Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6/*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68#include <linux/types.h>
69#include <linux/major.h>
70#include <linux/errno.h>
71#include <linux/signal.h>
72#include <linux/fcntl.h>
73#include <linux/sched/signal.h>
74#include <linux/sched/task.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/ppp-ioctl.h>
91#include <linux/proc_fs.h>
92#include <linux/init.h>
93#include <linux/module.h>
94#include <linux/device.h>
95#include <linux/wait.h>
96#include <linux/bitops.h>
97#include <linux/delay.h>
98#include <linux/seq_file.h>
99#include <linux/serial.h>
100#include <linux/ratelimit.h>
101#include <linux/compat.h>
102#include <linux/uaccess.h>
103#include <linux/termios_internal.h>
104
105#include <linux/kbd_kern.h>
106#include <linux/vt_kern.h>
107#include <linux/selection.h>
108
109#include <linux/kmod.h>
110#include <linux/nsproxy.h>
111#include "tty.h"
112
113#undef TTY_DEBUG_HANGUP
114#ifdef TTY_DEBUG_HANGUP
115# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
116#else
117# define tty_debug_hangup(tty, f, args...) do { } while (0)
118#endif
119
120#define TTY_PARANOIA_CHECK 1
121#define CHECK_TTY_COUNT 1
122
123struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
124 .c_iflag = ICRNL | IXON,
125 .c_oflag = OPOST | ONLCR,
126 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
127 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
128 ECHOCTL | ECHOKE | IEXTEN,
129 .c_cc = INIT_C_CC,
130 .c_ispeed = 38400,
131 .c_ospeed = 38400,
132 /* .c_line = N_TTY, */
133};
134EXPORT_SYMBOL(tty_std_termios);
135
136/* This list gets poked at by procfs and various bits of boot up code. This
137 * could do with some rationalisation such as pulling the tty proc function
138 * into this file.
139 */
140
141LIST_HEAD(tty_drivers); /* linked list of tty drivers */
142
143/* Mutex to protect creating and releasing a tty */
144DEFINE_MUTEX(tty_mutex);
145
146static ssize_t tty_read(struct kiocb *, struct iov_iter *);
147static ssize_t tty_write(struct kiocb *, struct iov_iter *);
148static __poll_t tty_poll(struct file *, poll_table *);
149static int tty_open(struct inode *, struct file *);
150#ifdef CONFIG_COMPAT
151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 unsigned long arg);
153#else
154#define tty_compat_ioctl NULL
155#endif
156static int __tty_fasync(int fd, struct file *filp, int on);
157static int tty_fasync(int fd, struct file *filp, int on);
158static void release_tty(struct tty_struct *tty, int idx);
159
160/**
161 * free_tty_struct - free a disused tty
162 * @tty: tty struct to free
163 *
164 * Free the write buffers, tty queue and tty memory itself.
165 *
166 * Locking: none. Must be called after tty is definitely unused
167 */
168static void free_tty_struct(struct tty_struct *tty)
169{
170 tty_ldisc_deinit(tty);
171 put_device(tty->dev);
172 kvfree(tty->write_buf);
173 kfree(tty);
174}
175
176static inline struct tty_struct *file_tty(struct file *file)
177{
178 return ((struct tty_file_private *)file->private_data)->tty;
179}
180
181int tty_alloc_file(struct file *file)
182{
183 struct tty_file_private *priv;
184
185 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
186 if (!priv)
187 return -ENOMEM;
188
189 file->private_data = priv;
190
191 return 0;
192}
193
194/* Associate a new file with the tty structure */
195void tty_add_file(struct tty_struct *tty, struct file *file)
196{
197 struct tty_file_private *priv = file->private_data;
198
199 priv->tty = tty;
200 priv->file = file;
201
202 spin_lock(&tty->files_lock);
203 list_add(&priv->list, &tty->tty_files);
204 spin_unlock(&tty->files_lock);
205}
206
207/**
208 * tty_free_file - free file->private_data
209 * @file: to free private_data of
210 *
211 * This shall be used only for fail path handling when tty_add_file was not
212 * called yet.
213 */
214void tty_free_file(struct file *file)
215{
216 struct tty_file_private *priv = file->private_data;
217
218 file->private_data = NULL;
219 kfree(priv);
220}
221
222/* Delete file from its tty */
223static void tty_del_file(struct file *file)
224{
225 struct tty_file_private *priv = file->private_data;
226 struct tty_struct *tty = priv->tty;
227
228 spin_lock(&tty->files_lock);
229 list_del(&priv->list);
230 spin_unlock(&tty->files_lock);
231 tty_free_file(file);
232}
233
234/**
235 * tty_name - return tty naming
236 * @tty: tty structure
237 *
238 * Convert a tty structure into a name. The name reflects the kernel naming
239 * policy and if udev is in use may not reflect user space
240 *
241 * Locking: none
242 */
243const char *tty_name(const struct tty_struct *tty)
244{
245 if (!tty) /* Hmm. NULL pointer. That's fun. */
246 return "NULL tty";
247 return tty->name;
248}
249EXPORT_SYMBOL(tty_name);
250
251const char *tty_driver_name(const struct tty_struct *tty)
252{
253 if (!tty || !tty->driver)
254 return "";
255 return tty->driver->name;
256}
257
258static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
259 const char *routine)
260{
261#ifdef TTY_PARANOIA_CHECK
262 if (!tty) {
263 pr_warn("(%d:%d): %s: NULL tty\n",
264 imajor(inode), iminor(inode), routine);
265 return 1;
266 }
267#endif
268 return 0;
269}
270
271/* Caller must hold tty_lock */
272static int check_tty_count(struct tty_struct *tty, const char *routine)
273{
274#ifdef CHECK_TTY_COUNT
275 struct list_head *p;
276 int count = 0, kopen_count = 0;
277
278 spin_lock(&tty->files_lock);
279 list_for_each(p, &tty->tty_files) {
280 count++;
281 }
282 spin_unlock(&tty->files_lock);
283 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
284 tty->driver->subtype == PTY_TYPE_SLAVE &&
285 tty->link && tty->link->count)
286 count++;
287 if (tty_port_kopened(tty->port))
288 kopen_count++;
289 if (tty->count != (count + kopen_count)) {
290 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
291 routine, tty->count, count, kopen_count);
292 return (count + kopen_count);
293 }
294#endif
295 return 0;
296}
297
298/**
299 * get_tty_driver - find device of a tty
300 * @device: device identifier
301 * @index: returns the index of the tty
302 *
303 * This routine returns a tty driver structure, given a device number and also
304 * passes back the index number.
305 *
306 * Locking: caller must hold tty_mutex
307 */
308static struct tty_driver *get_tty_driver(dev_t device, int *index)
309{
310 struct tty_driver *p;
311
312 list_for_each_entry(p, &tty_drivers, tty_drivers) {
313 dev_t base = MKDEV(p->major, p->minor_start);
314
315 if (device < base || device >= base + p->num)
316 continue;
317 *index = device - base;
318 return tty_driver_kref_get(p);
319 }
320 return NULL;
321}
322
323/**
324 * tty_dev_name_to_number - return dev_t for device name
325 * @name: user space name of device under /dev
326 * @number: pointer to dev_t that this function will populate
327 *
328 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
329 * (4, 64) or (188, 1). If no corresponding driver is registered then the
330 * function returns -%ENODEV.
331 *
332 * Locking: this acquires tty_mutex to protect the tty_drivers list from
333 * being modified while we are traversing it, and makes sure to
334 * release it before exiting.
335 */
336int tty_dev_name_to_number(const char *name, dev_t *number)
337{
338 struct tty_driver *p;
339 int ret;
340 int index, prefix_length = 0;
341 const char *str;
342
343 for (str = name; *str && !isdigit(*str); str++)
344 ;
345
346 if (!*str)
347 return -EINVAL;
348
349 ret = kstrtoint(str, 10, &index);
350 if (ret)
351 return ret;
352
353 prefix_length = str - name;
354 mutex_lock(&tty_mutex);
355
356 list_for_each_entry(p, &tty_drivers, tty_drivers)
357 if (prefix_length == strlen(p->name) && strncmp(name,
358 p->name, prefix_length) == 0) {
359 if (index < p->num) {
360 *number = MKDEV(p->major, p->minor_start + index);
361 goto out;
362 }
363 }
364
365 /* if here then driver wasn't found */
366 ret = -ENODEV;
367out:
368 mutex_unlock(&tty_mutex);
369 return ret;
370}
371EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
372
373#ifdef CONFIG_CONSOLE_POLL
374
375/**
376 * tty_find_polling_driver - find device of a polled tty
377 * @name: name string to match
378 * @line: pointer to resulting tty line nr
379 *
380 * This routine returns a tty driver structure, given a name and the condition
381 * that the tty driver is capable of polled operation.
382 */
383struct tty_driver *tty_find_polling_driver(char *name, int *line)
384{
385 struct tty_driver *p, *res = NULL;
386 int tty_line = 0;
387 int len;
388 char *str, *stp;
389
390 for (str = name; *str; str++)
391 if ((*str >= '0' && *str <= '9') || *str == ',')
392 break;
393 if (!*str)
394 return NULL;
395
396 len = str - name;
397 tty_line = simple_strtoul(str, &str, 10);
398
399 mutex_lock(&tty_mutex);
400 /* Search through the tty devices to look for a match */
401 list_for_each_entry(p, &tty_drivers, tty_drivers) {
402 if (!len || strncmp(name, p->name, len) != 0)
403 continue;
404 stp = str;
405 if (*stp == ',')
406 stp++;
407 if (*stp == '\0')
408 stp = NULL;
409
410 if (tty_line >= 0 && tty_line < p->num && p->ops &&
411 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
412 res = tty_driver_kref_get(p);
413 *line = tty_line;
414 break;
415 }
416 }
417 mutex_unlock(&tty_mutex);
418
419 return res;
420}
421EXPORT_SYMBOL_GPL(tty_find_polling_driver);
422#endif
423
424static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
425{
426 return 0;
427}
428
429static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
430{
431 return -EIO;
432}
433
434/* No kernel lock held - none needed ;) */
435static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
436{
437 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
438}
439
440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
441 unsigned long arg)
442{
443 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
444}
445
446static long hung_up_tty_compat_ioctl(struct file *file,
447 unsigned int cmd, unsigned long arg)
448{
449 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
450}
451
452static int hung_up_tty_fasync(int fd, struct file *file, int on)
453{
454 return -ENOTTY;
455}
456
457static void tty_show_fdinfo(struct seq_file *m, struct file *file)
458{
459 struct tty_struct *tty = file_tty(file);
460
461 if (tty && tty->ops && tty->ops->show_fdinfo)
462 tty->ops->show_fdinfo(tty, m);
463}
464
465static const struct file_operations tty_fops = {
466 .llseek = no_llseek,
467 .read_iter = tty_read,
468 .write_iter = tty_write,
469 .splice_read = generic_file_splice_read,
470 .splice_write = iter_file_splice_write,
471 .poll = tty_poll,
472 .unlocked_ioctl = tty_ioctl,
473 .compat_ioctl = tty_compat_ioctl,
474 .open = tty_open,
475 .release = tty_release,
476 .fasync = tty_fasync,
477 .show_fdinfo = tty_show_fdinfo,
478};
479
480static const struct file_operations console_fops = {
481 .llseek = no_llseek,
482 .read_iter = tty_read,
483 .write_iter = redirected_tty_write,
484 .splice_read = generic_file_splice_read,
485 .splice_write = iter_file_splice_write,
486 .poll = tty_poll,
487 .unlocked_ioctl = tty_ioctl,
488 .compat_ioctl = tty_compat_ioctl,
489 .open = tty_open,
490 .release = tty_release,
491 .fasync = tty_fasync,
492};
493
494static const struct file_operations hung_up_tty_fops = {
495 .llseek = no_llseek,
496 .read_iter = hung_up_tty_read,
497 .write_iter = hung_up_tty_write,
498 .poll = hung_up_tty_poll,
499 .unlocked_ioctl = hung_up_tty_ioctl,
500 .compat_ioctl = hung_up_tty_compat_ioctl,
501 .release = tty_release,
502 .fasync = hung_up_tty_fasync,
503};
504
505static DEFINE_SPINLOCK(redirect_lock);
506static struct file *redirect;
507
508/**
509 * tty_wakeup - request more data
510 * @tty: terminal
511 *
512 * Internal and external helper for wakeups of tty. This function informs the
513 * line discipline if present that the driver is ready to receive more output
514 * data.
515 */
516void tty_wakeup(struct tty_struct *tty)
517{
518 struct tty_ldisc *ld;
519
520 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
521 ld = tty_ldisc_ref(tty);
522 if (ld) {
523 if (ld->ops->write_wakeup)
524 ld->ops->write_wakeup(tty);
525 tty_ldisc_deref(ld);
526 }
527 }
528 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
529}
530EXPORT_SYMBOL_GPL(tty_wakeup);
531
532/**
533 * tty_release_redirect - Release a redirect on a pty if present
534 * @tty: tty device
535 *
536 * This is available to the pty code so if the master closes, if the slave is a
537 * redirect it can release the redirect.
538 */
539static struct file *tty_release_redirect(struct tty_struct *tty)
540{
541 struct file *f = NULL;
542
543 spin_lock(&redirect_lock);
544 if (redirect && file_tty(redirect) == tty) {
545 f = redirect;
546 redirect = NULL;
547 }
548 spin_unlock(&redirect_lock);
549
550 return f;
551}
552
553/**
554 * __tty_hangup - actual handler for hangup events
555 * @tty: tty device
556 * @exit_session: if non-zero, signal all foreground group processes
557 *
558 * This can be called by a "kworker" kernel thread. That is process synchronous
559 * but doesn't hold any locks, so we need to make sure we have the appropriate
560 * locks for what we're doing.
561 *
562 * The hangup event clears any pending redirections onto the hung up device. It
563 * ensures future writes will error and it does the needed line discipline
564 * hangup and signal delivery. The tty object itself remains intact.
565 *
566 * Locking:
567 * * BTM
568 *
569 * * redirect lock for undoing redirection
570 * * file list lock for manipulating list of ttys
571 * * tty_ldiscs_lock from called functions
572 * * termios_rwsem resetting termios data
573 * * tasklist_lock to walk task list for hangup event
574 *
575 * * ->siglock to protect ->signal/->sighand
576 *
577 */
578static void __tty_hangup(struct tty_struct *tty, int exit_session)
579{
580 struct file *cons_filp = NULL;
581 struct file *filp, *f;
582 struct tty_file_private *priv;
583 int closecount = 0, n;
584 int refs;
585
586 if (!tty)
587 return;
588
589 f = tty_release_redirect(tty);
590
591 tty_lock(tty);
592
593 if (test_bit(TTY_HUPPED, &tty->flags)) {
594 tty_unlock(tty);
595 return;
596 }
597
598 /*
599 * Some console devices aren't actually hung up for technical and
600 * historical reasons, which can lead to indefinite interruptible
601 * sleep in n_tty_read(). The following explicitly tells
602 * n_tty_read() to abort readers.
603 */
604 set_bit(TTY_HUPPING, &tty->flags);
605
606 /* inuse_filps is protected by the single tty lock,
607 * this really needs to change if we want to flush the
608 * workqueue with the lock held.
609 */
610 check_tty_count(tty, "tty_hangup");
611
612 spin_lock(&tty->files_lock);
613 /* This breaks for file handles being sent over AF_UNIX sockets ? */
614 list_for_each_entry(priv, &tty->tty_files, list) {
615 filp = priv->file;
616 if (filp->f_op->write_iter == redirected_tty_write)
617 cons_filp = filp;
618 if (filp->f_op->write_iter != tty_write)
619 continue;
620 closecount++;
621 __tty_fasync(-1, filp, 0); /* can't block */
622 filp->f_op = &hung_up_tty_fops;
623 }
624 spin_unlock(&tty->files_lock);
625
626 refs = tty_signal_session_leader(tty, exit_session);
627 /* Account for the p->signal references we killed */
628 while (refs--)
629 tty_kref_put(tty);
630
631 tty_ldisc_hangup(tty, cons_filp != NULL);
632
633 spin_lock_irq(&tty->ctrl.lock);
634 clear_bit(TTY_THROTTLED, &tty->flags);
635 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
636 put_pid(tty->ctrl.session);
637 put_pid(tty->ctrl.pgrp);
638 tty->ctrl.session = NULL;
639 tty->ctrl.pgrp = NULL;
640 tty->ctrl.pktstatus = 0;
641 spin_unlock_irq(&tty->ctrl.lock);
642
643 /*
644 * If one of the devices matches a console pointer, we
645 * cannot just call hangup() because that will cause
646 * tty->count and state->count to go out of sync.
647 * So we just call close() the right number of times.
648 */
649 if (cons_filp) {
650 if (tty->ops->close)
651 for (n = 0; n < closecount; n++)
652 tty->ops->close(tty, cons_filp);
653 } else if (tty->ops->hangup)
654 tty->ops->hangup(tty);
655 /*
656 * We don't want to have driver/ldisc interactions beyond the ones
657 * we did here. The driver layer expects no calls after ->hangup()
658 * from the ldisc side, which is now guaranteed.
659 */
660 set_bit(TTY_HUPPED, &tty->flags);
661 clear_bit(TTY_HUPPING, &tty->flags);
662 tty_unlock(tty);
663
664 if (f)
665 fput(f);
666}
667
668static void do_tty_hangup(struct work_struct *work)
669{
670 struct tty_struct *tty =
671 container_of(work, struct tty_struct, hangup_work);
672
673 __tty_hangup(tty, 0);
674}
675
676/**
677 * tty_hangup - trigger a hangup event
678 * @tty: tty to hangup
679 *
680 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
681 * hangup sequence to run after this event.
682 */
683void tty_hangup(struct tty_struct *tty)
684{
685 tty_debug_hangup(tty, "hangup\n");
686 schedule_work(&tty->hangup_work);
687}
688EXPORT_SYMBOL(tty_hangup);
689
690/**
691 * tty_vhangup - process vhangup
692 * @tty: tty to hangup
693 *
694 * The user has asked via system call for the terminal to be hung up. We do
695 * this synchronously so that when the syscall returns the process is complete.
696 * That guarantee is necessary for security reasons.
697 */
698void tty_vhangup(struct tty_struct *tty)
699{
700 tty_debug_hangup(tty, "vhangup\n");
701 __tty_hangup(tty, 0);
702}
703EXPORT_SYMBOL(tty_vhangup);
704
705
706/**
707 * tty_vhangup_self - process vhangup for own ctty
708 *
709 * Perform a vhangup on the current controlling tty
710 */
711void tty_vhangup_self(void)
712{
713 struct tty_struct *tty;
714
715 tty = get_current_tty();
716 if (tty) {
717 tty_vhangup(tty);
718 tty_kref_put(tty);
719 }
720}
721
722/**
723 * tty_vhangup_session - hangup session leader exit
724 * @tty: tty to hangup
725 *
726 * The session leader is exiting and hanging up its controlling terminal.
727 * Every process in the foreground process group is signalled %SIGHUP.
728 *
729 * We do this synchronously so that when the syscall returns the process is
730 * complete. That guarantee is necessary for security reasons.
731 */
732void tty_vhangup_session(struct tty_struct *tty)
733{
734 tty_debug_hangup(tty, "session hangup\n");
735 __tty_hangup(tty, 1);
736}
737
738/**
739 * tty_hung_up_p - was tty hung up
740 * @filp: file pointer of tty
741 *
742 * Return: true if the tty has been subject to a vhangup or a carrier loss
743 */
744int tty_hung_up_p(struct file *filp)
745{
746 return (filp && filp->f_op == &hung_up_tty_fops);
747}
748EXPORT_SYMBOL(tty_hung_up_p);
749
750void __stop_tty(struct tty_struct *tty)
751{
752 if (tty->flow.stopped)
753 return;
754 tty->flow.stopped = true;
755 if (tty->ops->stop)
756 tty->ops->stop(tty);
757}
758
759/**
760 * stop_tty - propagate flow control
761 * @tty: tty to stop
762 *
763 * Perform flow control to the driver. May be called on an already stopped
764 * device and will not re-call the &tty_driver->stop() method.
765 *
766 * This functionality is used by both the line disciplines for halting incoming
767 * flow and by the driver. It may therefore be called from any context, may be
768 * under the tty %atomic_write_lock but not always.
769 *
770 * Locking:
771 * flow.lock
772 */
773void stop_tty(struct tty_struct *tty)
774{
775 unsigned long flags;
776
777 spin_lock_irqsave(&tty->flow.lock, flags);
778 __stop_tty(tty);
779 spin_unlock_irqrestore(&tty->flow.lock, flags);
780}
781EXPORT_SYMBOL(stop_tty);
782
783void __start_tty(struct tty_struct *tty)
784{
785 if (!tty->flow.stopped || tty->flow.tco_stopped)
786 return;
787 tty->flow.stopped = false;
788 if (tty->ops->start)
789 tty->ops->start(tty);
790 tty_wakeup(tty);
791}
792
793/**
794 * start_tty - propagate flow control
795 * @tty: tty to start
796 *
797 * Start a tty that has been stopped if at all possible. If @tty was previously
798 * stopped and is now being started, the &tty_driver->start() method is invoked
799 * and the line discipline woken.
800 *
801 * Locking:
802 * flow.lock
803 */
804void start_tty(struct tty_struct *tty)
805{
806 unsigned long flags;
807
808 spin_lock_irqsave(&tty->flow.lock, flags);
809 __start_tty(tty);
810 spin_unlock_irqrestore(&tty->flow.lock, flags);
811}
812EXPORT_SYMBOL(start_tty);
813
814static void tty_update_time(struct timespec64 *time)
815{
816 time64_t sec = ktime_get_real_seconds();
817
818 /*
819 * We only care if the two values differ in anything other than the
820 * lower three bits (i.e every 8 seconds). If so, then we can update
821 * the time of the tty device, otherwise it could be construded as a
822 * security leak to let userspace know the exact timing of the tty.
823 */
824 if ((sec ^ time->tv_sec) & ~7)
825 time->tv_sec = sec;
826}
827
828/*
829 * Iterate on the ldisc ->read() function until we've gotten all
830 * the data the ldisc has for us.
831 *
832 * The "cookie" is something that the ldisc read function can fill
833 * in to let us know that there is more data to be had.
834 *
835 * We promise to continue to call the ldisc until it stops returning
836 * data or clears the cookie. The cookie may be something that the
837 * ldisc maintains state for and needs to free.
838 */
839static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
840 struct file *file, struct iov_iter *to)
841{
842 int retval = 0;
843 void *cookie = NULL;
844 unsigned long offset = 0;
845 char kernel_buf[64];
846 size_t count = iov_iter_count(to);
847
848 do {
849 int size, copied;
850
851 size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
852 size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
853 if (!size)
854 break;
855
856 if (size < 0) {
857 /* Did we have an earlier error (ie -EFAULT)? */
858 if (retval)
859 break;
860 retval = size;
861
862 /*
863 * -EOVERFLOW means we didn't have enough space
864 * for a whole packet, and we shouldn't return
865 * a partial result.
866 */
867 if (retval == -EOVERFLOW)
868 offset = 0;
869 break;
870 }
871
872 copied = copy_to_iter(kernel_buf, size, to);
873 offset += copied;
874 count -= copied;
875
876 /*
877 * If the user copy failed, we still need to do another ->read()
878 * call if we had a cookie to let the ldisc clear up.
879 *
880 * But make sure size is zeroed.
881 */
882 if (unlikely(copied != size)) {
883 count = 0;
884 retval = -EFAULT;
885 }
886 } while (cookie);
887
888 /* We always clear tty buffer in case they contained passwords */
889 memzero_explicit(kernel_buf, sizeof(kernel_buf));
890 return offset ? offset : retval;
891}
892
893
894/**
895 * tty_read - read method for tty device files
896 * @iocb: kernel I/O control block
897 * @to: destination for the data read
898 *
899 * Perform the read system call function on this terminal device. Checks
900 * for hung up devices before calling the line discipline method.
901 *
902 * Locking:
903 * Locks the line discipline internally while needed. Multiple read calls
904 * may be outstanding in parallel.
905 */
906static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
907{
908 int i;
909 struct file *file = iocb->ki_filp;
910 struct inode *inode = file_inode(file);
911 struct tty_struct *tty = file_tty(file);
912 struct tty_ldisc *ld;
913
914 if (tty_paranoia_check(tty, inode, "tty_read"))
915 return -EIO;
916 if (!tty || tty_io_error(tty))
917 return -EIO;
918
919 /* We want to wait for the line discipline to sort out in this
920 * situation.
921 */
922 ld = tty_ldisc_ref_wait(tty);
923 if (!ld)
924 return hung_up_tty_read(iocb, to);
925 i = -EIO;
926 if (ld->ops->read)
927 i = iterate_tty_read(ld, tty, file, to);
928 tty_ldisc_deref(ld);
929
930 if (i > 0)
931 tty_update_time(&inode->i_atime);
932
933 return i;
934}
935
936static void tty_write_unlock(struct tty_struct *tty)
937{
938 mutex_unlock(&tty->atomic_write_lock);
939 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
940}
941
942static int tty_write_lock(struct tty_struct *tty, int ndelay)
943{
944 if (!mutex_trylock(&tty->atomic_write_lock)) {
945 if (ndelay)
946 return -EAGAIN;
947 if (mutex_lock_interruptible(&tty->atomic_write_lock))
948 return -ERESTARTSYS;
949 }
950 return 0;
951}
952
953/*
954 * Split writes up in sane blocksizes to avoid
955 * denial-of-service type attacks
956 */
957static inline ssize_t do_tty_write(
958 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
959 struct tty_struct *tty,
960 struct file *file,
961 struct iov_iter *from)
962{
963 size_t count = iov_iter_count(from);
964 ssize_t ret, written = 0;
965 unsigned int chunk;
966
967 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
968 if (ret < 0)
969 return ret;
970
971 /*
972 * We chunk up writes into a temporary buffer. This
973 * simplifies low-level drivers immensely, since they
974 * don't have locking issues and user mode accesses.
