[i]);
 824				goto release_pages;
 825			}
 826			done = true;
 827		}
 828		if (i == 1) {
 829			dn->inode_page_locked = false;
 830			unlock_page(parent);
 831		} else {
 832			f2fs_put_page(parent, 1);
 833		}
 834
 835		if (!done) {
 836			npage[i] = f2fs_get_node_page(sbi, nids[i]);
 837			if (IS_ERR(npage[i])) {
 838				err = PTR_ERR(npage[i]);
 839				f2fs_put_page(npage[0], 0);
 840				goto release_out;
 841			}
 842		}
 843		if (i < level) {
 844			parent = npage[i];
 845			nids[i + 1] = get_nid(parent, offset[i], false);
 846		}
 847	}
 848	dn->nid = nids[level];
 849	dn->ofs_in_node = offset[level];
 850	dn->node_page = npage[level];
 851	dn->data_blkaddr = f2fs_data_blkaddr(dn);
 852
 853	if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
 854					f2fs_sb_has_readonly(sbi)) {
 855		unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
 856		block_t blkaddr;
 857
 858		if (!c_len)
 859			goto out;
 860
 861		blkaddr = f2fs_data_blkaddr(dn);
 862		if (blkaddr == COMPRESS_ADDR)
 863			blkaddr = data_blkaddr(dn->inode, dn->node_page,
 864						dn->ofs_in_node + 1);
 865
 866		f2fs_update_read_extent_tree_range_compressed(dn->inode,
 867					index, blkaddr,
 868					F2FS_I(dn->inode)->i_cluster_size,
 869					c_len);
 870	}
 871out:
 872	return 0;
 873
 874release_pages:
 875	f2fs_put_page(parent, 1);
 876	if (i > 1)
 877		f2fs_put_page(npage[0], 0);
 878release_out:
 879	dn->inode_page = NULL;
 880	dn->node_page = NULL;
 881	if (err == -ENOENT) {
 882		dn->cur_level = i;
 883		dn->max_level = level;
 884		dn->ofs_in_node = offset[level];
 885	}
 886	return err;
 887}
 888
 889static int truncate_node(struct dnode_of_data *dn)
 890{
 891	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
 892	struct node_info ni;
 893	int err;
 894	pgoff_t index;
 895
 896	err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
 897	if (err)
 898		return err;
 
 
 
 899
 900	/* Deallocate node address */
 901	f2fs_invalidate_blocks(sbi, ni.blk_addr);
 902	dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
 903	set_node_addr(sbi, &ni, NULL_ADDR, false);
 904
 905	if (dn->nid == dn->inode->i_ino) {
 906		f2fs_remove_orphan_inode(sbi, dn->nid);
 907		dec_valid_inode_count(sbi);
 908		f2fs_inode_synced(dn->inode);
 
 909	}
 910
 911	clear_node_page_dirty(dn->node_page);
 912	set_sbi_flag(sbi, SBI_IS_DIRTY);
 913
 914	index = dn->node_page->index;
 915	f2fs_put_page(dn->node_page, 1);
 916
 917	invalidate_mapping_pages(NODE_MAPPING(sbi),
 918			index, index);
 919
 920	dn->node_page = NULL;
 921	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 922
 923	return 0;
 924}
 925
 926static int truncate_dnode(struct dnode_of_data *dn)
 927{
 
 928	struct page *page;
 929	int err;
 930
 931	if (dn->nid == 0)
 932		return 1;
 933
 934	/* get direct node */
 935	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 936	if (PTR_ERR(page) == -ENOENT)
 937		return 1;
 938	else if (IS_ERR(page))
 939		return PTR_ERR(page);
 940
 941	/* Make dnode_of_data for parameter */
 942	dn->node_page = page;
 943	dn->ofs_in_node = 0;
 944	f2fs_truncate_data_blocks(dn);
 945	err = truncate_node(dn);
 946	if (err)
 947		return err;
 948
 949	return 1;
 950}
 951
 952static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 953						int ofs, int depth)
 954{
 
 955	struct dnode_of_data rdn = *dn;
 956	struct page *page;
 957	struct f2fs_node *rn;
 958	nid_t child_nid;
 959	unsigned int child_nofs;
 960	int freed = 0;
 961	int i, ret;
 962
 963	if (dn->nid == 0)
 964		return NIDS_PER_BLOCK + 1;
 965
 966	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 967
 968	page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
 969	if (IS_ERR(page)) {
 970		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 971		return PTR_ERR(page);
 972	}
 973
 974	f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
 975
 976	rn = F2FS_NODE(page);
 977	if (depth < 3) {
 978		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 979			child_nid = le32_to_cpu(rn->in.nid[i]);
 980			if (child_nid == 0)
 981				continue;
 982			rdn.nid = child_nid;
 983			ret = truncate_dnode(&rdn);
 984			if (ret < 0)
 985				goto out_err;
 986			if (set_nid(page, i, 0, false))
 987				dn->node_changed = true;
 988		}
 989	} else {
 990		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 991		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 992			child_nid = le32_to_cpu(rn->in.nid[i]);
 993			if (child_nid == 0) {
 994				child_nofs += NIDS_PER_BLOCK + 1;
 995				continue;
 996			}
 997			rdn.nid = child_nid;
 998			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 999			if (ret == (NIDS_PER_BLOCK + 1)) {
1000				if (set_nid(page, i, 0, false))
1001					dn->node_changed = true;
1002				child_nofs += ret;
1003			} else if (ret < 0 && ret != -ENOENT) {
1004				goto out_err;
1005			}
1006		}
1007		freed = child_nofs;
1008	}
1009
1010	if (!ofs) {
1011		/* remove current indirect node */
1012		dn->node_page = page;
1013		ret = truncate_node(dn);
1014		if (ret)
1015			goto out_err;
1016		freed++;
1017	} else {
1018		f2fs_put_page(page, 1);
1019	}
1020	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1021	return freed;
1022
1023out_err:
1024	f2fs_put_page(page, 1);
1025	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1026	return ret;
1027}
1028
1029static int truncate_partial_nodes(struct dnode_of_data *dn,
1030			struct f2fs_inode *ri, int *offset, int depth)
1031{
 
1032	struct page *pages[2];
1033	nid_t nid[3];
1034	nid_t child_nid;
1035	int err = 0;
1036	int i;
1037	int idx = depth - 2;
1038
1039	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1040	if (!nid[0])
1041		return 0;
1042
1043	/* get indirect nodes in the path */
1044	for (i = 0; i < idx + 1; i++) {
1045		/* reference count'll be increased */
1046		pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1047		if (IS_ERR(pages[i])) {
1048			err = PTR_ERR(pages[i]);
1049			idx = i - 1;
1050			goto fail;
1051		}
1052		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1053	}
1054
1055	f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1056
1057	/* free direct nodes linked to a partial indirect node */
1058	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1059		child_nid = get_nid(pages[idx], i, false);
1060		if (!child_nid)
1061			continue;
1062		dn->nid = child_nid;
1063		err = truncate_dnode(dn);
1064		if (err < 0)
1065			goto fail;
1066		if (set_nid(pages[idx], i, 0, false))
1067			dn->node_changed = true;
1068	}
1069
1070	if (offset[idx + 1] == 0) {
1071		dn->node_page = pages[idx];
1072		dn->nid = nid[idx];
1073		err = truncate_node(dn);
1074		if (err)
1075			goto fail;
1076	} else {
1077		f2fs_put_page(pages[idx], 1);
1078	}
1079	offset[idx]++;
1080	offset[idx + 1] = 0;
1081	idx--;
1082fail:
1083	for (i = idx; i >= 0; i--)
1084		f2fs_put_page(pages[i], 1);
1085
1086	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1087
1088	return err;
1089}
1090
1091/*
1092 * All the block addresses of data and nodes should be nullified.
1093 */
1094int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1095{
1096	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097	int err = 0, cont = 1;
1098	int level, offset[4], noffset[4];
1099	unsigned int nofs = 0;
1100	struct f2fs_inode *ri;
1101	struct dnode_of_data dn;
1102	struct page *page;
1103
1104	trace_f2fs_truncate_inode_blocks_enter(inode, from);
1105
1106	level = get_node_path(inode, from, offset, noffset);
1107	if (level < 0) {
1108		trace_f2fs_truncate_inode_blocks_exit(inode, level);
1109		return level;
1110	}
1111
1112	page = f2fs_get_node_page(sbi, inode->i_ino);
1113	if (IS_ERR(page)) {
1114		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1115		return PTR_ERR(page);
1116	}
1117
1118	set_new_dnode(&dn, inode, page, NULL, 0);
1119	unlock_page(page);
1120
1121	ri = F2FS_INODE(page);
1122	switch (level) {
1123	case 0:
1124	case 1:
1125		nofs = noffset[1];
1126		break;
1127	case 2:
1128		nofs = noffset[1];
1129		if (!offset[level - 1])
1130			goto skip_partial;
1131		err = truncate_partial_nodes(&dn, ri, offset, level);
1132		if (err < 0 && err != -ENOENT)
1133			goto fail;
1134		nofs += 1 + NIDS_PER_BLOCK;
1135		break;
1136	case 3:
1137		nofs = 5 + 2 * NIDS_PER_BLOCK;
1138		if (!offset[level - 1])
1139			goto skip_partial;
1140		err = truncate_partial_nodes(&dn, ri, offset, level);
1141		if (err < 0 && err != -ENOENT)
1142			goto fail;
1143		break;
1144	default:
1145		BUG();
1146	}
1147
1148skip_partial:
1149	while (cont) {
1150		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1151		switch (offset[0]) {
1152		case NODE_DIR1_BLOCK:
1153		case NODE_DIR2_BLOCK:
1154			err = truncate_dnode(&dn);
1155			break;
1156
1157		case NODE_IND1_BLOCK:
1158		case NODE_IND2_BLOCK:
1159			err = truncate_nodes(&dn, nofs, offset[1], 2);
1160			break;
1161
1162		case NODE_DIND_BLOCK:
1163			err = truncate_nodes(&dn, nofs, offset[1], 3);
1164			cont = 0;
1165			break;
1166
1167		default:
1168			BUG();
1169		}
1170		if (err < 0 && err != -ENOENT)
1171			goto fail;
1172		if (offset[1] == 0 &&
1173				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1174			lock_page(page);
1175			BUG_ON(page->mapping != NODE_MAPPING(sbi));
1176			f2fs_wait_on_page_writeback(page, NODE, true, true);
 
 
 
1177			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1178			set_page_dirty(page);
1179			unlock_page(page);
1180		}
1181		offset[1] = 0;
1182		offset[0]++;
1183		nofs += err;
1184	}
1185fail:
1186	f2fs_put_page(page, 0);
1187	trace_f2fs_truncate_inode_blocks_exit(inode, err);
1188	return err > 0 ? 0 : err;
1189}
1190
1191/* caller must lock inode page */
1192int f2fs_truncate_xattr_node(struct inode *inode)
1193{
1194	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1195	nid_t nid = F2FS_I(inode)->i_xattr_nid;
1196	struct dnode_of_data dn;
1197	struct page *npage;
1198	int err;
1199
1200	if (!nid)
1201		return 0;
1202
1203	npage = f2fs_get_node_page(sbi, nid);
1204	if (IS_ERR(npage))
1205		return PTR_ERR(npage);
1206
1207	set_new_dnode(&dn, inode, NULL, npage, nid);
1208	err = truncate_node(&dn);
1209	if (err) {
1210		f2fs_put_page(npage, 1);
1211		return err;
1212	}
1213
1214	f2fs_i_xnid_write(inode, 0);
 
1215
 
 
 
 
 
1216	return 0;
1217}
1218
1219/*
1220 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1221 * f2fs_unlock_op().
1222 */
1223int f2fs_remove_inode_page(struct inode *inode)
1224{
 
 
 
1225	struct dnode_of_data dn;
1226	int err;
1227
1228	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1229	err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1230	if (err)
1231		return err;
1232
1233	err = f2fs_truncate_xattr_node(inode);
1234	if (err) {
1235		f2fs_put_dnode(&dn);
1236		return err;
1237	}
1238
1239	/* remove potential inline_data blocks */
1240	if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1241				S_ISLNK(inode->i_mode))
1242		f2fs_truncate_data_blocks_range(&dn, 1);
1243
1244	/* 0 is possible, after f2fs_new_inode() has failed */
1245	if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1246		f2fs_put_dnode(&dn);
1247		return -EIO;
1248	}
1249
1250	if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1251		f2fs_warn(F2FS_I_SB(inode),
1252			"f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1253			inode->i_ino, (unsigned long long)inode->i_blocks);
1254		set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1255	}
1256
1257	/* will put inode & node pages */
1258	err = truncate_node(&dn);
1259	if (err) {
1260		f2fs_put_dnode(&dn);
1261		return err;
1262	}
1263	return 0;
 
 
 
1264}
1265
1266struct page *f2fs_new_inode_page(struct inode *inode)
1267{
1268	struct dnode_of_data dn;
1269
1270	/* allocate inode page for new inode */
1271	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1272
1273	/* caller should f2fs_put_page(page, 1); */
1274	return f2fs_new_node_page(&dn, 0);
1275}
1276
1277struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
 
1278{
1279	struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1280	struct node_info new_ni;
1281	struct page *page;
1282	int err;
1283
1284	if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1285		return ERR_PTR(-EPERM);
1286
1287	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
 
1288	if (!page)
1289		return ERR_PTR(-ENOMEM);
1290
1291	if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1292		goto fail;
1293
1294#ifdef CONFIG_F2FS_CHECK_FS
1295	err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1296	if (err) {
1297		dec_valid_node_count(sbi, dn->inode, !ofs);
1298		goto fail;
1299	}
1300	if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1301		err = -EFSCORRUPTED;
1302		set_sbi_flag(sbi, SBI_NEED_FSCK);
1303		f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1304		goto fail;
1305	}
1306#endif
1307	new_ni.nid = dn->nid;
1308	new_ni.ino = dn->inode->i_ino;
1309	new_ni.blk_addr = NULL_ADDR;
1310	new_ni.flag = 0;
1311	new_ni.version = 0;
1312	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1313
1314	f2fs_wait_on_page_writeback(page, NODE, true, true);
1315	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1316	set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1317	if (!PageUptodate(page))
1318		SetPageUptodate(page);
1319	if (set_page_dirty(page))
1320		dn->node_changed = true;
1321
1322	if (f2fs_has_xattr_block(ofs))
1323		f2fs_i_xnid_write(dn->inode, dn->nid);
1324
 
 
 
 
 
1325	if (ofs == 0)
1326		inc_valid_inode_count(sbi);
 
1327	return page;
1328
1329fail:
1330	clear_node_page_dirty(page);
1331	f2fs_put_page(page, 1);
1332	return ERR_PTR(err);
1333}
1334
1335/*
1336 * Caller should do after getting the following values.
1337 * 0: f2fs_put_page(page, 0)
1338 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
 
1339 */
1340static int read_node_page(struct page *page, blk_opf_t op_flags)
1341{
1342	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343	struct node_info ni;
1344	struct f2fs_io_info fio = {
1345		.sbi = sbi,
1346		.type = NODE,
1347		.op = REQ_OP_READ,
1348		.op_flags = op_flags,
1349		.page = page,
1350		.encrypted_page = NULL,
1351	};
1352	int err;
1353
1354	if (PageUptodate(page)) {
1355		if (!f2fs_inode_chksum_verify(sbi, page)) {
1356			ClearPageUptodate(page);
1357			return -EFSBADCRC;
1358		}
1359		return LOCKED_PAGE;
1360	}
1361
1362	err = f2fs_get_node_info(sbi, page->index, &ni, false);
1363	if (err)
1364		return err;
1365
1366	/* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1367	if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1368		ClearPageUptodate(page);
1369		return -ENOENT;
1370	}
1371
1372	fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1373
1374	err = f2fs_submit_page_bio(&fio);
1375
1376	if (!err)
1377		f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378
1379	return err;
1380}
1381
1382/*
1383 * Readahead a node page
1384 */
1385void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1386{
1387	struct page *apage;
1388	int err;
1389
1390	if (!nid)
1391		return;
1392	if (f2fs_check_nid_range(sbi, nid))
1393		return;
1394
1395	apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1396	if (apage)
1397		return;
 
 
1398
1399	apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1400	if (!apage)
1401		return;
1402
1403	err = read_node_page(apage, REQ_RAHEAD);
1404	f2fs_put_page(apage, err ? 1 : 0);
 
 
 
1405}
1406
1407static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1408					struct page *parent, int start)
1409{
1410	struct page *page;
1411	int err;
1412
1413	if (!nid)
1414		return ERR_PTR(-ENOENT);
1415	if (f2fs_check_nid_range(sbi, nid))
1416		return ERR_PTR(-EINVAL);
1417repeat:
1418	page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
 
1419	if (!page)
1420		return ERR_PTR(-ENOMEM);
1421
1422	err = read_node_page(page, 0);
1423	if (err < 0) {
1424		goto out_put_err;
1425	} else if (err == LOCKED_PAGE) {
1426		err = 0;
1427		goto page_hit;
1428	}
1429
1430	if (parent)
1431		f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1432
1433	lock_page(page);
1434
 
 
 
1435	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1436		f2fs_put_page(page, 1);
1437		goto repeat;
1438	}
1439
1440	if (unlikely(!PageUptodate(page))) {
1441		err = -EIO;
1442		goto out_err;
1443	}
1444
1445	if (!f2fs_inode_chksum_verify(sbi, page)) {
1446		err = -EFSBADCRC;
1447		goto out_err;
1448	}
1449page_hit:
1450	if (likely(nid == nid_of_node(page)))
1451		return page;
1452
1453	f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1454			  nid, nid_of_node(page), ino_of_node(page),
1455			  ofs_of_node(page), cpver_of_node(page),
1456			  next_blkaddr_of_node(page));
1457	set_sbi_flag(sbi, SBI_NEED_FSCK);
1458	err = -EINVAL;
1459out_err:
1460	ClearPageUptodate(page);
1461out_put_err:
1462	/* ENOENT comes from read_node_page which is not an error. */
1463	if (err != -ENOENT)
1464		f2fs_handle_page_eio(sbi, page->index, NODE);
1465	f2fs_put_page(page, 1);
1466	return ERR_PTR(err);
1467}
1468
1469struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1470{
1471	return __get_node_page(sbi, nid, NULL, 0);
1472}
1473
1474struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1475{
1476	struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1477	nid_t nid = get_nid(parent, start, false);
1478
1479	return __get_node_page(sbi, nid, parent, start);
1480}
1481
1482static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
 
