Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  Copyright (C) 1991, 1992  Linus Torvalds
   4 */
   5
   6/*
   7 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   8 * or rs-channels. It also implements echoing, cooked mode etc.
   9 *
  10 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  11 *
  12 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  13 * tty_struct and tty_queue structures.  Previously there was an array
  14 * of 256 tty_struct's which was statically allocated, and the
  15 * tty_queue structures were allocated at boot time.  Both are now
  16 * dynamically allocated only when the tty is open.
  17 *
  18 * Also restructured routines so that there is more of a separation
  19 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  20 * the low-level tty routines (serial.c, pty.c, console.c).  This
  21 * makes for cleaner and more compact code.  -TYT, 9/17/92
  22 *
  23 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  24 * which can be dynamically activated and de-activated by the line
  25 * discipline handling modules (like SLIP).
  26 *
  27 * NOTE: pay no attention to the line discipline code (yet); its
  28 * interface is still subject to change in this version...
  29 * -- TYT, 1/31/92
  30 *
  31 * Added functionality to the OPOST tty handling.  No delays, but all
  32 * other bits should be there.
  33 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  34 *
  35 * Rewrote canonical mode and added more termios flags.
  36 *	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  37 *
  38 * Reorganized FASYNC support so mouse code can share it.
  39 *	-- ctm@ardi.com, 9Sep95
  40 *
  41 * New TIOCLINUX variants added.
  42 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  43 *
  44 * Restrict vt switching via ioctl()
  45 *      -- grif@cs.ucr.edu, 5-Dec-95
  46 *
  47 * Move console and virtual terminal code to more appropriate files,
  48 * implement CONFIG_VT and generalize console device interface.
  49 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  50 *
  51 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  52 *	-- Bill Hawes <whawes@star.net>, June 97
  53 *
  54 * Added devfs support.
  55 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  56 *
  57 * Added support for a Unix98-style ptmx device.
  58 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  59 *
  60 * Reduced memory usage for older ARM systems
  61 *      -- Russell King <rmk@arm.linux.org.uk>
  62 *
  63 * Move do_SAK() into process context.  Less stack use in devfs functions.
  64 * alloc_tty_struct() always uses kmalloc()
  65 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  66 */
  67
  68#include <linux/types.h>
  69#include <linux/major.h>
  70#include <linux/errno.h>
  71#include <linux/signal.h>
  72#include <linux/fcntl.h>
  73#include <linux/sched/signal.h>
  74#include <linux/sched/task.h>
  75#include <linux/interrupt.h>
  76#include <linux/tty.h>
  77#include <linux/tty_driver.h>
  78#include <linux/tty_flip.h>
  79#include <linux/devpts_fs.h>
  80#include <linux/file.h>
  81#include <linux/fdtable.h>
  82#include <linux/console.h>
  83#include <linux/timer.h>
  84#include <linux/ctype.h>
  85#include <linux/kd.h>
  86#include <linux/mm.h>
  87#include <linux/string.h>
  88#include <linux/slab.h>
  89#include <linux/poll.h>
  90#include <linux/ppp-ioctl.h>
  91#include <linux/proc_fs.h>
  92#include <linux/init.h>
  93#include <linux/module.h>
  94#include <linux/device.h>
  95#include <linux/wait.h>
  96#include <linux/bitops.h>
  97#include <linux/delay.h>
  98#include <linux/seq_file.h>
  99#include <linux/serial.h>
 100#include <linux/ratelimit.h>
 101#include <linux/compat.h>
 102#include <linux/uaccess.h>
 103#include <linux/termios_internal.h>
 104
 105#include <linux/kbd_kern.h>
 106#include <linux/vt_kern.h>
 107#include <linux/selection.h>
 108
 109#include <linux/kmod.h>
 110#include <linux/nsproxy.h>
 111#include "tty.h"
 112
 113#undef TTY_DEBUG_HANGUP
 114#ifdef TTY_DEBUG_HANGUP
 115# define tty_debug_hangup(tty, f, args...)	tty_debug(tty, f, ##args)
 116#else
 117# define tty_debug_hangup(tty, f, args...)	do { } while (0)
 118#endif
 119
 120#define TTY_PARANOIA_CHECK 1
 121#define CHECK_TTY_COUNT 1
 122
 123struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 124	.c_iflag = ICRNL | IXON,
 125	.c_oflag = OPOST | ONLCR,
 126	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 127	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 128		   ECHOCTL | ECHOKE | IEXTEN,
 129	.c_cc = INIT_C_CC,
 130	.c_ispeed = 38400,
 131	.c_ospeed = 38400,
 132	/* .c_line = N_TTY, */
 133};
 
 134EXPORT_SYMBOL(tty_std_termios);
 135
 136/* This list gets poked at by procfs and various bits of boot up code. This
 137 * could do with some rationalisation such as pulling the tty proc function
 138 * into this file.
 139 */
 140
 141LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 142
 143/* Mutex to protect creating and releasing a tty */
 
 144DEFINE_MUTEX(tty_mutex);
 
 145
 146static ssize_t tty_read(struct kiocb *, struct iov_iter *);
 147static ssize_t tty_write(struct kiocb *, struct iov_iter *);
 148static __poll_t tty_poll(struct file *, poll_table *);
 
 
 
 
 
 149static int tty_open(struct inode *, struct file *);
 
 150#ifdef CONFIG_COMPAT
 151static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 152				unsigned long arg);
 153#else
 154#define tty_compat_ioctl NULL
 155#endif
 156static int __tty_fasync(int fd, struct file *filp, int on);
 157static int tty_fasync(int fd, struct file *filp, int on);
 158static void release_tty(struct tty_struct *tty, int idx);
 
 
 159
 160/**
 161 * free_tty_struct	-	free a disused tty
 162 * @tty: tty struct to free
 163 *
 164 * Free the write buffers, tty queue and tty memory itself.
 
 165 *
 166 * Locking: none. Must be called after tty is definitely unused
 167 */
 168static void free_tty_struct(struct tty_struct *tty)
 
 169{
 170	tty_ldisc_deinit(tty);
 171	put_device(tty->dev);
 172	kvfree(tty->write_buf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173	kfree(tty);
 174}
 175
 176static inline struct tty_struct *file_tty(struct file *file)
 177{
 178	return ((struct tty_file_private *)file->private_data)->tty;
 179}
 180
 181int tty_alloc_file(struct file *file)
 182{
 183	struct tty_file_private *priv;
 184
 185	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 186	if (!priv)
 187		return -ENOMEM;
 188
 189	file->private_data = priv;
 190
 191	return 0;
 192}
 193
 194/* Associate a new file with the tty structure */
 195void tty_add_file(struct tty_struct *tty, struct file *file)
 196{
 197	struct tty_file_private *priv = file->private_data;
 198
 199	priv->tty = tty;
 200	priv->file = file;
 201
 202	spin_lock(&tty->files_lock);
 203	list_add(&priv->list, &tty->tty_files);
 204	spin_unlock(&tty->files_lock);
 205}
 206
 207/**
 208 * tty_free_file - free file->private_data
 209 * @file: to free private_data of
 210 *
 211 * This shall be used only for fail path handling when tty_add_file was not
 212 * called yet.
 213 */
 214void tty_free_file(struct file *file)
 215{
 216	struct tty_file_private *priv = file->private_data;
 217
 218	file->private_data = NULL;
 219	kfree(priv);
 220}
 221
 222/* Delete file from its tty */
 223static void tty_del_file(struct file *file)
 224{
 225	struct tty_file_private *priv = file->private_data;
 226	struct tty_struct *tty = priv->tty;
 227
 228	spin_lock(&tty->files_lock);
 229	list_del(&priv->list);
 230	spin_unlock(&tty->files_lock);
 231	tty_free_file(file);
 232}
 233
 
 
 
 234/**
 235 * tty_name	-	return tty naming
 236 * @tty: tty structure
 
 237 *
 238 * Convert a tty structure into a name. The name reflects the kernel naming
 239 * policy and if udev is in use may not reflect user space
 240 *
 241 * Locking: none
 242 */
 243const char *tty_name(const struct tty_struct *tty)
 
 244{
 245	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 246		return "NULL tty";
 247	return tty->name;
 
 
 248}
 249EXPORT_SYMBOL(tty_name);
 250
 251const char *tty_driver_name(const struct tty_struct *tty)
 252{
 253	if (!tty || !tty->driver)
 254		return "";
 255	return tty->driver->name;
 256}
 257
 258static int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 259			      const char *routine)
 260{
 261#ifdef TTY_PARANOIA_CHECK
 262	if (!tty) {
 263		pr_warn("(%d:%d): %s: NULL tty\n",
 
 
 
 
 
 
 
 264			imajor(inode), iminor(inode), routine);
 265		return 1;
 266	}
 267#endif
 268	return 0;
 269}
 270
 271/* Caller must hold tty_lock */
 272static int check_tty_count(struct tty_struct *tty, const char *routine)
 273{
 274#ifdef CHECK_TTY_COUNT
 275	struct list_head *p;
 276	int count = 0, kopen_count = 0;
 277
 278	spin_lock(&tty->files_lock);
 279	list_for_each(p, &tty->tty_files) {
 280		count++;
 281	}
 282	spin_unlock(&tty->files_lock);
 283	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 284	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 285	    tty->link && tty->link->count)
 286		count++;
 287	if (tty_port_kopened(tty->port))
 288		kopen_count++;
 289	if (tty->count != (count + kopen_count)) {
 290		tty_warn(tty, "%s: tty->count(%d) != (#fd's(%d) + #kopen's(%d))\n",
 291			 routine, tty->count, count, kopen_count);
 292		return (count + kopen_count);
 293	}
 294#endif
 295	return 0;
 296}
 297
 298/**
 299 * get_tty_driver		-	find device of a tty
 300 * @device: device identifier
 301 * @index: returns the index of the tty
 302 *
 303 * This routine returns a tty driver structure, given a device number and also
 304 * passes back the index number.
 305 *
 306 * Locking: caller must hold tty_mutex
 307 */
 
 308static struct tty_driver *get_tty_driver(dev_t device, int *index)
 309{
 310	struct tty_driver *p;
 311
 312	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 313		dev_t base = MKDEV(p->major, p->minor_start);
 314
 315		if (device < base || device >= base + p->num)
 316			continue;
 317		*index = device - base;
 318		return tty_driver_kref_get(p);
 319	}
 320	return NULL;
 321}
 322
 323/**
 324 * tty_dev_name_to_number	-	return dev_t for device name
 325 * @name: user space name of device under /dev
 326 * @number: pointer to dev_t that this function will populate
 327 *
 328 * This function converts device names like ttyS0 or ttyUSB1 into dev_t like
 329 * (4, 64) or (188, 1). If no corresponding driver is registered then the
 330 * function returns -%ENODEV.
 331 *
 332 * Locking: this acquires tty_mutex to protect the tty_drivers list from
 333 *	being modified while we are traversing it, and makes sure to
 334 *	release it before exiting.
 335 */
 336int tty_dev_name_to_number(const char *name, dev_t *number)
 337{
 338	struct tty_driver *p;
 339	int ret;
 340	int index, prefix_length = 0;
 341	const char *str;
 342
 343	for (str = name; *str && !isdigit(*str); str++)
 344		;
 345
 346	if (!*str)
 347		return -EINVAL;
 348
 349	ret = kstrtoint(str, 10, &index);
 350	if (ret)
 351		return ret;
 352
 353	prefix_length = str - name;
 354	mutex_lock(&tty_mutex);
 355
 356	list_for_each_entry(p, &tty_drivers, tty_drivers)
 357		if (prefix_length == strlen(p->name) && strncmp(name,
 358					p->name, prefix_length) == 0) {
 359			if (index < p->num) {
 360				*number = MKDEV(p->major, p->minor_start + index);
 361				goto out;
 362			}
 363		}
 364
 365	/* if here then driver wasn't found */
 366	ret = -ENODEV;
 367out:
 368	mutex_unlock(&tty_mutex);
 369	return ret;
 370}
 371EXPORT_SYMBOL_GPL(tty_dev_name_to_number);
 372
 373#ifdef CONFIG_CONSOLE_POLL
 374
 375/**
 376 * tty_find_polling_driver	-	find device of a polled tty
 377 * @name: name string to match
 378 * @line: pointer to resulting tty line nr
 379 *
 380 * This routine returns a tty driver structure, given a name and the condition
 381 * that the tty driver is capable of polled operation.
 
 382 */
 383struct tty_driver *tty_find_polling_driver(char *name, int *line)
 384{
 385	struct tty_driver *p, *res = NULL;
 386	int tty_line = 0;
 387	int len;
 388	char *str, *stp;
 389
 390	for (str = name; *str; str++)
 391		if ((*str >= '0' && *str <= '9') || *str == ',')
 392			break;
 393	if (!*str)
 394		return NULL;
 395
 396	len = str - name;
 397	tty_line = simple_strtoul(str, &str, 10);
 398
 399	mutex_lock(&tty_mutex);
 400	/* Search through the tty devices to look for a match */
 401	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 402		if (!len || strncmp(name, p->name, len) != 0)
 403			continue;
 404		stp = str;
 405		if (*stp == ',')
 406			stp++;
 407		if (*stp == '\0')
 408			stp = NULL;
 409
 410		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 411		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 412			res = tty_driver_kref_get(p);
 413			*line = tty_line;
 414			break;
 415		}
 416	}
 417	mutex_unlock(&tty_mutex);
 418
 419	return res;
 420}
 421EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 422#endif
 423
 424static ssize_t hung_up_tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 425{
 426	return 0;
 427}
 428
 429static ssize_t hung_up_tty_write(struct kiocb *iocb, struct iov_iter *from)
 
 430{
 431	return -EIO;
 432}
 433
 434/* No kernel lock held - none needed ;) */
 435static __poll_t hung_up_tty_poll(struct file *filp, poll_table *wait)
 436{
 437	return EPOLLIN | EPOLLOUT | EPOLLERR | EPOLLHUP | EPOLLRDNORM | EPOLLWRNORM;
 438}
 439
 440static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 441		unsigned long arg)
 442{
 443	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 444}
 445
 446static long hung_up_tty_compat_ioctl(struct file *file,
 447				     unsigned int cmd, unsigned long arg)
 448{
 449	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 450}
 451
 452static int hung_up_tty_fasync(int fd, struct file *file, int on)
 453{
 454	return -ENOTTY;
 455}
 456
 457static void tty_show_fdinfo(struct seq_file *m, struct file *file)
 458{
 459	struct tty_struct *tty = file_tty(file);
 460
 461	if (tty && tty->ops && tty->ops->show_fdinfo)
 462		tty->ops->show_fdinfo(tty, m);
 463}
 464
 465static const struct file_operations tty_fops = {
 466	.llseek		= no_llseek,
 467	.read_iter	= tty_read,
 468	.write_iter	= tty_write,
 469	.splice_read	= generic_file_splice_read,
 470	.splice_write	= iter_file_splice_write,
 471	.poll		= tty_poll,
 472	.unlocked_ioctl	= tty_ioctl,
 473	.compat_ioctl	= tty_compat_ioctl,
 474	.open		= tty_open,
 475	.release	= tty_release,
 476	.fasync		= tty_fasync,
 477	.show_fdinfo	= tty_show_fdinfo,
 478};
 479
 480static const struct file_operations console_fops = {
 481	.llseek		= no_llseek,
 482	.read_iter	= tty_read,
 483	.write_iter	= redirected_tty_write,
 484	.splice_read	= generic_file_splice_read,
 485	.splice_write	= iter_file_splice_write,
 486	.poll		= tty_poll,
 487	.unlocked_ioctl	= tty_ioctl,
 488	.compat_ioctl	= tty_compat_ioctl,
 489	.open		= tty_open,
 490	.release	= tty_release,
 491	.fasync		= tty_fasync,
 492};
 493
 494static const struct file_operations hung_up_tty_fops = {
 495	.llseek		= no_llseek,
 496	.read_iter	= hung_up_tty_read,
 497	.write_iter	= hung_up_tty_write,
 498	.poll		= hung_up_tty_poll,
 499	.unlocked_ioctl	= hung_up_tty_ioctl,
 500	.compat_ioctl	= hung_up_tty_compat_ioctl,
 501	.release	= tty_release,
 502	.fasync		= hung_up_tty_fasync,
 503};
 504
 505static DEFINE_SPINLOCK(redirect_lock);
 506static struct file *redirect;
 507
 508/**
 509 * tty_wakeup	-	request more data
 510 * @tty: terminal
 511 *
 512 * Internal and external helper for wakeups of tty. This function informs the
 513 * line discipline if present that the driver is ready to receive more output
 514 * data.
 515 */
 
 516void tty_wakeup(struct tty_struct *tty)
 517{
 518	struct tty_ldisc *ld;
 519
 520	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 521		ld = tty_ldisc_ref(tty);
 522		if (ld) {
 523			if (ld->ops->write_wakeup)
 524				ld->ops->write_wakeup(tty);
 525			tty_ldisc_deref(ld);
 526		}
 527	}
 528	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 529}
 530EXPORT_SYMBOL_GPL(tty_wakeup);
 531
 532/**
 533 * tty_release_redirect	-	Release a redirect on a pty if present
 534 * @tty: tty device
 535 *
 536 * This is available to the pty code so if the master closes, if the slave is a
 537 * redirect it can release the redirect.
 538 */
 539static struct file *tty_release_redirect(struct tty_struct *tty)
 540{
 541	struct file *f = NULL;
 542
 543	spin_lock(&redirect_lock);
 544	if (redirect && file_tty(redirect) == tty) {
 545		f = redirect;
 546		redirect = NULL;
 547	}
 548	spin_unlock(&redirect_lock);
 549
 550	return f;
 551}
 552
 553/**
 554 * __tty_hangup		-	actual handler for hangup events
 555 * @tty: tty device
 556 * @exit_session: if non-zero, signal all foreground group processes
 557 *
 558 * This can be called by a "kworker" kernel thread. That is process synchronous
 559 * but doesn't hold any locks, so we need to make sure we have the appropriate
 560 * locks for what we're doing.
 561 *
 562 * The hangup event clears any pending redirections onto the hung up device. It
 563 * ensures future writes will error and it does the needed line discipline
 564 * hangup and signal delivery. The tty object itself remains intact.
 565 *
 566 * Locking:
 567 *  * BTM
 568 *
 569 *   * redirect lock for undoing redirection
 570 *   * file list lock for manipulating list of ttys
 571 *   * tty_ldiscs_lock from called functions
 572 *   * termios_rwsem resetting termios data
 573 *   * tasklist_lock to walk task list for hangup event
 574 *
 575 *    * ->siglock to protect ->signal/->sighand
 576 *
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 577 */
 578static void __tty_hangup(struct tty_struct *tty, int exit_session)
 579{
 580	struct file *cons_filp = NULL;
 581	struct file *filp, *f;
 
 582	struct tty_file_private *priv;
 583	int    closecount = 0, n;
 584	int refs;
 
 585
 586	if (!tty)
 587		return;
 588
 589	f = tty_release_redirect(tty);
 590
 591	tty_lock(tty);
 592
 593	if (test_bit(TTY_HUPPED, &tty->flags)) {
 594		tty_unlock(tty);
 595		return;
 596	}
 
 597
 598	/*
 599	 * Some console devices aren't actually hung up for technical and
 600	 * historical reasons, which can lead to indefinite interruptible
 601	 * sleep in n_tty_read().  The following explicitly tells
 602	 * n_tty_read() to abort readers.
 603	 */
 604	set_bit(TTY_HUPPING, &tty->flags);
 605
 606	/* inuse_filps is protected by the single tty lock,
 607	 * this really needs to change if we want to flush the
 608	 * workqueue with the lock held.
 609	 */
 610	check_tty_count(tty, "tty_hangup");
 611
 612	spin_lock(&tty->files_lock);
 613	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 614	list_for_each_entry(priv, &tty->tty_files, list) {
 615		filp = priv->file;
 616		if (filp->f_op->write_iter == redirected_tty_write)
 617			cons_filp = filp;
 618		if (filp->f_op->write_iter != tty_write)
 619			continue;
 620		closecount++;
 621		__tty_fasync(-1, filp, 0);	/* can't block */
 622		filp->f_op = &hung_up_tty_fops;
 623	}
 624	spin_unlock(&tty->files_lock);
 625
 626	refs = tty_signal_session_leader(tty, exit_session);
 627	/* Account for the p->signal references we killed */
 628	while (refs--)
 629		tty_kref_put(tty);
 
 630
 631	tty_ldisc_hangup(tty, cons_filp != NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 632
 633	spin_lock_irq(&tty->ctrl.lock);
 634	clear_bit(TTY_THROTTLED, &tty->flags);
 
 635	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 636	put_pid(tty->ctrl.session);
 637	put_pid(tty->ctrl.pgrp);
 638	tty->ctrl.session = NULL;
 639	tty->ctrl.pgrp = NULL;
 640	tty->ctrl.pktstatus = 0;
 641	spin_unlock_irq(&tty->ctrl.lock);
 
 
 
 
 642
 643	/*
 644	 * If one of the devices matches a console pointer, we
 645	 * cannot just call hangup() because that will cause
 646	 * tty->count and state->count to go out of sync.
 647	 * So we just call close() the right number of times.
 648	 */
 649	if (cons_filp) {
 650		if (tty->ops->close)
 651			for (n = 0; n < closecount; n++)
 652				tty->ops->close(tty, cons_filp);
 653	} else if (tty->ops->hangup)
 654		tty->ops->hangup(tty);
 655	/*
 656	 * We don't want to have driver/ldisc interactions beyond the ones
 657	 * we did here. The driver layer expects no calls after ->hangup()
 658	 * from the ldisc side, which is now guaranteed.
 