975 *
976 * But if TTY_NO_WRITE_SPLIT is set, we should use a
977 * big chunk-size..
978 *
979 * The default chunk-size is 2kB, because the NTTY
980 * layer has problems with bigger chunks. It will
981 * claim to be able to handle more characters than
982 * it actually does.
983 */
984 chunk = 2048;
985 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
986 chunk = 65536;
987 if (count < chunk)
988 chunk = count;
989
990 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
991 if (tty->write_cnt < chunk) {
992 unsigned char *buf_chunk;
993
994 if (chunk < 1024)
995 chunk = 1024;
996
997 buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
998 if (!buf_chunk) {
999 ret = -ENOMEM;
1000 goto out;
1001 }
1002 kvfree(tty->write_buf);
1003 tty->write_cnt = chunk;
1004 tty->write_buf = buf_chunk;
1005 }
1006
1007 /* Do the write .. */
1008 for (;;) {
1009 size_t size = count;
1010
1011 if (size > chunk)
1012 size = chunk;
1013
1014 ret = -EFAULT;
1015 if (copy_from_iter(tty->write_buf, size, from) != size)
1016 break;
1017
1018 ret = write(tty, file, tty->write_buf, size);
1019 if (ret <= 0)
1020 break;
1021
1022 written += ret;
1023 if (ret > size)
1024 break;
1025
1026 /* FIXME! Have Al check this! */
1027 if (ret != size)
1028 iov_iter_revert(from, size-ret);
1029
1030 count -= ret;
1031 if (!count)
1032 break;
1033 ret = -ERESTARTSYS;
1034 if (signal_pending(current))
1035 break;
1036 cond_resched();
1037 }
1038 if (written) {
1039 tty_update_time(&file_inode(file)->i_mtime);
1040 ret = written;
1041 }
1042out:
1043 tty_write_unlock(tty);
1044 return ret;
1045}
1046
1047/**
1048 * tty_write_message - write a message to a certain tty, not just the console.
1049 * @tty: the destination tty_struct
1050 * @msg: the message to write
1051 *
1052 * This is used for messages that need to be redirected to a specific tty. We
1053 * don't put it into the syslog queue right now maybe in the future if really
1054 * needed.
1055 *
1056 * We must still hold the BTM and test the CLOSING flag for the moment.
1057 */
1058void tty_write_message(struct tty_struct *tty, char *msg)
1059{
1060 if (tty) {
1061 mutex_lock(&tty->atomic_write_lock);
1062 tty_lock(tty);
1063 if (tty->ops->write && tty->count > 0)
1064 tty->ops->write(tty, msg, strlen(msg));
1065 tty_unlock(tty);
1066 tty_write_unlock(tty);
1067 }
1068}
1069
1070static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
1071{
1072 struct tty_struct *tty = file_tty(file);
1073 struct tty_ldisc *ld;
1074 ssize_t ret;
1075
1076 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1077 return -EIO;
1078 if (!tty || !tty->ops->write || tty_io_error(tty))
1079 return -EIO;
1080 /* Short term debug to catch buggy drivers */
1081 if (tty->ops->write_room == NULL)
1082 tty_err(tty, "missing write_room method\n");
1083 ld = tty_ldisc_ref_wait(tty);
1084 if (!ld)
1085 return hung_up_tty_write(iocb, from);
1086 if (!ld->ops->write)
1087 ret = -EIO;
1088 else
1089 ret = do_tty_write(ld->ops->write, tty, file, from);
1090 tty_ldisc_deref(ld);
1091 return ret;
1092}
1093
1094/**
1095 * tty_write - write method for tty device file
1096 * @iocb: kernel I/O control block
1097 * @from: iov_iter with data to write
1098 *
1099 * Write data to a tty device via the line discipline.
1100 *
1101 * Locking:
1102 * Locks the line discipline as required
1103 * Writes to the tty driver are serialized by the atomic_write_lock
1104 * and are then processed in chunks to the device. The line
1105 * discipline write method will not be invoked in parallel for
1106 * each device.
1107 */
1108static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1109{
1110 return file_tty_write(iocb->ki_filp, iocb, from);
1111}
1112
1113ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1114{
1115 struct file *p = NULL;
1116
1117 spin_lock(&redirect_lock);
1118 if (redirect)
1119 p = get_file(redirect);
1120 spin_unlock(&redirect_lock);
1121
1122 /*
1123 * We know the redirected tty is just another tty, we can
1124 * call file_tty_write() directly with that file pointer.
1125 */
1126 if (p) {
1127 ssize_t res;
1128
1129 res = file_tty_write(p, iocb, iter);
1130 fput(p);
1131 return res;
1132 }
1133 return tty_write(iocb, iter);
1134}
1135
1136/**
1137 * tty_send_xchar - send priority character
1138 * @tty: the tty to send to
1139 * @ch: xchar to send
1140 *
1141 * Send a high priority character to the tty even if stopped.
1142 *
1143 * Locking: none for xchar method, write ordering for write method.
1144 */
1145int tty_send_xchar(struct tty_struct *tty, char ch)
1146{
1147 bool was_stopped = tty->flow.stopped;
1148
1149 if (tty->ops->send_xchar) {
1150 down_read(&tty->termios_rwsem);
1151 tty->ops->send_xchar(tty, ch);
1152 up_read(&tty->termios_rwsem);
1153 return 0;
1154 }
1155
1156 if (tty_write_lock(tty, 0) < 0)
1157 return -ERESTARTSYS;
1158
1159 down_read(&tty->termios_rwsem);
1160 if (was_stopped)
1161 start_tty(tty);
1162 tty->ops->write(tty, &ch, 1);
1163 if (was_stopped)
1164 stop_tty(tty);
1165 up_read(&tty->termios_rwsem);
1166 tty_write_unlock(tty);
1167 return 0;
1168}
1169
1170/**
1171 * pty_line_name - generate name for a pty
1172 * @driver: the tty driver in use
1173 * @index: the minor number
1174 * @p: output buffer of at least 6 bytes
1175 *
1176 * Generate a name from a @driver reference and write it to the output buffer
1177 * @p.
1178 *
1179 * Locking: None
1180 */
1181static void pty_line_name(struct tty_driver *driver, int index, char *p)
1182{
1183 static const char ptychar[] = "pqrstuvwxyzabcde";
1184 int i = index + driver->name_base;
1185 /* ->name is initialized to "ttyp", but "tty" is expected */
1186 sprintf(p, "%s%c%x",
1187 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1188 ptychar[i >> 4 & 0xf], i & 0xf);
1189}
1190
1191/**
1192 * tty_line_name - generate name for a tty
1193 * @driver: the tty driver in use
1194 * @index: the minor number
1195 * @p: output buffer of at least 7 bytes
1196 *
1197 * Generate a name from a @driver reference and write it to the output buffer
1198 * @p.
1199 *
1200 * Locking: None
1201 */
1202static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1203{
1204 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1205 return sprintf(p, "%s", driver->name);
1206 else
1207 return sprintf(p, "%s%d", driver->name,
1208 index + driver->name_base);
1209}
1210
1211/**
1212 * tty_driver_lookup_tty() - find an existing tty, if any
1213 * @driver: the driver for the tty
1214 * @file: file object
1215 * @idx: the minor number
1216 *
1217 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1218 * driver lookup() method returns an error.
1219 *
1220 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1221 */
1222static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1223 struct file *file, int idx)
1224{
1225 struct tty_struct *tty;
1226
1227 if (driver->ops->lookup)
1228 if (!file)
1229 tty = ERR_PTR(-EIO);
1230 else
1231 tty = driver->ops->lookup(driver, file, idx);
1232 else
1233 tty = driver->ttys[idx];
1234
1235 if (!IS_ERR(tty))
1236 tty_kref_get(tty);
1237 return tty;
1238}
1239
1240/**
1241 * tty_init_termios - helper for termios setup
1242 * @tty: the tty to set up
1243 *
1244 * Initialise the termios structure for this tty. This runs under the
1245 * %tty_mutex currently so we can be relaxed about ordering.
1246 */
1247void tty_init_termios(struct tty_struct *tty)
1248{
1249 struct ktermios *tp;
1250 int idx = tty->index;
1251
1252 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1253 tty->termios = tty->driver->init_termios;
1254 else {
1255 /* Check for lazy saved data */
1256 tp = tty->driver->termios[idx];
1257 if (tp != NULL) {
1258 tty->termios = *tp;
1259 tty->termios.c_line = tty->driver->init_termios.c_line;
1260 } else
1261 tty->termios = tty->driver->init_termios;
1262 }
1263 /* Compatibility until drivers always set this */
1264 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1265 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1266}
1267EXPORT_SYMBOL_GPL(tty_init_termios);
1268
1269/**
1270 * tty_standard_install - usual tty->ops->install
1271 * @driver: the driver for the tty
1272 * @tty: the tty
1273 *
1274 * If the @driver overrides @tty->ops->install, it still can call this function
1275 * to perform the standard install operations.
1276 */
1277int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1278{
1279 tty_init_termios(tty);
1280 tty_driver_kref_get(driver);
1281 tty->count++;
1282 driver->ttys[tty->index] = tty;
1283 return 0;
1284}
1285EXPORT_SYMBOL_GPL(tty_standard_install);
1286
1287/**
1288 * tty_driver_install_tty() - install a tty entry in the driver
1289 * @driver: the driver for the tty
1290 * @tty: the tty
1291 *
1292 * Install a tty object into the driver tables. The @tty->index field will be
1293 * set by the time this is called. This method is responsible for ensuring any
1294 * need additional structures are allocated and configured.
1295 *
1296 * Locking: tty_mutex for now
1297 */
1298static int tty_driver_install_tty(struct tty_driver *driver,
1299 struct tty_struct *tty)
1300{
1301 return driver->ops->install ? driver->ops->install(driver, tty) :
1302 tty_standard_install(driver, tty);
1303}
1304
1305/**
1306 * tty_driver_remove_tty() - remove a tty from the driver tables
1307 * @driver: the driver for the tty
1308 * @tty: tty to remove
1309 *
1310 * Remove a tty object from the driver tables. The tty->index field will be set
1311 * by the time this is called.
1312 *
1313 * Locking: tty_mutex for now
1314 */
1315static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1316{
1317 if (driver->ops->remove)
1318 driver->ops->remove(driver, tty);
1319 else
1320 driver->ttys[tty->index] = NULL;
1321}
1322
1323/**
1324 * tty_reopen() - fast re-open of an open tty
1325 * @tty: the tty to open
1326 *
1327 * Re-opens on master ptys are not allowed and return -%EIO.
1328 *
1329 * Locking: Caller must hold tty_lock
1330 * Return: 0 on success, -errno on error.
1331 */
1332static int tty_reopen(struct tty_struct *tty)
1333{
1334 struct tty_driver *driver = tty->driver;
1335 struct tty_ldisc *ld;
1336 int retval = 0;
1337
1338 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1339 driver->subtype == PTY_TYPE_MASTER)
1340 return -EIO;
1341
1342 if (!tty->count)
1343 return -EAGAIN;
1344
1345 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1346 return -EBUSY;
1347
1348 ld = tty_ldisc_ref_wait(tty);
1349 if (ld) {
1350 tty_ldisc_deref(ld);
1351 } else {
1352 retval = tty_ldisc_lock(tty, 5 * HZ);
1353 if (retval)
1354 return retval;
1355
1356 if (!tty->ldisc)
1357 retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1358 tty_ldisc_unlock(tty);
1359 }
1360
1361 if (retval == 0)
1362 tty->count++;
1363
1364 return retval;
1365}
1366
1367/**
1368 * tty_init_dev - initialise a tty device
1369 * @driver: tty driver we are opening a device on
1370 * @idx: device index
1371 *
1372 * Prepare a tty device. This may not be a "new" clean device but could also be
1373 * an active device. The pty drivers require special handling because of this.
1374 *
1375 * Locking:
1376 * The function is called under the tty_mutex, which protects us from the
1377 * tty struct or driver itself going away.
1378 *
1379 * On exit the tty device has the line discipline attached and a reference
1380 * count of 1. If a pair was created for pty/tty use and the other was a pty
1381 * master then it too has a reference count of 1.
1382 *
1383 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1384 * open. The new code protects the open with a mutex, so it's really quite
1385 * straightforward. The mutex locking can probably be relaxed for the (most
1386 * common) case of reopening a tty.
1387 *
1388 * Return: new tty structure
1389 */
1390struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1391{
1392 struct tty_struct *tty;
1393 int retval;
1394
1395 /*
1396 * First time open is complex, especially for PTY devices.
1397 * This code guarantees that either everything succeeds and the
1398 * TTY is ready for operation, or else the table slots are vacated
1399 * and the allocated memory released. (Except that the termios
1400 * may be retained.)
1401 */
1402
1403 if (!try_module_get(driver->owner))
1404 return ERR_PTR(-ENODEV);
1405
1406 tty = alloc_tty_struct(driver, idx);
1407 if (!tty) {
1408 retval = -ENOMEM;
1409 goto err_module_put;
1410 }
1411
1412 tty_lock(tty);
1413 retval = tty_driver_install_tty(driver, tty);
1414 if (retval < 0)
1415 goto err_free_tty;
1416
1417 if (!tty->port)
1418 tty->port = driver->ports[idx];
1419
1420 if (WARN_RATELIMIT(!tty->port,
1421 "%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1422 __func__, tty->driver->name)) {
1423 retval = -EINVAL;
1424 goto err_release_lock;
1425 }
1426
1427 retval = tty_ldisc_lock(tty, 5 * HZ);
1428 if (retval)
1429 goto err_release_lock;
1430 tty->port->itty = tty;
1431
1432 /*
1433 * Structures all installed ... call the ldisc open routines.
1434 * If we fail here just call release_tty to clean up. No need
1435 * to decrement the use counts, as release_tty doesn't care.
1436 */
1437 retval = tty_ldisc_setup(tty, tty->link);
1438 if (retval)
1439 goto err_release_tty;
1440 tty_ldisc_unlock(tty);
1441 /* Return the tty locked so that it cannot vanish under the caller */
1442 return tty;
1443
1444err_free_tty:
1445 tty_unlock(tty);
1446 free_tty_struct(tty);
1447err_module_put:
1448 module_put(driver->owner);
1449 return ERR_PTR(retval);
1450
1451 /* call the tty release_tty routine to clean out this slot */
1452err_release_tty:
1453 tty_ldisc_unlock(tty);
1454 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1455 retval, idx);
1456err_release_lock:
1457 tty_unlock(tty);
1458 release_tty(tty, idx);
1459 return ERR_PTR(retval);
1460}
1461
1462/**
1463 * tty_save_termios() - save tty termios data in driver table
1464 * @tty: tty whose termios data to save
1465 *
1466 * Locking: Caller guarantees serialisation with tty_init_termios().
1467 */
1468void tty_save_termios(struct tty_struct *tty)
1469{
1470 struct ktermios *tp;
1471 int idx = tty->index;
1472
1473 /* If the port is going to reset then it has no termios to save */
1474 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1475 return;
1476
1477 /* Stash the termios data */
1478 tp = tty->driver->termios[idx];
1479 if (tp == NULL) {
1480 tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1481 if (tp == NULL)
1482 return;
1483 tty->driver->termios[idx] = tp;
1484 }
1485 *tp = tty->termios;
1486}
1487EXPORT_SYMBOL_GPL(tty_save_termios);
1488
1489/**
1490 * tty_flush_works - flush all works of a tty/pty pair
1491 * @tty: tty device to flush works for (or either end of a pty pair)
1492 *
1493 * Sync flush all works belonging to @tty (and the 'other' tty).
1494 */
1495static void tty_flush_works(struct tty_struct *tty)
1496{
1497 flush_work(&tty->SAK_work);
1498 flush_work(&tty->hangup_work);
1499 if (tty->link) {
1500 flush_work(&tty->link->SAK_work);
1501 flush_work(&tty->link->hangup_work);
1502 }
1503}
1504
1505/**
1506 * release_one_tty - release tty structure memory
1507 * @work: work of tty we are obliterating
1508 *
1509 * Releases memory associated with a tty structure, and clears out the
1510 * driver table slots. This function is called when a device is no longer
1511 * in use. It also gets called when setup of a device fails.
1512 *
1513 * Locking:
1514 * takes the file list lock internally when working on the list of ttys
1515 * that the driver keeps.
1516 *
1517 * This method gets called from a work queue so that the driver private
1518 * cleanup ops can sleep (needed for USB at least)
1519 */
1520static void release_one_tty(struct work_struct *work)
1521{
1522 struct tty_struct *tty =
1523 container_of(work, struct tty_struct, hangup_work);
1524 struct tty_driver *driver = tty->driver;
1525 struct module *owner = driver->owner;
1526
1527 if (tty->ops->cleanup)
1528 tty->ops->cleanup(tty);
1529
1530 tty_driver_kref_put(driver);
1531 module_put(owner);
1532
1533 spin_lock(&tty->files_lock);
1534 list_del_init(&tty->tty_files);
1535 spin_unlock(&tty->files_lock);
1536
1537 put_pid(tty->ctrl.pgrp);
1538 put_pid(tty->ctrl.session);
1539 free_tty_struct(tty);
1540}
1541
1542static void queue_release_one_tty(struct kref *kref)
1543{
1544 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1545
1546 /* The hangup queue is now free so we can reuse it rather than
1547 * waste a chunk of memory for each port.
1548 */
1549 INIT_WORK(&tty->hangup_work, release_one_tty);
1550 schedule_work(&tty->hangup_work);
1551}
1552
1553/**
1554 * tty_kref_put - release a tty kref
1555 * @tty: tty device
1556 *
1557 * Release a reference to the @tty device and if need be let the kref layer
1558 * destruct the object for us.
1559 */
1560void tty_kref_put(struct tty_struct *tty)
1561{
1562 if (tty)
1563 kref_put(&tty->kref, queue_release_one_tty);
1564}
1565EXPORT_SYMBOL(tty_kref_put);
1566
1567/**
1568 * release_tty - release tty structure memory
1569 * @tty: tty device release
1570 * @idx: index of the tty device release
1571 *
1572 * Release both @tty and a possible linked partner (think pty pair),
1573 * and decrement the refcount of the backing module.
1574 *
1575 * Locking:
1576 * tty_mutex
1577 * takes the file list lock internally when working on the list of ttys
1578 * that the driver keeps.
1579 */
1580static void release_tty(struct tty_struct *tty, int idx)
1581{
1582 /* This should always be true but check for the moment */
1583 WARN_ON(tty->index != idx);
1584 WARN_ON(!mutex_is_locked(&tty_mutex));
1585 if (tty->ops->shutdown)
1586 tty->ops->shutdown(tty);
1587 tty_save_termios(tty);
1588 tty_driver_remove_tty(tty->driver, tty);
1589 if (tty->port)
1590 tty->port->itty = NULL;
1591 if (tty->link)
1592 tty->link->port->itty = NULL;
1593 if (tty->port)
1594 tty_buffer_cancel_work(tty->port);
1595 if (tty->link)
1596 tty_buffer_cancel_work(tty->link->port);
1597
1598 tty_kref_put(tty->link);
1599 tty_kref_put(tty);
1600}
1601
1602/**
1603 * tty_release_checks - check a tty before real release
1604 * @tty: tty to check
1605 * @idx: index of the tty
1606 *
1607 * Performs some paranoid checking before true release of the @tty. This is a
1608 * no-op unless %TTY_PARANOIA_CHECK is defined.
1609 */
1610static int tty_release_checks(struct tty_struct *tty, int idx)
1611{
1612#ifdef TTY_PARANOIA_CHECK
1613 if (idx < 0 || idx >= tty->driver->num) {
1614 tty_debug(tty, "bad idx %d\n", idx);
1615 return -1;
1616 }
1617
1618 /* not much to check for devpts */
1619 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1620 return 0;
1621
1622 if (tty != tty->driver->ttys[idx]) {
1623 tty_debug(tty, "bad driver table[%d] = %p\n",
1624 idx, tty->driver->ttys[idx]);
1625 return -1;
1626 }
1627 if (tty->driver->other) {
1628 struct tty_struct *o_tty = tty->link;
1629
1630 if (o_tty != tty->driver->other->ttys[idx]) {
1631 tty_debug(tty, "bad other table[%d] = %p\n",
1632 idx, tty->driver->other->ttys[idx]);
1633 return -1;
1634 }
1635 if (o_tty->link != tty) {
1636 tty_debug(tty, "bad link = %p\n", o_tty->link);
1637 return -1;
1638 }
1639 }
1640#endif
1641 return 0;
1642}
1643
1644/**
1645 * tty_kclose - closes tty opened by tty_kopen
1646 * @tty: tty device
1647 *
1648 * Performs the final steps to release and free a tty device. It is the same as
1649 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1650 * @tty->port.
1651 */
1652void tty_kclose(struct tty_struct *tty)
1653{
1654 /*
1655 * Ask the line discipline code to release its structures
1656 */
1657 tty_ldisc_release(tty);
1658
1659 /* Wait for pending work before tty destruction commences */
1660 tty_flush_works(tty);
1661
1662 tty_debug_hangup(tty, "freeing structure\n");
1663 /*
1664 * The release_tty function takes care of the details of clearing
1665 * the slots and preserving the termios structure.
1666 */
1667 mutex_lock(&tty_mutex);
1668 tty_port_set_kopened(tty->port, 0);
1669 release_tty(tty, tty->index);
1670 mutex_unlock(&tty_mutex);
1671}
1672EXPORT_SYMBOL_GPL(tty_kclose);
1673
1674/**
1675 * tty_release_struct - release a tty struct
1676 * @tty: tty device
1677 * @idx: index of the tty
1678 *
1679 * Performs the final steps to release and free a tty device. It is roughly the
1680 * reverse of tty_init_dev().
1681 */
1682void tty_release_struct(struct tty_struct *tty, int idx)
1683{
1684 /*
1685 * Ask the line discipline code to release its structures
1686 */
1687 tty_ldisc_release(tty);
1688
1689 /* Wait for pending work before tty destruction commmences */
1690 tty_flush_works(tty);
1691
1692 tty_debug_hangup(tty, "freeing structure\n");
1693 /*
1694 * The release_tty function takes care of the details of clearing
1695 * the slots and preserving the termios structure.
1696 */
1697 mutex_lock(&tty_mutex);
1698 release_tty(tty, idx);
1699 mutex_unlock(&tty_mutex);
1700}
1701EXPORT_SYMBOL_GPL(tty_release_struct);
1702
1703/**
1704 * tty_release - vfs callback for close
1705 * @inode: inode of tty
1706 * @filp: file pointer for handle to tty
1707 *
1708 * Called the last time each file handle is closed that references this tty.
1709 * There may however be several such references.
1710 *
1711 * Locking:
1712 * Takes BKL. See tty_release_dev().
1713 *
1714 * Even releasing the tty structures is a tricky business. We have to be very
1715 * careful that the structures are all released at the same time, as interrupts
1716 * might otherwise get the wrong pointers.
1717 *
1718 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1719 * lead to double frees or releasing memory still in use.
1720 */
1721int tty_release(struct inode *inode, struct file *filp)
1722{
1723 struct tty_struct *tty = file_tty(filp);
1724 struct tty_struct *o_tty = NULL;
1725 int do_sleep, final;
1726 int idx;
1727 long timeout = 0;
1728 int once = 1;
1729
1730 if (tty_paranoia_check(tty, inode, __func__))
1731 return 0;
1732
1733 tty_lock(tty);
1734 check_tty_count(tty, __func__);
1735
1736 __tty_fasync(-1, filp, 0);
1737
1738 idx = tty->index;
1739 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1740 tty->driver->subtype == PTY_TYPE_MASTER)
1741 o_tty = tty->link;
1742
1743 if (tty_release_checks(tty, idx)) {
1744 tty_unlock(tty);
1745 return 0;
1746 }
1747
1748 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1749
1750 if (tty->ops->close)
1751 tty->ops->close(tty, filp);
1752
1753 /* If tty is pty master, lock the slave pty (stable lock order) */
1754 tty_lock_slave(o_tty);
1755
1756 /*
1757 * Sanity check: if tty->count is going to zero, there shouldn't be
1758 * any waiters on tty->read_wait or tty->write_wait. We test the
1759 * wait queues and kick everyone out _before_ actually starting to
1760 * close. This ensures that we won't block while releasing the tty
1761 * structure.
1762 *
1763 * The test for the o_tty closing is necessary, since the master and
1764 * slave sides may close in any order. If the slave side closes out
1765 * first, its count will be one, since the master side holds an open.
1766 * Thus this test wouldn't be triggered at the time the slave closed,
1767 * so we do it now.
1768 */
1769 while (1) {
1770 do_sleep = 0;
1771
1772 if (tty->count <= 1) {
1773 if (waitqueue_active(&tty->read_wait)) {
1774 wake_up_poll(&tty->read_wait, EPOLLIN);
1775 do_sleep++;
1776 }
1777 if (waitqueue_active(&tty->write_wait)) {
1778 wake_up_poll(&tty->write_wait, EPOLLOUT);
1779 do_sleep++;
1780 }
1781 }
1782 if (o_tty && o_tty->count <= 1) {
1783 if (waitqueue_active(&o_tty->read_wait)) {
1784 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1785 do_sleep++;
1786 }
1787 if (waitqueue_active(&o_tty->write_wait)) {
1788 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1789 do_sleep++;
1790 }
1791 }
1792 if (!do_sleep)
1793 break;
1794
1795 if (once) {
1796 once = 0;
1797 tty_warn(tty, "read/write wait queue active!\n");
1798 }
1799 schedule_timeout_killable(timeout);
1800 if (timeout < 120 * HZ)
1801 timeout = 2 * timeout + 1;
1802 else
1803 timeout = MAX_SCHEDULE_TIMEOUT;
1804 }
1805
1806 if (o_tty) {
1807 if (--o_tty->count < 0) {
1808 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1809 o_tty->count = 0;
1810 }
1811 }
1812 if (--tty->count < 0) {
1813 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1814 tty->count = 0;
1815 }
1816
1817 /*
1818 * We've decremented tty->count, so we need to remove this file
1819 * descriptor off the tty->tty_files list; this serves two
1820 * purposes:
1821 * - check_tty_count sees the correct number of file descriptors
1822 * associated with this tty.