 
 
 
1483{
1484	struct inode *inode;
 
1485	struct page *page;
1486	int ret;
1487
1488	/* should flush inline_data before evict_inode */
1489	inode = ilookup(sbi->sb, ino);
1490	if (!inode)
1491		return;
1492
1493	page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1494					FGP_LOCK|FGP_NOWAIT, 0);
1495	if (!page)
1496		goto iput_out;
1497
1498	if (!PageUptodate(page))
1499		goto page_out;
1500
1501	if (!PageDirty(page))
1502		goto page_out;
1503
1504	if (!clear_page_dirty_for_io(page))
1505		goto page_out;
1506
1507	ret = f2fs_write_inline_data(inode, page);
1508	inode_dec_dirty_pages(inode);
1509	f2fs_remove_dirty_inode(inode);
1510	if (ret)
1511		set_page_dirty(page);
1512page_out:
1513	f2fs_put_page(page, 1);
1514iput_out:
1515	iput(inode);
1516}
1517
1518static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1519{
1520	pgoff_t index;
1521	struct pagevec pvec;
1522	struct page *last_page = NULL;
1523	int nr_pages;
1524
1525	pagevec_init(&pvec);
1526	index = 0;
1527
1528	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1529				PAGECACHE_TAG_DIRTY))) {
1530		int i;
1531
1532		for (i = 0; i < nr_pages; i++) {
1533			struct page *page = pvec.pages[i];
1534
1535			if (unlikely(f2fs_cp_error(sbi))) {
1536				f2fs_put_page(last_page, 0);
1537				pagevec_release(&pvec);
1538				return ERR_PTR(-EIO);
1539			}
1540
1541			if (!IS_DNODE(page) || !is_cold_node(page))
1542				continue;
1543			if (ino_of_node(page) != ino)
1544				continue;
1545
1546			lock_page(page);
1547
1548			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1549continue_unlock:
1550				unlock_page(page);
1551				continue;
1552			}
1553			if (ino_of_node(page) != ino)
1554				goto continue_unlock;
1555
1556			if (!PageDirty(page)) {
1557				/* someone wrote it for us */
1558				goto continue_unlock;
1559			}
1560
1561			if (last_page)
1562				f2fs_put_page(last_page, 0);
1563
1564			get_page(page);
1565			last_page = page;
1566			unlock_page(page);
1567		}
1568		pagevec_release(&pvec);
1569		cond_resched();
1570	}
1571	return last_page;
1572}
1573
1574static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1575				struct writeback_control *wbc, bool do_balance,
1576				enum iostat_type io_type, unsigned int *seq_id)
1577{
1578	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1579	nid_t nid;
1580	struct node_info ni;
1581	struct f2fs_io_info fio = {
1582		.sbi = sbi,
1583		.ino = ino_of_node(page),
1584		.type = NODE,
1585		.op = REQ_OP_WRITE,
1586		.op_flags = wbc_to_write_flags(wbc),
1587		.page = page,
1588		.encrypted_page = NULL,
1589		.submitted = false,
1590		.io_type = io_type,
1591		.io_wbc = wbc,
1592	};
1593	unsigned int seq;
1594
1595	trace_f2fs_writepage(page, NODE);
1596
1597	if (unlikely(f2fs_cp_error(sbi))) {
1598		ClearPageUptodate(page);
1599		dec_page_count(sbi, F2FS_DIRTY_NODES);
1600		unlock_page(page);
1601		return 0;
1602	}
1603
1604	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1605		goto redirty_out;
1606
1607	if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1608			wbc->sync_mode == WB_SYNC_NONE &&
1609			IS_DNODE(page) && is_cold_node(page))
1610		goto redirty_out;
1611
1612	/* get old block addr of this node page */
1613	nid = nid_of_node(page);
1614	f2fs_bug_on(sbi, page->index != nid);
1615
1616	if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1617		goto redirty_out;
1618
1619	if (wbc->for_reclaim) {
1620		if (!f2fs_down_read_trylock(&sbi->node_write))
1621			goto redirty_out;
1622	} else {
1623		f2fs_down_read(&sbi->node_write);
1624	}
1625
1626	/* This page is already truncated */
1627	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1628		ClearPageUptodate(page);
1629		dec_page_count(sbi, F2FS_DIRTY_NODES);
1630		f2fs_up_read(&sbi->node_write);
1631		unlock_page(page);
1632		return 0;
1633	}
1634
1635	if (__is_valid_data_blkaddr(ni.blk_addr) &&
1636		!f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1637					DATA_GENERIC_ENHANCE)) {
1638		f2fs_up_read(&sbi->node_write);
1639		goto redirty_out;
1640	}
1641
1642	if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1643		fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1644
1645	/* should add to global list before clearing PAGECACHE status */
1646	if (f2fs_in_warm_node_list(sbi, page)) {
1647		seq = f2fs_add_fsync_node_entry(sbi, page);
1648		if (seq_id)
1649			*seq_id = seq;
 
 
 
1650	}
1651
1652	set_page_writeback(page);
1653	ClearPageError(page);
1654
1655	fio.old_blkaddr = ni.blk_addr;
1656	f2fs_do_write_node_page(nid, &fio);
1657	set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1658	dec_page_count(sbi, F2FS_DIRTY_NODES);
1659	f2fs_up_read(&sbi->node_write);
1660
1661	if (wbc->for_reclaim) {
1662		f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663		submitted = NULL;
 
1664	}
1665
1666	unlock_page(page);
1667
1668	if (unlikely(f2fs_cp_error(sbi))) {
1669		f2fs_submit_merged_write(sbi, NODE);
1670		submitted = NULL;
1671	}
1672	if (submitted)
1673		*submitted = fio.submitted;
1674
1675	if (do_balance)
1676		f2fs_balance_fs(sbi, false);
1677	return 0;
1678
1679redirty_out:
1680	redirty_page_for_writepage(wbc, page);
1681	return AOP_WRITEPAGE_ACTIVATE;
1682}
1683
1684int f2fs_move_node_page(struct page *node_page, int gc_type)
1685{
1686	int err = 0;
1687
1688	if (gc_type == FG_GC) {
1689		struct writeback_control wbc = {
1690			.sync_mode = WB_SYNC_ALL,
1691			.nr_to_write = 1,
1692			.for_reclaim = 0,
1693		};
1694
1695		f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1696
1697		set_page_dirty(node_page);
1698
1699		if (!clear_page_dirty_for_io(node_page)) {
1700			err = -EAGAIN;
1701			goto out_page;
1702		}
1703
1704		if (__write_node_page(node_page, false, NULL,
1705					&wbc, false, FS_GC_NODE_IO, NULL)) {
1706			err = -EAGAIN;
1707			unlock_page(node_page);
1708		}
1709		goto release_page;
1710	} else {
1711		/* set page dirty and write it */
1712		if (!PageWriteback(node_page))
1713			set_page_dirty(node_page);
1714	}
1715out_page:
1716	unlock_page(node_page);
1717release_page:
1718	f2fs_put_page(node_page, 0);
1719	return err;
1720}
1721
1722static int f2fs_write_node_page(struct page *page,
1723				struct writeback_control *wbc)
1724{
1725	return __write_node_page(page, false, NULL, wbc, false,
1726						FS_NODE_IO, NULL);
1727}
1728
1729int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1730			struct writeback_control *wbc, bool atomic,
1731			unsigned int *seq_id)
1732{
1733	pgoff_t index;
1734	struct pagevec pvec;
1735	int ret = 0;
1736	struct page *last_page = NULL;
1737	bool marked = false;
1738	nid_t ino = inode->i_ino;
1739	int nr_pages;
1740	int nwritten = 0;
1741
1742	if (atomic) {
1743		last_page = last_fsync_dnode(sbi, ino);
1744		if (IS_ERR_OR_NULL(last_page))
1745			return PTR_ERR_OR_ZERO(last_page);
1746	}
1747retry:
1748	pagevec_init(&pvec);
1749	index = 0;
1750
1751	while ((nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1752				PAGECACHE_TAG_DIRTY))) {
1753		int i;
1754
1755		for (i = 0; i < nr_pages; i++) {
1756			struct page *page = pvec.pages[i];
1757			bool submitted = false;
1758
1759			if (unlikely(f2fs_cp_error(sbi))) {
1760				f2fs_put_page(last_page, 0);
1761				pagevec_release(&pvec);
1762				ret = -EIO;
1763				goto out;
1764			}
1765
1766			if (!IS_DNODE(page) || !is_cold_node(page))
1767				continue;
1768			if (ino_of_node(page) != ino)
1769				continue;
1770
1771			lock_page(page);
1772
1773			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1774continue_unlock:
1775				unlock_page(page);
1776				continue;
1777			}
1778			if (ino_of_node(page) != ino)
1779				goto continue_unlock;
1780
1781			if (!PageDirty(page) && page != last_page) {
1782				/* someone wrote it for us */
1783				goto continue_unlock;
1784			}
1785
1786			f2fs_wait_on_page_writeback(page, NODE, true, true);
1787
1788			set_fsync_mark(page, 0);
1789			set_dentry_mark(page, 0);
1790
1791			if (!atomic || page == last_page) {
1792				set_fsync_mark(page, 1);
1793				percpu_counter_inc(&sbi->rf_node_block_count);
1794				if (IS_INODE(page)) {
1795					if (is_inode_flag_set(inode,
1796								FI_DIRTY_INODE))
1797						f2fs_update_inode(inode, page);
1798					set_dentry_mark(page,
1799						f2fs_need_dentry_mark(sbi, ino));
1800				}
1801				/* may be written by other thread */
1802				if (!PageDirty(page))
1803					set_page_dirty(page);
1804			}
1805
1806			if (!clear_page_dirty_for_io(page))
1807				goto continue_unlock;
1808
1809			ret = __write_node_page(page, atomic &&
1810						page == last_page,
1811						&submitted, wbc, true,
1812						FS_NODE_IO, seq_id);
1813			if (ret) {
1814				unlock_page(page);
1815				f2fs_put_page(last_page, 0);
1816				break;
1817			} else if (submitted) {
1818				nwritten++;
1819			}
1820
1821			if (page == last_page) {
1822				f2fs_put_page(page, 0);
1823				marked = true;
1824				break;
1825			}
1826		}
1827		pagevec_release(&pvec);
1828		cond_resched();
1829
1830		if (ret || marked)
1831			break;
1832	}
1833	if (!ret && atomic && !marked) {
1834		f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1835			   ino, last_page->index);
1836		lock_page(last_page);
1837		f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1838		set_page_dirty(last_page);
1839		unlock_page(last_page);
1840		goto retry;
1841	}
1842out:
1843	if (nwritten)
1844		f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1845	return ret ? -EIO : 0;
1846}
1847
1848static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1849{
1850	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1851	bool clean;
1852
1853	if (inode->i_ino != ino)
1854		return 0;
1855
1856	if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1857		return 0;
1858
1859	spin_lock(&sbi->inode_lock[DIRTY_META]);
1860	clean = list_empty(&F2FS_I(inode)->gdirty_list);
1861	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1862
1863	if (clean)
1864		return 0;
1865
1866	inode = igrab(inode);
1867	if (!inode)
1868		return 0;
1869	return 1;
1870}
1871
1872static bool flush_dirty_inode(struct page *page)
1873{
1874	struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1875	struct inode *inode;
1876	nid_t ino = ino_of_node(page);
1877
1878	inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1879	if (!inode)
1880		return false;
1881
1882	f2fs_update_inode(inode, page);
1883	unlock_page(page);
1884
1885	iput(inode);
1886	return true;
1887}
1888
1889void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1890{
1891	pgoff_t index = 0;
1892	struct pagevec pvec;
1893	int nr_pages;
1894
1895	pagevec_init(&pvec);
1896
1897	while ((nr_pages = pagevec_lookup_tag(&pvec,
1898			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1899		int i;
1900
1901		for (i = 0; i < nr_pages; i++) {
1902			struct page *page = pvec.pages[i];
1903
1904			if (!IS_DNODE(page))
1905				continue;
1906
1907			lock_page(page);
1908
1909			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1910continue_unlock:
1911				unlock_page(page);
1912				continue;
1913			}
1914
1915			if (!PageDirty(page)) {
1916				/* someone wrote it for us */
1917				goto continue_unlock;
1918			}
1919
1920			/* flush inline_data, if it's async context. */
1921			if (page_private_inline(page)) {
1922				clear_page_private_inline(page);
1923				unlock_page(page);
1924				flush_inline_data(sbi, ino_of_node(page));
1925				continue;
1926			}
1927			unlock_page(page);
1928		}
1929		pagevec_release(&pvec);
1930		cond_resched();
1931	}
1932}
1933
1934int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1935				struct writeback_control *wbc,
1936				bool do_balance, enum iostat_type io_type)
1937{
1938	pgoff_t index;
1939	struct pagevec pvec;
1940	int step = 0;
1941	int nwritten = 0;
1942	int ret = 0;
1943	int nr_pages, done = 0;
1944
1945	pagevec_init(&pvec);
1946
1947next_step:
1948	index = 0;
 
1949
1950	while (!done && (nr_pages = pagevec_lookup_tag(&pvec,
1951			NODE_MAPPING(sbi), &index, PAGECACHE_TAG_DIRTY))) {
1952		int i;
 
 
 
 
1953
1954		for (i = 0; i < nr_pages; i++) {
1955			struct page *page = pvec.pages[i];
1956			bool submitted = false;
1957
1958			/* give a priority to WB_SYNC threads */
1959			if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1960					wbc->sync_mode == WB_SYNC_NONE) {
1961				done = 1;
1962				break;
1963			}
1964
1965			/*
1966			 * flushing sequence with step:
1967			 * 0. indirect nodes
1968			 * 1. dentry dnodes
1969			 * 2. file dnodes
1970			 */
1971			if (step == 0 && IS_DNODE(page))
1972				continue;
1973			if (step == 1 && (!IS_DNODE(page) ||
1974						is_cold_node(page)))
1975				continue;
1976			if (step == 2 && (!IS_DNODE(page) ||
1977						!is_cold_node(page)))
1978				continue;
1979lock_node:
1980			if (wbc->sync_mode == WB_SYNC_ALL)
 
 
 
 
1981				lock_page(page);
1982			else if (!trylock_page(page))
1983				continue;
1984
1985			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1986continue_unlock:
1987				unlock_page(page);
1988				continue;
1989			}
 
 
1990
1991			if (!PageDirty(page)) {
1992				/* someone wrote it for us */
1993				goto continue_unlock;
1994			}
1995
1996			/* flush inline_data/inode, if it's async context. */
1997			if (!do_balance)
1998				goto write_node;
1999
2000			/* flush inline_data */
2001			if (page_private_inline(page)) {
2002				clear_page_private_inline(page);
2003				unlock_page(page);
2004				flush_inline_data(sbi, ino_of_node(page));
2005				goto lock_node;
2006			}
2007
2008			/* flush dirty inode */
2009			if (IS_INODE(page) && flush_dirty_inode(page))
2010				goto lock_node;
2011write_node:
2012			f2fs_wait_on_page_writeback(page, NODE, true, true);
2013
2014			if (!clear_page_dirty_for_io(page))
2015				goto continue_unlock;
2016
2017			set_fsync_mark(page, 0);
2018			set_dentry_mark(page, 0);
2019
2020			ret = __write_node_page(page, false, &submitted,
2021						wbc, do_balance, io_type, NULL);
2022			if (ret)
2023				unlock_page(page);
2024			else if (submitted)
2025				nwritten++;
 
 
 
 
 
 
2026
2027			if (--wbc->nr_to_write == 0)
2028				break;
2029		}
2030		pagevec_release(&pvec);
2031		cond_resched();
2032
2033		if (wbc->nr_to_write == 0) {
2034			step = 2;
2035			break;
2036		}
2037	}
2038
2039	if (step < 2) {
2040		if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2041				wbc->sync_mode == WB_SYNC_NONE && step == 1)
2042			goto out;
2043		step++;
2044		goto next_step;
2045	}
2046out:
2047	if (nwritten)
2048		f2fs_submit_merged_write(sbi, NODE);
2049
2050	if (unlikely(f2fs_cp_error(sbi)))
2051		return -EIO;
2052	return ret;
2053}
2054
2055int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2056						unsigned int seq_id)
2057{
2058	struct fsync_node_entry *fn;
2059	struct page *page;
2060	struct list_head *head = &sbi->fsync_node_list;
2061	unsigned long flags;
2062	unsigned int cur_seq_id = 0;
2063	int ret2, ret = 0;
2064
2065	while (seq_id && cur_seq_id < seq_id) {
2066		spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2067		if (list_empty(head)) {
2068			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2069			break;
2070		}
2071		fn = list_first_entry(head, struct fsync_node_entry, list);
2072		if (fn->seq_id > seq_id) {
2073			spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2074			break;
2075		}
2076		cur_seq_id = fn->seq_id;
2077		page = fn->page;
2078		get_page(page);
2079		spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2080
2081		f2fs_wait_on_page_writeback(page, NODE, true, false);
2082		if (TestClearPageError(page))
2083			ret = -EIO;
2084
2085		put_page(page);
2086
2087		if (ret)
 
 
 
 
 
2088			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2089	}
2090
2091	ret2 = filemap_check_errors(NODE_MAPPING(sbi));
 
 
 
2092	if (!ret)
2093		ret = ret2;
2094
2095	return ret;
2096}
2097
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2098static int f2fs_write_node_pages(struct address_space *mapping,
2099			    struct writeback_control *wbc)
2100{
2101	struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2102	struct blk_plug plug;
2103	long diff;
2104
2105	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2106		goto skip_write;
2107
2108	/* balancing f2fs's metadata in background */
2109	f2fs_balance_fs_bg(sbi, true);
2110
2111	/* collect a number of dirty node pages and write together */
2112	if (wbc->sync_mode != WB_SYNC_ALL &&
2113			get_pages(sbi, F2FS_DIRTY_NODES) <
2114					nr_pages_to_skip(sbi, NODE))
2115		goto skip_write;
2116
2117	if (wbc->sync_mode == WB_SYNC_ALL)
2118		atomic_inc(&sbi->wb_sync_req[NODE]);
2119	else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2120		/* to avoid potential deadlock */
2121		if (current->plug)
2122			blk_finish_plug(current->plug);
2123		goto skip_write;
2124	}
2125
2126	trace_f2fs_writepages(mapping->host, wbc, NODE);
2127
2128	diff = nr_pages_to_write(sbi, NODE, wbc);
2129	blk_start_plug(&plug);
2130	f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2131	blk_finish_plug(&plug);
2132	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2133
2134	if (wbc->sync_mode == WB_SYNC_ALL)
2135		atomic_dec(&sbi->wb_sync_req[NODE]);
2136	return 0;
2137
2138skip_write:
2139	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2140	trace_f2fs_writepages(mapping->host, wbc, NODE);
2141	return 0;
2142}
2143
2144static bool f2fs_dirty_node_folio(struct address_space *mapping,
2145		struct folio *folio)
2146{
2147	trace_f2fs_set_page_dirty(&folio->page, NODE);
 