 659	 */
 660	set_bit(TTY_HUPPED, &tty->flags);
 661	clear_bit(TTY_HUPPING, &tty->flags);
 662	tty_unlock(tty);
 
 
 663
 664	if (f)
 665		fput(f);
 666}
 667
 668static void do_tty_hangup(struct work_struct *work)
 669{
 670	struct tty_struct *tty =
 671		container_of(work, struct tty_struct, hangup_work);
 672
 673	__tty_hangup(tty, 0);
 674}
 675
 676/**
 677 * tty_hangup		-	trigger a hangup event
 678 * @tty: tty to hangup
 679 *
 680 * A carrier loss (virtual or otherwise) has occurred on @tty. Schedule a
 681 * hangup sequence to run after this event.
 682 */
 
 683void tty_hangup(struct tty_struct *tty)
 684{
 685	tty_debug_hangup(tty, "hangup\n");
 
 
 
 686	schedule_work(&tty->hangup_work);
 687}
 
 688EXPORT_SYMBOL(tty_hangup);
 689
 690/**
 691 * tty_vhangup		-	process vhangup
 692 * @tty: tty to hangup
 693 *
 694 * The user has asked via system call for the terminal to be hung up. We do
 695 * this synchronously so that when the syscall returns the process is complete.
 696 * That guarantee is necessary for security reasons.
 697 */
 
 698void tty_vhangup(struct tty_struct *tty)
 699{
 700	tty_debug_hangup(tty, "vhangup\n");
 701	__tty_hangup(tty, 0);
 
 
 
 
 702}
 
 703EXPORT_SYMBOL(tty_vhangup);
 704
 705
 706/**
 707 * tty_vhangup_self	-	process vhangup for own ctty
 708 *
 709 * Perform a vhangup on the current controlling tty
 710 */
 
 711void tty_vhangup_self(void)
 712{
 713	struct tty_struct *tty;
 714
 715	tty = get_current_tty();
 716	if (tty) {
 717		tty_vhangup(tty);
 718		tty_kref_put(tty);
 719	}
 720}
 721
 722/**
 723 * tty_vhangup_session	-	hangup session leader exit
 724 * @tty: tty to hangup
 725 *
 726 * The session leader is exiting and hanging up its controlling terminal.
 727 * Every process in the foreground process group is signalled %SIGHUP.
 728 *
 729 * We do this synchronously so that when the syscall returns the process is
 730 * complete. That guarantee is necessary for security reasons.
 731 */
 732void tty_vhangup_session(struct tty_struct *tty)
 733{
 734	tty_debug_hangup(tty, "session hangup\n");
 735	__tty_hangup(tty, 1);
 736}
 737
 738/**
 739 * tty_hung_up_p	-	was tty hung up
 740 * @filp: file pointer of tty
 741 *
 742 * Return: true if the tty has been subject to a vhangup or a carrier loss
 743 */
 744int tty_hung_up_p(struct file *filp)
 745{
 746	return (filp && filp->f_op == &hung_up_tty_fops);
 747}
 
 748EXPORT_SYMBOL(tty_hung_up_p);
 749
 750void __stop_tty(struct tty_struct *tty)
 751{
 752	if (tty->flow.stopped)
 753		return;
 754	tty->flow.stopped = true;
 755	if (tty->ops->stop)
 756		tty->ops->stop(tty);
 757}
 758
 759/**
 760 * stop_tty	-	propagate flow control
 761 * @tty: tty to stop
 762 *
 763 * Perform flow control to the driver. May be called on an already stopped
 764 * device and will not re-call the &tty_driver->stop() method.
 765 *
 766 * This functionality is used by both the line disciplines for halting incoming
 767 * flow and by the driver. It may therefore be called from any context, may be
 768 * under the tty %atomic_write_lock but not always.
 769 *
 770 * Locking:
 771 *	flow.lock
 
 
 
 
 
 
 
 
 
 
 772 */
 773void stop_tty(struct tty_struct *tty)
 
 774{
 775	unsigned long flags;
 776
 777	spin_lock_irqsave(&tty->flow.lock, flags);
 778	__stop_tty(tty);
 779	spin_unlock_irqrestore(&tty->flow.lock, flags);
 780}
 781EXPORT_SYMBOL(stop_tty);
 782
 783void __start_tty(struct tty_struct *tty)
 784{
 785	if (!tty->flow.stopped || tty->flow.tco_stopped)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 786		return;
 787	tty->flow.stopped = false;
 788	if (tty->ops->start)
 789		tty->ops->start(tty);
 790	tty_wakeup(tty);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791}
 792
 793/**
 794 * start_tty	-	propagate flow control
 795 * @tty: tty to start
 796 *
 797 * Start a tty that has been stopped if at all possible. If @tty was previously
 798 * stopped and is now being started, the &tty_driver->start() method is invoked
 799 * and the line discipline woken.
 800 *
 801 * Locking:
 802 *	flow.lock
 803 */
 804void start_tty(struct tty_struct *tty)
 805{
 806	unsigned long flags;
 807
 808	spin_lock_irqsave(&tty->flow.lock, flags);
 809	__start_tty(tty);
 810	spin_unlock_irqrestore(&tty->flow.lock, flags);
 
 811}
 812EXPORT_SYMBOL(start_tty);
 813
 814static void tty_update_time(struct timespec64 *time)
 815{
 816	time64_t sec = ktime_get_real_seconds();
 817
 818	/*
 819	 * We only care if the two values differ in anything other than the
 820	 * lower three bits (i.e every 8 seconds).  If so, then we can update
 821	 * the time of the tty device, otherwise it could be construded as a
 822	 * security leak to let userspace know the exact timing of the tty.
 823	 */
 824	if ((sec ^ time->tv_sec) & ~7)
 825		time->tv_sec = sec;
 826}
 827
 828/*
 829 * Iterate on the ldisc ->read() function until we've gotten all
 830 * the data the ldisc has for us.
 831 *
 832 * The "cookie" is something that the ldisc read function can fill
 833 * in to let us know that there is more data to be had.
 
 
 834 *
 835 * We promise to continue to call the ldisc until it stops returning
 836 * data or clears the cookie. The cookie may be something that the
 837 * ldisc maintains state for and needs to free.
 838 */
 839static int iterate_tty_read(struct tty_ldisc *ld, struct tty_struct *tty,
 840		struct file *file, struct iov_iter *to)
 841{
 842	int retval = 0;
 843	void *cookie = NULL;
 844	unsigned long offset = 0;
 845	char kernel_buf[64];
 846	size_t count = iov_iter_count(to);
 847
 848	do {
 849		int size, copied;
 850
 851		size = count > sizeof(kernel_buf) ? sizeof(kernel_buf) : count;
 852		size = ld->ops->read(tty, file, kernel_buf, size, &cookie, offset);
 853		if (!size)
 854			break;
 855
 856		if (size < 0) {
 857			/* Did we have an earlier error (ie -EFAULT)? */
 858			if (retval)
 859				break;
 860			retval = size;
 861
 862			/*
 863			 * -EOVERFLOW means we didn't have enough space
 864			 * for a whole packet, and we shouldn't return
 865			 * a partial result.
 866			 */
 867			if (retval == -EOVERFLOW)
 868				offset = 0;
 869			break;
 870		}
 
 
 
 
 
 
 
 
 
 871
 872		copied = copy_to_iter(kernel_buf, size, to);
 873		offset += copied;
 874		count -= copied;
 875
 876		/*
 877		 * If the user copy failed, we still need to do another ->read()
 878		 * call if we had a cookie to let the ldisc clear up.
 879		 *
 880		 * But make sure size is zeroed.
 881		 */
 882		if (unlikely(copied != size)) {
 883			count = 0;
 884			retval = -EFAULT;
 885		}
 886	} while (cookie);
 
 887
 888	/* We always clear tty buffer in case they contained passwords */
 889	memzero_explicit(kernel_buf, sizeof(kernel_buf));
 890	return offset ? offset : retval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 891}
 892
 
 893
 894/**
 895 * tty_read	-	read method for tty device files
 896 * @iocb: kernel I/O control block
 897 * @to: destination for the data read
 898 *
 899 * Perform the read system call function on this terminal device. Checks
 900 * for hung up devices before calling the line discipline method.
 901 *
 902 * Locking:
 903 *	Locks the line discipline internally while needed. Multiple read calls
 904 *	may be outstanding in parallel.
 
 
 905 */
 906static ssize_t tty_read(struct kiocb *iocb, struct iov_iter *to)
 
 
 907{
 908	int i;
 909	struct file *file = iocb->ki_filp;
 910	struct inode *inode = file_inode(file);
 911	struct tty_struct *tty = file_tty(file);
 912	struct tty_ldisc *ld;
 913
 914	if (tty_paranoia_check(tty, inode, "tty_read"))
 915		return -EIO;
 916	if (!tty || tty_io_error(tty))
 917		return -EIO;
 918
 919	/* We want to wait for the line discipline to sort out in this
 920	 * situation.
 921	 */
 922	ld = tty_ldisc_ref_wait(tty);
 923	if (!ld)
 924		return hung_up_tty_read(iocb, to);
 925	i = -EIO;
 926	if (ld->ops->read)
 927		i = iterate_tty_read(ld, tty, file, to);
 
 
 928	tty_ldisc_deref(ld);
 929
 930	if (i > 0)
 931		tty_update_time(&inode->i_atime);
 932
 933	return i;
 934}
 935
 936static void tty_write_unlock(struct tty_struct *tty)
 
 937{
 938	mutex_unlock(&tty->atomic_write_lock);
 939	wake_up_interruptible_poll(&tty->write_wait, EPOLLOUT);
 940}
 941
 942static int tty_write_lock(struct tty_struct *tty, int ndelay)
 
 943{
 944	if (!mutex_trylock(&tty->atomic_write_lock)) {
 945		if (ndelay)
 946			return -EAGAIN;
 947		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 948			return -ERESTARTSYS;
 949	}
 950	return 0;
 951}
 952
 953/*
 954 * Split writes up in sane blocksizes to avoid
 955 * denial-of-service type attacks
 956 */
 957static inline ssize_t do_tty_write(
 958	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
 959	struct tty_struct *tty,
 960	struct file *file,
 961	struct iov_iter *from)
 
 962{
 963	size_t count = iov_iter_count(from);
 964	ssize_t ret, written = 0;
 965	unsigned int chunk;
 966
 967	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
 968	if (ret < 0)
 969		return ret;
 970
 971	/*
 972	 * We chunk up writes into a temporary buffer. This
 973	 * simplifies low-level drivers immensely, since they
 974	 * don't have locking issues and user mode accesses.
 975	 *
 976	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
 977	 * big chunk-size..
 978	 *
 979	 * The default chunk-size is 2kB, because the NTTY
 980	 * layer has problems with bigger chunks. It will
 981	 * claim to be able to handle more characters than
 982	 * it actually does.
 
 
 
 983	 */
 984	chunk = 2048;
 985	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
 986		chunk = 65536;
 987	if (count < chunk)
 988		chunk = count;
 989
 990	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
 991	if (tty->write_cnt < chunk) {
 992		unsigned char *buf_chunk;
 993
 994		if (chunk < 1024)
 995			chunk = 1024;
 996
 997		buf_chunk = kvmalloc(chunk, GFP_KERNEL | __GFP_RETRY_MAYFAIL);
 998		if (!buf_chunk) {
 999			ret = -ENOMEM;
1000			goto out;
1001		}
1002		kvfree(tty->write_buf);
1003		tty->write_cnt = chunk;
1004		tty->write_buf = buf_chunk;
1005	}
1006
1007	/* Do the write .. */
1008	for (;;) {
1009		size_t size = count;
1010
1011		if (size > chunk)
1012			size = chunk;
1013
1014		ret = -EFAULT;
1015		if (copy_from_iter(tty->write_buf, size, from) != size)
1016			break;
1017
1018		ret = write(tty, file, tty->write_buf, size);
1019		if (ret <= 0)
1020			break;
1021
1022		written += ret;
1023		if (ret > size)
1024			break;
1025
1026		/* FIXME! Have Al check this! */
1027		if (ret != size)
1028			iov_iter_revert(from, size-ret);
1029
1030		count -= ret;
1031		if (!count)
1032			break;
1033		ret = -ERESTARTSYS;
1034		if (signal_pending(current))
1035			break;
1036		cond_resched();
1037	}
1038	if (written) {
1039		tty_update_time(&file_inode(file)->i_mtime);
 
1040		ret = written;
1041	}
1042out:
1043	tty_write_unlock(tty);
1044	return ret;
1045}
1046
1047/**
1048 * tty_write_message - write a message to a certain tty, not just the console.
1049 * @tty: the destination tty_struct
1050 * @msg: the message to write
1051 *
1052 * This is used for messages that need to be redirected to a specific tty. We
1053 * don't put it into the syslog queue right now maybe in the future if really
1054 * needed.
1055 *
1056 * We must still hold the BTM and test the CLOSING flag for the moment.
1057 */
 
1058void tty_write_message(struct tty_struct *tty, char *msg)
1059{
1060	if (tty) {
1061		mutex_lock(&tty->atomic_write_lock);
1062		tty_lock(tty);
1063		if (tty->ops->write && tty->count > 0)
 
1064			tty->ops->write(tty, msg, strlen(msg));
1065		tty_unlock(tty);
 
1066		tty_write_unlock(tty);
1067	}
 
1068}
1069
1070static ssize_t file_tty_write(struct file *file, struct kiocb *iocb, struct iov_iter *from)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1071{
 
1072	struct tty_struct *tty = file_tty(file);
1073	struct tty_ldisc *ld;
1074	ssize_t ret;
1075
1076	if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1077		return -EIO;
1078	if (!tty || !tty->ops->write ||	tty_io_error(tty))
1079		return -EIO;
 
 
 
1080	/* Short term debug to catch buggy drivers */
1081	if (tty->ops->write_room == NULL)
1082		tty_err(tty, "missing write_room method\n");
 
1083	ld = tty_ldisc_ref_wait(tty);
1084	if (!ld)
1085		return hung_up_tty_write(iocb, from);
1086	if (!ld->ops->write)
1087		ret = -EIO;
1088	else
1089		ret = do_tty_write(ld->ops->write, tty, file, from);
1090	tty_ldisc_deref(ld);
1091	return ret;
1092}
1093
1094/**
1095 * tty_write		-	write method for tty device file
1096 * @iocb: kernel I/O control block
1097 * @from: iov_iter with data to write
1098 *
1099 * Write data to a tty device via the line discipline.
1100 *
1101 * Locking:
1102 *	Locks the line discipline as required
1103 *	Writes to the tty driver are serialized by the atomic_write_lock
1104 *	and are then processed in chunks to the device. The line
1105 *	discipline write method will not be invoked in parallel for
1106 *	each device.
1107 */
1108static ssize_t tty_write(struct kiocb *iocb, struct iov_iter *from)
1109{
1110	return file_tty_write(iocb->ki_filp, iocb, from);
1111}
1112
1113ssize_t redirected_tty_write(struct kiocb *iocb, struct iov_iter *iter)
1114{
1115	struct file *p = NULL;
1116
1117	spin_lock(&redirect_lock);
1118	if (redirect)
1119		p = get_file(redirect);
 
 
1120	spin_unlock(&redirect_lock);
1121
1122	/*
1123	 * We know the redirected tty is just another tty, we can
1124	 * call file_tty_write() directly with that file pointer.
1125	 */
1126	if (p) {
1127		ssize_t res;
1128
1129		res = file_tty_write(p, iocb, iter);
1130		fput(p);
1131		return res;
1132	}
1133	return tty_write(iocb, iter);
1134}
1135
1136/**
1137 * tty_send_xchar	-	send priority character
1138 * @tty: the tty to send to
1139 * @ch: xchar to send
1140 *
1141 * Send a high priority character to the tty even if stopped.
1142 *
1143 * Locking: none for xchar method, write ordering for write method.
1144 */
1145int tty_send_xchar(struct tty_struct *tty, char ch)
1146{
1147	bool was_stopped = tty->flow.stopped;
1148
1149	if (tty->ops->send_xchar) {
1150		down_read(&tty->termios_rwsem);
1151		tty->ops->send_xchar(tty, ch);
1152		up_read(&tty->termios_rwsem);
1153		return 0;
1154	}
1155
1156	if (tty_write_lock(tty, 0) < 0)
1157		return -ERESTARTSYS;
1158
1159	down_read(&tty->termios_rwsem);
1160	if (was_stopped)
1161		start_tty(tty);
1162	tty->ops->write(tty, &ch, 1);
1163	if (was_stopped)
1164		stop_tty(tty);
1165	up_read(&tty->termios_rwsem);
1166	tty_write_unlock(tty);
1167	return 0;
1168}
1169
1170/**
1171 * pty_line_name	-	generate name for a pty
1172 * @driver: the tty driver in use
1173 * @index: the minor number
1174 * @p: output buffer of at least 6 bytes
1175 *
1176 * Generate a name from a @driver reference and write it to the output buffer
1177 * @p.
1178 *
1179 * Locking: None
1180 */
1181static void pty_line_name(struct tty_driver *driver, int index, char *p)
1182{
1183	static const char ptychar[] = "pqrstuvwxyzabcde";
1184	int i = index + driver->name_base;
1185	/* ->name is initialized to "ttyp", but "tty" is expected */
1186	sprintf(p, "%s%c%x",
1187		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1188		ptychar[i >> 4 & 0xf], i & 0xf);
1189}
1190
1191/**
1192 * tty_line_name	-	generate name for a tty
1193 * @driver: the tty driver in use
1194 * @index: the minor number
1195 * @p: output buffer of at least 7 bytes
1196 *
1197 * Generate a name from a @driver reference and write it to the output buffer
1198 * @p.
1199 *
1200 * Locking: None
1201 */
1202static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1203{
1204	if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1205		return sprintf(p, "%s", driver->name);
1206	else
1207		return sprintf(p, "%s%d", driver->name,
1208			       index + driver->name_base);
1209}
1210
1211/**
1212 * tty_driver_lookup_tty() - find an existing tty, if any
1213 * @driver: the driver for the tty
1214 * @file: file object
1215 * @idx: the minor number
1216 *
1217 * Return: the tty, if found. If not found, return %NULL or ERR_PTR() if the
1218 * driver lookup() method returns an error.
1219 *
1220 * Locking: tty_mutex must be held. If the tty is found, bump the tty kref.
 
 
1221 */
1222static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1223		struct file *file, int idx)
1224{
1225	struct tty_struct *tty;
1226
1227	if (driver->ops->lookup)
1228		if (!file)
1229			tty = ERR_PTR(-EIO);
1230		else
1231			tty = driver->ops->lookup(driver, file, idx);
1232	else
1233		tty = driver->ttys[idx];
1234
1235	if (!IS_ERR(tty))
1236		tty_kref_get(tty);
1237	return tty;
1238}
1239
1240/**
1241 * tty_init_termios	-  helper for termios setup
1242 * @tty: the tty to set up
1243 *
1244 * Initialise the termios structure for this tty. This runs under the
1245 * %tty_mutex currently so we can be relaxed about ordering.
1246 */
1247void tty_init_termios(struct tty_struct *tty)
 
1248{
1249	struct ktermios *tp;
1250	int idx = tty->index;
1251
1252	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1253		tty->termios = tty->driver->init_termios;
1254	else {
1255		/* Check for lazy saved data */
1256		tp = tty->driver->termios[idx];
1257		if (tp != NULL) {
1258			tty->termios = *tp;
1259			tty->termios.c_line  = tty->driver->init_termios.c_line;
1260		} else
1261			tty->termios = tty->driver->init_termios;
1262	}
 
 
 
1263	/* Compatibility until drivers always set this */
1264	tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1265	tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
 
1266}
1267EXPORT_SYMBOL_GPL(tty_init_termios);
1268
1269/**
1270 * tty_standard_install - usual tty->ops->install
1271 * @driver: the driver for the tty
1272 * @tty: the tty
1273 *
1274 * If the @driver overrides @tty->ops->install, it still can call this function
1275 * to perform the standard install operations.
1276 */
1277int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1278{
1279	tty_init_termios(tty);
 
 
 
1280	tty_driver_kref_get(driver);
1281	tty->count++;
1282	driver->ttys[tty->index] = tty;
1283	return 0;
1284}
1285EXPORT_SYMBOL_GPL(tty_standard_install);
1286
1287/**
1288 * tty_driver_install_tty() - install a tty entry in the driver
1289 * @driver: the driver for the tty
1290 * @tty: the tty
1291 *
1292 * Install a tty object into the driver tables. The @tty->index field will be
1293 * set by the time this is called. This method is responsible for ensuring any
1294 * need additional structures are allocated and configured.
 
