Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104
 105#include <linux/kbd_kern.h>
 106#include <linux/vt_kern.h>
 107#include <linux/selection.h>
 108
 109#include <linux/kmod.h>
 110#include <linux/nsproxy.h>
 111#include "tty.h"
 112
 113#undef TTY_DEBUG_HANGUP
 114#ifdef TTY_DEBUG_HANGUP
 115# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 116#else
 117# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 118#endif
 119
 120#define TTY_PARANOIA_CHECK 1
 121#define CHECK_TTY_COUNT 1
 122
 123struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 124	.c_iflag = ICRNL | IXON,
 125	.c_oflag = OPOST | ONLCR,
 126	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 127	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 128		   ECHOCTL | ECHOKE | IEXTEN,
 129	.c_cc = INIT_C_CC,
 130	.c_ispeed = 38400,
 131	.c_ospeed = 38400,
 132	/* .c_line = N_TTY, */
 133};
 
 134EXPORT_SYMBOL(tty_std_termios);
 135
 136/* This list gets poked at by procfs and various bits of boot up code. This
 137 * could do with some rationalisation such as pulling the tty proc function
 138 * into this file.
 139 */
 140
 141LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 142
 143/* Mutex to protect creating and releasing a tty */
 144DEFINE_MUTEX(tty_mutex);
 145
 146static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 147static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 148static __poll_t tty_poll(struct file *, poll_table *);
 
 
 149static int tty_open(struct inode *, struct file *);
 
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152				unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 159
 160/**
 161 * free_tty_struct	-	free a disused tty
 162 * @tty: tty struct to free
 163 *
 164 * Free the write buffers, tty queue and tty memory itself.
 165 *
 166 * Locking: none. Must be called after tty is definitely unused
 167 */
 
 168static void free_tty_struct(struct tty_struct *tty)
 169{
 170	tty_ldisc_deinit(tty);
 171	put_device(tty->dev);
 172	kvfree(tty->write_buf);
 
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 * @file: to free private_data of
 210 *
 211 * This shall be used only for fail path handling when tty_add_file was not
 212 * called yet.
 213 */
 214void tty_free_file(struct file *file)
 215{
 216	struct tty_file_private *priv = file->private_data;
 217
 218	file->private_data = NULL;
 219	kfree(priv);
 220}
 221
 222/* Delete file from its tty */
 223static void tty_del_file(struct file *file)
 224{
 225	struct tty_file_private *priv = file->private_data;
 226	struct tty_struct *tty = priv->tty;
 227
 228	spin_lock(&tty->files_lock);
 229	list_del(&priv->list);
 230	spin_unlock(&tty->files_lock);
 231	tty_free_file(file);
 232}
 233
 
 
 
 234/**
 235 * tty_name	-	return tty naming
 236 * @tty: tty structure
 237 *
 238 * Convert a tty structure into a name. The name reflects the kernel naming
 239 * policy and if udev is in use may not reflect user space
 240 *
 241 * Locking: none
 242 */
 
 243const char *tty_name(const struct tty_struct *tty)
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		return "NULL tty";
 247	return tty->name;
 248}
 
 249EXPORT_SYMBOL(tty_name);
 250
 251const char *tty_driver_name(const struct tty_struct *tty)
 252{
 253	if (!tty || !tty->driver)
 254		return "";
 255	return tty->driver->name;
 256}
 257
 258static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 259			      const char *routine)
 260{
 261#ifdef TTY_PARANOIA_CHECK
 262	if (!tty) {
 263		pr_warn("(%d:%d): %s: NULL tty\n",
 264			imajor(inode), iminor(inode), routine);
 265		return 1;
 266	}
 
 
 
 
 
 267#endif
 268	return 0;
 269}
 270
 271/* Caller must hold tty_lock */
 272static int check_tty_count(struct tty_struct *tty, const char *routine)
 273{
 274#ifdef CHECK_TTY_COUNT
 275	struct list_head *p;
 276	int count = 0, kopen_count = 0;
 277
 278	spin_lock(&tty->files_lock);
 279	list_for_each(p, &tty->tty_files) {
 280		count++;
 281	}
 282	spin_unlock(&tty->files_lock);
 283	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 284	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 285	    tty->link && tty->link->count)
 286		count++;
 287	if (tty_port_kopened(tty->port))
 288		kopen_count++;
 289	if (tty->count != (count + kopen_count)) {
 290		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 291			 routine, tty->count, count, kopen_count);
 292		return (count + kopen_count);
 293	}
 294#endif
 295	return 0;
 296}
 297
 298/**
 299 * get_tty_driver		-	find device of a tty
 300 * @device: device identifier
 301 * @index: returns the index of the tty
 302 *
 303 * This routine returns a tty driver structure, given a device number and also
 304 * passes back the index number.
 305 *
 306 * Locking: caller must hold tty_mutex
 307 */
 
 308static struct tty_driver *get_tty_driver(dev_t device, int *index)
 309{
 310	struct tty_driver *p;
 311
 312	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 313		dev_t base = MKDEV(p->major, p->minor_start);
 314
 315		if (device < base || device >= base + p->num)
 316			continue;
 317		*index = device - base;
 318		return tty_driver_kref_get(p);
 319	}
 320	return NULL;
 321}
 322
 323/**
 324 * tty_dev_name_to_number	-	return dev_t for device name
 325 * @name: user space name of device under /dev
 326 * @number: pointer to dev_t that this function will populate
 327 *
 328 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 329 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 330 * function returns -%ENODEV.
 331 *
 332 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 333 *	being modified while we are traversing it, and makes sure to
 334 *	release it before exiting.
 335 */
 336int tty_dev_name_to_number(const char *name, dev_t *number)
 337{
 338	struct tty_driver *p;
 339	int ret;
 340	int index, prefix_length = 0;
 341	const char *str;
 342
 343	for (str = name; *str && !isdigit(*str); str++)
 344		;
 345
 346	if (!*str)
 347		return -EINVAL;
 348
 349	ret = kstrtoint(str, 10, &index);
 350	if (ret)
 351		return ret;
 352
 353	prefix_length = str - name;
 354	mutex_lock(&tty_mutex);
 355
 356	list_for_each_entry(p, &tty_drivers, tty_drivers)
 357		if (prefix_length == strlen(p->name) && strncmp(name,
 358					p->name, prefix_length) == 0) {
 359			if (index < p->num) {
 360				*number = MKDEV(p->major, p->minor_start + index);
 361				goto out;
 362			}
 363		}
 364
 365	/* if here then driver wasn't found */
 366	ret = -ENODEV;
 367out:
 368	mutex_unlock(&tty_mutex);
 369	return ret;
 370}
 371EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 372
 373#ifdef CONFIG_CONSOLE_POLL
 374
 375/**
 376 * tty_find_polling_driver	-	find device of a polled tty
 377 * @name: name string to match
 378 * @line: pointer to resulting tty line nr
 379 *
 380 * This routine returns a tty driver structure, given a name and the condition
 381 * that the tty driver is capable of polled operation.
 
 382 */
 383struct tty_driver *tty_find_polling_driver(char *name, int *line)
 384{
 385	struct tty_driver *p, *res = NULL;
 386	int tty_line = 0;
 387	int len;
 388	char *str, *stp;
 389
 390	for (str = name; *str; str++)
 391		if ((*str >= '0' && *str <= '9') || *str == ',')
 392			break;
 393	if (!*str)
 394		return NULL;
 395
 396	len = str - name;
 397	tty_line = simple_strtoul(str, &str, 10);
 398
 399	mutex_lock(&tty_mutex);
 400	/* Search through the tty devices to look for a match */
 401	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 402		if (!len || strncmp(name, p->name, len) != 0)
 403			continue;
 404		stp = str;
 405		if (*stp == ',')
 406			stp++;
 407		if (*stp == '\0')
 408			stp = NULL;
 409
 410		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 411		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 412			res = tty_driver_kref_get(p);
 413			*line = tty_line;
 414			break;
 415		}
 416	}
 417	mutex_unlock(&tty_mutex);
 418
 419	return res;
 420}
 421EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 422#endif
 423
 424static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425{
 426	return 0;
 427}
 428
 429static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 452static int hung_up_tty_fasync(int fd, struct file *file, int on)
 453{
 454	return -ENOTTY;
 455}
 456
 457static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 458{
 459	struct tty_struct *tty = file_tty(file);
 460
 461	if (tty && tty->ops && tty->ops->show_fdinfo)
 462		tty->ops->show_fdinfo(tty, m);
 463}
 464
 465static const struct file_operations tty_fops = {
 466	.llseek		= no_llseek,
 467	.read_iter	= tty_read,
 468	.write_iter	= tty_write,
 469	.splice_read	= generic_file_splice_read,
 470	.splice_write	= iter_file_splice_write,
 471	.poll		= tty_poll,
 472	.unlocked_ioctl	= tty_ioctl,
 473	.compat_ioctl	= tty_compat_ioctl,
 474	.open		= tty_open,
 475	.release	= tty_release,
 476	.fasync		= tty_fasync,
 477	.show_fdinfo	= tty_show_fdinfo,
 478};
 479
 480static const struct file_operations console_fops = {
 481	.llseek		= no_llseek,
 482	.read_iter	= tty_read,
 483	.write_iter	= redirected_tty_write,
 484	.splice_read	= generic_file_splice_read,
 485	.splice_write	= iter_file_splice_write,
 486	.poll		= tty_poll,
 487	.unlocked_ioctl	= tty_ioctl,
 488	.compat_ioctl	= tty_compat_ioctl,
 489	.open		= tty_open,
 490	.release	= tty_release,
 491	.fasync		= tty_fasync,
 492};
 493
 494static const struct file_operations hung_up_tty_fops = {
 495	.llseek		= no_llseek,
 496	.read_iter	= hung_up_tty_read,
 497	.write_iter	= hung_up_tty_write,
 498	.poll		= hung_up_tty_poll,
 499	.unlocked_ioctl	= hung_up_tty_ioctl,
 500	.compat_ioctl	= hung_up_tty_compat_ioctl,
 501	.release	= tty_release,
 502	.fasync		= hung_up_tty_fasync,
 503};
 504
 505static DEFINE_SPINLOCK(redirect_lock);
 506static struct file *redirect;
 507
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 508/**
 509 * tty_wakeup	-	request more data
 510 * @tty: terminal
 511 *
 512 * Internal and external helper for wakeups of tty. This function informs the
 513 * line discipline if present that the driver is ready to receive more output
 514 * data.
 515 */
 
 516void tty_wakeup(struct tty_struct *tty)
 517{
 518	struct tty_ldisc *ld;
 519
 520	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 521		ld = tty_ldisc_ref(tty);
 522		if (ld) {
 523			if (ld->ops->write_wakeup)
 524				ld->ops->write_wakeup(tty);
 525			tty_ldisc_deref(ld);
 526		}
 527	}
 528	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 529}
 
 530EXPORT_SYMBOL_GPL(tty_wakeup);
 531
 532/**
 533 * tty_release_redirect	-	Release a redirect on a pty if present
 534 * @tty: tty device
 535 *
 536 * This is available to the pty code so if the master closes, if the slave is a
 537 * redirect it can release the redirect.
 538 */
 539static struct file *tty_release_redirect(struct tty_struct *tty)
 540{
 541	struct file *f = NULL;
 
 
 
 
 
 
 
 542
 543	spin_lock(&redirect_lock);
 544	if (redirect && file_tty(redirect) == tty) {
 545		f = redirect;
 546		redirect = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547	}
 548	spin_unlock(&redirect_lock);
 549
 550	return f;
 551}
 552
 553/**
 554 * __tty_hangup		-	actual handler for hangup events
 555 * @tty: tty device
 556 * @exit_session: if non-zero, signal all foreground group processes
 557 *
 558 * This can be called by a "kworker" kernel thread. That is process synchronous
 559 * but doesn't hold any locks, so we need to make sure we have the appropriate
 560 * locks for what we're doing.
 561 *
 562 * The hangup event clears any pending redirections onto the hung up device. It
 563 * ensures future writes will error and it does the needed line discipline
 564 * hangup and signal delivery. The tty object itself remains intact.
 565 *
 566 * Locking:
 567 *  * BTM
 
 568 *
 569 *   * redirect lock for undoing redirection
 570 *   * file list lock for manipulating list of ttys
 571 *   * tty_ldiscs_lock from called functions
 572 *   * termios_rwsem resetting termios data
 573 *   * tasklist_lock to walk task list for hangup event
 574 *
 575 *    * ->siglock to protect ->signal/->sighand
 576 *
 
 
 
 
 
 
 
 
 577 */
 578static void __tty_hangup(struct tty_struct *tty, int exit_session)
 579{
 580	struct file *cons_filp = NULL;
 581	struct file *filp, *f;
 582	struct tty_file_private *priv;
 583	int    closecount = 0, n;
 584	int refs;
 585
 586	if (!tty)
 587		return;
 588
 589	f = tty_release_redirect(tty);
 
 
 
 
 
 
 590
 591	tty_lock(tty);
 592
 593	if (test_bit(TTY_HUPPED, &tty->flags)) {
 594		tty_unlock(tty);
 595		return;
 596	}
 597
 598	/*
 599	 * Some console devices aren't actually hung up for technical and
 600	 * historical reasons, which can lead to indefinite interruptible
 601	 * sleep in n_tty_read().  The following explicitly tells
 602	 * n_tty_read() to abort readers.
 603	 */
 604	set_bit(TTY_HUPPING, &tty->flags);
 605
 606	/* inuse_filps is protected by the single tty lock,
 607	 * this really needs to change if we want to flush the
 608	 * workqueue with the lock held.
 609	 */
 610	check_tty_count(tty, "tty_hangup");
 611
 612	spin_lock(&tty->files_lock);
 613	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 614	list_for_each_entry(priv, &tty->tty_files, list) {
 615		filp = priv->file;
 616		if (filp->f_op->write_iter == redirected_tty_write)
 617			cons_filp = filp;
 618		if (filp->f_op->write_iter != tty_write)
 619			continue;
 620		closecount++;
 621		__tty_fasync(-1, filp, 0);	/* can't block */
 622		filp->f_op = &hung_up_tty_fops;
 623	}
 624	spin_unlock(&tty->files_lock);
 625
 626	refs = tty_signal_session_leader(tty, exit_session);
 627	/* Account for the p->signal references we killed */
 628	while (refs--)
 629		tty_kref_put(tty);
 630
 631	tty_ldisc_hangup(tty, cons_filp != NULL);
 632
 633	spin_lock_irq(&tty->ctrl.lock);
 634	clear_bit(TTY_THROTTLED, &tty->flags);
 635	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 636	put_pid(tty->ctrl.session);
 637	put_pid(tty->ctrl.pgrp);
 638	tty->ctrl.session = NULL;
 639	tty->ctrl.pgrp = NULL;
 640	tty->ctrl.pktstatus = 0;
 641	spin_unlock_irq(&tty->ctrl.lock);
 642
 643	/*
 644	 * If one of the devices matches a console pointer, we
 645	 * cannot just call hangup() because that will cause
 646	 * tty->count and state->count to go out of sync.
 647	 * So we just call close() the right number of times.
 648	 */
 649	if (cons_filp) {
 650		if (tty->ops->close)
 651			for (n = 0; n < closecount; n++)
 652				tty->ops->close(tty, cons_filp);
 653	} else if (tty->ops->hangup)
 654		tty->ops->hangup(tty);
 655	/*
 656	 * We don't want to have driver/ldisc interactions beyond the ones
 657	 * we did here. The driver layer expects no calls after ->hangup()
 658	 * from the ldisc side, which is now guaranteed.
 659	 */
 660	set_bit(TTY_HUPPED, &tty->flags);
 661	clear_bit(TTY_HUPPING, &tty->flags);
 662	tty_unlock(tty);
 663
 664	if (f)
 665		fput(f);
 666}
 667
 668static void do_tty_hangup(struct work_struct *work)
 669{
 670	struct tty_struct *tty =
 671		container_of(work, struct tty_struct, hangup_work);
 672
 673	__tty_hangup(tty, 0);
 674}
 675
 676/**
 677 * tty_hangup		-	trigger a hangup event
 678 * @tty: tty to hangup
 679 *
 680 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 681 * hangup sequence to run after this event.
 682 */
 
 683void tty_hangup(struct tty_struct *tty)
 684{
 685	tty_debug_hangup(tty, "hangup\n");
 686	schedule_work(&tty->hangup_work);
 687}
 
 688EXPORT_SYMBOL(tty_hangup);
 689
 690/**
 691 * tty_vhangup		-	process vhangup
 692 * @tty: tty to hangup
 693 *
 694 * The user has asked via system call for the terminal to be hung up. We do
 695 * this synchronously so that when the syscall returns the process is complete.
 696 * That guarantee is necessary for security reasons.
 697 */
 
 698void tty_vhangup(struct tty_struct *tty)
 699{
 700	tty_debug_hangup(tty, "vhangup\n");
 701	__tty_hangup(tty, 0);
 702}
 
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 * tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 * Perform a vhangup on the current controlling tty
 710 */
 
 711void tty_vhangup_self(void)
 712{
 713	struct tty_struct *tty;
 714
 715	tty = get_current_tty();
 716	if (tty) {
 717		tty_vhangup(tty);
 718		tty_kref_put(tty);
 719	}
 720}
 721
 722/**
 723 * tty_vhangup_session	-	hangup session leader exit
 724 * @tty: tty to hangup
 725 *
 726 * The session leader is exiting and hanging up its controlling terminal.
 727 * Every process in the foreground process group is signalled %SIGHUP.
 728 *
 729 * We do this synchronously so that when the syscall returns the process is
 730 * complete. That guarantee is necessary for security reasons.
 731 */
 732void tty_vhangup_session(struct tty_struct *tty)
 
 733{
 734	tty_debug_hangup(tty, "session hangup\n");
 735	__tty_hangup(tty, 1);
 736}
 737
 738/**
 739 * tty_hung_up_p	-	was tty hung up
 740 * @filp: file pointer of tty
 741 *
 742 * Return: true if the tty has been subject to a vhangup or a carrier loss
 
 743 */
 
 744int tty_hung_up_p(struct file *filp)
 745{
 746	return (filp && filp->f_op == &hung_up_tty_fops);
 747}
 
 748EXPORT_SYMBOL(tty_hung_up_p);
 749
 750void __stop_tty(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 751{
 752	if (tty->flow.stopped)
 
 
 753		return;
 754	tty->flow.stopped = true;
 755	if (tty->ops->stop)
 756		tty->ops->stop(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 757}
 758
 
 759/**
 760 * stop_tty	-	propagate flow control
 761 * @tty: tty to stop
 762 *
 763 * Perform flow control to the driver. May be called on an already stopped
 764 * device and will not re-call the &tty_driver->stop() method.
 
 765 *
 766 * This functionality is used by both the line disciplines for halting incoming
 767 * flow and by the driver. It may therefore be called from any context, may be
 768 * under the tty %atomic_write_lock but not always.
 
 769 *
 770 * Locking:
 771 *	flow.lock
 772 */
 
 
 
 
 
 
 
 
 
 
 773void stop_tty(struct tty_struct *tty)
 774{
 775	unsigned long flags;
 776
 777	spin_lock_irqsave(&tty->flow.lock, flags);
 778	__stop_tty(tty);
 779	spin_unlock_irqrestore(&tty->flow.lock, flags);
 780}
 781EXPORT_SYMBOL(stop_tty);
 782
 
 
 
 
 
 
 
 
 
 
 
 
 783void __start_tty(struct tty_struct *tty)
 784{
 785	if (!tty->flow.stopped || tty->flow.tco_stopped)
 786		return;
 787	tty->flow.stopped = false;
 788	if (tty->ops->start)
 789		tty->ops->start(tty);
 790	tty_wakeup(tty);
 791}
 792
 793/**
 794 * start_tty	-	propagate flow control
 795 * @tty: tty to start
 796 *
 797 * Start a tty that has been stopped if at all possible. If @tty was previously
 798 * stopped and is now being started, the &tty_driver->start() method is invoked
 799 * and the line discipline woken.
 800 *
 801 * Locking:
 802 *	flow.lock
 803 */
 804void start_tty(struct tty_struct *tty)
 805{
 806	unsigned long flags;
 807
 808	spin_lock_irqsave(&tty->flow.lock, flags);
 809	__start_tty(tty);
 810	spin_unlock_irqrestore(&tty->flow.lock, flags);
 811}
 812EXPORT_SYMBOL(start_tty);
 813
 814static void tty_update_time(struct timespec64 *time)
 815{
 816	time64_t sec = ktime_get_real_seconds();
 817
 818	/*
 819	 * We only care if the two values differ in anything other than the
 820	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 821	 * the time of the tty device, otherwise it could be construded as a
 822	 * security leak to let userspace know the exact timing of the tty.
 823	 */
 824	if ((sec ^ time->tv_sec) & ~7)
 825		time->tv_sec = sec;
 826}
 827
 828/*
 829 * Iterate on the ldisc ->read() function until we've gotten all
 830 * the data the ldisc has for us.
 831 *
 832 * The "cookie" is something that the ldisc read function can fill
 833 * in to let us know that there is more data to be had.
 834 *
 835 * We promise to continue to call the ldisc until it stops returning
 836 * data or clears the cookie. The cookie may be something that the
 837 * ldisc maintains state for and needs to free.
 838 */
 839static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 840		struct file *file, struct iov_iter *to)
 841{
 842	int retval = 0;
 843	void *cookie = NULL;
 844	unsigned long offset = 0;
 845	char kernel_buf[64];
 846	size_t count = iov_iter_count(to);
 847
 848	do {
 849		int size, copied;
 850
 851		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
 852		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 853		if (!size)
 854			break;
 855
 856		if (size < 0) {
 857			/* Did we have an earlier error (ie -EFAULT)? */
 858			if (retval)
 859				break;
 860			retval = size;
 861
 862			/*
 863			 * -EOVERFLOW means we didn't have enough space
 864			 * for a whole packet, and we shouldn't return
 865			 * a partial result.
 866			 */
 867			if (retval == -EOVERFLOW)
 868				offset = 0;
 869			break;
 870		}
 871
 872		copied = copy_to_iter(kernel_buf, size, to);
 873		offset += copied;
 874		count -= copied;
 875
 876		/*
 877		 * If the user copy failed, we still need to do another ->read()
 878		 * call if we had a cookie to let the ldisc clear up.
 879		 *
 880		 * But make sure size is zeroed.
 881		 */
 882		if (unlikely(copied != size)) {
 883			count = 0;
 884			retval = -EFAULT;
 885		}
 886	} while (cookie);
 887
 888	/* We always clear tty buffer in case they contained passwords */
 889	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 890	return offset ? offset : retval;
 891}
 892
 893
 894/**
 895 * tty_read	-	read method for tty device files
 896 * @iocb: kernel I/O control block
 897 * @to: destination for the data read
 898 *
 899 * Perform the read system call function on this terminal device. Checks
 900 * for hung up devices before calling the line discipline method.
 901 *
 902 * Locking:
 903 *	Locks the line discipline internally while needed. Multiple read calls
 904 *	may be outstanding in parallel.
 
 
 905 */
 906static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 907{
 908	int i;
 909	struct file *file = iocb->ki_filp;
 910	struct inode *inode = file_inode(file);
 911	struct tty_struct *tty = file_tty(file);
 912	struct tty_ldisc *ld;
 913
 914	if (tty_paranoia_check(tty, inode, "tty_read"))
 915		return -EIO;
 916	if (!tty || tty_io_error(tty))
 917		return -EIO;
 918
 919	/* We want to wait for the line discipline to sort out in this
 920	 * situation.
 921	 */
 922	ld = tty_ldisc_ref_wait(tty);
 923	if (!ld)
 924		return hung_up_tty_read(iocb, to);
 925	i = -EIO;
 926	if (ld->ops->read)
 927		i = iterate_tty_read(ld, tty, file, to);
 
 
 928	tty_ldisc_deref(ld);
 929
 930	if (i > 0)
 931		tty_update_time(&inode->i_atime);
 932
 933	return i;
 934}
 935
 936static void tty_write_unlock(struct tty_struct *tty)
 937{
 938	mutex_unlock(&tty->atomic_write_lock);
 939	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 940}
 941
 942static int tty_write_lock(struct tty_struct *tty, int ndelay)
 943{
 944	if (!mutex_trylock(&tty->atomic_write_lock)) {
 945		if (ndelay)
 946			return -EAGAIN;
 947		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 948			return -ERESTARTSYS;
 949	}
 950	return 0;
 951}
 952
 953/*
 954 * Split writes up in sane blocksizes to avoid
 955 * denial-of-service type attacks
 956 */
 957static inline ssize_t do_tty_write(
 958	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 959	struct tty_struct *tty,
 960	struct file *file,
 961	struct iov_iter *from)
 
 962{
 963	size_t count = iov_iter_count(from);
 964	ssize_t ret, written = 0;
 965	unsigned int chunk;
 966
 967	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 968	if (ret < 0)
 969		return ret;
 970
 971	/*
 972	 * We chunk up writes into a temporary buffer. This
 973	 * simplifies low-level drivers immensely, since they
 974	 * don't have locking issues and user mode accesses.
 975	 *
 976	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 977	 * big chunk-size..
 978	 *
 979	 * The default chunk-size is 2kB, because the NTTY
 980	 * layer has problems with bigger chunks. It will
 981	 * claim to be able to handle more characters than
 982	 * it actually does.
 