1823 * - do_tty_hangup no longer sees this file descriptor as
1824 * something that needs to be handled for hangups.
1825 */
1826 tty_del_file(filp);
1827
1828 /*
1829 * Perform some housekeeping before deciding whether to return.
1830 *
1831 * If _either_ side is closing, make sure there aren't any
1832 * processes that still think tty or o_tty is their controlling
1833 * tty.
1834 */
1835 if (!tty->count) {
1836 read_lock(&tasklist_lock);
1837 session_clear_tty(tty->ctrl.session);
1838 if (o_tty)
1839 session_clear_tty(o_tty->ctrl.session);
1840 read_unlock(&tasklist_lock);
1841 }
1842
1843 /* check whether both sides are closing ... */
1844 final = !tty->count && !(o_tty && o_tty->count);
1845
1846 tty_unlock_slave(o_tty);
1847 tty_unlock(tty);
1848
1849 /* At this point, the tty->count == 0 should ensure a dead tty
1850 * cannot be re-opened by a racing opener.
1851 */
1852
1853 if (!final)
1854 return 0;
1855
1856 tty_debug_hangup(tty, "final close\n");
1857
1858 tty_release_struct(tty, idx);
1859 return 0;
1860}
1861
1862/**
1863 * tty_open_current_tty - get locked tty of current task
1864 * @device: device number
1865 * @filp: file pointer to tty
1866 * @return: locked tty of the current task iff @device is /dev/tty
1867 *
1868 * Performs a re-open of the current task's controlling tty.
1869 *
1870 * We cannot return driver and index like for the other nodes because devpts
1871 * will not work then. It expects inodes to be from devpts FS.
1872 */
1873static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1874{
1875 struct tty_struct *tty;
1876 int retval;
1877
1878 if (device != MKDEV(TTYAUX_MAJOR, 0))
1879 return NULL;
1880
1881 tty = get_current_tty();
1882 if (!tty)
1883 return ERR_PTR(-ENXIO);
1884
1885 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1886 /* noctty = 1; */
1887 tty_lock(tty);
1888 tty_kref_put(tty); /* safe to drop the kref now */
1889
1890 retval = tty_reopen(tty);
1891 if (retval < 0) {
1892 tty_unlock(tty);
1893 tty = ERR_PTR(retval);
1894 }
1895 return tty;
1896}
1897
1898/**
1899 * tty_lookup_driver - lookup a tty driver for a given device file
1900 * @device: device number
1901 * @filp: file pointer to tty
1902 * @index: index for the device in the @return driver
1903 *
1904 * If returned value is not erroneous, the caller is responsible to decrement
1905 * the refcount by tty_driver_kref_put().
1906 *
1907 * Locking: %tty_mutex protects get_tty_driver()
1908 *
1909 * Return: driver for this inode (with increased refcount)
1910 */
1911static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1912 int *index)
1913{
1914 struct tty_driver *driver = NULL;
1915
1916 switch (device) {
1917#ifdef CONFIG_VT
1918 case MKDEV(TTY_MAJOR, 0): {
1919 extern struct tty_driver *console_driver;
1920
1921 driver = tty_driver_kref_get(console_driver);
1922 *index = fg_console;
1923 break;
1924 }
1925#endif
1926 case MKDEV(TTYAUX_MAJOR, 1): {
1927 struct tty_driver *console_driver = console_device(index);
1928
1929 if (console_driver) {
1930 driver = tty_driver_kref_get(console_driver);
1931 if (driver && filp) {
1932 /* Don't let /dev/console block */
1933 filp->f_flags |= O_NONBLOCK;
1934 break;
1935 }
1936 }
1937 if (driver)
1938 tty_driver_kref_put(driver);
1939 return ERR_PTR(-ENODEV);
1940 }
1941 default:
1942 driver = get_tty_driver(device, index);
1943 if (!driver)
1944 return ERR_PTR(-ENODEV);
1945 break;
1946 }
1947 return driver;
1948}
1949
1950static struct tty_struct *tty_kopen(dev_t device, int shared)
1951{
1952 struct tty_struct *tty;
1953 struct tty_driver *driver;
1954 int index = -1;
1955
1956 mutex_lock(&tty_mutex);
1957 driver = tty_lookup_driver(device, NULL, &index);
1958 if (IS_ERR(driver)) {
1959 mutex_unlock(&tty_mutex);
1960 return ERR_CAST(driver);
1961 }
1962
1963 /* check whether we're reopening an existing tty */
1964 tty = tty_driver_lookup_tty(driver, NULL, index);
1965 if (IS_ERR(tty) || shared)
1966 goto out;
1967
1968 if (tty) {
1969 /* drop kref from tty_driver_lookup_tty() */
1970 tty_kref_put(tty);
1971 tty = ERR_PTR(-EBUSY);
1972 } else { /* tty_init_dev returns tty with the tty_lock held */
1973 tty = tty_init_dev(driver, index);
1974 if (IS_ERR(tty))
1975 goto out;
1976 tty_port_set_kopened(tty->port, 1);
1977 }
1978out:
1979 mutex_unlock(&tty_mutex);
1980 tty_driver_kref_put(driver);
1981 return tty;
1982}
1983
1984/**
1985 * tty_kopen_exclusive - open a tty device for kernel
1986 * @device: dev_t of device to open
1987 *
1988 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1989 * it's not already opened and performs the first-time tty initialization.
1990 *
1991 * Claims the global %tty_mutex to serialize:
1992 * * concurrent first-time tty initialization
1993 * * concurrent tty driver removal w/ lookup
1994 * * concurrent tty removal from driver table
1995 *
1996 * Return: the locked initialized &tty_struct
1997 */
1998struct tty_struct *tty_kopen_exclusive(dev_t device)
1999{
2000 return tty_kopen(device, 0);
2001}
2002EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2003
2004/**
2005 * tty_kopen_shared - open a tty device for shared in-kernel use
2006 * @device: dev_t of device to open
2007 *
2008 * Opens an already existing tty for in-kernel use. Compared to
2009 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2010 *
2011 * Locking: identical to tty_kopen() above.
2012 */
2013struct tty_struct *tty_kopen_shared(dev_t device)
2014{
2015 return tty_kopen(device, 1);
2016}
2017EXPORT_SYMBOL_GPL(tty_kopen_shared);
2018
2019/**
2020 * tty_open_by_driver - open a tty device
2021 * @device: dev_t of device to open
2022 * @filp: file pointer to tty
2023 *
2024 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2025 * first-time tty initialization.
2026 *
2027 *
2028 * Claims the global tty_mutex to serialize:
2029 * * concurrent first-time tty initialization
2030 * * concurrent tty driver removal w/ lookup
2031 * * concurrent tty removal from driver table
2032 *
2033 * Return: the locked initialized or re-opened &tty_struct
2034 */
2035static struct tty_struct *tty_open_by_driver(dev_t device,
2036 struct file *filp)
2037{
2038 struct tty_struct *tty;
2039 struct tty_driver *driver = NULL;
2040 int index = -1;
2041 int retval;
2042
2043 mutex_lock(&tty_mutex);
2044 driver = tty_lookup_driver(device, filp, &index);
2045 if (IS_ERR(driver)) {
2046 mutex_unlock(&tty_mutex);
2047 return ERR_CAST(driver);
2048 }
2049
2050 /* check whether we're reopening an existing tty */
2051 tty = tty_driver_lookup_tty(driver, filp, index);
2052 if (IS_ERR(tty)) {
2053 mutex_unlock(&tty_mutex);
2054 goto out;
2055 }
2056
2057 if (tty) {
2058 if (tty_port_kopened(tty->port)) {
2059 tty_kref_put(tty);
2060 mutex_unlock(&tty_mutex);
2061 tty = ERR_PTR(-EBUSY);
2062 goto out;
2063 }
2064 mutex_unlock(&tty_mutex);
2065 retval = tty_lock_interruptible(tty);
2066 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
2067 if (retval) {
2068 if (retval == -EINTR)
2069 retval = -ERESTARTSYS;
2070 tty = ERR_PTR(retval);
2071 goto out;
2072 }
2073 retval = tty_reopen(tty);
2074 if (retval < 0) {
2075 tty_unlock(tty);
2076 tty = ERR_PTR(retval);
2077 }
2078 } else { /* Returns with the tty_lock held for now */
2079 tty = tty_init_dev(driver, index);
2080 mutex_unlock(&tty_mutex);
2081 }
2082out:
2083 tty_driver_kref_put(driver);
2084 return tty;
2085}
2086
2087/**
2088 * tty_open - open a tty device
2089 * @inode: inode of device file
2090 * @filp: file pointer to tty
2091 *
2092 * tty_open() and tty_release() keep up the tty count that contains the number
2093 * of opens done on a tty. We cannot use the inode-count, as different inodes
2094 * might point to the same tty.
2095 *
2096 * Open-counting is needed for pty masters, as well as for keeping track of
2097 * serial lines: DTR is dropped when the last close happens.
2098 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2099 *
2100 * The termios state of a pty is reset on the first open so that settings don't
2101 * persist across reuse.
2102 *
2103 * Locking:
2104 * * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2105 * * @tty->count should protect the rest.
2106 * * ->siglock protects ->signal/->sighand
2107 *
2108 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2109 */
2110static int tty_open(struct inode *inode, struct file *filp)
2111{
2112 struct tty_struct *tty;
2113 int noctty, retval;
2114 dev_t device = inode->i_rdev;
2115 unsigned saved_flags = filp->f_flags;
2116
2117 nonseekable_open(inode, filp);
2118
2119retry_open:
2120 retval = tty_alloc_file(filp);
2121 if (retval)
2122 return -ENOMEM;
2123
2124 tty = tty_open_current_tty(device, filp);
2125 if (!tty)
2126 tty = tty_open_by_driver(device, filp);
2127
2128 if (IS_ERR(tty)) {
2129 tty_free_file(filp);
2130 retval = PTR_ERR(tty);
2131 if (retval != -EAGAIN || signal_pending(current))
2132 return retval;
2133 schedule();
2134 goto retry_open;
2135 }
2136
2137 tty_add_file(tty, filp);
2138
2139 check_tty_count(tty, __func__);
2140 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2141
2142 if (tty->ops->open)
2143 retval = tty->ops->open(tty, filp);
2144 else
2145 retval = -ENODEV;
2146 filp->f_flags = saved_flags;
2147
2148 if (retval) {
2149 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2150
2151 tty_unlock(tty); /* need to call tty_release without BTM */
2152 tty_release(inode, filp);
2153 if (retval != -ERESTARTSYS)
2154 return retval;
2155
2156 if (signal_pending(current))
2157 return retval;
2158
2159 schedule();
2160 /*
2161 * Need to reset f_op in case a hangup happened.
2162 */
2163 if (tty_hung_up_p(filp))
2164 filp->f_op = &tty_fops;
2165 goto retry_open;
2166 }
2167 clear_bit(TTY_HUPPED, &tty->flags);
2168
2169 noctty = (filp->f_flags & O_NOCTTY) ||
2170 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2171 device == MKDEV(TTYAUX_MAJOR, 1) ||
2172 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2173 tty->driver->subtype == PTY_TYPE_MASTER);
2174 if (!noctty)
2175 tty_open_proc_set_tty(filp, tty);
2176 tty_unlock(tty);
2177 return 0;
2178}
2179
2180
2181/**
2182 * tty_poll - check tty status
2183 * @filp: file being polled
2184 * @wait: poll wait structures to update
2185 *
2186 * Call the line discipline polling method to obtain the poll status of the
2187 * device.
2188 *
2189 * Locking: locks called line discipline but ldisc poll method may be
2190 * re-entered freely by other callers.
2191 */
2192static __poll_t tty_poll(struct file *filp, poll_table *wait)
2193{
2194 struct tty_struct *tty = file_tty(filp);
2195 struct tty_ldisc *ld;
2196 __poll_t ret = 0;
2197
2198 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2199 return 0;
2200
2201 ld = tty_ldisc_ref_wait(tty);
2202 if (!ld)
2203 return hung_up_tty_poll(filp, wait);
2204 if (ld->ops->poll)
2205 ret = ld->ops->poll(tty, filp, wait);
2206 tty_ldisc_deref(ld);
2207 return ret;
2208}
2209
2210static int __tty_fasync(int fd, struct file *filp, int on)
2211{
2212 struct tty_struct *tty = file_tty(filp);
2213 unsigned long flags;
2214 int retval = 0;
2215
2216 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2217 goto out;
2218
2219 retval = fasync_helper(fd, filp, on, &tty->fasync);
2220 if (retval <= 0)
2221 goto out;
2222
2223 if (on) {
2224 enum pid_type type;
2225 struct pid *pid;
2226
2227 spin_lock_irqsave(&tty->ctrl.lock, flags);
2228 if (tty->ctrl.pgrp) {
2229 pid = tty->ctrl.pgrp;
2230 type = PIDTYPE_PGID;
2231 } else {
2232 pid = task_pid(current);
2233 type = PIDTYPE_TGID;
2234 }
2235 get_pid(pid);
2236 spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2237 __f_setown(filp, pid, type, 0);
2238 put_pid(pid);
2239 retval = 0;
2240 }
2241out:
2242 return retval;
2243}
2244
2245static int tty_fasync(int fd, struct file *filp, int on)
2246{
2247 struct tty_struct *tty = file_tty(filp);
2248 int retval = -ENOTTY;
2249
2250 tty_lock(tty);
2251 if (!tty_hung_up_p(filp))
2252 retval = __tty_fasync(fd, filp, on);
2253 tty_unlock(tty);
2254
2255 return retval;
2256}
2257
2258static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2259/**
2260 * tiocsti - fake input character
2261 * @tty: tty to fake input into
2262 * @p: pointer to character
2263 *
2264 * Fake input to a tty device. Does the necessary locking and input management.
2265 *
2266 * FIXME: does not honour flow control ??
2267 *
2268 * Locking:
2269 * * Called functions take tty_ldiscs_lock
2270 * * current->signal->tty check is safe without locks
2271 */
2272static int tiocsti(struct tty_struct *tty, char __user *p)
2273{
2274 char ch, mbz = 0;
2275 struct tty_ldisc *ld;
2276
2277 if (!tty_legacy_tiocsti)
2278 return -EIO;
2279
2280 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2281 return -EPERM;
2282 if (get_user(ch, p))
2283 return -EFAULT;
2284 tty_audit_tiocsti(tty, ch);
2285 ld = tty_ldisc_ref_wait(tty);
2286 if (!ld)
2287 return -EIO;
2288 tty_buffer_lock_exclusive(tty->port);
2289 if (ld->ops->receive_buf)
2290 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2291 tty_buffer_unlock_exclusive(tty->port);
2292 tty_ldisc_deref(ld);
2293 return 0;
2294}
2295
2296/**
2297 * tiocgwinsz - implement window query ioctl
2298 * @tty: tty
2299 * @arg: user buffer for result
2300 *
2301 * Copies the kernel idea of the window size into the user buffer.
2302 *
2303 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2304 * consistent.
2305 */
2306static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2307{
2308 int err;
2309
2310 mutex_lock(&tty->winsize_mutex);
2311 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2312 mutex_unlock(&tty->winsize_mutex);
2313
2314 return err ? -EFAULT : 0;
2315}
2316
2317/**
2318 * tty_do_resize - resize event
2319 * @tty: tty being resized
2320 * @ws: new dimensions
2321 *
2322 * Update the termios variables and send the necessary signals to peform a
2323 * terminal resize correctly.
2324 */
2325int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2326{
2327 struct pid *pgrp;
2328
2329 /* Lock the tty */
2330 mutex_lock(&tty->winsize_mutex);
2331 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2332 goto done;
2333
2334 /* Signal the foreground process group */
2335 pgrp = tty_get_pgrp(tty);
2336 if (pgrp)
2337 kill_pgrp(pgrp, SIGWINCH, 1);
2338 put_pid(pgrp);
2339
2340 tty->winsize = *ws;
2341done:
2342 mutex_unlock(&tty->winsize_mutex);
2343 return 0;
2344}
2345EXPORT_SYMBOL(tty_do_resize);
2346
2347/**
2348 * tiocswinsz - implement window size set ioctl
2349 * @tty: tty side of tty
2350 * @arg: user buffer for result
2351 *
2352 * Copies the user idea of the window size to the kernel. Traditionally this is
2353 * just advisory information but for the Linux console it actually has driver
2354 * level meaning and triggers a VC resize.
2355 *
2356 * Locking:
2357 * Driver dependent. The default do_resize method takes the tty termios
2358 * mutex and ctrl.lock. The console takes its own lock then calls into the
2359 * default method.
2360 */
2361static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2362{
2363 struct winsize tmp_ws;
2364
2365 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2366 return -EFAULT;
2367
2368 if (tty->ops->resize)
2369 return tty->ops->resize(tty, &tmp_ws);
2370 else
2371 return tty_do_resize(tty, &tmp_ws);
2372}
2373
2374/**
2375 * tioccons - allow admin to move logical console
2376 * @file: the file to become console
2377 *
2378 * Allow the administrator to move the redirected console device.
2379 *
2380 * Locking: uses redirect_lock to guard the redirect information
2381 */
2382static int tioccons(struct file *file)
2383{
2384 if (!capable(CAP_SYS_ADMIN))
2385 return -EPERM;
2386 if (file->f_op->write_iter == redirected_tty_write) {
2387 struct file *f;
2388
2389 spin_lock(&redirect_lock);
2390 f = redirect;
2391 redirect = NULL;
2392 spin_unlock(&redirect_lock);
2393 if (f)
2394 fput(f);
2395 return 0;
2396 }
2397 if (file->f_op->write_iter != tty_write)
2398 return -ENOTTY;
2399 if (!(file->f_mode & FMODE_WRITE))
2400 return -EBADF;
2401 if (!(file->f_mode & FMODE_CAN_WRITE))
2402 return -EINVAL;
2403 spin_lock(&redirect_lock);
2404 if (redirect) {
2405 spin_unlock(&redirect_lock);
2406 return -EBUSY;
2407 }
2408 redirect = get_file(file);
2409 spin_unlock(&redirect_lock);
2410 return 0;
2411}
2412
2413/**
2414 * tiocsetd - set line discipline
2415 * @tty: tty device
2416 * @p: pointer to user data
2417 *
2418 * Set the line discipline according to user request.
2419 *
2420 * Locking: see tty_set_ldisc(), this function is just a helper
2421 */
2422static int tiocsetd(struct tty_struct *tty, int __user *p)
2423{
2424 int disc;
2425 int ret;
2426
2427 if (get_user(disc, p))
2428 return -EFAULT;
2429
2430 ret = tty_set_ldisc(tty, disc);
2431
2432 return ret;
2433}
2434
2435/**
2436 * tiocgetd - get line discipline
2437 * @tty: tty device
2438 * @p: pointer to user data
2439 *
2440 * Retrieves the line discipline id directly from the ldisc.
2441 *
2442 * Locking: waits for ldisc reference (in case the line discipline is changing
2443 * or the @tty is being hungup)
2444 */
2445static int tiocgetd(struct tty_struct *tty, int __user *p)
2446{
2447 struct tty_ldisc *ld;
2448 int ret;
2449
2450 ld = tty_ldisc_ref_wait(tty);
2451 if (!ld)
2452 return -EIO;
2453 ret = put_user(ld->ops->num, p);
2454 tty_ldisc_deref(ld);
2455 return ret;
2456}
2457
2458/**
2459 * send_break - performed time break
2460 * @tty: device to break on
2461 * @duration: timeout in mS
2462 *
2463 * Perform a timed break on hardware that lacks its own driver level timed
2464 * break functionality.
2465 *
2466 * Locking:
2467 * @tty->atomic_write_lock serializes
2468 */
2469static int send_break(struct tty_struct *tty, unsigned int duration)
2470{
2471 int retval;
2472
2473 if (tty->ops->break_ctl == NULL)
2474 return 0;
2475
2476 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2477 retval = tty->ops->break_ctl(tty, duration);
2478 else {
2479 /* Do the work ourselves */
2480 if (tty_write_lock(tty, 0) < 0)
2481 return -EINTR;
2482 retval = tty->ops->break_ctl(tty, -1);
2483 if (retval)
2484 goto out;
2485 if (!signal_pending(current))
2486 msleep_interruptible(duration);
2487 retval = tty->ops->break_ctl(tty, 0);
2488out:
2489 tty_write_unlock(tty);
2490 if (signal_pending(current))
2491 retval = -EINTR;
2492 }
2493 return retval;
2494}
2495
2496/**
2497 * tty_tiocmget - get modem status
2498 * @tty: tty device
2499 * @p: pointer to result
2500 *
2501 * Obtain the modem status bits from the tty driver if the feature is
2502 * supported. Return -%ENOTTY if it is not available.
2503 *
2504 * Locking: none (up to the driver)
2505 */
2506static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2507{
2508 int retval = -ENOTTY;
2509
2510 if (tty->ops->tiocmget) {
2511 retval = tty->ops->tiocmget(tty);
2512
2513 if (retval >= 0)
2514 retval = put_user(retval, p);
2515 }
2516 return retval;
2517}
2518
2519/**
2520 * tty_tiocmset - set modem status
2521 * @tty: tty device
2522 * @cmd: command - clear bits, set bits or set all
2523 * @p: pointer to desired bits
2524 *
2525 * Set the modem status bits from the tty driver if the feature
2526 * is supported. Return -%ENOTTY if it is not available.
2527 *
2528 * Locking: none (up to the driver)
2529 */
2530static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2531 unsigned __user *p)
2532{
2533 int retval;
2534 unsigned int set, clear, val;
2535
2536 if (tty->ops->tiocmset == NULL)
2537 return -ENOTTY;
2538
2539 retval = get_user(val, p);
2540 if (retval)
2541 return retval;
2542 set = clear = 0;
2543 switch (cmd) {
2544 case TIOCMBIS:
2545 set = val;
2546 break;
2547 case TIOCMBIC:
2548 clear = val;
2549 break;
2550 case TIOCMSET:
2551 set = val;
2552 clear = ~val;
2553 break;
2554 }
2555 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2556 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2557 return tty->ops->tiocmset(tty, set, clear);
2558}
2559
2560/**
2561 * tty_get_icount - get tty statistics
2562 * @tty: tty device
2563 * @icount: output parameter
2564 *
2565 * Gets a copy of the @tty's icount statistics.
2566 *
2567 * Locking: none (up to the driver)
2568 */
2569int tty_get_icount(struct tty_struct *tty,
2570 struct serial_icounter_struct *icount)
2571{
2572 memset(icount, 0, sizeof(*icount));
2573
2574 if (tty->ops->get_icount)
2575 return tty->ops->get_icount(tty, icount);
2576 else
2577 return -ENOTTY;
2578}
2579EXPORT_SYMBOL_GPL(tty_get_icount);
2580
2581static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2582{
2583 struct serial_icounter_struct icount;
2584 int retval;
2585
2586 retval = tty_get_icount(tty, &icount);
2587 if (retval != 0)
2588 return retval;
2589
2590 if (copy_to_user(arg, &icount, sizeof(icount)))
2591 return -EFAULT;
2592 return 0;
2593}
2594
2595static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2596{
2597 char comm[TASK_COMM_LEN];
2598 int flags;
2599
2600 flags = ss->flags & ASYNC_DEPRECATED;
2601
2602 if (flags)
2603 pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2604 __func__, get_task_comm(comm, current), flags);
2605
2606 if (!tty->ops->set_serial)
2607 return -ENOTTY;
2608
2609 return tty->ops->set_serial(tty, ss);
2610}
2611
2612static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2613{
2614 struct serial_struct v;
2615
2616 if (copy_from_user(&v, ss, sizeof(*ss)))
2617 return -EFAULT;
2618
2619 return tty_set_serial(tty, &v);
2620}
2621
2622static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2623{
2624 struct serial_struct v;
2625 int err;
2626
2627 memset(&v, 0, sizeof(v));
2628 if (!tty->ops->get_serial)
2629 return -ENOTTY;
2630 err = tty->ops->get_serial(tty, &v);
2631 if (!err && copy_to_user(ss, &v, sizeof(v)))
2632 err = -EFAULT;
2633 return err;
2634}
2635
2636/*
2637 * if pty, return the slave side (real_tty)
2638 * otherwise, return self
2639 */
2640static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2641{
2642 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2643 tty->driver->subtype == PTY_TYPE_MASTER)
2644 tty = tty->link;
2645 return tty;
2646}
2647
2648/*
2649 * Split this up, as gcc can choke on it otherwise..
2650 */
2651long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2652{
2653 struct tty_struct *tty = file_tty(file);
2654 struct tty_struct *real_tty;
2655 void __user *p = (void __user *)arg;
2656 int retval;
2657 struct tty_ldisc *ld;
2658
2659 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2660 return -EINVAL;
2661
2662 real_tty = tty_pair_get_tty(tty);
2663
2664 /*
2665 * Factor out some common prep work
2666 */
2667 switch (cmd) {
2668 case TIOCSETD:
2669 case TIOCSBRK:
2670 case TIOCCBRK:
2671 case TCSBRK:
2672 case TCSBRKP:
2673 retval = tty_check_change(tty);
2674 if (retval)
2675 return retval;
2676 if (cmd != TIOCCBRK) {
2677 tty_wait_until_sent(tty, 0);
2678 if (signal_pending(current))
2679 return -EINTR;
2680 }
2681 break;
2682 }
2683
2684 /*
2685 * Now do the stuff.