1295 *
1296 * Locking: tty_mutex for now
1297 */
1298static int tty_driver_install_tty(struct tty_driver *driver,
1299						struct tty_struct *tty)
1300{
1301	return driver->ops->install ? driver->ops->install(driver, tty) :
1302		tty_standard_install(driver, tty);
1303}
1304
1305/**
1306 * tty_driver_remove_tty() - remove a tty from the driver tables
1307 * @driver: the driver for the tty
1308 * @tty: tty to remove
1309 *
1310 * Remove a tty object from the driver tables. The tty->index field will be set
1311 * by the time this is called.
1312 *
1313 * Locking: tty_mutex for now
1314 */
1315static void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1316{
1317	if (driver->ops->remove)
1318		driver->ops->remove(driver, tty);
1319	else
1320		driver->ttys[tty->index] = NULL;
1321}
1322
1323/**
1324 * tty_reopen()	- fast re-open of an open tty
1325 * @tty: the tty to open
1326 *
1327 * Re-opens on master ptys are not allowed and return -%EIO.
1328 *
1329 * Locking: Caller must hold tty_lock
1330 * Return: 0 on success, -errno on error.
1331 */
1332static int tty_reopen(struct tty_struct *tty)
1333{
1334	struct tty_driver *driver = tty->driver;
1335	struct tty_ldisc *ld;
1336	int retval = 0;
1337
1338	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1339	    driver->subtype == PTY_TYPE_MASTER)
 
1340		return -EIO;
1341
1342	if (!tty->count)
1343		return -EAGAIN;
1344
1345	if (test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
1346		return -EBUSY;
1347
1348	ld = tty_ldisc_ref_wait(tty);
1349	if (ld) {
1350		tty_ldisc_deref(ld);
1351	} else {
1352		retval = tty_ldisc_lock(tty, 5 * HZ);
1353		if (retval)
1354			return retval;
1355
1356		if (!tty->ldisc)
1357			retval = tty_ldisc_reinit(tty, tty->termios.c_line);
1358		tty_ldisc_unlock(tty);
1359	}
 
1360
1361	if (retval == 0)
1362		tty->count++;
 
1363
1364	return retval;
1365}
1366
1367/**
1368 * tty_init_dev		-	initialise a tty device
1369 * @driver: tty driver we are opening a device on
1370 * @idx: device index
1371 *
1372 * Prepare a tty device. This may not be a "new" clean device but could also be
1373 * an active device. The pty drivers require special handling because of this.
1374 *
1375 * Locking:
1376 *	The function is called under the tty_mutex, which protects us from the
1377 *	tty struct or driver itself going away.
1378 *
1379 * On exit the tty device has the line discipline attached and a reference
1380 * count of 1. If a pair was created for pty/tty use and the other was a pty
1381 * master then it too has a reference count of 1.
1382 *
1383 * WSH 06/09/97: Rewritten to remove races and properly clean up after a failed
1384 * open. The new code protects the open with a mutex, so it's really quite
1385 * straightforward. The mutex locking can probably be relaxed for the (most
1386 * common) case of reopening a tty.
1387 *
1388 * Return: new tty structure
1389 */
 
1390struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1391{
1392	struct tty_struct *tty;
1393	int retval;
1394
1395	/*
1396	 * First time open is complex, especially for PTY devices.
1397	 * This code guarantees that either everything succeeds and the
1398	 * TTY is ready for operation, or else the table slots are vacated
1399	 * and the allocated memory released.  (Except that the termios
1400	 * may be retained.)
1401	 */
1402
1403	if (!try_module_get(driver->owner))
1404		return ERR_PTR(-ENODEV);
1405
1406	tty = alloc_tty_struct(driver, idx);
1407	if (!tty) {
1408		retval = -ENOMEM;
1409		goto err_module_put;
1410	}
 
1411
1412	tty_lock(tty);
1413	retval = tty_driver_install_tty(driver, tty);
1414	if (retval < 0)
1415		goto err_free_tty;
1416
1417	if (!tty->port)
1418		tty->port = driver->ports[idx];
1419
1420	if (WARN_RATELIMIT(!tty->port,
1421			"%s: %s driver does not set tty->port. This would crash the kernel. Fix the driver!\n",
1422			__func__, tty->driver->name)) {
1423		retval = -EINVAL;
1424		goto err_release_lock;
1425	}
1426
1427	retval = tty_ldisc_lock(tty, 5 * HZ);
1428	if (retval)
1429		goto err_release_lock;
1430	tty->port->itty = tty;
1431
1432	/*
1433	 * Structures all installed ... call the ldisc open routines.
1434	 * If we fail here just call release_tty to clean up.  No need
1435	 * to decrement the use counts, as release_tty doesn't care.
1436	 */
1437	retval = tty_ldisc_setup(tty, tty->link);
1438	if (retval)
1439		goto err_release_tty;
1440	tty_ldisc_unlock(tty);
1441	/* Return the tty locked so that it cannot vanish under the caller */
1442	return tty;
1443
1444err_free_tty:
1445	tty_unlock(tty);
1446	free_tty_struct(tty);
1447err_module_put:
1448	module_put(driver->owner);
1449	return ERR_PTR(retval);
1450
1451	/* call the tty release_tty routine to clean out this slot */
1452err_release_tty:
1453	tty_ldisc_unlock(tty);
1454	tty_info_ratelimited(tty, "ldisc open failed (%d), clearing slot %d\n",
1455			     retval, idx);
1456err_release_lock:
1457	tty_unlock(tty);
1458	release_tty(tty, idx);
1459	return ERR_PTR(retval);
1460}
1461
1462/**
1463 * tty_save_termios() - save tty termios data in driver table
1464 * @tty: tty whose termios data to save
1465 *
1466 * Locking: Caller guarantees serialisation with tty_init_termios().
1467 */
1468void tty_save_termios(struct tty_struct *tty)
1469{
1470	struct ktermios *tp;
1471	int idx = tty->index;
1472
1473	/* If the port is going to reset then it has no termios to save */
1474	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1475		return;
1476
1477	/* Stash the termios data */
1478	tp = tty->driver->termios[idx];
1479	if (tp == NULL) {
1480		tp = kmalloc(sizeof(*tp), GFP_KERNEL);
1481		if (tp == NULL)
1482			return;
1483		tty->driver->termios[idx] = tp;
1484	}
1485	*tp = tty->termios;
1486}
1487EXPORT_SYMBOL_GPL(tty_save_termios);
1488
1489/**
1490 * tty_flush_works	-	flush all works of a tty/pty pair
1491 * @tty: tty device to flush works for (or either end of a pty pair)
1492 *
1493 * Sync flush all works belonging to @tty (and the 'other' tty).
1494 */
1495static void tty_flush_works(struct tty_struct *tty)
1496{
1497	flush_work(&tty->SAK_work);
1498	flush_work(&tty->hangup_work);
1499	if (tty->link) {
1500		flush_work(&tty->link->SAK_work);
1501		flush_work(&tty->link->hangup_work);
1502	}
1503}
 
1504
1505/**
1506 * release_one_tty	-	release tty structure memory
1507 * @work: work of tty we are obliterating
1508 *
1509 * Releases memory associated with a tty structure, and clears out the
1510 * driver table slots. This function is called when a device is no longer
1511 * in use. It also gets called when setup of a device fails.
1512 *
1513 * Locking:
1514 *	takes the file list lock internally when working on the list of ttys
1515 *	that the driver keeps.
 
1516 *
1517 * This method gets called from a work queue so that the driver private
1518 * cleanup ops can sleep (needed for USB at least)
1519 */
1520static void release_one_tty(struct work_struct *work)
1521{
1522	struct tty_struct *tty =
1523		container_of(work, struct tty_struct, hangup_work);
1524	struct tty_driver *driver = tty->driver;
1525	struct module *owner = driver->owner;
1526
1527	if (tty->ops->cleanup)
1528		tty->ops->cleanup(tty);
1529
 
1530	tty_driver_kref_put(driver);
1531	module_put(owner);
1532
1533	spin_lock(&tty->files_lock);
1534	list_del_init(&tty->tty_files);
1535	spin_unlock(&tty->files_lock);
1536
1537	put_pid(tty->ctrl.pgrp);
1538	put_pid(tty->ctrl.session);
1539	free_tty_struct(tty);
1540}
1541
1542static void queue_release_one_tty(struct kref *kref)
1543{
1544	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1545
 
 
 
 
 
1546	/* The hangup queue is now free so we can reuse it rather than
1547	 *  waste a chunk of memory for each port.
1548	 */
1549	INIT_WORK(&tty->hangup_work, release_one_tty);
1550	schedule_work(&tty->hangup_work);
1551}
1552
1553/**
1554 * tty_kref_put		-	release a tty kref
1555 * @tty: tty device
1556 *
1557 * Release a reference to the @tty device and if need be let the kref layer
1558 * destruct the object for us.
1559 */
 
1560void tty_kref_put(struct tty_struct *tty)
1561{
1562	if (tty)
1563		kref_put(&tty->kref, queue_release_one_tty);
1564}
1565EXPORT_SYMBOL(tty_kref_put);
1566
1567/**
1568 * release_tty		-	release tty structure memory
1569 * @tty: tty device release
1570 * @idx: index of the tty device release
1571 *
1572 * Release both @tty and a possible linked partner (think pty pair),
1573 * and decrement the refcount of the backing module.
1574 *
1575 * Locking:
1576 *	tty_mutex
1577 *	takes the file list lock internally when working on the list of ttys
1578 *	that the driver keeps.
1579 */
1580static void release_tty(struct tty_struct *tty, int idx)
1581{
1582	/* This should always be true but check for the moment */
1583	WARN_ON(tty->index != idx);
1584	WARN_ON(!mutex_is_locked(&tty_mutex));
1585	if (tty->ops->shutdown)
1586		tty->ops->shutdown(tty);
1587	tty_save_termios(tty);
1588	tty_driver_remove_tty(tty->driver, tty);
1589	if (tty->port)
1590		tty->port->itty = NULL;
1591	if (tty->link)
1592		tty->link->port->itty = NULL;
1593	if (tty->port)
1594		tty_buffer_cancel_work(tty->port);
1595	if (tty->link)
1596		tty_buffer_cancel_work(tty->link->port);
1597
1598	tty_kref_put(tty->link);
 
1599	tty_kref_put(tty);
1600}
1601
1602/**
1603 * tty_release_checks - check a tty before real release
1604 * @tty: tty to check
1605 * @idx: index of the tty
 
1606 *
1607 * Performs some paranoid checking before true release of the @tty. This is a
1608 * no-op unless %TTY_PARANOIA_CHECK is defined.
1609 */
1610static int tty_release_checks(struct tty_struct *tty, int idx)
 
1611{
1612#ifdef TTY_PARANOIA_CHECK
1613	if (idx < 0 || idx >= tty->driver->num) {
1614		tty_debug(tty, "bad idx %d\n", idx);
 
1615		return -1;
1616	}
1617
1618	/* not much to check for devpts */
1619	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1620		return 0;
1621
1622	if (tty != tty->driver->ttys[idx]) {
1623		tty_debug(tty, "bad driver table[%d] = %p\n",
1624			  idx, tty->driver->ttys[idx]);
 
 
 
 
 
1625		return -1;
1626	}
1627	if (tty->driver->other) {
1628		struct tty_struct *o_tty = tty->link;
1629
1630		if (o_tty != tty->driver->other->ttys[idx]) {
1631			tty_debug(tty, "bad other table[%d] = %p\n",
1632				  idx, tty->driver->other->ttys[idx]);
 
 
 
 
 
1633			return -1;
1634		}
1635		if (o_tty->link != tty) {
1636			tty_debug(tty, "bad link = %p\n", o_tty->link);
1637			return -1;
1638		}
1639	}
1640#endif
1641	return 0;
1642}
1643
1644/**
1645 * tty_kclose      -       closes tty opened by tty_kopen
1646 * @tty: tty device
1647 *
1648 * Performs the final steps to release and free a tty device. It is the same as
1649 * tty_release_struct() except that it also resets %TTY_PORT_KOPENED flag on
1650 * @tty->port.
1651 */
1652void tty_kclose(struct tty_struct *tty)
1653{
1654	/*
1655	 * Ask the line discipline code to release its structures
1656	 */
1657	tty_ldisc_release(tty);
1658
1659	/* Wait for pending work before tty destruction commences */
1660	tty_flush_works(tty);
1661
1662	tty_debug_hangup(tty, "freeing structure\n");
1663	/*
1664	 * The release_tty function takes care of the details of clearing
1665	 * the slots and preserving the termios structure.
1666	 */
1667	mutex_lock(&tty_mutex);
1668	tty_port_set_kopened(tty->port, 0);
1669	release_tty(tty, tty->index);
1670	mutex_unlock(&tty_mutex);
1671}
1672EXPORT_SYMBOL_GPL(tty_kclose);
1673
1674/**
1675 * tty_release_struct	-	release a tty struct
1676 * @tty: tty device
1677 * @idx: index of the tty
1678 *
1679 * Performs the final steps to release and free a tty device. It is roughly the
1680 * reverse of tty_init_dev().
1681 */
1682void tty_release_struct(struct tty_struct *tty, int idx)
1683{
1684	/*
1685	 * Ask the line discipline code to release its structures
1686	 */
1687	tty_ldisc_release(tty);
1688
1689	/* Wait for pending work before tty destruction commmences */
1690	tty_flush_works(tty);
1691
1692	tty_debug_hangup(tty, "freeing structure\n");
1693	/*
1694	 * The release_tty function takes care of the details of clearing
1695	 * the slots and preserving the termios structure.
1696	 */
1697	mutex_lock(&tty_mutex);
1698	release_tty(tty, idx);
1699	mutex_unlock(&tty_mutex);
1700}
1701EXPORT_SYMBOL_GPL(tty_release_struct);
1702
1703/**
1704 * tty_release		-	vfs callback for close
1705 * @inode: inode of tty
1706 * @filp: file pointer for handle to tty
1707 *
1708 * Called the last time each file handle is closed that references this tty.
1709 * There may however be several such references.
1710 *
1711 * Locking:
1712 *	Takes BKL. See tty_release_dev().
1713 *
1714 * Even releasing the tty structures is a tricky business. We have to be very
1715 * careful that the structures are all released at the same time, as interrupts
1716 * might otherwise get the wrong pointers.
1717 *
1718 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1719 * lead to double frees or releasing memory still in use.
1720 */
 
1721int tty_release(struct inode *inode, struct file *filp)
1722{
1723	struct tty_struct *tty = file_tty(filp);
1724	struct tty_struct *o_tty = NULL;
1725	int	do_sleep, final;
 
1726	int	idx;
1727	long	timeout = 0;
1728	int	once = 1;
1729
1730	if (tty_paranoia_check(tty, inode, __func__))
1731		return 0;
1732
1733	tty_lock(tty);
1734	check_tty_count(tty, __func__);
1735
1736	__tty_fasync(-1, filp, 0);
1737
1738	idx = tty->index;
1739	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1740	    tty->driver->subtype == PTY_TYPE_MASTER)
1741		o_tty = tty->link;
 
1742
1743	if (tty_release_checks(tty, idx)) {
1744		tty_unlock(tty);
1745		return 0;
1746	}
1747
1748	tty_debug_hangup(tty, "releasing (count=%d)\n", tty->count);
 
 
 
1749
1750	if (tty->ops->close)
1751		tty->ops->close(tty, filp);
1752
1753	/* If tty is pty master, lock the slave pty (stable lock order) */
1754	tty_lock_slave(o_tty);
1755
1756	/*
1757	 * Sanity check: if tty->count is going to zero, there shouldn't be
1758	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1759	 * wait queues and kick everyone out _before_ actually starting to
1760	 * close.  This ensures that we won't block while releasing the tty
1761	 * structure.
1762	 *
1763	 * The test for the o_tty closing is necessary, since the master and
1764	 * slave sides may close in any order.  If the slave side closes out
1765	 * first, its count will be one, since the master side holds an open.
1766	 * Thus this test wouldn't be triggered at the time the slave closed,
1767	 * so we do it now.
 
 
 
 
1768	 */
1769	while (1) {
 
 
 
 
 
 
 
 
1770		do_sleep = 0;
1771
1772		if (tty->count <= 1) {
1773			if (waitqueue_active(&tty->read_wait)) {
1774				wake_up_poll(&tty->read_wait, EPOLLIN);
1775				do_sleep++;
1776			}
1777			if (waitqueue_active(&tty->write_wait)) {
1778				wake_up_poll(&tty->write_wait, EPOLLOUT);
1779				do_sleep++;
1780			}
1781		}
1782		if (o_tty && o_tty->count <= 1) {
1783			if (waitqueue_active(&o_tty->read_wait)) {
1784				wake_up_poll(&o_tty->read_wait, EPOLLIN);
1785				do_sleep++;
1786			}
1787			if (waitqueue_active(&o_tty->write_wait)) {
1788				wake_up_poll(&o_tty->write_wait, EPOLLOUT);
1789				do_sleep++;
1790			}
1791		}
1792		if (!do_sleep)
1793			break;
1794
1795		if (once) {
1796			once = 0;
1797			tty_warn(tty, "read/write wait queue active!\n");
1798		}
1799		schedule_timeout_killable(timeout);
1800		if (timeout < 120 * HZ)
1801			timeout = 2 * timeout + 1;
1802		else
1803			timeout = MAX_SCHEDULE_TIMEOUT;
1804	}
1805
1806	if (o_tty) {
 
 
 
 
 
1807		if (--o_tty->count < 0) {
1808			tty_warn(tty, "bad slave count (%d)\n", o_tty->count);
 
1809			o_tty->count = 0;
1810		}
1811	}
1812	if (--tty->count < 0) {
1813		tty_warn(tty, "bad tty->count (%d)\n", tty->count);
 
1814		tty->count = 0;
1815	}
1816
1817	/*
1818	 * We've decremented tty->count, so we need to remove this file
1819	 * descriptor off the tty->tty_files list; this serves two
1820	 * purposes:
1821	 *  - check_tty_count sees the correct number of file descriptors
1822	 *    associated with this tty.
1823	 *  - do_tty_hangup no longer sees this file descriptor as
1824	 *    something that needs to be handled for hangups.
1825	 */
1826	tty_del_file(filp);
1827
1828	/*
1829	 * Perform some housekeeping before deciding whether to return.
1830	 *
 
 
 
 
 
 
 
 
 
 
1831	 * If _either_ side is closing, make sure there aren't any
1832	 * processes that still think tty or o_tty is their controlling
1833	 * tty.
1834	 */
1835	if (!tty->count) {
1836		read_lock(&tasklist_lock);
1837		session_clear_tty(tty->ctrl.session);
1838		if (o_tty)
1839			session_clear_tty(o_tty->ctrl.session);
1840		read_unlock(&tasklist_lock);
1841	}
1842
1843	/* check whether both sides are closing ... */
1844	final = !tty->count && !(o_tty && o_tty->count);
1845
1846	tty_unlock_slave(o_tty);
1847	tty_unlock(tty);
1848
1849	/* At this point, the tty->count == 0 should ensure a dead tty
1850	 * cannot be re-opened by a racing opener.
1851	 */
1852
1853	if (!final)
 
 
1854		return 0;
 
1855
1856	tty_debug_hangup(tty, "final close\n");
 
 
 
 
 
 
 
 
 
 
 
1857
1858	tty_release_struct(tty, idx);
 
 
 
1859	return 0;
1860}
1861
1862/**
1863 * tty_open_current_tty - get locked tty of current task
1864 * @device: device number
1865 * @filp: file pointer to tty
1866 * @return: locked tty of the current task iff @device is /dev/tty
1867 *
1868 * Performs a re-open of the current task's controlling tty.
 
1869 *
1870 * We cannot return driver and index like for the other nodes because devpts
1871 * will not work then. It expects inodes to be from devpts FS.
1872 */
1873static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1874{
1875	struct tty_struct *tty;
1876	int retval;
1877
1878	if (device != MKDEV(TTYAUX_MAJOR, 0))
1879		return NULL;
1880
1881	tty = get_current_tty();
1882	if (!tty)
1883		return ERR_PTR(-ENXIO);
1884
1885	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1886	/* noctty = 1; */
1887	tty_lock(tty);
1888	tty_kref_put(tty);	/* safe to drop the kref now */
1889
1890	retval = tty_reopen(tty);
1891	if (retval < 0) {
1892		tty_unlock(tty);
1893		tty = ERR_PTR(retval);
1894	}
1895	return tty;
1896}
1897
1898/**
1899 * tty_lookup_driver - lookup a tty driver for a given device file
1900 * @device: device number
1901 * @filp: file pointer to tty
1902 * @index: index for the device in the @return driver
1903 *
1904 * If returned value is not erroneous, the caller is responsible to decrement
1905 * the refcount by tty_driver_kref_put().
1906 *
1907 * Locking: %tty_mutex protects get_tty_driver()
 
1908 *
1909 * Return: driver for this inode (with increased refcount)
1910 */
1911static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1912		int *index)
1913{
1914	struct tty_driver *driver = NULL;
1915
1916	switch (device) {
1917#ifdef CONFIG_VT
1918	case MKDEV(TTY_MAJOR, 0): {
1919		extern struct tty_driver *console_driver;
1920
1921		driver = tty_driver_kref_get(console_driver);
1922		*index = fg_console;
 
1923		break;
1924	}
1925#endif
1926	case MKDEV(TTYAUX_MAJOR, 1): {
1927		struct tty_driver *console_driver = console_device(index);
1928
1929		if (console_driver) {
1930			driver = tty_driver_kref_get(console_driver);
1931			if (driver && filp) {
1932				/* Don't let /dev/console block */
1933				filp->f_flags |= O_NONBLOCK;
 
1934				break;
1935			}
1936		}
1937		if (driver)
1938			tty_driver_kref_put(driver);
1939		return ERR_PTR(-ENODEV);
1940	}
1941	default:
1942		driver = get_tty_driver(device, index);
1943		if (!driver)
1944			return ERR_PTR(-ENODEV);
1945		break;
1946	}
1947	return driver;
1948}
1949
1950static struct tty_struct *tty_kopen(dev_t device, int shared)
1951{
1952	struct tty_struct *tty;
1953	struct tty_driver *driver;
1954	int index = -1;
1955
1956	mutex_lock(&tty_mutex);
1957	driver = tty_lookup_driver(device, NULL, &index);
1958	if (IS_ERR(driver)) {
1959		mutex_unlock(&tty_mutex);
1960		return ERR_CAST(driver);
1961	}
1962
1963	/* check whether we're reopening an existing tty */
1964	tty = tty_driver_lookup_tty(driver, NULL, index);
1965	if (IS_ERR(tty) || shared)
1966		goto out;
1967
1968	if (tty) {
1969		/* drop kref from tty_driver_lookup_tty() */
1970		tty_kref_put(tty);
1971		tty = ERR_PTR(-EBUSY);
1972	} else { /* tty_init_dev returns tty with the tty_lock held */
1973		tty = tty_init_dev(driver, index);
1974		if (IS_ERR(tty))
1975			goto out;
1976		tty_port_set_kopened(tty->port, 1);
1977	}
1978out:
1979	mutex_unlock(&tty_mutex);
1980	tty_driver_kref_put(driver);
1981	return tty;
1982}
1983
1984/**
1985 * tty_kopen_exclusive	-	open a tty device for kernel
1986 * @device: dev_t of device to open
1987 *
1988 * Opens tty exclusively for kernel. Performs the driver lookup, makes sure
1989 * it's not already opened and performs the first-time tty initialization.
1990 *
1991 * Claims the global %tty_mutex to serialize:
1992 *  * concurrent first-time tty initialization
1993 *  * concurrent tty driver removal w/ lookup
1994 *  * concurrent tty removal from driver table
1995 *
1996 * Return: the locked initialized &tty_struct
 
 
 
 
 