 
 
 983	 */
 984	chunk = 2048;
 985	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 986		chunk = 65536;
 987	if (count < chunk)
 988		chunk = count;
 989
 990	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 991	if (tty->write_cnt < chunk) {
 992		unsigned char *buf_chunk;
 993
 994		if (chunk < 1024)
 995			chunk = 1024;
 996
 997		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 998		if (!buf_chunk) {
 999			ret = -ENOMEM;
1000			goto out;
1001		}
1002		kvfree(tty->write_buf);
1003		tty->write_cnt = chunk;
1004		tty->write_buf = buf_chunk;
1005	}
1006
1007	/* Do the write .. */
1008	for (;;) {
1009		size_t size = count;
1010
1011		if (size > chunk)
1012			size = chunk;
1013
1014		ret = -EFAULT;
1015		if (copy_from_iter(tty->write_buf, size, from) != size)
1016			break;
1017
1018		ret = write(tty, file, tty->write_buf, size);
1019		if (ret <= 0)
1020			break;
1021
1022		written += ret;
1023		if (ret > size)
1024			break;
1025
1026		/* FIXME! Have Al check this! */
1027		if (ret != size)
1028			iov_iter_revert(from, size-ret);
1029
1030		count -= ret;
1031		if (!count)
1032			break;
1033		ret = -ERESTARTSYS;
1034		if (signal_pending(current))
1035			break;
1036		cond_resched();
1037	}
1038	if (written) {
1039		tty_update_time(&file_inode(file)->i_mtime);
1040		ret = written;
1041	}
1042out:
1043	tty_write_unlock(tty);
1044	return ret;
1045}
1046
1047/**
1048 * tty_write_message - write a message to a certain tty, not just the console.
1049 * @tty: the destination tty_struct
1050 * @msg: the message to write
1051 *
1052 * This is used for messages that need to be redirected to a specific tty. We
1053 * don't put it into the syslog queue right now maybe in the future if really
1054 * needed.
1055 *
1056 * We must still hold the BTM and test the CLOSING flag for the moment.
1057 */
 
1058void tty_write_message(struct tty_struct *tty, char *msg)
1059{
1060	if (tty) {
1061		mutex_lock(&tty->atomic_write_lock);
1062		tty_lock(tty);
1063		if (tty->ops->write && tty->count > 0)
1064			tty->ops->write(tty, msg, strlen(msg));
1065		tty_unlock(tty);
1066		tty_write_unlock(tty);
1067	}
 
1068}
1069
1070static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071{
1072	struct tty_struct *tty = file_tty(file);
1073	struct tty_ldisc *ld;
1074	ssize_t ret;
1075
1076	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1077		return -EIO;
1078	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1079		return -EIO;
 
1080	/* Short term debug to catch buggy drivers */
1081	if (tty->ops->write_room == NULL)
1082		tty_err(tty, "missing write_room method\n");
1083	ld = tty_ldisc_ref_wait(tty);
1084	if (!ld)
1085		return hung_up_tty_write(iocb, from);
1086	if (!ld->ops->write)
1087		ret = -EIO;
1088	else
1089		ret = do_tty_write(ld->ops->write, tty, file, from);
1090	tty_ldisc_deref(ld);
1091	return ret;
1092}
1093
1094/**
1095 * tty_write		-	write method for tty device file
1096 * @iocb: kernel I/O control block
1097 * @from: iov_iter with data to write
1098 *
1099 * Write data to a tty device via the line discipline.
1100 *
1101 * Locking:
1102 *	Locks the line discipline as required
1103 *	Writes to the tty driver are serialized by the atomic_write_lock
1104 *	and are then processed in chunks to the device. The line
1105 *	discipline write method will not be invoked in parallel for
1106 *	each device.
1107 */
1108static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1109{
1110	return file_tty_write(iocb->ki_filp, iocb, from);
1111}
1112
1113ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1114{
1115	struct file *p = NULL;
1116
1117	spin_lock(&redirect_lock);
1118	if (redirect)
1119		p = get_file(redirect);
1120	spin_unlock(&redirect_lock);
1121
1122	/*
1123	 * We know the redirected tty is just another tty, we can
1124	 * call file_tty_write() directly with that file pointer.
1125	 */
1126	if (p) {
1127		ssize_t res;
1128
1129		res = file_tty_write(p, iocb, iter);
1130		fput(p);
1131		return res;
1132	}
1133	return tty_write(iocb, iter);
1134}
1135
1136/**
1137 * tty_send_xchar	-	send priority character
1138 * @tty: the tty to send to
1139 * @ch: xchar to send
1140 *
1141 * Send a high priority character to the tty even if stopped.
1142 *
1143 * Locking: none for xchar method, write ordering for write method.
1144 */
 
1145int tty_send_xchar(struct tty_struct *tty, char ch)
1146{
1147	bool was_stopped = tty->flow.stopped;
1148
1149	if (tty->ops->send_xchar) {
1150		down_read(&tty->termios_rwsem);
1151		tty->ops->send_xchar(tty, ch);
1152		up_read(&tty->termios_rwsem);
1153		return 0;
1154	}
1155
1156	if (tty_write_lock(tty, 0) < 0)
1157		return -ERESTARTSYS;
1158
1159	down_read(&tty->termios_rwsem);
1160	if (was_stopped)
1161		start_tty(tty);
1162	tty->ops->write(tty, &ch, 1);
1163	if (was_stopped)
1164		stop_tty(tty);
1165	up_read(&tty->termios_rwsem);
1166	tty_write_unlock(tty);
1167	return 0;
1168}
1169
 
 
1170/**
1171 * pty_line_name	-	generate name for a pty
1172 * @driver: the tty driver in use
1173 * @index: the minor number
1174 * @p: output buffer of at least 6 bytes
1175 *
1176 * Generate a name from a @driver reference and write it to the output buffer
1177 * @p.
1178 *
1179 * Locking: None
1180 */
1181static void pty_line_name(struct tty_driver *driver, int index, char *p)
1182{
1183	static const char ptychar[] = "pqrstuvwxyzabcde";
1184	int i = index + driver->name_base;
1185	/* ->name is initialized to "ttyp", but "tty" is expected */
1186	sprintf(p, "%s%c%x",
1187		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1188		ptychar[i >> 4 & 0xf], i & 0xf);
1189}
1190
1191/**
1192 * tty_line_name	-	generate name for a tty
1193 * @driver: the tty driver in use
1194 * @index: the minor number
1195 * @p: output buffer of at least 7 bytes
1196 *
1197 * Generate a name from a @driver reference and write it to the output buffer
1198 * @p.
1199 *
1200 * Locking: None
1201 */
1202static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1203{
1204	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1205		return sprintf(p, "%s", driver->name);
1206	else
1207		return sprintf(p, "%s%d", driver->name,
1208			       index + driver->name_base);
1209}
1210
1211/**
1212 * tty_driver_lookup_tty() - find an existing tty, if any
1213 * @driver: the driver for the tty
1214 * @file: file object
1215 * @idx: the minor number
1216 *
1217 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1218 * driver lookup() method returns an error.
1219 *
1220 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1221 */
1222static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1223		struct file *file, int idx)
1224{
1225	struct tty_struct *tty;
1226
1227	if (driver->ops->lookup)
1228		if (!file)
1229			tty = ERR_PTR(-EIO);
1230		else
1231			tty = driver->ops->lookup(driver, file, idx);
1232	else
1233		tty = driver->ttys[idx];
1234
1235	if (!IS_ERR(tty))
1236		tty_kref_get(tty);
1237	return tty;
1238}
1239
1240/**
1241 * tty_init_termios	-  helper for termios setup
1242 * @tty: the tty to set up
1243 *
1244 * Initialise the termios structure for this tty. This runs under the
1245 * %tty_mutex currently so we can be relaxed about ordering.
1246 */
 
1247void tty_init_termios(struct tty_struct *tty)
1248{
1249	struct ktermios *tp;
1250	int idx = tty->index;
1251
1252	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1253		tty->termios = tty->driver->init_termios;
1254	else {
1255		/* Check for lazy saved data */
1256		tp = tty->driver->termios[idx];
1257		if (tp != NULL) {
1258			tty->termios = *tp;
1259			tty->termios.c_line  = tty->driver->init_termios.c_line;
1260		} else
1261			tty->termios = tty->driver->init_termios;
1262	}
1263	/* Compatibility until drivers always set this */
1264	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1265	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1266}
1267EXPORT_SYMBOL_GPL(tty_init_termios);
1268
1269/**
1270 * tty_standard_install - usual tty->ops->install
1271 * @driver: the driver for the tty
1272 * @tty: the tty
1273 *
1274 * If the @driver overrides @tty->ops->install, it still can call this function
1275 * to perform the standard install operations.
1276 */
1277int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1278{
1279	tty_init_termios(tty);
1280	tty_driver_kref_get(driver);
1281	tty->count++;
1282	driver->ttys[tty->index] = tty;
1283	return 0;
1284}
1285EXPORT_SYMBOL_GPL(tty_standard_install);
1286
1287/**
1288 * tty_driver_install_tty() - install a tty entry in the driver
1289 * @driver: the driver for the tty
1290 * @tty: the tty
1291 *
1292 * Install a tty object into the driver tables. The @tty->index field will be
1293 * set by the time this is called. This method is responsible for ensuring any
1294 * need additional structures are allocated and configured.
 
1295 *
1296 * Locking: tty_mutex for now
1297 */
1298static int tty_driver_install_tty(struct tty_driver *driver,
1299						struct tty_struct *tty)
1300{
1301	return driver->ops->install ? driver->ops->install(driver, tty) :
1302		tty_standard_install(driver, tty);
1303}
1304
1305/**
1306 * tty_driver_remove_tty() - remove a tty from the driver tables
1307 * @driver: the driver for the tty
1308 * @tty: tty to remove
1309 *
1310 * Remove a tty object from the driver tables. The tty->index field will be set
1311 * by the time this is called.
1312 *
1313 * Locking: tty_mutex for now
1314 */
1315static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1316{
1317	if (driver->ops->remove)
1318		driver->ops->remove(driver, tty);
1319	else
1320		driver->ttys[tty->index] = NULL;
1321}
1322
1323/**
1324 * tty_reopen()	- fast re-open of an open tty
1325 * @tty: the tty to open
1326 *
1327 * Re-opens on master ptys are not allowed and return -%EIO.
 
1328 *
1329 * Locking: Caller must hold tty_lock
1330 * Return: 0 on success, -errno on error.
1331 */
1332static int tty_reopen(struct tty_struct *tty)
1333{
1334	struct tty_driver *driver = tty->driver;
1335	struct tty_ldisc *ld;
1336	int retval = 0;
1337
1338	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1339	    driver->subtype == PTY_TYPE_MASTER)
1340		return -EIO;
1341
1342	if (!tty->count)
1343		return -EAGAIN;
1344
1345	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1346		return -EBUSY;
1347
1348	ld = tty_ldisc_ref_wait(tty);
1349	if (ld) {
1350		tty_ldisc_deref(ld);
1351	} else {
1352		retval = tty_ldisc_lock(tty, 5 * HZ);
1353		if (retval)
1354			return retval;
1355
1356		if (!tty->ldisc)
1357			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1358		tty_ldisc_unlock(tty);
1359	}
1360
1361	if (retval == 0)
1362		tty->count++;
1363
1364	return retval;
1365}
1366
1367/**
1368 * tty_init_dev		-	initialise a tty device
1369 * @driver: tty driver we are opening a device on
1370 * @idx: device index
1371 *
1372 * Prepare a tty device. This may not be a "new" clean device but could also be
1373 * an active device. The pty drivers require special handling because of this.
1374 *
1375 * Locking:
1376 *	The function is called under the tty_mutex, which protects us from the
1377 *	tty struct or driver itself going away.
1378 *
1379 * On exit the tty device has the line discipline attached and a reference
1380 * count of 1. If a pair was created for pty/tty use and the other was a pty
1381 * master then it too has a reference count of 1.
1382 *
1383 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1384 * open. The new code protects the open with a mutex, so it's really quite
1385 * straightforward. The mutex locking can probably be relaxed for the (most
1386 * common) case of reopening a tty.
1387 *
1388 * Return: new tty structure
1389 */
 
1390struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1391{
1392	struct tty_struct *tty;
1393	int retval;
1394
1395	/*
1396	 * First time open is complex, especially for PTY devices.
1397	 * This code guarantees that either everything succeeds and the
1398	 * TTY is ready for operation, or else the table slots are vacated
1399	 * and the allocated memory released.  (Except that the termios
1400	 * may be retained.)
1401	 */
1402
1403	if (!try_module_get(driver->owner))
1404		return ERR_PTR(-ENODEV);
1405
1406	tty = alloc_tty_struct(driver, idx);
1407	if (!tty) {
1408		retval = -ENOMEM;
1409		goto err_module_put;
1410	}
1411
1412	tty_lock(tty);
1413	retval = tty_driver_install_tty(driver, tty);
1414	if (retval < 0)
1415		goto err_free_tty;
1416
1417	if (!tty->port)
1418		tty->port = driver->ports[idx];
1419
1420	if (WARN_RATELIMIT(!tty->port,
1421			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1422			__func__, tty->driver->name)) {
1423		retval = -EINVAL;
1424		goto err_release_lock;
1425	}
1426
1427	retval = tty_ldisc_lock(tty, 5 * HZ);
1428	if (retval)
1429		goto err_release_lock;
1430	tty->port->itty = tty;
1431
1432	/*
1433	 * Structures all installed ... call the ldisc open routines.
1434	 * If we fail here just call release_tty to clean up.  No need
1435	 * to decrement the use counts, as release_tty doesn't care.
1436	 */
1437	retval = tty_ldisc_setup(tty, tty->link);
1438	if (retval)
1439		goto err_release_tty;
1440	tty_ldisc_unlock(tty);
1441	/* Return the tty locked so that it cannot vanish under the caller */
1442	return tty;
1443
1444err_free_tty:
1445	tty_unlock(tty);
1446	free_tty_struct(tty);
1447err_module_put:
1448	module_put(driver->owner);
1449	return ERR_PTR(retval);
1450
1451	/* call the tty release_tty routine to clean out this slot */
1452err_release_tty:
1453	tty_ldisc_unlock(tty);
1454	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1455			     retval, idx);
1456err_release_lock:
1457	tty_unlock(tty);
1458	release_tty(tty, idx);
1459	return ERR_PTR(retval);
1460}
1461
1462/**
1463 * tty_save_termios() - save tty termios data in driver table
1464 * @tty: tty whose termios data to save
1465 *
1466 * Locking: Caller guarantees serialisation with tty_init_termios().
1467 */
1468void tty_save_termios(struct tty_struct *tty)
1469{
1470	struct ktermios *tp;
1471	int idx = tty->index;
1472
1473	/* If the port is going to reset then it has no termios to save */
1474	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1475		return;
1476
1477	/* Stash the termios data */
1478	tp = tty->driver->termios[idx];
1479	if (tp == NULL) {
1480		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1481		if (tp == NULL)
1482			return;
1483		tty->driver->termios[idx] = tp;
1484	}
1485	*tp = tty->termios;
1486}
1487EXPORT_SYMBOL_GPL(tty_save_termios);
1488
1489/**
1490 * tty_flush_works	-	flush all works of a tty/pty pair
1491 * @tty: tty device to flush works for (or either end of a pty pair)
1492 *
1493 * Sync flush all works belonging to @tty (and the 'other' tty).
1494 */
1495static void tty_flush_works(struct tty_struct *tty)
1496{
1497	flush_work(&tty->SAK_work);
1498	flush_work(&tty->hangup_work);
1499	if (tty->link) {
1500		flush_work(&tty->link->SAK_work);
1501		flush_work(&tty->link->hangup_work);
1502	}
1503}
1504
1505/**
1506 * release_one_tty	-	release tty structure memory
1507 * @work: work of tty we are obliterating
1508 *
1509 * Releases memory associated with a tty structure, and clears out the
1510 * driver table slots. This function is called when a device is no longer
1511 * in use. It also gets called when setup of a device fails.
1512 *
1513 * Locking:
1514 *	takes the file list lock internally when working on the list of ttys
1515 *	that the driver keeps.
1516 *
1517 * This method gets called from a work queue so that the driver private
1518 * cleanup ops can sleep (needed for USB at least)
1519 */
1520static void release_one_tty(struct work_struct *work)
1521{
1522	struct tty_struct *tty =
1523		container_of(work, struct tty_struct, hangup_work);
1524	struct tty_driver *driver = tty->driver;
1525	struct module *owner = driver->owner;
1526
1527	if (tty->ops->cleanup)
1528		tty->ops->cleanup(tty);
1529
 
1530	tty_driver_kref_put(driver);
1531	module_put(owner);
1532
1533	spin_lock(&tty->files_lock);
1534	list_del_init(&tty->tty_files);
1535	spin_unlock(&tty->files_lock);
1536
1537	put_pid(tty->ctrl.pgrp);
1538	put_pid(tty->ctrl.session);
1539	free_tty_struct(tty);
1540}
1541
1542static void queue_release_one_tty(struct kref *kref)
1543{
1544	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1545
1546	/* The hangup queue is now free so we can reuse it rather than
1547	 *  waste a chunk of memory for each port.
1548	 */
1549	INIT_WORK(&tty->hangup_work, release_one_tty);
1550	schedule_work(&tty->hangup_work);
1551}
1552
1553/**
1554 * tty_kref_put		-	release a tty kref
1555 * @tty: tty device
1556 *
1557 * Release a reference to the @tty device and if need be let the kref layer
1558 * destruct the object for us.
1559 */
 
1560void tty_kref_put(struct tty_struct *tty)
1561{
1562	if (tty)
1563		kref_put(&tty->kref, queue_release_one_tty);
1564}
1565EXPORT_SYMBOL(tty_kref_put);
1566
1567/**
1568 * release_tty		-	release tty structure memory
1569 * @tty: tty device release
1570 * @idx: index of the tty device release
1571 *
1572 * Release both @tty and a possible linked partner (think pty pair),
1573 * and decrement the refcount of the backing module.
 
 
 
 
 
1574 *
1575 * Locking:
1576 *	tty_mutex
1577 *	takes the file list lock internally when working on the list of ttys
1578 *	that the driver keeps.
1579 */
1580static void release_tty(struct tty_struct *tty, int idx)
1581{
1582	/* This should always be true but check for the moment */
1583	WARN_ON(tty->index != idx);
1584	WARN_ON(!mutex_is_locked(&tty_mutex));
1585	if (tty->ops->shutdown)
1586		tty->ops->shutdown(tty);
1587	tty_save_termios(tty);
1588	tty_driver_remove_tty(tty->driver, tty);
1589	if (tty->port)
1590		tty->port->itty = NULL;
1591	if (tty->link)
1592		tty->link->port->itty = NULL;
1593	if (tty->port)
1594		tty_buffer_cancel_work(tty->port);
1595	if (tty->link)
1596		tty_buffer_cancel_work(tty->link->port);
1597
1598	tty_kref_put(tty->link);
1599	tty_kref_put(tty);
1600}
1601
1602/**
1603 * tty_release_checks - check a tty before real release
1604 * @tty: tty to check
1605 * @idx: index of the tty
 
1606 *
1607 * Performs some paranoid checking before true release of the @tty. This is a
1608 * no-op unless %TTY_PARANOIA_CHECK is defined.
1609 */
1610static int tty_release_checks(struct tty_struct *tty, int idx)
1611{
1612#ifdef TTY_PARANOIA_CHECK
1613	if (idx < 0 || idx >= tty->driver->num) {
1614		tty_debug(tty, "bad idx %d\n", idx);
1615		return -1;
1616	}
1617
1618	/* not much to check for devpts */
1619	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1620		return 0;
1621
1622	if (tty != tty->driver->ttys[idx]) {
1623		tty_debug(tty, "bad driver table[%d] = %p\n",
1624			  idx, tty->driver->ttys[idx]);
1625		return -1;
1626	}
1627	if (tty->driver->other) {
1628		struct tty_struct *o_tty = tty->link;
1629
1630		if (o_tty != tty->driver->other->ttys[idx]) {
1631			tty_debug(tty, "bad other table[%d] = %p\n",
1632				  idx, tty->driver->other->ttys[idx]);
1633			return -1;
1634		}
1635		if (o_tty->link != tty) {
1636			tty_debug(tty, "bad link = %p\n", o_tty->link);
1637			return -1;
1638		}
1639	}
1640#endif
1641	return 0;
1642}
1643
1644/**
1645 * tty_kclose      -       closes tty opened by tty_kopen
1646 * @tty: tty device
1647 *
1648 * Performs the final steps to release and free a tty device. It is the same as
1649 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1650 * @tty->port.
1651 */
1652void tty_kclose(struct tty_struct *tty)
1653{
1654	/*
1655	 * Ask the line discipline code to release its structures
1656	 */
1657	tty_ldisc_release(tty);
1658
1659	/* Wait for pending work before tty destruction commences */
1660	tty_flush_works(tty);
1661
1662	tty_debug_hangup(tty, "freeing structure\n");
1663	/*
1664	 * The release_tty function takes care of the details of clearing
1665	 * the slots and preserving the termios structure.
1666	 */
1667	mutex_lock(&tty_mutex);
1668	tty_port_set_kopened(tty->port, 0);
1669	release_tty(tty, tty->index);
1670	mutex_unlock(&tty_mutex);
1671}
1672EXPORT_SYMBOL_GPL(tty_kclose);
1673
1674/**
1675 * tty_release_struct	-	release a tty struct
1676 * @tty: tty device
1677 * @idx: index of the tty
1678 *
1679 * Performs the final steps to release and free a tty device. It is roughly the
1680 * reverse of tty_init_dev().
1681 */
1682void tty_release_struct(struct tty_struct *tty, int idx)
1683{
1684	/*
1685	 * Ask the line discipline code to release its structures
1686	 */
1687	tty_ldisc_release(tty);
1688
1689	/* Wait for pending work before tty destruction commmences */
1690	tty_flush_works(tty);
1691
1692	tty_debug_hangup(tty, "freeing structure\n");
1693	/*
1694	 * The release_tty function takes care of the details of clearing
1695	 * the slots and preserving the termios structure.
1696	 */
1697	mutex_lock(&tty_mutex);
1698	release_tty(tty, idx);
1699	mutex_unlock(&tty_mutex);
1700}
1701EXPORT_SYMBOL_GPL(tty_release_struct);
1702
1703/**
1704 * tty_release		-	vfs callback for close
1705 * @inode: inode of tty
1706 * @filp: file pointer for handle to tty
1707 *
1708 * Called the last time each file handle is closed that references this tty.
1709 * There may however be several such references.
1710 *
1711 * Locking:
1712 *	Takes BKL. See tty_release_dev().
1713 *
1714 * Even releasing the tty structures is a tricky business. We have to be very
1715 * careful that the structures are all released at the same time, as interrupts
1716 * might otherwise get the wrong pointers.
1717 *
1718 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1719 * lead to double frees or releasing memory still in use.
1720 */
 
1721int tty_release(struct inode *inode, struct file *filp)
1722{
1723	struct tty_struct *tty = file_tty(filp);
1724	struct tty_struct *o_tty = NULL;
1725	int	do_sleep, final;
1726	int	idx;
1727	long	timeout = 0;
1728	int	once = 1;
1729
1730	if (tty_paranoia_check(tty, inode, __func__))
1731		return 0;
1732
1733	tty_lock(tty);
1734	check_tty_count(tty, __func__);
1735
1736	__tty_fasync(-1, filp, 0);
1737
1738	idx = tty->index;
1739	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1740	    tty->driver->subtype == PTY_TYPE_MASTER)
1741		o_tty = tty->link;
1742
1743	if (tty_release_checks(tty, idx)) {
1744		tty_unlock(tty);
1745		return 0;
1746	}
1747
1748	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1749
1750	if (tty->ops->close)
1751		tty->ops->close(tty, filp);
1752
1753	/* If tty is pty master, lock the slave pty (stable lock order) */
1754	tty_lock_slave(o_tty);
1755
1756	/*
1757	 * Sanity check: if tty->count is going to zero, there shouldn't be
1758	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1759	 * wait queues and kick everyone out _before_ actually starting to
1760	 * close.  This ensures that we won't block while releasing the tty
1761	 * structure.
1762	 *
1763	 * The test for the o_tty closing is necessary, since the master and
1764	 * slave sides may close in any order.  If the slave side closes out
1765	 * first, its count will be one, since the master side holds an open.
1766	 * Thus this test wouldn't be triggered at the time the slave closed,
1767	 * so we do it now.
1768	 */
1769	while (1) {
1770		do_sleep = 0;
1771
1772		if (tty->count <= 1) {
1773			if (waitqueue_active(&tty->read_wait)) {
1774				wake_up_poll(&tty->read_wait, EPOLLIN);
1775				do_sleep++;
1776			}
1777			if (waitqueue_active(&tty->write_wait)) {
1778				wake_up_poll(&tty->write_wait, EPOLLOUT);
1779				do_sleep++;
1780			}
1781		}
1782		if (o_tty && o_tty->count <= 1) {
1783			if (waitqueue_active(&o_tty->read_wait)) {
1784				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1785				do_sleep++;
1786			}
1787			if (waitqueue_active(&o_tty->write_wait)) {
1788				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1789				do_sleep++;
1790			}
1791		}
1792		if (!do_sleep)
1793			break;
1794
1795		if (once) {
1796			once = 0;
1797			tty_warn(tty, "read/write wait queue active!\n");
1798		}
1799		schedule_timeout_killable(timeout);
1800		if (timeout < 120 * HZ)
1801			timeout = 2 * timeout + 1;
1802		else
1803			timeout = MAX_SCHEDULE_TIMEOUT;
1804	}
1805
1806	if (o_tty) {
1807		if (--o_tty->count < 0) {
1808			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1809			o_tty->count = 0;
1810		}
1811	}
1812	if (--tty->count < 0) {
1813		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1814		tty->count = 0;
1815	}
1816
1817	/*
1818	 * We've decremented tty->count, so we need to remove this file
1819	 * descriptor off the tty->tty_files list; this serves two
1820	 * purposes:
1821	 *  - check_tty_count sees the correct number of file descriptors
1822	 *    associated with this tty.
1823	 *  - do_tty_hangup no longer sees this file descriptor as
1824	 *    something that needs to be handled for hangups.
1825	 */
1826	tty_del_file(filp);
1827
1828	/*
1829	 * Perform some housekeeping before deciding whether to return.
1830	 *
1831	 * If _either_ side is closing, make sure there aren't any
1832	 * processes that still think tty or o_tty is their controlling
1833	 * tty.
1834	 */
1835	if (!tty->count) {
1836		read_lock(&tasklist_lock);
1837		session_clear_tty(tty->ctrl.session);
1838		if (o_tty)
1839			session_clear_tty(o_tty->ctrl.session);
1840		read_unlock(&tasklist_lock);
1841	}
1842
1843	/* check whether both sides are closing ... */
1844	final = !tty->count && !(o_tty && o_tty->count);
1845
1846	tty_unlock_slave(o_tty);
1847	tty_unlock(tty);
1848
1849	/* At this point, the tty->count == 0 should ensure a dead tty
1850	 * cannot be re-opened by a racing opener.
1851	 */
1852
1853	if (!final)
1854		return 0;
1855
1856	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1857
1858	tty_release_struct(tty, idx);
1859	return 0;
1860}
1861
1862/**
1863 * tty_open_current_tty - get locked tty of current task
1864 * @device: device number
1865 * @filp: file pointer to tty
1866 * @return: locked tty of the current task iff @device is /dev/tty
1867 *
1868 * Performs a re-open of the current task's controlling tty.
1869 *
1870 * We cannot return driver and index like for the other nodes because devpts
1871 * will not work then. It expects inodes to be from devpts FS.
1872 */
1873static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1874{
1875	struct tty_struct *tty;
1876	int retval;
1877
1878	if (device != MKDEV(TTYAUX_MAJOR, 0))
1879		return NULL;
1880
1881	tty = get_current_tty();
1882	if (!tty)
1883		return ERR_PTR(-ENXIO);
1884
1885	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1886	/* noctty = 1; */
1887	tty_lock(tty);
1888	tty_kref_put(tty);	/* safe to drop the kref now */
1889
1890	retval = tty_reopen(tty);
1891	if (retval < 0) {
1892		tty_unlock(tty);
1893		tty = ERR_PTR(retval);
1894	}
1895	return tty;
1896}
1897
1898/**
1899 * tty_lookup_driver - lookup a tty driver for a given device file
1900 * @device: device number
1901 * @filp: file pointer to tty
1902 * @index: index for the device in the @return driver
 