2686 */
2687 switch (cmd) {
2688 case TIOCSTI:
2689 return tiocsti(tty, p);
2690 case TIOCGWINSZ:
2691 return tiocgwinsz(real_tty, p);
2692 case TIOCSWINSZ:
2693 return tiocswinsz(real_tty, p);
2694 case TIOCCONS:
2695 return real_tty != tty ? -EINVAL : tioccons(file);
2696 case TIOCEXCL:
2697 set_bit(TTY_EXCLUSIVE, &tty->flags);
2698 return 0;
2699 case TIOCNXCL:
2700 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2701 return 0;
2702 case TIOCGEXCL:
2703 {
2704 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2705
2706 return put_user(excl, (int __user *)p);
2707 }
2708 case TIOCGETD:
2709 return tiocgetd(tty, p);
2710 case TIOCSETD:
2711 return tiocsetd(tty, p);
2712 case TIOCVHANGUP:
2713 if (!capable(CAP_SYS_ADMIN))
2714 return -EPERM;
2715 tty_vhangup(tty);
2716 return 0;
2717 case TIOCGDEV:
2718 {
2719 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2720
2721 return put_user(ret, (unsigned int __user *)p);
2722 }
2723 /*
2724 * Break handling
2725 */
2726 case TIOCSBRK: /* Turn break on, unconditionally */
2727 if (tty->ops->break_ctl)
2728 return tty->ops->break_ctl(tty, -1);
2729 return 0;
2730 case TIOCCBRK: /* Turn break off, unconditionally */
2731 if (tty->ops->break_ctl)
2732 return tty->ops->break_ctl(tty, 0);
2733 return 0;
2734 case TCSBRK: /* SVID version: non-zero arg --> no break */
2735 /* non-zero arg means wait for all output data
2736 * to be sent (performed above) but don't send break.
2737 * This is used by the tcdrain() termios function.
2738 */
2739 if (!arg)
2740 return send_break(tty, 250);
2741 return 0;
2742 case TCSBRKP: /* support for POSIX tcsendbreak() */
2743 return send_break(tty, arg ? arg*100 : 250);
2744
2745 case TIOCMGET:
2746 return tty_tiocmget(tty, p);
2747 case TIOCMSET:
2748 case TIOCMBIC:
2749 case TIOCMBIS:
2750 return tty_tiocmset(tty, cmd, p);
2751 case TIOCGICOUNT:
2752 return tty_tiocgicount(tty, p);
2753 case TCFLSH:
2754 switch (arg) {
2755 case TCIFLUSH:
2756 case TCIOFLUSH:
2757 /* flush tty buffer and allow ldisc to process ioctl */
2758 tty_buffer_flush(tty, NULL);
2759 break;
2760 }
2761 break;
2762 case TIOCSSERIAL:
2763 return tty_tiocsserial(tty, p);
2764 case TIOCGSERIAL:
2765 return tty_tiocgserial(tty, p);
2766 case TIOCGPTPEER:
2767 /* Special because the struct file is needed */
2768 return ptm_open_peer(file, tty, (int)arg);
2769 default:
2770 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2771 if (retval != -ENOIOCTLCMD)
2772 return retval;
2773 }
2774 if (tty->ops->ioctl) {
2775 retval = tty->ops->ioctl(tty, cmd, arg);
2776 if (retval != -ENOIOCTLCMD)
2777 return retval;
2778 }
2779 ld = tty_ldisc_ref_wait(tty);
2780 if (!ld)
2781 return hung_up_tty_ioctl(file, cmd, arg);
2782 retval = -EINVAL;
2783 if (ld->ops->ioctl) {
2784 retval = ld->ops->ioctl(tty, cmd, arg);
2785 if (retval == -ENOIOCTLCMD)
2786 retval = -ENOTTY;
2787 }
2788 tty_ldisc_deref(ld);
2789 return retval;
2790}
2791
2792#ifdef CONFIG_COMPAT
2793
2794struct serial_struct32 {
2795 compat_int_t type;
2796 compat_int_t line;
2797 compat_uint_t port;
2798 compat_int_t irq;
2799 compat_int_t flags;
2800 compat_int_t xmit_fifo_size;
2801 compat_int_t custom_divisor;
2802 compat_int_t baud_base;
2803 unsigned short close_delay;
2804 char io_type;
2805 char reserved_char;
2806 compat_int_t hub6;
2807 unsigned short closing_wait; /* time to wait before closing */
2808 unsigned short closing_wait2; /* no longer used... */
2809 compat_uint_t iomem_base;
2810 unsigned short iomem_reg_shift;
2811 unsigned int port_high;
2812 /* compat_ulong_t iomap_base FIXME */
2813 compat_int_t reserved;
2814};
2815
2816static int compat_tty_tiocsserial(struct tty_struct *tty,
2817 struct serial_struct32 __user *ss)
2818{
2819 struct serial_struct32 v32;
2820 struct serial_struct v;
2821
2822 if (copy_from_user(&v32, ss, sizeof(*ss)))
2823 return -EFAULT;
2824
2825 memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2826 v.iomem_base = compat_ptr(v32.iomem_base);
2827 v.iomem_reg_shift = v32.iomem_reg_shift;
2828 v.port_high = v32.port_high;
2829 v.iomap_base = 0;
2830
2831 return tty_set_serial(tty, &v);
2832}
2833
2834static int compat_tty_tiocgserial(struct tty_struct *tty,
2835 struct serial_struct32 __user *ss)
2836{
2837 struct serial_struct32 v32;
2838 struct serial_struct v;
2839 int err;
2840
2841 memset(&v, 0, sizeof(v));
2842 memset(&v32, 0, sizeof(v32));
2843
2844 if (!tty->ops->get_serial)
2845 return -ENOTTY;
2846 err = tty->ops->get_serial(tty, &v);
2847 if (!err) {
2848 memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2849 v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2850 0xfffffff : ptr_to_compat(v.iomem_base);
2851 v32.iomem_reg_shift = v.iomem_reg_shift;
2852 v32.port_high = v.port_high;
2853 if (copy_to_user(ss, &v32, sizeof(v32)))
2854 err = -EFAULT;
2855 }
2856 return err;
2857}
2858static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2859 unsigned long arg)
2860{
2861 struct tty_struct *tty = file_tty(file);
2862 struct tty_ldisc *ld;
2863 int retval = -ENOIOCTLCMD;
2864
2865 switch (cmd) {
2866 case TIOCOUTQ:
2867 case TIOCSTI:
2868 case TIOCGWINSZ:
2869 case TIOCSWINSZ:
2870 case TIOCGEXCL:
2871 case TIOCGETD:
2872 case TIOCSETD:
2873 case TIOCGDEV:
2874 case TIOCMGET:
2875 case TIOCMSET:
2876 case TIOCMBIC:
2877 case TIOCMBIS:
2878 case TIOCGICOUNT:
2879 case TIOCGPGRP:
2880 case TIOCSPGRP:
2881 case TIOCGSID:
2882 case TIOCSERGETLSR:
2883 case TIOCGRS485:
2884 case TIOCSRS485:
2885#ifdef TIOCGETP
2886 case TIOCGETP:
2887 case TIOCSETP:
2888 case TIOCSETN:
2889#endif
2890#ifdef TIOCGETC
2891 case TIOCGETC:
2892 case TIOCSETC:
2893#endif
2894#ifdef TIOCGLTC
2895 case TIOCGLTC:
2896 case TIOCSLTC:
2897#endif
2898 case TCSETSF:
2899 case TCSETSW:
2900 case TCSETS:
2901 case TCGETS:
2902#ifdef TCGETS2
2903 case TCGETS2:
2904 case TCSETSF2:
2905 case TCSETSW2:
2906 case TCSETS2:
2907#endif
2908 case TCGETA:
2909 case TCSETAF:
2910 case TCSETAW:
2911 case TCSETA:
2912 case TIOCGLCKTRMIOS:
2913 case TIOCSLCKTRMIOS:
2914#ifdef TCGETX
2915 case TCGETX:
2916 case TCSETX:
2917 case TCSETXW:
2918 case TCSETXF:
2919#endif
2920 case TIOCGSOFTCAR:
2921 case TIOCSSOFTCAR:
2922
2923 case PPPIOCGCHAN:
2924 case PPPIOCGUNIT:
2925 return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2926 case TIOCCONS:
2927 case TIOCEXCL:
2928 case TIOCNXCL:
2929 case TIOCVHANGUP:
2930 case TIOCSBRK:
2931 case TIOCCBRK:
2932 case TCSBRK:
2933 case TCSBRKP:
2934 case TCFLSH:
2935 case TIOCGPTPEER:
2936 case TIOCNOTTY:
2937 case TIOCSCTTY:
2938 case TCXONC:
2939 case TIOCMIWAIT:
2940 case TIOCSERCONFIG:
2941 return tty_ioctl(file, cmd, arg);
2942 }
2943
2944 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2945 return -EINVAL;
2946
2947 switch (cmd) {
2948 case TIOCSSERIAL:
2949 return compat_tty_tiocsserial(tty, compat_ptr(arg));
2950 case TIOCGSERIAL:
2951 return compat_tty_tiocgserial(tty, compat_ptr(arg));
2952 }
2953 if (tty->ops->compat_ioctl) {
2954 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2955 if (retval != -ENOIOCTLCMD)
2956 return retval;
2957 }
2958
2959 ld = tty_ldisc_ref_wait(tty);
2960 if (!ld)
2961 return hung_up_tty_compat_ioctl(file, cmd, arg);
2962 if (ld->ops->compat_ioctl)
2963 retval = ld->ops->compat_ioctl(tty, cmd, arg);
2964 if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2965 retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2966 arg);
2967 tty_ldisc_deref(ld);
2968
2969 return retval;
2970}
2971#endif
2972
2973static int this_tty(const void *t, struct file *file, unsigned fd)
2974{
2975 if (likely(file->f_op->read_iter != tty_read))
2976 return 0;
2977 return file_tty(file) != t ? 0 : fd + 1;
2978}
2979
2980/*
2981 * This implements the "Secure Attention Key" --- the idea is to
2982 * prevent trojan horses by killing all processes associated with this
2983 * tty when the user hits the "Secure Attention Key". Required for
2984 * super-paranoid applications --- see the Orange Book for more details.
2985 *
2986 * This code could be nicer; ideally it should send a HUP, wait a few
2987 * seconds, then send a INT, and then a KILL signal. But you then
2988 * have to coordinate with the init process, since all processes associated
2989 * with the current tty must be dead before the new getty is allowed
2990 * to spawn.
2991 *
2992 * Now, if it would be correct ;-/ The current code has a nasty hole -
2993 * it doesn't catch files in flight. We may send the descriptor to ourselves
2994 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2995 *
2996 * Nasty bug: do_SAK is being called in interrupt context. This can
2997 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2998 */
2999void __do_SAK(struct tty_struct *tty)
3000{
3001 struct task_struct *g, *p;
3002 struct pid *session;
3003 int i;
3004 unsigned long flags;
3005
3006 spin_lock_irqsave(&tty->ctrl.lock, flags);
3007 session = get_pid(tty->ctrl.session);
3008 spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3009
3010 tty_ldisc_flush(tty);
3011
3012 tty_driver_flush_buffer(tty);
3013
3014 read_lock(&tasklist_lock);
3015 /* Kill the entire session */
3016 do_each_pid_task(session, PIDTYPE_SID, p) {
3017 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3018 task_pid_nr(p), p->comm);
3019 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
3020 } while_each_pid_task(session, PIDTYPE_SID, p);
3021
3022 /* Now kill any processes that happen to have the tty open */
3023 do_each_thread(g, p) {
3024 if (p->signal->tty == tty) {
3025 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3026 task_pid_nr(p), p->comm);
3027 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3028 PIDTYPE_SID);
3029 continue;
3030 }
3031 task_lock(p);
3032 i = iterate_fd(p->files, 0, this_tty, tty);
3033 if (i != 0) {
3034 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3035 task_pid_nr(p), p->comm, i - 1);
3036 group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3037 PIDTYPE_SID);
3038 }
3039 task_unlock(p);
3040 } while_each_thread(g, p);
3041 read_unlock(&tasklist_lock);
3042 put_pid(session);
3043}
3044
3045static void do_SAK_work(struct work_struct *work)
3046{
3047 struct tty_struct *tty =
3048 container_of(work, struct tty_struct, SAK_work);
3049 __do_SAK(tty);
3050}
3051
3052/*
3053 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3054 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3055 * the values which we write to it will be identical to the values which it
3056 * already has. --akpm
3057 */
3058void do_SAK(struct tty_struct *tty)
3059{
3060 if (!tty)
3061 return;
3062 schedule_work(&tty->SAK_work);
3063}
3064EXPORT_SYMBOL(do_SAK);
3065
3066/* Must put_device() after it's unused! */
3067static struct device *tty_get_device(struct tty_struct *tty)
3068{
3069 dev_t devt = tty_devnum(tty);
3070
3071 return class_find_device_by_devt(tty_class, devt);
3072}
3073
3074
3075/**
3076 * alloc_tty_struct - allocate a new tty
3077 * @driver: driver which will handle the returned tty
3078 * @idx: minor of the tty
3079 *
3080 * This subroutine allocates and initializes a tty structure.
3081 *
3082 * Locking: none - @tty in question is not exposed at this point
3083 */
3084struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3085{
3086 struct tty_struct *tty;
3087
3088 tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3089 if (!tty)
3090 return NULL;
3091
3092 kref_init(&tty->kref);
3093 if (tty_ldisc_init(tty)) {
3094 kfree(tty);
3095 return NULL;
3096 }
3097 tty->ctrl.session = NULL;
3098 tty->ctrl.pgrp = NULL;
3099 mutex_init(&tty->legacy_mutex);
3100 mutex_init(&tty->throttle_mutex);
3101 init_rwsem(&tty->termios_rwsem);
3102 mutex_init(&tty->winsize_mutex);
3103 init_ldsem(&tty->ldisc_sem);
3104 init_waitqueue_head(&tty->write_wait);
3105 init_waitqueue_head(&tty->read_wait);
3106 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3107 mutex_init(&tty->atomic_write_lock);
3108 spin_lock_init(&tty->ctrl.lock);
3109 spin_lock_init(&tty->flow.lock);
3110 spin_lock_init(&tty->files_lock);
3111 INIT_LIST_HEAD(&tty->tty_files);
3112 INIT_WORK(&tty->SAK_work, do_SAK_work);
3113
3114 tty->driver = driver;
3115 tty->ops = driver->ops;
3116 tty->index = idx;
3117 tty_line_name(driver, idx, tty->name);
3118 tty->dev = tty_get_device(tty);
3119
3120 return tty;
3121}
3122
3123/**
3124 * tty_put_char - write one character to a tty
3125 * @tty: tty
3126 * @ch: character to write
3127 *
3128 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3129 * if present.
3130 *
3131 * Note: the specific put_char operation in the driver layer may go
3132 * away soon. Don't call it directly, use this method
3133 *
3134 * Return: the number of characters successfully output.
3135 */
3136int tty_put_char(struct tty_struct *tty, unsigned char ch)
3137{
3138 if (tty->ops->put_char)
3139 return tty->ops->put_char(tty, ch);
3140 return tty->ops->write(tty, &ch, 1);
3141}
3142EXPORT_SYMBOL_GPL(tty_put_char);
3143
3144struct class *tty_class;
3145
3146static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3147 unsigned int index, unsigned int count)
3148{
3149 int err;
3150
3151 /* init here, since reused cdevs cause crashes */
3152 driver->cdevs[index] = cdev_alloc();
3153 if (!driver->cdevs[index])
3154 return -ENOMEM;
3155 driver->cdevs[index]->ops = &tty_fops;
3156 driver->cdevs[index]->owner = driver->owner;
3157 err = cdev_add(driver->cdevs[index], dev, count);
3158 if (err)
3159 kobject_put(&driver->cdevs[index]->kobj);
3160 return err;
3161}
3162
3163/**
3164 * tty_register_device - register a tty device
3165 * @driver: the tty driver that describes the tty device
3166 * @index: the index in the tty driver for this tty device
3167 * @device: a struct device that is associated with this tty device.
3168 * This field is optional, if there is no known struct device
3169 * for this tty device it can be set to NULL safely.
3170 *
3171 * This call is required to be made to register an individual tty device
3172 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If
3173 * that bit is not set, this function should not be called by a tty
3174 * driver.
3175 *
3176 * Locking: ??
3177 *
3178 * Return: A pointer to the struct device for this tty device (or
3179 * ERR_PTR(-EFOO) on error).
3180 */
3181struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3182 struct device *device)
3183{
3184 return tty_register_device_attr(driver, index, device, NULL, NULL);
3185}
3186EXPORT_SYMBOL(tty_register_device);
3187
3188static void tty_device_create_release(struct device *dev)
3189{
3190 dev_dbg(dev, "releasing...\n");
3191 kfree(dev);
3192}
3193
3194/**
3195 * tty_register_device_attr - register a tty device
3196 * @driver: the tty driver that describes the tty device
3197 * @index: the index in the tty driver for this tty device
3198 * @device: a struct device that is associated with this tty device.
3199 * This field is optional, if there is no known struct device
3200 * for this tty device it can be set to %NULL safely.
3201 * @drvdata: Driver data to be set to device.
3202 * @attr_grp: Attribute group to be set on device.
3203 *
3204 * This call is required to be made to register an individual tty device if the
3205 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3206 * not set, this function should not be called by a tty driver.
3207 *
3208 * Locking: ??
3209 *
3210 * Return: A pointer to the struct device for this tty device (or
3211 * ERR_PTR(-EFOO) on error).
3212 */
3213struct device *tty_register_device_attr(struct tty_driver *driver,
3214 unsigned index, struct device *device,
3215 void *drvdata,
3216 const struct attribute_group **attr_grp)
3217{
3218 char name[64];
3219 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3220 struct ktermios *tp;
3221 struct device *dev;
3222 int retval;
3223
3224 if (index >= driver->num) {
3225 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3226 driver->name, index);
3227 return ERR_PTR(-EINVAL);
3228 }
3229
3230 if (driver->type == TTY_DRIVER_TYPE_PTY)
3231 pty_line_name(driver, index, name);
3232 else
3233 tty_line_name(driver, index, name);
3234
3235 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3236 if (!dev)
3237 return ERR_PTR(-ENOMEM);
3238
3239 dev->devt = devt;
3240 dev->class = tty_class;
3241 dev->parent = device;
3242 dev->release = tty_device_create_release;
3243 dev_set_name(dev, "%s", name);
3244 dev->groups = attr_grp;
3245 dev_set_drvdata(dev, drvdata);
3246
3247 dev_set_uevent_suppress(dev, 1);
3248
3249 retval = device_register(dev);
3250 if (retval)
3251 goto err_put;
3252
3253 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3254 /*
3255 * Free any saved termios data so that the termios state is
3256 * reset when reusing a minor number.
3257 */
3258 tp = driver->termios[index];
3259 if (tp) {
3260 driver->termios[index] = NULL;
3261 kfree(tp);
3262 }
3263
3264 retval = tty_cdev_add(driver, devt, index, 1);
3265 if (retval)
3266 goto err_del;
3267 }
3268
3269 dev_set_uevent_suppress(dev, 0);
3270 kobject_uevent(&dev->kobj, KOBJ_ADD);
3271
3272 return dev;
3273
3274err_del:
3275 device_del(dev);
3276err_put:
3277 put_device(dev);
3278
3279 return ERR_PTR(retval);
3280}
3281EXPORT_SYMBOL_GPL(tty_register_device_attr);
3282
3283/**
3284 * tty_unregister_device - unregister a tty device
3285 * @driver: the tty driver that describes the tty device
3286 * @index: the index in the tty driver for this tty device
3287 *
3288 * If a tty device is registered with a call to tty_register_device() then
3289 * this function must be called when the tty device is gone.
3290 *
3291 * Locking: ??
3292 */
3293void tty_unregister_device(struct tty_driver *driver, unsigned index)
3294{
3295 device_destroy(tty_class,
3296 MKDEV(driver->major, driver->minor_start) + index);
3297 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3298 cdev_del(driver->cdevs[index]);
3299 driver->cdevs[index] = NULL;
3300 }
3301}
3302EXPORT_SYMBOL(tty_unregister_device);
3303
3304/**
3305 * __tty_alloc_driver -- allocate tty driver
3306 * @lines: count of lines this driver can handle at most
3307 * @owner: module which is responsible for this driver
3308 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3309 *
3310 * This should not be called directly, some of the provided macros should be
3311 * used instead. Use IS_ERR() and friends on @retval.
3312 */
3313struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3314 unsigned long flags)
3315{
3316 struct tty_driver *driver;
3317 unsigned int cdevs = 1;
3318 int err;
3319
3320 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3321 return ERR_PTR(-EINVAL);
3322
3323 driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3324 if (!driver)
3325 return ERR_PTR(-ENOMEM);
3326
3327 kref_init(&driver->kref);
3328 driver->num = lines;
3329 driver->owner = owner;
3330 driver->flags = flags;
3331
3332 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3333 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3334 GFP_KERNEL);
3335 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3336 GFP_KERNEL);
3337 if (!driver->ttys || !driver->termios) {
3338 err = -ENOMEM;
3339 goto err_free_all;
3340 }
3341 }
3342
3343 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3344 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3345 GFP_KERNEL);
3346 if (!driver->ports) {
3347 err = -ENOMEM;
3348 goto err_free_all;
3349 }
3350 cdevs = lines;
3351 }
3352
3353 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3354 if (!driver->cdevs) {
3355 err = -ENOMEM;
3356 goto err_free_all;
3357 }
3358
3359 return driver;
3360err_free_all:
3361 kfree(driver->ports);
3362 kfree(driver->ttys);
3363 kfree(driver->termios);
3364 kfree(driver->cdevs);
3365 kfree(driver);
3366 return ERR_PTR(err);
3367}
3368EXPORT_SYMBOL(__tty_alloc_driver);
3369
3370static void destruct_tty_driver(struct kref *kref)
3371{
3372 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3373 int i;
3374 struct ktermios *tp;
3375
3376 if (driver->flags & TTY_DRIVER_INSTALLED) {
3377 for (i = 0; i < driver->num; i++) {
3378 tp = driver->termios[i];
3379 if (tp) {
3380 driver->termios[i] = NULL;
3381 kfree(tp);
3382 }
3383 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3384 tty_unregister_device(driver, i);
3385 }
3386 proc_tty_unregister_driver(driver);
3387 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3388 cdev_del(driver->cdevs[0]);
3389 }
3390 kfree(driver->cdevs);
3391 kfree(driver->ports);
3392 kfree(driver->termios);
3393 kfree(driver->ttys);
3394 kfree(driver);
3395}
3396
3397/**
3398 * tty_driver_kref_put -- drop a reference to a tty driver
3399 * @driver: driver of which to drop the reference
3400 *
3401 * The final put will destroy and free up the driver.
3402 */
3403void tty_driver_kref_put(struct tty_driver *driver)
3404{
3405 kref_put(&driver->kref, destruct_tty_driver);
3406}
3407EXPORT_SYMBOL(tty_driver_kref_put);
3408
3409/**
3410 * tty_register_driver -- register a tty driver
3411 * @driver: driver to register
3412 *
3413 * Called by a tty driver to register itself.
3414 */
3415int tty_register_driver(struct tty_driver *driver)
3416{
3417 int error;
3418 int i;
3419 dev_t dev;
3420 struct device *d;
3421
3422 if (!driver->major) {
3423 error = alloc_chrdev_region(&dev, driver->minor_start,
3424 driver->num, driver->name);
3425 if (!error) {
3426 driver->major = MAJOR(dev);
3427 driver->minor_start = MINOR(dev);
3428 }
3429 } else {
3430 dev = MKDEV(driver->major, driver->minor_start);
3431 error = register_chrdev_region(dev, driver->num, driver->name);
3432 }
3433 if (error < 0)
3434 goto err;
3435
3436 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3437 error = tty_cdev_add(driver, dev, 0, driver->num);
3438 if (error)
3439 goto err_unreg_char;
3440 }
3441
3442 mutex_lock(&tty_mutex);
3443 list_add(&driver->tty_drivers, &tty_drivers);
3444 mutex_unlock(&tty_mutex);
3445
3446 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3447 for (i = 0; i < driver->num; i++) {
3448 d = tty_register_device(driver, i, NULL);
3449 if (IS_ERR(d)) {
3450 error = PTR_ERR(d);
3451 goto err_unreg_devs;
3452 }
3453 }
3454 }
3455 proc_tty_register_driver(driver);
3456 driver->flags |= TTY_DRIVER_INSTALLED;
3457 return 0;
3458
3459err_unreg_devs:
3460 for (i--; i >= 0; i--)
3461 tty_unregister_device(driver, i);
3462
3463 mutex_lock(&tty_mutex);
3464 list_del(&driver->tty_drivers);
3465 mutex_unlock(&tty_mutex);
3466
3467err_unreg_char:
3468 unregister_chrdev_region(dev, driver->num);
3469err:
3470 return error;
3471}
3472EXPORT_SYMBOL(tty_register_driver);
3473
3474/**
3475 * tty_unregister_driver -- unregister a tty driver
3476 * @driver: driver to unregister
3477 *
3478 * Called by a tty driver to unregister itself.
3479 */
3480void tty_unregister_driver(struct tty_driver *driver)
3481{
3482 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3483 driver->num);
3484 mutex_lock(&tty_mutex);
3485 list_del(&driver->tty_drivers);
3486 mutex_unlock(&tty_mutex);
3487}
3488EXPORT_SYMBOL(tty_unregister_driver);
3489
3490dev_t tty_devnum(struct tty_struct *tty)
3491{
3492 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3493}
3494EXPORT_SYMBOL(tty_devnum);
3495
3496void tty_default_fops(struct file_operations *fops)
3497{
3498 *fops = tty_fops;
3499}
3500
3501static char *tty_devnode(const struct device *dev, umode_t *mode)
3502{
3503 if (!mode)
3504 return NULL;
3505 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3506 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3507 *mode = 0666;
3508 return NULL;
3509}
3510
3511static int __init tty_class_init(void)
3512{
3513 tty_class = class_create(THIS_MODULE, "tty");
3514 if (IS_ERR(tty_class))
3515 return PTR_ERR(tty_class);
3516 tty_class->devnode = tty_devnode;
3517 return 0;
3518}
3519
3520postcore_initcall(tty_class_init);
3521
3522/* 3/2004 jmc: why do these devices exist? */
3523static struct cdev tty_cdev, console_cdev;
3524
3525static ssize_t show_cons_active(struct device *dev,
3526 struct device_attribute *attr, char *buf)
3527{
3528 struct console *cs[16];
3529 int i = 0;
3530 struct console *c;
3531 ssize_t count = 0;
3532
3533 /*
3534 * Hold the console_list_lock to guarantee that no consoles are
3535 * unregistered until all console processing is complete.