 
1997 */
1998struct tty_struct *tty_kopen_exclusive(dev_t device)
1999{
2000	return tty_kopen(device, 0);
2001}
2002EXPORT_SYMBOL_GPL(tty_kopen_exclusive);
2003
2004/**
2005 * tty_kopen_shared	-	open a tty device for shared in-kernel use
2006 * @device: dev_t of device to open
2007 *
2008 * Opens an already existing tty for in-kernel use. Compared to
2009 * tty_kopen_exclusive() above it doesn't ensure to be the only user.
2010 *
2011 * Locking: identical to tty_kopen() above.
2012 */
2013struct tty_struct *tty_kopen_shared(dev_t device)
2014{
2015	return tty_kopen(device, 1);
2016}
2017EXPORT_SYMBOL_GPL(tty_kopen_shared);
2018
2019/**
2020 * tty_open_by_driver	-	open a tty device
2021 * @device: dev_t of device to open
2022 * @filp: file pointer to tty
2023 *
2024 * Performs the driver lookup, checks for a reopen, or otherwise performs the
2025 * first-time tty initialization.
2026 *
2027 *
2028 * Claims the global tty_mutex to serialize:
2029 *  * concurrent first-time tty initialization
2030 *  * concurrent tty driver removal w/ lookup
2031 *  * concurrent tty removal from driver table
2032 *
2033 * Return: the locked initialized or re-opened &tty_struct
2034 */
2035static struct tty_struct *tty_open_by_driver(dev_t device,
2036					     struct file *filp)
2037{
2038	struct tty_struct *tty;
2039	struct tty_driver *driver = NULL;
2040	int index = -1;
2041	int retval;
2042
2043	mutex_lock(&tty_mutex);
2044	driver = tty_lookup_driver(device, filp, &index);
2045	if (IS_ERR(driver)) {
2046		mutex_unlock(&tty_mutex);
2047		return ERR_CAST(driver);
2048	}
2049
2050	/* check whether we're reopening an existing tty */
2051	tty = tty_driver_lookup_tty(driver, filp, index);
2052	if (IS_ERR(tty)) {
2053		mutex_unlock(&tty_mutex);
2054		goto out;
2055	}
2056
2057	if (tty) {
2058		if (tty_port_kopened(tty->port)) {
2059			tty_kref_put(tty);
2060			mutex_unlock(&tty_mutex);
2061			tty = ERR_PTR(-EBUSY);
2062			goto out;
2063		}
2064		mutex_unlock(&tty_mutex);
2065		retval = tty_lock_interruptible(tty);
2066		tty_kref_put(tty);  /* drop kref from tty_driver_lookup_tty() */
2067		if (retval) {
2068			if (retval == -EINTR)
2069				retval = -ERESTARTSYS;
2070			tty = ERR_PTR(retval);
2071			goto out;
2072		}
2073		retval = tty_reopen(tty);
2074		if (retval < 0) {
2075			tty_unlock(tty);
2076			tty = ERR_PTR(retval);
2077		}
2078	} else { /* Returns with the tty_lock held for now */
2079		tty = tty_init_dev(driver, index);
2080		mutex_unlock(&tty_mutex);
2081	}
2082out:
2083	tty_driver_kref_put(driver);
2084	return tty;
2085}
2086
2087/**
2088 * tty_open	-	open a tty device
2089 * @inode: inode of device file
2090 * @filp: file pointer to tty
2091 *
2092 * tty_open() and tty_release() keep up the tty count that contains the number
2093 * of opens done on a tty. We cannot use the inode-count, as different inodes
2094 * might point to the same tty.
2095 *
2096 * Open-counting is needed for pty masters, as well as for keeping track of
2097 * serial lines: DTR is dropped when the last close happens.
2098 * (This is not done solely through tty->count, now.  - Ted 1/27/92)
2099 *
2100 * The termios state of a pty is reset on the first open so that settings don't
2101 * persist across reuse.
2102 *
2103 * Locking:
2104 *  * %tty_mutex protects tty, tty_lookup_driver() and tty_init_dev().
2105 *  * @tty->count should protect the rest.
2106 *  * ->siglock protects ->signal/->sighand
2107 *
2108 * Note: the tty_unlock/lock cases without a ref are only safe due to %tty_mutex
2109 */
2110static int tty_open(struct inode *inode, struct file *filp)
2111{
2112	struct tty_struct *tty;
2113	int noctty, retval;
 
 
2114	dev_t device = inode->i_rdev;
2115	unsigned saved_flags = filp->f_flags;
2116
2117	nonseekable_open(inode, filp);
2118
2119retry_open:
2120	retval = tty_alloc_file(filp);
2121	if (retval)
2122		return -ENOMEM;
2123
 
 
 
 
 
 
 
2124	tty = tty_open_current_tty(device, filp);
2125	if (!tty)
2126		tty = tty_open_by_driver(device, filp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2127
 
 
 
2128	if (IS_ERR(tty)) {
2129		tty_free_file(filp);
2130		retval = PTR_ERR(tty);
2131		if (retval != -EAGAIN || signal_pending(current))
2132			return retval;
2133		schedule();
2134		goto retry_open;
2135	}
2136
2137	tty_add_file(tty, filp);
2138
2139	check_tty_count(tty, __func__);
2140	tty_debug_hangup(tty, "opening (count=%d)\n", tty->count);
2141
 
 
 
 
2142	if (tty->ops->open)
2143		retval = tty->ops->open(tty, filp);
2144	else
2145		retval = -ENODEV;
2146	filp->f_flags = saved_flags;
2147
2148	if (retval) {
2149		tty_debug_hangup(tty, "open error %d, releasing\n", retval);
 
2150
2151		tty_unlock(tty); /* need to call tty_release without BTM */
 
 
 
 
 
2152		tty_release(inode, filp);
2153		if (retval != -ERESTARTSYS)
2154			return retval;
2155
2156		if (signal_pending(current))
2157			return retval;
2158
2159		schedule();
2160		/*
2161		 * Need to reset f_op in case a hangup happened.
2162		 */
2163		if (tty_hung_up_p(filp))
 
2164			filp->f_op = &tty_fops;
 
2165		goto retry_open;
2166	}
2167	clear_bit(TTY_HUPPED, &tty->flags);
 
2168
2169	noctty = (filp->f_flags & O_NOCTTY) ||
2170		 (IS_ENABLED(CONFIG_VT) && device == MKDEV(TTY_MAJOR, 0)) ||
2171		 device == MKDEV(TTYAUX_MAJOR, 1) ||
2172		 (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2173		  tty->driver->subtype == PTY_TYPE_MASTER);
2174	if (!noctty)
2175		tty_open_proc_set_tty(filp, tty);
2176	tty_unlock(tty);
 
 
 
2177	return 0;
 
 
 
 
 
 
 
 
 
2178}
2179
2180
 
2181/**
2182 * tty_poll	-	check tty status
2183 * @filp: file being polled
2184 * @wait: poll wait structures to update
2185 *
2186 * Call the line discipline polling method to obtain the poll status of the
2187 * device.
2188 *
2189 * Locking: locks called line discipline but ldisc poll method may be
2190 * re-entered freely by other callers.
2191 */
2192static __poll_t tty_poll(struct file *filp, poll_table *wait)
 
2193{
2194	struct tty_struct *tty = file_tty(filp);
2195	struct tty_ldisc *ld;
2196	__poll_t ret = 0;
2197
2198	if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2199		return 0;
2200
2201	ld = tty_ldisc_ref_wait(tty);
2202	if (!ld)
2203		return hung_up_tty_poll(filp, wait);
2204	if (ld->ops->poll)
2205		ret = ld->ops->poll(tty, filp, wait);
2206	tty_ldisc_deref(ld);
2207	return ret;
2208}
2209
2210static int __tty_fasync(int fd, struct file *filp, int on)
2211{
2212	struct tty_struct *tty = file_tty(filp);
2213	unsigned long flags;
2214	int retval = 0;
2215
2216	if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2217		goto out;
2218
2219	retval = fasync_helper(fd, filp, on, &tty->fasync);
2220	if (retval <= 0)
2221		goto out;
2222
2223	if (on) {
2224		enum pid_type type;
2225		struct pid *pid;
2226
2227		spin_lock_irqsave(&tty->ctrl.lock, flags);
2228		if (tty->ctrl.pgrp) {
2229			pid = tty->ctrl.pgrp;
 
2230			type = PIDTYPE_PGID;
2231		} else {
2232			pid = task_pid(current);
2233			type = PIDTYPE_TGID;
2234		}
2235		get_pid(pid);
2236		spin_unlock_irqrestore(&tty->ctrl.lock, flags);
2237		__f_setown(filp, pid, type, 0);
2238		put_pid(pid);
2239		retval = 0;
 
 
 
 
2240	}
 
2241out:
2242	return retval;
2243}
2244
2245static int tty_fasync(int fd, struct file *filp, int on)
2246{
2247	struct tty_struct *tty = file_tty(filp);
2248	int retval = -ENOTTY;
2249
2250	tty_lock(tty);
2251	if (!tty_hung_up_p(filp))
2252		retval = __tty_fasync(fd, filp, on);
2253	tty_unlock(tty);
2254
2255	return retval;
2256}
2257
2258static bool tty_legacy_tiocsti __read_mostly = IS_ENABLED(CONFIG_LEGACY_TIOCSTI);
2259/**
2260 * tiocsti		-	fake input character
2261 * @tty: tty to fake input into
2262 * @p: pointer to character
 
 
 
2263 *
2264 * Fake input to a tty device. Does the necessary locking and input management.
2265 *
2266 * FIXME: does not honour flow control ??
 
 
2267 *
2268 * Locking:
2269 *  * Called functions take tty_ldiscs_lock
2270 *  * current->signal->tty check is safe without locks
2271 */
 
2272static int tiocsti(struct tty_struct *tty, char __user *p)
2273{
2274	char ch, mbz = 0;
2275	struct tty_ldisc *ld;
2276
2277	if (!tty_legacy_tiocsti)
2278		return -EIO;
2279
2280	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2281		return -EPERM;
2282	if (get_user(ch, p))
2283		return -EFAULT;
2284	tty_audit_tiocsti(tty, ch);
2285	ld = tty_ldisc_ref_wait(tty);
2286	if (!ld)
2287		return -EIO;
2288	tty_buffer_lock_exclusive(tty->port);
2289	if (ld->ops->receive_buf)
2290		ld->ops->receive_buf(tty, &ch, &mbz, 1);
2291	tty_buffer_unlock_exclusive(tty->port);
2292	tty_ldisc_deref(ld);
2293	return 0;
2294}
2295
2296/**
2297 * tiocgwinsz		-	implement window query ioctl
2298 * @tty: tty
2299 * @arg: user buffer for result
2300 *
2301 * Copies the kernel idea of the window size into the user buffer.
2302 *
2303 * Locking: @tty->winsize_mutex is taken to ensure the winsize data is
2304 * consistent.
2305 */
 
2306static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2307{
2308	int err;
2309
2310	mutex_lock(&tty->winsize_mutex);
2311	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2312	mutex_unlock(&tty->winsize_mutex);
2313
2314	return err ? -EFAULT : 0;
2315}
2316
2317/**
2318 * tty_do_resize	-	resize event
2319 * @tty: tty being resized
2320 * @ws: new dimensions
 
2321 *
2322 * Update the termios variables and send the necessary signals to peform a
2323 * terminal resize correctly.
2324 */
 
2325int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2326{
2327	struct pid *pgrp;
 
2328
2329	/* Lock the tty */
2330	mutex_lock(&tty->winsize_mutex);
2331	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2332		goto done;
 
 
 
 
 
2333
2334	/* Signal the foreground process group */
2335	pgrp = tty_get_pgrp(tty);
2336	if (pgrp)
2337		kill_pgrp(pgrp, SIGWINCH, 1);
2338	put_pid(pgrp);
2339
2340	tty->winsize = *ws;
2341done:
2342	mutex_unlock(&tty->winsize_mutex);
2343	return 0;
2344}
2345EXPORT_SYMBOL(tty_do_resize);
2346
2347/**
2348 * tiocswinsz		-	implement window size set ioctl
2349 * @tty: tty side of tty
2350 * @arg: user buffer for result
2351 *
2352 * Copies the user idea of the window size to the kernel. Traditionally this is
2353 * just advisory information but for the Linux console it actually has driver
2354 * level meaning and triggers a VC resize.
2355 *
2356 * Locking:
2357 *	Driver dependent. The default do_resize method takes the tty termios
2358 *	mutex and ctrl.lock. The console takes its own lock then calls into the
2359 *	default method.
2360 */
 
2361static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2362{
2363	struct winsize tmp_ws;
2364
2365	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2366		return -EFAULT;
2367
2368	if (tty->ops->resize)
2369		return tty->ops->resize(tty, &tmp_ws);
2370	else
2371		return tty_do_resize(tty, &tmp_ws);
2372}
2373
2374/**
2375 * tioccons	-	allow admin to move logical console
2376 * @file: the file to become console
2377 *
2378 * Allow the administrator to move the redirected console device.
2379 *
2380 * Locking: uses redirect_lock to guard the redirect information
2381 */
 
2382static int tioccons(struct file *file)
2383{
2384	if (!capable(CAP_SYS_ADMIN))
2385		return -EPERM;
2386	if (file->f_op->write_iter == redirected_tty_write) {
2387		struct file *f;
2388
2389		spin_lock(&redirect_lock);
2390		f = redirect;
2391		redirect = NULL;
2392		spin_unlock(&redirect_lock);
2393		if (f)
2394			fput(f);
2395		return 0;
2396	}
2397	if (file->f_op->write_iter != tty_write)
2398		return -ENOTTY;
2399	if (!(file->f_mode & FMODE_WRITE))
2400		return -EBADF;
2401	if (!(file->f_mode & FMODE_CAN_WRITE))
2402		return -EINVAL;
2403	spin_lock(&redirect_lock);
2404	if (redirect) {
2405		spin_unlock(&redirect_lock);
2406		return -EBUSY;
2407	}
2408	redirect = get_file(file);
 
2409	spin_unlock(&redirect_lock);
2410	return 0;
2411}
2412
2413/**
2414 * tiocsetd	-	set line discipline
2415 * @tty: tty device
2416 * @p: pointer to user data
2417 *
2418 * Set the line discipline according to user request.
 
 
2419 *
2420 * Locking: see tty_set_ldisc(), this function is just a helper
2421 */
2422static int tiocsetd(struct tty_struct *tty, int __user *p)
 
2423{
2424	int disc;
2425	int ret;
2426
2427	if (get_user(disc, p))
2428		return -EFAULT;
2429
2430	ret = tty_set_ldisc(tty, disc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2431
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2432	return ret;
2433}
2434
2435/**
2436 * tiocgetd	-	get line discipline
2437 * @tty: tty device
2438 * @p: pointer to user data
2439 *
2440 * Retrieves the line discipline id directly from the ldisc.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441 *
2442 * Locking: waits for ldisc reference (in case the line discipline is changing
2443 * or the @tty is being hungup)
2444 */
2445static int tiocgetd(struct tty_struct *tty, int __user *p)
 
2446{
2447	struct tty_ldisc *ld;
2448	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2449
2450	ld = tty_ldisc_ref_wait(tty);
2451	if (!ld)
2452		return -EIO;
2453	ret = put_user(ld->ops->num, p);
2454	tty_ldisc_deref(ld);
2455	return ret;
2456}
2457
2458/**
2459 * send_break	-	performed time break
2460 * @tty: device to break on
2461 * @duration: timeout in mS
 
 
 
2462 *
2463 * Perform a timed break on hardware that lacks its own driver level timed
2464 * break functionality.
2465 *
2466 * Locking:
2467 *	@tty->atomic_write_lock serializes
2468 */
 
2469static int send_break(struct tty_struct *tty, unsigned int duration)
2470{
2471	int retval;
2472
2473	if (tty->ops->break_ctl == NULL)
2474		return 0;
2475
2476	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2477		retval = tty->ops->break_ctl(tty, duration);
2478	else {
2479		/* Do the work ourselves */
2480		if (tty_write_lock(tty, 0) < 0)
2481			return -EINTR;
2482		retval = tty->ops->break_ctl(tty, -1);
2483		if (retval)
2484			goto out;
2485		if (!signal_pending(current))
2486			msleep_interruptible(duration);
2487		retval = tty->ops->break_ctl(tty, 0);
2488out:
2489		tty_write_unlock(tty);
2490		if (signal_pending(current))
2491			retval = -EINTR;
2492	}
2493	return retval;
2494}
2495
2496/**
2497 * tty_tiocmget		-	get modem status
2498 * @tty: tty device
2499 * @p: pointer to result
 
2500 *
2501 * Obtain the modem status bits from the tty driver if the feature is
2502 * supported. Return -%ENOTTY if it is not available.
2503 *
2504 * Locking: none (up to the driver)
2505 */
 
2506static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2507{
2508	int retval = -ENOTTY;
2509
2510	if (tty->ops->tiocmget) {
2511		retval = tty->ops->tiocmget(tty);
2512
2513		if (retval >= 0)
2514			retval = put_user(retval, p);
2515	}
2516	return retval;
2517}
2518
2519/**
2520 * tty_tiocmset		-	set modem status
2521 * @tty: tty device
2522 * @cmd: command - clear bits, set bits or set all
2523 * @p: pointer to desired bits
2524 *
2525 * Set the modem status bits from the tty driver if the feature
2526 * is supported. Return -%ENOTTY if it is not available.
2527 *
2528 * Locking: none (up to the driver)
2529 */
 
2530static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2531	     unsigned __user *p)
2532{
2533	int retval;
2534	unsigned int set, clear, val;
2535
2536	if (tty->ops->tiocmset == NULL)
2537		return -ENOTTY;
2538
2539	retval = get_user(val, p);
2540	if (retval)
2541		return retval;
2542	set = clear = 0;
2543	switch (cmd) {
2544	case TIOCMBIS:
2545		set = val;
2546		break;
2547	case TIOCMBIC:
2548		clear = val;
2549		break;
2550	case TIOCMSET:
2551		set = val;
2552		clear = ~val;
2553		break;
2554	}
2555	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2556	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2557	return tty->ops->tiocmset(tty, set, clear);
2558}
2559
2560/**
2561 * tty_get_icount	-	get tty statistics
2562 * @tty: tty device
2563 * @icount: output parameter
2564 *
2565 * Gets a copy of the @tty's icount statistics.
2566 *
2567 * Locking: none (up to the driver)
2568 */
2569int tty_get_icount(struct tty_struct *tty,
2570		   struct serial_icounter_struct *icount)
2571{
2572	memset(icount, 0, sizeof(*icount));
2573
2574	if (tty->ops->get_icount)
2575		return tty->ops->get_icount(tty, icount);
2576	else
2577		return -ENOTTY;
2578}
2579EXPORT_SYMBOL_GPL(tty_get_icount);
2580
2581static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2582{
 
2583	struct serial_icounter_struct icount;
2584	int retval;
2585
2586	retval = tty_get_icount(tty, &icount);
2587	if (retval != 0)
2588		return retval;
2589
2590	if (copy_to_user(arg, &icount, sizeof(icount)))
2591		return -EFAULT;
2592	return 0;
2593}
2594
2595static int tty_set_serial(struct tty_struct *tty, struct serial_struct *ss)
2596{
2597	char comm[TASK_COMM_LEN];
2598	int flags;
2599
2600	flags = ss->flags & ASYNC_DEPRECATED;
2601
2602	if (flags)
2603		pr_warn_ratelimited("%s: '%s' is using deprecated serial flags (with no effect): %.8x\n",
2604				__func__, get_task_comm(comm, current), flags);
2605
2606	if (!tty->ops->set_serial)
2607		return -ENOTTY;
2608
2609	return tty->ops->set_serial(tty, ss);
2610}
2611
2612static int tty_tiocsserial(struct tty_struct *tty, struct serial_struct __user *ss)
2613{
2614	struct serial_struct v;
2615
2616	if (copy_from_user(&v, ss, sizeof(*ss)))
2617		return -EFAULT;
2618
2619	return tty_set_serial(tty, &v);
2620}
 
2621
2622static int tty_tiocgserial(struct tty_struct *tty, struct serial_struct __user *ss)
2623{
2624	struct serial_struct v;
2625	int err;
2626
2627	memset(&v, 0, sizeof(v));
2628	if (!tty->ops->get_serial)
2629		return -ENOTTY;
2630	err = tty->ops->get_serial(tty, &v);
2631	if (!err && copy_to_user(ss, &v, sizeof(v)))
2632		err = -EFAULT;
2633	return err;
2634}
2635
2636/*
2637 * if pty, return the slave side (real_tty)
2638 * otherwise, return self
2639 */
2640static struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2641{
2642	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2643	    tty->driver->subtype == PTY_TYPE_MASTER)
2644		tty = tty->link;
2645	return tty;
2646}
 
2647
2648/*
2649 * Split this up, as gcc can choke on it otherwise..
2650 */
2651long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2652{
2653	struct tty_struct *tty = file_tty(file);
2654	struct tty_struct *real_tty;
2655	void __user *p = (void __user *)arg;
2656	int retval;
2657	struct tty_ldisc *ld;
 
2658
2659	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2660		return -EINVAL;
2661
2662	real_tty = tty_pair_get_tty(tty);
2663
2664	/*
2665	 * Factor out some common prep work
2666	 */
2667	switch (cmd) {
2668	case TIOCSETD:
2669	case TIOCSBRK:
2670	case TIOCCBRK:
2671	case TCSBRK:
2672	case TCSBRKP:
2673		retval = tty_check_change(tty);
2674		if (retval)
2675			return retval;
2676		if (cmd != TIOCCBRK) {
2677			tty_wait_until_sent(tty, 0);
2678			if (signal_pending(current))
2679				return -EINTR;
2680		}
2681		break;
2682	}
2683
2684	/*
2685	 *	Now do the stuff.
2686	 */
2687	switch (cmd) {
2688	case TIOCSTI:
2689		return tiocsti(tty, p);
2690	case TIOCGWINSZ:
2691		return tiocgwinsz(real_tty, p);
2692	case TIOCSWINSZ:
2693		return tiocswinsz(real_tty, p);
2694	case TIOCCONS:
2695		return real_tty != tty ? -EINVAL : tioccons(file);
 