 
1903 *
1904 * If returned value is not erroneous, the caller is responsible to decrement
1905 * the refcount by tty_driver_kref_put().
1906 *
1907 * Locking: %tty_mutex protects get_tty_driver()
1908 *
1909 * Return: driver for this inode (with increased refcount)
1910 */
1911static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1912		int *index)
1913{
1914	struct tty_driver *driver = NULL;
1915
1916	switch (device) {
1917#ifdef CONFIG_VT
1918	case MKDEV(TTY_MAJOR, 0): {
1919		extern struct tty_driver *console_driver;
1920
1921		driver = tty_driver_kref_get(console_driver);
1922		*index = fg_console;
1923		break;
1924	}
1925#endif
1926	case MKDEV(TTYAUX_MAJOR, 1): {
1927		struct tty_driver *console_driver = console_device(index);
1928
1929		if (console_driver) {
1930			driver = tty_driver_kref_get(console_driver);
1931			if (driver && filp) {
1932				/* Don't let /dev/console block */
1933				filp->f_flags |= O_NONBLOCK;
1934				break;
1935			}
1936		}
1937		if (driver)
1938			tty_driver_kref_put(driver);
1939		return ERR_PTR(-ENODEV);
1940	}
1941	default:
1942		driver = get_tty_driver(device, index);
1943		if (!driver)
1944			return ERR_PTR(-ENODEV);
1945		break;
1946	}
1947	return driver;
1948}
1949
1950static struct tty_struct *tty_kopen(dev_t device, int shared)
1951{
1952	struct tty_struct *tty;
1953	struct tty_driver *driver;
1954	int index = -1;
1955
1956	mutex_lock(&tty_mutex);
1957	driver = tty_lookup_driver(device, NULL, &index);
1958	if (IS_ERR(driver)) {
1959		mutex_unlock(&tty_mutex);
1960		return ERR_CAST(driver);
1961	}
1962
1963	/* check whether we're reopening an existing tty */
1964	tty = tty_driver_lookup_tty(driver, NULL, index);
1965	if (IS_ERR(tty) || shared)
1966		goto out;
1967
1968	if (tty) {
1969		/* drop kref from tty_driver_lookup_tty() */
1970		tty_kref_put(tty);
1971		tty = ERR_PTR(-EBUSY);
1972	} else { /* tty_init_dev returns tty with the tty_lock held */
1973		tty = tty_init_dev(driver, index);
1974		if (IS_ERR(tty))
1975			goto out;
1976		tty_port_set_kopened(tty->port, 1);
1977	}
1978out:
1979	mutex_unlock(&tty_mutex);
1980	tty_driver_kref_put(driver);
1981	return tty;
1982}
1983
1984/**
1985 * tty_kopen_exclusive	-	open a tty device for kernel
1986 * @device: dev_t of device to open
1987 *
1988 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1989 * it's not already opened and performs the first-time tty initialization.
1990 *
1991 * Claims the global %tty_mutex to serialize:
1992 *  * concurrent first-time tty initialization
1993 *  * concurrent tty driver removal w/ lookup
1994 *  * concurrent tty removal from driver table
1995 *
1996 * Return: the locked initialized &tty_struct
1997 */
1998struct tty_struct *tty_kopen_exclusive(dev_t device)
1999{
2000	return tty_kopen(device, 0);
2001}
2002EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2003
2004/**
2005 * tty_kopen_shared	-	open a tty device for shared in-kernel use
2006 * @device: dev_t of device to open
2007 *
2008 * Opens an already existing tty for in-kernel use. Compared to
2009 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2010 *
2011 * Locking: identical to tty_kopen() above.
2012 */
2013struct tty_struct *tty_kopen_shared(dev_t device)
2014{
2015	return tty_kopen(device, 1);
2016}
2017EXPORT_SYMBOL_GPL(tty_kopen_shared);
2018
2019/**
2020 * tty_open_by_driver	-	open a tty device
2021 * @device: dev_t of device to open
2022 * @filp: file pointer to tty
2023 *
2024 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2025 * first-time tty initialization.
2026 *
2027 *
2028 * Claims the global tty_mutex to serialize:
2029 *  * concurrent first-time tty initialization
2030 *  * concurrent tty driver removal w/ lookup
2031 *  * concurrent tty removal from driver table
2032 *
2033 * Return: the locked initialized or re-opened &tty_struct
2034 */
2035static struct tty_struct *tty_open_by_driver(dev_t device,
2036					     struct file *filp)
2037{
2038	struct tty_struct *tty;
2039	struct tty_driver *driver = NULL;
2040	int index = -1;
2041	int retval;
2042
2043	mutex_lock(&tty_mutex);
2044	driver = tty_lookup_driver(device, filp, &index);
2045	if (IS_ERR(driver)) {
2046		mutex_unlock(&tty_mutex);
2047		return ERR_CAST(driver);
2048	}
2049
2050	/* check whether we're reopening an existing tty */
2051	tty = tty_driver_lookup_tty(driver, filp, index);
2052	if (IS_ERR(tty)) {
2053		mutex_unlock(&tty_mutex);
2054		goto out;
2055	}
2056
2057	if (tty) {
2058		if (tty_port_kopened(tty->port)) {
2059			tty_kref_put(tty);
2060			mutex_unlock(&tty_mutex);
2061			tty = ERR_PTR(-EBUSY);
2062			goto out;
2063		}
2064		mutex_unlock(&tty_mutex);
2065		retval = tty_lock_interruptible(tty);
2066		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2067		if (retval) {
2068			if (retval == -EINTR)
2069				retval = -ERESTARTSYS;
2070			tty = ERR_PTR(retval);
2071			goto out;
2072		}
2073		retval = tty_reopen(tty);
2074		if (retval < 0) {
2075			tty_unlock(tty);
2076			tty = ERR_PTR(retval);
2077		}
2078	} else { /* Returns with the tty_lock held for now */
2079		tty = tty_init_dev(driver, index);
2080		mutex_unlock(&tty_mutex);
2081	}
2082out:
2083	tty_driver_kref_put(driver);
2084	return tty;
2085}
2086
2087/**
2088 * tty_open	-	open a tty device
2089 * @inode: inode of device file
2090 * @filp: file pointer to tty
2091 *
2092 * tty_open() and tty_release() keep up the tty count that contains the number
2093 * of opens done on a tty. We cannot use the inode-count, as different inodes
2094 * might point to the same tty.
2095 *
2096 * Open-counting is needed for pty masters, as well as for keeping track of
2097 * serial lines: DTR is dropped when the last close happens.
2098 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2099 *
2100 * The termios state of a pty is reset on the first open so that settings don't
2101 * persist across reuse.
2102 *
2103 * Locking:
2104 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2105 *  * @tty->count should protect the rest.
2106 *  * ->siglock protects ->signal/->sighand
2107 *
2108 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
 
2109 */
 
2110static int tty_open(struct inode *inode, struct file *filp)
2111{
2112	struct tty_struct *tty;
2113	int noctty, retval;
2114	dev_t device = inode->i_rdev;
2115	unsigned saved_flags = filp->f_flags;
2116
2117	nonseekable_open(inode, filp);
2118
2119retry_open:
2120	retval = tty_alloc_file(filp);
2121	if (retval)
2122		return -ENOMEM;
2123
2124	tty = tty_open_current_tty(device, filp);
2125	if (!tty)
2126		tty = tty_open_by_driver(device, filp);
2127
2128	if (IS_ERR(tty)) {
2129		tty_free_file(filp);
2130		retval = PTR_ERR(tty);
2131		if (retval != -EAGAIN || signal_pending(current))
2132			return retval;
2133		schedule();
2134		goto retry_open;
2135	}
2136
2137	tty_add_file(tty, filp);
2138
2139	check_tty_count(tty, __func__);
2140	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2141
2142	if (tty->ops->open)
2143		retval = tty->ops->open(tty, filp);
2144	else
2145		retval = -ENODEV;
2146	filp->f_flags = saved_flags;
2147
2148	if (retval) {
2149		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2150
2151		tty_unlock(tty); /* need to call tty_release without BTM */
2152		tty_release(inode, filp);
2153		if (retval != -ERESTARTSYS)
2154			return retval;
2155
2156		if (signal_pending(current))
2157			return retval;
2158
2159		schedule();
2160		/*
2161		 * Need to reset f_op in case a hangup happened.
2162		 */
2163		if (tty_hung_up_p(filp))
2164			filp->f_op = &tty_fops;
2165		goto retry_open;
2166	}
2167	clear_bit(TTY_HUPPED, &tty->flags);
2168
 
 
 
2169	noctty = (filp->f_flags & O_NOCTTY) ||
2170		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2171		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2172		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2173		  tty->driver->subtype == PTY_TYPE_MASTER);
2174	if (!noctty)
2175		tty_open_proc_set_tty(filp, tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2176	tty_unlock(tty);
2177	return 0;
2178}
2179
2180
 
2181/**
2182 * tty_poll	-	check tty status
2183 * @filp: file being polled
2184 * @wait: poll wait structures to update
2185 *
2186 * Call the line discipline polling method to obtain the poll status of the
2187 * device.
2188 *
2189 * Locking: locks called line discipline but ldisc poll method may be
2190 * re-entered freely by other callers.
2191 */
2192static __poll_t tty_poll(struct file *filp, poll_table *wait)
 
2193{
2194	struct tty_struct *tty = file_tty(filp);
2195	struct tty_ldisc *ld;
2196	__poll_t ret = 0;
2197
2198	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2199		return 0;
2200
2201	ld = tty_ldisc_ref_wait(tty);
2202	if (!ld)
2203		return hung_up_tty_poll(filp, wait);
2204	if (ld->ops->poll)
2205		ret = ld->ops->poll(tty, filp, wait);
2206	tty_ldisc_deref(ld);
2207	return ret;
2208}
2209
2210static int __tty_fasync(int fd, struct file *filp, int on)
2211{
2212	struct tty_struct *tty = file_tty(filp);
2213	unsigned long flags;
2214	int retval = 0;
2215
2216	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2217		goto out;
2218
2219	retval = fasync_helper(fd, filp, on, &tty->fasync);
2220	if (retval <= 0)
2221		goto out;
2222
2223	if (on) {
2224		enum pid_type type;
2225		struct pid *pid;
2226
2227		spin_lock_irqsave(&tty->ctrl.lock, flags);
2228		if (tty->ctrl.pgrp) {
2229			pid = tty->ctrl.pgrp;
2230			type = PIDTYPE_PGID;
2231		} else {
2232			pid = task_pid(current);
2233			type = PIDTYPE_TGID;
2234		}
2235		get_pid(pid);
2236		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2237		__f_setown(filp, pid, type, 0);
2238		put_pid(pid);
2239		retval = 0;
2240	}
2241out:
2242	return retval;
2243}
2244
2245static int tty_fasync(int fd, struct file *filp, int on)
2246{
2247	struct tty_struct *tty = file_tty(filp);
2248	int retval = -ENOTTY;
2249
2250	tty_lock(tty);
2251	if (!tty_hung_up_p(filp))
2252		retval = __tty_fasync(fd, filp, on);
2253	tty_unlock(tty);
2254
2255	return retval;
2256}
2257
2258static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2259/**
2260 * tiocsti		-	fake input character
2261 * @tty: tty to fake input into
2262 * @p: pointer to character
2263 *
2264 * Fake input to a tty device. Does the necessary locking and input management.
 
2265 *
2266 * FIXME: does not honour flow control ??
2267 *
2268 * Locking:
2269 *  * Called functions take tty_ldiscs_lock
2270 *  * current->signal->tty check is safe without locks
 
 
2271 */
 
2272static int tiocsti(struct tty_struct *tty, char __user *p)
2273{
2274	char ch, mbz = 0;
2275	struct tty_ldisc *ld;
2276
2277	if (!tty_legacy_tiocsti)
2278		return -EIO;
2279
2280	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2281		return -EPERM;
2282	if (get_user(ch, p))
2283		return -EFAULT;
2284	tty_audit_tiocsti(tty, ch);
2285	ld = tty_ldisc_ref_wait(tty);
2286	if (!ld)
2287		return -EIO;
2288	tty_buffer_lock_exclusive(tty->port);
2289	if (ld->ops->receive_buf)
2290		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2291	tty_buffer_unlock_exclusive(tty->port);
2292	tty_ldisc_deref(ld);
2293	return 0;
2294}
2295
2296/**
2297 * tiocgwinsz		-	implement window query ioctl
2298 * @tty: tty
2299 * @arg: user buffer for result
2300 *
2301 * Copies the kernel idea of the window size into the user buffer.
2302 *
2303 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2304 * consistent.
2305 */
 
2306static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2307{
2308	int err;
2309
2310	mutex_lock(&tty->winsize_mutex);
2311	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2312	mutex_unlock(&tty->winsize_mutex);
2313
2314	return err ? -EFAULT : 0;
2315}
2316
2317/**
2318 * tty_do_resize	-	resize event
2319 * @tty: tty being resized
2320 * @ws: new dimensions
 
2321 *
2322 * Update the termios variables and send the necessary signals to peform a
2323 * terminal resize correctly.
2324 */
 
2325int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2326{
2327	struct pid *pgrp;
2328
2329	/* Lock the tty */
2330	mutex_lock(&tty->winsize_mutex);
2331	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2332		goto done;
2333
2334	/* Signal the foreground process group */
2335	pgrp = tty_get_pgrp(tty);
2336	if (pgrp)
2337		kill_pgrp(pgrp, SIGWINCH, 1);
2338	put_pid(pgrp);
2339
2340	tty->winsize = *ws;
2341done:
2342	mutex_unlock(&tty->winsize_mutex);
2343	return 0;
2344}
2345EXPORT_SYMBOL(tty_do_resize);
2346
2347/**
2348 * tiocswinsz		-	implement window size set ioctl
2349 * @tty: tty side of tty
2350 * @arg: user buffer for result
2351 *
2352 * Copies the user idea of the window size to the kernel. Traditionally this is
2353 * just advisory information but for the Linux console it actually has driver
2354 * level meaning and triggers a VC resize.
2355 *
2356 * Locking:
2357 *	Driver dependent. The default do_resize method takes the tty termios
2358 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2359 *	default method.
2360 */
 
2361static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2362{
2363	struct winsize tmp_ws;
2364
2365	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2366		return -EFAULT;
2367
2368	if (tty->ops->resize)
2369		return tty->ops->resize(tty, &tmp_ws);
2370	else
2371		return tty_do_resize(tty, &tmp_ws);
2372}
2373
2374/**
2375 * tioccons	-	allow admin to move logical console
2376 * @file: the file to become console
2377 *
2378 * Allow the administrator to move the redirected console device.
2379 *
2380 * Locking: uses redirect_lock to guard the redirect information
2381 */
 
2382static int tioccons(struct file *file)
2383{
2384	if (!capable(CAP_SYS_ADMIN))
2385		return -EPERM;
2386	if (file->f_op->write_iter == redirected_tty_write) {
2387		struct file *f;
2388
2389		spin_lock(&redirect_lock);
2390		f = redirect;
2391		redirect = NULL;
2392		spin_unlock(&redirect_lock);
2393		if (f)
2394			fput(f);
2395		return 0;
2396	}
2397	if (file->f_op->write_iter != tty_write)
2398		return -ENOTTY;
2399	if (!(file->f_mode & FMODE_WRITE))
2400		return -EBADF;
2401	if (!(file->f_mode & FMODE_CAN_WRITE))
2402		return -EINVAL;
2403	spin_lock(&redirect_lock);
2404	if (redirect) {
2405		spin_unlock(&redirect_lock);
2406		return -EBUSY;
2407	}
2408	redirect = get_file(file);
2409	spin_unlock(&redirect_lock);
2410	return 0;
2411}
2412
2413/**
2414 * tiocsetd	-	set line discipline
2415 * @tty: tty device
2416 * @p: pointer to user data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2417 *
2418 * Set the line discipline according to user request.
 
2419 *
2420 * Locking: see tty_set_ldisc(), this function is just a helper
2421 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2422static int tiocsetd(struct tty_struct *tty, int __user *p)
2423{
2424	int disc;
2425	int ret;
2426
2427	if (get_user(disc, p))
2428		return -EFAULT;
2429
2430	ret = tty_set_ldisc(tty, disc);
2431
2432	return ret;
2433}
2434
2435/**
2436 * tiocgetd	-	get line discipline
2437 * @tty: tty device
2438 * @p: pointer to user data
2439 *
2440 * Retrieves the line discipline id directly from the ldisc.
2441 *
2442 * Locking: waits for ldisc reference (in case the line discipline is changing
2443 * or the @tty is being hungup)
2444 */
 
2445static int tiocgetd(struct tty_struct *tty, int __user *p)
2446{
2447	struct tty_ldisc *ld;
2448	int ret;
2449
2450	ld = tty_ldisc_ref_wait(tty);
2451	if (!ld)
2452		return -EIO;
2453	ret = put_user(ld->ops->num, p);
2454	tty_ldisc_deref(ld);
2455	return ret;
2456}
2457
2458/**
2459 * send_break	-	performed time break
2460 * @tty: device to break on
2461 * @duration: timeout in mS
2462 *
2463 * Perform a timed break on hardware that lacks its own driver level timed
2464 * break functionality.
 
 
 
2465 *
2466 * Locking:
2467 *	@tty->atomic_write_lock serializes
2468 */
 
2469static int send_break(struct tty_struct *tty, unsigned int duration)
2470{
2471	int retval;
2472
2473	if (tty->ops->break_ctl == NULL)
2474		return 0;
2475
2476	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2477		retval = tty->ops->break_ctl(tty, duration);
2478	else {
2479		/* Do the work ourselves */
2480		if (tty_write_lock(tty, 0) < 0)
2481			return -EINTR;
2482		retval = tty->ops->break_ctl(tty, -1);
2483		if (retval)
2484			goto out;
2485		if (!signal_pending(current))
2486			msleep_interruptible(duration);
2487		retval = tty->ops->break_ctl(tty, 0);
2488out:
2489		tty_write_unlock(tty);
2490		if (signal_pending(current))
2491			retval = -EINTR;
2492	}
2493	return retval;
2494}
2495
2496/**
2497 * tty_tiocmget		-	get modem status
2498 * @tty: tty device
2499 * @p: pointer to result
 
2500 *
2501 * Obtain the modem status bits from the tty driver if the feature is
2502 * supported. Return -%ENOTTY if it is not available.
2503 *
2504 * Locking: none (up to the driver)
2505 */
 
2506static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2507{
2508	int retval = -ENOTTY;
2509
2510	if (tty->ops->tiocmget) {
2511		retval = tty->ops->tiocmget(tty);
2512
2513		if (retval >= 0)
2514			retval = put_user(retval, p);
2515	}
2516	return retval;
2517}
2518
2519/**
2520 * tty_tiocmset		-	set modem status
2521 * @tty: tty device
2522 * @cmd: command - clear bits, set bits or set all
2523 * @p: pointer to desired bits
2524 *
2525 * Set the modem status bits from the tty driver if the feature
2526 * is supported. Return -%ENOTTY if it is not available.
2527 *
2528 * Locking: none (up to the driver)
2529 */
 
2530static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2531	     unsigned __user *p)
2532{
2533	int retval;
2534	unsigned int set, clear, val;
2535
2536	if (tty->ops->tiocmset == NULL)
2537		return -ENOTTY;
2538
2539	retval = get_user(val, p);
2540	if (retval)
2541		return retval;
2542	set = clear = 0;
2543	switch (cmd) {
2544	case TIOCMBIS:
2545		set = val;
2546		break;
2547	case TIOCMBIC:
2548		clear = val;
2549		break;
2550	case TIOCMSET:
2551		set = val;
2552		clear = ~val;
2553		break;
2554	}
2555	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2556	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2557	return tty->ops->tiocmset(tty, set, clear);
2558}
2559
2560/**
2561 * tty_get_icount	-	get tty statistics
2562 * @tty: tty device
2563 * @icount: output parameter
2564 *
2565 * Gets a copy of the @tty's icount statistics.
2566 *
2567 * Locking: none (up to the driver)
2568 */
2569int tty_get_icount(struct tty_struct *tty,
2570		   struct serial_icounter_struct *icount)
2571{
2572	memset(icount, 0, sizeof(*icount));
2573
2574	if (tty->ops->get_icount)
2575		return tty->ops->get_icount(tty, icount);
2576	else
2577		return -ENOTTY;
2578}
2579EXPORT_SYMBOL_GPL(tty_get_icount);
2580
2581static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2582{
 
2583	struct serial_icounter_struct icount;
2584	int retval;
2585
2586	retval = tty_get_icount(tty, &icount);
2587	if (retval != 0)
2588		return retval;
2589
2590	if (copy_to_user(arg, &icount, sizeof(icount)))
2591		return -EFAULT;
2592	return 0;
2593}
2594
2595static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2596{
 
 
 
2597	char comm[TASK_COMM_LEN];
2598	int flags;
2599
2600	flags = ss->flags & ASYNC_DEPRECATED;
2601
2602	if (flags)
2603		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2604				__func__, get_task_comm(comm, current), flags);
2605
2606	if (!tty->ops->set_serial)
2607		return -ENOTTY;
2608
2609	return tty->ops->set_serial(tty, ss);
2610}
2611
2612static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2613{
2614	struct serial_struct v;
2615
2616	if (copy_from_user(&v, ss, sizeof(*ss)))
2617		return -EFAULT;
2618
2619	return tty_set_serial(tty, &v);
2620}
2621
2622static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2623{
2624	struct serial_struct v;
2625	int err;
2626
2627	memset(&v, 0, sizeof(v));
2628	if (!tty->ops->get_serial)
2629		return -ENOTTY;
2630	err = tty->ops->get_serial(tty, &v);
2631	if (!err && copy_to_user(ss, &v, sizeof(v)))
2632		err = -EFAULT;
2633	return err;
2634}
2635
2636/*
2637 * if pty, return the slave side (real_tty)
2638 * otherwise, return self
2639 */
2640static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2641{
2642	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2643	    tty->driver->subtype == PTY_TYPE_MASTER)
2644		tty = tty->link;
2645	return tty;
2646}
2647
2648/*
2649 * Split this up, as gcc can choke on it otherwise..
2650 */
2651long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2652{
2653	struct tty_struct *tty = file_tty(file);
2654	struct tty_struct *real_tty;
2655	void __user *p = (void __user *)arg;
2656	int retval;
2657	struct tty_ldisc *ld;
2658
2659	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2660		return -EINVAL;
2661
2662	real_tty = tty_pair_get_tty(tty);
2663
2664	/*
2665	 * Factor out some common prep work
2666	 */
2667	switch (cmd) {
2668	case TIOCSETD:
2669	case TIOCSBRK:
2670	case TIOCCBRK:
2671	case TCSBRK:
2672	case TCSBRKP:
2673		retval = tty_check_change(tty);
2674		if (retval)
2675			return retval;
2676		if (cmd != TIOCCBRK) {
2677			tty_wait_until_sent(tty, 0);
2678			if (signal_pending(current))
2679				return -EINTR;
2680		}
2681		break;
2682	}
2683
2684	/*
2685	 *	Now do the stuff.
2686	 */
2687	switch (cmd) {
2688	case TIOCSTI:
2689		return tiocsti(tty, p);
2690	case TIOCGWINSZ:
2691		return tiocgwinsz(real_tty, p);
2692	case TIOCSWINSZ:
2693		return tiocswinsz(real_tty, p);
2694	case TIOCCONS:
2695		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2696	case TIOCEXCL:
2697		set_bit(TTY_EXCLUSIVE, &tty->flags);
2698		return 0;
2699	case TIOCNXCL:
2700		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2701		return 0;
2702	case TIOCGEXCL:
2703	{
2704		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2705
2706		return put_user(excl, (int __user *)p);
2707	}
 
 
 
 
 
 
 
 
 
 
 
 
 
2708	case TIOCGETD:
2709		return tiocgetd(tty, p);
2710	case TIOCSETD:
2711		return tiocsetd(tty, p);
2712	case TIOCVHANGUP:
2713		if (!capable(CAP_SYS_ADMIN))
2714			return -EPERM;
2715		tty_vhangup(tty);
2716		return 0;
2717	case TIOCGDEV:
2718	{
2719		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2720
2721		return put_user(ret, (unsigned int __user *)p);
2722	}
2723	/*
2724	 * Break handling
2725	 */
2726	case TIOCSBRK:	/* Turn break on, unconditionally */
2727		if (tty->ops->break_ctl)
2728			return tty->ops->break_ctl(tty, -1);
2729		return 0;
2730	case TIOCCBRK:	/* Turn break off, unconditionally */
2731		if (tty->ops->break_ctl)
2732			return tty->ops->break_ctl(tty, 0);
2733		return 0;
2734	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2735		/* non-zero arg means wait for all output data
2736		 * to be sent (performed above) but don't send break.
2737		 * This is used by the tcdrain() termios function.
2738		 */
2739		if (!arg)
2740			return send_break(tty, 250);
2741		return 0;
2742	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2743		return send_break(tty, arg ? arg*100 : 250);
2744
2745	case TIOCMGET:
2746		return tty_tiocmget(tty, p);
2747	case TIOCMSET:
2748	case TIOCMBIC:
2749	case TIOCMBIS:
2750		return tty_tiocmset(tty, cmd, p);
2751	case TIOCGICOUNT:
2752		return tty_tiocgicount(tty, p);
 
 
 