3536 * This also allows safe traversal of the console list and
3537 * race-free reading of @flags.
3538 */
3539 console_list_lock();
3540
3541 for_each_console(c) {
3542 if (!c->device)
3543 continue;
3544 if (!c->write)
3545 continue;
3546 if ((c->flags & CON_ENABLED) == 0)
3547 continue;
3548 cs[i++] = c;
3549 if (i >= ARRAY_SIZE(cs))
3550 break;
3551 }
3552
3553 /*
3554 * Take console_lock to serialize device() callback with
3555 * other console operations. For example, fg_console is
3556 * modified under console_lock when switching vt.
3557 */
3558 console_lock();
3559 while (i--) {
3560 int index = cs[i]->index;
3561 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3562
3563 /* don't resolve tty0 as some programs depend on it */
3564 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3565 count += tty_line_name(drv, index, buf + count);
3566 else
3567 count += sprintf(buf + count, "%s%d",
3568 cs[i]->name, cs[i]->index);
3569
3570 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3571 }
3572 console_unlock();
3573
3574 console_list_unlock();
3575
3576 return count;
3577}
3578static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3579
3580static struct attribute *cons_dev_attrs[] = {
3581 &dev_attr_active.attr,
3582 NULL
3583};
3584
3585ATTRIBUTE_GROUPS(cons_dev);
3586
3587static struct device *consdev;
3588
3589void console_sysfs_notify(void)
3590{
3591 if (consdev)
3592 sysfs_notify(&consdev->kobj, NULL, "active");
3593}
3594
3595static struct ctl_table tty_table[] = {
3596 {
3597 .procname = "legacy_tiocsti",
3598 .data = &tty_legacy_tiocsti,
3599 .maxlen = sizeof(tty_legacy_tiocsti),
3600 .mode = 0644,
3601 .proc_handler = proc_dobool,
3602 },
3603 {
3604 .procname = "ldisc_autoload",
3605 .data = &tty_ldisc_autoload,
3606 .maxlen = sizeof(tty_ldisc_autoload),
3607 .mode = 0644,
3608 .proc_handler = proc_dointvec,
3609 .extra1 = SYSCTL_ZERO,
3610 .extra2 = SYSCTL_ONE,
3611 },
3612 { }
3613};
3614
3615static struct ctl_table tty_dir_table[] = {
3616 {
3617 .procname = "tty",
3618 .mode = 0555,
3619 .child = tty_table,
3620 },
3621 { }
3622};
3623
3624static struct ctl_table tty_root_table[] = {
3625 {
3626 .procname = "dev",
3627 .mode = 0555,
3628 .child = tty_dir_table,
3629 },
3630 { }
3631};
3632
3633/*
3634 * Ok, now we can initialize the rest of the tty devices and can count
3635 * on memory allocations, interrupts etc..
3636 */
3637int __init tty_init(void)
3638{
3639 register_sysctl_table(tty_root_table);
3640 cdev_init(&tty_cdev, &tty_fops);
3641 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3642 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3643 panic("Couldn't register /dev/tty driver\n");
3644 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3645
3646 cdev_init(&console_cdev, &console_fops);
3647 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3648 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3649 panic("Couldn't register /dev/console driver\n");
3650 consdev = device_create_with_groups(tty_class, NULL,
3651 MKDEV(TTYAUX_MAJOR, 1), NULL,
3652 cons_dev_groups, "console");
3653 if (IS_ERR(consdev))
3654 consdev = NULL;
3655
3656#ifdef CONFIG_VT
3657 vty_init(&console_fops);
3658#endif
3659 return 0;
3660}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1991, 1992 Linus Torvalds
4 */
5
6/*
7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
8 * or rs-channels. It also implements echoing, cooked mode etc.
9 *
10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 *
12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
13 * tty_struct and tty_queue structures. Previously there was an array
14 * of 256 tty_struct's which was statically allocated, and the
15 * tty_queue structures were allocated at boot time. Both are now
16 * dynamically allocated only when the tty is open.
17 *
18 * Also restructured routines so that there is more of a separation
19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
20 * the low-level tty routines (serial.c, pty.c, console.c). This
21 * makes for cleaner and more compact code. -TYT, 9/17/92
22 *
23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
24 * which can be dynamically activated and de-activated by the line
25 * discipline handling modules (like SLIP).
26 *
27 * NOTE: pay no attention to the line discipline code (yet); its
28 * interface is still subject to change in this version...
29 * -- TYT, 1/31/92
30 *
31 * Added functionality to the OPOST tty handling. No delays, but all
32 * other bits should be there.
33 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 *
35 * Rewrote canonical mode and added more termios flags.
36 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 *
38 * Reorganized FASYNC support so mouse code can share it.
39 * -- ctm@ardi.com, 9Sep95
40 *
41 * New TIOCLINUX variants added.
42 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 *
44 * Restrict vt switching via ioctl()
45 * -- grif@cs.ucr.edu, 5-Dec-95
46 *
47 * Move console and virtual terminal code to more appropriate files,
48 * implement CONFIG_VT and generalize console device interface.
49 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 *
51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
52 * -- Bill Hawes <whawes@star.net>, June 97
53 *
54 * Added devfs support.
55 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 *
57 * Added support for a Unix98-style ptmx device.
58 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 *
60 * Reduced memory usage for older ARM systems
61 * -- Russell King <rmk@arm.linux.org.uk>
62 *
63 * Move do_SAK() into process context. Less stack use in devfs functions.
64 * alloc_tty_struct() always uses kmalloc()
65 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
66 */
67
68#include <linux/types.h>
69#include <linux/major.h>
70#include <linux/errno.h>
71#include <linux/signal.h>
72#include <linux/fcntl.h>
73#include <linux/sched/signal.h>
74#include <linux/sched/task.h>
75#include <linux/interrupt.h>
76#include <linux/tty.h>
77#include <linux/tty_driver.h>
78#include <linux/tty_flip.h>
79#include <linux/devpts_fs.h>
80#include <linux/file.h>
81#include <linux/fdtable.h>
82#include <linux/console.h>
83#include <linux/timer.h>
84#include <linux/ctype.h>
85#include <linux/kd.h>
86#include <linux/mm.h>
87#include <linux/string.h>
88#include <linux/slab.h>
89#include <linux/poll.h>
90#include <linux/proc_fs.h>
91#include <linux/init.h>
92#include <linux/module.h>
93#include <linux/device.h>
94#include <linux/wait.h>
95#include <linux/bitops.h>
96#include <linux/delay.h>
97#include <linux/seq_file.h>
98#include <linux/serial.h>
99#include <linux/ratelimit.h>
100
101#include <linux/uaccess.h>
102
103#include <linux/kbd_kern.h>
104#include <linux/vt_kern.h>
105#include <linux/selection.h>
106
107#include <linux/kmod.h>
108#include <linux/nsproxy.h>
109
110#undef TTY_DEBUG_HANGUP
111#ifdef TTY_DEBUG_HANGUP
112# define tty_debug_hangup(tty, f, args...) tty_debug(tty, f, ##args)
113#else
114# define tty_debug_hangup(tty, f, args...) do { } while (0)
115#endif
116
117#define TTY_PARANOIA_CHECK 1
118#define CHECK_TTY_COUNT 1
119
120struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
121 .c_iflag = ICRNL | IXON,
122 .c_oflag = OPOST | ONLCR,
123 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
124 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
125 ECHOCTL | ECHOKE | IEXTEN,
126 .c_cc = INIT_C_CC,
127 .c_ispeed = 38400,
128 .c_ospeed = 38400,
129 /* .c_line = N_TTY, */
130};
131
132EXPORT_SYMBOL(tty_std_termios);
133
134/* This list gets poked at by procfs and various bits of boot up code. This
135 could do with some rationalisation such as pulling the tty proc function
136 into this file */
137
138LIST_HEAD(tty_drivers); /* linked list of tty drivers */
139
140/* Mutex to protect creating and releasing a tty */
141DEFINE_MUTEX(tty_mutex);
142
143static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
144static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
145ssize_t redirected_tty_write(struct file *, const char __user *,
146 size_t, loff_t *);
147static __poll_t tty_poll(struct file *, poll_table *);
148static int tty_open(struct inode *, struct file *);
149long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
150#ifdef CONFIG_COMPAT
151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
152 unsigned long arg);
153#else
154#define tty_compat_ioctl NULL
155#endif
156static int __tty_fasync(int fd, struct file *filp, int on);
157static int tty_fasync(int fd, struct file *filp, int on);
158static void release_tty(struct tty_struct *tty, int idx);
159
160/**
161 * free_tty_struct - free a disused tty
162 * @tty: tty struct to free
163 *
164 * Free the write buffers, tty queue and tty memory itself.
165 *
166 * Locking: none. Must be called after tty is definitely unused
167 */
168
169static void free_tty_struct(struct tty_struct *tty)
170{
171 tty_ldisc_deinit(tty);
172 put_device(tty->dev);
173 kfree(tty->write_buf);
174 tty->magic = 0xDEADDEAD;
175 kfree(tty);
176}
177
178static inline struct tty_struct *file_tty(struct file *file)
179{
180 return ((struct tty_file_private *)file->private_data)->tty;
181}
182
183int tty_alloc_file(struct file *file)
184{
185 struct tty_file_private *priv;
186
187 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
188 if (!priv)
189 return -ENOMEM;
190
191 file->private_data = priv;
192
193 return 0;
194}
195
196/* Associate a new file with the tty structure */
197void tty_add_file(struct tty_struct *tty, struct file *file)
198{
199 struct tty_file_private *priv = file->private_data;
200
201 priv->tty = tty;
202 priv->file = file;
203
204 spin_lock(&tty->files_lock);
205 list_add(&priv->list, &tty->tty_files);
206 spin_unlock(&tty->files_lock);
207}
208
209/**
210 * tty_free_file - free file->private_data
211 *
212 * This shall be used only for fail path handling when tty_add_file was not
213 * called yet.
214 */
215void tty_free_file(struct file *file)
216{
217 struct tty_file_private *priv = file->private_data;
218
219 file->private_data = NULL;
220 kfree(priv);
221}
222
223/* Delete file from its tty */
224static void tty_del_file(struct file *file)
225{
226 struct tty_file_private *priv = file->private_data;
227 struct tty_struct *tty = priv->tty;
228
229 spin_lock(&tty->files_lock);
230 list_del(&priv->list);
231 spin_unlock(&tty->files_lock);
232 tty_free_file(file);
233}
234
235/**
236 * tty_name - return tty naming
237 * @tty: tty structure
238 *
239 * Convert a tty structure into a name. The name reflects the kernel
240 * naming policy and if udev is in use may not reflect user space
241 *
242 * Locking: none
243 */
244
245const char *tty_name(const struct tty_struct *tty)
246{
247 if (!tty) /* Hmm. NULL pointer. That's fun. */
248 return "NULL tty";
249 return tty->name;
250}
251
252EXPORT_SYMBOL(tty_name);
253
254const char *tty_driver_name(const struct tty_struct *tty)
255{
256 if (!tty || !tty->driver)
257 return "";
258 return tty->driver->name;
259}
260
261static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
262 const char *routine)
263{
264#ifdef TTY_PARANOIA_CHECK
265 if (!tty) {
266 pr_warn("(%d:%d): %s: NULL tty\n",
267 imajor(inode), iminor(inode), routine);
268 return 1;
269 }
270 if (tty->magic != TTY_MAGIC) {
271 pr_warn("(%d:%d): %s: bad magic number\n",
272 imajor(inode), iminor(inode), routine);
273 return 1;
274 }
275#endif
276 return 0;
277}
278
279/* Caller must hold tty_lock */
280static int check_tty_count(struct tty_struct *tty, const char *routine)
281{
282#ifdef CHECK_TTY_COUNT
283 struct list_head *p;
284 int count = 0, kopen_count = 0;
285
286 spin_lock(&tty->files_lock);
287 list_for_each(p, &tty->tty_files) {
288 count++;
289 }
290 spin_unlock(&tty->files_lock);
291 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
292 tty->driver->subtype == PTY_TYPE_SLAVE &&
293 tty->link && tty->link->count)
294 count++;
295 if (tty_port_kopened(tty->port))
296 kopen_count++;
297 if (tty->count != (count + kopen_count)) {
298 tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
299 routine, tty->count, count, kopen_count);
300 return (count + kopen_count);
301 }
302#endif
303 return 0;
304}
305
306/**
307 * get_tty_driver - find device of a tty
308 * @dev_t: device identifier
309 * @index: returns the index of the tty
310 *
311 * This routine returns a tty driver structure, given a device number
312 * and also passes back the index number.
313 *
314 * Locking: caller must hold tty_mutex
315 */
316
317static struct tty_driver *get_tty_driver(dev_t device, int *index)
318{
319 struct tty_driver *p;
320
321 list_for_each_entry(p, &tty_drivers, tty_drivers) {
322 dev_t base = MKDEV(p->major, p->minor_start);
323 if (device < base || device >= base + p->num)
324 continue;
325 *index = device - base;
326 return tty_driver_kref_get(p);
327 }
328 return NULL;
329}
330
331/**
332 * tty_dev_name_to_number - return dev_t for device name
333 * @name: user space name of device under /dev
334 * @number: pointer to dev_t that this function will populate
335 *
336 * This function converts device names like ttyS0 or ttyUSB1 into dev_t
337 * like (4, 64) or (188, 1). If no corresponding driver is registered then
338 * the function returns -ENODEV.
339 *
340 * Locking: this acquires tty_mutex to protect the tty_drivers list from
341 * being modified while we are traversing it, and makes sure to
342 * release it before exiting.
343 */
344int tty_dev_name_to_number(const char *name, dev_t *number)
345{
346 struct tty_driver *p;
347 int ret;
348 int index, prefix_length = 0;
349 const char *str;
350
351 for (str = name; *str && !isdigit(*str); str++)
352 ;
353
354 if (!*str)
355 return -EINVAL;
356
357 ret = kstrtoint(str, 10, &index);
358 if (ret)
359 return ret;
360
361 prefix_length = str - name;
362 mutex_lock(&tty_mutex);
363
364 list_for_each_entry(p, &tty_drivers, tty_drivers)
365 if (prefix_length == strlen(p->name) && strncmp(name,
366 p->name, prefix_length) == 0) {
367 if (index < p->num) {
368 *number = MKDEV(p->major, p->minor_start + index);
369 goto out;
370 }
371 }
372
373 /* if here then driver wasn't found */
374 ret = -ENODEV;
375out:
376 mutex_unlock(&tty_mutex);
377 return ret;
378}
379EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
380
381#ifdef CONFIG_CONSOLE_POLL
382
383/**
384 * tty_find_polling_driver - find device of a polled tty
385 * @name: name string to match
386 * @line: pointer to resulting tty line nr
387 *
388 * This routine returns a tty driver structure, given a name
389 * and the condition that the tty driver is capable of polled
390 * operation.
391 */
392struct tty_driver *tty_find_polling_driver(char *name, int *line)
393{
394 struct tty_driver *p, *res = NULL;
395 int tty_line = 0;
396 int len;
397 char *str, *stp;
398
399 for (str = name; *str; str++)
400 if ((*str >= '0' && *str <= '9') || *str == ',')
401 break;
402 if (!*str)
403 return NULL;
404
405 len = str - name;
406 tty_line = simple_strtoul(str, &str, 10);
407
408 mutex_lock(&tty_mutex);
409 /* Search through the tty devices to look for a match */
410 list_for_each_entry(p, &tty_drivers, tty_drivers) {
411 if (strncmp(name, p->name, len) != 0)
412 continue;
413 stp = str;
414 if (*stp == ',')
415 stp++;
416 if (*stp == '\0')
417 stp = NULL;
418
419 if (tty_line >= 0 && tty_line < p->num && p->ops &&
420 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
421 res = tty_driver_kref_get(p);
422 *line = tty_line;
423 break;
424 }
425 }
426 mutex_unlock(&tty_mutex);
427
428 return res;
429}
430EXPORT_SYMBOL_GPL(tty_find_polling_driver);
431#endif
432
433static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
434 size_t count, loff_t *ppos)
435{
436 return 0;
437}
438
439static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
440 size_t count, loff_t *ppos)
441{
442 return -EIO;
443}
444
445/* No kernel lock held - none needed ;) */
446static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
447{
448 return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
449}
450
451static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
452 unsigned long arg)
453{
454 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
455}
456
457static long hung_up_tty_compat_ioctl(struct file *file,
458 unsigned int cmd, unsigned long arg)
459{
460 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
461}
462
463static int hung_up_tty_fasync(int fd, struct file *file, int on)
464{
465 return -ENOTTY;
466}
467
468static void tty_show_fdinfo(struct seq_file *m, struct file *file)
469{
470 struct tty_struct *tty = file_tty(file);
471
472 if (tty && tty->ops && tty->ops->show_fdinfo)
473 tty->ops->show_fdinfo(tty, m);
474}
475
476static const struct file_operations tty_fops = {
477 .llseek = no_llseek,
478 .read = tty_read,
479 .write = tty_write,
480 .poll = tty_poll,
481 .unlocked_ioctl = tty_ioctl,
482 .compat_ioctl = tty_compat_ioctl,
483 .open = tty_open,
484 .release = tty_release,
485 .fasync = tty_fasync,
486 .show_fdinfo = tty_show_fdinfo,
487};
488
489static const struct file_operations console_fops = {
490 .llseek = no_llseek,
491 .read = tty_read,
492 .write = redirected_tty_write,
493 .poll = tty_poll,
494 .unlocked_ioctl = tty_ioctl,
495 .compat_ioctl = tty_compat_ioctl,
496 .open = tty_open,
497 .release = tty_release,
498 .fasync = tty_fasync,
499};
500
501static const struct file_operations hung_up_tty_fops = {
502 .llseek = no_llseek,
503 .read = hung_up_tty_read,
504 .write = hung_up_tty_write,
505 .poll = hung_up_tty_poll,
506 .unlocked_ioctl = hung_up_tty_ioctl,
507 .compat_ioctl = hung_up_tty_compat_ioctl,
508 .release = tty_release,
509 .fasync = hung_up_tty_fasync,
510};
511
512static DEFINE_SPINLOCK(redirect_lock);
513static struct file *redirect;
514
515/**
516 * tty_wakeup - request more data
517 * @tty: terminal
518 *
519 * Internal and external helper for wakeups of tty. This function
520 * informs the line discipline if present that the driver is ready
521 * to receive more output data.
522 */
523
524void tty_wakeup(struct tty_struct *tty)
525{
526 struct tty_ldisc *ld;
527
528 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
529 ld = tty_ldisc_ref(tty);
530 if (ld) {
531 if (ld->ops->write_wakeup)
532 ld->ops->write_wakeup(tty);
533 tty_ldisc_deref(ld);
534 }
535 }
536 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
537}
538
539EXPORT_SYMBOL_GPL(tty_wakeup);
540
541/**
542 * __tty_hangup - actual handler for hangup events
543 * @work: tty device
544 *
545 * This can be called by a "kworker" kernel thread. That is process
546 * synchronous but doesn't hold any locks, so we need to make sure we
547 * have the appropriate locks for what we're doing.
548 *
549 * The hangup event clears any pending redirections onto the hung up
550 * device. It ensures future writes will error and it does the needed
551 * line discipline hangup and signal delivery. The tty object itself
552 * remains intact.
553 *
554 * Locking:
555 * BTM
556 * redirect lock for undoing redirection
557 * file list lock for manipulating list of ttys
558 * tty_ldiscs_lock from called functions
559 * termios_rwsem resetting termios data
560 * tasklist_lock to walk task list for hangup event
561 * ->siglock to protect ->signal/->sighand
562 */
563static void __tty_hangup(struct tty_struct *tty, int exit_session)
564{
565 struct file *cons_filp = NULL;
566 struct file *filp, *f = NULL;
567 struct tty_file_private *priv;
568 int closecount = 0, n;
569 int refs;
570
571 if (!tty)
572 return;
573
574
575 spin_lock(&redirect_lock);
576 if (redirect && file_tty(redirect) == tty) {
577 f = redirect;
578 redirect = NULL;
579 }
580 spin_unlock(&redirect_lock);
581
582 tty_lock(tty);
583
584 if (test_bit(TTY_HUPPED, &tty->flags)) {
585 tty_unlock(tty);
586 return;
587 }
588
589 /*
590 * Some console devices aren't actually hung up for technical and
591 * historical reasons, which can lead to indefinite interruptible
592 * sleep in n_tty_read(). The following explicitly tells
593 * n_tty_read() to abort readers.
594 */
595 set_bit(TTY_HUPPING, &tty->flags);
596
597 /* inuse_filps is protected by the single tty lock,
598 this really needs to change if we want to flush the
599 workqueue with the lock held */
600 check_tty_count(tty, "tty_hangup");
601
602 spin_lock(&tty->files_lock);
603 /* This breaks for file handles being sent over AF_UNIX sockets ? */
604 list_for_each_entry(priv, &tty->tty_files, list) {
605 filp = priv->file;
606 if (filp->f_op->write == redirected_tty_write)
607 cons_filp = filp;
608 if (filp->f_op->write != tty_write)
609 continue;
610 closecount++;
611 __tty_fasync(-1, filp, 0); /* can't block */
612 filp->f_op = &hung_up_tty_fops;
613 }
614 spin_unlock(&tty->files_lock);
615
616 refs = tty_signal_session_leader(tty, exit_session);
617 /* Account for the p->signal references we killed */
618 while (refs--)
619 tty_kref_put(tty);
620
621 tty_ldisc_hangup(tty, cons_filp != NULL);
622
623 spin_lock_irq(&tty->ctrl_lock);
624 clear_bit(TTY_THROTTLED, &tty->flags);
625 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
626 put_pid(tty->session);
627 put_pid(tty->pgrp);
628 tty->session = NULL;
629 tty->pgrp = NULL;
630 tty->ctrl_status = 0;
631 spin_unlock_irq(&tty->ctrl_lock);
632
633 /*
634 * If one of the devices matches a console pointer, we
635 * cannot just call hangup() because that will cause
636 * tty->count and state->count to go out of sync.
637 * So we just call close() the right number of times.
638 */
639 if (cons_filp) {
640 if (tty->ops->close)
641 for (n = 0; n < closecount; n++)
642 tty->ops->close(tty, cons_filp);
643 } else if (tty->ops->hangup)
644 tty->ops->hangup(tty);
645 /*
646 * We don't want to have driver/ldisc interactions beyond the ones
647 * we did here. The driver layer expects no calls after ->hangup()
648 * from the ldisc side, which is now guaranteed.
649 */
650 set_bit(TTY_HUPPED, &tty->flags);
651 clear_bit(TTY_HUPPING, &tty->flags);
652 tty_unlock(tty);
653
654 if (f)
655 fput(f);
656}
657
658static void do_tty_hangup(struct work_struct *work)
659{
660 struct tty_struct *tty =
661 container_of(work, struct tty_struct, hangup_work);
662
663 __tty_hangup(tty, 0);
664}
665
666/**
667 * tty_hangup - trigger a hangup event
668 * @tty: tty to hangup
669 *
670 * A carrier loss (virtual or otherwise) has occurred on this like
671 * schedule a hangup sequence to run after this event.
672 */
673
674void tty_hangup(struct tty_struct *tty)
675{
676 tty_debug_hangup(tty, "hangup\n");
677 schedule_work(&tty->hangup_work);
678}
679
680EXPORT_SYMBOL(tty_hangup);
681
682/**
683 * tty_vhangup - process vhangup
684 * @tty: tty to hangup
685 *
686 * The user has asked via system call for the terminal to be hung up.
687 * We do this synchronously so that when the syscall returns the process
688 * is complete. That guarantee is necessary for security reasons.
689 */
690
691void tty_vhangup(struct tty_struct *tty)
692{
693 tty_debug_hangup(tty, "vhangup\n");
694 __tty_hangup(tty, 0);
695}
696
697EXPORT_SYMBOL(tty_vhangup);
698
699
700/**
701 * tty_vhangup_self - process vhangup for own ctty
702 *
703 * Perform a vhangup on the current controlling tty
704 */
705
706void tty_vhangup_self(void)
707{
708 struct tty_struct *tty;
709
710 tty = get_current_tty();
711 if (tty) {
712 tty_vhangup(tty);
713 tty_kref_put(tty);
714 }
715}
716
717/**
718 * tty_vhangup_session - hangup session leader exit
719 * @tty: tty to hangup
720 *
721 * The session leader is exiting and hanging up its controlling terminal.
722 * Every process in the foreground process group is signalled SIGHUP.
723 *
724 * We do this synchronously so that when the syscall returns the process
725 * is complete. That guarantee is necessary for security reasons.
726 */
727
728void tty_vhangup_session(struct tty_struct *tty)
729{
730 tty_debug_hangup(tty, "session hangup\n");
731 __tty_hangup(tty, 1);
732}
733
734/**
735 * tty_hung_up_p - was tty hung up
736 * @filp: file pointer of tty
737 *
738 * Return true if the tty has been subject to a vhangup or a carrier
739 * loss
740 */
741
742int tty_hung_up_p(struct file *filp)
743{
744 return (filp && filp->f_op == &hung_up_tty_fops);
745}
746
747EXPORT_SYMBOL(tty_hung_up_p);
748
749/**
750 * stop_tty - propagate flow control
751 * @tty: tty to stop
752 *
753 * Perform flow control to the driver. May be called
754 * on an already stopped device and will not re-call the driver
755 * method.
756 *
757 * This functionality is used by both the line disciplines for
758 * halting incoming flow and by the driver. It may therefore be
759 * called from any context, may be under the tty atomic_write_lock
760 * but not always.