 
2696	case TIOCEXCL:
2697		set_bit(TTY_EXCLUSIVE, &tty->flags);
2698		return 0;
2699	case TIOCNXCL:
2700		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2701		return 0;
2702	case TIOCGEXCL:
2703	{
2704		int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2705
2706		return put_user(excl, (int __user *)p);
2707	}
 
 
 
 
 
 
 
2708	case TIOCGETD:
2709		return tiocgetd(tty, p);
2710	case TIOCSETD:
2711		return tiocsetd(tty, p);
2712	case TIOCVHANGUP:
2713		if (!capable(CAP_SYS_ADMIN))
2714			return -EPERM;
2715		tty_vhangup(tty);
2716		return 0;
2717	case TIOCGDEV:
2718	{
2719		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2720
2721		return put_user(ret, (unsigned int __user *)p);
2722	}
2723	/*
2724	 * Break handling
2725	 */
2726	case TIOCSBRK:	/* Turn break on, unconditionally */
2727		if (tty->ops->break_ctl)
2728			return tty->ops->break_ctl(tty, -1);
2729		return 0;
2730	case TIOCCBRK:	/* Turn break off, unconditionally */
2731		if (tty->ops->break_ctl)
2732			return tty->ops->break_ctl(tty, 0);
2733		return 0;
2734	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2735		/* non-zero arg means wait for all output data
2736		 * to be sent (performed above) but don't send break.
2737		 * This is used by the tcdrain() termios function.
2738		 */
2739		if (!arg)
2740			return send_break(tty, 250);
2741		return 0;
2742	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2743		return send_break(tty, arg ? arg*100 : 250);
2744
2745	case TIOCMGET:
2746		return tty_tiocmget(tty, p);
2747	case TIOCMSET:
2748	case TIOCMBIC:
2749	case TIOCMBIS:
2750		return tty_tiocmset(tty, cmd, p);
2751	case TIOCGICOUNT:
2752		return tty_tiocgicount(tty, p);
 
 
 
 
2753	case TCFLSH:
2754		switch (arg) {
2755		case TCIFLUSH:
2756		case TCIOFLUSH:
2757		/* flush tty buffer and allow ldisc to process ioctl */
2758			tty_buffer_flush(tty, NULL);
2759			break;
2760		}
2761		break;
2762	case TIOCSSERIAL:
2763		return tty_tiocsserial(tty, p);
2764	case TIOCGSERIAL:
2765		return tty_tiocgserial(tty, p);
2766	case TIOCGPTPEER:
2767		/* Special because the struct file is needed */
2768		return ptm_open_peer(file, tty, (int)arg);
2769	default:
2770		retval = tty_jobctrl_ioctl(tty, real_tty, file, cmd, arg);
2771		if (retval != -ENOIOCTLCMD)
2772			return retval;
2773	}
2774	if (tty->ops->ioctl) {
2775		retval = tty->ops->ioctl(tty, cmd, arg);
2776		if (retval != -ENOIOCTLCMD)
2777			return retval;
2778	}
2779	ld = tty_ldisc_ref_wait(tty);
2780	if (!ld)
2781		return hung_up_tty_ioctl(file, cmd, arg);
2782	retval = -EINVAL;
2783	if (ld->ops->ioctl) {
2784		retval = ld->ops->ioctl(tty, cmd, arg);
2785		if (retval == -ENOIOCTLCMD)
2786			retval = -ENOTTY;
2787	}
2788	tty_ldisc_deref(ld);
2789	return retval;
2790}
2791
2792#ifdef CONFIG_COMPAT
2793
2794struct serial_struct32 {
2795	compat_int_t    type;
2796	compat_int_t    line;
2797	compat_uint_t   port;
2798	compat_int_t    irq;
2799	compat_int_t    flags;
2800	compat_int_t    xmit_fifo_size;
2801	compat_int_t    custom_divisor;
2802	compat_int_t    baud_base;
2803	unsigned short  close_delay;
2804	char    io_type;
2805	char    reserved_char;
2806	compat_int_t    hub6;
2807	unsigned short  closing_wait; /* time to wait before closing */
2808	unsigned short  closing_wait2; /* no longer used... */
2809	compat_uint_t   iomem_base;
2810	unsigned short  iomem_reg_shift;
2811	unsigned int    port_high;
2812	/* compat_ulong_t  iomap_base FIXME */
2813	compat_int_t    reserved;
2814};
2815
2816static int compat_tty_tiocsserial(struct tty_struct *tty,
2817		struct serial_struct32 __user *ss)
2818{
2819	struct serial_struct32 v32;
2820	struct serial_struct v;
2821
2822	if (copy_from_user(&v32, ss, sizeof(*ss)))
2823		return -EFAULT;
2824
2825	memcpy(&v, &v32, offsetof(struct serial_struct32, iomem_base));
2826	v.iomem_base = compat_ptr(v32.iomem_base);
2827	v.iomem_reg_shift = v32.iomem_reg_shift;
2828	v.port_high = v32.port_high;
2829	v.iomap_base = 0;
2830
2831	return tty_set_serial(tty, &v);
2832}
2833
2834static int compat_tty_tiocgserial(struct tty_struct *tty,
2835			struct serial_struct32 __user *ss)
2836{
2837	struct serial_struct32 v32;
2838	struct serial_struct v;
2839	int err;
2840
2841	memset(&v, 0, sizeof(v));
2842	memset(&v32, 0, sizeof(v32));
2843
2844	if (!tty->ops->get_serial)
2845		return -ENOTTY;
2846	err = tty->ops->get_serial(tty, &v);
2847	if (!err) {
2848		memcpy(&v32, &v, offsetof(struct serial_struct32, iomem_base));
2849		v32.iomem_base = (unsigned long)v.iomem_base >> 32 ?
2850			0xfffffff : ptr_to_compat(v.iomem_base);
2851		v32.iomem_reg_shift = v.iomem_reg_shift;
2852		v32.port_high = v.port_high;
2853		if (copy_to_user(ss, &v32, sizeof(v32)))
2854			err = -EFAULT;
2855	}
2856	return err;
2857}
2858static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2859				unsigned long arg)
2860{
 
2861	struct tty_struct *tty = file_tty(file);
2862	struct tty_ldisc *ld;
2863	int retval = -ENOIOCTLCMD;
2864
2865	switch (cmd) {
2866	case TIOCOUTQ:
2867	case TIOCSTI:
2868	case TIOCGWINSZ:
2869	case TIOCSWINSZ:
2870	case TIOCGEXCL:
2871	case TIOCGETD:
2872	case TIOCSETD:
2873	case TIOCGDEV:
2874	case TIOCMGET:
2875	case TIOCMSET:
2876	case TIOCMBIC:
2877	case TIOCMBIS:
2878	case TIOCGICOUNT:
2879	case TIOCGPGRP:
2880	case TIOCSPGRP:
2881	case TIOCGSID:
2882	case TIOCSERGETLSR:
2883	case TIOCGRS485:
2884	case TIOCSRS485:
2885#ifdef TIOCGETP
2886	case TIOCGETP:
2887	case TIOCSETP:
2888	case TIOCSETN:
2889#endif
2890#ifdef TIOCGETC
2891	case TIOCGETC:
2892	case TIOCSETC:
2893#endif
2894#ifdef TIOCGLTC
2895	case TIOCGLTC:
2896	case TIOCSLTC:
2897#endif
2898	case TCSETSF:
2899	case TCSETSW:
2900	case TCSETS:
2901	case TCGETS:
2902#ifdef TCGETS2
2903	case TCGETS2:
2904	case TCSETSF2:
2905	case TCSETSW2:
2906	case TCSETS2:
2907#endif
2908	case TCGETA:
2909	case TCSETAF:
2910	case TCSETAW:
2911	case TCSETA:
2912	case TIOCGLCKTRMIOS:
2913	case TIOCSLCKTRMIOS:
2914#ifdef TCGETX
2915	case TCGETX:
2916	case TCSETX:
2917	case TCSETXW:
2918	case TCSETXF:
2919#endif
2920	case TIOCGSOFTCAR:
2921	case TIOCSSOFTCAR:
2922
2923	case PPPIOCGCHAN:
2924	case PPPIOCGUNIT:
2925		return tty_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2926	case TIOCCONS:
2927	case TIOCEXCL:
2928	case TIOCNXCL:
2929	case TIOCVHANGUP:
2930	case TIOCSBRK:
2931	case TIOCCBRK:
2932	case TCSBRK:
2933	case TCSBRKP:
2934	case TCFLSH:
2935	case TIOCGPTPEER:
2936	case TIOCNOTTY:
2937	case TIOCSCTTY:
2938	case TCXONC:
2939	case TIOCMIWAIT:
2940	case TIOCSERCONFIG:
2941		return tty_ioctl(file, cmd, arg);
2942	}
2943
2944	if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2945		return -EINVAL;
2946
2947	switch (cmd) {
2948	case TIOCSSERIAL:
2949		return compat_tty_tiocsserial(tty, compat_ptr(arg));
2950	case TIOCGSERIAL:
2951		return compat_tty_tiocgserial(tty, compat_ptr(arg));
2952	}
2953	if (tty->ops->compat_ioctl) {
2954		retval = tty->ops->compat_ioctl(tty, cmd, arg);
2955		if (retval != -ENOIOCTLCMD)
2956			return retval;
2957	}
2958
2959	ld = tty_ldisc_ref_wait(tty);
2960	if (!ld)
2961		return hung_up_tty_compat_ioctl(file, cmd, arg);
2962	if (ld->ops->compat_ioctl)
2963		retval = ld->ops->compat_ioctl(tty, cmd, arg);
2964	if (retval == -ENOIOCTLCMD && ld->ops->ioctl)
2965		retval = ld->ops->ioctl(tty, (unsigned long)compat_ptr(cmd),
2966				arg);
2967	tty_ldisc_deref(ld);
2968
2969	return retval;
2970}
2971#endif
2972
2973static int this_tty(const void *t, struct file *file, unsigned fd)
2974{
2975	if (likely(file->f_op->read_iter != tty_read))
2976		return 0;
2977	return file_tty(file) != t ? 0 : fd + 1;
2978}
2979
2980/*
2981 * This implements the "Secure Attention Key" ---  the idea is to
2982 * prevent trojan horses by killing all processes associated with this
2983 * tty when the user hits the "Secure Attention Key".  Required for
2984 * super-paranoid applications --- see the Orange Book for more details.
2985 *
2986 * This code could be nicer; ideally it should send a HUP, wait a few
2987 * seconds, then send a INT, and then a KILL signal.  But you then
2988 * have to coordinate with the init process, since all processes associated
2989 * with the current tty must be dead before the new getty is allowed
2990 * to spawn.
2991 *
2992 * Now, if it would be correct ;-/ The current code has a nasty hole -
2993 * it doesn't catch files in flight. We may send the descriptor to ourselves
2994 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2995 *
2996 * Nasty bug: do_SAK is being called in interrupt context.  This can
2997 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2998 */
2999void __do_SAK(struct tty_struct *tty)
3000{
 
 
 
3001	struct task_struct *g, *p;
3002	struct pid *session;
3003	int i;
3004	unsigned long flags;
 
3005
3006	spin_lock_irqsave(&tty->ctrl.lock, flags);
3007	session = get_pid(tty->ctrl.session);
3008	spin_unlock_irqrestore(&tty->ctrl.lock, flags);
3009
3010	tty_ldisc_flush(tty);
3011
3012	tty_driver_flush_buffer(tty);
3013
3014	read_lock(&tasklist_lock);
3015	/* Kill the entire session */
3016	do_each_pid_task(session, PIDTYPE_SID, p) {
3017		tty_notice(tty, "SAK: killed process %d (%s): by session\n",
3018			   task_pid_nr(p), p->comm);
3019		group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_SID);
 
3020	} while_each_pid_task(session, PIDTYPE_SID, p);
3021
3022	/* Now kill any processes that happen to have the tty open */
 
3023	do_each_thread(g, p) {
3024		if (p->signal->tty == tty) {
3025			tty_notice(tty, "SAK: killed process %d (%s): by controlling tty\n",
3026				   task_pid_nr(p), p->comm);
3027			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3028					PIDTYPE_SID);
3029			continue;
3030		}
3031		task_lock(p);
3032		i = iterate_fd(p->files, 0, this_tty, tty);
3033		if (i != 0) {
3034			tty_notice(tty, "SAK: killed process %d (%s): by fd#%d\n",
3035				   task_pid_nr(p), p->comm, i - 1);
3036			group_send_sig_info(SIGKILL, SEND_SIG_PRIV, p,
3037					PIDTYPE_SID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3038		}
3039		task_unlock(p);
3040	} while_each_thread(g, p);
3041	read_unlock(&tasklist_lock);
3042	put_pid(session);
3043}
3044
3045static void do_SAK_work(struct work_struct *work)
3046{
3047	struct tty_struct *tty =
3048		container_of(work, struct tty_struct, SAK_work);
3049	__do_SAK(tty);
3050}
3051
3052/*
3053 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3054 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3055 * the values which we write to it will be identical to the values which it
3056 * already has. --akpm
3057 */
3058void do_SAK(struct tty_struct *tty)
3059{
3060	if (!tty)
3061		return;
3062	schedule_work(&tty->SAK_work);
3063}
 
3064EXPORT_SYMBOL(do_SAK);
3065
 
 
 
 
 
 
3066/* Must put_device() after it's unused! */
3067static struct device *tty_get_device(struct tty_struct *tty)
3068{
3069	dev_t devt = tty_devnum(tty);
3070
3071	return class_find_device_by_devt(tty_class, devt);
3072}
3073
3074
3075/**
3076 * alloc_tty_struct - allocate a new tty
3077 * @driver: driver which will handle the returned tty
3078 * @idx: minor of the tty
3079 *
3080 * This subroutine allocates and initializes a tty structure.
 
3081 *
3082 * Locking: none - @tty in question is not exposed at this point
3083 */
3084struct tty_struct *alloc_tty_struct(struct tty_driver *driver, int idx)
3085{
3086	struct tty_struct *tty;
3087
3088	tty = kzalloc(sizeof(*tty), GFP_KERNEL_ACCOUNT);
3089	if (!tty)
3090		return NULL;
3091
 
 
 
 
3092	kref_init(&tty->kref);
3093	if (tty_ldisc_init(tty)) {
3094		kfree(tty);
3095		return NULL;
3096	}
3097	tty->ctrl.session = NULL;
3098	tty->ctrl.pgrp = NULL;
3099	mutex_init(&tty->legacy_mutex);
3100	mutex_init(&tty->throttle_mutex);
3101	init_rwsem(&tty->termios_rwsem);
3102	mutex_init(&tty->winsize_mutex);
3103	init_ldsem(&tty->ldisc_sem);
3104	init_waitqueue_head(&tty->write_wait);
3105	init_waitqueue_head(&tty->read_wait);
3106	INIT_WORK(&tty->hangup_work, do_tty_hangup);
 
3107	mutex_init(&tty->atomic_write_lock);
3108	spin_lock_init(&tty->ctrl.lock);
3109	spin_lock_init(&tty->flow.lock);
3110	spin_lock_init(&tty->files_lock);
 
3111	INIT_LIST_HEAD(&tty->tty_files);
3112	INIT_WORK(&tty->SAK_work, do_SAK_work);
3113
3114	tty->driver = driver;
3115	tty->ops = driver->ops;
3116	tty->index = idx;
3117	tty_line_name(driver, idx, tty->name);
3118	tty->dev = tty_get_device(tty);
3119
3120	return tty;
3121}
3122
3123/**
3124 * tty_put_char	- write one character to a tty
3125 * @tty: tty
3126 * @ch: character to write
3127 *
3128 * Write one byte to the @tty using the provided @tty->ops->put_char() method
3129 * if present.
3130 *
3131 * Note: the specific put_char operation in the driver layer may go
3132 * away soon. Don't call it directly, use this method
 
 
 
 
 
 
 
 
 
 
 
 
3133 *
3134 * Return: the number of characters successfully output.
 
3135 */
 
3136int tty_put_char(struct tty_struct *tty, unsigned char ch)
3137{
3138	if (tty->ops->put_char)
3139		return tty->ops->put_char(tty, ch);
3140	return tty->ops->write(tty, &ch, 1);
3141}
3142EXPORT_SYMBOL_GPL(tty_put_char);
3143
3144struct class *tty_class;
3145
3146static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3147		unsigned int index, unsigned int count)
3148{
3149	int err;
3150
3151	/* init here, since reused cdevs cause crashes */
3152	driver->cdevs[index] = cdev_alloc();
3153	if (!driver->cdevs[index])
3154		return -ENOMEM;
3155	driver->cdevs[index]->ops = &tty_fops;
3156	driver->cdevs[index]->owner = driver->owner;
3157	err = cdev_add(driver->cdevs[index], dev, count);
3158	if (err)
3159		kobject_put(&driver->cdevs[index]->kobj);
3160	return err;
3161}
3162
3163/**
3164 * tty_register_device - register a tty device
3165 * @driver: the tty driver that describes the tty device
3166 * @index: the index in the tty driver for this tty device
3167 * @device: a struct device that is associated with this tty device.
3168 *	This field is optional, if there is no known struct device
3169 *	for this tty device it can be set to NULL safely.
3170 *
3171 * This call is required to be made to register an individual tty device
3172 * if the tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set.  If
3173 * that bit is not set, this function should not be called by a tty
3174 * driver.
3175 *
3176 * Locking: ??
 
3177 *
3178 * Return: A pointer to the struct device for this tty device (or
3179 * ERR_PTR(-EFOO) on error).
3180 */
 
3181struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3182				   struct device *device)
3183{
3184	return tty_register_device_attr(driver, index, device, NULL, NULL);
3185}
3186EXPORT_SYMBOL(tty_register_device);
3187
3188static void tty_device_create_release(struct device *dev)
3189{
3190	dev_dbg(dev, "releasing...\n");
3191	kfree(dev);
3192}
3193
3194/**
3195 * tty_register_device_attr - register a tty device
3196 * @driver: the tty driver that describes the tty device
3197 * @index: the index in the tty driver for this tty device
3198 * @device: a struct device that is associated with this tty device.
3199 *	This field is optional, if there is no known struct device
3200 *	for this tty device it can be set to %NULL safely.
3201 * @drvdata: Driver data to be set to device.
3202 * @attr_grp: Attribute group to be set on device.
3203 *
3204 * This call is required to be made to register an individual tty device if the
3205 * tty driver's flags have the %TTY_DRIVER_DYNAMIC_DEV bit set. If that bit is
3206 * not set, this function should not be called by a tty driver.
3207 *
3208 * Locking: ??
3209 *
3210 * Return: A pointer to the struct device for this tty device (or
3211 * ERR_PTR(-EFOO) on error).
3212 */
3213struct device *tty_register_device_attr(struct tty_driver *driver,
3214				   unsigned index, struct device *device,
3215				   void *drvdata,
3216				   const struct attribute_group **attr_grp)
3217{
3218	char name[64];
3219	dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3220	struct ktermios *tp;
3221	struct device *dev;
3222	int retval;
3223
3224	if (index >= driver->num) {
3225		pr_err("%s: Attempt to register invalid tty line number (%d)\n",
3226		       driver->name, index);
3227		return ERR_PTR(-EINVAL);
3228	}
3229
3230	if (driver->type == TTY_DRIVER_TYPE_PTY)
3231		pty_line_name(driver, index, name);
3232	else
3233		tty_line_name(driver, index, name);
3234
3235	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3236	if (!dev)
3237		return ERR_PTR(-ENOMEM);
3238
3239	dev->devt = devt;
3240	dev->class = tty_class;
3241	dev->parent = device;
3242	dev->release = tty_device_create_release;
3243	dev_set_name(dev, "%s", name);
3244	dev->groups = attr_grp;
3245	dev_set_drvdata(dev, drvdata);
3246
3247	dev_set_uevent_suppress(dev, 1);
3248
3249	retval = device_register(dev);
3250	if (retval)
3251		goto err_put;
3252
3253	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3254		/*
3255		 * Free any saved termios data so that the termios state is
3256		 * reset when reusing a minor number.
3257		 */
3258		tp = driver->termios[index];
3259		if (tp) {
3260			driver->termios[index] = NULL;
3261			kfree(tp);
3262		}
3263
3264		retval = tty_cdev_add(driver, devt, index, 1);
3265		if (retval)
3266			goto err_del;
3267	}
3268
3269	dev_set_uevent_suppress(dev, 0);
3270	kobject_uevent(&dev->kobj, KOBJ_ADD);
3271
3272	return dev;
3273
3274err_del:
3275	device_del(dev);
3276err_put:
3277	put_device(dev);
3278
3279	return ERR_PTR(retval);
3280}
3281EXPORT_SYMBOL_GPL(tty_register_device_attr);
3282
3283/**
3284 * tty_unregister_device - unregister a tty device
3285 * @driver: the tty driver that describes the tty device
3286 * @index: the index in the tty driver for this tty device
3287 *
3288 * If a tty device is registered with a call to tty_register_device() then
3289 * this function must be called when the tty device is gone.
3290 *
3291 * Locking: ??
3292 */
 