 
2753	case TCFLSH:
2754		switch (arg) {
2755		case TCIFLUSH:
2756		case TCIOFLUSH:
2757		/* flush tty buffer and allow ldisc to process ioctl */
2758			tty_buffer_flush(tty, NULL);
2759			break;
2760		}
2761		break;
2762	case TIOCSSERIAL:
2763		return tty_tiocsserial(tty, p);
2764	case TIOCGSERIAL:
2765		return tty_tiocgserial(tty, p);
2766	case TIOCGPTPEER:
2767		/* Special because the struct file is needed */
2768		return ptm_open_peer(file, tty, (int)arg);
2769	default:
2770		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2771		if (retval != -ENOIOCTLCMD)
2772			return retval;
2773	}
2774	if (tty->ops->ioctl) {
2775		retval = tty->ops->ioctl(tty, cmd, arg);
2776		if (retval != -ENOIOCTLCMD)
2777			return retval;
2778	}
2779	ld = tty_ldisc_ref_wait(tty);
2780	if (!ld)
2781		return hung_up_tty_ioctl(file, cmd, arg);
2782	retval = -EINVAL;
2783	if (ld->ops->ioctl) {
2784		retval = ld->ops->ioctl(tty, cmd, arg);
2785		if (retval == -ENOIOCTLCMD)
2786			retval = -ENOTTY;
2787	}
2788	tty_ldisc_deref(ld);
2789	return retval;
2790}
2791
2792#ifdef CONFIG_COMPAT
2793
2794struct serial_struct32 {
2795	compat_int_t    type;
2796	compat_int_t    line;
2797	compat_uint_t   port;
2798	compat_int_t    irq;
2799	compat_int_t    flags;
2800	compat_int_t    xmit_fifo_size;
2801	compat_int_t    custom_divisor;
2802	compat_int_t    baud_base;
2803	unsigned short  close_delay;
2804	char    io_type;
2805	char    reserved_char;
2806	compat_int_t    hub6;
2807	unsigned short  closing_wait; /* time to wait before closing */
2808	unsigned short  closing_wait2; /* no longer used... */
2809	compat_uint_t   iomem_base;
2810	unsigned short  iomem_reg_shift;
2811	unsigned int    port_high;
2812	/* compat_ulong_t  iomap_base FIXME */
2813	compat_int_t    reserved;
2814};
2815
2816static int compat_tty_tiocsserial(struct tty_struct *tty,
2817		struct serial_struct32 __user *ss)
2818{
2819	struct serial_struct32 v32;
2820	struct serial_struct v;
2821
2822	if (copy_from_user(&v32, ss, sizeof(*ss)))
2823		return -EFAULT;
2824
2825	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2826	v.iomem_base = compat_ptr(v32.iomem_base);
2827	v.iomem_reg_shift = v32.iomem_reg_shift;
2828	v.port_high = v32.port_high;
2829	v.iomap_base = 0;
2830
2831	return tty_set_serial(tty, &v);
2832}
2833
2834static int compat_tty_tiocgserial(struct tty_struct *tty,
2835			struct serial_struct32 __user *ss)
2836{
2837	struct serial_struct32 v32;
2838	struct serial_struct v;
2839	int err;
2840
2841	memset(&v, 0, sizeof(v));
2842	memset(&v32, 0, sizeof(v32));
2843
2844	if (!tty->ops->get_serial)
2845		return -ENOTTY;
2846	err = tty->ops->get_serial(tty, &v);
2847	if (!err) {
2848		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2849		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2850			0xfffffff : ptr_to_compat(v.iomem_base);
2851		v32.iomem_reg_shift = v.iomem_reg_shift;
2852		v32.port_high = v.port_high;
2853		if (copy_to_user(ss, &v32, sizeof(v32)))
2854			err = -EFAULT;
2855	}
2856	return err;
2857}
2858static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2859				unsigned long arg)
2860{
2861	struct tty_struct *tty = file_tty(file);
2862	struct tty_ldisc *ld;
2863	int retval = -ENOIOCTLCMD;
2864
2865	switch (cmd) {
2866	case TIOCOUTQ:
2867	case TIOCSTI:
2868	case TIOCGWINSZ:
2869	case TIOCSWINSZ:
2870	case TIOCGEXCL:
2871	case TIOCGETD:
2872	case TIOCSETD:
2873	case TIOCGDEV:
2874	case TIOCMGET:
2875	case TIOCMSET:
2876	case TIOCMBIC:
2877	case TIOCMBIS:
2878	case TIOCGICOUNT:
2879	case TIOCGPGRP:
2880	case TIOCSPGRP:
2881	case TIOCGSID:
2882	case TIOCSERGETLSR:
2883	case TIOCGRS485:
2884	case TIOCSRS485:
2885#ifdef TIOCGETP
2886	case TIOCGETP:
2887	case TIOCSETP:
2888	case TIOCSETN:
2889#endif
2890#ifdef TIOCGETC
2891	case TIOCGETC:
2892	case TIOCSETC:
2893#endif
2894#ifdef TIOCGLTC
2895	case TIOCGLTC:
2896	case TIOCSLTC:
2897#endif
2898	case TCSETSF:
2899	case TCSETSW:
2900	case TCSETS:
2901	case TCGETS:
2902#ifdef TCGETS2
2903	case TCGETS2:
2904	case TCSETSF2:
2905	case TCSETSW2:
2906	case TCSETS2:
2907#endif
2908	case TCGETA:
2909	case TCSETAF:
2910	case TCSETAW:
2911	case TCSETA:
2912	case TIOCGLCKTRMIOS:
2913	case TIOCSLCKTRMIOS:
2914#ifdef TCGETX
2915	case TCGETX:
2916	case TCSETX:
2917	case TCSETXW:
2918	case TCSETXF:
2919#endif
2920	case TIOCGSOFTCAR:
2921	case TIOCSSOFTCAR:
2922
2923	case PPPIOCGCHAN:
2924	case PPPIOCGUNIT:
2925		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2926	case TIOCCONS:
2927	case TIOCEXCL:
2928	case TIOCNXCL:
2929	case TIOCVHANGUP:
2930	case TIOCSBRK:
2931	case TIOCCBRK:
2932	case TCSBRK:
2933	case TCSBRKP:
2934	case TCFLSH:
2935	case TIOCGPTPEER:
2936	case TIOCNOTTY:
2937	case TIOCSCTTY:
2938	case TCXONC:
2939	case TIOCMIWAIT:
2940	case TIOCSERCONFIG:
2941		return tty_ioctl(file, cmd, arg);
2942	}
2943
2944	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2945		return -EINVAL;
2946
2947	switch (cmd) {
2948	case TIOCSSERIAL:
2949		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2950	case TIOCGSERIAL:
2951		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2952	}
2953	if (tty->ops->compat_ioctl) {
2954		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2955		if (retval != -ENOIOCTLCMD)
2956			return retval;
2957	}
2958
2959	ld = tty_ldisc_ref_wait(tty);
2960	if (!ld)
2961		return hung_up_tty_compat_ioctl(file, cmd, arg);
2962	if (ld->ops->compat_ioctl)
2963		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2964	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2965		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2966				arg);
2967	tty_ldisc_deref(ld);
2968
2969	return retval;
2970}
2971#endif
2972
2973static int this_tty(const void *t, struct file *file, unsigned fd)
2974{
2975	if (likely(file->f_op->read_iter != tty_read))
2976		return 0;
2977	return file_tty(file) != t ? 0 : fd + 1;
2978}
2979
2980/*
2981 * This implements the "Secure Attention Key" ---  the idea is to
2982 * prevent trojan horses by killing all processes associated with this
2983 * tty when the user hits the "Secure Attention Key".  Required for
2984 * super-paranoid applications --- see the Orange Book for more details.
2985 *
2986 * This code could be nicer; ideally it should send a HUP, wait a few
2987 * seconds, then send a INT, and then a KILL signal.  But you then
2988 * have to coordinate with the init process, since all processes associated
2989 * with the current tty must be dead before the new getty is allowed
2990 * to spawn.
2991 *
2992 * Now, if it would be correct ;-/ The current code has a nasty hole -
2993 * it doesn't catch files in flight. We may send the descriptor to ourselves
2994 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2995 *
2996 * Nasty bug: do_SAK is being called in interrupt context.  This can
2997 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2998 */
2999void __do_SAK(struct tty_struct *tty)
3000{
 
 
 
3001	struct task_struct *g, *p;
3002	struct pid *session;
3003	int i;
3004	unsigned long flags;
3005
3006	spin_lock_irqsave(&tty->ctrl.lock, flags);
3007	session = get_pid(tty->ctrl.session);
3008	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3009
3010	tty_ldisc_flush(tty);
3011
3012	tty_driver_flush_buffer(tty);
3013
3014	read_lock(&tasklist_lock);
3015	/* Kill the entire session */
3016	do_each_pid_task(session, PIDTYPE_SID, p) {
3017		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3018			   task_pid_nr(p), p->comm);
3019		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3020	} while_each_pid_task(session, PIDTYPE_SID, p);
3021
3022	/* Now kill any processes that happen to have the tty open */
3023	do_each_thread(g, p) {
3024		if (p->signal->tty == tty) {
3025			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3026				   task_pid_nr(p), p->comm);
3027			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3028					PIDTYPE_SID);
3029			continue;
3030		}
3031		task_lock(p);
3032		i = iterate_fd(p->files, 0, this_tty, tty);
3033		if (i != 0) {
3034			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3035				   task_pid_nr(p), p->comm, i - 1);
3036			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3037					PIDTYPE_SID);
3038		}
3039		task_unlock(p);
3040	} while_each_thread(g, p);
3041	read_unlock(&tasklist_lock);
3042	put_pid(session);
3043}
3044
3045static void do_SAK_work(struct work_struct *work)
3046{
3047	struct tty_struct *tty =
3048		container_of(work, struct tty_struct, SAK_work);
3049	__do_SAK(tty);
3050}
3051
3052/*
3053 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3054 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3055 * the values which we write to it will be identical to the values which it
3056 * already has. --akpm
3057 */
3058void do_SAK(struct tty_struct *tty)
3059{
3060	if (!tty)
3061		return;
3062	schedule_work(&tty->SAK_work);
3063}
 
3064EXPORT_SYMBOL(do_SAK);
3065
 
 
 
 
 
 
3066/* Must put_device() after it's unused! */
3067static struct device *tty_get_device(struct tty_struct *tty)
3068{
3069	dev_t devt = tty_devnum(tty);
3070
3071	return class_find_device_by_devt(tty_class, devt);
3072}
3073
3074
3075/**
3076 * alloc_tty_struct - allocate a new tty
3077 * @driver: driver which will handle the returned tty
3078 * @idx: minor of the tty
3079 *
3080 * This subroutine allocates and initializes a tty structure.
3081 *
3082 * Locking: none - @tty in question is not exposed at this point
3083 */
 
3084struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3085{
3086	struct tty_struct *tty;
3087
3088	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3089	if (!tty)
3090		return NULL;
3091
3092	kref_init(&tty->kref);
3093	if (tty_ldisc_init(tty)) {
3094		kfree(tty);
3095		return NULL;
3096	}
3097	tty->ctrl.session = NULL;
3098	tty->ctrl.pgrp = NULL;
3099	mutex_init(&tty->legacy_mutex);
3100	mutex_init(&tty->throttle_mutex);
3101	init_rwsem(&tty->termios_rwsem);
3102	mutex_init(&tty->winsize_mutex);
3103	init_ldsem(&tty->ldisc_sem);
3104	init_waitqueue_head(&tty->write_wait);
3105	init_waitqueue_head(&tty->read_wait);
3106	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3107	mutex_init(&tty->atomic_write_lock);
3108	spin_lock_init(&tty->ctrl.lock);
3109	spin_lock_init(&tty->flow.lock);
3110	spin_lock_init(&tty->files_lock);
3111	INIT_LIST_HEAD(&tty->tty_files);
3112	INIT_WORK(&tty->SAK_work, do_SAK_work);
3113
3114	tty->driver = driver;
3115	tty->ops = driver->ops;
3116	tty->index = idx;
3117	tty_line_name(driver, idx, tty->name);
3118	tty->dev = tty_get_device(tty);
3119
3120	return tty;
3121}
3122
3123/**
3124 * tty_put_char	- write one character to a tty
3125 * @tty: tty
3126 * @ch: character to write
3127 *
3128 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3129 * if present.
3130 *
3131 * Note: the specific put_char operation in the driver layer may go
3132 * away soon. Don't call it directly, use this method
3133 *
3134 * Return: the number of characters successfully output.
 
3135 */
 
3136int tty_put_char(struct tty_struct *tty, unsigned char ch)
3137{
3138	if (tty->ops->put_char)
3139		return tty->ops->put_char(tty, ch);
3140	return tty->ops->write(tty, &ch, 1);
3141}
3142EXPORT_SYMBOL_GPL(tty_put_char);
3143
3144struct class *tty_class;
3145
3146static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3147		unsigned int index, unsigned int count)
3148{
3149	int err;
3150
3151	/* init here, since reused cdevs cause crashes */
3152	driver->cdevs[index] = cdev_alloc();
3153	if (!driver->cdevs[index])
3154		return -ENOMEM;
3155	driver->cdevs[index]->ops = &tty_fops;
3156	driver->cdevs[index]->owner = driver->owner;
3157	err = cdev_add(driver->cdevs[index], dev, count);
3158	if (err)
3159		kobject_put(&driver->cdevs[index]->kobj);
3160	return err;
3161}
3162
3163/**
3164 * tty_register_device - register a tty device
3165 * @driver: the tty driver that describes the tty device
3166 * @index: the index in the tty driver for this tty device
3167 * @device: a struct device that is associated with this tty device.
3168 *	This field is optional, if there is no known struct device
3169 *	for this tty device it can be set to NULL safely.
3170 *
3171 * This call is required to be made to register an individual tty device
3172 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3173 * that bit is not set, this function should not be called by a tty
3174 * driver.
3175 *
3176 * Locking: ??
 
3177 *
3178 * Return: A pointer to the struct device for this tty device (or
3179 * ERR_PTR(-EFOO) on error).
3180 */
 
3181struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3182				   struct device *device)
3183{
3184	return tty_register_device_attr(driver, index, device, NULL, NULL);
3185}
3186EXPORT_SYMBOL(tty_register_device);
3187
3188static void tty_device_create_release(struct device *dev)
3189{
3190	dev_dbg(dev, "releasing...\n");
3191	kfree(dev);
3192}
3193
3194/**
3195 * tty_register_device_attr - register a tty device
3196 * @driver: the tty driver that describes the tty device
3197 * @index: the index in the tty driver for this tty device
3198 * @device: a struct device that is associated with this tty device.
3199 *	This field is optional, if there is no known struct device
3200 *	for this tty device it can be set to %NULL safely.
3201 * @drvdata: Driver data to be set to device.
3202 * @attr_grp: Attribute group to be set on device.
3203 *
3204 * This call is required to be made to register an individual tty device if the
3205 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3206 * not set, this function should not be called by a tty driver.
 
 
 
 
3207 *
3208 * Locking: ??
3209 *
3210 * Return: A pointer to the struct device for this tty device (or
3211 * ERR_PTR(-EFOO) on error).
3212 */
3213struct device *tty_register_device_attr(struct tty_driver *driver,
3214				   unsigned index, struct device *device,
3215				   void *drvdata,
3216				   const struct attribute_group **attr_grp)
3217{
3218	char name[64];
3219	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3220	struct ktermios *tp;
3221	struct device *dev;
3222	int retval;
3223
3224	if (index >= driver->num) {
3225		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3226		       driver->name, index);
3227		return ERR_PTR(-EINVAL);
3228	}
3229
3230	if (driver->type == TTY_DRIVER_TYPE_PTY)
3231		pty_line_name(driver, index, name);
3232	else
3233		tty_line_name(driver, index, name);
3234
 
 
 
 
 
 
 
3235	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3236	if (!dev)
3237		return ERR_PTR(-ENOMEM);
 
 
3238
3239	dev->devt = devt;
3240	dev->class = tty_class;
3241	dev->parent = device;
3242	dev->release = tty_device_create_release;
3243	dev_set_name(dev, "%s", name);
3244	dev->groups = attr_grp;
3245	dev_set_drvdata(dev, drvdata);
3246
3247	dev_set_uevent_suppress(dev, 1);
3248
3249	retval = device_register(dev);
3250	if (retval)
3251		goto err_put;
3252
3253	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3254		/*
3255		 * Free any saved termios data so that the termios state is
3256		 * reset when reusing a minor number.
3257		 */
3258		tp = driver->termios[index];
3259		if (tp) {
3260			driver->termios[index] = NULL;
3261			kfree(tp);
3262		}
3263
3264		retval = tty_cdev_add(driver, devt, index, 1);
3265		if (retval)
3266			goto err_del;
3267	}
3268
3269	dev_set_uevent_suppress(dev, 0);
3270	kobject_uevent(&dev->kobj, KOBJ_ADD);
3271
3272	return dev;
3273
3274err_del:
3275	device_del(dev);
3276err_put:
3277	put_device(dev);
3278
 
 
 
3279	return ERR_PTR(retval);
3280}
3281EXPORT_SYMBOL_GPL(tty_register_device_attr);
3282
3283/**
3284 * tty_unregister_device - unregister a tty device
3285 * @driver: the tty driver that describes the tty device
3286 * @index: the index in the tty driver for this tty device
3287 *
3288 * If a tty device is registered with a call to tty_register_device() then
3289 * this function must be called when the tty device is gone.
3290 *
3291 * Locking: ??
3292 */
 
3293void tty_unregister_device(struct tty_driver *driver, unsigned index)
3294{
3295	device_destroy(tty_class,
3296		MKDEV(driver->major, driver->minor_start) + index);
3297	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3298		cdev_del(driver->cdevs[index]);
3299		driver->cdevs[index] = NULL;
3300	}
3301}
3302EXPORT_SYMBOL(tty_unregister_device);
3303
3304/**
3305 * __tty_alloc_driver -- allocate tty driver
3306 * @lines: count of lines this driver can handle at most
3307 * @owner: module which is responsible for this driver
3308 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3309 *
3310 * This should not be called directly, some of the provided macros should be
3311 * used instead. Use IS_ERR() and friends on @retval.
3312 */
3313struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3314		unsigned long flags)
3315{
3316	struct tty_driver *driver;
3317	unsigned int cdevs = 1;
3318	int err;
3319
3320	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3321		return ERR_PTR(-EINVAL);
3322
3323	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3324	if (!driver)
3325		return ERR_PTR(-ENOMEM);
3326
3327	kref_init(&driver->kref);
 
3328	driver->num = lines;
3329	driver->owner = owner;
3330	driver->flags = flags;
3331
3332	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3333		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3334				GFP_KERNEL);
3335		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3336				GFP_KERNEL);
3337		if (!driver->ttys || !driver->termios) {
3338			err = -ENOMEM;
3339			goto err_free_all;
3340		}
3341	}
3342
3343	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3344		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3345				GFP_KERNEL);
3346		if (!driver->ports) {
3347			err = -ENOMEM;
3348			goto err_free_all;
3349		}
3350		cdevs = lines;
3351	}
3352
3353	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3354	if (!driver->cdevs) {
3355		err = -ENOMEM;
3356		goto err_free_all;
3357	}
3358
3359	return driver;
3360err_free_all:
3361	kfree(driver->ports);
3362	kfree(driver->ttys);
3363	kfree(driver->termios);
3364	kfree(driver->cdevs);
3365	kfree(driver);
3366	return ERR_PTR(err);
3367}
3368EXPORT_SYMBOL(__tty_alloc_driver);
3369
3370static void destruct_tty_driver(struct kref *kref)
3371{
3372	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3373	int i;
3374	struct ktermios *tp;
3375
3376	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3377		for (i = 0; i < driver->num; i++) {
3378			tp = driver->termios[i];
3379			if (tp) {
3380				driver->termios[i] = NULL;
3381				kfree(tp);
3382			}
3383			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3384				tty_unregister_device(driver, i);
3385		}
3386		proc_tty_unregister_driver(driver);
3387		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3388			cdev_del(driver->cdevs[0]);
3389	}
3390	kfree(driver->cdevs);
3391	kfree(driver->ports);
3392	kfree(driver->termios);
3393	kfree(driver->ttys);
3394	kfree(driver);
3395}
3396
3397/**
3398 * tty_driver_kref_put -- drop a reference to a tty driver
3399 * @driver: driver of which to drop the reference
3400 *
3401 * The final put will destroy and free up the driver.
3402 */
3403void tty_driver_kref_put(struct tty_driver *driver)
3404{
3405	kref_put(&driver->kref, destruct_tty_driver);
3406}
3407EXPORT_SYMBOL(tty_driver_kref_put);
3408
3409/**
3410 * tty_register_driver -- register a tty driver
3411 * @driver: driver to register
3412 *
 
 
 
 
 
 
 
 
 
 
3413 * Called by a tty driver to register itself.
3414 */
3415int tty_register_driver(struct tty_driver *driver)
3416{
3417	int error;
3418	int i;
3419	dev_t dev;
3420	struct device *d;
3421
3422	if (!driver->major) {
3423		error = alloc_chrdev_region(&dev, driver->minor_start,
3424						driver->num, driver->name);
3425		if (!error) {
3426			driver->major = MAJOR(dev);
3427			driver->minor_start = MINOR(dev);
3428		}
3429	} else {
3430		dev = MKDEV(driver->major, driver->minor_start);
3431		error = register_chrdev_region(dev, driver->num, driver->name);
3432	}
3433	if (error < 0)
3434		goto err;
3435
3436	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3437		error = tty_cdev_add(driver, dev, 0, driver->num);
3438		if (error)
3439			goto err_unreg_char;
3440	}
3441
3442	mutex_lock(&tty_mutex);
3443	list_add(&driver->tty_drivers, &tty_drivers);
3444	mutex_unlock(&tty_mutex);
3445
3446	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3447		for (i = 0; i < driver->num; i++) {
3448			d = tty_register_device(driver, i, NULL);
3449			if (IS_ERR(d)) {
3450				error = PTR_ERR(d);
3451				goto err_unreg_devs;
3452			}
3453		}
3454	}
3455	proc_tty_register_driver(driver);
3456	driver->flags |= TTY_DRIVER_INSTALLED;
3457	return 0;
3458
3459err_unreg_devs:
3460	for (i--; i >= 0; i--)
3461		tty_unregister_device(driver, i);
3462
3463	mutex_lock(&tty_mutex);
3464	list_del(&driver->tty_drivers);
3465	mutex_unlock(&tty_mutex);
3466
3467err_unreg_char:
3468	unregister_chrdev_region(dev, driver->num);
3469err:
3470	return error;
3471}
3472EXPORT_SYMBOL(tty_register_driver);
3473
3474/**
3475 * tty_unregister_driver -- unregister a tty driver
3476 * @driver: driver to unregister
3477 *
3478 * Called by a tty driver to unregister itself.
3479 */
3480void tty_unregister_driver(struct tty_driver *driver)
3481{
 
 
 
 
 
3482	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3483				driver->num);
3484	mutex_lock(&tty_mutex);
3485	list_del(&driver->tty_drivers);
3486	mutex_unlock(&tty_mutex);
 
3487}
 
3488EXPORT_SYMBOL(tty_unregister_driver);
3489
3490dev_t tty_devnum(struct tty_struct *tty)
3491{
3492	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3493}
3494EXPORT_SYMBOL(tty_devnum);
3495
3496void tty_default_fops(struct file_operations *fops)
3497{
3498	*fops = tty_fops;
3499}
3500
3501static char *tty_devnode(const struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502{
3503	if (!mode)
3504		return NULL;
3505	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3506	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3507		*mode = 0666;
3508	return NULL;
3509}
3510
3511static int __init tty_class_init(void)
3512{
3513	tty_class = class_create(THIS_MODULE, "tty");
3514	if (IS_ERR(tty_class))
3515		return PTR_ERR(tty_class);
3516	tty_class->devnode = tty_devnode;
3517	return 0;
3518}
3519
3520postcore_initcall(tty_class_init);
3521
3522/* 3/2004 jmc: why do these devices exist? */
3523static struct cdev tty_cdev, console_cdev;
3524
3525static ssize_t show_cons_active(struct device *dev,
3526				struct device_attribute *attr, char *buf)
3527{
3528	struct console *cs[16];
3529	int i = 0;
3530	struct console *c;
3531	ssize_t count = 0;
3532
3533	/*
3534	 * Hold the console_list_lock to guarantee that no consoles are
3535	 * unregistered until all console processing is complete.
3536	 * This also allows safe traversal of the console list and
3537	 * race-free reading of @flags.
3538	 */
3539	console_list_lock();
3540
3541	for_each_console(c) {
3542		if (!c->device)
3543			continue;
3544		if (!c->write)
3545			continue;
3546		if ((c->flags & CON_ENABLED) == 0)
3547			continue;
3548		cs[i++] = c;
3549		if (i >= ARRAY_SIZE(cs))
3550			break;
3551	}
3552
3553	/*
3554	 * Take console_lock to serialize device() callback with
3555	 * other console operations. For example, fg_console is
3556	 * modified under console_lock when switching vt.
3557	 */
3558	console_lock();
3559	while (i--) {
3560		int index = cs[i]->index;
3561		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3562
3563		/* don't resolve tty0 as some programs depend on it */
3564		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3565			count += tty_line_name(drv, index, buf + count);
3566		else
3567			count += sprintf(buf + count, "%s%d",
3568					 cs[i]->name, cs[i]->index);
3569
3570		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3571	}
3572	console_unlock();
3573
3574	console_list_unlock();
3575
3576	return count;
3577}
3578static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3579
3580static struct attribute *cons_dev_attrs[] = {
3581	&dev_attr_active.attr,
3582	NULL
3583};
3584
3585ATTRIBUTE_GROUPS(cons_dev);
3586
3587static struct device *consdev;
3588
3589void console_sysfs_notify(void)
3590{
3591	if (consdev)
3592		sysfs_notify(&consdev->kobj, NULL, "active");
3593}
3594
3595static struct ctl_table tty_table[] = {
3596	{
3597		.procname	= "legacy_tiocsti",
3598		.data		= &tty_legacy_tiocsti,
3599		.maxlen		= sizeof(tty_legacy_tiocsti),
3600		.mode		= 0644,
3601		.proc_handler	= proc_dobool,
3602	},
3603	{
3604		.procname	= "ldisc_autoload",
3605		.data		= &tty_ldisc_autoload,
3606		.maxlen		= sizeof(tty_ldisc_autoload),
3607		.mode		= 0644,
3608		.proc_handler	= proc_dointvec,
3609		.extra1		= SYSCTL_ZERO,
3610		.extra2		= SYSCTL_ONE,
3611	},
3612	{ }
3613};
3614
3615static struct ctl_table tty_dir_table[] = {
3616	{
3617		.procname	= "tty",
3618		.mode		= 0555,
3619		.child		= tty_table,
3620	},
3621	{ }
3622};
3623
3624static struct ctl_table tty_root_table[] = {
3625	{
3626		.procname	= "dev",
3627		.mode		= 0555,
3628		.child		= tty_dir_table,
3629	},
3630	{ }
3631};
3632
3633/*
3634 * Ok, now we can initialize the rest of the tty devices and can count
3635 * on memory allocations, interrupts etc..
3636 */
3637int __init tty_init(void)
3638{
3639	register_sysctl_table(tty_root_table);
3640	cdev_init(&tty_cdev, &tty_fops);
3641	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3642	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3643		panic("Couldn't register /dev/tty driver\n");
3644	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3645
3646	cdev_init(&console_cdev, &console_fops);
3647	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3648	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3649		panic("Couldn't register /dev/console driver\n");
3650	consdev = device_create_with_groups(tty_class, NULL,
3651					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3652					    cons_dev_groups, "console");
3653	if (IS_ERR(consdev))
3654		consdev = NULL;
3655
3656#ifdef CONFIG_VT
3657	vty_init(&console_fops);
3658#endif
3659	return 0;
3660}
v4.6
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 
 107
 108#undef TTY_DEBUG_HANGUP
 109#ifdef TTY_DEBUG_HANGUP
 110# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 111#else
 112# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 113#endif
 114
 115#define TTY_PARANOIA_CHECK 1
 116#define CHECK_TTY_COUNT 1
 117
 118struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 119	.c_iflag = ICRNL | IXON,
 120	.c_oflag = OPOST | ONLCR,
 121	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 122	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 123		   ECHOCTL | ECHOKE | IEXTEN,
 124	.c_cc = INIT_C_CC,
 125	.c_ispeed = 38400,
 126	.c_ospeed = 38400,
 127	/* .c_line = N_TTY, */
 128};
 129
 130EXPORT_SYMBOL(tty_std_termios);
 131
 132/* This list gets poked at by procfs and various bits of boot up code. This
 133   could do with some rationalisation such as pulling the tty proc function
 134   into this file */
 