2148
2149	if (!folio_test_uptodate(folio))
2150		folio_mark_uptodate(folio);
2151#ifdef CONFIG_F2FS_CHECK_FS
2152	if (IS_INODE(&folio->page))
2153		f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2154#endif
2155	if (filemap_dirty_folio(mapping, folio)) {
2156		inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2157		set_page_private_reference(&folio->page);
2158		return true;
2159	}
2160	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2161}
2162
2163/*
2164 * Structure of the f2fs node operations
2165 */
2166const struct address_space_operations f2fs_node_aops = {
2167	.writepage	= f2fs_write_node_page,
2168	.writepages	= f2fs_write_node_pages,
2169	.dirty_folio	= f2fs_dirty_node_folio,
2170	.invalidate_folio = f2fs_invalidate_folio,
2171	.release_folio	= f2fs_release_folio,
2172	.migrate_folio	= filemap_migrate_folio,
2173};
2174
2175static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2176						nid_t n)
2177{
2178	return radix_tree_lookup(&nm_i->free_nid_root, n);
2179}
2180
2181static int __insert_free_nid(struct f2fs_sb_info *sbi,
2182				struct free_nid *i)
2183{
2184	struct f2fs_nm_info *nm_i = NM_I(sbi);
2185	int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2186
2187	if (err)
2188		return err;
2189
2190	nm_i->nid_cnt[FREE_NID]++;
2191	list_add_tail(&i->list, &nm_i->free_nid_list);
2192	return 0;
2193}
2194
2195static void __remove_free_nid(struct f2fs_sb_info *sbi,
2196			struct free_nid *i, enum nid_state state)
2197{
2198	struct f2fs_nm_info *nm_i = NM_I(sbi);
2199
2200	f2fs_bug_on(sbi, state != i->state);
2201	nm_i->nid_cnt[state]--;
2202	if (state == FREE_NID)
2203		list_del(&i->list);
2204	radix_tree_delete(&nm_i->free_nid_root, i->nid);
2205}
2206
2207static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2208			enum nid_state org_state, enum nid_state dst_state)
2209{
2210	struct f2fs_nm_info *nm_i = NM_I(sbi);
2211
2212	f2fs_bug_on(sbi, org_state != i->state);
2213	i->state = dst_state;
2214	nm_i->nid_cnt[org_state]--;
2215	nm_i->nid_cnt[dst_state]++;
2216
2217	switch (dst_state) {
2218	case PREALLOC_NID:
2219		list_del(&i->list);
2220		break;
2221	case FREE_NID:
2222		list_add_tail(&i->list, &nm_i->free_nid_list);
2223		break;
2224	default:
2225		BUG_ON(1);
2226	}
2227}
2228
2229bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2230{
2231	struct f2fs_nm_info *nm_i = NM_I(sbi);
2232	unsigned int i;
2233	bool ret = true;
2234
2235	f2fs_down_read(&nm_i->nat_tree_lock);
2236	for (i = 0; i < nm_i->nat_blocks; i++) {
2237		if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2238			ret = false;
2239			break;
2240		}
2241	}
2242	f2fs_up_read(&nm_i->nat_tree_lock);
2243
2244	return ret;
2245}
2246
2247static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2248							bool set, bool build)
2249{
2250	struct f2fs_nm_info *nm_i = NM_I(sbi);
2251	unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2252	unsigned int nid_ofs = nid - START_NID(nid);
2253
2254	if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2255		return;
2256
2257	if (set) {
2258		if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2259			return;
2260		__set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2261		nm_i->free_nid_count[nat_ofs]++;
2262	} else {
2263		if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2264			return;
2265		__clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2266		if (!build)
2267			nm_i->free_nid_count[nat_ofs]--;
2268	}
2269}
2270
2271/* return if the nid is recognized as free */
2272static bool add_free_nid(struct f2fs_sb_info *sbi,
2273				nid_t nid, bool build, bool update)
2274{
2275	struct f2fs_nm_info *nm_i = NM_I(sbi);
2276	struct free_nid *i, *e;
2277	struct nat_entry *ne;
2278	int err = -EINVAL;
2279	bool ret = false;
 
 
2280
2281	/* 0 nid should not be used */
2282	if (unlikely(nid == 0))
2283		return false;
2284
2285	if (unlikely(f2fs_check_nid_range(sbi, nid)))
2286		return false;
2287
2288	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2289	i->nid = nid;
2290	i->state = FREE_NID;
2291
2292	radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2293
2294	spin_lock(&nm_i->nid_list_lock);
2295
2296	if (build) {
2297		/*
2298		 *   Thread A             Thread B
2299		 *  - f2fs_create
2300		 *   - f2fs_new_inode
2301		 *    - f2fs_alloc_nid
2302		 *     - __insert_nid_to_list(PREALLOC_NID)
2303		 *                     - f2fs_balance_fs_bg
2304		 *                      - f2fs_build_free_nids
2305		 *                       - __f2fs_build_free_nids
2306		 *                        - scan_nat_page
2307		 *                         - add_free_nid
2308		 *                          - __lookup_nat_cache
2309		 *  - f2fs_add_link
2310		 *   - f2fs_init_inode_metadata
2311		 *    - f2fs_new_inode_page
2312		 *     - f2fs_new_node_page
2313		 *      - set_node_addr
2314		 *  - f2fs_alloc_nid_done
2315		 *   - __remove_nid_from_list(PREALLOC_NID)
2316		 *                         - __insert_nid_to_list(FREE_NID)
2317		 */
2318		ne = __lookup_nat_cache(nm_i, nid);
2319		if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2320				nat_get_blkaddr(ne) != NULL_ADDR))
2321			goto err_out;
2322
2323		e = __lookup_free_nid_list(nm_i, nid);
2324		if (e) {
2325			if (e->state == FREE_NID)
2326				ret = true;
2327			goto err_out;
2328		}
2329	}
2330	ret = true;
2331	err = __insert_free_nid(sbi, i);
2332err_out:
2333	if (update) {
2334		update_free_nid_bitmap(sbi, nid, ret, build);
2335		if (!build)
2336			nm_i->available_nids++;
2337	}
2338	spin_unlock(&nm_i->nid_list_lock);
2339	radix_tree_preload_end();
2340
2341	if (err)
 
 
 
 
 
 
2342		kmem_cache_free(free_nid_slab, i);
2343	return ret;
 
 
 
 
 
2344}
2345
2346static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2347{
2348	struct f2fs_nm_info *nm_i = NM_I(sbi);
2349	struct free_nid *i;
2350	bool need_free = false;
2351
2352	spin_lock(&nm_i->nid_list_lock);
2353	i = __lookup_free_nid_list(nm_i, nid);
2354	if (i && i->state == FREE_NID) {
2355		__remove_free_nid(sbi, i, FREE_NID);
 
2356		need_free = true;
2357	}
2358	spin_unlock(&nm_i->nid_list_lock);
2359
2360	if (need_free)
2361		kmem_cache_free(free_nid_slab, i);
2362}
2363
2364static int scan_nat_page(struct f2fs_sb_info *sbi,
2365			struct page *nat_page, nid_t start_nid)
2366{
2367	struct f2fs_nm_info *nm_i = NM_I(sbi);
2368	struct f2fs_nat_block *nat_blk = page_address(nat_page);
2369	block_t blk_addr;
2370	unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2371	int i;
2372
2373	__set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2374
2375	i = start_nid % NAT_ENTRY_PER_BLOCK;
2376
2377	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
 
2378		if (unlikely(start_nid >= nm_i->max_nid))
2379			break;
2380
2381		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2382
2383		if (blk_addr == NEW_ADDR)
2384			return -EINVAL;
2385
2386		if (blk_addr == NULL_ADDR) {
2387			add_free_nid(sbi, start_nid, true, true);
2388		} else {
2389			spin_lock(&NM_I(sbi)->nid_list_lock);
2390			update_free_nid_bitmap(sbi, start_nid, false, true);
2391			spin_unlock(&NM_I(sbi)->nid_list_lock);
2392		}
2393	}
2394
2395	return 0;
2396}
2397
2398static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2399{
2400	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2401	struct f2fs_journal *journal = curseg->journal;
2402	int i;
2403
2404	down_read(&curseg->journal_rwsem);
2405	for (i = 0; i < nats_in_cursum(journal); i++) {
2406		block_t addr;
2407		nid_t nid;
2408
2409		addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2410		nid = le32_to_cpu(nid_in_journal(journal, i));
2411		if (addr == NULL_ADDR)
2412			add_free_nid(sbi, nid, true, false);
2413		else
2414			remove_free_nid(sbi, nid);
2415	}
2416	up_read(&curseg->journal_rwsem);
2417}
2418
2419static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2420{
2421	struct f2fs_nm_info *nm_i = NM_I(sbi);
2422	unsigned int i, idx;
2423	nid_t nid;
2424
2425	f2fs_down_read(&nm_i->nat_tree_lock);
2426
2427	for (i = 0; i < nm_i->nat_blocks; i++) {
2428		if (!test_bit_le(i, nm_i->nat_block_bitmap))
2429			continue;
2430		if (!nm_i->free_nid_count[i])
2431			continue;
2432		for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2433			idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2434						NAT_ENTRY_PER_BLOCK, idx);
2435			if (idx >= NAT_ENTRY_PER_BLOCK)
2436				break;
2437
2438			nid = i * NAT_ENTRY_PER_BLOCK + idx;
2439			add_free_nid(sbi, nid, true, false);
2440
2441			if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2442				goto out;
2443		}
2444	}
2445out:
2446	scan_curseg_cache(sbi);
2447
2448	f2fs_up_read(&nm_i->nat_tree_lock);
2449}
2450
2451static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2452						bool sync, bool mount)
2453{
2454	struct f2fs_nm_info *nm_i = NM_I(sbi);
2455	int i = 0, ret;
 
 
2456	nid_t nid = nm_i->next_scan_nid;
2457
2458	if (unlikely(nid >= nm_i->max_nid))
2459		nid = 0;
2460
2461	if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2462		nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2463
2464	/* Enough entries */
2465	if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2466		return 0;
2467
2468	if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2469		return 0;
2470
2471	if (!mount) {
2472		/* try to find free nids in free_nid_bitmap */
2473		scan_free_nid_bits(sbi);
2474
2475		if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2476			return 0;
2477	}
2478
2479	/* readahead nat pages to be scanned */
2480	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2481							META_NAT, true);
2482
2483	f2fs_down_read(&nm_i->nat_tree_lock);
2484
2485	while (1) {
2486		if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2487						nm_i->nat_block_bitmap)) {
2488			struct page *page = get_current_nat_page(sbi, nid);
2489
2490			if (IS_ERR(page)) {
2491				ret = PTR_ERR(page);
2492			} else {
2493				ret = scan_nat_page(sbi, page, nid);
2494				f2fs_put_page(page, 1);
2495			}
2496
2497			if (ret) {
2498				f2fs_up_read(&nm_i->nat_tree_lock);
2499				f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2500				return ret;
2501			}
2502		}
2503
2504		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2505		if (unlikely(nid >= nm_i->max_nid))
2506			nid = 0;
2507
2508		if (++i >= FREE_NID_PAGES)
2509			break;
2510	}
2511
2512	/* go to the next free nat pages to find free nids abundantly */
2513	nm_i->next_scan_nid = nid;
2514
2515	/* find free nids from current sum_pages */
2516	scan_curseg_cache(sbi);
2517
2518	f2fs_up_read(&nm_i->nat_tree_lock);
2519
2520	f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2521					nm_i->ra_nid_pages, META_NAT, false);
2522
2523	return 0;
2524}
2525
2526int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2527{
2528	int ret;
2529
2530	mutex_lock(&NM_I(sbi)->build_lock);
2531	ret = __f2fs_build_free_nids(sbi, sync, mount);
2532	mutex_unlock(&NM_I(sbi)->build_lock);
2533
2534	return ret;
2535}
2536
2537/*
2538 * If this function returns success, caller can obtain a new nid
2539 * from second parameter of this function.
2540 * The returned nid could be used ino as well as nid when inode is created.
2541 */
2542bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2543{
2544	struct f2fs_nm_info *nm_i = NM_I(sbi);
2545	struct free_nid *i = NULL;
2546retry:
2547	if (time_to_inject(sbi, FAULT_ALLOC_NID)) {
2548		f2fs_show_injection_info(sbi, FAULT_ALLOC_NID);
2549		return false;
2550	}
2551
2552	spin_lock(&nm_i->nid_list_lock);
2553
2554	if (unlikely(nm_i->available_nids == 0)) {
2555		spin_unlock(&nm_i->nid_list_lock);
2556		return false;
2557	}
 
 
2558
2559	/* We should not use stale free nids created by f2fs_build_free_nids */
2560	if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2561		f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2562		i = list_first_entry(&nm_i->free_nid_list,
2563					struct free_nid, list);
2564		*nid = i->nid;
2565
2566		__move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2567		nm_i->available_nids--;
2568
2569		update_free_nid_bitmap(sbi, *nid, false, false);
2570
2571		spin_unlock(&nm_i->nid_list_lock);
2572		return true;
2573	}
2574	spin_unlock(&nm_i->nid_list_lock);
2575
2576	/* Let's scan nat pages and its caches to get free nids */
2577	if (!f2fs_build_free_nids(sbi, true, false))
2578		goto retry;
2579	return false;
 
2580}
2581
2582/*
2583 * f2fs_alloc_nid() should be called prior to this function.
2584 */
2585void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2586{
2587	struct f2fs_nm_info *nm_i = NM_I(sbi);
2588	struct free_nid *i;
2589
2590	spin_lock(&nm_i->nid_list_lock);
2591	i = __lookup_free_nid_list(nm_i, nid);
2592	f2fs_bug_on(sbi, !i);
2593	__remove_free_nid(sbi, i, PREALLOC_NID);
2594	spin_unlock(&nm_i->nid_list_lock);
2595
2596	kmem_cache_free(free_nid_slab, i);
2597}
2598
2599/*
2600 * f2fs_alloc_nid() should be called prior to this function.
2601 */
2602void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2603{
2604	struct f2fs_nm_info *nm_i = NM_I(sbi);
2605	struct free_nid *i;
2606	bool need_free = false;
2607
2608	if (!nid)
2609		return;
2610
2611	spin_lock(&nm_i->nid_list_lock);
2612	i = __lookup_free_nid_list(nm_i, nid);
2613	f2fs_bug_on(sbi, !i);
2614
2615	if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2616		__remove_free_nid(sbi, i, PREALLOC_NID);
2617		need_free = true;
2618	} else {
2619		__move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
 
2620	}
2621
2622	nm_i->available_nids++;
2623
2624	update_free_nid_bitmap(sbi, nid, true, false);
2625
2626	spin_unlock(&nm_i->nid_list_lock);
2627
2628	if (need_free)
2629		kmem_cache_free(free_nid_slab, i);
2630}
2631
2632int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
 
 
2633{
2634	struct f2fs_nm_info *nm_i = NM_I(sbi);
2635	int nr = nr_shrink;
2636
2637	if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2638		return 0;
2639
2640	if (!mutex_trylock(&nm_i->build_lock))
2641		return 0;
2642
2643	while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2644		struct free_nid *i, *next;
2645		unsigned int batch = SHRINK_NID_BATCH_SIZE;
2646
2647		spin_lock(&nm_i->nid_list_lock);
2648		list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2649			if (!nr_shrink || !batch ||
2650				nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2651				break;
2652			__remove_free_nid(sbi, i, FREE_NID);
2653			kmem_cache_free(free_nid_slab, i);
2654			nr_shrink--;
2655			batch--;
2656		}
2657		spin_unlock(&nm_i->nid_list_lock);
2658	}
2659
2660	mutex_unlock(&nm_i->build_lock);
2661
2662	return nr - nr_shrink;
2663}
2664
2665int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2666{
 
2667	void *src_addr, *dst_addr;
2668	size_t inline_size;
2669	struct page *ipage;
2670	struct f2fs_inode *ri;
2671
2672	ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2673	if (IS_ERR(ipage))
2674		return PTR_ERR(ipage);
 
 
2675
2676	ri = F2FS_INODE(page);
2677	if (ri->i_inline & F2FS_INLINE_XATTR) {
2678		if (!f2fs_has_inline_xattr(inode)) {
2679			set_inode_flag(inode, FI_INLINE_XATTR);
2680			stat_inc_inline_xattr(inode);
2681		}
2682	} else {
2683		if (f2fs_has_inline_xattr(inode)) {
2684			stat_dec_inline_xattr(inode);
2685			clear_inode_flag(inode, FI_INLINE_XATTR);
2686		}
2687		goto update_inode;
2688	}
2689
2690	dst_addr = inline_xattr_addr(inode, ipage);
2691	src_addr = inline_xattr_addr(inode, page);
2692	inline_size = inline_xattr_size(inode);
2693
2694	f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2695	memcpy(dst_addr, src_addr, inline_size);
2696update_inode:
2697	f2fs_update_inode(inode, ipage);
2698	f2fs_put_page(ipage, 1);
2699	return 0;
2700}
2701
2702int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2703{
2704	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2705	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2706	nid_t new_xnid;
2707	struct dnode_of_data dn;
2708	struct node_info ni;
2709	struct page *xpage;
2710	int err;
2711
2712	if (!prev_xnid)
2713		goto recover_xnid;
 
 
2714
2715	/* 1: invalidate the previous xattr nid */
2716	err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2717	if (err)
2718		return err;
2719
2720	f2fs_invalidate_blocks(sbi, ni.blk_addr);
2721	dec_valid_node_count(sbi, inode, false);
 
 
 