3293void tty_unregister_device(struct tty_driver *driver, unsigned index)
3294{
3295	device_destroy(tty_class,
3296		MKDEV(driver->major, driver->minor_start) + index);
3297	if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3298		cdev_del(driver->cdevs[index]);
3299		driver->cdevs[index] = NULL;
3300	}
3301}
3302EXPORT_SYMBOL(tty_unregister_device);
3303
3304/**
3305 * __tty_alloc_driver -- allocate tty driver
3306 * @lines: count of lines this driver can handle at most
3307 * @owner: module which is responsible for this driver
3308 * @flags: some of %TTY_DRIVER_ flags, will be set in driver->flags
3309 *
3310 * This should not be called directly, some of the provided macros should be
3311 * used instead. Use IS_ERR() and friends on @retval.
3312 */
3313struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3314		unsigned long flags)
3315{
3316	struct tty_driver *driver;
3317	unsigned int cdevs = 1;
3318	int err;
3319
3320	if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3321		return ERR_PTR(-EINVAL);
3322
3323	driver = kzalloc(sizeof(*driver), GFP_KERNEL);
3324	if (!driver)
3325		return ERR_PTR(-ENOMEM);
3326
3327	kref_init(&driver->kref);
3328	driver->num = lines;
3329	driver->owner = owner;
3330	driver->flags = flags;
3331
3332	if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3333		driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3334				GFP_KERNEL);
3335		driver->termios = kcalloc(lines, sizeof(*driver->termios),
3336				GFP_KERNEL);
3337		if (!driver->ttys || !driver->termios) {
3338			err = -ENOMEM;
3339			goto err_free_all;
3340		}
3341	}
3342
3343	if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3344		driver->ports = kcalloc(lines, sizeof(*driver->ports),
3345				GFP_KERNEL);
3346		if (!driver->ports) {
3347			err = -ENOMEM;
3348			goto err_free_all;
3349		}
3350		cdevs = lines;
3351	}
3352
3353	driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3354	if (!driver->cdevs) {
3355		err = -ENOMEM;
3356		goto err_free_all;
3357	}
3358
3359	return driver;
3360err_free_all:
3361	kfree(driver->ports);
3362	kfree(driver->ttys);
3363	kfree(driver->termios);
3364	kfree(driver->cdevs);
3365	kfree(driver);
3366	return ERR_PTR(err);
3367}
3368EXPORT_SYMBOL(__tty_alloc_driver);
3369
3370static void destruct_tty_driver(struct kref *kref)
3371{
3372	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3373	int i;
3374	struct ktermios *tp;
 
3375
3376	if (driver->flags & TTY_DRIVER_INSTALLED) {
 
 
 
 
 
3377		for (i = 0; i < driver->num; i++) {
3378			tp = driver->termios[i];
3379			if (tp) {
3380				driver->termios[i] = NULL;
3381				kfree(tp);
3382			}
3383			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3384				tty_unregister_device(driver, i);
3385		}
 
3386		proc_tty_unregister_driver(driver);
3387		if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3388			cdev_del(driver->cdevs[0]);
 
 
3389	}
3390	kfree(driver->cdevs);
3391	kfree(driver->ports);
3392	kfree(driver->termios);
3393	kfree(driver->ttys);
3394	kfree(driver);
3395}
3396
3397/**
3398 * tty_driver_kref_put -- drop a reference to a tty driver
3399 * @driver: driver of which to drop the reference
3400 *
3401 * The final put will destroy and free up the driver.
3402 */
3403void tty_driver_kref_put(struct tty_driver *driver)
3404{
3405	kref_put(&driver->kref, destruct_tty_driver);
3406}
3407EXPORT_SYMBOL(tty_driver_kref_put);
3408
3409/**
3410 * tty_register_driver -- register a tty driver
3411 * @driver: driver to register
3412 *
 
 
 
 
 
 
 
 
 
 
3413 * Called by a tty driver to register itself.
3414 */
3415int tty_register_driver(struct tty_driver *driver)
3416{
3417	int error;
3418	int i;
3419	dev_t dev;
 
3420	struct device *d;
3421
 
 
 
 
 
 
3422	if (!driver->major) {
3423		error = alloc_chrdev_region(&dev, driver->minor_start,
3424						driver->num, driver->name);
3425		if (!error) {
3426			driver->major = MAJOR(dev);
3427			driver->minor_start = MINOR(dev);
3428		}
3429	} else {
3430		dev = MKDEV(driver->major, driver->minor_start);
3431		error = register_chrdev_region(dev, driver->num, driver->name);
3432	}
3433	if (error < 0)
3434		goto err;
 
 
 
 
 
 
 
 
 
 
3435
3436	if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3437		error = tty_cdev_add(driver, dev, 0, driver->num);
3438		if (error)
3439			goto err_unreg_char;
 
 
 
 
 
3440	}
3441
3442	mutex_lock(&tty_mutex);
3443	list_add(&driver->tty_drivers, &tty_drivers);
3444	mutex_unlock(&tty_mutex);
3445
3446	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3447		for (i = 0; i < driver->num; i++) {
3448			d = tty_register_device(driver, i, NULL);
3449			if (IS_ERR(d)) {
3450				error = PTR_ERR(d);
3451				goto err_unreg_devs;
3452			}
3453		}
3454	}
3455	proc_tty_register_driver(driver);
3456	driver->flags |= TTY_DRIVER_INSTALLED;
3457	return 0;
3458
3459err_unreg_devs:
3460	for (i--; i >= 0; i--)
3461		tty_unregister_device(driver, i);
3462
3463	mutex_lock(&tty_mutex);
3464	list_del(&driver->tty_drivers);
3465	mutex_unlock(&tty_mutex);
3466
3467err_unreg_char:
3468	unregister_chrdev_region(dev, driver->num);
3469err:
 
 
3470	return error;
3471}
 
3472EXPORT_SYMBOL(tty_register_driver);
3473
3474/**
3475 * tty_unregister_driver -- unregister a tty driver
3476 * @driver: driver to unregister
3477 *
3478 * Called by a tty driver to unregister itself.
3479 */
3480void tty_unregister_driver(struct tty_driver *driver)
3481{
 
 
 
 
 
3482	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3483				driver->num);
3484	mutex_lock(&tty_mutex);
3485	list_del(&driver->tty_drivers);
3486	mutex_unlock(&tty_mutex);
 
3487}
 
3488EXPORT_SYMBOL(tty_unregister_driver);
3489
3490dev_t tty_devnum(struct tty_struct *tty)
3491{
3492	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3493}
3494EXPORT_SYMBOL(tty_devnum);
3495
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3496void tty_default_fops(struct file_operations *fops)
3497{
3498	*fops = tty_fops;
3499}
3500
3501static char *tty_devnode(const struct device *dev, umode_t *mode)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3502{
3503	if (!mode)
3504		return NULL;
3505	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3506	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3507		*mode = 0666;
3508	return NULL;
3509}
3510
3511static int __init tty_class_init(void)
3512{
3513	tty_class = class_create(THIS_MODULE, "tty");
3514	if (IS_ERR(tty_class))
3515		return PTR_ERR(tty_class);
3516	tty_class->devnode = tty_devnode;
3517	return 0;
3518}
3519
3520postcore_initcall(tty_class_init);
3521
3522/* 3/2004 jmc: why do these devices exist? */
3523static struct cdev tty_cdev, console_cdev;
3524
3525static ssize_t show_cons_active(struct device *dev,
3526				struct device_attribute *attr, char *buf)
3527{
3528	struct console *cs[16];
3529	int i = 0;
3530	struct console *c;
3531	ssize_t count = 0;
3532
3533	/*
3534	 * Hold the console_list_lock to guarantee that no consoles are
3535	 * unregistered until all console processing is complete.
3536	 * This also allows safe traversal of the console list and
3537	 * race-free reading of @flags.
3538	 */
3539	console_list_lock();
3540
3541	for_each_console(c) {
3542		if (!c->device)
3543			continue;
3544		if (!c->write)
3545			continue;
3546		if ((c->flags & CON_ENABLED) == 0)
3547			continue;
3548		cs[i++] = c;
3549		if (i >= ARRAY_SIZE(cs))
3550			break;
3551	}
3552
3553	/*
3554	 * Take console_lock to serialize device() callback with
3555	 * other console operations. For example, fg_console is
3556	 * modified under console_lock when switching vt.
3557	 */
3558	console_lock();
3559	while (i--) {
3560		int index = cs[i]->index;
3561		struct tty_driver *drv = cs[i]->device(cs[i], &index);
3562
3563		/* don't resolve tty0 as some programs depend on it */
3564		if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3565			count += tty_line_name(drv, index, buf + count);
3566		else
3567			count += sprintf(buf + count, "%s%d",
3568					 cs[i]->name, cs[i]->index);
3569
3570		count += sprintf(buf + count, "%c", i ? ' ':'\n');
3571	}
3572	console_unlock();
3573
3574	console_list_unlock();
3575
3576	return count;
3577}
3578static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3579
3580static struct attribute *cons_dev_attrs[] = {
3581	&dev_attr_active.attr,
3582	NULL
3583};
3584
3585ATTRIBUTE_GROUPS(cons_dev);
3586
3587static struct device *consdev;
3588
3589void console_sysfs_notify(void)
3590{
3591	if (consdev)
3592		sysfs_notify(&consdev->kobj, NULL, "active");
3593}
3594
3595static struct ctl_table tty_table[] = {
3596	{
3597		.procname	= "legacy_tiocsti",
3598		.data		= &tty_legacy_tiocsti,
3599		.maxlen		= sizeof(tty_legacy_tiocsti),
3600		.mode		= 0644,
3601		.proc_handler	= proc_dobool,
3602	},
3603	{
3604		.procname	= "ldisc_autoload",
3605		.data		= &tty_ldisc_autoload,
3606		.maxlen		= sizeof(tty_ldisc_autoload),
3607		.mode		= 0644,
3608		.proc_handler	= proc_dointvec,
3609		.extra1		= SYSCTL_ZERO,
3610		.extra2		= SYSCTL_ONE,
3611	},
3612	{ }
3613};
3614
3615static struct ctl_table tty_dir_table[] = {
3616	{
3617		.procname	= "tty",
3618		.mode		= 0555,
3619		.child		= tty_table,
3620	},
3621	{ }
3622};
3623
3624static struct ctl_table tty_root_table[] = {
3625	{
3626		.procname	= "dev",
3627		.mode		= 0555,
3628		.child		= tty_dir_table,
3629	},
3630	{ }
3631};
3632
3633/*
3634 * Ok, now we can initialize the rest of the tty devices and can count
3635 * on memory allocations, interrupts etc..
3636 */
3637int __init tty_init(void)
3638{
3639	register_sysctl_table(tty_root_table);
3640	cdev_init(&tty_cdev, &tty_fops);
3641	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3642	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3643		panic("Couldn't register /dev/tty driver\n");
3644	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3645
3646	cdev_init(&console_cdev, &console_fops);
3647	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3648	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3649		panic("Couldn't register /dev/console driver\n");
3650	consdev = device_create_with_groups(tty_class, NULL,
3651					    MKDEV(TTYAUX_MAJOR, 1), NULL,
3652					    cons_dev_groups, "console");
3653	if (IS_ERR(consdev))
3654		consdev = NULL;
 
 
3655
3656#ifdef CONFIG_VT
3657	vty_init(&console_fops);
3658#endif
3659	return 0;
3660}
v3.5.6
 
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *	-- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 * 	-- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *	-- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *	-- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *	-- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *	-- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *			 -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
 
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
 
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 
 107
 108#undef TTY_DEBUG_HANGUP
 
 
 
 
 
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {	/* for the benefit of tty drivers  */
 114	.c_iflag = ICRNL | IXON,
 115	.c_oflag = OPOST | ONLCR,
 116	.c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117	.c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118		   ECHOCTL | ECHOKE | IEXTEN,
 119	.c_cc = INIT_C_CC,
 120	.c_ispeed = 38400,
 121	.c_ospeed = 38400
 
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 
 129
 130LIST_HEAD(tty_drivers);			/* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143							size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149				unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *	alloc_tty_struct	-	allocate a tty object
 
 161 *
 162 *	Return a new empty tty structure. The data fields have not
 163 *	been initialized in any way but has been zeroed
 164 *
 165 *	Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170	return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *	free_tty_struct		-	free a disused tty
 175 *	@tty: tty struct to free
 176 *
 177 *	Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *	Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184	if (tty->dev)
 185		put_device(tty->dev);
 186	kfree(tty->write_buf);
 187	tty_buffer_free_all(tty);
 188	kfree(tty);
 189}
 190
 191static inline struct tty_struct *file_tty(struct file *file)
 192{
 193	return ((struct tty_file_private *)file->private_data)->tty;
 194}
 195
 196int tty_alloc_file(struct file *file)
 197{
 198	struct tty_file_private *priv;
 199
 200	priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 201	if (!priv)
 202		return -ENOMEM;
 203
 204	file->private_data = priv;
 205
 206	return 0;
 207}
 208
 209/* Associate a new file with the tty structure */
 210void tty_add_file(struct tty_struct *tty, struct file *file)
 211{
 212	struct tty_file_private *priv = file->private_data;
 213
 214	priv->tty = tty;
 215	priv->file = file;
 216
 217	spin_lock(&tty_files_lock);
 218	list_add(&priv->list, &tty->tty_files);
 219	spin_unlock(&tty_files_lock);
 220}
 221
 222/**
 223 * tty_free_file - free file->private_data
 
 224 *
 225 * This shall be used only for fail path handling when tty_add_file was not
 226 * called yet.
 227 */
 228void tty_free_file(struct file *file)
 229{
 230	struct tty_file_private *priv = file->private_data;
 231
 232	file->private_data = NULL;
 233	kfree(priv);
 234}
 235
 236/* Delete file from its tty */
 237void tty_del_file(struct file *file)
 238{
 239	struct tty_file_private *priv = file->private_data;
 
 240
 241	spin_lock(&tty_files_lock);
 242	list_del(&priv->list);
 243	spin_unlock(&tty_files_lock);
 244	tty_free_file(file);
 245}
 246
 247
 248#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 249
 250/**
 251 *	tty_name	-	return tty naming
 252 *	@tty: tty structure
 253 *	@buf: buffer for output
 254 *
 255 *	Convert a tty structure into a name. The name reflects the kernel
 256 *	naming policy and if udev is in use may not reflect user space
 257 *
 258 *	Locking: none
 259 */
 260
 261char *tty_name(struct tty_struct *tty, char *buf)
 262{
 263	if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 264		strcpy(buf, "NULL tty");
 265	else
 266		strcpy(buf, tty->name);
 267	return buf;
 268}
 
 269
 270EXPORT_SYMBOL(tty_name);
 
 
 
 
 
 271
 272int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 273			      const char *routine)
 274{
 275#ifdef TTY_PARANOIA_CHECK
 276	if (!tty) {
 277		printk(KERN_WARNING
 278			"null TTY for (%d:%d) in %s\n",
 279			imajor(inode), iminor(inode), routine);
 280		return 1;
 281	}
 282	if (tty->magic != TTY_MAGIC) {
 283		printk(KERN_WARNING
 284			"bad magic number for tty struct (%d:%d) in %s\n",
 285			imajor(inode), iminor(inode), routine);
 286		return 1;
 287	}
 288#endif
 289	return 0;
 290}
 291
 
 292static int check_tty_count(struct tty_struct *tty, const char *routine)
 293{
 294#ifdef CHECK_TTY_COUNT
 295	struct list_head *p;
 296	int count = 0;
 297
 298	spin_lock(&tty_files_lock);
 299	list_for_each(p, &tty->tty_files) {
 300		count++;
 301	}
 302	spin_unlock(&tty_files_lock);
 303	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 304	    tty->driver->subtype == PTY_TYPE_SLAVE &&
 305	    tty->link && tty->link->count)
 306		count++;
 307	if (tty->count != count) {
 308		printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 309				    "!= #fd's(%d) in %s\n",
 310		       tty->name, tty->count, count, routine);
 311		return count;
 
 312	}
 313#endif
 314	return 0;
 315}
 316
 317/**
 318 *	get_tty_driver		-	find device of a tty
 319 *	@dev_t: device identifier
 320 *	@index: returns the index of the tty
 321 *
 322 *	This routine returns a tty driver structure, given a device number
 323 *	and also passes back the index number.
 324 *
 325 *	Locking: caller must hold tty_mutex
 326 */
 327
 328static struct tty_driver *get_tty_driver(dev_t device, int *index)
 329{
 330	struct tty_driver *p;
 331
 332	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 333		dev_t base = MKDEV(p->major, p->minor_start);
 
 334		if (device < base || device >= base + p->num)
 335			continue;
 336		*index = device - base;
 337		return tty_driver_kref_get(p);
 338	}
 339	return NULL;
 340}
 341
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342#ifdef CONFIG_CONSOLE_POLL
 343
 344/**
 345 *	tty_find_polling_driver	-	find device of a polled tty
 346 *	@name: name string to match
 347 *	@line: pointer to resulting tty line nr
 348 *
 349 *	This routine returns a tty driver structure, given a name
 350 *	and the condition that the tty driver is capable of polled
 351 *	operation.
 352 */
 353struct tty_driver *tty_find_polling_driver(char *name, int *line)
 354{
 355	struct tty_driver *p, *res = NULL;
 356	int tty_line = 0;
 357	int len;
 358	char *str, *stp;
 359
 360	for (str = name; *str; str++)
 361		if ((*str >= '0' && *str <= '9') || *str == ',')
 362			break;
 363	if (!*str)
 364		return NULL;
 365
 366	len = str - name;
 367	tty_line = simple_strtoul(str, &str, 10);
 368
 369	mutex_lock(&tty_mutex);
 370	/* Search through the tty devices to look for a match */
 371	list_for_each_entry(p, &tty_drivers, tty_drivers) {
 372		if (strncmp(name, p->name, len) != 0)
 373			continue;
 374		stp = str;
 375		if (*stp == ',')
 376			stp++;
 377		if (*stp == '\0')
 378			stp = NULL;
 379
 380		if (tty_line >= 0 && tty_line < p->num && p->ops &&
 381		    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 382			res = tty_driver_kref_get(p);
 383			*line = tty_line;
 384			break;
 385		}
 386	}
 387	mutex_unlock(&tty_mutex);
 388
 389	return res;
 390}
 391EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 392#endif
 393
 394/**
 395 *	tty_check_change	-	check for POSIX terminal changes
 396 *	@tty: tty to check
 397 *
 398 *	If we try to write to, or set the state of, a terminal and we're
 399 *	not in the foreground, send a SIGTTOU.  If the signal is blocked or
 400 *	ignored, go ahead and perform the operation.  (POSIX 7.2)
 401 *
 402 *	Locking: ctrl_lock
 403 */
 404
 405int tty_check_change(struct tty_struct *tty)
 406{
 407	unsigned long flags;
 408	int ret = 0;
 409
 410	if (current->signal->tty != tty)
 411		return 0;
 412
 413	spin_lock_irqsave(&tty->ctrl_lock, flags);
 414
 415	if (!tty->pgrp) {
 416		printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 417		goto out_unlock;
 418	}
 419	if (task_pgrp(current) == tty->pgrp)
 420		goto out_unlock;
 421	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 422	if (is_ignored(SIGTTOU))
 423		goto out;
 424	if (is_current_pgrp_orphaned()) {
 425		ret = -EIO;
 426		goto out;
 427	}
 428	kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 429	set_thread_flag(TIF_SIGPENDING);
 430	ret = -ERESTARTSYS;
 431out:
 432	return ret;
 433out_unlock:
 434	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 435	return ret;
 436}
 437
 438EXPORT_SYMBOL(tty_check_change);
 439
 440static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 441				size_t count, loff_t *ppos)
 442{
 443	return 0;
 444}
 445
 446static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 447				 size_t count, loff_t *ppos)
 448{
 449	return -EIO;
 450}
 451
 452/* No kernel lock held - none needed ;) */
 453static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 454{
 455	return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 456}
 457
 458static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 459		unsigned long arg)
 460{
 461	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 462}
 463
 464static long hung_up_tty_compat_ioctl(struct file *file,
 465				     unsigned int cmd, unsigned long arg)
 466{
 467	return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 468}
 469
 
 
 
 
 
 
 
 
 
 
 
 
 
 470static const struct file_operations tty_fops = {
 471	.llseek		= no_llseek,
 472	.read		= tty_read,
 473	.write		= tty_write,
 
 
 474	.poll		= tty_poll,
 475	.unlocked_ioctl	= tty_ioctl,
 476	.compat_ioctl	= tty_compat_ioctl,
 477	.open		= tty_open,
 478	.release	= tty_release,
 479	.fasync		= tty_fasync,
 
 480};
 481
 482static const struct file_operations console_fops = {
 483	.llseek		= no_llseek,
 484	.read		= tty_read,
 485	.write		= redirected_tty_write,
 
 
 486	.poll		= tty_poll,
 487	.unlocked_ioctl	= tty_ioctl,
 488	.compat_ioctl	= tty_compat_ioctl,
 489	.open		= tty_open,
 490	.release	= tty_release,
 491	.fasync		= tty_fasync,
 492};
 493
 494static const struct file_operations hung_up_tty_fops = {
 495	.llseek		= no_llseek,
 496	.read		= hung_up_tty_read,
 497	.write		= hung_up_tty_write,
 498	.poll		= hung_up_tty_poll,
 499	.unlocked_ioctl	= hung_up_tty_ioctl,
 500	.compat_ioctl	= hung_up_tty_compat_ioctl,
 501	.release	= tty_release,
 
 502};
 503
 504static DEFINE_SPINLOCK(redirect_lock);
 505static struct file *redirect;
 506
 507/**
 508 *	tty_wakeup	-	request more data
 509 *	@tty: terminal
 510 *
 511 *	Internal and external helper for wakeups of tty. This function
 512 *	informs the line discipline if present that the driver is ready
 513 *	to receive more output data.
 514 */
 515
 516void tty_wakeup(struct tty_struct *tty)
 517{
 518	struct tty_ldisc *ld;
 519
 520	if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 521		ld = tty_ldisc_ref(tty);
 522		if (ld) {
 523			if (ld->ops->write_wakeup)
 524				ld->ops->write_wakeup(tty);
 525			tty_ldisc_deref(ld);
 526		}
 527	}
 528	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 529}
 
 
 
 
 
 
 
 
 
 
 
 
 530
 531EXPORT_SYMBOL_GPL(tty_wakeup);
 
 
 
 
 
 
 