 135
 136LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 137
 138/* Mutex to protect creating and releasing a tty */
 139DEFINE_MUTEX(tty_mutex);
 140
 141static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 142static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 143ssize_t redirected_tty_write(struct file *, const char __user *,
 144							size_t, loff_t *);
 145static unsigned int tty_poll(struct file *, poll_table *);
 146static int tty_open(struct inode *, struct file *);
 147long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 148#ifdef CONFIG_COMPAT
 149static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 150				unsigned long arg);
 151#else
 152#define tty_compat_ioctl NULL
 153#endif
 154static int __tty_fasync(int fd, struct file *filp, int on);
 155static int tty_fasync(int fd, struct file *filp, int on);
 156static void release_tty(struct tty_struct *tty, int idx);
 157
 158/**
 159 *	free_tty_struct		-	free a disused tty
 160 *	@tty: tty struct to free
 161 *
 162 *	Free the write buffers, tty queue and tty memory itself.
 163 *
 164 *	Locking: none. Must be called after tty is definitely unused
 165 */
 166
 167static void free_tty_struct(struct tty_struct *tty)
 168{
 169	tty_ldisc_deinit(tty);
 170	put_device(tty->dev);
 171	kfree(tty->write_buf);
 172	tty->magic = 0xDEADDEAD;
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 
 209 *
 210 * This shall be used only for fail path handling when tty_add_file was not
 211 * called yet.
 212 */
 213void tty_free_file(struct file *file)
 214{
 215	struct tty_file_private *priv = file->private_data;
 216
 217	file->private_data = NULL;
 218	kfree(priv);
 219}
 220
 221/* Delete file from its tty */
 222static void tty_del_file(struct file *file)
 223{
 224	struct tty_file_private *priv = file->private_data;
 225	struct tty_struct *tty = priv->tty;
 226
 227	spin_lock(&tty->files_lock);
 228	list_del(&priv->list);
 229	spin_unlock(&tty->files_lock);
 230	tty_free_file(file);
 231}
 232
 233
 234#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 235
 236/**
 237 *	tty_name	-	return tty naming
 238 *	@tty: tty structure
 239 *
 240 *	Convert a tty structure into a name. The name reflects the kernel
 241 *	naming policy and if udev is in use may not reflect user space
 242 *
 243 *	Locking: none
 244 */
 245
 246const char *tty_name(const struct tty_struct *tty)
 247{
 248	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 249		return "NULL tty";
 250	return tty->name;
 251}
 252
 253EXPORT_SYMBOL(tty_name);
 254
 255const char *tty_driver_name(const struct tty_struct *tty)
 256{
 257	if (!tty || !tty->driver)
 258		return "";
 259	return tty->driver->name;
 260}
 261
 262static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 263			      const char *routine)
 264{
 265#ifdef TTY_PARANOIA_CHECK
 266	if (!tty) {
 267		pr_warn("(%d:%d): %s: NULL tty\n",
 268			imajor(inode), iminor(inode), routine);
 269		return 1;
 270	}
 271	if (tty->magic != TTY_MAGIC) {
 272		pr_warn("(%d:%d): %s: bad magic number\n",
 273			imajor(inode), iminor(inode), routine);
 274		return 1;
 275	}
 276#endif
 277	return 0;
 278}
 279
 280/* Caller must hold tty_lock */
 281static int check_tty_count(struct tty_struct *tty, const char *routine)
 282{
 283#ifdef CHECK_TTY_COUNT
 284	struct list_head *p;
 285	int count = 0;
 286
 287	spin_lock(&tty->files_lock);
 288	list_for_each(p, &tty->tty_files) {
 289		count++;
 290	}
 291	spin_unlock(&tty->files_lock);
 292	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 293	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 294	    tty->link && tty->link->count)
 295		count++;
 296	if (tty->count != count) {
 297		tty_warn(tty, "%s: tty->count(%d) != #fd's(%d)\n",
 298			 routine, tty->count, count);
 299		return count;
 
 
 300	}
 301#endif
 302	return 0;
 303}
 304
 305/**
 306 *	get_tty_driver		-	find device of a tty
 307 *	@dev_t: device identifier
 308 *	@index: returns the index of the tty
 309 *
 310 *	This routine returns a tty driver structure, given a device number
 311 *	and also passes back the index number.
 312 *
 313 *	Locking: caller must hold tty_mutex
 314 */
 315
 316static struct tty_driver *get_tty_driver(dev_t device, int *index)
 317{
 318	struct tty_driver *p;
 319
 320	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 321		dev_t base = MKDEV(p->major, p->minor_start);
 
 322		if (device < base || device >= base + p->num)
 323			continue;
 324		*index = device - base;
 325		return tty_driver_kref_get(p);
 326	}
 327	return NULL;
 328}
 329
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 330#ifdef CONFIG_CONSOLE_POLL
 331
 332/**
 333 *	tty_find_polling_driver	-	find device of a polled tty
 334 *	@name: name string to match
 335 *	@line: pointer to resulting tty line nr
 336 *
 337 *	This routine returns a tty driver structure, given a name
 338 *	and the condition that the tty driver is capable of polled
 339 *	operation.
 340 */
 341struct tty_driver *tty_find_polling_driver(char *name, int *line)
 342{
 343	struct tty_driver *p, *res = NULL;
 344	int tty_line = 0;
 345	int len;
 346	char *str, *stp;
 347
 348	for (str = name; *str; str++)
 349		if ((*str >= '0' && *str <= '9') || *str == ',')
 350			break;
 351	if (!*str)
 352		return NULL;
 353
 354	len = str - name;
 355	tty_line = simple_strtoul(str, &str, 10);
 356
 357	mutex_lock(&tty_mutex);
 358	/* Search through the tty devices to look for a match */
 359	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 360		if (strncmp(name, p->name, len) != 0)
 361			continue;
 362		stp = str;
 363		if (*stp == ',')
 364			stp++;
 365		if (*stp == '\0')
 366			stp = NULL;
 367
 368		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 369		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 370			res = tty_driver_kref_get(p);
 371			*line = tty_line;
 372			break;
 373		}
 374	}
 375	mutex_unlock(&tty_mutex);
 376
 377	return res;
 378}
 379EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 380#endif
 381
 382static int is_ignored(int sig)
 383{
 384	return (sigismember(&current->blocked, sig) ||
 385		current->sighand->action[sig-1].sa.sa_handler == SIG_IGN);
 386}
 387
 388/**
 389 *	tty_check_change	-	check for POSIX terminal changes
 390 *	@tty: tty to check
 391 *
 392 *	If we try to write to, or set the state of, a terminal and we're
 393 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 394 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 395 *
 396 *	Locking: ctrl_lock
 397 */
 398
 399int __tty_check_change(struct tty_struct *tty, int sig)
 400{
 401	unsigned long flags;
 402	struct pid *pgrp, *tty_pgrp;
 403	int ret = 0;
 404
 405	if (current->signal->tty != tty)
 406		return 0;
 407
 408	rcu_read_lock();
 409	pgrp = task_pgrp(current);
 410
 411	spin_lock_irqsave(&tty->ctrl_lock, flags);
 412	tty_pgrp = tty->pgrp;
 413	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 414
 415	if (tty_pgrp && pgrp != tty->pgrp) {
 416		if (is_ignored(sig)) {
 417			if (sig == SIGTTIN)
 418				ret = -EIO;
 419		} else if (is_current_pgrp_orphaned())
 420			ret = -EIO;
 421		else {
 422			kill_pgrp(pgrp, sig, 1);
 423			set_thread_flag(TIF_SIGPENDING);
 424			ret = -ERESTARTSYS;
 425		}
 426	}
 427	rcu_read_unlock();
 428
 429	if (!tty_pgrp)
 430		tty_warn(tty, "sig=%d, tty->pgrp == NULL!\n", sig);
 431
 432	return ret;
 433}
 434
 435int tty_check_change(struct tty_struct *tty)
 436{
 437	return __tty_check_change(tty, SIGTTOU);
 438}
 439EXPORT_SYMBOL(tty_check_change);
 440
 441static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 442				size_t count, loff_t *ppos)
 443{
 444	return 0;
 445}
 446
 447static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 448				 size_t count, loff_t *ppos)
 449{
 450	return -EIO;
 451}
 452
 453/* No kernel lock held - none needed ;) */
 454static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 455{
 456	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 457}
 458
 459static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 460		unsigned long arg)
 461{
 462	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 463}
 464
 465static long hung_up_tty_compat_ioctl(struct file *file,
 466				     unsigned int cmd, unsigned long arg)
 467{
 468	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 469}
 470
 471static int hung_up_tty_fasync(int fd, struct file *file, int on)
 472{
 473	return -ENOTTY;
 474}
 475
 
 
 
 
 
 
 
 
 476static const struct file_operations tty_fops = {
 477	.llseek		= no_llseek,
 478	.read		= tty_read,
 479	.write		= tty_write,
 
 
 480	.poll		= tty_poll,
 481	.unlocked_ioctl	= tty_ioctl,
 482	.compat_ioctl	= tty_compat_ioctl,
 483	.open		= tty_open,
 484	.release	= tty_release,
 485	.fasync		= tty_fasync,
 
 486};
 487
 488static const struct file_operations console_fops = {
 489	.llseek		= no_llseek,
 490	.read		= tty_read,
 491	.write		= redirected_tty_write,
 
 
 492	.poll		= tty_poll,
 493	.unlocked_ioctl	= tty_ioctl,
 494	.compat_ioctl	= tty_compat_ioctl,
 495	.open		= tty_open,
 496	.release	= tty_release,
 497	.fasync		= tty_fasync,
 498};
 499
 500static const struct file_operations hung_up_tty_fops = {
 501	.llseek		= no_llseek,
 502	.read		= hung_up_tty_read,
 503	.write		= hung_up_tty_write,
 504	.poll		= hung_up_tty_poll,
 505	.unlocked_ioctl	= hung_up_tty_ioctl,
 506	.compat_ioctl	= hung_up_tty_compat_ioctl,
 507	.release	= tty_release,
 508	.fasync		= hung_up_tty_fasync,
 509};
 510
 511static DEFINE_SPINLOCK(redirect_lock);
 512static struct file *redirect;
 513
 514
 515void proc_clear_tty(struct task_struct *p)
 516{
 517	unsigned long flags;
 518	struct tty_struct *tty;
 519	spin_lock_irqsave(&p->sighand->siglock, flags);
 520	tty = p->signal->tty;
 521	p->signal->tty = NULL;
 522	spin_unlock_irqrestore(&p->sighand->siglock, flags);
 523	tty_kref_put(tty);
 524}
 525
 526/**
 527 * proc_set_tty -  set the controlling terminal
 528 *
 529 * Only callable by the session leader and only if it does not already have
 530 * a controlling terminal.
 531 *
 532 * Caller must hold:  tty_lock()
 533 *		      a readlock on tasklist_lock
 534 *		      sighand lock
 535 */
 536static void __proc_set_tty(struct tty_struct *tty)
 537{
 538	unsigned long flags;
 539
 540	spin_lock_irqsave(&tty->ctrl_lock, flags);
 541	/*
 542	 * The session and fg pgrp references will be non-NULL if
 543	 * tiocsctty() is stealing the controlling tty
 544	 */
 545	put_pid(tty->session);
 546	put_pid(tty->pgrp);
 547	tty->pgrp = get_pid(task_pgrp(current));
 548	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 549	tty->session = get_pid(task_session(current));
 550	if (current->signal->tty) {
 551		tty_debug(tty, "current tty %s not NULL!!\n",
 552			  current->signal->tty->name);
 553		tty_kref_put(current->signal->tty);
 554	}
 555	put_pid(current->signal->tty_old_pgrp);
 556	current->signal->tty = tty_kref_get(tty);
 557	current->signal->tty_old_pgrp = NULL;
 558}
 559
 560static void proc_set_tty(struct tty_struct *tty)
 561{
 562	spin_lock_irq(&current->sighand->siglock);
 563	__proc_set_tty(tty);
 564	spin_unlock_irq(&current->sighand->siglock);
 565}
 566
 567struct tty_struct *get_current_tty(void)
 568{
 569	struct tty_struct *tty;
 570	unsigned long flags;
 571
 572	spin_lock_irqsave(&current->sighand->siglock, flags);
 573	tty = tty_kref_get(current->signal->tty);
 574	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 575	return tty;
 576}
 577EXPORT_SYMBOL_GPL(get_current_tty);
 578
 579static void session_clear_tty(struct pid *session)
 580{
 581	struct task_struct *p;
 582	do_each_pid_task(session, PIDTYPE_SID, p) {
 583		proc_clear_tty(p);
 584	} while_each_pid_task(session, PIDTYPE_SID, p);
 585}
 586
 587/**
 588 *	tty_wakeup	-	request more data
 589 *	@tty: terminal
 590 *
 591 *	Internal and external helper for wakeups of tty. This function
 592 *	informs the line discipline if present that the driver is ready
 593 *	to receive more output data.
 594 */
 595
 596void tty_wakeup(struct tty_struct *tty)
 597{
 598	struct tty_ldisc *ld;
 599
 600	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 601		ld = tty_ldisc_ref(tty);
 602		if (ld) {
 603			if (ld->ops->write_wakeup)
 604				ld->ops->write_wakeup(tty);
 605			tty_ldisc_deref(ld);
 606		}
 607	}
 608	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 609}
 610
 611EXPORT_SYMBOL_GPL(tty_wakeup);
 612
 613/**
 614 *	tty_signal_session_leader	- sends SIGHUP to session leader
 615 *	@tty		controlling tty
 616 *	@exit_session	if non-zero, signal all foreground group processes
 617 *
 618 *	Send SIGHUP and SIGCONT to the session leader and its process group.
 619 *	Optionally, signal all processes in the foreground process group.
 620 *
 621 *	Returns the number of processes in the session with this tty
 622 *	as their controlling terminal. This value is used to drop
 623 *	tty references for those processes.
 624 */
 625static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 626{
 627	struct task_struct *p;
 628	int refs = 0;
 629	struct pid *tty_pgrp = NULL;
 630
 631	read_lock(&tasklist_lock);
 632	if (tty->session) {
 633		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 634			spin_lock_irq(&p->sighand->siglock);
 635			if (p->signal->tty == tty) {
 636				p->signal->tty = NULL;
 637				/* We defer the dereferences outside fo
 638				   the tasklist lock */
 639				refs++;
 640			}
 641			if (!p->signal->leader) {
 642				spin_unlock_irq(&p->sighand->siglock);
 643				continue;
 644			}
 645			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 646			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 647			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 648			spin_lock(&tty->ctrl_lock);
 649			tty_pgrp = get_pid(tty->pgrp);
 650			if (tty->pgrp)
 651				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 652			spin_unlock(&tty->ctrl_lock);
 653			spin_unlock_irq(&p->sighand->siglock);
 654		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 655	}
 656	read_unlock(&tasklist_lock);
 657
 658	if (tty_pgrp) {
 659		if (exit_session)
 660			kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 661		put_pid(tty_pgrp);
 662	}
 
 663
 664	return refs;
 665}
 666
 667/**
 668 *	__tty_hangup		-	actual handler for hangup events
 669 *	@work: tty device
 
 
 
 
 
 
 
 
 
 670 *
 671 *	This can be called by a "kworker" kernel thread.  That is process
 672 *	synchronous but doesn't hold any locks, so we need to make sure we
 673 *	have the appropriate locks for what we're doing.
 674 *
 675 *	The hangup event clears any pending redirections onto the hung up
 676 *	device. It ensures future writes will error and it does the needed
 677 *	line discipline hangup and signal delivery. The tty object itself
 678 *	remains intact.
 
 
 
 679 *
 680 *	Locking:
 681 *		BTM
 682 *		  redirect lock for undoing redirection
 683 *		  file list lock for manipulating list of ttys
 684 *		  tty_ldiscs_lock from called functions
 685 *		  termios_rwsem resetting termios data
 686 *		  tasklist_lock to walk task list for hangup event
 687 *		    ->siglock to protect ->signal/->sighand
 688 */
 689static void __tty_hangup(struct tty_struct *tty, int exit_session)
 690{
 691	struct file *cons_filp = NULL;
 692	struct file *filp, *f = NULL;
 693	struct tty_file_private *priv;
 694	int    closecount = 0, n;
 695	int refs;
 696
 697	if (!tty)
 698		return;
 699
 700
 701	spin_lock(&redirect_lock);
 702	if (redirect && file_tty(redirect) == tty) {
 703		f = redirect;
 704		redirect = NULL;
 705	}
 706	spin_unlock(&redirect_lock);
 707
 708	tty_lock(tty);
 709
 710	if (test_bit(TTY_HUPPED, &tty->flags)) {
 711		tty_unlock(tty);
 712		return;
 713	}
 714
 
 
 
 
 
 
 
 
 715	/* inuse_filps is protected by the single tty lock,
 716	   this really needs to change if we want to flush the
 717	   workqueue with the lock held */
 
 718	check_tty_count(tty, "tty_hangup");
 719
 720	spin_lock(&tty->files_lock);
 721	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 722	list_for_each_entry(priv, &tty->tty_files, list) {
 723		filp = priv->file;
 724		if (filp->f_op->write == redirected_tty_write)
 725			cons_filp = filp;
 726		if (filp->f_op->write != tty_write)
 727			continue;
 728		closecount++;
 729		__tty_fasync(-1, filp, 0);	/* can't block */
 730		filp->f_op = &hung_up_tty_fops;
 731	}
 732	spin_unlock(&tty->files_lock);
 733
 734	refs = tty_signal_session_leader(tty, exit_session);
 735	/* Account for the p->signal references we killed */
 736	while (refs--)
 737		tty_kref_put(tty);
 738
 739	tty_ldisc_hangup(tty, cons_filp != NULL);
 740
 741	spin_lock_irq(&tty->ctrl_lock);
 742	clear_bit(TTY_THROTTLED, &tty->flags);
 743	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 744	put_pid(tty->session);
 745	put_pid(tty->pgrp);
 746	tty->session = NULL;
 747	tty->pgrp = NULL;
 748	tty->ctrl_status = 0;
 749	spin_unlock_irq(&tty->ctrl_lock);
 750
 751	/*
 752	 * If one of the devices matches a console pointer, we
 753	 * cannot just call hangup() because that will cause
 754	 * tty->count and state->count to go out of sync.
 755	 * So we just call close() the right number of times.
 756	 */
 757	if (cons_filp) {
 758		if (tty->ops->close)
 759			for (n = 0; n < closecount; n++)
 760				tty->ops->close(tty, cons_filp);
 761	} else if (tty->ops->hangup)
 762		tty->ops->hangup(tty);
 763	/*
 764	 * We don't want to have driver/ldisc interactions beyond the ones
 765	 * we did here. The driver layer expects no calls after ->hangup()
 766	 * from the ldisc side, which is now guaranteed.
 767	 */
 768	set_bit(TTY_HUPPED, &tty->flags);
 
 769	tty_unlock(tty);
 770
 771	if (f)
 772		fput(f);
 773}
 774
 775static void do_tty_hangup(struct work_struct *work)
 776{
 777	struct tty_struct *tty =
 778		container_of(work, struct tty_struct, hangup_work);
 779
 780	__tty_hangup(tty, 0);
 781}
 782
 783/**
 784 *	tty_hangup		-	trigger a hangup event
 785 *	@tty: tty to hangup
 786 *
 787 *	A carrier loss (virtual or otherwise) has occurred on this like
 788 *	schedule a hangup sequence to run after this event.
 789 */
 790
 791void tty_hangup(struct tty_struct *tty)
 792{
 793	tty_debug_hangup(tty, "hangup\n");
 794	schedule_work(&tty->hangup_work);
 795}
 796
 797EXPORT_SYMBOL(tty_hangup);
 798
 799/**
 800 *	tty_vhangup		-	process vhangup
 801 *	@tty: tty to hangup
 802 *
 803 *	The user has asked via system call for the terminal to be hung up.
 804 *	We do this synchronously so that when the syscall returns the process
 805 *	is complete. That guarantee is necessary for security reasons.
 806 */
 807
 808void tty_vhangup(struct tty_struct *tty)
 809{
 810	tty_debug_hangup(tty, "vhangup\n");
 811	__tty_hangup(tty, 0);
 812}
 813
 814EXPORT_SYMBOL(tty_vhangup);
 815
 816
 817/**
 818 *	tty_vhangup_self	-	process vhangup for own ctty
 819 *
 820 *	Perform a vhangup on the current controlling tty
 821 */
 822
 823void tty_vhangup_self(void)
 824{
 825	struct tty_struct *tty;
 826
 827	tty = get_current_tty();
 828	if (tty) {
 829		tty_vhangup(tty);
 830		tty_kref_put(tty);
 831	}
 832}
 833
 834/**
 835 *	tty_vhangup_session		-	hangup session leader exit
 836 *	@tty: tty to hangup
 837 *
 838 *	The session leader is exiting and hanging up its controlling terminal.
 839 *	Every process in the foreground process group is signalled SIGHUP.
 840 *
 841 *	We do this synchronously so that when the syscall returns the process
 842 *	is complete. That guarantee is necessary for security reasons.
 843 */
 844
 845static void tty_vhangup_session(struct tty_struct *tty)
 846{
 847	tty_debug_hangup(tty, "session hangup\n");
 848	__tty_hangup(tty, 1);
 849}
 850
 851/**
 852 *	tty_hung_up_p		-	was tty hung up
 853 *	@filp: file pointer of tty
 854 *
 855 *	Return true if the tty has been subject to a vhangup or a carrier
 856 *	loss
 857 */
 858
 859int tty_hung_up_p(struct file *filp)
 860{
 861	return (filp->f_op == &hung_up_tty_fops);
 862}
 863
 864EXPORT_SYMBOL(tty_hung_up_p);
 865
 866/**
 867 *	disassociate_ctty	-	disconnect controlling tty
 868 *	@on_exit: true if exiting so need to "hang up" the session
 869 *
 870 *	This function is typically called only by the session leader, when
 871 *	it wants to disassociate itself from its controlling tty.
 872 *
 873 *	It performs the following functions:
 874 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 875 * 	(2)  Clears the tty from being controlling the session
 876 * 	(3)  Clears the controlling tty for all processes in the
 877 * 		session group.
 878 *
 879 *	The argument on_exit is set to 1 if called when a process is
 880 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 881 *
 882 *	Locking:
 883 *		BTM is taken for hysterical raisins, and held when
 884 *		  called from no_tty().
 885 *		  tty_mutex is taken to protect tty
 886 *		  ->siglock is taken to protect ->signal/->sighand
 887 *		  tasklist_lock is taken to walk process list for sessions
 888 *		    ->siglock is taken to protect ->signal/->sighand
 889 */
 890
 891void disassociate_ctty(int on_exit)
 892{
 893	struct tty_struct *tty;
 894
 895	if (!current->signal->leader)
 896		return;
 897
 898	tty = get_current_tty();
 899	if (tty) {
 900		if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 901			tty_vhangup_session(tty);
 902		} else {
 903			struct pid *tty_pgrp = tty_get_pgrp(tty);
 904			if (tty_pgrp) {
 905				kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 906				if (!on_exit)
 907					kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 908				put_pid(tty_pgrp);
 909			}
 910		}
 911		tty_kref_put(tty);
 912
 913	} else if (on_exit) {
 914		struct pid *old_pgrp;
 915		spin_lock_irq(&current->sighand->siglock);
 916		old_pgrp = current->signal->tty_old_pgrp;
 917		current->signal->tty_old_pgrp = NULL;
 918		spin_unlock_irq(&current->sighand->siglock);
 919		if (old_pgrp) {
 920			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 921			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 922			put_pid(old_pgrp);
 923		}
 924		return;
 925	}
 926
 927	spin_lock_irq(&current->sighand->siglock);
 928	put_pid(current->signal->tty_old_pgrp);
 929	current->signal->tty_old_pgrp = NULL;
 930
 931	tty = tty_kref_get(current->signal->tty);
 932	if (tty) {
 933		unsigned long flags;
 934		spin_lock_irqsave(&tty->ctrl_lock, flags);
 935		put_pid(tty->session);
 936		put_pid(tty->pgrp);
 937		tty->session = NULL;
 938		tty->pgrp = NULL;
 939		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 940		tty_kref_put(tty);
 941	} else
 942		tty_debug_hangup(tty, "no current tty\n");
 943
 944	spin_unlock_irq(&current->sighand->siglock);
 945	/* Now clear signal->tty under the lock */
 946	read_lock(&tasklist_lock);
 947	session_clear_tty(task_session(current));
 948	read_unlock(&tasklist_lock);
 949}
 950
 951/**
 952 *
 953 *	no_tty	- Ensure the current process does not have a controlling tty
 954 */
 955void no_tty(void)
 956{
 957	/* FIXME: Review locking here. The tty_lock never covered any race
 958	   between a new association and proc_clear_tty but possible we need
 959	   to protect against this anyway */
 960	struct task_struct *tsk = current;
 961	disassociate_ctty(0);
 962	proc_clear_tty(tsk);
 963}
 964
 965
 966/**
 967 *	stop_tty	-	propagate flow control
 968 *	@tty: tty to stop
 969 *
 970 *	Perform flow control to the driver. May be called
 971 *	on an already stopped device and will not re-call the driver
 972 *	method.
 973 *
 974 *	This functionality is used by both the line disciplines for
 975 *	halting incoming flow and by the driver. It may therefore be
 976 *	called from any context, may be under the tty atomic_write_lock
 977 *	but not always.
 978 *
 979 *	Locking:
 980 *		flow_lock
 981 */
 982
 983void __stop_tty(struct tty_struct *tty)
 984{
 985	if (tty->stopped)
 986		return;
 987	tty->stopped = 1;
 988	if (tty->ops->stop)
 989		tty->ops->stop(tty);
 990}
 991
 992void stop_tty(struct tty_struct *tty)
 993{
 994	unsigned long flags;
 995
 996	spin_lock_irqsave(&tty->flow_lock, flags);
 997	__stop_tty(tty);
 998	spin_unlock_irqrestore(&tty->flow_lock, flags);
 999}
1000EXPORT_SYMBOL(stop_tty);
1001
1002/**
1003 *	start_tty	-	propagate flow control
1004 *	@tty: tty to start
1005 *
1006 *	Start a tty that has been stopped if at all possible. If this
1007 *	tty was previous stopped and is now being started, the driver
1008 *	start method is invoked and the line discipline woken.
1009 *
1010 *	Locking:
1011 *		flow_lock
1012 */
1013
1014void __start_tty(struct tty_struct *tty)
1015{
1016	if (!tty->stopped || tty->flow_stopped)
1017		return;
1018	tty->stopped = 0;
1019	if (tty->ops->start)
1020		tty->ops->start(tty);
1021	tty_wakeup(tty);
1022}
1023
 
 
 
 
 
 
 
 
 
 
 
1024void start_tty(struct tty_struct *tty)
1025{
1026	unsigned long flags;
1027
1028	spin_lock_irqsave(&tty->flow_lock, flags);
1029	__start_tty(tty);
1030	spin_unlock_irqrestore(&tty->flow_lock, flags);
1031}
1032EXPORT_SYMBOL(start_tty);
1033
1034static void tty_update_time(struct timespec *time)
1035{
1036	unsigned long sec = get_seconds();
1037
1038	/*
1039	 * We only care if the two values differ in anything other than the
1040	 * lower three bits (i.e every 8 seconds).  If so, then we can update
1041	 * the time of the tty device, otherwise it could be construded as a
1042	 * security leak to let userspace know the exact timing of the tty.
1043	 */
1044	if ((sec ^ time->tv_sec) & ~7)
1045		time->tv_sec = sec;
1046}
1047
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1048/**
1049 *	tty_read	-	read method for tty device files
1050 *	@file: pointer to tty file
1051 *	@buf: user buffer
1052 *	@count: size of user buffer
1053 *	@ppos: unused
1054 *
1055 *	Perform the read system call function on this terminal device. Checks
1056 *	for hung up devices before calling the line discipline method.
1057 *
1058 *	Locking:
1059 *		Locks the line discipline internally while needed. Multiple
1060 *	read calls may be outstanding in parallel.
1061 */
1062
1063static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1064			loff_t *ppos)
1065{
1066	int i;
 