2722	set_node_addr(sbi, &ni, NULL_ADDR, false);
2723
2724recover_xnid:
2725	/* 2: update xattr nid in inode */
2726	if (!f2fs_alloc_nid(sbi, &new_xnid))
2727		return -ENOSPC;
2728
2729	set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2730	xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2731	if (IS_ERR(xpage)) {
2732		f2fs_alloc_nid_failed(sbi, new_xnid);
2733		return PTR_ERR(xpage);
2734	}
2735
2736	f2fs_alloc_nid_done(sbi, new_xnid);
2737	f2fs_update_inode_page(inode);
2738
2739	/* 3: update and set xattr node page dirty */
2740	memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2741
2742	set_page_dirty(xpage);
2743	f2fs_put_page(xpage, 1);
2744
2745	return 0;
2746}
2747
2748int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2749{
2750	struct f2fs_inode *src, *dst;
2751	nid_t ino = ino_of_node(page);
2752	struct node_info old_ni, new_ni;
2753	struct page *ipage;
2754	int err;
2755
2756	err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2757	if (err)
2758		return err;
2759
2760	if (unlikely(old_ni.blk_addr != NULL_ADDR))
2761		return -EINVAL;
2762retry:
2763	ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2764	if (!ipage) {
2765		memalloc_retry_wait(GFP_NOFS);
2766		goto retry;
2767	}
2768
2769	/* Should not use this inode from free nid list */
2770	remove_free_nid(sbi, ino);
2771
2772	if (!PageUptodate(ipage))
2773		SetPageUptodate(ipage);
2774	fill_node_footer(ipage, ino, ino, 0, true);
2775	set_cold_node(ipage, false);
2776
2777	src = F2FS_INODE(page);
2778	dst = F2FS_INODE(ipage);
2779
2780	memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2781	dst->i_size = 0;
2782	dst->i_blocks = cpu_to_le64(1);
2783	dst->i_links = cpu_to_le32(1);
2784	dst->i_xattr_nid = 0;
2785	dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2786	if (dst->i_inline & F2FS_EXTRA_ATTR) {
2787		dst->i_extra_isize = src->i_extra_isize;
2788
2789		if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2790			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2791							i_inline_xattr_size))
2792			dst->i_inline_xattr_size = src->i_inline_xattr_size;
2793
2794		if (f2fs_sb_has_project_quota(sbi) &&
2795			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2796								i_projid))
2797			dst->i_projid = src->i_projid;
2798
2799		if (f2fs_sb_has_inode_crtime(sbi) &&
2800			F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2801							i_crtime_nsec)) {
2802			dst->i_crtime = src->i_crtime;
2803			dst->i_crtime_nsec = src->i_crtime_nsec;
2804		}
2805	}
2806
2807	new_ni = old_ni;
2808	new_ni.ino = ino;
2809
2810	if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2811		WARN_ON(1);
2812	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2813	inc_valid_inode_count(sbi);
2814	set_page_dirty(ipage);
2815	f2fs_put_page(ipage, 1);
2816	return 0;
2817}
2818
2819int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2820			unsigned int segno, struct f2fs_summary_block *sum)
2821{
2822	struct f2fs_node *rn;
2823	struct f2fs_summary *sum_entry;
 
2824	block_t addr;
2825	int i, idx, last_offset, nrpages;
 
 
2826
2827	/* scan the node segment */
2828	last_offset = sbi->blocks_per_seg;
2829	addr = START_BLOCK(sbi, segno);
2830	sum_entry = &sum->entries[0];
2831
2832	for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2833		nrpages = bio_max_segs(last_offset - i);
2834
2835		/* readahead node pages */
2836		f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2837
2838		for (idx = addr; idx < addr + nrpages; idx++) {
2839			struct page *page = f2fs_get_tmp_page(sbi, idx);
2840
2841			if (IS_ERR(page))
2842				return PTR_ERR(page);
 
2843
2844			rn = F2FS_NODE(page);
2845			sum_entry->nid = rn->footer.nid;
2846			sum_entry->version = 0;
2847			sum_entry->ofs_in_node = 0;
2848			sum_entry++;
2849			f2fs_put_page(page, 1);
 
 
 
 
 
 
 
 
2850		}
2851
2852		invalidate_mapping_pages(META_MAPPING(sbi), addr,
2853							addr + nrpages);
2854	}
2855	return 0;
2856}
2857
2858static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2859{
2860	struct f2fs_nm_info *nm_i = NM_I(sbi);
2861	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2862	struct f2fs_journal *journal = curseg->journal;
2863	int i;
2864
2865	down_write(&curseg->journal_rwsem);
2866	for (i = 0; i < nats_in_cursum(journal); i++) {
2867		struct nat_entry *ne;
2868		struct f2fs_nat_entry raw_ne;
2869		nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2870
2871		if (f2fs_check_nid_range(sbi, nid))
2872			continue;
 
 
2873
2874		raw_ne = nat_in_journal(journal, i);
 
 
 
2875
 
 
 
2876		ne = __lookup_nat_cache(nm_i, nid);
2877		if (!ne) {
2878			ne = __alloc_nat_entry(sbi, nid, true);
2879			__init_nat_entry(nm_i, ne, &raw_ne, true);
 
2880		}
2881
2882		/*
2883		 * if a free nat in journal has not been used after last
2884		 * checkpoint, we should remove it from available nids,
2885		 * since later we will add it again.
2886		 */
2887		if (!get_nat_flag(ne, IS_DIRTY) &&
2888				le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2889			spin_lock(&nm_i->nid_list_lock);
2890			nm_i->available_nids--;
2891			spin_unlock(&nm_i->nid_list_lock);
2892		}
2893
 
 
2894		__set_nat_cache_dirty(nm_i, ne);
 
2895	}
2896	update_nats_in_cursum(journal, -i);
2897	up_write(&curseg->journal_rwsem);
2898}
2899
2900static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2901						struct list_head *head, int max)
2902{
2903	struct nat_entry_set *cur;
2904
2905	if (nes->entry_cnt >= max)
2906		goto add_out;
2907
2908	list_for_each_entry(cur, head, set_list) {
2909		if (cur->entry_cnt >= nes->entry_cnt) {
2910			list_add(&nes->set_list, cur->set_list.prev);
2911			return;
2912		}
2913	}
2914add_out:
2915	list_add_tail(&nes->set_list, head);
2916}
2917
2918static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2919							unsigned int valid)
2920{
2921	if (valid == 0) {
2922		__set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2923		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2924		return;
2925	}
2926
2927	__clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2928	if (valid == NAT_ENTRY_PER_BLOCK)
2929		__set_bit_le(nat_ofs, nm_i->full_nat_bits);
2930	else
2931		__clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2932}
2933
2934static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2935						struct page *page)
2936{
2937	struct f2fs_nm_info *nm_i = NM_I(sbi);
2938	unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2939	struct f2fs_nat_block *nat_blk = page_address(page);
2940	int valid = 0;
2941	int i = 0;
2942
2943	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2944		return;
2945
2946	if (nat_index == 0) {
2947		valid = 1;
2948		i = 1;
2949	}
2950	for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2951		if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2952			valid++;
2953	}
2954
2955	__update_nat_bits(nm_i, nat_index, valid);
2956}
2957
2958void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2959{
2960	struct f2fs_nm_info *nm_i = NM_I(sbi);
2961	unsigned int nat_ofs;
2962
2963	f2fs_down_read(&nm_i->nat_tree_lock);
2964
2965	for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2966		unsigned int valid = 0, nid_ofs = 0;
2967
2968		/* handle nid zero due to it should never be used */
2969		if (unlikely(nat_ofs == 0)) {
2970			valid = 1;
2971			nid_ofs = 1;
2972		}
2973
2974		for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2975			if (!test_bit_le(nid_ofs,
2976					nm_i->free_nid_bitmap[nat_ofs]))
2977				valid++;
2978		}
2979
2980		__update_nat_bits(nm_i, nat_ofs, valid);
2981	}
2982
2983	f2fs_up_read(&nm_i->nat_tree_lock);
2984}
2985
2986static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2987		struct nat_entry_set *set, struct cp_control *cpc)
2988{
2989	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2990	struct f2fs_journal *journal = curseg->journal;
2991	nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2992	bool to_journal = true;
2993	struct f2fs_nat_block *nat_blk;
2994	struct nat_entry *ne, *cur;
2995	struct page *page = NULL;
2996
2997	/*
2998	 * there are two steps to flush nat entries:
2999	 * #1, flush nat entries to journal in current hot data summary block.
3000	 * #2, flush nat entries to nat page.
3001	 */
3002	if ((cpc->reason & CP_UMOUNT) ||
3003		!__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3004		to_journal = false;
3005
3006	if (to_journal) {
3007		down_write(&curseg->journal_rwsem);
3008	} else {
3009		page = get_next_nat_page(sbi, start_nid);
3010		if (IS_ERR(page))
3011			return PTR_ERR(page);
3012
3013		nat_blk = page_address(page);
3014		f2fs_bug_on(sbi, !nat_blk);
3015	}
3016
3017	/* flush dirty nats in nat entry set */
3018	list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3019		struct f2fs_nat_entry *raw_ne;
3020		nid_t nid = nat_get_nid(ne);
3021		int offset;
3022
3023		f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3024
3025		if (to_journal) {
3026			offset = f2fs_lookup_journal_in_cursum(journal,
3027							NAT_JOURNAL, nid, 1);
3028			f2fs_bug_on(sbi, offset < 0);
3029			raw_ne = &nat_in_journal(journal, offset);
3030			nid_in_journal(journal, offset) = cpu_to_le32(nid);
3031		} else {
3032			raw_ne = &nat_blk->entries[nid - start_nid];
3033		}
3034		raw_nat_from_node_info(raw_ne, &ne->ni);
3035		nat_reset_flag(ne);
3036		__clear_nat_cache_dirty(NM_I(sbi), set, ne);
3037		if (nat_get_blkaddr(ne) == NULL_ADDR) {
3038			add_free_nid(sbi, nid, false, true);
3039		} else {
3040			spin_lock(&NM_I(sbi)->nid_list_lock);
3041			update_free_nid_bitmap(sbi, nid, false, false);
3042			spin_unlock(&NM_I(sbi)->nid_list_lock);
3043		}
3044	}
3045
3046	if (to_journal) {
3047		up_write(&curseg->journal_rwsem);
3048	} else {
3049		update_nat_bits(sbi, start_nid, page);
3050		f2fs_put_page(page, 1);
3051	}
3052
3053	/* Allow dirty nats by node block allocation in write_begin */
3054	if (!set->entry_cnt) {
3055		radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3056		kmem_cache_free(nat_entry_set_slab, set);
3057	}
3058	return 0;
3059}
3060
3061/*
3062 * This function is called during the checkpointing process.
3063 */
3064int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3065{
3066	struct f2fs_nm_info *nm_i = NM_I(sbi);
3067	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3068	struct f2fs_journal *journal = curseg->journal;
3069	struct nat_entry_set *setvec[SETVEC_SIZE];
3070	struct nat_entry_set *set, *tmp;
3071	unsigned int found;
3072	nid_t set_idx = 0;
3073	LIST_HEAD(sets);
3074	int err = 0;
3075
3076	/*
3077	 * during unmount, let's flush nat_bits before checking
3078	 * nat_cnt[DIRTY_NAT].
3079	 */
3080	if (cpc->reason & CP_UMOUNT) {
3081		f2fs_down_write(&nm_i->nat_tree_lock);
3082		remove_nats_in_journal(sbi);
3083		f2fs_up_write(&nm_i->nat_tree_lock);
3084	}
3085
3086	if (!nm_i->nat_cnt[DIRTY_NAT])
3087		return 0;
3088
3089	f2fs_down_write(&nm_i->nat_tree_lock);
3090
3091	/*
3092	 * if there are no enough space in journal to store dirty nat
3093	 * entries, remove all entries from journal and merge them
3094	 * into nat entry set.
3095	 */
3096	if (cpc->reason & CP_UMOUNT ||
3097		!__has_cursum_space(journal,
3098			nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3099		remove_nats_in_journal(sbi);
3100
3101	while ((found = __gang_lookup_nat_set(nm_i,
3102					set_idx, SETVEC_SIZE, setvec))) {
3103		unsigned idx;
3104
3105		set_idx = setvec[found - 1]->set + 1;
3106		for (idx = 0; idx < found; idx++)
3107			__adjust_nat_entry_set(setvec[idx], &sets,
3108						MAX_NAT_JENTRIES(journal));
3109	}
3110
3111	/* flush dirty nats in nat entry set */
3112	list_for_each_entry_safe(set, tmp, &sets, set_list) {
3113		err = __flush_nat_entry_set(sbi, set, cpc);
3114		if (err)
3115			break;
3116	}
3117
3118	f2fs_up_write(&nm_i->nat_tree_lock);
3119	/* Allow dirty nats by node block allocation in write_begin */
3120
3121	return err;
3122}
3123
3124static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3125{
3126	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3127	struct f2fs_nm_info *nm_i = NM_I(sbi);
3128	unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3129	unsigned int i;
3130	__u64 cp_ver = cur_cp_version(ckpt);
3131	block_t nat_bits_addr;
3132
3133	nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3134	nm_i->nat_bits = f2fs_kvzalloc(sbi,
3135			nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3136	if (!nm_i->nat_bits)
3137		return -ENOMEM;
3138
3139	nm_i->full_nat_bits = nm_i->nat_bits + 8;
3140	nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3141
3142	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3143		return 0;
3144
3145	nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3146						nm_i->nat_bits_blocks;
3147	for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3148		struct page *page;
3149
3150		page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3151		if (IS_ERR(page))
3152			return PTR_ERR(page);
3153
3154		memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3155					page_address(page), F2FS_BLKSIZE);
3156		f2fs_put_page(page, 1);
3157	}
3158
3159	cp_ver |= (cur_cp_crc(ckpt) << 32);
3160	if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3161		clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3162		f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3163			cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3164		return 0;
3165	}
3166
3167	f2fs_notice(sbi, "Found nat_bits in checkpoint");
3168	return 0;
3169}
3170
3171static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3172{
3173	struct f2fs_nm_info *nm_i = NM_I(sbi);
3174	unsigned int i = 0;
3175	nid_t nid, last_nid;
3176
3177	if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3178		return;
3179
3180	for (i = 0; i < nm_i->nat_blocks; i++) {
3181		i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3182		if (i >= nm_i->nat_blocks)
3183			break;
 
 
 
 
 
 
 
 
 
 
3184
3185		__set_bit_le(i, nm_i->nat_block_bitmap);
 
 
 
 
 
 
3186
3187		nid = i * NAT_ENTRY_PER_BLOCK;
3188		last_nid = nid + NAT_ENTRY_PER_BLOCK;
 
 
3189
3190		spin_lock(&NM_I(sbi)->nid_list_lock);
3191		for (; nid < last_nid; nid++)
3192			update_free_nid_bitmap(sbi, nid, true, true);
3193		spin_unlock(&NM_I(sbi)->nid_list_lock);
3194	}
3195
3196	for (i = 0; i < nm_i->nat_blocks; i++) {
3197		i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3198		if (i >= nm_i->nat_blocks)
3199			break;
 
 
3200
3201		__set_bit_le(i, nm_i->nat_block_bitmap);
 
 
 
 
 
 
 
 
 
3202	}
 
 
 
3203}
3204
3205static int init_node_manager(struct f2fs_sb_info *sbi)
3206{
3207	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3208	struct f2fs_nm_info *nm_i = NM_I(sbi);
3209	unsigned char *version_bitmap;
3210	unsigned int nat_segs;
3211	int err;
3212
3213	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3214
3215	/* segment_count_nat includes pair segment so divide to 2. */
3216	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3217	nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3218	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3219
3220	/* not used nids: 0, node, meta, (and root counted as valid node) */
3221	nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3222						F2FS_RESERVED_NODE_NUM;
3223	nm_i->nid_cnt[FREE_NID] = 0;
3224	nm_i->nid_cnt[PREALLOC_NID] = 0;
3225	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3226	nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3227	nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3228	nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3229
3230	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3231	INIT_LIST_HEAD(&nm_i->free_nid_list);
3232	INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3233	INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3234	INIT_LIST_HEAD(&nm_i->nat_entries);
3235	spin_lock_init(&nm_i->nat_list_lock);
3236
3237	mutex_init(&nm_i->build_lock);
3238	spin_lock_init(&nm_i->nid_list_lock);
3239	init_f2fs_rwsem(&nm_i->nat_tree_lock);
3240
3241	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3242	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3243	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
 
 
 
3244	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3245					GFP_KERNEL);
3246	if (!nm_i->nat_bitmap)
3247		return -ENOMEM;
3248
3249	err = __get_nat_bitmaps(sbi);
3250	if (err)
3251		return err;
3252
3253#ifdef CONFIG_F2FS_CHECK_FS
3254	nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3255					GFP_KERNEL);
3256	if (!nm_i->nat_bitmap_mir)
3257		return -ENOMEM;
3258#endif
3259
3260	return 0;
3261}
3262
3263static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3264{
3265	struct f2fs_nm_info *nm_i = NM_I(sbi);
3266	int i;
3267
3268	nm_i->free_nid_bitmap =
3269		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3270					      nm_i->nat_blocks),
3271			      GFP_KERNEL);
3272	if (!nm_i->free_nid_bitmap)
3273		return -ENOMEM;
3274
3275	for (i = 0; i < nm_i->nat_blocks; i++) {
3276		nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3277			f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3278		if (!nm_i->free_nid_bitmap[i])
3279			return -ENOMEM;
3280	}
3281
3282	nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3283								GFP_KERNEL);
3284	if (!nm_i->nat_block_bitmap)
3285		return -ENOMEM;
3286
3287	nm_i->free_nid_count =
3288		f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3289					      nm_i->nat_blocks),
3290			      GFP_KERNEL);
3291	if (!nm_i->free_nid_count)
3292		return -ENOMEM;
3293	return 0;
3294}
3295
3296int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3297{
3298	int err;
3299
3300	sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3301							GFP_KERNEL);
3302	if (!sbi->nm_info)
3303		return -ENOMEM;
3304
3305	err = init_node_manager(sbi);
3306	if (err)
3307		return err;
3308
3309	err = init_free_nid_cache(sbi);
3310	if (err)
3311		return err;
3312
3313	/* load free nid status from nat_bits table */
3314	load_free_nid_bitmap(sbi);
3315
3316	return f2fs_build_free_nids(sbi, true, true);
3317}
3318
3319void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3320{
3321	struct f2fs_nm_info *nm_i = NM_I(sbi);
3322	struct free_nid *i, *next_i;
3323	struct nat_entry *natvec[NATVEC_SIZE];
3324	struct nat_entry_set *setvec[SETVEC_SIZE];
3325	nid_t nid = 0;
3326	unsigned int found;
3327
3328	if (!nm_i)
3329		return;
3330
3331	/* destroy free nid list */
3332	spin_lock(&nm_i->nid_list_lock);
3333	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3334		__remove_free_nid(sbi, i, FREE_NID);
3335		spin_unlock(&nm_i->nid_list_lock);
 