 
 532
 533/**
 534 *	__tty_hangup		-	actual handler for hangup events
 535 *	@work: tty device
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 536 *
 537 *	This can be called by the "eventd" kernel thread.  That is process
 538 *	synchronous but doesn't hold any locks, so we need to make sure we
 539 *	have the appropriate locks for what we're doing.
 540 *
 541 *	The hangup event clears any pending redirections onto the hung up
 542 *	device. It ensures future writes will error and it does the needed
 543 *	line discipline hangup and signal delivery. The tty object itself
 544 *	remains intact.
 545 *
 546 *	Locking:
 547 *		BTM
 548 *		  redirect lock for undoing redirection
 549 *		  file list lock for manipulating list of ttys
 550 *		  tty_ldisc_lock from called functions
 551 *		  termios_mutex resetting termios data
 552 *		  tasklist_lock to walk task list for hangup event
 553 *		    ->siglock to protect ->signal/->sighand
 554 */
 555void __tty_hangup(struct tty_struct *tty)
 556{
 557	struct file *cons_filp = NULL;
 558	struct file *filp, *f = NULL;
 559	struct task_struct *p;
 560	struct tty_file_private *priv;
 561	int    closecount = 0, n;
 562	unsigned long flags;
 563	int refs = 0;
 564
 565	if (!tty)
 566		return;
 567
 
 568
 569	spin_lock(&redirect_lock);
 570	if (redirect && file_tty(redirect) == tty) {
 571		f = redirect;
 572		redirect = NULL;
 
 573	}
 574	spin_unlock(&redirect_lock);
 575
 576	tty_lock();
 577
 578	/* some functions below drop BTM, so we need this bit */
 
 
 
 579	set_bit(TTY_HUPPING, &tty->flags);
 580
 581	/* inuse_filps is protected by the single tty lock,
 582	   this really needs to change if we want to flush the
 583	   workqueue with the lock held */
 
 584	check_tty_count(tty, "tty_hangup");
 585
 586	spin_lock(&tty_files_lock);
 587	/* This breaks for file handles being sent over AF_UNIX sockets ? */
 588	list_for_each_entry(priv, &tty->tty_files, list) {
 589		filp = priv->file;
 590		if (filp->f_op->write == redirected_tty_write)
 591			cons_filp = filp;
 592		if (filp->f_op->write != tty_write)
 593			continue;
 594		closecount++;
 595		__tty_fasync(-1, filp, 0);	/* can't block */
 596		filp->f_op = &hung_up_tty_fops;
 597	}
 598	spin_unlock(&tty_files_lock);
 599
 600	/*
 601	 * it drops BTM and thus races with reopen
 602	 * we protect the race by TTY_HUPPING
 603	 */
 604	tty_ldisc_hangup(tty);
 605
 606	read_lock(&tasklist_lock);
 607	if (tty->session) {
 608		do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 609			spin_lock_irq(&p->sighand->siglock);
 610			if (p->signal->tty == tty) {
 611				p->signal->tty = NULL;
 612				/* We defer the dereferences outside fo
 613				   the tasklist lock */
 614				refs++;
 615			}
 616			if (!p->signal->leader) {
 617				spin_unlock_irq(&p->sighand->siglock);
 618				continue;
 619			}
 620			__group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 621			__group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 622			put_pid(p->signal->tty_old_pgrp);  /* A noop */
 623			spin_lock_irqsave(&tty->ctrl_lock, flags);
 624			if (tty->pgrp)
 625				p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 626			spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 627			spin_unlock_irq(&p->sighand->siglock);
 628		} while_each_pid_task(tty->session, PIDTYPE_SID, p);
 629	}
 630	read_unlock(&tasklist_lock);
 631
 632	spin_lock_irqsave(&tty->ctrl_lock, flags);
 633	clear_bit(TTY_THROTTLED, &tty->flags);
 634	clear_bit(TTY_PUSH, &tty->flags);
 635	clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 636	put_pid(tty->session);
 637	put_pid(tty->pgrp);
 638	tty->session = NULL;
 639	tty->pgrp = NULL;
 640	tty->ctrl_status = 0;
 641	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 642
 643	/* Account for the p->signal references we killed */
 644	while (refs--)
 645		tty_kref_put(tty);
 646
 647	/*
 648	 * If one of the devices matches a console pointer, we
 649	 * cannot just call hangup() because that will cause
 650	 * tty->count and state->count to go out of sync.
 651	 * So we just call close() the right number of times.
 652	 */
 653	if (cons_filp) {
 654		if (tty->ops->close)
 655			for (n = 0; n < closecount; n++)
 656				tty->ops->close(tty, cons_filp);
 657	} else if (tty->ops->hangup)
 658		(tty->ops->hangup)(tty);
 659	/*
 660	 * We don't want to have driver/ldisc interactions beyond
 661	 * the ones we did here. The driver layer expects no
 662	 * calls after ->hangup() from the ldisc side. However we
 663	 * can't yet guarantee all that.
 664	 */
 665	set_bit(TTY_HUPPED, &tty->flags);
 666	clear_bit(TTY_HUPPING, &tty->flags);
 667	tty_ldisc_enable(tty);
 668
 669	tty_unlock();
 670
 671	if (f)
 672		fput(f);
 673}
 674
 675static void do_tty_hangup(struct work_struct *work)
 676{
 677	struct tty_struct *tty =
 678		container_of(work, struct tty_struct, hangup_work);
 679
 680	__tty_hangup(tty);
 681}
 682
 683/**
 684 *	tty_hangup		-	trigger a hangup event
 685 *	@tty: tty to hangup
 686 *
 687 *	A carrier loss (virtual or otherwise) has occurred on this like
 688 *	schedule a hangup sequence to run after this event.
 689 */
 690
 691void tty_hangup(struct tty_struct *tty)
 692{
 693#ifdef TTY_DEBUG_HANGUP
 694	char	buf[64];
 695	printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 696#endif
 697	schedule_work(&tty->hangup_work);
 698}
 699
 700EXPORT_SYMBOL(tty_hangup);
 701
 702/**
 703 *	tty_vhangup		-	process vhangup
 704 *	@tty: tty to hangup
 705 *
 706 *	The user has asked via system call for the terminal to be hung up.
 707 *	We do this synchronously so that when the syscall returns the process
 708 *	is complete. That guarantee is necessary for security reasons.
 709 */
 710
 711void tty_vhangup(struct tty_struct *tty)
 712{
 713#ifdef TTY_DEBUG_HANGUP
 714	char	buf[64];
 715
 716	printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 717#endif
 718	__tty_hangup(tty);
 719}
 720
 721EXPORT_SYMBOL(tty_vhangup);
 722
 723
 724/**
 725 *	tty_vhangup_self	-	process vhangup for own ctty
 726 *
 727 *	Perform a vhangup on the current controlling tty
 728 */
 729
 730void tty_vhangup_self(void)
 731{
 732	struct tty_struct *tty;
 733
 734	tty = get_current_tty();
 735	if (tty) {
 736		tty_vhangup(tty);
 737		tty_kref_put(tty);
 738	}
 739}
 740
 741/**
 742 *	tty_hung_up_p		-	was tty hung up
 743 *	@filp: file pointer of tty
 744 *
 745 *	Return true if the tty has been subject to a vhangup or a carrier
 746 *	loss
 
 
 
 747 */
 
 
 
 
 
 748
 
 
 
 
 
 
 749int tty_hung_up_p(struct file *filp)
 750{
 751	return (filp->f_op == &hung_up_tty_fops);
 752}
 753
 754EXPORT_SYMBOL(tty_hung_up_p);
 755
 756static void session_clear_tty(struct pid *session)
 757{
 758	struct task_struct *p;
 759	do_each_pid_task(session, PIDTYPE_SID, p) {
 760		proc_clear_tty(p);
 761	} while_each_pid_task(session, PIDTYPE_SID, p);
 
 762}
 763
 764/**
 765 *	disassociate_ctty	-	disconnect controlling tty
 766 *	@on_exit: true if exiting so need to "hang up" the session
 767 *
 768 *	This function is typically called only by the session leader, when
 769 *	it wants to disassociate itself from its controlling tty.
 770 *
 771 *	It performs the following functions:
 772 * 	(1)  Sends a SIGHUP and SIGCONT to the foreground process group
 773 * 	(2)  Clears the tty from being controlling the session
 774 * 	(3)  Clears the controlling tty for all processes in the
 775 * 		session group.
 776 *
 777 *	The argument on_exit is set to 1 if called when a process is
 778 *	exiting; it is 0 if called by the ioctl TIOCNOTTY.
 779 *
 780 *	Locking:
 781 *		BTM is taken for hysterical raisins, and held when
 782 *		  called from no_tty().
 783 *		  tty_mutex is taken to protect tty
 784 *		  ->siglock is taken to protect ->signal/->sighand
 785 *		  tasklist_lock is taken to walk process list for sessions
 786 *		    ->siglock is taken to protect ->signal/->sighand
 787 */
 788
 789void disassociate_ctty(int on_exit)
 790{
 791	struct tty_struct *tty;
 792
 793	if (!current->signal->leader)
 794		return;
 
 
 
 795
 796	tty = get_current_tty();
 797	if (tty) {
 798		struct pid *tty_pgrp = get_pid(tty->pgrp);
 799		if (on_exit) {
 800			if (tty->driver->type != TTY_DRIVER_TYPE_PTY)
 801				tty_vhangup(tty);
 802		}
 803		tty_kref_put(tty);
 804		if (tty_pgrp) {
 805			kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 806			if (!on_exit)
 807				kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 808			put_pid(tty_pgrp);
 809		}
 810	} else if (on_exit) {
 811		struct pid *old_pgrp;
 812		spin_lock_irq(&current->sighand->siglock);
 813		old_pgrp = current->signal->tty_old_pgrp;
 814		current->signal->tty_old_pgrp = NULL;
 815		spin_unlock_irq(&current->sighand->siglock);
 816		if (old_pgrp) {
 817			kill_pgrp(old_pgrp, SIGHUP, on_exit);
 818			kill_pgrp(old_pgrp, SIGCONT, on_exit);
 819			put_pid(old_pgrp);
 820		}
 821		return;
 822	}
 823
 824	spin_lock_irq(&current->sighand->siglock);
 825	put_pid(current->signal->tty_old_pgrp);
 826	current->signal->tty_old_pgrp = NULL;
 827	spin_unlock_irq(&current->sighand->siglock);
 828
 829	tty = get_current_tty();
 830	if (tty) {
 831		unsigned long flags;
 832		spin_lock_irqsave(&tty->ctrl_lock, flags);
 833		put_pid(tty->session);
 834		put_pid(tty->pgrp);
 835		tty->session = NULL;
 836		tty->pgrp = NULL;
 837		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 838		tty_kref_put(tty);
 839	} else {
 840#ifdef TTY_DEBUG_HANGUP
 841		printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 842		       " = NULL", tty);
 843#endif
 844	}
 845
 846	/* Now clear signal->tty under the lock */
 847	read_lock(&tasklist_lock);
 848	session_clear_tty(task_session(current));
 849	read_unlock(&tasklist_lock);
 850}
 851
 852/**
 
 
 
 
 
 
 853 *
 854 *	no_tty	- Ensure the current process does not have a controlling tty
 
 855 */
 856void no_tty(void)
 857{
 858	/* FIXME: Review locking here. The tty_lock never covered any race
 859	   between a new association and proc_clear_tty but possible we need
 860	   to protect against this anyway */
 861	struct task_struct *tsk = current;
 862	disassociate_ctty(0);
 863	proc_clear_tty(tsk);
 864}
 
 865
 
 
 
 866
 867/**
 868 *	stop_tty	-	propagate flow control
 869 *	@tty: tty to stop
 870 *
 871 *	Perform flow control to the driver. For PTY/TTY pairs we
 872 *	must also propagate the TIOCKPKT status. May be called
 873 *	on an already stopped device and will not re-call the driver
 874 *	method.
 
 
 
 
 
 875 *
 876 *	This functionality is used by both the line disciplines for
 877 *	halting incoming flow and by the driver. It may therefore be
 878 *	called from any context, may be under the tty atomic_write_lock
 879 *	but not always.
 880 *
 881 *	Locking:
 882 *		Uses the tty control lock internally
 
 883 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 884
 885void stop_tty(struct tty_struct *tty)
 886{
 887	unsigned long flags;
 888	spin_lock_irqsave(&tty->ctrl_lock, flags);
 889	if (tty->stopped) {
 890		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 891		return;
 892	}
 893	tty->stopped = 1;
 894	if (tty->link && tty->link->packet) {
 895		tty->ctrl_status &= ~TIOCPKT_START;
 896		tty->ctrl_status |= TIOCPKT_STOP;
 897		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 898	}
 899	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 900	if (tty->ops->stop)
 901		(tty->ops->stop)(tty);
 902}
 903
 904EXPORT_SYMBOL(stop_tty);
 
 
 905
 906/**
 907 *	start_tty	-	propagate flow control
 908 *	@tty: tty to start
 909 *
 910 *	Start a tty that has been stopped if at all possible. Perform
 911 *	any necessary wakeups and propagate the TIOCPKT status. If this
 912 *	is the tty was previous stopped and is being started then the
 913 *	driver start method is invoked and the line discipline woken.
 914 *
 915 *	Locking:
 916 *		ctrl_lock
 917 */
 918
 919void start_tty(struct tty_struct *tty)
 920{
 921	unsigned long flags;
 922	spin_lock_irqsave(&tty->ctrl_lock, flags);
 923	if (!tty->stopped || tty->flow_stopped) {
 924		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 925		return;
 926	}
 927	tty->stopped = 0;
 928	if (tty->link && tty->link->packet) {
 929		tty->ctrl_status &= ~TIOCPKT_STOP;
 930		tty->ctrl_status |= TIOCPKT_START;
 931		wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 932	}
 933	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 934	if (tty->ops->start)
 935		(tty->ops->start)(tty);
 936	/* If we have a running line discipline it may need kicking */
 937	tty_wakeup(tty);
 938}
 939
 940EXPORT_SYMBOL(start_tty);
 941
 942/**
 943 *	tty_read	-	read method for tty device files
 944 *	@file: pointer to tty file
 945 *	@buf: user buffer
 946 *	@count: size of user buffer
 947 *	@ppos: unused
 948 *
 949 *	Perform the read system call function on this terminal device. Checks
 950 *	for hung up devices before calling the line discipline method.
 951 *
 952 *	Locking:
 953 *		Locks the line discipline internally while needed. Multiple
 954 *	read calls may be outstanding in parallel.
 955 */
 956
 957static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
 958			loff_t *ppos)
 959{
 960	int i;
 961	struct inode *inode = file->f_path.dentry->d_inode;
 
 962	struct tty_struct *tty = file_tty(file);
 963	struct tty_ldisc *ld;
 964
 965	if (tty_paranoia_check(tty, inode, "tty_read"))
 966		return -EIO;
 967	if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
 968		return -EIO;
 969
 970	/* We want to wait for the line discipline to sort out in this
 971	   situation */
 
 972	ld = tty_ldisc_ref_wait(tty);
 
 
 
 973	if (ld->ops->read)
 974		i = (ld->ops->read)(tty, file, buf, count);
 975	else
 976		i = -EIO;
 977	tty_ldisc_deref(ld);
 
 978	if (i > 0)
 979		inode->i_atime = current_fs_time(inode->i_sb);
 
 980	return i;
 981}
 982
 983void tty_write_unlock(struct tty_struct *tty)
 984	__releases(&tty->atomic_write_lock)
 985{
 986	mutex_unlock(&tty->atomic_write_lock);
 987	wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 988}
 989
 990int tty_write_lock(struct tty_struct *tty, int ndelay)
 991	__acquires(&tty->atomic_write_lock)
 992{
 993	if (!mutex_trylock(&tty->atomic_write_lock)) {
 994		if (ndelay)
 995			return -EAGAIN;
 996		if (mutex_lock_interruptible(&tty->atomic_write_lock))
 997			return -ERESTARTSYS;
 998	}
 999	return 0;
1000}
1001
1002/*
1003 * Split writes up in sane blocksizes to avoid
1004 * denial-of-service type attacks
1005 */
1006static inline ssize_t do_tty_write(
1007	ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1008	struct tty_struct *tty,
1009	struct file *file,
1010	const char __user *buf,
1011	size_t count)
1012{
 
1013	ssize_t ret, written = 0;
1014	unsigned int chunk;
1015
1016	ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1017	if (ret < 0)
1018		return ret;
1019
1020	/*
1021	 * We chunk up writes into a temporary buffer. This
1022	 * simplifies low-level drivers immensely, since they
1023	 * don't have locking issues and user mode accesses.
1024	 *
1025	 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1026	 * big chunk-size..
1027	 *
1028	 * The default chunk-size is 2kB, because the NTTY
1029	 * layer has problems with bigger chunks. It will
1030	 * claim to be able to handle more characters than
1031	 * it actually does.
1032	 *
1033	 * FIXME: This can probably go away now except that 64K chunks
1034	 * are too likely to fail unless switched to vmalloc...
1035	 */
1036	chunk = 2048;
1037	if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1038		chunk = 65536;
1039	if (count < chunk)
1040		chunk = count;
1041
1042	/* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1043	if (tty->write_cnt < chunk) {
1044		unsigned char *buf_chunk;
1045
1046		if (chunk < 1024)
1047			chunk = 1024;
1048
1049		buf_chunk = kmalloc(chunk, GFP_KERNEL);
1050		if (!buf_chunk) {
1051			ret = -ENOMEM;
1052			goto out;
1053		}
1054		kfree(tty->write_buf);
1055		tty->write_cnt = chunk;
1056		tty->write_buf = buf_chunk;
1057	}
1058
1059	/* Do the write .. */
1060	for (;;) {
1061		size_t size = count;
 
1062		if (size > chunk)
1063			size = chunk;
 
1064		ret = -EFAULT;
1065		if (copy_from_user(tty->write_buf, buf, size))
1066			break;
 
1067		ret = write(tty, file, tty->write_buf, size);
1068		if (ret <= 0)
1069			break;
 
1070		written += ret;
1071		buf += ret;
 
 
 
 
 
 
1072		count -= ret;
1073		if (!count)
1074			break;
1075		ret = -ERESTARTSYS;
1076		if (signal_pending(current))
1077			break;
1078		cond_resched();
1079	}
1080	if (written) {
1081		struct inode *inode = file->f_path.dentry->d_inode;
1082		inode->i_mtime = current_fs_time(inode->i_sb);
1083		ret = written;
1084	}
1085out:
1086	tty_write_unlock(tty);
1087	return ret;
1088}
1089
1090/**
1091 * tty_write_message - write a message to a certain tty, not just the console.
1092 * @tty: the destination tty_struct
1093 * @msg: the message to write
1094 *
1095 * This is used for messages that need to be redirected to a specific tty.
1096 * We don't put it into the syslog queue right now maybe in the future if
1097 * really needed.
1098 *
1099 * We must still hold the BTM and test the CLOSING flag for the moment.
1100 */
1101
1102void tty_write_message(struct tty_struct *tty, char *msg)
1103{
1104	if (tty) {
1105		mutex_lock(&tty->atomic_write_lock);
1106		tty_lock();
1107		if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1108			tty_unlock();
1109			tty->ops->write(tty, msg, strlen(msg));
1110		} else
1111			tty_unlock();
1112		tty_write_unlock(tty);
1113	}
1114	return;
1115}
1116
1117
1118/**
1119 *	tty_write		-	write method for tty device file
1120 *	@file: tty file pointer
1121 *	@buf: user data to write
1122 *	@count: bytes to write
1123 *	@ppos: unused
1124 *
1125 *	Write data to a tty device via the line discipline.
1126 *
1127 *	Locking:
1128 *		Locks the line discipline as required
1129 *		Writes to the tty driver are serialized by the atomic_write_lock
1130 *	and are then processed in chunks to the device. The line discipline
1131 *	write method will not be invoked in parallel for each device.
1132 */
1133
1134static ssize_t tty_write(struct file *file, const char __user *buf,
1135						size_t count, loff_t *ppos)
1136{
1137	struct inode *inode = file->f_path.dentry->d_inode;
1138	struct tty_struct *tty = file_tty(file);
1139 	struct tty_ldisc *ld;
1140	ssize_t ret;
1141
1142	if (tty_paranoia_check(tty, inode, "tty_write"))
 
 
1143		return -EIO;
1144	if (!tty || !tty->ops->write ||
1145		(test_bit(TTY_IO_ERROR, &tty->flags)))
1146			return -EIO;
1147	/* Short term debug to catch buggy drivers */
1148	if (tty->ops->write_room == NULL)
1149		printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1150			tty->driver->name);
1151	ld = tty_ldisc_ref_wait(tty);
 
 
1152	if (!ld->ops->write)
1153		ret = -EIO;
1154	else
1155		ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1156	tty_ldisc_deref(ld);
1157	return ret;
1158}
1159
1160ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1161						size_t count, loff_t *ppos)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1162{
1163	struct file *p = NULL;
1164
1165	spin_lock(&redirect_lock);
1166	if (redirect) {
1167		get_file(redirect);
1168		p = redirect;
1169	}
1170	spin_unlock(&redirect_lock);
1171
 
 
 
 
1172	if (p) {
1173		ssize_t res;
1174		res = vfs_write(p, buf, count, &p->f_pos);
 
1175		fput(p);
1176		return res;
1177	}
1178	return tty_write(file, buf, count, ppos);
1179}
1180
1181static char ptychar[] = "pqrstuvwxyzabcde";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1182
1183/**
1184 *	pty_line_name	-	generate name for a pty
1185 *	@driver: the tty driver in use
1186 *	@index: the minor number
1187 *	@p: output buffer of at least 6 bytes
1188 *
1189 *	Generate a name from a driver reference and write it to the output
1190 *	buffer.
1191 *
1192 *	Locking: None
1193 */
1194static void pty_line_name(struct tty_driver *driver, int index, char *p)
1195{
 
1196	int i = index + driver->name_base;
1197	/* ->name is initialized to "ttyp", but "tty" is expected */
1198	sprintf(p, "%s%c%x",
1199		driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1200		ptychar[i >> 4 & 0xf], i & 0xf);
1201}
1202
1203/**
1204 *	tty_line_name	-	generate name for a tty
1205 *	@driver: the tty driver in use
1206 *	@index: the minor number
1207 *	@p: output buffer of at least 7 bytes
1208 *
1209 *	Generate a name from a driver reference and write it to the output
1210 *	buffer.
1211 *
1212 *	Locking: None
1213 */
1214static void tty_line_name(struct tty_driver *driver, int index, char *p)
1215{
1216	sprintf(p, "%s%d", driver->name, index + driver->name_base);
 
 
 
 
1217}
1218
1219/**
1220 *	tty_driver_lookup_tty() - find an existing tty, if any
1221 *	@driver: the driver for the tty
1222 *	@idx:	 the minor number
 
1223 *
1224 *	Return the tty, if found or ERR_PTR() otherwise.
 