1067	struct inode *inode = file_inode(file);
1068	struct tty_struct *tty = file_tty(file);
1069	struct tty_ldisc *ld;
1070
1071	if (tty_paranoia_check(tty, inode, "tty_read"))
1072		return -EIO;
1073	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1074		return -EIO;
1075
1076	/* We want to wait for the line discipline to sort out in this
1077	   situation */
 
1078	ld = tty_ldisc_ref_wait(tty);
1079	if (!ld)
1080		return hung_up_tty_read(file, buf, count, ppos);
 
1081	if (ld->ops->read)
1082		i = ld->ops->read(tty, file, buf, count);
1083	else
1084		i = -EIO;
1085	tty_ldisc_deref(ld);
1086
1087	if (i > 0)
1088		tty_update_time(&inode->i_atime);
1089
1090	return i;
1091}
1092
1093static void tty_write_unlock(struct tty_struct *tty)
1094{
1095	mutex_unlock(&tty->atomic_write_lock);
1096	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1097}
1098
1099static int tty_write_lock(struct tty_struct *tty, int ndelay)
1100{
1101	if (!mutex_trylock(&tty->atomic_write_lock)) {
1102		if (ndelay)
1103			return -EAGAIN;
1104		if (mutex_lock_interruptible(&tty->atomic_write_lock))
1105			return -ERESTARTSYS;
1106	}
1107	return 0;
1108}
1109
1110/*
1111 * Split writes up in sane blocksizes to avoid
1112 * denial-of-service type attacks
1113 */
1114static inline ssize_t do_tty_write(
1115	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1116	struct tty_struct *tty,
1117	struct file *file,
1118	const char __user *buf,
1119	size_t count)
1120{
 
1121	ssize_t ret, written = 0;
1122	unsigned int chunk;
1123
1124	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1125	if (ret < 0)
1126		return ret;
1127
1128	/*
1129	 * We chunk up writes into a temporary buffer. This
1130	 * simplifies low-level drivers immensely, since they
1131	 * don't have locking issues and user mode accesses.
1132	 *
1133	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1134	 * big chunk-size..
1135	 *
1136	 * The default chunk-size is 2kB, because the NTTY
1137	 * layer has problems with bigger chunks. It will
1138	 * claim to be able to handle more characters than
1139	 * it actually does.
1140	 *
1141	 * FIXME: This can probably go away now except that 64K chunks
1142	 * are too likely to fail unless switched to vmalloc...
1143	 */
1144	chunk = 2048;
1145	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1146		chunk = 65536;
1147	if (count < chunk)
1148		chunk = count;
1149
1150	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1151	if (tty->write_cnt < chunk) {
1152		unsigned char *buf_chunk;
1153
1154		if (chunk < 1024)
1155			chunk = 1024;
1156
1157		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1158		if (!buf_chunk) {
1159			ret = -ENOMEM;
1160			goto out;
1161		}
1162		kfree(tty->write_buf);
1163		tty->write_cnt = chunk;
1164		tty->write_buf = buf_chunk;
1165	}
1166
1167	/* Do the write .. */
1168	for (;;) {
1169		size_t size = count;
 
1170		if (size > chunk)
1171			size = chunk;
 
1172		ret = -EFAULT;
1173		if (copy_from_user(tty->write_buf, buf, size))
1174			break;
 
1175		ret = write(tty, file, tty->write_buf, size);
1176		if (ret <= 0)
1177			break;
 
1178		written += ret;
1179		buf += ret;
 
 
 
 
 
 
1180		count -= ret;
1181		if (!count)
1182			break;
1183		ret = -ERESTARTSYS;
1184		if (signal_pending(current))
1185			break;
1186		cond_resched();
1187	}
1188	if (written) {
1189		tty_update_time(&file_inode(file)->i_mtime);
1190		ret = written;
1191	}
1192out:
1193	tty_write_unlock(tty);
1194	return ret;
1195}
1196
1197/**
1198 * tty_write_message - write a message to a certain tty, not just the console.
1199 * @tty: the destination tty_struct
1200 * @msg: the message to write
1201 *
1202 * This is used for messages that need to be redirected to a specific tty.
1203 * We don't put it into the syslog queue right now maybe in the future if
1204 * really needed.
1205 *
1206 * We must still hold the BTM and test the CLOSING flag for the moment.
1207 */
1208
1209void tty_write_message(struct tty_struct *tty, char *msg)
1210{
1211	if (tty) {
1212		mutex_lock(&tty->atomic_write_lock);
1213		tty_lock(tty);
1214		if (tty->ops->write && tty->count > 0)
1215			tty->ops->write(tty, msg, strlen(msg));
1216		tty_unlock(tty);
1217		tty_write_unlock(tty);
1218	}
1219	return;
1220}
1221
1222
1223/**
1224 *	tty_write		-	write method for tty device file
1225 *	@file: tty file pointer
1226 *	@buf: user data to write
1227 *	@count: bytes to write
1228 *	@ppos: unused
1229 *
1230 *	Write data to a tty device via the line discipline.
1231 *
1232 *	Locking:
1233 *		Locks the line discipline as required
1234 *		Writes to the tty driver are serialized by the atomic_write_lock
1235 *	and are then processed in chunks to the device. The line discipline
1236 *	write method will not be invoked in parallel for each device.
1237 */
1238
1239static ssize_t tty_write(struct file *file, const char __user *buf,
1240						size_t count, loff_t *ppos)
1241{
1242	struct tty_struct *tty = file_tty(file);
1243 	struct tty_ldisc *ld;
1244	ssize_t ret;
1245
1246	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1247		return -EIO;
1248	if (!tty || !tty->ops->write ||
1249		(test_bit(TTY_IO_ERROR, &tty->flags)))
1250			return -EIO;
1251	/* Short term debug to catch buggy drivers */
1252	if (tty->ops->write_room == NULL)
1253		tty_err(tty, "missing write_room method\n");
1254	ld = tty_ldisc_ref_wait(tty);
1255	if (!ld)
1256		return hung_up_tty_write(file, buf, count, ppos);
1257	if (!ld->ops->write)
1258		ret = -EIO;
1259	else
1260		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1261	tty_ldisc_deref(ld);
1262	return ret;
1263}
1264
1265ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1266						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1267{
1268	struct file *p = NULL;
1269
1270	spin_lock(&redirect_lock);
1271	if (redirect)
1272		p = get_file(redirect);
1273	spin_unlock(&redirect_lock);
1274
 
 
 
 
1275	if (p) {
1276		ssize_t res;
1277		res = vfs_write(p, buf, count, &p->f_pos);
 
1278		fput(p);
1279		return res;
1280	}
1281	return tty_write(file, buf, count, ppos);
1282}
1283
1284/**
1285 *	tty_send_xchar	-	send priority character
 
 
1286 *
1287 *	Send a high priority character to the tty even if stopped
1288 *
1289 *	Locking: none for xchar method, write ordering for write method.
1290 */
1291
1292int tty_send_xchar(struct tty_struct *tty, char ch)
1293{
1294	int	was_stopped = tty->stopped;
1295
1296	if (tty->ops->send_xchar) {
1297		down_read(&tty->termios_rwsem);
1298		tty->ops->send_xchar(tty, ch);
1299		up_read(&tty->termios_rwsem);
1300		return 0;
1301	}
1302
1303	if (tty_write_lock(tty, 0) < 0)
1304		return -ERESTARTSYS;
1305
1306	down_read(&tty->termios_rwsem);
1307	if (was_stopped)
1308		start_tty(tty);
1309	tty->ops->write(tty, &ch, 1);
1310	if (was_stopped)
1311		stop_tty(tty);
1312	up_read(&tty->termios_rwsem);
1313	tty_write_unlock(tty);
1314	return 0;
1315}
1316
1317static char ptychar[] = "pqrstuvwxyzabcde";
1318
1319/**
1320 *	pty_line_name	-	generate name for a pty
1321 *	@driver: the tty driver in use
1322 *	@index: the minor number
1323 *	@p: output buffer of at least 6 bytes
1324 *
1325 *	Generate a name from a driver reference and write it to the output
1326 *	buffer.
1327 *
1328 *	Locking: None
1329 */
1330static void pty_line_name(struct tty_driver *driver, int index, char *p)
1331{
 
1332	int i = index + driver->name_base;
1333	/* ->name is initialized to "ttyp", but "tty" is expected */
1334	sprintf(p, "%s%c%x",
1335		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1336		ptychar[i >> 4 & 0xf], i & 0xf);
1337}
1338
1339/**
1340 *	tty_line_name	-	generate name for a tty
1341 *	@driver: the tty driver in use
1342 *	@index: the minor number
1343 *	@p: output buffer of at least 7 bytes
1344 *
1345 *	Generate a name from a driver reference and write it to the output
1346 *	buffer.
1347 *
1348 *	Locking: None
1349 */
1350static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1351{
1352	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1353		return sprintf(p, "%s", driver->name);
1354	else
1355		return sprintf(p, "%s%d", driver->name,
1356			       index + driver->name_base);
1357}
1358
1359/**
1360 *	tty_driver_lookup_tty() - find an existing tty, if any
1361 *	@driver: the driver for the tty
1362 *	@idx:	 the minor number
 
1363 *
1364 *	Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1365 *	driver lookup() method returns an error.
1366 *
1367 *	Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1368 */
1369static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1370		struct file *file, int idx)
1371{
1372	struct tty_struct *tty;
1373
1374	if (driver->ops->lookup)
1375		tty = driver->ops->lookup(driver, file, idx);
 
 
 
1376	else
1377		tty = driver->ttys[idx];
1378
1379	if (!IS_ERR(tty))
1380		tty_kref_get(tty);
1381	return tty;
1382}
1383
1384/**
1385 *	tty_init_termios	-  helper for termios setup
1386 *	@tty: the tty to set up
1387 *
1388 *	Initialise the termios structures for this tty. Thus runs under
1389 *	the tty_mutex currently so we can be relaxed about ordering.
1390 */
1391
1392void tty_init_termios(struct tty_struct *tty)
1393{
1394	struct ktermios *tp;
1395	int idx = tty->index;
1396
1397	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1398		tty->termios = tty->driver->init_termios;
1399	else {
1400		/* Check for lazy saved data */
1401		tp = tty->driver->termios[idx];
1402		if (tp != NULL) {
1403			tty->termios = *tp;
1404			tty->termios.c_line  = tty->driver->init_termios.c_line;
1405		} else
1406			tty->termios = tty->driver->init_termios;
1407	}
1408	/* Compatibility until drivers always set this */
1409	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1410	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1411}
1412EXPORT_SYMBOL_GPL(tty_init_termios);
1413
 
 
 
 
 
 
 
 
1414int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1415{
1416	tty_init_termios(tty);
1417	tty_driver_kref_get(driver);
1418	tty->count++;
1419	driver->ttys[tty->index] = tty;
1420	return 0;
1421}
1422EXPORT_SYMBOL_GPL(tty_standard_install);
1423
1424/**
1425 *	tty_driver_install_tty() - install a tty entry in the driver
1426 *	@driver: the driver for the tty
1427 *	@tty: the tty
1428 *
1429 *	Install a tty object into the driver tables. The tty->index field
1430 *	will be set by the time this is called. This method is responsible
1431 *	for ensuring any need additional structures are allocated and
1432 *	configured.
1433 *
1434 *	Locking: tty_mutex for now
1435 */
1436static int tty_driver_install_tty(struct tty_driver *driver,
1437						struct tty_struct *tty)
1438{
1439	return driver->ops->install ? driver->ops->install(driver, tty) :
1440		tty_standard_install(driver, tty);
1441}
1442
1443/**
1444 *	tty_driver_remove_tty() - remove a tty from the driver tables
1445 *	@driver: the driver for the tty
1446 *	@idx:	 the minor number
1447 *
1448 *	Remvoe a tty object from the driver tables. The tty->index field
1449 *	will be set by the time this is called.
1450 *
1451 *	Locking: tty_mutex for now
1452 */
1453static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1454{
1455	if (driver->ops->remove)
1456		driver->ops->remove(driver, tty);
1457	else
1458		driver->ttys[tty->index] = NULL;
1459}
1460
1461/*
1462 * 	tty_reopen()	- fast re-open of an open tty
1463 * 	@tty	- the tty to open
1464 *
1465 *	Return 0 on success, -errno on error.
1466 *	Re-opens on master ptys are not allowed and return -EIO.
1467 *
1468 *	Locking: Caller must hold tty_lock
 
1469 */
1470static int tty_reopen(struct tty_struct *tty)
1471{
1472	struct tty_driver *driver = tty->driver;
 
 
1473
1474	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1475	    driver->subtype == PTY_TYPE_MASTER)
1476		return -EIO;
1477
1478	if (!tty->count)
1479		return -EAGAIN;
1480
1481	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1482		return -EBUSY;
1483
1484	tty->count++;
 
 
 
 
 
 
 
 
 
 
 
1485
1486	if (!tty->ldisc)
1487		return tty_ldisc_reinit(tty, tty->termios.c_line);
1488
1489	return 0;
1490}
1491
1492/**
1493 *	tty_init_dev		-	initialise a tty device
1494 *	@driver: tty driver we are opening a device on
1495 *	@idx: device index
1496 *	@ret_tty: returned tty structure
1497 *
1498 *	Prepare a tty device. This may not be a "new" clean device but
1499 *	could also be an active device. The pty drivers require special
1500 *	handling because of this.
1501 *
1502 *	Locking:
1503 *		The function is called under the tty_mutex, which
1504 *	protects us from the tty struct or driver itself going away.
1505 *
1506 *	On exit the tty device has the line discipline attached and
1507 *	a reference count of 1. If a pair was created for pty/tty use
1508 *	and the other was a pty master then it too has a reference count of 1.
1509 *
1510 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1511 * failed open.  The new code protects the open with a mutex, so it's
1512 * really quite straightforward.  The mutex locking can probably be
1513 * relaxed for the (most common) case of reopening a tty.
1514 */
1515
1516struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1517{
1518	struct tty_struct *tty;
1519	int retval;
1520
1521	/*
1522	 * First time open is complex, especially for PTY devices.
1523	 * This code guarantees that either everything succeeds and the
1524	 * TTY is ready for operation, or else the table slots are vacated
1525	 * and the allocated memory released.  (Except that the termios
1526	 * and locked termios may be retained.)
1527	 */
1528
1529	if (!try_module_get(driver->owner))
1530		return ERR_PTR(-ENODEV);
1531
1532	tty = alloc_tty_struct(driver, idx);
1533	if (!tty) {
1534		retval = -ENOMEM;
1535		goto err_module_put;
1536	}
1537
1538	tty_lock(tty);
1539	retval = tty_driver_install_tty(driver, tty);
1540	if (retval < 0)
1541		goto err_free_tty;
1542
1543	if (!tty->port)
1544		tty->port = driver->ports[idx];
1545
1546	WARN_RATELIMIT(!tty->port,
1547			"%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1548			__func__, tty->driver->name);
 
 
 
1549
 
 
 
1550	tty->port->itty = tty;
1551
1552	/*
1553	 * Structures all installed ... call the ldisc open routines.
1554	 * If we fail here just call release_tty to clean up.  No need
1555	 * to decrement the use counts, as release_tty doesn't care.
1556	 */
1557	retval = tty_ldisc_setup(tty, tty->link);
1558	if (retval)
1559		goto err_release_tty;
 
1560	/* Return the tty locked so that it cannot vanish under the caller */
1561	return tty;
1562
1563err_free_tty:
1564	tty_unlock(tty);
1565	free_tty_struct(tty);
1566err_module_put:
1567	module_put(driver->owner);
1568	return ERR_PTR(retval);
1569
1570	/* call the tty release_tty routine to clean out this slot */
1571err_release_tty:
1572	tty_unlock(tty);
1573	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1574			     retval, idx);
 
 
1575	release_tty(tty, idx);
1576	return ERR_PTR(retval);
1577}
1578
1579static void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1580{
1581	struct ktermios *tp;
1582	int idx = tty->index;
1583
1584	/* If the port is going to reset then it has no termios to save */
1585	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1586		return;
1587
1588	/* Stash the termios data */
1589	tp = tty->driver->termios[idx];
1590	if (tp == NULL) {
1591		tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1592		if (tp == NULL)
1593			return;
1594		tty->driver->termios[idx] = tp;
1595	}
1596	*tp = tty->termios;
1597}
 
1598
1599/**
1600 *	tty_flush_works		-	flush all works of a tty/pty pair
1601 *	@tty: tty device to flush works for (or either end of a pty pair)
1602 *
1603 *	Sync flush all works belonging to @tty (and the 'other' tty).
1604 */
1605static void tty_flush_works(struct tty_struct *tty)
1606{
1607	flush_work(&tty->SAK_work);
1608	flush_work(&tty->hangup_work);
1609	if (tty->link) {
1610		flush_work(&tty->link->SAK_work);
1611		flush_work(&tty->link->hangup_work);
1612	}
1613}
1614
1615/**
1616 *	release_one_tty		-	release tty structure memory
1617 *	@kref: kref of tty we are obliterating
1618 *
1619 *	Releases memory associated with a tty structure, and clears out the
1620 *	driver table slots. This function is called when a device is no longer
1621 *	in use. It also gets called when setup of a device fails.
1622 *
1623 *	Locking:
1624 *		takes the file list lock internally when working on the list
1625 *	of ttys that the driver keeps.
1626 *
1627 *	This method gets called from a work queue so that the driver private
1628 *	cleanup ops can sleep (needed for USB at least)
1629 */
1630static void release_one_tty(struct work_struct *work)
1631{
1632	struct tty_struct *tty =
1633		container_of(work, struct tty_struct, hangup_work);
1634	struct tty_driver *driver = tty->driver;
1635	struct module *owner = driver->owner;
1636
1637	if (tty->ops->cleanup)
1638		tty->ops->cleanup(tty);
1639
1640	tty->magic = 0;
1641	tty_driver_kref_put(driver);
1642	module_put(owner);
1643
1644	spin_lock(&tty->files_lock);
1645	list_del_init(&tty->tty_files);
1646	spin_unlock(&tty->files_lock);
1647
1648	put_pid(tty->pgrp);
1649	put_pid(tty->session);
1650	free_tty_struct(tty);
1651}
1652
1653static void queue_release_one_tty(struct kref *kref)
1654{
1655	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1656
1657	/* The hangup queue is now free so we can reuse it rather than
1658	   waste a chunk of memory for each port */
 
1659	INIT_WORK(&tty->hangup_work, release_one_tty);
1660	schedule_work(&tty->hangup_work);
1661}
1662
1663/**
1664 *	tty_kref_put		-	release a tty kref
1665 *	@tty: tty device
1666 *
1667 *	Release a reference to a tty device and if need be let the kref
1668 *	layer destruct the object for us
1669 */
1670
1671void tty_kref_put(struct tty_struct *tty)
1672{
1673	if (tty)
1674		kref_put(&tty->kref, queue_release_one_tty);
1675}
1676EXPORT_SYMBOL(tty_kref_put);
1677
1678/**
1679 *	release_tty		-	release tty structure memory
 
 
1680 *
1681 *	Release both @tty and a possible linked partner (think pty pair),
1682 *	and decrement the refcount of the backing module.
1683 *
1684 *	Locking:
1685 *		tty_mutex
1686 *		takes the file list lock internally when working on the list
1687 *	of ttys that the driver keeps.
1688 *
 
 
 
 
1689 */
1690static void release_tty(struct tty_struct *tty, int idx)
1691{
1692	/* This should always be true but check for the moment */
1693	WARN_ON(tty->index != idx);
1694	WARN_ON(!mutex_is_locked(&tty_mutex));
1695	if (tty->ops->shutdown)
1696		tty->ops->shutdown(tty);
1697	tty_free_termios(tty);
1698	tty_driver_remove_tty(tty->driver, tty);
1699	tty->port->itty = NULL;
 
1700	if (tty->link)
1701		tty->link->port->itty = NULL;
1702	tty_buffer_cancel_work(tty->port);
 
 
 
1703
1704	tty_kref_put(tty->link);
1705	tty_kref_put(tty);
1706}
1707
1708/**
1709 *	tty_release_checks - check a tty before real release
1710 *	@tty: tty to check
1711 *	@o_tty: link of @tty (if any)
1712 *	@idx: index of the tty
1713 *
1714 *	Performs some paranoid checking before true release of the @tty.
1715 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1716 */
1717static int tty_release_checks(struct tty_struct *tty, int idx)
1718{
1719#ifdef TTY_PARANOIA_CHECK
1720	if (idx < 0 || idx >= tty->driver->num) {
1721		tty_debug(tty, "bad idx %d\n", idx);
1722		return -1;
1723	}
1724
1725	/* not much to check for devpts */
1726	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1727		return 0;
1728
1729	if (tty != tty->driver->ttys[idx]) {
1730		tty_debug(tty, "bad driver table[%d] = %p\n",
1731			  idx, tty->driver->ttys[idx]);
1732		return -1;
1733	}
1734	if (tty->driver->other) {
1735		struct tty_struct *o_tty = tty->link;
1736
1737		if (o_tty != tty->driver->other->ttys[idx]) {
1738			tty_debug(tty, "bad other table[%d] = %p\n",
1739				  idx, tty->driver->other->ttys[idx]);
1740			return -1;
1741		}
1742		if (o_tty->link != tty) {
1743			tty_debug(tty, "bad link = %p\n", o_tty->link);
1744			return -1;
1745		}
1746	}
1747#endif
1748	return 0;
1749}
1750
1751/**
1752 *	tty_release		-	vfs callback for close
1753 *	@inode: inode of tty
1754 *	@filp: file pointer for handle to tty
1755 *
1756 *	Called the last time each file handle is closed that references
1757 *	this tty. There may however be several such references.
1758 *
1759 *	Locking:
1760 *		Takes bkl. See tty_release_dev
1761 *
1762 * Even releasing the tty structures is a tricky business.. We have
1763 * to be very careful that the structures are all released at the
1764 * same time, as interrupts might otherwise get the wrong pointers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1765 *
1766 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1767 * lead to double frees or releasing memory still in use.
1768 */
1769
1770int tty_release(struct inode *inode, struct file *filp)
1771{
1772	struct tty_struct *tty = file_tty(filp);
1773	struct tty_struct *o_tty = NULL;
1774	int	do_sleep, final;
1775	int	idx;
1776	long	timeout = 0;
1777	int	once = 1;
1778
1779	if (tty_paranoia_check(tty, inode, __func__))
1780		return 0;
1781
1782	tty_lock(tty);
1783	check_tty_count(tty, __func__);
1784
1785	__tty_fasync(-1, filp, 0);
1786
1787	idx = tty->index;
1788	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1789	    tty->driver->subtype == PTY_TYPE_MASTER)
1790		o_tty = tty->link;
1791
1792	if (tty_release_checks(tty, idx)) {
1793		tty_unlock(tty);
1794		return 0;
1795	}
1796
1797	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1798
1799	if (tty->ops->close)
1800		tty->ops->close(tty, filp);
1801
1802	/* If tty is pty master, lock the slave pty (stable lock order) */
1803	tty_lock_slave(o_tty);
1804
1805	/*
1806	 * Sanity check: if tty->count is going to zero, there shouldn't be
1807	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1808	 * wait queues and kick everyone out _before_ actually starting to
1809	 * close.  This ensures that we won't block while releasing the tty
1810	 * structure.
1811	 *
1812	 * The test for the o_tty closing is necessary, since the master and
1813	 * slave sides may close in any order.  If the slave side closes out
1814	 * first, its count will be one, since the master side holds an open.
1815	 * Thus this test wouldn't be triggered at the time the slave closed,
1816	 * so we do it now.
1817	 */
1818	while (1) {
1819		do_sleep = 0;
1820
1821		if (tty->count <= 1) {
1822			if (waitqueue_active(&tty->read_wait)) {
1823				wake_up_poll(&tty->read_wait, POLLIN);
1824				do_sleep++;
1825			}
1826			if (waitqueue_active(&tty->write_wait)) {
1827				wake_up_poll(&tty->write_wait, POLLOUT);
1828				do_sleep++;
1829			}
1830		}
1831		if (o_tty && o_tty->count <= 1) {
1832			if (waitqueue_active(&o_tty->read_wait)) {
1833				wake_up_poll(&o_tty->read_wait, POLLIN);
1834				do_sleep++;
1835			}
1836			if (waitqueue_active(&o_tty->write_wait)) {
1837				wake_up_poll(&o_tty->write_wait, POLLOUT);
1838				do_sleep++;
1839			}
1840		}
1841		if (!do_sleep)
1842			break;
1843
1844		if (once) {
1845			once = 0;
1846			tty_warn(tty, "read/write wait queue active!\n");
1847		}
1848		schedule_timeout_killable(timeout);
1849		if (timeout < 120 * HZ)
1850			timeout = 2 * timeout + 1;
1851		else
1852			timeout = MAX_SCHEDULE_TIMEOUT;
1853	}
1854
1855	if (o_tty) {
1856		if (--o_tty->count < 0) {
1857			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1858			o_tty->count = 0;
1859		}
1860	}
1861	if (--tty->count < 0) {
1862		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1863		tty->count = 0;
1864	}
1865
1866	/*
1867	 * We've decremented tty->count, so we need to remove this file
1868	 * descriptor off the tty->tty_files list; this serves two
1869	 * purposes:
1870	 *  - check_tty_count sees the correct number of file descriptors
1871	 *    associated with this tty.
1872	 *  - do_tty_hangup no longer sees this file descriptor as
1873	 *    something that needs to be handled for hangups.
1874	 */
1875	tty_del_file(filp);
1876
1877	/*
1878	 * Perform some housekeeping before deciding whether to return.
1879	 *
1880	 * If _either_ side is closing, make sure there aren't any
1881	 * processes that still think tty or o_tty is their controlling
1882	 * tty.
1883	 */
1884	if (!tty->count) {
1885		read_lock(&tasklist_lock);
1886		session_clear_tty(tty->session);
1887		if (o_tty)
1888			session_clear_tty(o_tty->session);
1889		read_unlock(&tasklist_lock);
1890	}
1891
1892	/* check whether both sides are closing ... */
1893	final = !tty->count && !(o_tty && o_tty->count);
1894
1895	tty_unlock_slave(o_tty);
1896	tty_unlock(tty);
1897
1898	/* At this point, the tty->count == 0 should ensure a dead tty
1899	   cannot be re-opened by a racing opener */
 
1900
1901	if (!final)
1902		return 0;
1903
1904	tty_debug_hangup(tty, "final close\n");
1905	/*
1906	 * Ask the line discipline code to release its structures
1907	 */
1908	tty_ldisc_release(tty);
1909
1910	/* Wait for pending work before tty destruction commmences */
1911	tty_flush_works(tty);
1912
1913	tty_debug_hangup(tty, "freeing structure\n");
1914	/*
1915	 * The release_tty function takes care of the details of clearing
1916	 * the slots and preserving the termios structure. The tty_unlock_pair
1917	 * should be safe as we keep a kref while the tty is locked (so the
1918	 * unlock never unlocks a freed tty).
1919	 */
1920	mutex_lock(&tty_mutex);
1921	release_tty(tty, idx);
1922	mutex_unlock(&tty_mutex);
1923
 