 
3336		kmem_cache_free(free_nid_slab, i);
3337		spin_lock(&nm_i->nid_list_lock);
3338	}
3339	f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3340	f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3341	f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3342	spin_unlock(&nm_i->nid_list_lock);
3343
3344	/* destroy nat cache */
3345	f2fs_down_write(&nm_i->nat_tree_lock);
3346	while ((found = __gang_lookup_nat_cache(nm_i,
3347					nid, NATVEC_SIZE, natvec))) {
3348		unsigned idx;
3349
3350		nid = nat_get_nid(natvec[found - 1]) + 1;
3351		for (idx = 0; idx < found; idx++) {
3352			spin_lock(&nm_i->nat_list_lock);
3353			list_del(&natvec[idx]->list);
3354			spin_unlock(&nm_i->nat_list_lock);
3355
3356			__del_from_nat_cache(nm_i, natvec[idx]);
3357		}
3358	}
3359	f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3360
3361	/* destroy nat set cache */
3362	nid = 0;
3363	while ((found = __gang_lookup_nat_set(nm_i,
3364					nid, SETVEC_SIZE, setvec))) {
3365		unsigned idx;
3366
3367		nid = setvec[found - 1]->set + 1;
3368		for (idx = 0; idx < found; idx++) {
3369			/* entry_cnt is not zero, when cp_error was occurred */
3370			f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3371			radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3372			kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3373		}
3374	}
3375	f2fs_up_write(&nm_i->nat_tree_lock);
3376
3377	kvfree(nm_i->nat_block_bitmap);
3378	if (nm_i->free_nid_bitmap) {
3379		int i;
3380
3381		for (i = 0; i < nm_i->nat_blocks; i++)
3382			kvfree(nm_i->free_nid_bitmap[i]);
3383		kvfree(nm_i->free_nid_bitmap);
3384	}
3385	kvfree(nm_i->free_nid_count);
3386
3387	kvfree(nm_i->nat_bitmap);
3388	kvfree(nm_i->nat_bits);
3389#ifdef CONFIG_F2FS_CHECK_FS
3390	kvfree(nm_i->nat_bitmap_mir);
3391#endif
3392	sbi->nm_info = NULL;
3393	kfree(nm_i);
3394}
3395
3396int __init f2fs_create_node_manager_caches(void)
3397{
3398	nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3399			sizeof(struct nat_entry));
3400	if (!nat_entry_slab)
3401		goto fail;
3402
3403	free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3404			sizeof(struct free_nid));
3405	if (!free_nid_slab)
3406		goto destroy_nat_entry;
3407
3408	nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3409			sizeof(struct nat_entry_set));
3410	if (!nat_entry_set_slab)
3411		goto destroy_free_nid;
3412
3413	fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3414			sizeof(struct fsync_node_entry));
3415	if (!fsync_node_entry_slab)
3416		goto destroy_nat_entry_set;
3417	return 0;
3418
3419destroy_nat_entry_set:
3420	kmem_cache_destroy(nat_entry_set_slab);
3421destroy_free_nid:
3422	kmem_cache_destroy(free_nid_slab);
3423destroy_nat_entry:
3424	kmem_cache_destroy(nat_entry_slab);
3425fail:
3426	return -ENOMEM;
3427}
3428
3429void f2fs_destroy_node_manager_caches(void)
3430{
3431	kmem_cache_destroy(fsync_node_entry_slab);
3432	kmem_cache_destroy(nat_entry_set_slab);
3433	kmem_cache_destroy(free_nid_slab);
3434	kmem_cache_destroy(nat_entry_slab);
3435}
v3.15
 
   1/*
   2 * fs/f2fs/node.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/fs.h>
  12#include <linux/f2fs_fs.h>
  13#include <linux/mpage.h>
  14#include <linux/backing-dev.h>
  15#include <linux/blkdev.h>
  16#include <linux/pagevec.h>
  17#include <linux/swap.h>
  18
  19#include "f2fs.h"
  20#include "node.h"
  21#include "segment.h"
 
 
  22#include <trace/events/f2fs.h>
  23
  24#define on_build_free_nids(nmi) mutex_is_locked(&nm_i->build_lock)
  25
  26static struct kmem_cache *nat_entry_slab;
  27static struct kmem_cache *free_nid_slab;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  28
  29static inline bool available_free_memory(struct f2fs_nm_info *nm_i, int type)
  30{
 
 
  31	struct sysinfo val;
 
  32	unsigned long mem_size = 0;
 
 
 
 
  33
  34	si_meminfo(&val);
  35	if (type == FREE_NIDS)
  36		mem_size = nm_i->fcnt * sizeof(struct free_nid);
  37	else if (type == NAT_ENTRIES)
  38		mem_size += nm_i->nat_cnt * sizeof(struct nat_entry);
  39	mem_size >>= 12;
  40
  41	/* give 50:50 memory for free nids and nat caches respectively */
  42	return (mem_size < ((val.totalram * nm_i->ram_thresh) >> 11));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  43}
  44
  45static void clear_node_page_dirty(struct page *page)
  46{
  47	struct address_space *mapping = page->mapping;
  48	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
  49	unsigned int long flags;
  50
  51	if (PageDirty(page)) {
  52		spin_lock_irqsave(&mapping->tree_lock, flags);
  53		radix_tree_tag_clear(&mapping->page_tree,
  54				page_index(page),
  55				PAGECACHE_TAG_DIRTY);
  56		spin_unlock_irqrestore(&mapping->tree_lock, flags);
  57
  58		clear_page_dirty_for_io(page);
  59		dec_page_count(sbi, F2FS_DIRTY_NODES);
  60	}
  61	ClearPageUptodate(page);
  62}
  63
  64static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  65{
  66	pgoff_t index = current_nat_addr(sbi, nid);
  67	return get_meta_page(sbi, index);
  68}
  69
  70static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
  71{
  72	struct page *src_page;
  73	struct page *dst_page;
  74	pgoff_t src_off;
  75	pgoff_t dst_off;
  76	void *src_addr;
  77	void *dst_addr;
  78	struct f2fs_nm_info *nm_i = NM_I(sbi);
  79
  80	src_off = current_nat_addr(sbi, nid);
  81	dst_off = next_nat_addr(sbi, src_off);
  82
  83	/* get current nat block page with lock */
  84	src_page = get_meta_page(sbi, src_off);
  85
  86	/* Dirty src_page means that it is already the new target NAT page. */
  87	if (PageDirty(src_page))
  88		return src_page;
  89
  90	dst_page = grab_meta_page(sbi, dst_off);
  91
  92	src_addr = page_address(src_page);
  93	dst_addr = page_address(dst_page);
  94	memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
  95	set_page_dirty(dst_page);
  96	f2fs_put_page(src_page, 1);
  97
  98	set_to_next_nat(nm_i, nid);
  99
 100	return dst_page;
 101}
 102
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 103static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
 104{
 105	return radix_tree_lookup(&nm_i->nat_root, n);
 
 
 
 
 
 
 
 
 
 
 
 
 106}
 107
 108static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
 109		nid_t start, unsigned int nr, struct nat_entry **ep)
 110{
 111	return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
 112}
 113
 114static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
 115{
 116	list_del(&e->list);
 117	radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
 118	nm_i->nat_cnt--;
 119	kmem_cache_free(nat_entry_slab, e);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 120}
 121
 122int is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
 123{
 124	struct f2fs_nm_info *nm_i = NM_I(sbi);
 125	struct nat_entry *e;
 126	int is_cp = 1;
 127
 128	read_lock(&nm_i->nat_tree_lock);
 129	e = __lookup_nat_cache(nm_i, nid);
 130	if (e && !e->checkpointed)
 131		is_cp = 0;
 132	read_unlock(&nm_i->nat_tree_lock);
 133	return is_cp;
 
 
 
 134}
 135
 136bool fsync_mark_done(struct f2fs_sb_info *sbi, nid_t nid)
 137{
 138	struct f2fs_nm_info *nm_i = NM_I(sbi);
 139	struct nat_entry *e;
 140	bool fsync_done = false;
 141
 142	read_lock(&nm_i->nat_tree_lock);
 143	e = __lookup_nat_cache(nm_i, nid);
 144	if (e)
 145		fsync_done = e->fsync_done;
 146	read_unlock(&nm_i->nat_tree_lock);
 147	return fsync_done;
 148}
 149
 150static struct nat_entry *grab_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid)
 151{
 152	struct nat_entry *new;
 
 
 153
 154	new = kmem_cache_alloc(nat_entry_slab, GFP_ATOMIC);
 155	if (!new)
 156		return NULL;
 157	if (radix_tree_insert(&nm_i->nat_root, nid, new)) {
 158		kmem_cache_free(nat_entry_slab, new);
 159		return NULL;
 160	}
 161	memset(new, 0, sizeof(struct nat_entry));
 162	nat_set_nid(new, nid);
 163	new->checkpointed = true;
 164	list_add_tail(&new->list, &nm_i->nat_entries);
 165	nm_i->nat_cnt++;
 166	return new;
 167}
 168
 169static void cache_nat_entry(struct f2fs_nm_info *nm_i, nid_t nid,
 
 170						struct f2fs_nat_entry *ne)
 171{
 172	struct nat_entry *e;
 173retry:
 174	write_lock(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 175	e = __lookup_nat_cache(nm_i, nid);
 176	if (!e) {
 177		e = grab_nat_entry(nm_i, nid);
 178		if (!e) {
 179			write_unlock(&nm_i->nat_tree_lock);
 180			goto retry;
 181		}
 182		nat_set_blkaddr(e, le32_to_cpu(ne->block_addr));
 183		nat_set_ino(e, le32_to_cpu(ne->ino));
 184		nat_set_version(e, ne->version);
 185	}
 186	write_unlock(&nm_i->nat_tree_lock);
 187}
 188
 189static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
 190			block_t new_blkaddr, bool fsync_done)
 191{
 192	struct f2fs_nm_info *nm_i = NM_I(sbi);
 193	struct nat_entry *e;
 194retry:
 195	write_lock(&nm_i->nat_tree_lock);
 
 196	e = __lookup_nat_cache(nm_i, ni->nid);
 197	if (!e) {
 198		e = grab_nat_entry(nm_i, ni->nid);
 199		if (!e) {
 200			write_unlock(&nm_i->nat_tree_lock);
 201			goto retry;
 202		}
 203		e->ni = *ni;
 204		f2fs_bug_on(ni->blk_addr == NEW_ADDR);
 205	} else if (new_blkaddr == NEW_ADDR) {
 206		/*
 207		 * when nid is reallocated,
 208		 * previous nat entry can be remained in nat cache.
 209		 * So, reinitialize it with new information.
 210		 */
 211		e->ni = *ni;
 212		f2fs_bug_on(ni->blk_addr != NULL_ADDR);
 213	}
 
 
 
 214
 215	/* sanity check */
 216	f2fs_bug_on(nat_get_blkaddr(e) != ni->blk_addr);
 217	f2fs_bug_on(nat_get_blkaddr(e) == NULL_ADDR &&
 218			new_blkaddr == NULL_ADDR);
 219	f2fs_bug_on(nat_get_blkaddr(e) == NEW_ADDR &&
 220			new_blkaddr == NEW_ADDR);
 221	f2fs_bug_on(nat_get_blkaddr(e) != NEW_ADDR &&
 222			nat_get_blkaddr(e) != NULL_ADDR &&
 223			new_blkaddr == NEW_ADDR);
 224
 225	/* increament version no as node is removed */
 226	if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
 227		unsigned char version = nat_get_version(e);
 
 228		nat_set_version(e, inc_node_version(version));
 229	}
 230
 231	/* change address */
 232	nat_set_blkaddr(e, new_blkaddr);
 
 
 233	__set_nat_cache_dirty(nm_i, e);
 234
 235	/* update fsync_mark if its inode nat entry is still alive */
 236	e = __lookup_nat_cache(nm_i, ni->ino);
 237	if (e)
 238		e->fsync_done = fsync_done;
 239	write_unlock(&nm_i->nat_tree_lock);
 
 
 
 
 240}
 241
 242int try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
 243{
 244	struct f2fs_nm_info *nm_i = NM_I(sbi);
 
 245
 246	if (available_free_memory(nm_i, NAT_ENTRIES))
 247		return 0;
 248
 249	write_lock(&nm_i->nat_tree_lock);
 250	while (nr_shrink && !list_empty(&nm_i->nat_entries)) {
 251		struct nat_entry *ne;
 
 
 
 
 252		ne = list_first_entry(&nm_i->nat_entries,
 253					struct nat_entry, list);
 
 
 
 254		__del_from_nat_cache(nm_i, ne);
 255		nr_shrink--;
 
 
 256	}
 257	write_unlock(&nm_i->nat_tree_lock);
 258	return nr_shrink;
 
 
 259}
 260
 261/*
 262 * This function returns always success
 263 */
 264void get_node_info(struct f2fs_sb_info *sbi, nid_t nid, struct node_info *ni)
 265{
 266	struct f2fs_nm_info *nm_i = NM_I(sbi);
 267	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
 268	struct f2fs_summary_block *sum = curseg->sum_blk;
 269	nid_t start_nid = START_NID(nid);
 270	struct f2fs_nat_block *nat_blk;
 271	struct page *page = NULL;
 272	struct f2fs_nat_entry ne;
 273	struct nat_entry *e;
 
 
 274	int i;
 275
 276	memset(&ne, 0, sizeof(struct f2fs_nat_entry));
 277	ni->nid = nid;
 278
 279	/* Check nat cache */
 280	read_lock(&nm_i->nat_tree_lock);
 281	e = __lookup_nat_cache(nm_i, nid);
 282	if (e) {
 283		ni->ino = nat_get_ino(e);
 284		ni->blk_addr = nat_get_blkaddr(e);
 285		ni->version = nat_get_version(e);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 286	}
 287	read_unlock(&nm_i->nat_tree_lock);
 288	if (e)
 289		return;
 290
 291	/* Check current segment summary */
 292	mutex_lock(&curseg->curseg_mutex);
 293	i = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 0);
 294	if (i >= 0) {
 295		ne = nat_in_journal(sum, i);
 296		node_info_from_raw_nat(ni, &ne);
 297	}
 298	mutex_unlock(&curseg->curseg_mutex);
 299	if (i >= 0)
 
 300		goto cache;
 
 301
 302	/* Fill node_info from nat page */
 303	page = get_current_nat_page(sbi, start_nid);
 
 
 
 
 
 
 304	nat_blk = (struct f2fs_nat_block *)page_address(page);
 305	ne = nat_blk->entries[nid - start_nid];
 306	node_info_from_raw_nat(ni, &ne);
 307	f2fs_put_page(page, 1);
 308cache:
 
 
 
 
 
 309	/* cache nat entry */
 310	cache_nat_entry(NM_I(sbi), nid, &ne);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 311}
 312
 313/*
 314 * The maximum depth is four.
 315 * Offset[0] will have raw inode offset.
 316 */
 317static int get_node_path(struct f2fs_inode_info *fi, long block,
 318				int offset[4], unsigned int noffset[4])
 319{
 320	const long direct_index = ADDRS_PER_INODE(fi);
 321	const long direct_blks = ADDRS_PER_BLOCK;
 322	const long dptrs_per_blk = NIDS_PER_BLOCK;
 323	const long indirect_blks = ADDRS_PER_BLOCK * NIDS_PER_BLOCK;
 324	const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
 325	int n = 0;
 326	int level = 0;
 327
 328	noffset[0] = 0;
 329
 330	if (block < direct_index) {
 331		offset[n] = block;
 332		goto got;
 333	}
 334	block -= direct_index;
 335	if (block < direct_blks) {
 336		offset[n++] = NODE_DIR1_BLOCK;
 337		noffset[n] = 1;
 338		offset[n] = block;
 339		level = 1;
 340		goto got;
 341	}
 342	block -= direct_blks;
 343	if (block < direct_blks) {
 344		offset[n++] = NODE_DIR2_BLOCK;
 345		noffset[n] = 2;
 346		offset[n] = block;
 347		level = 1;
 348		goto got;
 349	}
 350	block -= direct_blks;
 351	if (block < indirect_blks) {
 352		offset[n++] = NODE_IND1_BLOCK;
 353		noffset[n] = 3;
 354		offset[n++] = block / direct_blks;
 355		noffset[n] = 4 + offset[n - 1];
 356		offset[n] = block % direct_blks;
 357		level = 2;
 358		goto got;
 359	}
 360	block -= indirect_blks;
 361	if (block < indirect_blks) {
 362		offset[n++] = NODE_IND2_BLOCK;
 363		noffset[n] = 4 + dptrs_per_blk;
 364		offset[n++] = block / direct_blks;
 365		noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
 366		offset[n] = block % direct_blks;
 367		level = 2;
 368		goto got;
 369	}
 370	block -= indirect_blks;
 371	if (block < dindirect_blks) {
 372		offset[n++] = NODE_DIND_BLOCK;
 373		noffset[n] = 5 + (dptrs_per_blk * 2);
 374		offset[n++] = block / indirect_blks;
 375		noffset[n] = 6 + (dptrs_per_blk * 2) +
 376			      offset[n - 1] * (dptrs_per_blk + 1);
 377		offset[n++] = (block / direct_blks) % dptrs_per_blk;
 378		noffset[n] = 7 + (dptrs_per_blk * 2) +
 379			      offset[n - 2] * (dptrs_per_blk + 1) +
 380			      offset[n - 1];
 381		offset[n] = block % direct_blks;
 382		level = 3;
 383		goto got;
 384	} else {
 385		BUG();
 386	}
 387got:
 388	return level;
 389}
 390
 391/*
 392 * Caller should call f2fs_put_dnode(dn).
 393 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
 394 * f2fs_unlock_op() only if ro is not set RDONLY_NODE.
 395 * In the case of RDONLY_NODE, we don't need to care about mutex.
 396 */
 397int get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
 398{
 399	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 400	struct page *npage[4];
 401	struct page *parent;
 402	int offset[4];
 403	unsigned int noffset[4];
 404	nid_t nids[4];
 405	int level, i;
 406	int err = 0;
 407
 408	level = get_node_path(F2FS_I(dn->inode), index, offset, noffset);
 