761 *
762 * Locking:
763 * flow_lock
764 */
765
766void __stop_tty(struct tty_struct *tty)
767{
768 if (tty->stopped)
769 return;
770 tty->stopped = 1;
771 if (tty->ops->stop)
772 tty->ops->stop(tty);
773}
774
775void stop_tty(struct tty_struct *tty)
776{
777 unsigned long flags;
778
779 spin_lock_irqsave(&tty->flow_lock, flags);
780 __stop_tty(tty);
781 spin_unlock_irqrestore(&tty->flow_lock, flags);
782}
783EXPORT_SYMBOL(stop_tty);
784
785/**
786 * start_tty - propagate flow control
787 * @tty: tty to start
788 *
789 * Start a tty that has been stopped if at all possible. If this
790 * tty was previous stopped and is now being started, the driver
791 * start method is invoked and the line discipline woken.
792 *
793 * Locking:
794 * flow_lock
795 */
796
797void __start_tty(struct tty_struct *tty)
798{
799 if (!tty->stopped || tty->flow_stopped)
800 return;
801 tty->stopped = 0;
802 if (tty->ops->start)
803 tty->ops->start(tty);
804 tty_wakeup(tty);
805}
806
807void start_tty(struct tty_struct *tty)
808{
809 unsigned long flags;
810
811 spin_lock_irqsave(&tty->flow_lock, flags);
812 __start_tty(tty);
813 spin_unlock_irqrestore(&tty->flow_lock, flags);
814}
815EXPORT_SYMBOL(start_tty);
816
817static void tty_update_time(struct timespec *time)
818{
819 unsigned long sec = get_seconds();
820
821 /*
822 * We only care if the two values differ in anything other than the
823 * lower three bits (i.e every 8 seconds). If so, then we can update
824 * the time of the tty device, otherwise it could be construded as a
825 * security leak to let userspace know the exact timing of the tty.
826 */
827 if ((sec ^ time->tv_sec) & ~7)
828 time->tv_sec = sec;
829}
830
831/**
832 * tty_read - read method for tty device files
833 * @file: pointer to tty file
834 * @buf: user buffer
835 * @count: size of user buffer
836 * @ppos: unused
837 *
838 * Perform the read system call function on this terminal device. Checks
839 * for hung up devices before calling the line discipline method.
840 *
841 * Locking:
842 * Locks the line discipline internally while needed. Multiple
843 * read calls may be outstanding in parallel.
844 */
845
846static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
847 loff_t *ppos)
848{
849 int i;
850 struct inode *inode = file_inode(file);
851 struct tty_struct *tty = file_tty(file);
852 struct tty_ldisc *ld;
853
854 if (tty_paranoia_check(tty, inode, "tty_read"))
855 return -EIO;
856 if (!tty || tty_io_error(tty))
857 return -EIO;
858
859 /* We want to wait for the line discipline to sort out in this
860 situation */
861 ld = tty_ldisc_ref_wait(tty);
862 if (!ld)
863 return hung_up_tty_read(file, buf, count, ppos);
864 if (ld->ops->read)
865 i = ld->ops->read(tty, file, buf, count);
866 else
867 i = -EIO;
868 tty_ldisc_deref(ld);
869
870 if (i > 0)
871 tty_update_time(&inode->i_atime);
872
873 return i;
874}
875
876static void tty_write_unlock(struct tty_struct *tty)
877{
878 mutex_unlock(&tty->atomic_write_lock);
879 wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
880}
881
882static int tty_write_lock(struct tty_struct *tty, int ndelay)
883{
884 if (!mutex_trylock(&tty->atomic_write_lock)) {
885 if (ndelay)
886 return -EAGAIN;
887 if (mutex_lock_interruptible(&tty->atomic_write_lock))
888 return -ERESTARTSYS;
889 }
890 return 0;
891}
892
893/*
894 * Split writes up in sane blocksizes to avoid
895 * denial-of-service type attacks
896 */
897static inline ssize_t do_tty_write(
898 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
899 struct tty_struct *tty,
900 struct file *file,
901 const char __user *buf,
902 size_t count)
903{
904 ssize_t ret, written = 0;
905 unsigned int chunk;
906
907 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
908 if (ret < 0)
909 return ret;
910
911 /*
912 * We chunk up writes into a temporary buffer. This
913 * simplifies low-level drivers immensely, since they
914 * don't have locking issues and user mode accesses.
915 *
916 * But if TTY_NO_WRITE_SPLIT is set, we should use a
917 * big chunk-size..
918 *
919 * The default chunk-size is 2kB, because the NTTY
920 * layer has problems with bigger chunks. It will
921 * claim to be able to handle more characters than
922 * it actually does.
923 *
924 * FIXME: This can probably go away now except that 64K chunks
925 * are too likely to fail unless switched to vmalloc...
926 */
927 chunk = 2048;
928 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
929 chunk = 65536;
930 if (count < chunk)
931 chunk = count;
932
933 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
934 if (tty->write_cnt < chunk) {
935 unsigned char *buf_chunk;
936
937 if (chunk < 1024)
938 chunk = 1024;
939
940 buf_chunk = kmalloc(chunk, GFP_KERNEL);
941 if (!buf_chunk) {
942 ret = -ENOMEM;
943 goto out;
944 }
945 kfree(tty->write_buf);
946 tty->write_cnt = chunk;
947 tty->write_buf = buf_chunk;
948 }
949
950 /* Do the write .. */
951 for (;;) {
952 size_t size = count;
953 if (size > chunk)
954 size = chunk;
955 ret = -EFAULT;
956 if (copy_from_user(tty->write_buf, buf, size))
957 break;
958 ret = write(tty, file, tty->write_buf, size);
959 if (ret <= 0)
960 break;
961 written += ret;
962 buf += ret;
963 count -= ret;
964 if (!count)
965 break;
966 ret = -ERESTARTSYS;
967 if (signal_pending(current))
968 break;
969 cond_resched();
970 }
971 if (written) {
972 tty_update_time(&file_inode(file)->i_mtime);
973 ret = written;
974 }
975out:
976 tty_write_unlock(tty);
977 return ret;
978}
979
980/**
981 * tty_write_message - write a message to a certain tty, not just the console.
982 * @tty: the destination tty_struct
983 * @msg: the message to write
984 *
985 * This is used for messages that need to be redirected to a specific tty.
986 * We don't put it into the syslog queue right now maybe in the future if
987 * really needed.
988 *
989 * We must still hold the BTM and test the CLOSING flag for the moment.
990 */
991
992void tty_write_message(struct tty_struct *tty, char *msg)
993{
994 if (tty) {
995 mutex_lock(&tty->atomic_write_lock);
996 tty_lock(tty);
997 if (tty->ops->write && tty->count > 0)
998 tty->ops->write(tty, msg, strlen(msg));
999 tty_unlock(tty);
1000 tty_write_unlock(tty);
1001 }
1002 return;
1003}
1004
1005
1006/**
1007 * tty_write - write method for tty device file
1008 * @file: tty file pointer
1009 * @buf: user data to write
1010 * @count: bytes to write
1011 * @ppos: unused
1012 *
1013 * Write data to a tty device via the line discipline.
1014 *
1015 * Locking:
1016 * Locks the line discipline as required
1017 * Writes to the tty driver are serialized by the atomic_write_lock
1018 * and are then processed in chunks to the device. The line discipline
1019 * write method will not be invoked in parallel for each device.
1020 */
1021
1022static ssize_t tty_write(struct file *file, const char __user *buf,
1023 size_t count, loff_t *ppos)
1024{
1025 struct tty_struct *tty = file_tty(file);
1026 struct tty_ldisc *ld;
1027 ssize_t ret;
1028
1029 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1030 return -EIO;
1031 if (!tty || !tty->ops->write || tty_io_error(tty))
1032 return -EIO;
1033 /* Short term debug to catch buggy drivers */
1034 if (tty->ops->write_room == NULL)
1035 tty_err(tty, "missing write_room method\n");
1036 ld = tty_ldisc_ref_wait(tty);
1037 if (!ld)
1038 return hung_up_tty_write(file, buf, count, ppos);
1039 if (!ld->ops->write)
1040 ret = -EIO;
1041 else
1042 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1043 tty_ldisc_deref(ld);
1044 return ret;
1045}
1046
1047ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1048 size_t count, loff_t *ppos)
1049{
1050 struct file *p = NULL;
1051
1052 spin_lock(&redirect_lock);
1053 if (redirect)
1054 p = get_file(redirect);
1055 spin_unlock(&redirect_lock);
1056
1057 if (p) {
1058 ssize_t res;
1059 res = vfs_write(p, buf, count, &p->f_pos);
1060 fput(p);
1061 return res;
1062 }
1063 return tty_write(file, buf, count, ppos);
1064}
1065
1066/**
1067 * tty_send_xchar - send priority character
1068 *
1069 * Send a high priority character to the tty even if stopped
1070 *
1071 * Locking: none for xchar method, write ordering for write method.
1072 */
1073
1074int tty_send_xchar(struct tty_struct *tty, char ch)
1075{
1076 int was_stopped = tty->stopped;
1077
1078 if (tty->ops->send_xchar) {
1079 down_read(&tty->termios_rwsem);
1080 tty->ops->send_xchar(tty, ch);
1081 up_read(&tty->termios_rwsem);
1082 return 0;
1083 }
1084
1085 if (tty_write_lock(tty, 0) < 0)
1086 return -ERESTARTSYS;
1087
1088 down_read(&tty->termios_rwsem);
1089 if (was_stopped)
1090 start_tty(tty);
1091 tty->ops->write(tty, &ch, 1);
1092 if (was_stopped)
1093 stop_tty(tty);
1094 up_read(&tty->termios_rwsem);
1095 tty_write_unlock(tty);
1096 return 0;
1097}
1098
1099static char ptychar[] = "pqrstuvwxyzabcde";
1100
1101/**
1102 * pty_line_name - generate name for a pty
1103 * @driver: the tty driver in use
1104 * @index: the minor number
1105 * @p: output buffer of at least 6 bytes
1106 *
1107 * Generate a name from a driver reference and write it to the output
1108 * buffer.
1109 *
1110 * Locking: None
1111 */
1112static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113{
1114 int i = index + driver->name_base;
1115 /* ->name is initialized to "ttyp", but "tty" is expected */
1116 sprintf(p, "%s%c%x",
1117 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 ptychar[i >> 4 & 0xf], i & 0xf);
1119}
1120
1121/**
1122 * tty_line_name - generate name for a tty
1123 * @driver: the tty driver in use
1124 * @index: the minor number
1125 * @p: output buffer of at least 7 bytes
1126 *
1127 * Generate a name from a driver reference and write it to the output
1128 * buffer.
1129 *
1130 * Locking: None
1131 */
1132static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1133{
1134 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1135 return sprintf(p, "%s", driver->name);
1136 else
1137 return sprintf(p, "%s%d", driver->name,
1138 index + driver->name_base);
1139}
1140
1141/**
1142 * tty_driver_lookup_tty() - find an existing tty, if any
1143 * @driver: the driver for the tty
1144 * @idx: the minor number
1145 *
1146 * Return the tty, if found. If not found, return NULL or ERR_PTR() if the
1147 * driver lookup() method returns an error.
1148 *
1149 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
1150 */
1151static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1152 struct file *file, int idx)
1153{
1154 struct tty_struct *tty;
1155
1156 if (driver->ops->lookup)
1157 if (!file)
1158 tty = ERR_PTR(-EIO);
1159 else
1160 tty = driver->ops->lookup(driver, file, idx);
1161 else
1162 tty = driver->ttys[idx];
1163
1164 if (!IS_ERR(tty))
1165 tty_kref_get(tty);
1166 return tty;
1167}
1168
1169/**
1170 * tty_init_termios - helper for termios setup
1171 * @tty: the tty to set up
1172 *
1173 * Initialise the termios structures for this tty. Thus runs under
1174 * the tty_mutex currently so we can be relaxed about ordering.
1175 */
1176
1177void tty_init_termios(struct tty_struct *tty)
1178{
1179 struct ktermios *tp;
1180 int idx = tty->index;
1181
1182 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1183 tty->termios = tty->driver->init_termios;
1184 else {
1185 /* Check for lazy saved data */
1186 tp = tty->driver->termios[idx];
1187 if (tp != NULL) {
1188 tty->termios = *tp;
1189 tty->termios.c_line = tty->driver->init_termios.c_line;
1190 } else
1191 tty->termios = tty->driver->init_termios;
1192 }
1193 /* Compatibility until drivers always set this */
1194 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1195 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1196}
1197EXPORT_SYMBOL_GPL(tty_init_termios);
1198
1199int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1200{
1201 tty_init_termios(tty);
1202 tty_driver_kref_get(driver);
1203 tty->count++;
1204 driver->ttys[tty->index] = tty;
1205 return 0;
1206}
1207EXPORT_SYMBOL_GPL(tty_standard_install);
1208
1209/**
1210 * tty_driver_install_tty() - install a tty entry in the driver
1211 * @driver: the driver for the tty
1212 * @tty: the tty
1213 *
1214 * Install a tty object into the driver tables. The tty->index field
1215 * will be set by the time this is called. This method is responsible
1216 * for ensuring any need additional structures are allocated and
1217 * configured.
1218 *
1219 * Locking: tty_mutex for now
1220 */
1221static int tty_driver_install_tty(struct tty_driver *driver,
1222 struct tty_struct *tty)
1223{
1224 return driver->ops->install ? driver->ops->install(driver, tty) :
1225 tty_standard_install(driver, tty);
1226}
1227
1228/**
1229 * tty_driver_remove_tty() - remove a tty from the driver tables
1230 * @driver: the driver for the tty
1231 * @idx: the minor number
1232 *
1233 * Remvoe a tty object from the driver tables. The tty->index field
1234 * will be set by the time this is called.
1235 *
1236 * Locking: tty_mutex for now
1237 */
1238static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1239{
1240 if (driver->ops->remove)
1241 driver->ops->remove(driver, tty);
1242 else
1243 driver->ttys[tty->index] = NULL;
1244}
1245
1246/*
1247 * tty_reopen() - fast re-open of an open tty
1248 * @tty - the tty to open
1249 *
1250 * Return 0 on success, -errno on error.
1251 * Re-opens on master ptys are not allowed and return -EIO.
1252 *
1253 * Locking: Caller must hold tty_lock
1254 */
1255static int tty_reopen(struct tty_struct *tty)
1256{
1257 struct tty_driver *driver = tty->driver;
1258
1259 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1260 driver->subtype == PTY_TYPE_MASTER)
1261 return -EIO;
1262
1263 if (!tty->count)
1264 return -EAGAIN;
1265
1266 if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1267 return -EBUSY;
1268
1269 tty->count++;
1270
1271 if (!tty->ldisc)
1272 return tty_ldisc_reinit(tty, tty->termios.c_line);
1273
1274 return 0;
1275}
1276
1277/**
1278 * tty_init_dev - initialise a tty device
1279 * @driver: tty driver we are opening a device on
1280 * @idx: device index
1281 * @ret_tty: returned tty structure
1282 *
1283 * Prepare a tty device. This may not be a "new" clean device but
1284 * could also be an active device. The pty drivers require special
1285 * handling because of this.
1286 *
1287 * Locking:
1288 * The function is called under the tty_mutex, which
1289 * protects us from the tty struct or driver itself going away.
1290 *
1291 * On exit the tty device has the line discipline attached and
1292 * a reference count of 1. If a pair was created for pty/tty use
1293 * and the other was a pty master then it too has a reference count of 1.
1294 *
1295 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1296 * failed open. The new code protects the open with a mutex, so it's
1297 * really quite straightforward. The mutex locking can probably be
1298 * relaxed for the (most common) case of reopening a tty.
1299 */
1300
1301struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1302{
1303 struct tty_struct *tty;
1304 int retval;
1305
1306 /*
1307 * First time open is complex, especially for PTY devices.
1308 * This code guarantees that either everything succeeds and the
1309 * TTY is ready for operation, or else the table slots are vacated
1310 * and the allocated memory released. (Except that the termios
1311 * may be retained.)
1312 */
1313
1314 if (!try_module_get(driver->owner))
1315 return ERR_PTR(-ENODEV);
1316
1317 tty = alloc_tty_struct(driver, idx);
1318 if (!tty) {
1319 retval = -ENOMEM;
1320 goto err_module_put;
1321 }
1322
1323 tty_lock(tty);
1324 retval = tty_driver_install_tty(driver, tty);
1325 if (retval < 0)
1326 goto err_free_tty;
1327
1328 if (!tty->port)
1329 tty->port = driver->ports[idx];
1330
1331 WARN_RATELIMIT(!tty->port,
1332 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1333 __func__, tty->driver->name);
1334
1335 retval = tty_ldisc_lock(tty, 5 * HZ);
1336 if (retval)
1337 goto err_release_lock;
1338 tty->port->itty = tty;
1339
1340 /*
1341 * Structures all installed ... call the ldisc open routines.
1342 * If we fail here just call release_tty to clean up. No need
1343 * to decrement the use counts, as release_tty doesn't care.
1344 */
1345 retval = tty_ldisc_setup(tty, tty->link);
1346 if (retval)
1347 goto err_release_tty;
1348 tty_ldisc_unlock(tty);
1349 /* Return the tty locked so that it cannot vanish under the caller */
1350 return tty;
1351
1352err_free_tty:
1353 tty_unlock(tty);
1354 free_tty_struct(tty);
1355err_module_put:
1356 module_put(driver->owner);
1357 return ERR_PTR(retval);
1358
1359 /* call the tty release_tty routine to clean out this slot */
1360err_release_tty:
1361 tty_ldisc_unlock(tty);
1362 tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1363 retval, idx);
1364err_release_lock:
1365 tty_unlock(tty);
1366 release_tty(tty, idx);
1367 return ERR_PTR(retval);
1368}
1369
1370static void tty_free_termios(struct tty_struct *tty)
1371{
1372 struct ktermios *tp;
1373 int idx = tty->index;
1374
1375 /* If the port is going to reset then it has no termios to save */
1376 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1377 return;
1378
1379 /* Stash the termios data */
1380 tp = tty->driver->termios[idx];
1381 if (tp == NULL) {
1382 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1383 if (tp == NULL)
1384 return;
1385 tty->driver->termios[idx] = tp;
1386 }
1387 *tp = tty->termios;
1388}
1389
1390/**
1391 * tty_flush_works - flush all works of a tty/pty pair
1392 * @tty: tty device to flush works for (or either end of a pty pair)
1393 *
1394 * Sync flush all works belonging to @tty (and the 'other' tty).
1395 */
1396static void tty_flush_works(struct tty_struct *tty)
1397{
1398 flush_work(&tty->SAK_work);
1399 flush_work(&tty->hangup_work);
1400 if (tty->link) {
1401 flush_work(&tty->link->SAK_work);
1402 flush_work(&tty->link->hangup_work);
1403 }
1404}
1405
1406/**
1407 * release_one_tty - release tty structure memory
1408 * @kref: kref of tty we are obliterating
1409 *
1410 * Releases memory associated with a tty structure, and clears out the
1411 * driver table slots. This function is called when a device is no longer
1412 * in use. It also gets called when setup of a device fails.
1413 *
1414 * Locking:
1415 * takes the file list lock internally when working on the list
1416 * of ttys that the driver keeps.
1417 *
1418 * This method gets called from a work queue so that the driver private
1419 * cleanup ops can sleep (needed for USB at least)
1420 */
1421static void release_one_tty(struct work_struct *work)
1422{
1423 struct tty_struct *tty =
1424 container_of(work, struct tty_struct, hangup_work);
1425 struct tty_driver *driver = tty->driver;
1426 struct module *owner = driver->owner;
1427
1428 if (tty->ops->cleanup)
1429 tty->ops->cleanup(tty);
1430
1431 tty->magic = 0;
1432 tty_driver_kref_put(driver);
1433 module_put(owner);
1434
1435 spin_lock(&tty->files_lock);
1436 list_del_init(&tty->tty_files);
1437 spin_unlock(&tty->files_lock);
1438
1439 put_pid(tty->pgrp);
1440 put_pid(tty->session);
1441 free_tty_struct(tty);
1442}
1443
1444static void queue_release_one_tty(struct kref *kref)
1445{
1446 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1447
1448 /* The hangup queue is now free so we can reuse it rather than
1449 waste a chunk of memory for each port */
1450 INIT_WORK(&tty->hangup_work, release_one_tty);
1451 schedule_work(&tty->hangup_work);
1452}
1453
1454/**
1455 * tty_kref_put - release a tty kref
1456 * @tty: tty device
1457 *
1458 * Release a reference to a tty device and if need be let the kref
1459 * layer destruct the object for us
1460 */
1461
1462void tty_kref_put(struct tty_struct *tty)
1463{
1464 if (tty)
1465 kref_put(&tty->kref, queue_release_one_tty);
1466}
1467EXPORT_SYMBOL(tty_kref_put);
1468
1469/**
1470 * release_tty - release tty structure memory
1471 *
1472 * Release both @tty and a possible linked partner (think pty pair),
1473 * and decrement the refcount of the backing module.
1474 *
1475 * Locking:
1476 * tty_mutex
1477 * takes the file list lock internally when working on the list
1478 * of ttys that the driver keeps.
1479 *
1480 */
1481static void release_tty(struct tty_struct *tty, int idx)
1482{
1483 /* This should always be true but check for the moment */
1484 WARN_ON(tty->index != idx);
1485 WARN_ON(!mutex_is_locked(&tty_mutex));
1486 if (tty->ops->shutdown)
1487 tty->ops->shutdown(tty);
1488 tty_free_termios(tty);
1489 tty_driver_remove_tty(tty->driver, tty);
1490 tty->port->itty = NULL;
1491 if (tty->link)
1492 tty->link->port->itty = NULL;
1493 tty_buffer_cancel_work(tty->port);
1494 if (tty->link)
1495 tty_buffer_cancel_work(tty->link->port);
1496
1497 tty_kref_put(tty->link);
1498 tty_kref_put(tty);
1499}
1500
1501/**
1502 * tty_release_checks - check a tty before real release
1503 * @tty: tty to check
1504 * @o_tty: link of @tty (if any)
1505 * @idx: index of the tty
1506 *
1507 * Performs some paranoid checking before true release of the @tty.
1508 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1509 */
1510static int tty_release_checks(struct tty_struct *tty, int idx)
1511{
1512#ifdef TTY_PARANOIA_CHECK
1513 if (idx < 0 || idx >= tty->driver->num) {
1514 tty_debug(tty, "bad idx %d\n", idx);
1515 return -1;
1516 }
1517
1518 /* not much to check for devpts */
1519 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1520 return 0;
1521
1522 if (tty != tty->driver->ttys[idx]) {
1523 tty_debug(tty, "bad driver table[%d] = %p\n",
1524 idx, tty->driver->ttys[idx]);
1525 return -1;
1526 }
1527 if (tty->driver->other) {
1528 struct tty_struct *o_tty = tty->link;
1529
1530 if (o_tty != tty->driver->other->ttys[idx]) {
1531 tty_debug(tty, "bad other table[%d] = %p\n",
1532 idx, tty->driver->other->ttys[idx]);
1533 return -1;
1534 }
1535 if (o_tty->link != tty) {
1536 tty_debug(tty, "bad link = %p\n", o_tty->link);
1537 return -1;
1538 }
1539 }
1540#endif
1541 return 0;
1542}
1543
1544/**
1545 * tty_kclose - closes tty opened by tty_kopen
1546 * @tty: tty device
1547 *
1548 * Performs the final steps to release and free a tty device. It is the
1549 * same as tty_release_struct except that it also resets TTY_PORT_KOPENED
1550 * flag on tty->port.
1551 */
1552void tty_kclose(struct tty_struct *tty)
1553{
1554 /*
1555 * Ask the line discipline code to release its structures
1556 */
1557 tty_ldisc_release(tty);
1558
1559 /* Wait for pending work before tty destruction commmences */
1560 tty_flush_works(tty);
1561
1562 tty_debug_hangup(tty, "freeing structure\n");
1563 /*
1564 * The release_tty function takes care of the details of clearing
1565 * the slots and preserving the termios structure. The tty_unlock_pair
1566 * should be safe as we keep a kref while the tty is locked (so the
1567 * unlock never unlocks a freed tty).
1568 */
1569 mutex_lock(&tty_mutex);
1570 tty_port_set_kopened(tty->port, 0);
1571 release_tty(tty, tty->index);
1572 mutex_unlock(&tty_mutex);
1573}
1574EXPORT_SYMBOL_GPL(tty_kclose);
1575
1576/**
1577 * tty_release_struct - release a tty struct
1578 * @tty: tty device
1579 * @idx: index of the tty
1580 *
1581 * Performs the final steps to release and free a tty device. It is
1582 * roughly the reverse of tty_init_dev.
1583 */
1584void tty_release_struct(struct tty_struct *tty, int idx)
1585{
1586 /*
1587 * Ask the line discipline code to release its structures
1588 */
1589 tty_ldisc_release(tty);
1590
1591 /* Wait for pending work before tty destruction commmences */
1592 tty_flush_works(tty);
1593
1594 tty_debug_hangup(tty, "freeing structure\n");
1595 /*
1596 * The release_tty function takes care of the details of clearing
1597 * the slots and preserving the termios structure. The tty_unlock_pair
1598 * should be safe as we keep a kref while the tty is locked (so the
1599 * unlock never unlocks a freed tty).
1600 */
1601 mutex_lock(&tty_mutex);
1602 release_tty(tty, idx);
1603 mutex_unlock(&tty_mutex);
1604}
1605EXPORT_SYMBOL_GPL(tty_release_struct);
1606
1607/**
1608 * tty_release - vfs callback for close
1609 * @inode: inode of tty
1610 * @filp: file pointer for handle to tty
1611 *
1612 * Called the last time each file handle is closed that references
1613 * this tty. There may however be several such references.
1614 *
1615 * Locking:
1616 * Takes bkl. See tty_release_dev
1617 *
1618 * Even releasing the tty structures is a tricky business.. We have
1619 * to be very careful that the structures are all released at the
1620 * same time, as interrupts might otherwise get the wrong pointers.
1621 *
1622 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1623 * lead to double frees or releasing memory still in use.