1924	return 0;
1925}
1926
1927/**
1928 *	tty_open_current_tty - get locked tty of current task
1929 *	@device: device number
1930 *	@filp: file pointer to tty
1931 *	@return: locked tty of the current task iff @device is /dev/tty
1932 *
1933 *	Performs a re-open of the current task's controlling tty.
1934 *
1935 *	We cannot return driver and index like for the other nodes because
1936 *	devpts will not work then. It expects inodes to be from devpts FS.
1937 */
1938static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1939{
1940	struct tty_struct *tty;
1941	int retval;
1942
1943	if (device != MKDEV(TTYAUX_MAJOR, 0))
1944		return NULL;
1945
1946	tty = get_current_tty();
1947	if (!tty)
1948		return ERR_PTR(-ENXIO);
1949
1950	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1951	/* noctty = 1; */
1952	tty_lock(tty);
1953	tty_kref_put(tty);	/* safe to drop the kref now */
1954
1955	retval = tty_reopen(tty);
1956	if (retval < 0) {
1957		tty_unlock(tty);
1958		tty = ERR_PTR(retval);
1959	}
1960	return tty;
1961}
1962
1963/**
1964 *	tty_lookup_driver - lookup a tty driver for a given device file
1965 *	@device: device number
1966 *	@filp: file pointer to tty
1967 *	@noctty: set if the device should not become a controlling tty
1968 *	@index: index for the device in the @return driver
1969 *	@return: driver for this inode (with increased refcount)
1970 *
1971 * 	If @return is not erroneous, the caller is responsible to decrement the
1972 * 	refcount by tty_driver_kref_put.
1973 *
1974 *	Locking: tty_mutex protects get_tty_driver
 
 
1975 */
1976static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1977		int *index)
1978{
1979	struct tty_driver *driver;
1980
1981	switch (device) {
1982#ifdef CONFIG_VT
1983	case MKDEV(TTY_MAJOR, 0): {
1984		extern struct tty_driver *console_driver;
 
1985		driver = tty_driver_kref_get(console_driver);
1986		*index = fg_console;
1987		break;
1988	}
1989#endif
1990	case MKDEV(TTYAUX_MAJOR, 1): {
1991		struct tty_driver *console_driver = console_device(index);
 
1992		if (console_driver) {
1993			driver = tty_driver_kref_get(console_driver);
1994			if (driver) {
1995				/* Don't let /dev/console block */
1996				filp->f_flags |= O_NONBLOCK;
1997				break;
1998			}
1999		}
 
 
2000		return ERR_PTR(-ENODEV);
2001	}
2002	default:
2003		driver = get_tty_driver(device, index);
2004		if (!driver)
2005			return ERR_PTR(-ENODEV);
2006		break;
2007	}
2008	return driver;
2009}
2010
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2011/**
2012 *	tty_open_by_driver	-	open a tty device
2013 *	@device: dev_t of device to open
2014 *	@inode: inode of device file
2015 *	@filp: file pointer to tty
2016 *
2017 *	Performs the driver lookup, checks for a reopen, or otherwise
2018 *	performs the first-time tty initialization.
2019 *
2020 *	Returns the locked initialized or re-opened &tty_struct
2021 *
2022 *	Claims the global tty_mutex to serialize:
2023 *	  - concurrent first-time tty initialization
2024 *	  - concurrent tty driver removal w/ lookup
2025 *	  - concurrent tty removal from driver table
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2026 */
2027static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
2028					     struct file *filp)
2029{
2030	struct tty_struct *tty;
2031	struct tty_driver *driver = NULL;
2032	int index = -1;
2033	int retval;
2034
2035	mutex_lock(&tty_mutex);
2036	driver = tty_lookup_driver(device, filp, &index);
2037	if (IS_ERR(driver)) {
2038		mutex_unlock(&tty_mutex);
2039		return ERR_CAST(driver);
2040	}
2041
2042	/* check whether we're reopening an existing tty */
2043	tty = tty_driver_lookup_tty(driver, filp, index);
2044	if (IS_ERR(tty)) {
2045		mutex_unlock(&tty_mutex);
2046		goto out;
2047	}
2048
2049	if (tty) {
 
 
 
 
 
 
2050		mutex_unlock(&tty_mutex);
2051		retval = tty_lock_interruptible(tty);
2052		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2053		if (retval) {
2054			if (retval == -EINTR)
2055				retval = -ERESTARTSYS;
2056			tty = ERR_PTR(retval);
2057			goto out;
2058		}
2059		retval = tty_reopen(tty);
2060		if (retval < 0) {
2061			tty_unlock(tty);
2062			tty = ERR_PTR(retval);
2063		}
2064	} else { /* Returns with the tty_lock held for now */
2065		tty = tty_init_dev(driver, index);
2066		mutex_unlock(&tty_mutex);
2067	}
2068out:
2069	tty_driver_kref_put(driver);
2070	return tty;
2071}
2072
2073/**
2074 *	tty_open		-	open a tty device
2075 *	@inode: inode of device file
2076 *	@filp: file pointer to tty
2077 *
2078 *	tty_open and tty_release keep up the tty count that contains the
2079 *	number of opens done on a tty. We cannot use the inode-count, as
2080 *	different inodes might point to the same tty.
2081 *
2082 *	Open-counting is needed for pty masters, as well as for keeping
2083 *	track of serial lines: DTR is dropped when the last close happens.
2084 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
2085 *
2086 *	The termios state of a pty is reset on first open so that
2087 *	settings don't persist across reuse.
2088 *
2089 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
2090 *		 tty->count should protect the rest.
2091 *		 ->siglock protects ->signal/->sighand
 
2092 *
2093 *	Note: the tty_unlock/lock cases without a ref are only safe due to
2094 *	tty_mutex
2095 */
2096
2097static int tty_open(struct inode *inode, struct file *filp)
2098{
2099	struct tty_struct *tty;
2100	int noctty, retval;
2101	dev_t device = inode->i_rdev;
2102	unsigned saved_flags = filp->f_flags;
2103
2104	nonseekable_open(inode, filp);
2105
2106retry_open:
2107	retval = tty_alloc_file(filp);
2108	if (retval)
2109		return -ENOMEM;
2110
2111	tty = tty_open_current_tty(device, filp);
2112	if (!tty)
2113		tty = tty_open_by_driver(device, inode, filp);
2114
2115	if (IS_ERR(tty)) {
2116		tty_free_file(filp);
2117		retval = PTR_ERR(tty);
2118		if (retval != -EAGAIN || signal_pending(current))
2119			return retval;
2120		schedule();
2121		goto retry_open;
2122	}
2123
2124	tty_add_file(tty, filp);
2125
2126	check_tty_count(tty, __func__);
2127	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2128
2129	if (tty->ops->open)
2130		retval = tty->ops->open(tty, filp);
2131	else
2132		retval = -ENODEV;
2133	filp->f_flags = saved_flags;
2134
2135	if (retval) {
2136		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2137
2138		tty_unlock(tty); /* need to call tty_release without BTM */
2139		tty_release(inode, filp);
2140		if (retval != -ERESTARTSYS)
2141			return retval;
2142
2143		if (signal_pending(current))
2144			return retval;
2145
2146		schedule();
2147		/*
2148		 * Need to reset f_op in case a hangup happened.
2149		 */
2150		if (tty_hung_up_p(filp))
2151			filp->f_op = &tty_fops;
2152		goto retry_open;
2153	}
2154	clear_bit(TTY_HUPPED, &tty->flags);
2155
2156
2157	read_lock(&tasklist_lock);
2158	spin_lock_irq(&current->sighand->siglock);
2159	noctty = (filp->f_flags & O_NOCTTY) ||
2160			(IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2161			device == MKDEV(TTYAUX_MAJOR, 1) ||
2162			(tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2163			 tty->driver->subtype == PTY_TYPE_MASTER);
2164
2165	if (!noctty &&
2166	    current->signal->leader &&
2167	    !current->signal->tty &&
2168	    tty->session == NULL) {
2169		/*
2170		 * Don't let a process that only has write access to the tty
2171		 * obtain the privileges associated with having a tty as
2172		 * controlling terminal (being able to reopen it with full
2173		 * access through /dev/tty, being able to perform pushback).
2174		 * Many distributions set the group of all ttys to "tty" and
2175		 * grant write-only access to all terminals for setgid tty
2176		 * binaries, which should not imply full privileges on all ttys.
2177		 *
2178		 * This could theoretically break old code that performs open()
2179		 * on a write-only file descriptor. In that case, it might be
2180		 * necessary to also permit this if
2181		 * inode_permission(inode, MAY_READ) == 0.
2182		 */
2183		if (filp->f_mode & FMODE_READ)
2184			__proc_set_tty(tty);
2185	}
2186	spin_unlock_irq(&current->sighand->siglock);
2187	read_unlock(&tasklist_lock);
2188	tty_unlock(tty);
2189	return 0;
2190}
2191
2192
2193
2194/**
2195 *	tty_poll	-	check tty status
2196 *	@filp: file being polled
2197 *	@wait: poll wait structures to update
2198 *
2199 *	Call the line discipline polling method to obtain the poll
2200 *	status of the device.
2201 *
2202 *	Locking: locks called line discipline but ldisc poll method
2203 *	may be re-entered freely by other callers.
2204 */
2205
2206static unsigned int tty_poll(struct file *filp, poll_table *wait)
2207{
2208	struct tty_struct *tty = file_tty(filp);
2209	struct tty_ldisc *ld;
2210	int ret = 0;
2211
2212	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2213		return 0;
2214
2215	ld = tty_ldisc_ref_wait(tty);
2216	if (!ld)
2217		return hung_up_tty_poll(filp, wait);
2218	if (ld->ops->poll)
2219		ret = ld->ops->poll(tty, filp, wait);
2220	tty_ldisc_deref(ld);
2221	return ret;
2222}
2223
2224static int __tty_fasync(int fd, struct file *filp, int on)
2225{
2226	struct tty_struct *tty = file_tty(filp);
2227	unsigned long flags;
2228	int retval = 0;
2229
2230	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2231		goto out;
2232
2233	retval = fasync_helper(fd, filp, on, &tty->fasync);
2234	if (retval <= 0)
2235		goto out;
2236
2237	if (on) {
2238		enum pid_type type;
2239		struct pid *pid;
2240
2241		spin_lock_irqsave(&tty->ctrl_lock, flags);
2242		if (tty->pgrp) {
2243			pid = tty->pgrp;
2244			type = PIDTYPE_PGID;
2245		} else {
2246			pid = task_pid(current);
2247			type = PIDTYPE_PID;
2248		}
2249		get_pid(pid);
2250		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2251		__f_setown(filp, pid, type, 0);
2252		put_pid(pid);
2253		retval = 0;
2254	}
2255out:
2256	return retval;
2257}
2258
2259static int tty_fasync(int fd, struct file *filp, int on)
2260{
2261	struct tty_struct *tty = file_tty(filp);
2262	int retval = -ENOTTY;
2263
2264	tty_lock(tty);
2265	if (!tty_hung_up_p(filp))
2266		retval = __tty_fasync(fd, filp, on);
2267	tty_unlock(tty);
2268
2269	return retval;
2270}
2271
 
2272/**
2273 *	tiocsti			-	fake input character
2274 *	@tty: tty to fake input into
2275 *	@p: pointer to character
2276 *
2277 *	Fake input to a tty device. Does the necessary locking and
2278 *	input management.
2279 *
2280 *	FIXME: does not honour flow control ??
2281 *
2282 *	Locking:
2283 *		Called functions take tty_ldiscs_lock
2284 *		current->signal->tty check is safe without locks
2285 *
2286 *	FIXME: may race normal receive processing
2287 */
2288
2289static int tiocsti(struct tty_struct *tty, char __user *p)
2290{
2291	char ch, mbz = 0;
2292	struct tty_ldisc *ld;
2293
 
 
 
2294	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2295		return -EPERM;
2296	if (get_user(ch, p))
2297		return -EFAULT;
2298	tty_audit_tiocsti(tty, ch);
2299	ld = tty_ldisc_ref_wait(tty);
2300	if (!ld)
2301		return -EIO;
2302	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
2303	tty_ldisc_deref(ld);
2304	return 0;
2305}
2306
2307/**
2308 *	tiocgwinsz		-	implement window query ioctl
2309 *	@tty; tty
2310 *	@arg: user buffer for result
2311 *
2312 *	Copies the kernel idea of the window size into the user buffer.
2313 *
2314 *	Locking: tty->winsize_mutex is taken to ensure the winsize data
2315 *		is consistent.
2316 */
2317
2318static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2319{
2320	int err;
2321
2322	mutex_lock(&tty->winsize_mutex);
2323	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2324	mutex_unlock(&tty->winsize_mutex);
2325
2326	return err ? -EFAULT: 0;
2327}
2328
2329/**
2330 *	tty_do_resize		-	resize event
2331 *	@tty: tty being resized
2332 *	@rows: rows (character)
2333 *	@cols: cols (character)
2334 *
2335 *	Update the termios variables and send the necessary signals to
2336 *	peform a terminal resize correctly
2337 */
2338
2339int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2340{
2341	struct pid *pgrp;
2342
2343	/* Lock the tty */
2344	mutex_lock(&tty->winsize_mutex);
2345	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2346		goto done;
2347
2348	/* Signal the foreground process group */
2349	pgrp = tty_get_pgrp(tty);
2350	if (pgrp)
2351		kill_pgrp(pgrp, SIGWINCH, 1);
2352	put_pid(pgrp);
2353
2354	tty->winsize = *ws;
2355done:
2356	mutex_unlock(&tty->winsize_mutex);
2357	return 0;
2358}
2359EXPORT_SYMBOL(tty_do_resize);
2360
2361/**
2362 *	tiocswinsz		-	implement window size set ioctl
2363 *	@tty; tty side of tty
2364 *	@arg: user buffer for result
2365 *
2366 *	Copies the user idea of the window size to the kernel. Traditionally
2367 *	this is just advisory information but for the Linux console it
2368 *	actually has driver level meaning and triggers a VC resize.
2369 *
2370 *	Locking:
2371 *		Driver dependent. The default do_resize method takes the
2372 *	tty termios mutex and ctrl_lock. The console takes its own lock
2373 *	then calls into the default method.
2374 */
2375
2376static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2377{
2378	struct winsize tmp_ws;
 
2379	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2380		return -EFAULT;
2381
2382	if (tty->ops->resize)
2383		return tty->ops->resize(tty, &tmp_ws);
2384	else
2385		return tty_do_resize(tty, &tmp_ws);
2386}
2387
2388/**
2389 *	tioccons	-	allow admin to move logical console
2390 *	@file: the file to become console
2391 *
2392 *	Allow the administrator to move the redirected console device
2393 *
2394 *	Locking: uses redirect_lock to guard the redirect information
2395 */
2396
2397static int tioccons(struct file *file)
2398{
2399	if (!capable(CAP_SYS_ADMIN))
2400		return -EPERM;
2401	if (file->f_op->write == redirected_tty_write) {
2402		struct file *f;
 
2403		spin_lock(&redirect_lock);
2404		f = redirect;
2405		redirect = NULL;
2406		spin_unlock(&redirect_lock);
2407		if (f)
2408			fput(f);
2409		return 0;
2410	}
 
 
 
 
 
 
2411	spin_lock(&redirect_lock);
2412	if (redirect) {
2413		spin_unlock(&redirect_lock);
2414		return -EBUSY;
2415	}
2416	redirect = get_file(file);
2417	spin_unlock(&redirect_lock);
2418	return 0;
2419}
2420
2421/**
2422 *	fionbio		-	non blocking ioctl
2423 *	@file: file to set blocking value
2424 *	@p: user parameter
2425 *
2426 *	Historical tty interfaces had a blocking control ioctl before
2427 *	the generic functionality existed. This piece of history is preserved
2428 *	in the expected tty API of posix OS's.
2429 *
2430 *	Locking: none, the open file handle ensures it won't go away.
2431 */
2432
2433static int fionbio(struct file *file, int __user *p)
2434{
2435	int nonblock;
2436
2437	if (get_user(nonblock, p))
2438		return -EFAULT;
2439
2440	spin_lock(&file->f_lock);
2441	if (nonblock)
2442		file->f_flags |= O_NONBLOCK;
2443	else
2444		file->f_flags &= ~O_NONBLOCK;
2445	spin_unlock(&file->f_lock);
2446	return 0;
2447}
2448
2449/**
2450 *	tiocsctty	-	set controlling tty
2451 *	@tty: tty structure
2452 *	@arg: user argument
2453 *
2454 *	This ioctl is used to manage job control. It permits a session
2455 *	leader to set this tty as the controlling tty for the session.
2456 *
2457 *	Locking:
2458 *		Takes tty_lock() to serialize proc_set_tty() for this tty
2459 *		Takes tasklist_lock internally to walk sessions
2460 *		Takes ->siglock() when updating signal->tty
2461 */
2462
2463static int tiocsctty(struct tty_struct *tty, struct file *file, int arg)
2464{
2465	int ret = 0;
2466
2467	tty_lock(tty);
2468	read_lock(&tasklist_lock);
2469
2470	if (current->signal->leader && (task_session(current) == tty->session))
2471		goto unlock;
2472
2473	/*
2474	 * The process must be a session leader and
2475	 * not have a controlling tty already.
2476	 */
2477	if (!current->signal->leader || current->signal->tty) {
2478		ret = -EPERM;
2479		goto unlock;
2480	}
2481
2482	if (tty->session) {
2483		/*
2484		 * This tty is already the controlling
2485		 * tty for another session group!
2486		 */
2487		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2488			/*
2489			 * Steal it away
2490			 */
2491			session_clear_tty(tty->session);
2492		} else {
2493			ret = -EPERM;
2494			goto unlock;
2495		}
2496	}
2497
2498	/* See the comment in tty_open(). */
2499	if ((file->f_mode & FMODE_READ) == 0 && !capable(CAP_SYS_ADMIN)) {
2500		ret = -EPERM;
2501		goto unlock;
2502	}
2503
2504	proc_set_tty(tty);
2505unlock:
2506	read_unlock(&tasklist_lock);
2507	tty_unlock(tty);
2508	return ret;
2509}
2510
2511/**
2512 *	tty_get_pgrp	-	return a ref counted pgrp pid
2513 *	@tty: tty to read
2514 *
2515 *	Returns a refcounted instance of the pid struct for the process
2516 *	group controlling the tty.
2517 */
2518
2519struct pid *tty_get_pgrp(struct tty_struct *tty)
2520{
2521	unsigned long flags;
2522	struct pid *pgrp;
2523
2524	spin_lock_irqsave(&tty->ctrl_lock, flags);
2525	pgrp = get_pid(tty->pgrp);
2526	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2527
2528	return pgrp;
2529}
2530EXPORT_SYMBOL_GPL(tty_get_pgrp);
2531
2532/*
2533 * This checks not only the pgrp, but falls back on the pid if no
2534 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
2535 * without this...
2536 *
2537 * The caller must hold rcu lock or the tasklist lock.
2538 */
2539static struct pid *session_of_pgrp(struct pid *pgrp)
2540{
2541	struct task_struct *p;
2542	struct pid *sid = NULL;
2543
2544	p = pid_task(pgrp, PIDTYPE_PGID);
2545	if (p == NULL)
2546		p = pid_task(pgrp, PIDTYPE_PID);
2547	if (p != NULL)
2548		sid = task_session(p);
2549
2550	return sid;
2551}
2552
2553/**
2554 *	tiocgpgrp		-	get process group
2555 *	@tty: tty passed by user
2556 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2557 *	@p: returned pid
2558 *
2559 *	Obtain the process group of the tty. If there is no process group
2560 *	return an error.
2561 *
2562 *	Locking: none. Reference to current->signal->tty is safe.
2563 */
2564
2565static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2566{
2567	struct pid *pid;
2568	int ret;
2569	/*
2570	 * (tty == real_tty) is a cheap way of
2571	 * testing if the tty is NOT a master pty.
2572	 */
2573	if (tty == real_tty && current->signal->tty != real_tty)
2574		return -ENOTTY;
2575	pid = tty_get_pgrp(real_tty);
2576	ret =  put_user(pid_vnr(pid), p);
2577	put_pid(pid);
2578	return ret;
2579}
2580
2581/**
2582 *	tiocspgrp		-	attempt to set process group
2583 *	@tty: tty passed by user
2584 *	@real_tty: tty side device matching tty passed by user
2585 *	@p: pid pointer
2586 *
2587 *	Set the process group of the tty to the session passed. Only
2588 *	permitted where the tty session is our session.
2589 *
2590 *	Locking: RCU, ctrl lock
2591 */
2592
2593static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2594{
2595	struct pid *pgrp;
2596	pid_t pgrp_nr;
2597	int retval = tty_check_change(real_tty);
2598
2599	if (retval == -EIO)
2600		return -ENOTTY;
2601	if (retval)
2602		return retval;
2603	if (!current->signal->tty ||
2604	    (current->signal->tty != real_tty) ||
2605	    (real_tty->session != task_session(current)))
2606		return -ENOTTY;
2607	if (get_user(pgrp_nr, p))
2608		return -EFAULT;
2609	if (pgrp_nr < 0)
2610		return -EINVAL;
2611	rcu_read_lock();
2612	pgrp = find_vpid(pgrp_nr);
2613	retval = -ESRCH;
2614	if (!pgrp)
2615		goto out_unlock;
2616	retval = -EPERM;
2617	if (session_of_pgrp(pgrp) != task_session(current))
2618		goto out_unlock;
2619	retval = 0;
2620	spin_lock_irq(&tty->ctrl_lock);
2621	put_pid(real_tty->pgrp);
2622	real_tty->pgrp = get_pid(pgrp);
2623	spin_unlock_irq(&tty->ctrl_lock);
2624out_unlock:
2625	rcu_read_unlock();
2626	return retval;
2627}
2628
2629/**
2630 *	tiocgsid		-	get session id
2631 *	@tty: tty passed by user
2632 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2633 *	@p: pointer to returned session id
2634 *
2635 *	Obtain the session id of the tty. If there is no session
2636 *	return an error.
2637 *
2638 *	Locking: none. Reference to current->signal->tty is safe.
2639 */
2640
2641static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2642{
2643	/*
2644	 * (tty == real_tty) is a cheap way of
2645	 * testing if the tty is NOT a master pty.
2646	*/
2647	if (tty == real_tty && current->signal->tty != real_tty)
2648		return -ENOTTY;
2649	if (!real_tty->session)
2650		return -ENOTTY;
2651	return put_user(pid_vnr(real_tty->session), p);
2652}
2653
2654/**
2655 *	tiocsetd	-	set line discipline
2656 *	@tty: tty device
2657 *	@p: pointer to user data
2658 *
2659 *	Set the line discipline according to user request.
2660 *
2661 *	Locking: see tty_set_ldisc, this function is just a helper
2662 */
2663
2664static int tiocsetd(struct tty_struct *tty, int __user *p)
2665{
2666	int disc;
2667	int ret;
2668
2669	if (get_user(disc, p))
2670		return -EFAULT;
2671
2672	ret = tty_set_ldisc(tty, disc);
2673
2674	return ret;
2675}
2676
2677/**
2678 *	tiocgetd	-	get line discipline
2679 *	@tty: tty device
2680 *	@p: pointer to user data
2681 *
2682 *	Retrieves the line discipline id directly from the ldisc.
2683 *
2684 *	Locking: waits for ldisc reference (in case the line discipline
2685 *		is changing or the tty is being hungup)
2686 */
2687
2688static int tiocgetd(struct tty_struct *tty, int __user *p)
2689{
2690	struct tty_ldisc *ld;
2691	int ret;
2692
2693	ld = tty_ldisc_ref_wait(tty);
2694	if (!ld)
2695		return -EIO;
2696	ret = put_user(ld->ops->num, p);
2697	tty_ldisc_deref(ld);
2698	return ret;
2699}
2700
2701/**
2702 *	send_break	-	performed time break
2703 *	@tty: device to break on
2704 *	@duration: timeout in mS
2705 *
2706 *	Perform a timed break on hardware that lacks its own driver level
2707 *	timed break functionality.
2708 *
2709 *	Locking:
2710 *		atomic_write_lock serializes
2711 *
 
 
2712 */
2713
2714static int send_break(struct tty_struct *tty, unsigned int duration)
2715{
2716	int retval;
2717
2718	if (tty->ops->break_ctl == NULL)
2719		return 0;
2720
2721	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2722		retval = tty->ops->break_ctl(tty, duration);
2723	else {
2724		/* Do the work ourselves */
2725		if (tty_write_lock(tty, 0) < 0)
2726			return -EINTR;
2727		retval = tty->ops->break_ctl(tty, -1);
2728		if (retval)
2729			goto out;
2730		if (!signal_pending(current))
2731			msleep_interruptible(duration);
2732		retval = tty->ops->break_ctl(tty, 0);
2733out:
2734		tty_write_unlock(tty);
2735		if (signal_pending(current))
2736			retval = -EINTR;
2737	}
2738	return retval;
2739}
2740
2741/**
2742 *	tty_tiocmget		-	get modem status
2743 *	@tty: tty device
2744 *	@file: user file pointer
2745 *	@p: pointer to result
2746 *
2747 *	Obtain the modem status bits from the tty driver if the feature
2748 *	is supported. Return -EINVAL if it is not available.
2749 *
2750 *	Locking: none (up to the driver)
2751 */
2752
2753static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2754{
2755	int retval = -EINVAL;
2756
2757	if (tty->ops->tiocmget) {
2758		retval = tty->ops->tiocmget(tty);
2759
2760		if (retval >= 0)
2761			retval = put_user(retval, p);
2762	}
2763	return retval;
2764}
2765
2766/**
2767 *	tty_tiocmset		-	set modem status
2768 *	@tty: tty device
2769 *	@cmd: command - clear bits, set bits or set all
2770 *	@p: pointer to desired bits
2771 *
2772 *	Set the modem status bits from the tty driver if the feature
2773 *	is supported. Return -EINVAL if it is not available.
2774 *
2775 *	Locking: none (up to the driver)
2776 */
2777
2778static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2779	     unsigned __user *p)
2780{
2781	int retval;
2782	unsigned int set, clear, val;
2783
2784	if (tty->ops->tiocmset == NULL)
2785		return -EINVAL;
2786
2787	retval = get_user(val, p);
2788	if (retval)
2789		return retval;
2790	set = clear = 0;
2791	switch (cmd) {
2792	case TIOCMBIS:
2793		set = val;
2794		break;
2795	case TIOCMBIC:
2796		clear = val;
2797		break;
2798	case TIOCMSET:
2799		set = val;
2800		clear = ~val;
2801		break;
2802	}
2803	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2804	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2805	return tty->ops->tiocmset(tty, set, clear);
2806}
2807
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2808static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2809{
2810	int retval = -EINVAL;
2811	struct serial_icounter_struct icount;
2812	memset(&icount, 0, sizeof(icount));
2813	if (tty->ops->get_icount)
2814		retval = tty->ops->get_icount(tty, &icount);
2815	if (retval != 0)
2816		return retval;
 