 
 409
 410	nids[0] = dn->inode->i_ino;
 411	npage[0] = dn->inode_page;
 412
 413	if (!npage[0]) {
 414		npage[0] = get_node_page(sbi, nids[0]);
 415		if (IS_ERR(npage[0]))
 416			return PTR_ERR(npage[0]);
 417	}
 
 
 
 
 
 
 
 
 418	parent = npage[0];
 419	if (level != 0)
 420		nids[1] = get_nid(parent, offset[0], true);
 421	dn->inode_page = npage[0];
 422	dn->inode_page_locked = true;
 423
 424	/* get indirect or direct nodes */
 425	for (i = 1; i <= level; i++) {
 426		bool done = false;
 427
 428		if (!nids[i] && mode == ALLOC_NODE) {
 429			/* alloc new node */
 430			if (!alloc_nid(sbi, &(nids[i]))) {
 431				err = -ENOSPC;
 432				goto release_pages;
 433			}
 434
 435			dn->nid = nids[i];
 436			npage[i] = new_node_page(dn, noffset[i], NULL);
 437			if (IS_ERR(npage[i])) {
 438				alloc_nid_failed(sbi, nids[i]);
 439				err = PTR_ERR(npage[i]);
 440				goto release_pages;
 441			}
 442
 443			set_nid(parent, offset[i - 1], nids[i], i == 1);
 444			alloc_nid_done(sbi, nids[i]);
 445			done = true;
 446		} else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
 447			npage[i] = get_node_page_ra(parent, offset[i - 1]);
 448			if (IS_ERR(npage[i])) {
 449				err = PTR_ERR(npage[i]);
 450				goto release_pages;
 451			}
 452			done = true;
 453		}
 454		if (i == 1) {
 455			dn->inode_page_locked = false;
 456			unlock_page(parent);
 457		} else {
 458			f2fs_put_page(parent, 1);
 459		}
 460
 461		if (!done) {
 462			npage[i] = get_node_page(sbi, nids[i]);
 463			if (IS_ERR(npage[i])) {
 464				err = PTR_ERR(npage[i]);
 465				f2fs_put_page(npage[0], 0);
 466				goto release_out;
 467			}
 468		}
 469		if (i < level) {
 470			parent = npage[i];
 471			nids[i + 1] = get_nid(parent, offset[i], false);
 472		}
 473	}
 474	dn->nid = nids[level];
 475	dn->ofs_in_node = offset[level];
 476	dn->node_page = npage[level];
 477	dn->data_blkaddr = datablock_addr(dn->node_page, dn->ofs_in_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 478	return 0;
 479
 480release_pages:
 481	f2fs_put_page(parent, 1);
 482	if (i > 1)
 483		f2fs_put_page(npage[0], 0);
 484release_out:
 485	dn->inode_page = NULL;
 486	dn->node_page = NULL;
 
 
 
 
 
 487	return err;
 488}
 489
 490static void truncate_node(struct dnode_of_data *dn)
 491{
 492	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 493	struct node_info ni;
 
 
 494
 495	get_node_info(sbi, dn->nid, &ni);
 496	if (dn->inode->i_blocks == 0) {
 497		f2fs_bug_on(ni.blk_addr != NULL_ADDR);
 498		goto invalidate;
 499	}
 500	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
 501
 502	/* Deallocate node address */
 503	invalidate_blocks(sbi, ni.blk_addr);
 504	dec_valid_node_count(sbi, dn->inode);
 505	set_node_addr(sbi, &ni, NULL_ADDR, false);
 506
 507	if (dn->nid == dn->inode->i_ino) {
 508		remove_orphan_inode(sbi, dn->nid);
 509		dec_valid_inode_count(sbi);
 510	} else {
 511		sync_inode_page(dn);
 512	}
 513invalidate:
 514	clear_node_page_dirty(dn->node_page);
 515	F2FS_SET_SB_DIRT(sbi);
 516
 
 517	f2fs_put_page(dn->node_page, 1);
 518
 519	invalidate_mapping_pages(NODE_MAPPING(sbi),
 520			dn->node_page->index, dn->node_page->index);
 521
 522	dn->node_page = NULL;
 523	trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
 
 
 524}
 525
 526static int truncate_dnode(struct dnode_of_data *dn)
 527{
 528	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 529	struct page *page;
 
 530
 531	if (dn->nid == 0)
 532		return 1;
 533
 534	/* get direct node */
 535	page = get_node_page(sbi, dn->nid);
 536	if (IS_ERR(page) && PTR_ERR(page) == -ENOENT)
 537		return 1;
 538	else if (IS_ERR(page))
 539		return PTR_ERR(page);
 540
 541	/* Make dnode_of_data for parameter */
 542	dn->node_page = page;
 543	dn->ofs_in_node = 0;
 544	truncate_data_blocks(dn);
 545	truncate_node(dn);
 
 
 
 546	return 1;
 547}
 548
 549static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
 550						int ofs, int depth)
 551{
 552	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 553	struct dnode_of_data rdn = *dn;
 554	struct page *page;
 555	struct f2fs_node *rn;
 556	nid_t child_nid;
 557	unsigned int child_nofs;
 558	int freed = 0;
 559	int i, ret;
 560
 561	if (dn->nid == 0)
 562		return NIDS_PER_BLOCK + 1;
 563
 564	trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
 565
 566	page = get_node_page(sbi, dn->nid);
 567	if (IS_ERR(page)) {
 568		trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
 569		return PTR_ERR(page);
 570	}
 571
 
 
 572	rn = F2FS_NODE(page);
 573	if (depth < 3) {
 574		for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
 575			child_nid = le32_to_cpu(rn->in.nid[i]);
 576			if (child_nid == 0)
 577				continue;
 578			rdn.nid = child_nid;
 579			ret = truncate_dnode(&rdn);
 580			if (ret < 0)
 581				goto out_err;
 582			set_nid(page, i, 0, false);
 
 583		}
 584	} else {
 585		child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
 586		for (i = ofs; i < NIDS_PER_BLOCK; i++) {
 587			child_nid = le32_to_cpu(rn->in.nid[i]);
 588			if (child_nid == 0) {
 589				child_nofs += NIDS_PER_BLOCK + 1;
 590				continue;
 591			}
 592			rdn.nid = child_nid;
 593			ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
 594			if (ret == (NIDS_PER_BLOCK + 1)) {
 595				set_nid(page, i, 0, false);
 
 596				child_nofs += ret;
 597			} else if (ret < 0 && ret != -ENOENT) {
 598				goto out_err;
 599			}
 600		}
 601		freed = child_nofs;
 602	}
 603
 604	if (!ofs) {
 605		/* remove current indirect node */
 606		dn->node_page = page;
 607		truncate_node(dn);
 
 
 608		freed++;
 609	} else {
 610		f2fs_put_page(page, 1);
 611	}
 612	trace_f2fs_truncate_nodes_exit(dn->inode, freed);
 613	return freed;
 614
 615out_err:
 616	f2fs_put_page(page, 1);
 617	trace_f2fs_truncate_nodes_exit(dn->inode, ret);
 618	return ret;
 619}
 620
 621static int truncate_partial_nodes(struct dnode_of_data *dn,
 622			struct f2fs_inode *ri, int *offset, int depth)
 623{
 624	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 625	struct page *pages[2];
 626	nid_t nid[3];
 627	nid_t child_nid;
 628	int err = 0;
 629	int i;
 630	int idx = depth - 2;
 631
 632	nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 633	if (!nid[0])
 634		return 0;
 635
 636	/* get indirect nodes in the path */
 637	for (i = 0; i < idx + 1; i++) {
 638		/* refernece count'll be increased */
 639		pages[i] = get_node_page(sbi, nid[i]);
 640		if (IS_ERR(pages[i])) {
 641			err = PTR_ERR(pages[i]);
 642			idx = i - 1;
 643			goto fail;
 644		}
 645		nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
 646	}
 647
 
 
 648	/* free direct nodes linked to a partial indirect node */
 649	for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
 650		child_nid = get_nid(pages[idx], i, false);
 651		if (!child_nid)
 652			continue;
 653		dn->nid = child_nid;
 654		err = truncate_dnode(dn);
 655		if (err < 0)
 656			goto fail;
 657		set_nid(pages[idx], i, 0, false);
 
 658	}
 659
 660	if (offset[idx + 1] == 0) {
 661		dn->node_page = pages[idx];
 662		dn->nid = nid[idx];
 663		truncate_node(dn);
 
 
 664	} else {
 665		f2fs_put_page(pages[idx], 1);
 666	}
 667	offset[idx]++;
 668	offset[idx + 1] = 0;
 669	idx--;
 670fail:
 671	for (i = idx; i >= 0; i--)
 672		f2fs_put_page(pages[i], 1);
 673
 674	trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
 675
 676	return err;
 677}
 678
 679/*
 680 * All the block addresses of data and nodes should be nullified.
 681 */
 682int truncate_inode_blocks(struct inode *inode, pgoff_t from)
 683{
 684	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 685	int err = 0, cont = 1;
 686	int level, offset[4], noffset[4];
 687	unsigned int nofs = 0;
 688	struct f2fs_inode *ri;
 689	struct dnode_of_data dn;
 690	struct page *page;
 691
 692	trace_f2fs_truncate_inode_blocks_enter(inode, from);
 693
 694	level = get_node_path(F2FS_I(inode), from, offset, noffset);
 695restart:
 696	page = get_node_page(sbi, inode->i_ino);
 
 
 
 
 697	if (IS_ERR(page)) {
 698		trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
 699		return PTR_ERR(page);
 700	}
 701
 702	set_new_dnode(&dn, inode, page, NULL, 0);
 703	unlock_page(page);
 704
 705	ri = F2FS_INODE(page);
 706	switch (level) {
 707	case 0:
 708	case 1:
 709		nofs = noffset[1];
 710		break;
 711	case 2:
 712		nofs = noffset[1];
 713		if (!offset[level - 1])
 714			goto skip_partial;
 715		err = truncate_partial_nodes(&dn, ri, offset, level);
 716		if (err < 0 && err != -ENOENT)
 717			goto fail;
 718		nofs += 1 + NIDS_PER_BLOCK;
 719		break;
 720	case 3:
 721		nofs = 5 + 2 * NIDS_PER_BLOCK;
 722		if (!offset[level - 1])
 723			goto skip_partial;
 724		err = truncate_partial_nodes(&dn, ri, offset, level);
 725		if (err < 0 && err != -ENOENT)
 726			goto fail;
 727		break;
 728	default:
 729		BUG();
 730	}
 731
 732skip_partial:
 733	while (cont) {
 734		dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
 735		switch (offset[0]) {
 736		case NODE_DIR1_BLOCK:
 737		case NODE_DIR2_BLOCK:
 738			err = truncate_dnode(&dn);
 739			break;
 740
 741		case NODE_IND1_BLOCK:
 742		case NODE_IND2_BLOCK:
 743			err = truncate_nodes(&dn, nofs, offset[1], 2);
 744			break;
 745
 746		case NODE_DIND_BLOCK:
 747			err = truncate_nodes(&dn, nofs, offset[1], 3);
 748			cont = 0;
 749			break;
 750
 751		default:
 752			BUG();
 753		}
 754		if (err < 0 && err != -ENOENT)
 755			goto fail;
 756		if (offset[1] == 0 &&
 757				ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
 758			lock_page(page);
 759			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 760				f2fs_put_page(page, 1);
 761				goto restart;
 762			}
 763			f2fs_wait_on_page_writeback(page, NODE);
 764			ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
 765			set_page_dirty(page);
 766			unlock_page(page);
 767		}
 768		offset[1] = 0;
 769		offset[0]++;
 770		nofs += err;
 771	}
 772fail:
 773	f2fs_put_page(page, 0);
 774	trace_f2fs_truncate_inode_blocks_exit(inode, err);
 775	return err > 0 ? 0 : err;
 776}
 777
 778int truncate_xattr_node(struct inode *inode, struct page *page)
 
 779{
 780	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 781	nid_t nid = F2FS_I(inode)->i_xattr_nid;
 782	struct dnode_of_data dn;
 783	struct page *npage;
 
 784
 785	if (!nid)
 786		return 0;
 787
 788	npage = get_node_page(sbi, nid);
 789	if (IS_ERR(npage))
 790		return PTR_ERR(npage);
 791
 792	F2FS_I(inode)->i_xattr_nid = 0;
 
 
 
 
 
 793
 794	/* need to do checkpoint during fsync */
 795	F2FS_I(inode)->xattr_ver = cur_cp_version(F2FS_CKPT(sbi));
 796
 797	set_new_dnode(&dn, inode, page, npage, nid);
 798
 799	if (page)
 800		dn.inode_page_locked = true;
 801	truncate_node(&dn);
 802	return 0;
 803}
 804
 805/*
 806 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
 807 * f2fs_unlock_op().
 808 */
 809void remove_inode_page(struct inode *inode)
 810{
 811	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
 812	struct page *page;
 813	nid_t ino = inode->i_ino;
 814	struct dnode_of_data dn;
 
 
 
 
 
 
 815
 816	page = get_node_page(sbi, ino);
 817	if (IS_ERR(page))
 818		return;
 
 
 819
 820	if (truncate_xattr_node(inode, page)) {
 821		f2fs_put_page(page, 1);
 822		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 823	}
 824	/* 0 is possible, after f2fs_new_inode() is failed */
 825	f2fs_bug_on(inode->i_blocks != 0 && inode->i_blocks != 1);
 826	set_new_dnode(&dn, inode, page, page, ino);
 827	truncate_node(&dn);
 828}
 829
 830struct page *new_inode_page(struct inode *inode, const struct qstr *name)
 831{
 832	struct dnode_of_data dn;
 833
 834	/* allocate inode page for new inode */
 835	set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
 836
 837	/* caller should f2fs_put_page(page, 1); */
 838	return new_node_page(&dn, 0, NULL);
 839}
 840
 841struct page *new_node_page(struct dnode_of_data *dn,
 842				unsigned int ofs, struct page *ipage)
 843{
 844	struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
 845	struct node_info old_ni, new_ni;
 846	struct page *page;
 847	int err;
 848
 849	if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
 850		return ERR_PTR(-EPERM);
 851
 852	page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
 853					dn->nid, AOP_FLAG_NOFS);
 854	if (!page)
 855		return ERR_PTR(-ENOMEM);
 856
 857	if (unlikely(!inc_valid_node_count(sbi, dn->inode))) {
 858		err = -ENOSPC;
 
 
 
 
 
 859		goto fail;
 860	}
 861
 862	get_node_info(sbi, dn->nid, &old_ni);
 863
 864	/* Reinitialize old_ni with new node page */
 865	f2fs_bug_on(old_ni.blk_addr != NULL_ADDR);
 866	new_ni = old_ni;
 
 
 867	new_ni.ino = dn->inode->i_ino;
 
 
 
 868	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
 869
 
 870	fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
 871	set_cold_node(dn->inode, page);
 872	SetPageUptodate(page);
 873	set_page_dirty(page);
 
 
 874
 875	if (f2fs_has_xattr_block(ofs))
 876		F2FS_I(dn->inode)->i_xattr_nid = dn->nid;
 877
 878	dn->node_page = page;
 879	if (ipage)
 880		update_inode(dn->inode, ipage);
 881	else
 882		sync_inode_page(dn);
 883	if (ofs == 0)
 884		inc_valid_inode_count(sbi);
 885
 886	return page;
 887
 888fail:
 889	clear_node_page_dirty(page);
 890	f2fs_put_page(page, 1);
 891	return ERR_PTR(err);
 892}
 893
 894/*
 895 * Caller should do after getting the following values.
 896 * 0: f2fs_put_page(page, 0)
 897 * LOCKED_PAGE: f2fs_put_page(page, 1)
 898 * error: nothing
 899 */
 900static int read_node_page(struct page *page, int rw)
 901{
 902	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
 903	struct node_info ni;
 
 
 
 
 
 
 
 
 
 904
 905	get_node_info(sbi, page->index, &ni);
 
 
 
 
 
 
 
 
 
 
 906
 907	if (unlikely(ni.blk_addr == NULL_ADDR)) {
 908		f2fs_put_page(page, 1);
 
 909		return -ENOENT;
 910	}
 911
 912	if (PageUptodate(page))
 913		return LOCKED_PAGE;
 
 
 
 
 914
 915	return f2fs_submit_page_bio(sbi, page, ni.blk_addr, rw);
 916}
 917
 918/*
 919 * Readahead a node page
 920 */
 921void ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
 922{
 923	struct page *apage;
 924	int err;
 925
 926	apage = find_get_page(NODE_MAPPING(sbi), nid);
 927	if (apage && PageUptodate(apage)) {
 928		f2fs_put_page(apage, 0);
 
 
 
 
 929		return;
 930	}
 931	f2fs_put_page(apage, 0);
 932
 933	apage = grab_cache_page(NODE_MAPPING(sbi), nid);
 934	if (!apage)
 935		return;
 936
 937	err = read_node_page(apage, READA);
 938	if (err == 0)
 939		f2fs_put_page(apage, 0);
 940	else if (err == LOCKED_PAGE)
 941		f2fs_put_page(apage, 1);
 942}
 943
 944struct page *get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
 
 945{
 946	struct page *page;
 947	int err;
 
 
 
 
 
 948repeat:
 949	page = grab_cache_page_write_begin(NODE_MAPPING(sbi),
 950					nid, AOP_FLAG_NOFS);
 951	if (!page)
 952		return ERR_PTR(-ENOMEM);
 953
 954	err = read_node_page(page, READ_SYNC);
 955	if (err < 0)
 956		return ERR_PTR(err);
 957	else if (err == LOCKED_PAGE)
 958		goto got_it;
 
 
 
 
 