1624 */
1625
1626int tty_release(struct inode *inode, struct file *filp)
1627{
1628 struct tty_struct *tty = file_tty(filp);
1629 struct tty_struct *o_tty = NULL;
1630 int do_sleep, final;
1631 int idx;
1632 long timeout = 0;
1633 int once = 1;
1634
1635 if (tty_paranoia_check(tty, inode, __func__))
1636 return 0;
1637
1638 tty_lock(tty);
1639 check_tty_count(tty, __func__);
1640
1641 __tty_fasync(-1, filp, 0);
1642
1643 idx = tty->index;
1644 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1645 tty->driver->subtype == PTY_TYPE_MASTER)
1646 o_tty = tty->link;
1647
1648 if (tty_release_checks(tty, idx)) {
1649 tty_unlock(tty);
1650 return 0;
1651 }
1652
1653 tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
1654
1655 if (tty->ops->close)
1656 tty->ops->close(tty, filp);
1657
1658 /* If tty is pty master, lock the slave pty (stable lock order) */
1659 tty_lock_slave(o_tty);
1660
1661 /*
1662 * Sanity check: if tty->count is going to zero, there shouldn't be
1663 * any waiters on tty->read_wait or tty->write_wait. We test the
1664 * wait queues and kick everyone out _before_ actually starting to
1665 * close. This ensures that we won't block while releasing the tty
1666 * structure.
1667 *
1668 * The test for the o_tty closing is necessary, since the master and
1669 * slave sides may close in any order. If the slave side closes out
1670 * first, its count will be one, since the master side holds an open.
1671 * Thus this test wouldn't be triggered at the time the slave closed,
1672 * so we do it now.
1673 */
1674 while (1) {
1675 do_sleep = 0;
1676
1677 if (tty->count <= 1) {
1678 if (waitqueue_active(&tty->read_wait)) {
1679 wake_up_poll(&tty->read_wait, EPOLLIN);
1680 do_sleep++;
1681 }
1682 if (waitqueue_active(&tty->write_wait)) {
1683 wake_up_poll(&tty->write_wait, EPOLLOUT);
1684 do_sleep++;
1685 }
1686 }
1687 if (o_tty && o_tty->count <= 1) {
1688 if (waitqueue_active(&o_tty->read_wait)) {
1689 wake_up_poll(&o_tty->read_wait, EPOLLIN);
1690 do_sleep++;
1691 }
1692 if (waitqueue_active(&o_tty->write_wait)) {
1693 wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1694 do_sleep++;
1695 }
1696 }
1697 if (!do_sleep)
1698 break;
1699
1700 if (once) {
1701 once = 0;
1702 tty_warn(tty, "read/write wait queue active!\n");
1703 }
1704 schedule_timeout_killable(timeout);
1705 if (timeout < 120 * HZ)
1706 timeout = 2 * timeout + 1;
1707 else
1708 timeout = MAX_SCHEDULE_TIMEOUT;
1709 }
1710
1711 if (o_tty) {
1712 if (--o_tty->count < 0) {
1713 tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
1714 o_tty->count = 0;
1715 }
1716 }
1717 if (--tty->count < 0) {
1718 tty_warn(tty, "bad tty->count (%d)\n", tty->count);
1719 tty->count = 0;
1720 }
1721
1722 /*
1723 * We've decremented tty->count, so we need to remove this file
1724 * descriptor off the tty->tty_files list; this serves two
1725 * purposes:
1726 * - check_tty_count sees the correct number of file descriptors
1727 * associated with this tty.
1728 * - do_tty_hangup no longer sees this file descriptor as
1729 * something that needs to be handled for hangups.
1730 */
1731 tty_del_file(filp);
1732
1733 /*
1734 * Perform some housekeeping before deciding whether to return.
1735 *
1736 * If _either_ side is closing, make sure there aren't any
1737 * processes that still think tty or o_tty is their controlling
1738 * tty.
1739 */
1740 if (!tty->count) {
1741 read_lock(&tasklist_lock);
1742 session_clear_tty(tty->session);
1743 if (o_tty)
1744 session_clear_tty(o_tty->session);
1745 read_unlock(&tasklist_lock);
1746 }
1747
1748 /* check whether both sides are closing ... */
1749 final = !tty->count && !(o_tty && o_tty->count);
1750
1751 tty_unlock_slave(o_tty);
1752 tty_unlock(tty);
1753
1754 /* At this point, the tty->count == 0 should ensure a dead tty
1755 cannot be re-opened by a racing opener */
1756
1757 if (!final)
1758 return 0;
1759
1760 tty_debug_hangup(tty, "final close\n");
1761
1762 tty_release_struct(tty, idx);
1763 return 0;
1764}
1765
1766/**
1767 * tty_open_current_tty - get locked tty of current task
1768 * @device: device number
1769 * @filp: file pointer to tty
1770 * @return: locked tty of the current task iff @device is /dev/tty
1771 *
1772 * Performs a re-open of the current task's controlling tty.
1773 *
1774 * We cannot return driver and index like for the other nodes because
1775 * devpts will not work then. It expects inodes to be from devpts FS.
1776 */
1777static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1778{
1779 struct tty_struct *tty;
1780 int retval;
1781
1782 if (device != MKDEV(TTYAUX_MAJOR, 0))
1783 return NULL;
1784
1785 tty = get_current_tty();
1786 if (!tty)
1787 return ERR_PTR(-ENXIO);
1788
1789 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1790 /* noctty = 1; */
1791 tty_lock(tty);
1792 tty_kref_put(tty); /* safe to drop the kref now */
1793
1794 retval = tty_reopen(tty);
1795 if (retval < 0) {
1796 tty_unlock(tty);
1797 tty = ERR_PTR(retval);
1798 }
1799 return tty;
1800}
1801
1802/**
1803 * tty_lookup_driver - lookup a tty driver for a given device file
1804 * @device: device number
1805 * @filp: file pointer to tty
1806 * @index: index for the device in the @return driver
1807 * @return: driver for this inode (with increased refcount)
1808 *
1809 * If @return is not erroneous, the caller is responsible to decrement the
1810 * refcount by tty_driver_kref_put.
1811 *
1812 * Locking: tty_mutex protects get_tty_driver
1813 */
1814static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1815 int *index)
1816{
1817 struct tty_driver *driver;
1818
1819 switch (device) {
1820#ifdef CONFIG_VT
1821 case MKDEV(TTY_MAJOR, 0): {
1822 extern struct tty_driver *console_driver;
1823 driver = tty_driver_kref_get(console_driver);
1824 *index = fg_console;
1825 break;
1826 }
1827#endif
1828 case MKDEV(TTYAUX_MAJOR, 1): {
1829 struct tty_driver *console_driver = console_device(index);
1830 if (console_driver) {
1831 driver = tty_driver_kref_get(console_driver);
1832 if (driver && filp) {
1833 /* Don't let /dev/console block */
1834 filp->f_flags |= O_NONBLOCK;
1835 break;
1836 }
1837 }
1838 return ERR_PTR(-ENODEV);
1839 }
1840 default:
1841 driver = get_tty_driver(device, index);
1842 if (!driver)
1843 return ERR_PTR(-ENODEV);
1844 break;
1845 }
1846 return driver;
1847}
1848
1849/**
1850 * tty_kopen - open a tty device for kernel
1851 * @device: dev_t of device to open
1852 *
1853 * Opens tty exclusively for kernel. Performs the driver lookup,
1854 * makes sure it's not already opened and performs the first-time
1855 * tty initialization.
1856 *
1857 * Returns the locked initialized &tty_struct
1858 *
1859 * Claims the global tty_mutex to serialize:
1860 * - concurrent first-time tty initialization
1861 * - concurrent tty driver removal w/ lookup
1862 * - concurrent tty removal from driver table
1863 */
1864struct tty_struct *tty_kopen(dev_t device)
1865{
1866 struct tty_struct *tty;
1867 struct tty_driver *driver = NULL;
1868 int index = -1;
1869
1870 mutex_lock(&tty_mutex);
1871 driver = tty_lookup_driver(device, NULL, &index);
1872 if (IS_ERR(driver)) {
1873 mutex_unlock(&tty_mutex);
1874 return ERR_CAST(driver);
1875 }
1876
1877 /* check whether we're reopening an existing tty */
1878 tty = tty_driver_lookup_tty(driver, NULL, index);
1879 if (IS_ERR(tty))
1880 goto out;
1881
1882 if (tty) {
1883 /* drop kref from tty_driver_lookup_tty() */
1884 tty_kref_put(tty);
1885 tty = ERR_PTR(-EBUSY);
1886 } else { /* tty_init_dev returns tty with the tty_lock held */
1887 tty = tty_init_dev(driver, index);
1888 if (IS_ERR(tty))
1889 goto out;
1890 tty_port_set_kopened(tty->port, 1);
1891 }
1892out:
1893 mutex_unlock(&tty_mutex);
1894 tty_driver_kref_put(driver);
1895 return tty;
1896}
1897EXPORT_SYMBOL_GPL(tty_kopen);
1898
1899/**
1900 * tty_open_by_driver - open a tty device
1901 * @device: dev_t of device to open
1902 * @inode: inode of device file
1903 * @filp: file pointer to tty
1904 *
1905 * Performs the driver lookup, checks for a reopen, or otherwise
1906 * performs the first-time tty initialization.
1907 *
1908 * Returns the locked initialized or re-opened &tty_struct
1909 *
1910 * Claims the global tty_mutex to serialize:
1911 * - concurrent first-time tty initialization
1912 * - concurrent tty driver removal w/ lookup
1913 * - concurrent tty removal from driver table
1914 */
1915static struct tty_struct *tty_open_by_driver(dev_t device, struct inode *inode,
1916 struct file *filp)
1917{
1918 struct tty_struct *tty;
1919 struct tty_driver *driver = NULL;
1920 int index = -1;
1921 int retval;
1922
1923 mutex_lock(&tty_mutex);
1924 driver = tty_lookup_driver(device, filp, &index);
1925 if (IS_ERR(driver)) {
1926 mutex_unlock(&tty_mutex);
1927 return ERR_CAST(driver);
1928 }
1929
1930 /* check whether we're reopening an existing tty */
1931 tty = tty_driver_lookup_tty(driver, filp, index);
1932 if (IS_ERR(tty)) {
1933 mutex_unlock(&tty_mutex);
1934 goto out;
1935 }
1936
1937 if (tty) {
1938 if (tty_port_kopened(tty->port)) {
1939 tty_kref_put(tty);
1940 mutex_unlock(&tty_mutex);
1941 tty = ERR_PTR(-EBUSY);
1942 goto out;
1943 }
1944 mutex_unlock(&tty_mutex);
1945 retval = tty_lock_interruptible(tty);
1946 tty_kref_put(tty); /* drop kref from tty_driver_lookup_tty() */
1947 if (retval) {
1948 if (retval == -EINTR)
1949 retval = -ERESTARTSYS;
1950 tty = ERR_PTR(retval);
1951 goto out;
1952 }
1953 retval = tty_reopen(tty);
1954 if (retval < 0) {
1955 tty_unlock(tty);
1956 tty = ERR_PTR(retval);
1957 }
1958 } else { /* Returns with the tty_lock held for now */
1959 tty = tty_init_dev(driver, index);
1960 mutex_unlock(&tty_mutex);
1961 }
1962out:
1963 tty_driver_kref_put(driver);
1964 return tty;
1965}
1966
1967/**
1968 * tty_open - open a tty device
1969 * @inode: inode of device file
1970 * @filp: file pointer to tty
1971 *
1972 * tty_open and tty_release keep up the tty count that contains the
1973 * number of opens done on a tty. We cannot use the inode-count, as
1974 * different inodes might point to the same tty.
1975 *
1976 * Open-counting is needed for pty masters, as well as for keeping
1977 * track of serial lines: DTR is dropped when the last close happens.
1978 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1979 *
1980 * The termios state of a pty is reset on first open so that
1981 * settings don't persist across reuse.
1982 *
1983 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1984 * tty->count should protect the rest.
1985 * ->siglock protects ->signal/->sighand
1986 *
1987 * Note: the tty_unlock/lock cases without a ref are only safe due to
1988 * tty_mutex
1989 */
1990
1991static int tty_open(struct inode *inode, struct file *filp)
1992{
1993 struct tty_struct *tty;
1994 int noctty, retval;
1995 dev_t device = inode->i_rdev;
1996 unsigned saved_flags = filp->f_flags;
1997
1998 nonseekable_open(inode, filp);
1999
2000retry_open:
2001 retval = tty_alloc_file(filp);
2002 if (retval)
2003 return -ENOMEM;
2004
2005 tty = tty_open_current_tty(device, filp);
2006 if (!tty)
2007 tty = tty_open_by_driver(device, inode, filp);
2008
2009 if (IS_ERR(tty)) {
2010 tty_free_file(filp);
2011 retval = PTR_ERR(tty);
2012 if (retval != -EAGAIN || signal_pending(current))
2013 return retval;
2014 schedule();
2015 goto retry_open;
2016 }
2017
2018 tty_add_file(tty, filp);
2019
2020 check_tty_count(tty, __func__);
2021 tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2022
2023 if (tty->ops->open)
2024 retval = tty->ops->open(tty, filp);
2025 else
2026 retval = -ENODEV;
2027 filp->f_flags = saved_flags;
2028
2029 if (retval) {
2030 tty_debug_hangup(tty, "open error %d, releasing\n", retval);
2031
2032 tty_unlock(tty); /* need to call tty_release without BTM */
2033 tty_release(inode, filp);
2034 if (retval != -ERESTARTSYS)
2035 return retval;
2036
2037 if (signal_pending(current))
2038 return retval;
2039
2040 schedule();
2041 /*
2042 * Need to reset f_op in case a hangup happened.
2043 */
2044 if (tty_hung_up_p(filp))
2045 filp->f_op = &tty_fops;
2046 goto retry_open;
2047 }
2048 clear_bit(TTY_HUPPED, &tty->flags);
2049
2050 noctty = (filp->f_flags & O_NOCTTY) ||
2051 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2052 device == MKDEV(TTYAUX_MAJOR, 1) ||
2053 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2054 tty->driver->subtype == PTY_TYPE_MASTER);
2055 if (!noctty)
2056 tty_open_proc_set_tty(filp, tty);
2057 tty_unlock(tty);
2058 return 0;
2059}
2060
2061
2062
2063/**
2064 * tty_poll - check tty status
2065 * @filp: file being polled
2066 * @wait: poll wait structures to update
2067 *
2068 * Call the line discipline polling method to obtain the poll
2069 * status of the device.
2070 *
2071 * Locking: locks called line discipline but ldisc poll method
2072 * may be re-entered freely by other callers.
2073 */
2074
2075static __poll_t tty_poll(struct file *filp, poll_table *wait)
2076{
2077 struct tty_struct *tty = file_tty(filp);
2078 struct tty_ldisc *ld;
2079 __poll_t ret = 0;
2080
2081 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2082 return 0;
2083
2084 ld = tty_ldisc_ref_wait(tty);
2085 if (!ld)
2086 return hung_up_tty_poll(filp, wait);
2087 if (ld->ops->poll)
2088 ret = ld->ops->poll(tty, filp, wait);
2089 tty_ldisc_deref(ld);
2090 return ret;
2091}
2092
2093static int __tty_fasync(int fd, struct file *filp, int on)
2094{
2095 struct tty_struct *tty = file_tty(filp);
2096 unsigned long flags;
2097 int retval = 0;
2098
2099 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2100 goto out;
2101
2102 retval = fasync_helper(fd, filp, on, &tty->fasync);
2103 if (retval <= 0)
2104 goto out;
2105
2106 if (on) {
2107 enum pid_type type;
2108 struct pid *pid;
2109
2110 spin_lock_irqsave(&tty->ctrl_lock, flags);
2111 if (tty->pgrp) {
2112 pid = tty->pgrp;
2113 type = PIDTYPE_PGID;
2114 } else {
2115 pid = task_pid(current);
2116 type = PIDTYPE_PID;
2117 }
2118 get_pid(pid);
2119 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2120 __f_setown(filp, pid, type, 0);
2121 put_pid(pid);
2122 retval = 0;
2123 }
2124out:
2125 return retval;
2126}
2127
2128static int tty_fasync(int fd, struct file *filp, int on)
2129{
2130 struct tty_struct *tty = file_tty(filp);
2131 int retval = -ENOTTY;
2132
2133 tty_lock(tty);
2134 if (!tty_hung_up_p(filp))
2135 retval = __tty_fasync(fd, filp, on);
2136 tty_unlock(tty);
2137
2138 return retval;
2139}
2140
2141/**
2142 * tiocsti - fake input character
2143 * @tty: tty to fake input into
2144 * @p: pointer to character
2145 *
2146 * Fake input to a tty device. Does the necessary locking and
2147 * input management.
2148 *
2149 * FIXME: does not honour flow control ??
2150 *
2151 * Locking:
2152 * Called functions take tty_ldiscs_lock
2153 * current->signal->tty check is safe without locks
2154 *
2155 * FIXME: may race normal receive processing
2156 */
2157
2158static int tiocsti(struct tty_struct *tty, char __user *p)
2159{
2160 char ch, mbz = 0;
2161 struct tty_ldisc *ld;
2162
2163 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2164 return -EPERM;
2165 if (get_user(ch, p))
2166 return -EFAULT;
2167 tty_audit_tiocsti(tty, ch);
2168 ld = tty_ldisc_ref_wait(tty);
2169 if (!ld)
2170 return -EIO;
2171 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2172 tty_ldisc_deref(ld);
2173 return 0;
2174}
2175
2176/**
2177 * tiocgwinsz - implement window query ioctl
2178 * @tty; tty
2179 * @arg: user buffer for result
2180 *
2181 * Copies the kernel idea of the window size into the user buffer.
2182 *
2183 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2184 * is consistent.
2185 */
2186
2187static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2188{
2189 int err;
2190
2191 mutex_lock(&tty->winsize_mutex);
2192 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2193 mutex_unlock(&tty->winsize_mutex);
2194
2195 return err ? -EFAULT: 0;
2196}
2197
2198/**
2199 * tty_do_resize - resize event
2200 * @tty: tty being resized
2201 * @rows: rows (character)
2202 * @cols: cols (character)
2203 *
2204 * Update the termios variables and send the necessary signals to
2205 * peform a terminal resize correctly
2206 */
2207
2208int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2209{
2210 struct pid *pgrp;
2211
2212 /* Lock the tty */
2213 mutex_lock(&tty->winsize_mutex);
2214 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2215 goto done;
2216
2217 /* Signal the foreground process group */
2218 pgrp = tty_get_pgrp(tty);
2219 if (pgrp)
2220 kill_pgrp(pgrp, SIGWINCH, 1);
2221 put_pid(pgrp);
2222
2223 tty->winsize = *ws;
2224done:
2225 mutex_unlock(&tty->winsize_mutex);
2226 return 0;
2227}
2228EXPORT_SYMBOL(tty_do_resize);
2229
2230/**
2231 * tiocswinsz - implement window size set ioctl
2232 * @tty; tty side of tty
2233 * @arg: user buffer for result
2234 *
2235 * Copies the user idea of the window size to the kernel. Traditionally
2236 * this is just advisory information but for the Linux console it
2237 * actually has driver level meaning and triggers a VC resize.
2238 *
2239 * Locking:
2240 * Driver dependent. The default do_resize method takes the
2241 * tty termios mutex and ctrl_lock. The console takes its own lock
2242 * then calls into the default method.
2243 */
2244
2245static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2246{
2247 struct winsize tmp_ws;
2248 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2249 return -EFAULT;
2250
2251 if (tty->ops->resize)
2252 return tty->ops->resize(tty, &tmp_ws);
2253 else
2254 return tty_do_resize(tty, &tmp_ws);
2255}
2256
2257/**
2258 * tioccons - allow admin to move logical console
2259 * @file: the file to become console
2260 *
2261 * Allow the administrator to move the redirected console device
2262 *
2263 * Locking: uses redirect_lock to guard the redirect information
2264 */
2265
2266static int tioccons(struct file *file)
2267{
2268 if (!capable(CAP_SYS_ADMIN))
2269 return -EPERM;
2270 if (file->f_op->write == redirected_tty_write) {
2271 struct file *f;
2272 spin_lock(&redirect_lock);
2273 f = redirect;
2274 redirect = NULL;
2275 spin_unlock(&redirect_lock);
2276 if (f)
2277 fput(f);
2278 return 0;
2279 }
2280 spin_lock(&redirect_lock);
2281 if (redirect) {
2282 spin_unlock(&redirect_lock);
2283 return -EBUSY;
2284 }
2285 redirect = get_file(file);
2286 spin_unlock(&redirect_lock);
2287 return 0;
2288}
2289
2290/**
2291 * fionbio - non blocking ioctl
2292 * @file: file to set blocking value
2293 * @p: user parameter
2294 *
2295 * Historical tty interfaces had a blocking control ioctl before
2296 * the generic functionality existed. This piece of history is preserved
2297 * in the expected tty API of posix OS's.
2298 *
2299 * Locking: none, the open file handle ensures it won't go away.
2300 */
2301
2302static int fionbio(struct file *file, int __user *p)
2303{
2304 int nonblock;
2305
2306 if (get_user(nonblock, p))
2307 return -EFAULT;
2308
2309 spin_lock(&file->f_lock);
2310 if (nonblock)
2311 file->f_flags |= O_NONBLOCK;
2312 else
2313 file->f_flags &= ~O_NONBLOCK;
2314 spin_unlock(&file->f_lock);
2315 return 0;
2316}
2317
2318/**
2319 * tiocsetd - set line discipline
2320 * @tty: tty device
2321 * @p: pointer to user data
2322 *
2323 * Set the line discipline according to user request.
2324 *
2325 * Locking: see tty_set_ldisc, this function is just a helper
2326 */
2327
2328static int tiocsetd(struct tty_struct *tty, int __user *p)
2329{
2330 int disc;
2331 int ret;
2332
2333 if (get_user(disc, p))
2334 return -EFAULT;
2335
2336 ret = tty_set_ldisc(tty, disc);
2337
2338 return ret;
2339}
2340
2341/**
2342 * tiocgetd - get line discipline
2343 * @tty: tty device
2344 * @p: pointer to user data
2345 *
2346 * Retrieves the line discipline id directly from the ldisc.
2347 *
2348 * Locking: waits for ldisc reference (in case the line discipline
2349 * is changing or the tty is being hungup)
2350 */
2351
2352static int tiocgetd(struct tty_struct *tty, int __user *p)
2353{
2354 struct tty_ldisc *ld;
2355 int ret;
2356
2357 ld = tty_ldisc_ref_wait(tty);
2358 if (!ld)
2359 return -EIO;
2360 ret = put_user(ld->ops->num, p);
2361 tty_ldisc_deref(ld);
2362 return ret;
2363}
2364
2365/**
2366 * send_break - performed time break
2367 * @tty: device to break on
2368 * @duration: timeout in mS
2369 *
2370 * Perform a timed break on hardware that lacks its own driver level
2371 * timed break functionality.
2372 *
2373 * Locking:
2374 * atomic_write_lock serializes
2375 *
2376 */
2377
2378static int send_break(struct tty_struct *tty, unsigned int duration)
2379{
2380 int retval;
2381
2382 if (tty->ops->break_ctl == NULL)
2383 return 0;
2384
2385 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2386 retval = tty->ops->break_ctl(tty, duration);
2387 else {
2388 /* Do the work ourselves */
2389 if (tty_write_lock(tty, 0) < 0)
2390 return -EINTR;
2391 retval = tty->ops->break_ctl(tty, -1);
2392 if (retval)
2393 goto out;
2394 if (!signal_pending(current))
2395 msleep_interruptible(duration);
2396 retval = tty->ops->break_ctl(tty, 0);
2397out:
2398 tty_write_unlock(tty);
2399 if (signal_pending(current))
2400 retval = -EINTR;
2401 }
2402 return retval;
2403}
2404
2405/**
2406 * tty_tiocmget - get modem status
2407 * @tty: tty device
2408 * @file: user file pointer
2409 * @p: pointer to result
2410 *
2411 * Obtain the modem status bits from the tty driver if the feature
2412 * is supported. Return -EINVAL if it is not available.
2413 *
2414 * Locking: none (up to the driver)
2415 */
2416
2417static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2418{
2419 int retval = -EINVAL;
2420
2421 if (tty->ops->tiocmget) {
2422 retval = tty->ops->tiocmget(tty);
2423
2424 if (retval >= 0)
2425 retval = put_user(retval, p);
2426 }
2427 return retval;
2428}
2429
2430/**
2431 * tty_tiocmset - set modem status
2432 * @tty: tty device
2433 * @cmd: command - clear bits, set bits or set all
2434 * @p: pointer to desired bits
2435 *
2436 * Set the modem status bits from the tty driver if the feature
2437 * is supported. Return -EINVAL if it is not available.
2438 *
2439 * Locking: none (up to the driver)
2440 */
2441
2442static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2443 unsigned __user *p)
2444{
2445 int retval;
2446 unsigned int set, clear, val;
2447
2448 if (tty->ops->tiocmset == NULL)
2449 return -EINVAL;
2450
2451 retval = get_user(val, p);
2452 if (retval)
2453 return retval;
2454 set = clear = 0;
2455 switch (cmd) {
2456 case TIOCMBIS:
2457 set = val;
2458 break;
2459 case TIOCMBIC:
2460 clear = val;
2461 break;
2462 case TIOCMSET:
2463 set = val;
2464 clear = ~val;
2465 break;
2466 }
2467 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2468 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2469 return tty->ops->tiocmset(tty, set, clear);
2470}
2471
2472static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2473{
2474 int retval = -EINVAL;
2475 struct serial_icounter_struct icount;
2476 memset(&icount, 0, sizeof(icount));
2477 if (tty->ops->get_icount)
2478 retval = tty->ops->get_icount(tty, &icount);
2479 if (retval != 0)
2480 return retval;
2481 if (copy_to_user(arg, &icount, sizeof(icount)))
2482 return -EFAULT;
2483 return 0;
2484}
2485
2486static void tty_warn_deprecated_flags(struct serial_struct __user *ss)
2487{
2488 static DEFINE_RATELIMIT_STATE(depr_flags,
2489 DEFAULT_RATELIMIT_INTERVAL,
2490 DEFAULT_RATELIMIT_BURST);
2491 char comm[TASK_COMM_LEN];
2492 int flags;
2493
2494 if (get_user(flags, &ss->flags))
2495 return;
2496
2497 flags &= ASYNC_DEPRECATED;
2498
2499 if (flags && __ratelimit(&depr_flags))
2500 pr_warn("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2501 __func__, get_task_comm(comm, current), flags);
2502}
2503
2504/*
2505 * if pty, return the slave side (real_tty)
2506 * otherwise, return self
2507 */
2508static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2509{
2510 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2511 tty->driver->subtype == PTY_TYPE_MASTER)
2512 tty = tty->link;
2513 return tty;
2514}
2515
2516/*
2517 * Split this up, as gcc can choke on it otherwise..