2817	if (copy_to_user(arg, &icount, sizeof(icount)))
2818		return -EFAULT;
2819	return 0;
2820}
2821
2822static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2823{
2824	static DEFINE_RATELIMIT_STATE(depr_flags,
2825			DEFAULT_RATELIMIT_INTERVAL,
2826			DEFAULT_RATELIMIT_BURST);
2827	char comm[TASK_COMM_LEN];
2828	int flags;
2829
2830	if (get_user(flags, &ss->flags))
2831		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832
2833	flags &= ASYNC_DEPRECATED;
 
 
 
2834
2835	if (flags && __ratelimit(&depr_flags))
2836		pr_warning("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2837				__func__, get_task_comm(comm, current), flags);
 
 
 
 
2838}
2839
2840/*
2841 * if pty, return the slave side (real_tty)
2842 * otherwise, return self
2843 */
2844static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2845{
2846	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2847	    tty->driver->subtype == PTY_TYPE_MASTER)
2848		tty = tty->link;
2849	return tty;
2850}
2851
2852/*
2853 * Split this up, as gcc can choke on it otherwise..
2854 */
2855long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2856{
2857	struct tty_struct *tty = file_tty(file);
2858	struct tty_struct *real_tty;
2859	void __user *p = (void __user *)arg;
2860	int retval;
2861	struct tty_ldisc *ld;
2862
2863	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2864		return -EINVAL;
2865
2866	real_tty = tty_pair_get_tty(tty);
2867
2868	/*
2869	 * Factor out some common prep work
2870	 */
2871	switch (cmd) {
2872	case TIOCSETD:
2873	case TIOCSBRK:
2874	case TIOCCBRK:
2875	case TCSBRK:
2876	case TCSBRKP:
2877		retval = tty_check_change(tty);
2878		if (retval)
2879			return retval;
2880		if (cmd != TIOCCBRK) {
2881			tty_wait_until_sent(tty, 0);
2882			if (signal_pending(current))
2883				return -EINTR;
2884		}
2885		break;
2886	}
2887
2888	/*
2889	 *	Now do the stuff.
2890	 */
2891	switch (cmd) {
2892	case TIOCSTI:
2893		return tiocsti(tty, p);
2894	case TIOCGWINSZ:
2895		return tiocgwinsz(real_tty, p);
2896	case TIOCSWINSZ:
2897		return tiocswinsz(real_tty, p);
2898	case TIOCCONS:
2899		return real_tty != tty ? -EINVAL : tioccons(file);
2900	case FIONBIO:
2901		return fionbio(file, p);
2902	case TIOCEXCL:
2903		set_bit(TTY_EXCLUSIVE, &tty->flags);
2904		return 0;
2905	case TIOCNXCL:
2906		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2907		return 0;
2908	case TIOCGEXCL:
2909	{
2910		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
 
2911		return put_user(excl, (int __user *)p);
2912	}
2913	case TIOCNOTTY:
2914		if (current->signal->tty != tty)
2915			return -ENOTTY;
2916		no_tty();
2917		return 0;
2918	case TIOCSCTTY:
2919		return tiocsctty(real_tty, file, arg);
2920	case TIOCGPGRP:
2921		return tiocgpgrp(tty, real_tty, p);
2922	case TIOCSPGRP:
2923		return tiocspgrp(tty, real_tty, p);
2924	case TIOCGSID:
2925		return tiocgsid(tty, real_tty, p);
2926	case TIOCGETD:
2927		return tiocgetd(tty, p);
2928	case TIOCSETD:
2929		return tiocsetd(tty, p);
2930	case TIOCVHANGUP:
2931		if (!capable(CAP_SYS_ADMIN))
2932			return -EPERM;
2933		tty_vhangup(tty);
2934		return 0;
2935	case TIOCGDEV:
2936	{
2937		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2938		return put_user(ret, (unsigned int __user *)p);
2939	}
2940	/*
2941	 * Break handling
2942	 */
2943	case TIOCSBRK:	/* Turn break on, unconditionally */
2944		if (tty->ops->break_ctl)
2945			return tty->ops->break_ctl(tty, -1);
2946		return 0;
2947	case TIOCCBRK:	/* Turn break off, unconditionally */
2948		if (tty->ops->break_ctl)
2949			return tty->ops->break_ctl(tty, 0);
2950		return 0;
2951	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2952		/* non-zero arg means wait for all output data
2953		 * to be sent (performed above) but don't send break.
2954		 * This is used by the tcdrain() termios function.
2955		 */
2956		if (!arg)
2957			return send_break(tty, 250);
2958		return 0;
2959	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2960		return send_break(tty, arg ? arg*100 : 250);
2961
2962	case TIOCMGET:
2963		return tty_tiocmget(tty, p);
2964	case TIOCMSET:
2965	case TIOCMBIC:
2966	case TIOCMBIS:
2967		return tty_tiocmset(tty, cmd, p);
2968	case TIOCGICOUNT:
2969		retval = tty_tiocgicount(tty, p);
2970		/* For the moment allow fall through to the old method */
2971        	if (retval != -EINVAL)
2972			return retval;
2973		break;
2974	case TCFLSH:
2975		switch (arg) {
2976		case TCIFLUSH:
2977		case TCIOFLUSH:
2978		/* flush tty buffer and allow ldisc to process ioctl */
2979			tty_buffer_flush(tty, NULL);
2980			break;
2981		}
2982		break;
2983	case TIOCSSERIAL:
2984		tty_warn_deprecated_flags(p);
2985		break;
 
 
 
 
 
 
 
 
2986	}
2987	if (tty->ops->ioctl) {
2988		retval = tty->ops->ioctl(tty, cmd, arg);
2989		if (retval != -ENOIOCTLCMD)
2990			return retval;
2991	}
2992	ld = tty_ldisc_ref_wait(tty);
2993	if (!ld)
2994		return hung_up_tty_ioctl(file, cmd, arg);
2995	retval = -EINVAL;
2996	if (ld->ops->ioctl) {
2997		retval = ld->ops->ioctl(tty, file, cmd, arg);
2998		if (retval == -ENOIOCTLCMD)
2999			retval = -ENOTTY;
3000	}
3001	tty_ldisc_deref(ld);
3002	return retval;
3003}
3004
3005#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3006static long tty_compat_ioctl(struct file *file, unsigned int cmd,
3007				unsigned long arg)
3008{
3009	struct tty_struct *tty = file_tty(file);
3010	struct tty_ldisc *ld;
3011	int retval = -ENOIOCTLCMD;
3012
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3013	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
3014		return -EINVAL;
3015
 
 
 
 
 
 
3016	if (tty->ops->compat_ioctl) {
3017		retval = tty->ops->compat_ioctl(tty, cmd, arg);
3018		if (retval != -ENOIOCTLCMD)
3019			return retval;
3020	}
3021
3022	ld = tty_ldisc_ref_wait(tty);
3023	if (!ld)
3024		return hung_up_tty_compat_ioctl(file, cmd, arg);
3025	if (ld->ops->compat_ioctl)
3026		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
3027	else
3028		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
3029	tty_ldisc_deref(ld);
3030
3031	return retval;
3032}
3033#endif
3034
3035static int this_tty(const void *t, struct file *file, unsigned fd)
3036{
3037	if (likely(file->f_op->read != tty_read))
3038		return 0;
3039	return file_tty(file) != t ? 0 : fd + 1;
3040}
3041	
3042/*
3043 * This implements the "Secure Attention Key" ---  the idea is to
3044 * prevent trojan horses by killing all processes associated with this
3045 * tty when the user hits the "Secure Attention Key".  Required for
3046 * super-paranoid applications --- see the Orange Book for more details.
3047 *
3048 * This code could be nicer; ideally it should send a HUP, wait a few
3049 * seconds, then send a INT, and then a KILL signal.  But you then
3050 * have to coordinate with the init process, since all processes associated
3051 * with the current tty must be dead before the new getty is allowed
3052 * to spawn.
3053 *
3054 * Now, if it would be correct ;-/ The current code has a nasty hole -
3055 * it doesn't catch files in flight. We may send the descriptor to ourselves
3056 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3057 *
3058 * Nasty bug: do_SAK is being called in interrupt context.  This can
3059 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
3060 */
3061void __do_SAK(struct tty_struct *tty)
3062{
3063#ifdef TTY_SOFT_SAK
3064	tty_hangup(tty);
3065#else
3066	struct task_struct *g, *p;
3067	struct pid *session;
3068	int		i;
 
3069
3070	if (!tty)
3071		return;
3072	session = tty->session;
3073
3074	tty_ldisc_flush(tty);
3075
3076	tty_driver_flush_buffer(tty);
3077
3078	read_lock(&tasklist_lock);
3079	/* Kill the entire session */
3080	do_each_pid_task(session, PIDTYPE_SID, p) {
3081		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3082			   task_pid_nr(p), p->comm);
3083		send_sig(SIGKILL, p, 1);
3084	} while_each_pid_task(session, PIDTYPE_SID, p);
3085
3086	/* Now kill any processes that happen to have the tty open */
3087	do_each_thread(g, p) {
3088		if (p->signal->tty == tty) {
3089			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3090				   task_pid_nr(p), p->comm);
3091			send_sig(SIGKILL, p, 1);
 
3092			continue;
3093		}
3094		task_lock(p);
3095		i = iterate_fd(p->files, 0, this_tty, tty);
3096		if (i != 0) {
3097			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3098				   task_pid_nr(p), p->comm, i - 1);
3099			force_sig(SIGKILL, p);
 
3100		}
3101		task_unlock(p);
3102	} while_each_thread(g, p);
3103	read_unlock(&tasklist_lock);
3104#endif
3105}
3106
3107static void do_SAK_work(struct work_struct *work)
3108{
3109	struct tty_struct *tty =
3110		container_of(work, struct tty_struct, SAK_work);
3111	__do_SAK(tty);
3112}
3113
3114/*
3115 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3116 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3117 * the values which we write to it will be identical to the values which it
3118 * already has. --akpm
3119 */
3120void do_SAK(struct tty_struct *tty)
3121{
3122	if (!tty)
3123		return;
3124	schedule_work(&tty->SAK_work);
3125}
3126
3127EXPORT_SYMBOL(do_SAK);
3128
3129static int dev_match_devt(struct device *dev, const void *data)
3130{
3131	const dev_t *devt = data;
3132	return dev->devt == *devt;
3133}
3134
3135/* Must put_device() after it's unused! */
3136static struct device *tty_get_device(struct tty_struct *tty)
3137{
3138	dev_t devt = tty_devnum(tty);
3139	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
3140}
3141
3142
3143/**
3144 *	alloc_tty_struct
 
 
3145 *
3146 *	This subroutine allocates and initializes a tty structure.
3147 *
3148 *	Locking: none - tty in question is not exposed at this point
3149 */
3150
3151struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3152{
3153	struct tty_struct *tty;
3154
3155	tty = kzalloc(sizeof(*tty), GFP_KERNEL);
3156	if (!tty)
3157		return NULL;
3158
3159	kref_init(&tty->kref);
3160	tty->magic = TTY_MAGIC;
3161	tty_ldisc_init(tty);
3162	tty->session = NULL;
3163	tty->pgrp = NULL;
 
 
3164	mutex_init(&tty->legacy_mutex);
3165	mutex_init(&tty->throttle_mutex);
3166	init_rwsem(&tty->termios_rwsem);
3167	mutex_init(&tty->winsize_mutex);
3168	init_ldsem(&tty->ldisc_sem);
3169	init_waitqueue_head(&tty->write_wait);
3170	init_waitqueue_head(&tty->read_wait);
3171	INIT_WORK(&tty->hangup_work, do_tty_hangup);
3172	mutex_init(&tty->atomic_write_lock);
3173	spin_lock_init(&tty->ctrl_lock);
3174	spin_lock_init(&tty->flow_lock);
3175	spin_lock_init(&tty->files_lock);
3176	INIT_LIST_HEAD(&tty->tty_files);
3177	INIT_WORK(&tty->SAK_work, do_SAK_work);
3178
3179	tty->driver = driver;
3180	tty->ops = driver->ops;
3181	tty->index = idx;
3182	tty_line_name(driver, idx, tty->name);
3183	tty->dev = tty_get_device(tty);
3184
3185	return tty;
3186}
3187
3188/**
3189 *	tty_put_char	-	write one character to a tty
3190 *	@tty: tty
3191 *	@ch: character
 
 
 
3192 *
3193 *	Write one byte to the tty using the provided put_char method
3194 *	if present. Returns the number of characters successfully output.
3195 *
3196 *	Note: the specific put_char operation in the driver layer may go
3197 *	away soon. Don't call it directly, use this method
3198 */
3199
3200int tty_put_char(struct tty_struct *tty, unsigned char ch)
3201{
3202	if (tty->ops->put_char)
3203		return tty->ops->put_char(tty, ch);
3204	return tty->ops->write(tty, &ch, 1);
3205}
3206EXPORT_SYMBOL_GPL(tty_put_char);
3207
3208struct class *tty_class;
3209
3210static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3211		unsigned int index, unsigned int count)
3212{
3213	int err;
3214
3215	/* init here, since reused cdevs cause crashes */
3216	driver->cdevs[index] = cdev_alloc();
3217	if (!driver->cdevs[index])
3218		return -ENOMEM;
3219	driver->cdevs[index]->ops = &tty_fops;
3220	driver->cdevs[index]->owner = driver->owner;
3221	err = cdev_add(driver->cdevs[index], dev, count);
3222	if (err)
3223		kobject_put(&driver->cdevs[index]->kobj);
3224	return err;
3225}
3226
3227/**
3228 *	tty_register_device - register a tty device
3229 *	@driver: the tty driver that describes the tty device
3230 *	@index: the index in the tty driver for this tty device
3231 *	@device: a struct device that is associated with this tty device.
3232 *		This field is optional, if there is no known struct device
3233 *		for this tty device it can be set to NULL safely.
3234 *
3235 *	Returns a pointer to the struct device for this tty device
3236 *	(or ERR_PTR(-EFOO) on error).
3237 *
3238 *	This call is required to be made to register an individual tty device
3239 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3240 *	that bit is not set, this function should not be called by a tty
3241 *	driver.
3242 *
3243 *	Locking: ??
 
3244 */
3245
3246struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3247				   struct device *device)
3248{
3249	return tty_register_device_attr(driver, index, device, NULL, NULL);
3250}
3251EXPORT_SYMBOL(tty_register_device);
3252
3253static void tty_device_create_release(struct device *dev)
3254{
3255	dev_dbg(dev, "releasing...\n");
3256	kfree(dev);
3257}
3258
3259/**
3260 *	tty_register_device_attr - register a tty device
3261 *	@driver: the tty driver that describes the tty device
3262 *	@index: the index in the tty driver for this tty device
3263 *	@device: a struct device that is associated with this tty device.
3264 *		This field is optional, if there is no known struct device
3265 *		for this tty device it can be set to NULL safely.
3266 *	@drvdata: Driver data to be set to device.
3267 *	@attr_grp: Attribute group to be set on device.
3268 *
3269 *	Returns a pointer to the struct device for this tty device
3270 *	(or ERR_PTR(-EFOO) on error).
3271 *
3272 *	This call is required to be made to register an individual tty device
3273 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3274 *	that bit is not set, this function should not be called by a tty
3275 *	driver.
3276 *
3277 *	Locking: ??
 
 
 
3278 */
3279struct device *tty_register_device_attr(struct tty_driver *driver,
3280				   unsigned index, struct device *device,
3281				   void *drvdata,
3282				   const struct attribute_group **attr_grp)
3283{
3284	char name[64];
3285	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3286	struct device *dev = NULL;
3287	int retval = -ENODEV;
3288	bool cdev = false;
3289
3290	if (index >= driver->num) {
3291		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3292		       driver->name, index);
3293		return ERR_PTR(-EINVAL);
3294	}
3295
3296	if (driver->type == TTY_DRIVER_TYPE_PTY)
3297		pty_line_name(driver, index, name);
3298	else
3299		tty_line_name(driver, index, name);
3300
3301	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3302		retval = tty_cdev_add(driver, devt, index, 1);
3303		if (retval)
3304			goto error;
3305		cdev = true;
3306	}
3307
3308	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3309	if (!dev) {
3310		retval = -ENOMEM;
3311		goto error;
3312	}
3313
3314	dev->devt = devt;
3315	dev->class = tty_class;
3316	dev->parent = device;
3317	dev->release = tty_device_create_release;
3318	dev_set_name(dev, "%s", name);
3319	dev->groups = attr_grp;
3320	dev_set_drvdata(dev, drvdata);
3321
 
 
3322	retval = device_register(dev);
3323	if (retval)
3324		goto error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3325
3326	return dev;
3327
3328error:
 
 
3329	put_device(dev);
3330	if (cdev) {
3331		cdev_del(driver->cdevs[index]);
3332		driver->cdevs[index] = NULL;
3333	}
3334	return ERR_PTR(retval);
3335}
3336EXPORT_SYMBOL_GPL(tty_register_device_attr);
3337
3338/**
3339 * 	tty_unregister_device - unregister a tty device
3340 * 	@driver: the tty driver that describes the tty device
3341 * 	@index: the index in the tty driver for this tty device
3342 *
3343 * 	If a tty device is registered with a call to tty_register_device() then
3344 *	this function must be called when the tty device is gone.
3345 *
3346 *	Locking: ??
3347 */
3348
3349void tty_unregister_device(struct tty_driver *driver, unsigned index)
3350{
3351	device_destroy(tty_class,
3352		MKDEV(driver->major, driver->minor_start) + index);
3353	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3354		cdev_del(driver->cdevs[index]);
3355		driver->cdevs[index] = NULL;
3356	}
3357}
3358EXPORT_SYMBOL(tty_unregister_device);
3359
3360/**
3361 * __tty_alloc_driver -- allocate tty driver
3362 * @lines: count of lines this driver can handle at most
3363 * @owner: module which is repsonsible for this driver
3364 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3365 *
3366 * This should not be called directly, some of the provided macros should be
3367 * used instead. Use IS_ERR and friends on @retval.
3368 */
3369struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3370		unsigned long flags)
3371{
3372	struct tty_driver *driver;
3373	unsigned int cdevs = 1;
3374	int err;
3375
3376	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3377		return ERR_PTR(-EINVAL);
3378
3379	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3380	if (!driver)
3381		return ERR_PTR(-ENOMEM);
3382
3383	kref_init(&driver->kref);
3384	driver->magic = TTY_DRIVER_MAGIC;
3385	driver->num = lines;
3386	driver->owner = owner;
3387	driver->flags = flags;
3388
3389	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3390		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3391				GFP_KERNEL);
3392		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3393				GFP_KERNEL);
3394		if (!driver->ttys || !driver->termios) {
3395			err = -ENOMEM;
3396			goto err_free_all;
3397		}
3398	}
3399
3400	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3401		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3402				GFP_KERNEL);
3403		if (!driver->ports) {
3404			err = -ENOMEM;
3405			goto err_free_all;
3406		}
3407		cdevs = lines;
3408	}
3409
3410	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3411	if (!driver->cdevs) {
3412		err = -ENOMEM;
3413		goto err_free_all;
3414	}
3415
3416	return driver;
3417err_free_all:
3418	kfree(driver->ports);
3419	kfree(driver->ttys);
3420	kfree(driver->termios);
3421	kfree(driver->cdevs);
3422	kfree(driver);
3423	return ERR_PTR(err);
3424}
3425EXPORT_SYMBOL(__tty_alloc_driver);
3426
3427static void destruct_tty_driver(struct kref *kref)
3428{
3429	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3430	int i;
3431	struct ktermios *tp;
3432
3433	if (driver->flags & TTY_DRIVER_INSTALLED) {
3434		/*
3435		 * Free the termios and termios_locked structures because
3436		 * we don't want to get memory leaks when modular tty
3437		 * drivers are removed from the kernel.
3438		 */
3439		for (i = 0; i < driver->num; i++) {
3440			tp = driver->termios[i];
3441			if (tp) {
3442				driver->termios[i] = NULL;
3443				kfree(tp);
3444			}
3445			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3446				tty_unregister_device(driver, i);
3447		}
3448		proc_tty_unregister_driver(driver);
3449		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3450			cdev_del(driver->cdevs[0]);
3451	}
3452	kfree(driver->cdevs);
3453	kfree(driver->ports);
3454	kfree(driver->termios);
3455	kfree(driver->ttys);
3456	kfree(driver);
3457}
3458
 
 
 
 
 
 
3459void tty_driver_kref_put(struct tty_driver *driver)
3460{
3461	kref_put(&driver->kref, destruct_tty_driver);
3462}
3463EXPORT_SYMBOL(tty_driver_kref_put);
3464
3465void tty_set_operations(struct tty_driver *driver,
3466			const struct tty_operations *op)
3467{
3468	driver->ops = op;
3469};
3470EXPORT_SYMBOL(tty_set_operations);
3471
3472void put_tty_driver(struct tty_driver *d)
3473{
3474	tty_driver_kref_put(d);
3475}
3476EXPORT_SYMBOL(put_tty_driver);
3477
3478/*
3479 * Called by a tty driver to register itself.
3480 */
3481int tty_register_driver(struct tty_driver *driver)
3482{
3483	int error;
3484	int i;
3485	dev_t dev;
3486	struct device *d;
3487
3488	if (!driver->major) {
3489		error = alloc_chrdev_region(&dev, driver->minor_start,
3490						driver->num, driver->name);
3491		if (!error) {
3492			driver->major = MAJOR(dev);
3493			driver->minor_start = MINOR(dev);
3494		}
3495	} else {
3496		dev = MKDEV(driver->major, driver->minor_start);
3497		error = register_chrdev_region(dev, driver->num, driver->name);
3498	}
3499	if (error < 0)
3500		goto err;
3501
3502	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3503		error = tty_cdev_add(driver, dev, 0, driver->num);
3504		if (error)
3505			goto err_unreg_char;
3506	}
3507
3508	mutex_lock(&tty_mutex);
3509	list_add(&driver->tty_drivers, &tty_drivers);
3510	mutex_unlock(&tty_mutex);
3511
3512	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3513		for (i = 0; i < driver->num; i++) {
3514			d = tty_register_device(driver, i, NULL);
3515			if (IS_ERR(d)) {
3516				error = PTR_ERR(d);
3517				goto err_unreg_devs;
3518			}
3519		}
3520	}
3521	proc_tty_register_driver(driver);
3522	driver->flags |= TTY_DRIVER_INSTALLED;
3523	return 0;
3524
3525err_unreg_devs:
3526	for (i--; i >= 0; i--)
3527		tty_unregister_device(driver, i);
3528
3529	mutex_lock(&tty_mutex);
3530	list_del(&driver->tty_drivers);
3531	mutex_unlock(&tty_mutex);
3532
3533err_unreg_char:
3534	unregister_chrdev_region(dev, driver->num);
3535err:
3536	return error;
3537}
3538EXPORT_SYMBOL(tty_register_driver);
3539
3540/*
 
 
 
3541 * Called by a tty driver to unregister itself.
3542 */
3543int tty_unregister_driver(struct tty_driver *driver)
3544{
3545#if 0
3546	/* FIXME */
3547	if (driver->refcount)
3548		return -EBUSY;
3549#endif
3550	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3551				driver->num);
3552	mutex_lock(&tty_mutex);
3553	list_del(&driver->tty_drivers);
3554	mutex_unlock(&tty_mutex);
3555	return 0;
3556}
3557
3558EXPORT_SYMBOL(tty_unregister_driver);
3559
3560dev_t tty_devnum(struct tty_struct *tty)
3561{
3562	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3563}
3564EXPORT_SYMBOL(tty_devnum);
3565
3566void tty_default_fops(struct file_operations *fops)
3567{
3568	*fops = tty_fops;
3569}
3570
3571/*
3572 * Initialize the console device. This is called *early*, so
3573 * we can't necessarily depend on lots of kernel help here.
3574 * Just do some early initializations, and do the complex setup
3575 * later.
3576 */
3577void __init console_init(void)
3578{
3579	initcall_t *call;
3580
3581	/* Setup the default TTY line discipline. */
3582	n_tty_init();
3583
3584	/*
3585	 * set up the console device so that later boot sequences can
3586	 * inform about problems etc..
3587	 */
3588	call = __con_initcall_start;
3589	while (call < __con_initcall_end) {
3590		(*call)();
3591		call++;
3592	}
3593}
3594
3595static char *tty_devnode(struct device *dev, umode_t *mode)
3596{
3597	if (!mode)
3598		return NULL;
3599	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3600	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3601		*mode = 0666;
3602	return NULL;
3603}
3604
3605static int __init tty_class_init(void)
3606{
3607	tty_class = class_create(THIS_MODULE, "tty");
3608	if (IS_ERR(tty_class))
3609		return PTR_ERR(tty_class);
3610	tty_class->devnode = tty_devnode;
3611	return 0;
3612}
3613
3614postcore_initcall(tty_class_init);
3615
3616/* 3/2004 jmc: why do these devices exist? */
3617static struct cdev tty_cdev, console_cdev;
3618
3619static ssize_t show_cons_active(struct device *dev,
3620				struct device_attribute *attr, char *buf)
3621{
3622	struct console *cs[16];
3623	int i = 0;
3624	struct console *c;
3625	ssize_t count = 0;
3626
3627	console_lock();
 
 
 
 
 
 
 
3628	for_each_console(c) {
3629		if (!c->device)
3630			continue;
3631		if (!c->write)
3632			continue;
3633		if ((c->flags & CON_ENABLED) == 0)
3634			continue;
3635		cs[i++] = c;
3636		if (i >= ARRAY_SIZE(cs))
3637			break;
3638	}
 
 
 
 
 
 
 
3639	while (i--) {
3640		int index = cs[i]->index;
3641		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3642
3643		/* don't resolve tty0 as some programs depend on it */
3644		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3645			count += tty_line_name(drv, index, buf + count);
3646		else
3647			count += sprintf(buf + count, "%s%d",
3648					 cs[i]->name, cs[i]->index);
3649
3650		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3651	}
3652	console_unlock();
3653
 
 
3654	return count;
3655}
3656static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3657
3658static struct attribute *cons_dev_attrs[] = {
3659	&dev_attr_active.attr,
3660	NULL
3661};
3662
3663ATTRIBUTE_GROUPS(cons_dev);
3664
3665static struct device *consdev;
3666
3667void console_sysfs_notify(void)
3668{
3669	if (consdev)
3670		sysfs_notify(&consdev->kobj, NULL, "active");
3671}
3672
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3673/*
3674 * Ok, now we can initialize the rest of the tty devices and can count
3675 * on memory allocations, interrupts etc..
3676 */
3677int __init tty_init(void)
3678{
 
3679	cdev_init(&tty_cdev, &tty_fops);
3680	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3681	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3682		panic("Couldn't register /dev/tty driver\n");
3683	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3684
3685	cdev_init(&console_cdev, &console_fops);
3686	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3687	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3688		panic("Couldn't register /dev/console driver\n");
3689	consdev = device_create_with_groups(tty_class, NULL,
3690					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3691					    cons_dev_groups, "console");
3692	if (IS_ERR(consdev))
3693		consdev = NULL;
3694
3695#ifdef CONFIG_VT
3696	vty_init(&console_fops);
3697#endif
3698	return 0;
3699}
3700