 959
 960	lock_page(page);
 961	if (unlikely(!PageUptodate(page) || nid != nid_of_node(page))) {
 962		f2fs_put_page(page, 1);
 963		return ERR_PTR(-EIO);
 964	}
 965	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
 966		f2fs_put_page(page, 1);
 967		goto repeat;
 968	}
 969got_it:
 970	mark_page_accessed(page);
 971	return page;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 972}
 973
 974/*
 975 * Return a locked page for the desired node page.
 976 * And, readahead MAX_RA_NODE number of node pages.
 977 */
 978struct page *get_node_page_ra(struct page *parent, int start)
 979{
 980	struct f2fs_sb_info *sbi = F2FS_SB(parent->mapping->host->i_sb);
 981	struct blk_plug plug;
 982	struct page *page;
 983	int err, i, end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984	nid_t nid;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986	/* First, try getting the desired direct node. */
 987	nid = get_nid(parent, start, false);
 988	if (!nid)
 989		return ERR_PTR(-ENOENT);
 990repeat:
 991	page = grab_cache_page(NODE_MAPPING(sbi), nid);
 992	if (!page)
 993		return ERR_PTR(-ENOMEM);
 994
 995	err = read_node_page(page, READ_SYNC);
 996	if (err < 0)
 997		return ERR_PTR(err);
 998	else if (err == LOCKED_PAGE)
 999		goto page_hit;
 
1000
1001	blk_start_plug(&plug);
 
1002
1003	/* Then, try readahead for siblings of the desired node */
1004	end = start + MAX_RA_NODE;
1005	end = min(end, NIDS_PER_BLOCK);
1006	for (i = start + 1; i < end; i++) {
1007		nid = get_nid(parent, i, false);
1008		if (!nid)
1009			continue;
1010		ra_node_page(sbi, nid);
1011	}
1012
1013	blk_finish_plug(&plug);
 
 
 
 
 
 
 
1014
1015	lock_page(page);
1016	if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1017		f2fs_put_page(page, 1);
1018		goto repeat;
1019	}
1020page_hit:
1021	if (unlikely(!PageUptodate(page))) {
1022		f2fs_put_page(page, 1);
1023		return ERR_PTR(-EIO);
 
 
1024	}
1025	mark_page_accessed(page);
1026	return page;
 
 
 
 
 
 
 
 
1027}
1028
1029void sync_inode_page(struct dnode_of_data *dn)
1030{
1031	if (IS_INODE(dn->node_page) || dn->inode_page == dn->node_page) {
1032		update_inode(dn->inode, dn->node_page);
1033	} else if (dn->inode_page) {
1034		if (!dn->inode_page_locked)
1035			lock_page(dn->inode_page);
1036		update_inode(dn->inode, dn->inode_page);
1037		if (!dn->inode_page_locked)
1038			unlock_page(dn->inode_page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039	} else {
1040		update_inode_page(dn->inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1041	}
1042}
1043
1044int sync_node_pages(struct f2fs_sb_info *sbi, nid_t ino,
1045					struct writeback_control *wbc)
 
1046{
1047	pgoff_t index, end;
1048	struct pagevec pvec;
1049	int step = ino ? 2 : 0;
1050	int nwritten = 0, wrote = 0;
 
 
1051
1052	pagevec_init(&pvec, 0);
1053
1054next_step:
1055	index = 0;
1056	end = LONG_MAX;
1057
1058	while (index <= end) {
1059		int i, nr_pages;
1060		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1061				PAGECACHE_TAG_DIRTY,
1062				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1063		if (nr_pages == 0)
1064			break;
1065
1066		for (i = 0; i < nr_pages; i++) {
1067			struct page *page = pvec.pages[i];
 
 
 
 
 
 
 
 
1068
1069			/*
1070			 * flushing sequence with step:
1071			 * 0. indirect nodes
1072			 * 1. dentry dnodes
1073			 * 2. file dnodes
1074			 */
1075			if (step == 0 && IS_DNODE(page))
1076				continue;
1077			if (step == 1 && (!IS_DNODE(page) ||
1078						is_cold_node(page)))
1079				continue;
1080			if (step == 2 && (!IS_DNODE(page) ||
1081						!is_cold_node(page)))
1082				continue;
1083
1084			/*
1085			 * If an fsync mode,
1086			 * we should not skip writing node pages.
1087			 */
1088			if (ino && ino_of_node(page) == ino)
1089				lock_page(page);
1090			else if (!trylock_page(page))
1091				continue;
1092
1093			if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1094continue_unlock:
1095				unlock_page(page);
1096				continue;
1097			}
1098			if (ino && ino_of_node(page) != ino)
1099				goto continue_unlock;
1100
1101			if (!PageDirty(page)) {
1102				/* someone wrote it for us */
1103				goto continue_unlock;
1104			}
1105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1106			if (!clear_page_dirty_for_io(page))
1107				goto continue_unlock;
1108
1109			/* called by fsync() */
1110			if (ino && IS_DNODE(page)) {
1111				int mark = !is_checkpointed_node(sbi, ino);
1112				set_fsync_mark(page, 1);
1113				if (IS_INODE(page))
1114					set_dentry_mark(page, mark);
 
 
1115				nwritten++;
1116			} else {
1117				set_fsync_mark(page, 0);
1118				set_dentry_mark(page, 0);
1119			}
1120			NODE_MAPPING(sbi)->a_ops->writepage(page, wbc);
1121			wrote++;
1122
1123			if (--wbc->nr_to_write == 0)
1124				break;
1125		}
1126		pagevec_release(&pvec);
1127		cond_resched();
1128
1129		if (wbc->nr_to_write == 0) {
1130			step = 2;
1131			break;
1132		}
1133	}
1134
1135	if (step < 2) {
 
 
 
1136		step++;
1137		goto next_step;
1138	}
 
 
 
1139
1140	if (wrote)
1141		f2fs_submit_merged_bio(sbi, NODE, WRITE);
1142	return nwritten;
1143}
1144
1145int wait_on_node_pages_writeback(struct f2fs_sb_info *sbi, nid_t ino)
 
1146{
1147	pgoff_t index = 0, end = LONG_MAX;
1148	struct pagevec pvec;
1149	int ret2 = 0, ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151	pagevec_init(&pvec, 0);
1152
1153	while (index <= end) {
1154		int i, nr_pages;
1155		nr_pages = pagevec_lookup_tag(&pvec, NODE_MAPPING(sbi), &index,
1156				PAGECACHE_TAG_WRITEBACK,
1157				min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1158		if (nr_pages == 0)
1159			break;
1160
1161		for (i = 0; i < nr_pages; i++) {
1162			struct page *page = pvec.pages[i];
1163
1164			/* until radix tree lookup accepts end_index */
1165			if (unlikely(page->index > end))
1166				continue;
1167
1168			if (ino && ino_of_node(page) == ino) {
1169				f2fs_wait_on_page_writeback(page, NODE);
1170				if (TestClearPageError(page))
1171					ret = -EIO;
1172			}
1173		}
1174		pagevec_release(&pvec);
1175		cond_resched();
1176	}
1177
1178	if (unlikely(test_and_clear_bit(AS_ENOSPC, &NODE_MAPPING(sbi)->flags)))
1179		ret2 = -ENOSPC;
1180	if (unlikely(test_and_clear_bit(AS_EIO, &NODE_MAPPING(sbi)->flags)))
1181		ret2 = -EIO;
1182	if (!ret)
1183		ret = ret2;
 
1184	return ret;
1185}
1186
1187static int f2fs_write_node_page(struct page *page,
1188				struct writeback_control *wbc)
1189{
1190	struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
1191	nid_t nid;
1192	block_t new_addr;
1193	struct node_info ni;
1194	struct f2fs_io_info fio = {
1195		.type = NODE,
1196		.rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
1197	};
1198
1199	if (unlikely(sbi->por_doing))
1200		goto redirty_out;
1201
1202	f2fs_wait_on_page_writeback(page, NODE);
1203
1204	/* get old block addr of this node page */
1205	nid = nid_of_node(page);
1206	f2fs_bug_on(page->index != nid);
1207
1208	get_node_info(sbi, nid, &ni);
1209
1210	/* This page is already truncated */
1211	if (unlikely(ni.blk_addr == NULL_ADDR)) {
1212		dec_page_count(sbi, F2FS_DIRTY_NODES);
1213		unlock_page(page);
1214		return 0;
1215	}
1216
1217	if (wbc->for_reclaim)
1218		goto redirty_out;
1219
1220	mutex_lock(&sbi->node_write);
1221	set_page_writeback(page);
1222	write_node_page(sbi, page, &fio, nid, ni.blk_addr, &new_addr);
1223	set_node_addr(sbi, &ni, new_addr, is_fsync_dnode(page));
1224	dec_page_count(sbi, F2FS_DIRTY_NODES);
1225	mutex_unlock(&sbi->node_write);
1226	unlock_page(page);
1227	return 0;
1228
1229redirty_out:
1230	dec_page_count(sbi, F2FS_DIRTY_NODES);
1231	wbc->pages_skipped++;
1232	account_page_redirty(page);
1233	set_page_dirty(page);
1234	return AOP_WRITEPAGE_ACTIVATE;
1235}
1236
1237static int f2fs_write_node_pages(struct address_space *mapping,
1238			    struct writeback_control *wbc)
1239{
1240	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
 
1241	long diff;
1242
 
 
 
1243	/* balancing f2fs's metadata in background */
1244	f2fs_balance_fs_bg(sbi);
1245
1246	/* collect a number of dirty node pages and write together */
1247	if (get_pages(sbi, F2FS_DIRTY_NODES) < nr_pages_to_skip(sbi, NODE))
 
 
1248		goto skip_write;
1249
 
 
 
 
 
 
 
 
 
 
 
1250	diff = nr_pages_to_write(sbi, NODE, wbc);
1251	wbc->sync_mode = WB_SYNC_NONE;
1252	sync_node_pages(sbi, 0, wbc);
 
1253	wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
 
 
 
1254	return 0;
1255
1256skip_write:
1257	wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
 
1258	return 0;
1259}
1260
1261static int f2fs_set_node_page_dirty(struct page *page)
 
1262{
1263	struct address_space *mapping = page->mapping;
1264	struct f2fs_sb_info *sbi = F2FS_SB(mapping->host->i_sb);
1265
1266	trace_f2fs_set_page_dirty(page, NODE);
1267
1268	SetPageUptodate(page);
1269	if (!PageDirty(page)) {
1270		__set_page_dirty_nobuffers(page);
1271		inc_page_count(sbi, F2FS_DIRTY_NODES);
1272		SetPagePrivate(page);
1273		return 1;
 
 
1274	}
1275	return 0;
1276}
1277
1278static void f2fs_invalidate_node_page(struct page *page, unsigned int offset,
1279				      unsigned int length)
1280{
1281	struct inode *inode = page->mapping->host;
1282	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1283	if (PageDirty(page))
1284		dec_page_count(sbi, F2FS_DIRTY_NODES);
1285	ClearPagePrivate(page);
1286}
1287
1288static int f2fs_release_node_page(struct page *page, gfp_t wait)
1289{
1290	ClearPagePrivate(page);
1291	return 1;
1292}
1293
1294/*
1295 * Structure of the f2fs node operations
1296 */
1297const struct address_space_operations f2fs_node_aops = {
1298	.writepage	= f2fs_write_node_page,
1299	.writepages	= f2fs_write_node_pages,
1300	.set_page_dirty	= f2fs_set_node_page_dirty,
1301	.invalidatepage	= f2fs_invalidate_node_page,
1302	.releasepage	= f2fs_release_node_page,
 
1303};
1304
1305static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
1306						nid_t n)
1307{
1308	return radix_tree_lookup(&nm_i->free_nid_root, n);
1309}
1310
1311static void __del_from_free_nid_list(struct f2fs_nm_info *nm_i,
1312						struct free_nid *i)
1313{
1314	list_del(&i->list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1315	radix_tree_delete(&nm_i->free_nid_root, i->nid);
1316}
1317
1318static int add_free_nid(struct f2fs_nm_info *nm_i, nid_t nid, bool build)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1319{
1320	struct free_nid *i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1321	struct nat_entry *ne;
1322	bool allocated = false;
1323
1324	if (!available_free_memory(nm_i, FREE_NIDS))
1325		return -1;
1326
1327	/* 0 nid should not be used */
1328	if (unlikely(nid == 0))
1329		return 0;
 
 
 
 
 
 
 
 
 
 
 
1330
1331	if (build) {
1332		/* do not add allocated nids */
1333		read_lock(&nm_i->nat_tree_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1334		ne = __lookup_nat_cache(nm_i, nid);
1335		if (ne &&
1336			(!ne->checkpointed || nat_get_blkaddr(ne) != NULL_ADDR))
1337			allocated = true;
1338		read_unlock(&nm_i->nat_tree_lock);
1339		if (allocated)
1340			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
1341	}
 
 
1342
1343	i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS);
1344	i->nid = nid;
1345	i->state = NID_NEW;
1346
1347	spin_lock(&nm_i->free_nid_list_lock);
1348	if (radix_tree_insert(&nm_i->free_nid_root, i->nid, i)) {
1349		spin_unlock(&nm_i->free_nid_list_lock);
1350		kmem_cache_free(free_nid_slab, i);
1351		return 0;
1352	}
1353	list_add_tail(&i->list, &nm_i->free_nid_list);
1354	nm_i->fcnt++;
1355	spin_unlock(&nm_i->free_nid_list_lock);
1356	return 1;
1357}
1358
1359static void remove_free_nid(struct f2fs_nm_info *nm_i, nid_t nid)
1360{
 
1361	struct free_nid *i;
1362	bool need_free = false;
1363
1364	spin_lock(&nm_i->free_nid_list_lock);
1365	i = __lookup_free_nid_list(nm_i, nid);
1366	if (i && i->state == NID_NEW) {
1367		__del_from_free_nid_list(nm_i, i);
1368		nm_i->fcnt--;
1369		need_free = true;
1370	}
1371	spin_unlock(&nm_i->free_nid_list_lock);
1372
1373	if (need_free)
1374		kmem_cache_free(free_nid_slab, i);
1375}
1376
1377static void scan_nat_page(struct f2fs_nm_info *nm_i,
1378			struct page *nat_page, nid_t start_nid)
1379{
 
1380	struct f2fs_nat_block *nat_blk = page_address(nat_page);
1381	block_t blk_addr;
 
1382	int i;
1383
 
 
1384	i = start_nid % NAT_ENTRY_PER_BLOCK;
1385
1386	for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
1387
1388		if (unlikely(start_nid >= nm_i->max_nid))
1389			break;
1390
1391		blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
1392		f2fs_bug_on(blk_addr == NEW_ADDR);
 
 
 
1393		if (blk_addr == NULL_ADDR) {
1394			if (add_free_nid(nm_i, start_nid, true) < 0)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1395				break;
 
 
 
 
 
 
1396		}
1397	}
 
 
 
 
1398}
1399
1400static void build_free_nids(struct f2fs_sb_info *sbi)
 
1401{
1402	struct f2fs_nm_info *nm_i = NM_I(sbi);
1403	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1404	struct f2fs_summary_block *sum = curseg->sum_blk;
1405	int i = 0;
1406	nid_t nid = nm_i->next_scan_nid;
1407
 
 
 
 
 
 
1408	/* Enough entries */
1409	if (nm_i->fcnt > NAT_ENTRY_PER_BLOCK)
1410		return;
 
 
 
 
 
 
 
 
 
 
 
1411
1412	/* readahead nat pages to be scanned */
1413	ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES, META_NAT);
 
 
 
1414
1415	while (1) {
1416		struct page *page = get_current_nat_page(sbi, nid);
 
 
 
 
 
 
 
 
 
1417
1418		scan_nat_page(nm_i, page, nid);
1419		f2fs_put_page(page, 1);
 
 
 
 
1420
1421		nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
1422		if (unlikely(nid >= nm_i->max_nid))
1423			nid = 0;
1424
1425		if (i++ == FREE_NID_PAGES)
1426			break;
1427	}
1428
1429	/* go to the next free nat pages to find free nids abundantly */
1430	nm_i->next_scan_nid = nid;
1431
1432	/* find free nids from current sum_pages */
1433	mutex_lock(&curseg->curseg_mutex);
1434	for (i = 0; i < nats_in_cursum(sum); i++) {
1435		block_t addr = le32_to_cpu(nat_in_journal(sum, i).block_addr);
1436		nid = le32_to_cpu(nid_in_journal(sum, i));
1437		if (addr == NULL_ADDR)
1438			add_free_nid(nm_i, nid, true);
1439		else
1440			remove_free_nid(nm_i, nid);
1441	}
1442	mutex_unlock(&curseg->curseg_mutex);
 
 
 
 
 
 
 
 
 
1443}
1444
1445/*
1446 * If this function returns success, caller can obtain a new nid
1447 * from second parameter of this function.
1448 * The returned nid could be used ino as well as nid when inode is created.
1449 */
1450bool alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
1451{
1452	struct f2fs_nm_info *nm_i = NM_I(sbi);
1453	struct free_nid *i = NULL;
1454retry:
1455	if (unlikely(sbi->total_valid_node_count + 1 >= nm_i->max_nid))
 
1456		return false;
 
1457
1458	spin_lock(&nm_i->free_nid_list_lock);
1459
1460	/* We should not use stale free nids created by build_free_nids */
1461	if (nm_i->fcnt && !on_build_free_nids(nm_i)) {
1462		f2fs_bug_on(list_empty(&nm_i->free_nid_list));
1463		list_for_each_entry(i, &nm_i->free_nid_list, list)
1464			if (i->state == NID_NEW)
1465				break;
1466
1467		f2fs_bug_on(i->state != NID_NEW);
 
 
 
 
1468		*nid = i->nid;
1469		i->state = NID_ALLOC;
1470		nm_i->fcnt--;
1471		spin_unlock(&nm_i->free_nid_list_lock);
 
 
 