2518 */
2519long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2520{
2521 struct tty_struct *tty = file_tty(file);
2522 struct tty_struct *real_tty;
2523 void __user *p = (void __user *)arg;
2524 int retval;
2525 struct tty_ldisc *ld;
2526
2527 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2528 return -EINVAL;
2529
2530 real_tty = tty_pair_get_tty(tty);
2531
2532 /*
2533 * Factor out some common prep work
2534 */
2535 switch (cmd) {
2536 case TIOCSETD:
2537 case TIOCSBRK:
2538 case TIOCCBRK:
2539 case TCSBRK:
2540 case TCSBRKP:
2541 retval = tty_check_change(tty);
2542 if (retval)
2543 return retval;
2544 if (cmd != TIOCCBRK) {
2545 tty_wait_until_sent(tty, 0);
2546 if (signal_pending(current))
2547 return -EINTR;
2548 }
2549 break;
2550 }
2551
2552 /*
2553 * Now do the stuff.
2554 */
2555 switch (cmd) {
2556 case TIOCSTI:
2557 return tiocsti(tty, p);
2558 case TIOCGWINSZ:
2559 return tiocgwinsz(real_tty, p);
2560 case TIOCSWINSZ:
2561 return tiocswinsz(real_tty, p);
2562 case TIOCCONS:
2563 return real_tty != tty ? -EINVAL : tioccons(file);
2564 case FIONBIO:
2565 return fionbio(file, p);
2566 case TIOCEXCL:
2567 set_bit(TTY_EXCLUSIVE, &tty->flags);
2568 return 0;
2569 case TIOCNXCL:
2570 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2571 return 0;
2572 case TIOCGEXCL:
2573 {
2574 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2575 return put_user(excl, (int __user *)p);
2576 }
2577 case TIOCGETD:
2578 return tiocgetd(tty, p);
2579 case TIOCSETD:
2580 return tiocsetd(tty, p);
2581 case TIOCVHANGUP:
2582 if (!capable(CAP_SYS_ADMIN))
2583 return -EPERM;
2584 tty_vhangup(tty);
2585 return 0;
2586 case TIOCGDEV:
2587 {
2588 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2589 return put_user(ret, (unsigned int __user *)p);
2590 }
2591 /*
2592 * Break handling
2593 */
2594 case TIOCSBRK: /* Turn break on, unconditionally */
2595 if (tty->ops->break_ctl)
2596 return tty->ops->break_ctl(tty, -1);
2597 return 0;
2598 case TIOCCBRK: /* Turn break off, unconditionally */
2599 if (tty->ops->break_ctl)
2600 return tty->ops->break_ctl(tty, 0);
2601 return 0;
2602 case TCSBRK: /* SVID version: non-zero arg --> no break */
2603 /* non-zero arg means wait for all output data
2604 * to be sent (performed above) but don't send break.
2605 * This is used by the tcdrain() termios function.
2606 */
2607 if (!arg)
2608 return send_break(tty, 250);
2609 return 0;
2610 case TCSBRKP: /* support for POSIX tcsendbreak() */
2611 return send_break(tty, arg ? arg*100 : 250);
2612
2613 case TIOCMGET:
2614 return tty_tiocmget(tty, p);
2615 case TIOCMSET:
2616 case TIOCMBIC:
2617 case TIOCMBIS:
2618 return tty_tiocmset(tty, cmd, p);
2619 case TIOCGICOUNT:
2620 retval = tty_tiocgicount(tty, p);
2621 /* For the moment allow fall through to the old method */
2622 if (retval != -EINVAL)
2623 return retval;
2624 break;
2625 case TCFLSH:
2626 switch (arg) {
2627 case TCIFLUSH:
2628 case TCIOFLUSH:
2629 /* flush tty buffer and allow ldisc to process ioctl */
2630 tty_buffer_flush(tty, NULL);
2631 break;
2632 }
2633 break;
2634 case TIOCSSERIAL:
2635 tty_warn_deprecated_flags(p);
2636 break;
2637 case TIOCGPTPEER:
2638 /* Special because the struct file is needed */
2639 return ptm_open_peer(file, tty, (int)arg);
2640 default:
2641 retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2642 if (retval != -ENOIOCTLCMD)
2643 return retval;
2644 }
2645 if (tty->ops->ioctl) {
2646 retval = tty->ops->ioctl(tty, cmd, arg);
2647 if (retval != -ENOIOCTLCMD)
2648 return retval;
2649 }
2650 ld = tty_ldisc_ref_wait(tty);
2651 if (!ld)
2652 return hung_up_tty_ioctl(file, cmd, arg);
2653 retval = -EINVAL;
2654 if (ld->ops->ioctl) {
2655 retval = ld->ops->ioctl(tty, file, cmd, arg);
2656 if (retval == -ENOIOCTLCMD)
2657 retval = -ENOTTY;
2658 }
2659 tty_ldisc_deref(ld);
2660 return retval;
2661}
2662
2663#ifdef CONFIG_COMPAT
2664static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2665 unsigned long arg)
2666{
2667 struct tty_struct *tty = file_tty(file);
2668 struct tty_ldisc *ld;
2669 int retval = -ENOIOCTLCMD;
2670
2671 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2672 return -EINVAL;
2673
2674 if (tty->ops->compat_ioctl) {
2675 retval = tty->ops->compat_ioctl(tty, cmd, arg);
2676 if (retval != -ENOIOCTLCMD)
2677 return retval;
2678 }
2679
2680 ld = tty_ldisc_ref_wait(tty);
2681 if (!ld)
2682 return hung_up_tty_compat_ioctl(file, cmd, arg);
2683 if (ld->ops->compat_ioctl)
2684 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2685 else
2686 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2687 tty_ldisc_deref(ld);
2688
2689 return retval;
2690}
2691#endif
2692
2693static int this_tty(const void *t, struct file *file, unsigned fd)
2694{
2695 if (likely(file->f_op->read != tty_read))
2696 return 0;
2697 return file_tty(file) != t ? 0 : fd + 1;
2698}
2699
2700/*
2701 * This implements the "Secure Attention Key" --- the idea is to
2702 * prevent trojan horses by killing all processes associated with this
2703 * tty when the user hits the "Secure Attention Key". Required for
2704 * super-paranoid applications --- see the Orange Book for more details.
2705 *
2706 * This code could be nicer; ideally it should send a HUP, wait a few
2707 * seconds, then send a INT, and then a KILL signal. But you then
2708 * have to coordinate with the init process, since all processes associated
2709 * with the current tty must be dead before the new getty is allowed
2710 * to spawn.
2711 *
2712 * Now, if it would be correct ;-/ The current code has a nasty hole -
2713 * it doesn't catch files in flight. We may send the descriptor to ourselves
2714 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2715 *
2716 * Nasty bug: do_SAK is being called in interrupt context. This can
2717 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2718 */
2719void __do_SAK(struct tty_struct *tty)
2720{
2721#ifdef TTY_SOFT_SAK
2722 tty_hangup(tty);
2723#else
2724 struct task_struct *g, *p;
2725 struct pid *session;
2726 int i;
2727
2728 if (!tty)
2729 return;
2730 session = tty->session;
2731
2732 tty_ldisc_flush(tty);
2733
2734 tty_driver_flush_buffer(tty);
2735
2736 read_lock(&tasklist_lock);
2737 /* Kill the entire session */
2738 do_each_pid_task(session, PIDTYPE_SID, p) {
2739 tty_notice(tty, "SAK: killed process %d (%s): by session\n",
2740 task_pid_nr(p), p->comm);
2741 send_sig(SIGKILL, p, 1);
2742 } while_each_pid_task(session, PIDTYPE_SID, p);
2743
2744 /* Now kill any processes that happen to have the tty open */
2745 do_each_thread(g, p) {
2746 if (p->signal->tty == tty) {
2747 tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
2748 task_pid_nr(p), p->comm);
2749 send_sig(SIGKILL, p, 1);
2750 continue;
2751 }
2752 task_lock(p);
2753 i = iterate_fd(p->files, 0, this_tty, tty);
2754 if (i != 0) {
2755 tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
2756 task_pid_nr(p), p->comm, i - 1);
2757 force_sig(SIGKILL, p);
2758 }
2759 task_unlock(p);
2760 } while_each_thread(g, p);
2761 read_unlock(&tasklist_lock);
2762#endif
2763}
2764
2765static void do_SAK_work(struct work_struct *work)
2766{
2767 struct tty_struct *tty =
2768 container_of(work, struct tty_struct, SAK_work);
2769 __do_SAK(tty);
2770}
2771
2772/*
2773 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2774 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2775 * the values which we write to it will be identical to the values which it
2776 * already has. --akpm
2777 */
2778void do_SAK(struct tty_struct *tty)
2779{
2780 if (!tty)
2781 return;
2782 schedule_work(&tty->SAK_work);
2783}
2784
2785EXPORT_SYMBOL(do_SAK);
2786
2787static int dev_match_devt(struct device *dev, const void *data)
2788{
2789 const dev_t *devt = data;
2790 return dev->devt == *devt;
2791}
2792
2793/* Must put_device() after it's unused! */
2794static struct device *tty_get_device(struct tty_struct *tty)
2795{
2796 dev_t devt = tty_devnum(tty);
2797 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2798}
2799
2800
2801/**
2802 * alloc_tty_struct
2803 *
2804 * This subroutine allocates and initializes a tty structure.
2805 *
2806 * Locking: none - tty in question is not exposed at this point
2807 */
2808
2809struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
2810{
2811 struct tty_struct *tty;
2812
2813 tty = kzalloc(sizeof(*tty), GFP_KERNEL);
2814 if (!tty)
2815 return NULL;
2816
2817 kref_init(&tty->kref);
2818 tty->magic = TTY_MAGIC;
2819 if (tty_ldisc_init(tty)) {
2820 kfree(tty);
2821 return NULL;
2822 }
2823 tty->session = NULL;
2824 tty->pgrp = NULL;
2825 mutex_init(&tty->legacy_mutex);
2826 mutex_init(&tty->throttle_mutex);
2827 init_rwsem(&tty->termios_rwsem);
2828 mutex_init(&tty->winsize_mutex);
2829 init_ldsem(&tty->ldisc_sem);
2830 init_waitqueue_head(&tty->write_wait);
2831 init_waitqueue_head(&tty->read_wait);
2832 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2833 mutex_init(&tty->atomic_write_lock);
2834 spin_lock_init(&tty->ctrl_lock);
2835 spin_lock_init(&tty->flow_lock);
2836 spin_lock_init(&tty->files_lock);
2837 INIT_LIST_HEAD(&tty->tty_files);
2838 INIT_WORK(&tty->SAK_work, do_SAK_work);
2839
2840 tty->driver = driver;
2841 tty->ops = driver->ops;
2842 tty->index = idx;
2843 tty_line_name(driver, idx, tty->name);
2844 tty->dev = tty_get_device(tty);
2845
2846 return tty;
2847}
2848
2849/**
2850 * tty_put_char - write one character to a tty
2851 * @tty: tty
2852 * @ch: character
2853 *
2854 * Write one byte to the tty using the provided put_char method
2855 * if present. Returns the number of characters successfully output.
2856 *
2857 * Note: the specific put_char operation in the driver layer may go
2858 * away soon. Don't call it directly, use this method
2859 */
2860
2861int tty_put_char(struct tty_struct *tty, unsigned char ch)
2862{
2863 if (tty->ops->put_char)
2864 return tty->ops->put_char(tty, ch);
2865 return tty->ops->write(tty, &ch, 1);
2866}
2867EXPORT_SYMBOL_GPL(tty_put_char);
2868
2869struct class *tty_class;
2870
2871static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
2872 unsigned int index, unsigned int count)
2873{
2874 int err;
2875
2876 /* init here, since reused cdevs cause crashes */
2877 driver->cdevs[index] = cdev_alloc();
2878 if (!driver->cdevs[index])
2879 return -ENOMEM;
2880 driver->cdevs[index]->ops = &tty_fops;
2881 driver->cdevs[index]->owner = driver->owner;
2882 err = cdev_add(driver->cdevs[index], dev, count);
2883 if (err)
2884 kobject_put(&driver->cdevs[index]->kobj);
2885 return err;
2886}
2887
2888/**
2889 * tty_register_device - register a tty device
2890 * @driver: the tty driver that describes the tty device
2891 * @index: the index in the tty driver for this tty device
2892 * @device: a struct device that is associated with this tty device.
2893 * This field is optional, if there is no known struct device
2894 * for this tty device it can be set to NULL safely.
2895 *
2896 * Returns a pointer to the struct device for this tty device
2897 * (or ERR_PTR(-EFOO) on error).
2898 *
2899 * This call is required to be made to register an individual tty device
2900 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2901 * that bit is not set, this function should not be called by a tty
2902 * driver.
2903 *
2904 * Locking: ??
2905 */
2906
2907struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2908 struct device *device)
2909{
2910 return tty_register_device_attr(driver, index, device, NULL, NULL);
2911}
2912EXPORT_SYMBOL(tty_register_device);
2913
2914static void tty_device_create_release(struct device *dev)
2915{
2916 dev_dbg(dev, "releasing...\n");
2917 kfree(dev);
2918}
2919
2920/**
2921 * tty_register_device_attr - register a tty device
2922 * @driver: the tty driver that describes the tty device
2923 * @index: the index in the tty driver for this tty device
2924 * @device: a struct device that is associated with this tty device.
2925 * This field is optional, if there is no known struct device
2926 * for this tty device it can be set to NULL safely.
2927 * @drvdata: Driver data to be set to device.
2928 * @attr_grp: Attribute group to be set on device.
2929 *
2930 * Returns a pointer to the struct device for this tty device
2931 * (or ERR_PTR(-EFOO) on error).
2932 *
2933 * This call is required to be made to register an individual tty device
2934 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2935 * that bit is not set, this function should not be called by a tty
2936 * driver.
2937 *
2938 * Locking: ??
2939 */
2940struct device *tty_register_device_attr(struct tty_driver *driver,
2941 unsigned index, struct device *device,
2942 void *drvdata,
2943 const struct attribute_group **attr_grp)
2944{
2945 char name[64];
2946 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
2947 struct ktermios *tp;
2948 struct device *dev;
2949 int retval;
2950
2951 if (index >= driver->num) {
2952 pr_err("%s: Attempt to register invalid tty line number (%d)\n",
2953 driver->name, index);
2954 return ERR_PTR(-EINVAL);
2955 }
2956
2957 if (driver->type == TTY_DRIVER_TYPE_PTY)
2958 pty_line_name(driver, index, name);
2959 else
2960 tty_line_name(driver, index, name);
2961
2962 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2963 if (!dev)
2964 return ERR_PTR(-ENOMEM);
2965
2966 dev->devt = devt;
2967 dev->class = tty_class;
2968 dev->parent = device;
2969 dev->release = tty_device_create_release;
2970 dev_set_name(dev, "%s", name);
2971 dev->groups = attr_grp;
2972 dev_set_drvdata(dev, drvdata);
2973
2974 dev_set_uevent_suppress(dev, 1);
2975
2976 retval = device_register(dev);
2977 if (retval)
2978 goto err_put;
2979
2980 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
2981 /*
2982 * Free any saved termios data so that the termios state is
2983 * reset when reusing a minor number.
2984 */
2985 tp = driver->termios[index];
2986 if (tp) {
2987 driver->termios[index] = NULL;
2988 kfree(tp);
2989 }
2990
2991 retval = tty_cdev_add(driver, devt, index, 1);
2992 if (retval)
2993 goto err_del;
2994 }
2995
2996 dev_set_uevent_suppress(dev, 0);
2997 kobject_uevent(&dev->kobj, KOBJ_ADD);
2998
2999 return dev;
3000
3001err_del:
3002 device_del(dev);
3003err_put:
3004 put_device(dev);
3005
3006 return ERR_PTR(retval);
3007}
3008EXPORT_SYMBOL_GPL(tty_register_device_attr);
3009
3010/**
3011 * tty_unregister_device - unregister a tty device
3012 * @driver: the tty driver that describes the tty device
3013 * @index: the index in the tty driver for this tty device
3014 *
3015 * If a tty device is registered with a call to tty_register_device() then
3016 * this function must be called when the tty device is gone.
3017 *
3018 * Locking: ??
3019 */
3020
3021void tty_unregister_device(struct tty_driver *driver, unsigned index)
3022{
3023 device_destroy(tty_class,
3024 MKDEV(driver->major, driver->minor_start) + index);
3025 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3026 cdev_del(driver->cdevs[index]);
3027 driver->cdevs[index] = NULL;
3028 }
3029}
3030EXPORT_SYMBOL(tty_unregister_device);
3031
3032/**
3033 * __tty_alloc_driver -- allocate tty driver
3034 * @lines: count of lines this driver can handle at most
3035 * @owner: module which is responsible for this driver
3036 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3037 *
3038 * This should not be called directly, some of the provided macros should be
3039 * used instead. Use IS_ERR and friends on @retval.
3040 */
3041struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3042 unsigned long flags)
3043{
3044 struct tty_driver *driver;
3045 unsigned int cdevs = 1;
3046 int err;
3047
3048 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3049 return ERR_PTR(-EINVAL);
3050
3051 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3052 if (!driver)
3053 return ERR_PTR(-ENOMEM);
3054
3055 kref_init(&driver->kref);
3056 driver->magic = TTY_DRIVER_MAGIC;
3057 driver->num = lines;
3058 driver->owner = owner;
3059 driver->flags = flags;
3060
3061 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3062 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3063 GFP_KERNEL);
3064 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3065 GFP_KERNEL);
3066 if (!driver->ttys || !driver->termios) {
3067 err = -ENOMEM;
3068 goto err_free_all;
3069 }
3070 }
3071
3072 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3073 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3074 GFP_KERNEL);
3075 if (!driver->ports) {
3076 err = -ENOMEM;
3077 goto err_free_all;
3078 }
3079 cdevs = lines;
3080 }
3081
3082 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3083 if (!driver->cdevs) {
3084 err = -ENOMEM;
3085 goto err_free_all;
3086 }
3087
3088 return driver;
3089err_free_all:
3090 kfree(driver->ports);
3091 kfree(driver->ttys);
3092 kfree(driver->termios);
3093 kfree(driver->cdevs);
3094 kfree(driver);
3095 return ERR_PTR(err);
3096}
3097EXPORT_SYMBOL(__tty_alloc_driver);
3098
3099static void destruct_tty_driver(struct kref *kref)
3100{
3101 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3102 int i;
3103 struct ktermios *tp;
3104
3105 if (driver->flags & TTY_DRIVER_INSTALLED) {
3106 for (i = 0; i < driver->num; i++) {
3107 tp = driver->termios[i];
3108 if (tp) {
3109 driver->termios[i] = NULL;
3110 kfree(tp);
3111 }
3112 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3113 tty_unregister_device(driver, i);
3114 }
3115 proc_tty_unregister_driver(driver);
3116 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3117 cdev_del(driver->cdevs[0]);
3118 }
3119 kfree(driver->cdevs);
3120 kfree(driver->ports);
3121 kfree(driver->termios);
3122 kfree(driver->ttys);
3123 kfree(driver);
3124}
3125
3126void tty_driver_kref_put(struct tty_driver *driver)
3127{
3128 kref_put(&driver->kref, destruct_tty_driver);
3129}
3130EXPORT_SYMBOL(tty_driver_kref_put);
3131
3132void tty_set_operations(struct tty_driver *driver,
3133 const struct tty_operations *op)
3134{
3135 driver->ops = op;
3136};
3137EXPORT_SYMBOL(tty_set_operations);
3138
3139void put_tty_driver(struct tty_driver *d)
3140{
3141 tty_driver_kref_put(d);
3142}
3143EXPORT_SYMBOL(put_tty_driver);
3144
3145/*
3146 * Called by a tty driver to register itself.
3147 */
3148int tty_register_driver(struct tty_driver *driver)
3149{
3150 int error;
3151 int i;
3152 dev_t dev;
3153 struct device *d;
3154
3155 if (!driver->major) {
3156 error = alloc_chrdev_region(&dev, driver->minor_start,
3157 driver->num, driver->name);
3158 if (!error) {
3159 driver->major = MAJOR(dev);
3160 driver->minor_start = MINOR(dev);
3161 }
3162 } else {
3163 dev = MKDEV(driver->major, driver->minor_start);
3164 error = register_chrdev_region(dev, driver->num, driver->name);
3165 }
3166 if (error < 0)
3167 goto err;
3168
3169 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3170 error = tty_cdev_add(driver, dev, 0, driver->num);
3171 if (error)
3172 goto err_unreg_char;
3173 }
3174
3175 mutex_lock(&tty_mutex);
3176 list_add(&driver->tty_drivers, &tty_drivers);
3177 mutex_unlock(&tty_mutex);
3178
3179 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3180 for (i = 0; i < driver->num; i++) {
3181 d = tty_register_device(driver, i, NULL);
3182 if (IS_ERR(d)) {
3183 error = PTR_ERR(d);
3184 goto err_unreg_devs;
3185 }
3186 }
3187 }
3188 proc_tty_register_driver(driver);
3189 driver->flags |= TTY_DRIVER_INSTALLED;
3190 return 0;
3191
3192err_unreg_devs:
3193 for (i--; i >= 0; i--)
3194 tty_unregister_device(driver, i);
3195
3196 mutex_lock(&tty_mutex);
3197 list_del(&driver->tty_drivers);
3198 mutex_unlock(&tty_mutex);
3199
3200err_unreg_char:
3201 unregister_chrdev_region(dev, driver->num);
3202err:
3203 return error;
3204}
3205EXPORT_SYMBOL(tty_register_driver);
3206
3207/*
3208 * Called by a tty driver to unregister itself.
3209 */
3210int tty_unregister_driver(struct tty_driver *driver)
3211{
3212#if 0
3213 /* FIXME */
3214 if (driver->refcount)
3215 return -EBUSY;
3216#endif
3217 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3218 driver->num);
3219 mutex_lock(&tty_mutex);
3220 list_del(&driver->tty_drivers);
3221 mutex_unlock(&tty_mutex);
3222 return 0;
3223}
3224
3225EXPORT_SYMBOL(tty_unregister_driver);
3226
3227dev_t tty_devnum(struct tty_struct *tty)
3228{
3229 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3230}
3231EXPORT_SYMBOL(tty_devnum);
3232
3233void tty_default_fops(struct file_operations *fops)
3234{
3235 *fops = tty_fops;
3236}
3237
3238static char *tty_devnode(struct device *dev, umode_t *mode)
3239{
3240 if (!mode)
3241 return NULL;
3242 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3243 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3244 *mode = 0666;
3245 return NULL;
3246}
3247
3248static int __init tty_class_init(void)
3249{
3250 tty_class = class_create(THIS_MODULE, "tty");
3251 if (IS_ERR(tty_class))
3252 return PTR_ERR(tty_class);
3253 tty_class->devnode = tty_devnode;
3254 return 0;
3255}
3256
3257postcore_initcall(tty_class_init);
3258
3259/* 3/2004 jmc: why do these devices exist? */
3260static struct cdev tty_cdev, console_cdev;
3261
3262static ssize_t show_cons_active(struct device *dev,
3263 struct device_attribute *attr, char *buf)
3264{
3265 struct console *cs[16];
3266 int i = 0;
3267 struct console *c;
3268 ssize_t count = 0;
3269
3270 console_lock();
3271 for_each_console(c) {
3272 if (!c->device)
3273 continue;
3274 if (!c->write)
3275 continue;
3276 if ((c->flags & CON_ENABLED) == 0)
3277 continue;
3278 cs[i++] = c;
3279 if (i >= ARRAY_SIZE(cs))
3280 break;
3281 }
3282 while (i--) {
3283 int index = cs[i]->index;
3284 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3285
3286 /* don't resolve tty0 as some programs depend on it */
3287 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3288 count += tty_line_name(drv, index, buf + count);
3289 else
3290 count += sprintf(buf + count, "%s%d",
3291 cs[i]->name, cs[i]->index);
3292
3293 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3294 }
3295 console_unlock();
3296
3297 return count;
3298}
3299static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3300
3301static struct attribute *cons_dev_attrs[] = {
3302 &dev_attr_active.attr,
3303 NULL
3304};
3305
3306ATTRIBUTE_GROUPS(cons_dev);
3307
3308static struct device *consdev;
3309
3310void console_sysfs_notify(void)
3311{
3312 if (consdev)
3313 sysfs_notify(&consdev->kobj, NULL, "active");
3314}
3315
3316/*
3317 * Ok, now we can initialize the rest of the tty devices and can count
3318 * on memory allocations, interrupts etc..
3319 */
3320int __init tty_init(void)
3321{
3322 cdev_init(&tty_cdev, &tty_fops);
3323 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3324 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3325 panic("Couldn't register /dev/tty driver\n");
3326 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3327
3328 cdev_init(&console_cdev, &console_fops);
3329 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3330 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3331 panic("Couldn't register /dev/console driver\n");
3332 consdev = device_create_with_groups(tty_class, NULL,
3333 MKDEV(TTYAUX_MAJOR, 1), NULL,
3334 cons_dev_groups, "console");
3335 if (IS_ERR(consdev))
3336 consdev = NULL;
3337
3338#ifdef CONFIG_VT
3339 vty_init(&console_fops);
3340#endif
3341 return 0;
3342}
3343