 
1472		return true;
1473	}
1474	spin_unlock(&nm_i->free_nid_list_lock);
1475
1476	/* Let's scan nat pages and its caches to get free nids */
1477	mutex_lock(&nm_i->build_lock);
1478	build_free_nids(sbi);
1479	mutex_unlock(&nm_i->build_lock);
1480	goto retry;
1481}
1482
1483/*
1484 * alloc_nid() should be called prior to this function.
1485 */
1486void alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
1487{
1488	struct f2fs_nm_info *nm_i = NM_I(sbi);
1489	struct free_nid *i;
1490
1491	spin_lock(&nm_i->free_nid_list_lock);
1492	i = __lookup_free_nid_list(nm_i, nid);
1493	f2fs_bug_on(!i || i->state != NID_ALLOC);
1494	__del_from_free_nid_list(nm_i, i);
1495	spin_unlock(&nm_i->free_nid_list_lock);
1496
1497	kmem_cache_free(free_nid_slab, i);
1498}
1499
1500/*
1501 * alloc_nid() should be called prior to this function.
1502 */
1503void alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
1504{
1505	struct f2fs_nm_info *nm_i = NM_I(sbi);
1506	struct free_nid *i;
1507	bool need_free = false;
1508
1509	if (!nid)
1510		return;
1511
1512	spin_lock(&nm_i->free_nid_list_lock);
1513	i = __lookup_free_nid_list(nm_i, nid);
1514	f2fs_bug_on(!i || i->state != NID_ALLOC);
1515	if (!available_free_memory(nm_i, FREE_NIDS)) {
1516		__del_from_free_nid_list(nm_i, i);
 
1517		need_free = true;
1518	} else {
1519		i->state = NID_NEW;
1520		nm_i->fcnt++;
1521	}
1522	spin_unlock(&nm_i->free_nid_list_lock);
 
 
 
 
 
1523
1524	if (need_free)
1525		kmem_cache_free(free_nid_slab, i);
1526}
1527
1528void recover_node_page(struct f2fs_sb_info *sbi, struct page *page,
1529		struct f2fs_summary *sum, struct node_info *ni,
1530		block_t new_blkaddr)
1531{
1532	rewrite_node_page(sbi, page, sum, ni->blk_addr, new_blkaddr);
1533	set_node_addr(sbi, ni, new_blkaddr, false);
1534	clear_node_page_dirty(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1535}
1536
1537void recover_inline_xattr(struct inode *inode, struct page *page)
1538{
1539	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1540	void *src_addr, *dst_addr;
1541	size_t inline_size;
1542	struct page *ipage;
1543	struct f2fs_inode *ri;
1544
1545	if (!f2fs_has_inline_xattr(inode))
1546		return;
1547
1548	if (!IS_INODE(page))
1549		return;
1550
1551	ri = F2FS_INODE(page);
1552	if (!(ri->i_inline & F2FS_INLINE_XATTR))
1553		return;
1554
1555	ipage = get_node_page(sbi, inode->i_ino);
1556	f2fs_bug_on(IS_ERR(ipage));
 
 
 
 
 
 
 
1557
1558	dst_addr = inline_xattr_addr(ipage);
1559	src_addr = inline_xattr_addr(page);
1560	inline_size = inline_xattr_size(inode);
1561
 
1562	memcpy(dst_addr, src_addr, inline_size);
1563
1564	update_inode(inode, ipage);
1565	f2fs_put_page(ipage, 1);
 
1566}
1567
1568bool recover_xattr_data(struct inode *inode, struct page *page, block_t blkaddr)
1569{
1570	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
1571	nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
1572	nid_t new_xnid = nid_of_node(page);
 
1573	struct node_info ni;
 
 
1574
1575	recover_inline_xattr(inode, page);
1576
1577	if (!f2fs_has_xattr_block(ofs_of_node(page)))
1578		return false;
1579
1580	/* 1: invalidate the previous xattr nid */
1581	if (!prev_xnid)
1582		goto recover_xnid;
 
1583
1584	/* Deallocate node address */
1585	get_node_info(sbi, prev_xnid, &ni);
1586	f2fs_bug_on(ni.blk_addr == NULL_ADDR);
1587	invalidate_blocks(sbi, ni.blk_addr);
1588	dec_valid_node_count(sbi, inode);
1589	set_node_addr(sbi, &ni, NULL_ADDR, false);
1590
1591recover_xnid:
1592	/* 2: allocate new xattr nid */
1593	if (unlikely(!inc_valid_node_count(sbi, inode)))
1594		f2fs_bug_on(1);
1595
1596	remove_free_nid(NM_I(sbi), new_xnid);
1597	get_node_info(sbi, new_xnid, &ni);
1598	ni.ino = inode->i_ino;
1599	set_node_addr(sbi, &ni, NEW_ADDR, false);
1600	F2FS_I(inode)->i_xattr_nid = new_xnid;
1601
1602	/* 3: update xattr blkaddr */
1603	refresh_sit_entry(sbi, NEW_ADDR, blkaddr);
1604	set_node_addr(sbi, &ni, blkaddr, false);
 
 
 
1605
1606	update_inode_page(inode);
1607	return true;
 
 
1608}
1609
1610int recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
1611{
1612	struct f2fs_inode *src, *dst;
1613	nid_t ino = ino_of_node(page);
1614	struct node_info old_ni, new_ni;
1615	struct page *ipage;
 
1616
1617	ipage = grab_cache_page(NODE_MAPPING(sbi), ino);
1618	if (!ipage)
1619		return -ENOMEM;
 
 
 
 
 
 
 
 
 
1620
1621	/* Should not use this inode  from free nid list */
1622	remove_free_nid(NM_I(sbi), ino);
1623
1624	get_node_info(sbi, ino, &old_ni);
1625	SetPageUptodate(ipage);
1626	fill_node_footer(ipage, ino, ino, 0, true);
 
1627
1628	src = F2FS_INODE(page);
1629	dst = F2FS_INODE(ipage);
1630
1631	memcpy(dst, src, (unsigned long)&src->i_ext - (unsigned long)src);
1632	dst->i_size = 0;
1633	dst->i_blocks = cpu_to_le64(1);
1634	dst->i_links = cpu_to_le32(1);
1635	dst->i_xattr_nid = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636
1637	new_ni = old_ni;
1638	new_ni.ino = ino;
1639
1640	if (unlikely(!inc_valid_node_count(sbi, NULL)))
1641		WARN_ON(1);
1642	set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1643	inc_valid_inode_count(sbi);
 
1644	f2fs_put_page(ipage, 1);
1645	return 0;
1646}
1647
1648/*
1649 * ra_sum_pages() merge contiguous pages into one bio and submit.
1650 * these pre-readed pages are linked in pages list.
1651 */
1652static int ra_sum_pages(struct f2fs_sb_info *sbi, struct list_head *pages,
1653				int start, int nrpages)
1654{
1655	struct page *page;
1656	int page_idx = start;
1657	struct f2fs_io_info fio = {
1658		.type = META,
1659		.rw = READ_SYNC | REQ_META | REQ_PRIO
1660	};
1661
1662	for (; page_idx < start + nrpages; page_idx++) {
1663		/* alloc temporal page for read node summary info*/
1664		page = alloc_page(GFP_F2FS_ZERO);
1665		if (!page)
1666			break;
1667
1668		lock_page(page);
1669		page->index = page_idx;
1670		list_add_tail(&page->lru, pages);
1671	}
1672
1673	list_for_each_entry(page, pages, lru)
1674		f2fs_submit_page_mbio(sbi, page, page->index, &fio);
1675
1676	f2fs_submit_merged_bio(sbi, META, READ);
1677
1678	return page_idx - start;
1679}
1680
1681int restore_node_summary(struct f2fs_sb_info *sbi,
1682			unsigned int segno, struct f2fs_summary_block *sum)
1683{
1684	struct f2fs_node *rn;
1685	struct f2fs_summary *sum_entry;
1686	struct page *page, *tmp;
1687	block_t addr;
1688	int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
1689	int i, last_offset, nrpages, err = 0;
1690	LIST_HEAD(page_list);
1691
1692	/* scan the node segment */
1693	last_offset = sbi->blocks_per_seg;
1694	addr = START_BLOCK(sbi, segno);
1695	sum_entry = &sum->entries[0];
1696
1697	for (i = 0; !err && i < last_offset; i += nrpages, addr += nrpages) {
1698		nrpages = min(last_offset - i, bio_blocks);
1699
1700		/* read ahead node pages */
1701		nrpages = ra_sum_pages(sbi, &page_list, addr, nrpages);
1702		if (!nrpages)
1703			return -ENOMEM;
 
1704
1705		list_for_each_entry_safe(page, tmp, &page_list, lru) {
1706			if (err)
1707				goto skip;
1708
1709			lock_page(page);
1710			if (unlikely(!PageUptodate(page))) {
1711				err = -EIO;
1712			} else {
1713				rn = F2FS_NODE(page);
1714				sum_entry->nid = rn->footer.nid;
1715				sum_entry->version = 0;
1716				sum_entry->ofs_in_node = 0;
1717				sum_entry++;
1718			}
1719			unlock_page(page);
1720skip:
1721			list_del(&page->lru);
1722			__free_pages(page, 0);
1723		}
 
 
 
1724	}
1725	return err;
1726}
1727
1728static bool flush_nats_in_journal(struct f2fs_sb_info *sbi)
1729{
1730	struct f2fs_nm_info *nm_i = NM_I(sbi);
1731	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1732	struct f2fs_summary_block *sum = curseg->sum_blk;
1733	int i;
1734
1735	mutex_lock(&curseg->curseg_mutex);
 
 
 
 
1736
1737	if (nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES) {
1738		mutex_unlock(&curseg->curseg_mutex);
1739		return false;
1740	}
1741
1742	for (i = 0; i < nats_in_cursum(sum); i++) {
1743		struct nat_entry *ne;
1744		struct f2fs_nat_entry raw_ne;
1745		nid_t nid = le32_to_cpu(nid_in_journal(sum, i));
1746
1747		raw_ne = nat_in_journal(sum, i);
1748retry:
1749		write_lock(&nm_i->nat_tree_lock);
1750		ne = __lookup_nat_cache(nm_i, nid);
1751		if (ne) {
1752			__set_nat_cache_dirty(nm_i, ne);
1753			write_unlock(&nm_i->nat_tree_lock);
1754			continue;
1755		}
1756		ne = grab_nat_entry(nm_i, nid);
1757		if (!ne) {
1758			write_unlock(&nm_i->nat_tree_lock);
1759			goto retry;
 
 
 
 
 
 
 
1760		}
1761		nat_set_blkaddr(ne, le32_to_cpu(raw_ne.block_addr));
1762		nat_set_ino(ne, le32_to_cpu(raw_ne.ino));
1763		nat_set_version(ne, raw_ne.version);
1764		__set_nat_cache_dirty(nm_i, ne);
1765		write_unlock(&nm_i->nat_tree_lock);
1766	}
1767	update_nats_in_cursum(sum, -i);
1768	mutex_unlock(&curseg->curseg_mutex);
1769	return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1770}
1771
1772/*
1773 * This function is called during the checkpointing process.
1774 */
1775void flush_nat_entries(struct f2fs_sb_info *sbi)
1776{
1777	struct f2fs_nm_info *nm_i = NM_I(sbi);
1778	struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
1779	struct f2fs_summary_block *sum = curseg->sum_blk;
1780	struct nat_entry *ne, *cur;
1781	struct page *page = NULL;
1782	struct f2fs_nat_block *nat_blk = NULL;
1783	nid_t start_nid = 0, end_nid = 0;
1784	bool flushed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785
1786	flushed = flush_nats_in_journal(sbi);
 
 
 
 
 
 
 
1787
1788	if (!flushed)
1789		mutex_lock(&curseg->curseg_mutex);
 
 
1790
1791	/* 1) flush dirty nat caches */
1792	list_for_each_entry_safe(ne, cur, &nm_i->dirty_nat_entries, list) {
1793		nid_t nid;
1794		struct f2fs_nat_entry raw_ne;
1795		int offset = -1;
1796		block_t new_blkaddr;
 
1797
1798		if (nat_get_blkaddr(ne) == NEW_ADDR)
1799			continue;
 
1800
1801		nid = nat_get_nid(ne);
 
 
 
 
1802
1803		if (flushed)
1804			goto to_nat_page;
1805
1806		/* if there is room for nat enries in curseg->sumpage */
1807		offset = lookup_journal_in_cursum(sum, NAT_JOURNAL, nid, 1);
1808		if (offset >= 0) {
1809			raw_ne = nat_in_journal(sum, offset);
1810			goto flush_now;
1811		}
1812to_nat_page:
1813		if (!page || (start_nid > nid || nid > end_nid)) {
1814			if (page) {
1815				f2fs_put_page(page, 1);
1816				page = NULL;
1817			}
1818			start_nid = START_NID(nid);
1819			end_nid = start_nid + NAT_ENTRY_PER_BLOCK - 1;
1820
1821			/*
1822			 * get nat block with dirty flag, increased reference
1823			 * count, mapped and lock
1824			 */
1825			page = get_next_nat_page(sbi, start_nid);
1826			nat_blk = page_address(page);
1827		}
1828
1829		f2fs_bug_on(!nat_blk);
1830		raw_ne = nat_blk->entries[nid - start_nid];
1831flush_now:
1832		new_blkaddr = nat_get_blkaddr(ne);
1833
1834		raw_ne.ino = cpu_to_le32(nat_get_ino(ne));
1835		raw_ne.block_addr = cpu_to_le32(new_blkaddr);
1836		raw_ne.version = nat_get_version(ne);
 
 
1837
1838		if (offset < 0) {
1839			nat_blk->entries[nid - start_nid] = raw_ne;
1840		} else {
1841			nat_in_journal(sum, offset) = raw_ne;
1842			nid_in_journal(sum, offset) = cpu_to_le32(nid);
1843		}
1844
1845		if (nat_get_blkaddr(ne) == NULL_ADDR &&
1846				add_free_nid(NM_I(sbi), nid, false) <= 0) {
1847			write_lock(&nm_i->nat_tree_lock);
1848			__del_from_nat_cache(nm_i, ne);
1849			write_unlock(&nm_i->nat_tree_lock);
1850		} else {
1851			write_lock(&nm_i->nat_tree_lock);
1852			__clear_nat_cache_dirty(nm_i, ne);
1853			write_unlock(&nm_i->nat_tree_lock);
1854		}
1855	}
1856	if (!flushed)
1857		mutex_unlock(&curseg->curseg_mutex);
1858	f2fs_put_page(page, 1);
1859}
1860
1861static int init_node_manager(struct f2fs_sb_info *sbi)
1862{
1863	struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
1864	struct f2fs_nm_info *nm_i = NM_I(sbi);
1865	unsigned char *version_bitmap;
1866	unsigned int nat_segs, nat_blocks;
 
1867
1868	nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
1869
1870	/* segment_count_nat includes pair segment so divide to 2. */
1871	nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
1872	nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
 
1873
1874	/* not used nids: 0, node, meta, (and root counted as valid node) */
1875	nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nat_blocks - 3;
1876	nm_i->fcnt = 0;
1877	nm_i->nat_cnt = 0;
 
1878	nm_i->ram_thresh = DEF_RAM_THRESHOLD;
 
 
 
1879
1880	INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
1881	INIT_LIST_HEAD(&nm_i->free_nid_list);
1882	INIT_RADIX_TREE(&nm_i->nat_root, GFP_ATOMIC);
 
1883	INIT_LIST_HEAD(&nm_i->nat_entries);
1884	INIT_LIST_HEAD(&nm_i->dirty_nat_entries);
1885
1886	mutex_init(&nm_i->build_lock);
1887	spin_lock_init(&nm_i->free_nid_list_lock);
1888	rwlock_init(&nm_i->nat_tree_lock);
1889
1890	nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
1891	nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
1892	version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
1893	if (!version_bitmap)
1894		return -EFAULT;
1895
1896	nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
1897					GFP_KERNEL);
1898	if (!nm_i->nat_bitmap)
1899		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1900	return 0;
1901}
1902
1903int build_node_manager(struct f2fs_sb_info *sbi)
1904{
1905	int err;
1906
1907	sbi->nm_info = kzalloc(sizeof(struct f2fs_nm_info), GFP_KERNEL);
 
1908	if (!sbi->nm_info)
1909		return -ENOMEM;
1910
1911	err = init_node_manager(sbi);
1912	if (err)
1913		return err;
1914
1915	build_free_nids(sbi);
1916	return 0;
 
 
 
 
 
 
1917}
1918
1919void destroy_node_manager(struct f2fs_sb_info *sbi)
1920{
1921	struct f2fs_nm_info *nm_i = NM_I(sbi);
1922	struct free_nid *i, *next_i;
1923	struct nat_entry *natvec[NATVEC_SIZE];
 
1924	nid_t nid = 0;
1925	unsigned int found;
1926
1927	if (!nm_i)
1928		return;
1929
1930	/* destroy free nid list */
1931	spin_lock(&nm_i->free_nid_list_lock);
1932	list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
1933		f2fs_bug_on(i->state == NID_ALLOC);
1934		__del_from_free_nid_list(nm_i, i);
1935		nm_i->fcnt--;
1936		spin_unlock(&nm_i->free_nid_list_lock);
1937		kmem_cache_free(free_nid_slab, i);
1938		spin_lock(&nm_i->free_nid_list_lock);
1939	}
1940	f2fs_bug_on(nm_i->fcnt);
1941	spin_unlock(&nm_i->free_nid_list_lock);
 
 
1942
1943	/* destroy nat cache */
1944	write_lock(&nm_i->nat_tree_lock);
1945	while ((found = __gang_lookup_nat_cache(nm_i,
1946					nid, NATVEC_SIZE, natvec))) {
1947		unsigned idx;
 
1948		nid = nat_get_nid(natvec[found - 1]) + 1;
1949		for (idx = 0; idx < found; idx++)
 
 
 
 
1950			__del_from_nat_cache(nm_i, natvec[idx]);
 
1951	}
1952	f2fs_bug_on(nm_i->nat_cnt);
1953	write_unlock(&nm_i->nat_tree_lock);
 
 
 
 
 
1954
1955	kfree(nm_i->nat_bitmap);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1956	sbi->nm_info = NULL;
1957	kfree(nm_i);
1958}
1959
1960int __init create_node_manager_caches(void)
1961{
1962	nat_entry_slab = f2fs_kmem_cache_create("nat_entry",
1963			sizeof(struct nat_entry));
1964	if (!nat_entry_slab)
1965		return -ENOMEM;
1966
1967	free_nid_slab = f2fs_kmem_cache_create("free_nid",
1968			sizeof(struct free_nid));
1969	if (!free_nid_slab) {
1970		kmem_cache_destroy(nat_entry_slab);
1971		return -ENOMEM;
1972	}
 
 
 
 
 
 
 
 
1973	return 0;
 
 
 
 
 
 
 
 
 
1974}
1975
1976void destroy_node_manager_caches(void)
1977{
 
 
1978	kmem_cache_destroy(free_nid_slab);
1979	kmem_cache_destroy(nat_entry_slab);
1980}