1225 *
1226 *	Locking: tty_mutex must be held. If tty is found, the mutex must
1227 *	be held until the 'fast-open' is also done. Will change once we
1228 *	have refcounting in the driver and per driver locking
1229 */
1230static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1231		struct inode *inode, int idx)
1232{
 
 
1233	if (driver->ops->lookup)
1234		return driver->ops->lookup(driver, inode, idx);
 
 
 
 
 
1235
1236	return driver->ttys[idx];
 
 
1237}
1238
1239/**
1240 *	tty_init_termios	-  helper for termios setup
1241 *	@tty: the tty to set up
1242 *
1243 *	Initialise the termios structures for this tty. Thus runs under
1244 *	the tty_mutex currently so we can be relaxed about ordering.
1245 */
1246
1247int tty_init_termios(struct tty_struct *tty)
1248{
1249	struct ktermios *tp;
1250	int idx = tty->index;
1251
1252	tp = tty->driver->termios[idx];
1253	if (tp == NULL) {
1254		tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1255		if (tp == NULL)
1256			return -ENOMEM;
1257		memcpy(tp, &tty->driver->init_termios,
1258						sizeof(struct ktermios));
1259		tty->driver->termios[idx] = tp;
 
 
1260	}
1261	tty->termios = tp;
1262	tty->termios_locked = tp + 1;
1263
1264	/* Compatibility until drivers always set this */
1265	tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1266	tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1267	return 0;
1268}
1269EXPORT_SYMBOL_GPL(tty_init_termios);
1270
 
 
 
 
 
 
 
 
1271int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1272{
1273	int ret = tty_init_termios(tty);
1274	if (ret)
1275		return ret;
1276
1277	tty_driver_kref_get(driver);
1278	tty->count++;
1279	driver->ttys[tty->index] = tty;
1280	return 0;
1281}
1282EXPORT_SYMBOL_GPL(tty_standard_install);
1283
1284/**
1285 *	tty_driver_install_tty() - install a tty entry in the driver
1286 *	@driver: the driver for the tty
1287 *	@tty: the tty
1288 *
1289 *	Install a tty object into the driver tables. The tty->index field
1290 *	will be set by the time this is called. This method is responsible
1291 *	for ensuring any need additional structures are allocated and
1292 *	configured.
1293 *
1294 *	Locking: tty_mutex for now
1295 */
1296static int tty_driver_install_tty(struct tty_driver *driver,
1297						struct tty_struct *tty)
1298{
1299	return driver->ops->install ? driver->ops->install(driver, tty) :
1300		tty_standard_install(driver, tty);
1301}
1302
1303/**
1304 *	tty_driver_remove_tty() - remove a tty from the driver tables
1305 *	@driver: the driver for the tty
1306 *	@idx:	 the minor number
1307 *
1308 *	Remvoe a tty object from the driver tables. The tty->index field
1309 *	will be set by the time this is called.
1310 *
1311 *	Locking: tty_mutex for now
1312 */
1313void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1314{
1315	if (driver->ops->remove)
1316		driver->ops->remove(driver, tty);
1317	else
1318		driver->ttys[tty->index] = NULL;
1319}
1320
1321/*
1322 * 	tty_reopen()	- fast re-open of an open tty
1323 * 	@tty	- the tty to open
1324 *
1325 *	Return 0 on success, -errno on error.
1326 *
1327 *	Locking: tty_mutex must be held from the time the tty was found
1328 *		 till this open completes.
1329 */
1330static int tty_reopen(struct tty_struct *tty)
1331{
1332	struct tty_driver *driver = tty->driver;
 
 
1333
1334	if (test_bit(TTY_CLOSING, &tty->flags) ||
1335			test_bit(TTY_HUPPING, &tty->flags) ||
1336			test_bit(TTY_LDISC_CHANGING, &tty->flags))
1337		return -EIO;
1338
1339	if (driver->type == TTY_DRIVER_TYPE_PTY &&
1340	    driver->subtype == PTY_TYPE_MASTER) {
1341		/*
1342		 * special case for PTY masters: only one open permitted,
1343		 * and the slave side open count is incremented as well.
1344		 */
1345		if (tty->count)
1346			return -EIO;
 
 
 
 
 
1347
1348		tty->link->count++;
 
 
1349	}
1350	tty->count++;
1351
1352	mutex_lock(&tty->ldisc_mutex);
1353	WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1354	mutex_unlock(&tty->ldisc_mutex);
1355
1356	return 0;
1357}
1358
1359/**
1360 *	tty_init_dev		-	initialise a tty device
1361 *	@driver: tty driver we are opening a device on
1362 *	@idx: device index
1363 *	@ret_tty: returned tty structure
1364 *
1365 *	Prepare a tty device. This may not be a "new" clean device but
1366 *	could also be an active device. The pty drivers require special
1367 *	handling because of this.
1368 *
1369 *	Locking:
1370 *		The function is called under the tty_mutex, which
1371 *	protects us from the tty struct or driver itself going away.
1372 *
1373 *	On exit the tty device has the line discipline attached and
1374 *	a reference count of 1. If a pair was created for pty/tty use
1375 *	and the other was a pty master then it too has a reference count of 1.
1376 *
1377 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1378 * failed open.  The new code protects the open with a mutex, so it's
1379 * really quite straightforward.  The mutex locking can probably be
1380 * relaxed for the (most common) case of reopening a tty.
1381 */
1382
1383struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1384{
1385	struct tty_struct *tty;
1386	int retval;
1387
1388	/*
1389	 * First time open is complex, especially for PTY devices.
1390	 * This code guarantees that either everything succeeds and the
1391	 * TTY is ready for operation, or else the table slots are vacated
1392	 * and the allocated memory released.  (Except that the termios
1393	 * and locked termios may be retained.)
1394	 */
1395
1396	if (!try_module_get(driver->owner))
1397		return ERR_PTR(-ENODEV);
1398
1399	tty = alloc_tty_struct();
1400	if (!tty) {
1401		retval = -ENOMEM;
1402		goto err_module_put;
1403	}
1404	initialize_tty_struct(tty, driver, idx);
1405
 
1406	retval = tty_driver_install_tty(driver, tty);
1407	if (retval < 0)
1408		goto err_deinit_tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409
1410	/*
1411	 * Structures all installed ... call the ldisc open routines.
1412	 * If we fail here just call release_tty to clean up.  No need
1413	 * to decrement the use counts, as release_tty doesn't care.
1414	 */
1415	retval = tty_ldisc_setup(tty, tty->link);
1416	if (retval)
1417		goto err_release_tty;
 
 
1418	return tty;
1419
1420err_deinit_tty:
1421	deinitialize_tty_struct(tty);
1422	free_tty_struct(tty);
1423err_module_put:
1424	module_put(driver->owner);
1425	return ERR_PTR(retval);
1426
1427	/* call the tty release_tty routine to clean out this slot */
1428err_release_tty:
1429	printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1430				 "clearing slot %d\n", idx);
 
 
 
1431	release_tty(tty, idx);
1432	return ERR_PTR(retval);
1433}
1434
1435void tty_free_termios(struct tty_struct *tty)
 
 
 
 
 
 
1436{
1437	struct ktermios *tp;
1438	int idx = tty->index;
1439	/* Kill this flag and push into drivers for locking etc */
1440	if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1441		/* FIXME: Locking on ->termios array */
1442		tp = tty->termios;
1443		tty->driver->termios[idx] = NULL;
1444		kfree(tp);
 
 
 
 
 
 
1445	}
 
1446}
1447EXPORT_SYMBOL(tty_free_termios);
1448
1449void tty_shutdown(struct tty_struct *tty)
 
 
 
 
 
 
1450{
1451	tty_driver_remove_tty(tty->driver, tty);
1452	tty_free_termios(tty);
 
 
 
 
1453}
1454EXPORT_SYMBOL(tty_shutdown);
1455
1456/**
1457 *	release_one_tty		-	release tty structure memory
1458 *	@kref: kref of tty we are obliterating
1459 *
1460 *	Releases memory associated with a tty structure, and clears out the
1461 *	driver table slots. This function is called when a device is no longer
1462 *	in use. It also gets called when setup of a device fails.
1463 *
1464 *	Locking:
1465 *		tty_mutex - sometimes only
1466 *		takes the file list lock internally when working on the list
1467 *	of ttys that the driver keeps.
1468 *
1469 *	This method gets called from a work queue so that the driver private
1470 *	cleanup ops can sleep (needed for USB at least)
1471 */
1472static void release_one_tty(struct work_struct *work)
1473{
1474	struct tty_struct *tty =
1475		container_of(work, struct tty_struct, hangup_work);
1476	struct tty_driver *driver = tty->driver;
 
1477
1478	if (tty->ops->cleanup)
1479		tty->ops->cleanup(tty);
1480
1481	tty->magic = 0;
1482	tty_driver_kref_put(driver);
1483	module_put(driver->owner);
1484
1485	spin_lock(&tty_files_lock);
1486	list_del_init(&tty->tty_files);
1487	spin_unlock(&tty_files_lock);
1488
1489	put_pid(tty->pgrp);
1490	put_pid(tty->session);
1491	free_tty_struct(tty);
1492}
1493
1494static void queue_release_one_tty(struct kref *kref)
1495{
1496	struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1497
1498	if (tty->ops->shutdown)
1499		tty->ops->shutdown(tty);
1500	else
1501		tty_shutdown(tty);
1502
1503	/* The hangup queue is now free so we can reuse it rather than
1504	   waste a chunk of memory for each port */
 
1505	INIT_WORK(&tty->hangup_work, release_one_tty);
1506	schedule_work(&tty->hangup_work);
1507}
1508
1509/**
1510 *	tty_kref_put		-	release a tty kref
1511 *	@tty: tty device
1512 *
1513 *	Release a reference to a tty device and if need be let the kref
1514 *	layer destruct the object for us
1515 */
1516
1517void tty_kref_put(struct tty_struct *tty)
1518{
1519	if (tty)
1520		kref_put(&tty->kref, queue_release_one_tty);
1521}
1522EXPORT_SYMBOL(tty_kref_put);
1523
1524/**
1525 *	release_tty		-	release tty structure memory
1526 *
1527 *	Release both @tty and a possible linked partner (think pty pair),
1528 *	and decrement the refcount of the backing module.
1529 *
1530 *	Locking:
1531 *		tty_mutex - sometimes only
1532 *		takes the file list lock internally when working on the list
1533 *	of ttys that the driver keeps.
1534 *		FIXME: should we require tty_mutex is held here ??
1535 *
1536 */
1537static void release_tty(struct tty_struct *tty, int idx)
1538{
1539	/* This should always be true but check for the moment */
1540	WARN_ON(tty->index != idx);
 
 
 
 
 
 
 
 
 
 
 
 
 
1541
1542	if (tty->link)
1543		tty_kref_put(tty->link);
1544	tty_kref_put(tty);
1545}
1546
1547/**
1548 *	tty_release_checks - check a tty before real release
1549 *	@tty: tty to check
1550 *	@o_tty: link of @tty (if any)
1551 *	@idx: index of the tty
1552 *
1553 *	Performs some paranoid checking before true release of the @tty.
1554 *	This is a no-op unless TTY_PARANOIA_CHECK is defined.
1555 */
1556static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1557		int idx)
1558{
1559#ifdef TTY_PARANOIA_CHECK
1560	if (idx < 0 || idx >= tty->driver->num) {
1561		printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1562				__func__, tty->name);
1563		return -1;
1564	}
1565
1566	/* not much to check for devpts */
1567	if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1568		return 0;
1569
1570	if (tty != tty->driver->ttys[idx]) {
1571		printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1572				__func__, idx, tty->name);
1573		return -1;
1574	}
1575	if (tty->termios != tty->driver->termios[idx]) {
1576		printk(KERN_DEBUG "%s: driver.termios[%d] not termios for (%s)\n",
1577				__func__, idx, tty->name);
1578		return -1;
1579	}
1580	if (tty->driver->other) {
 
 
1581		if (o_tty != tty->driver->other->ttys[idx]) {
1582			printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1583					__func__, idx, tty->name);
1584			return -1;
1585		}
1586		if (o_tty->termios != tty->driver->other->termios[idx]) {
1587			printk(KERN_DEBUG "%s: other->termios[%d] not o_termios for (%s)\n",
1588					__func__, idx, tty->name);
1589			return -1;
1590		}
1591		if (o_tty->link != tty) {
1592			printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1593			return -1;
1594		}
1595	}
1596#endif
1597	return 0;
1598}
1599
1600/**
1601 *	tty_release		-	vfs callback for close
1602 *	@inode: inode of tty
1603 *	@filp: file pointer for handle to tty
1604 *
1605 *	Called the last time each file handle is closed that references
1606 *	this tty. There may however be several such references.
1607 *
1608 *	Locking:
1609 *		Takes bkl. See tty_release_dev
1610 *
1611 * Even releasing the tty structures is a tricky business.. We have
1612 * to be very careful that the structures are all released at the
1613 * same time, as interrupts might otherwise get the wrong pointers.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1614 *
1615 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1616 * lead to double frees or releasing memory still in use.
1617 */
1618
1619int tty_release(struct inode *inode, struct file *filp)
1620{
1621	struct tty_struct *tty = file_tty(filp);
1622	struct tty_struct *o_tty;
1623	int	pty_master, tty_closing, o_tty_closing, do_sleep;
1624	int	devpts;
1625	int	idx;
1626	char	buf[64];
 
1627
1628	if (tty_paranoia_check(tty, inode, __func__))
1629		return 0;
1630
1631	tty_lock();
1632	check_tty_count(tty, __func__);
1633
1634	__tty_fasync(-1, filp, 0);
1635
1636	idx = tty->index;
1637	pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1638		      tty->driver->subtype == PTY_TYPE_MASTER);
1639	devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1640	o_tty = tty->link;
1641
1642	if (tty_release_checks(tty, o_tty, idx)) {
1643		tty_unlock();
1644		return 0;
1645	}
1646
1647#ifdef TTY_DEBUG_HANGUP
1648	printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1649			tty_name(tty, buf), tty->count);
1650#endif
1651
1652	if (tty->ops->close)
1653		tty->ops->close(tty, filp);
1654
1655	tty_unlock();
 
 
1656	/*
1657	 * Sanity check: if tty->count is going to zero, there shouldn't be
1658	 * any waiters on tty->read_wait or tty->write_wait.  We test the
1659	 * wait queues and kick everyone out _before_ actually starting to
1660	 * close.  This ensures that we won't block while releasing the tty
1661	 * structure.
1662	 *
1663	 * The test for the o_tty closing is necessary, since the master and
1664	 * slave sides may close in any order.  If the slave side closes out
1665	 * first, its count will be one, since the master side holds an open.
1666	 * Thus this test wouldn't be triggered at the time the slave closes,
1667	 * so we do it now.
1668	 *
1669	 * Note that it's possible for the tty to be opened again while we're
1670	 * flushing out waiters.  By recalculating the closing flags before
1671	 * each iteration we avoid any problems.
1672	 */
1673	while (1) {
1674		/* Guard against races with tty->count changes elsewhere and
1675		   opens on /dev/tty */
1676
1677		mutex_lock(&tty_mutex);
1678		tty_lock();
1679		tty_closing = tty->count <= 1;
1680		o_tty_closing = o_tty &&
1681			(o_tty->count <= (pty_master ? 1 : 0));
1682		do_sleep = 0;
1683
1684		if (tty_closing) {
1685			if (waitqueue_active(&tty->read_wait)) {
1686				wake_up_poll(&tty->read_wait, POLLIN);
1687				do_sleep++;
1688			}
1689			if (waitqueue_active(&tty->write_wait)) {
1690				wake_up_poll(&tty->write_wait, POLLOUT);
1691				do_sleep++;
1692			}
1693		}
1694		if (o_tty_closing) {
1695			if (waitqueue_active(&o_tty->read_wait)) {
1696				wake_up_poll(&o_tty->read_wait, POLLIN);
1697				do_sleep++;
1698			}
1699			if (waitqueue_active(&o_tty->write_wait)) {
1700				wake_up_poll(&o_tty->write_wait, POLLOUT);
1701				do_sleep++;
1702			}
1703		}
1704		if (!do_sleep)
1705			break;
1706
1707		printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1708				__func__, tty_name(tty, buf));
1709		tty_unlock();
1710		mutex_unlock(&tty_mutex);
1711		schedule();
 
 
 
 
1712	}
1713
1714	/*
1715	 * The closing flags are now consistent with the open counts on
1716	 * both sides, and we've completed the last operation that could
1717	 * block, so it's safe to proceed with closing.
1718	 */
1719	if (pty_master) {
1720		if (--o_tty->count < 0) {
1721			printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1722				__func__, o_tty->count, tty_name(o_tty, buf));
1723			o_tty->count = 0;
1724		}
1725	}
1726	if (--tty->count < 0) {
1727		printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1728				__func__, tty->count, tty_name(tty, buf));
1729		tty->count = 0;
1730	}
1731
1732	/*
1733	 * We've decremented tty->count, so we need to remove this file
1734	 * descriptor off the tty->tty_files list; this serves two
1735	 * purposes:
1736	 *  - check_tty_count sees the correct number of file descriptors
1737	 *    associated with this tty.
1738	 *  - do_tty_hangup no longer sees this file descriptor as
1739	 *    something that needs to be handled for hangups.
1740	 */
1741	tty_del_file(filp);
1742
1743	/*
1744	 * Perform some housekeeping before deciding whether to return.
1745	 *
1746	 * Set the TTY_CLOSING flag if this was the last open.  In the
1747	 * case of a pty we may have to wait around for the other side
1748	 * to close, and TTY_CLOSING makes sure we can't be reopened.
1749	 */
1750	if (tty_closing)
1751		set_bit(TTY_CLOSING, &tty->flags);
1752	if (o_tty_closing)
1753		set_bit(TTY_CLOSING, &o_tty->flags);
1754
1755	/*
1756	 * If _either_ side is closing, make sure there aren't any
1757	 * processes that still think tty or o_tty is their controlling
1758	 * tty.
1759	 */
1760	if (tty_closing || o_tty_closing) {
1761		read_lock(&tasklist_lock);
1762		session_clear_tty(tty->session);
1763		if (o_tty)
1764			session_clear_tty(o_tty->session);
1765		read_unlock(&tasklist_lock);
1766	}
1767
1768	mutex_unlock(&tty_mutex);
 
 
 
 
 
 
 
 
1769
1770	/* check whether both sides are closing ... */
1771	if (!tty_closing || (o_tty && !o_tty_closing)) {
1772		tty_unlock();
1773		return 0;
1774	}
1775
1776#ifdef TTY_DEBUG_HANGUP
1777	printk(KERN_DEBUG "%s: freeing tty structure...\n", __func__);
1778#endif
1779	/*
1780	 * Ask the line discipline code to release its structures
1781	 */
1782	tty_ldisc_release(tty, o_tty);
1783	/*
1784	 * The release_tty function takes care of the details of clearing
1785	 * the slots and preserving the termios structure.
1786	 */
1787	release_tty(tty, idx);
1788
1789	/* Make this pty number available for reallocation */
1790	if (devpts)
1791		devpts_kill_index(inode, idx);
1792	tty_unlock();
1793	return 0;
1794}
1795
1796/**
1797 *	tty_open_current_tty - get tty of current task for open
1798 *	@device: device number
1799 *	@filp: file pointer to tty
1800 *	@return: tty of the current task iff @device is /dev/tty
1801 *
1802 *	We cannot return driver and index like for the other nodes because
1803 *	devpts will not work then. It expects inodes to be from devpts FS.
1804 *
1805 *	We need to move to returning a refcounted object from all the lookup
1806 *	paths including this one.
1807 */
1808static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1809{
1810	struct tty_struct *tty;
 
1811
1812	if (device != MKDEV(TTYAUX_MAJOR, 0))
1813		return NULL;
1814
1815	tty = get_current_tty();
1816	if (!tty)
1817		return ERR_PTR(-ENXIO);
1818
1819	filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1820	/* noctty = 1; */
1821	tty_kref_put(tty);
1822	/* FIXME: we put a reference and return a TTY! */
1823	/* This is only safe because the caller holds tty_mutex */
 
 
 
 
 
1824	return tty;
1825}
1826
1827/**
1828 *	tty_lookup_driver - lookup a tty driver for a given device file
1829 *	@device: device number
1830 *	@filp: file pointer to tty
1831 *	@noctty: set if the device should not become a controlling tty
1832 *	@index: index for the device in the @return driver
1833 *	@return: driver for this inode (with increased refcount)
 
1834 *
1835 * 	If @return is not erroneous, the caller is responsible to decrement the
1836 * 	refcount by tty_driver_kref_put.
1837 *
1838 *	Locking: tty_mutex protects get_tty_driver
1839 */
1840static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1841		int *noctty, int *index)
1842{
1843	struct tty_driver *driver;
1844
1845	switch (device) {
1846#ifdef CONFIG_VT
1847	case MKDEV(TTY_MAJOR, 0): {
1848		extern struct tty_driver *console_driver;
 
1849		driver = tty_driver_kref_get(console_driver);
1850		*index = fg_console;
1851		*noctty = 1;
1852		break;
1853	}
1854#endif
1855	case MKDEV(TTYAUX_MAJOR, 1): {
1856		struct tty_driver *console_driver = console_device(index);
 
1857		if (console_driver) {
1858			driver = tty_driver_kref_get(console_driver);
1859			if (driver) {
1860				/* Don't let /dev/console block */
1861				filp->f_flags |= O_NONBLOCK;
1862				*noctty = 1;
1863				break;
1864			}
1865		}
 
 
1866		return ERR_PTR(-ENODEV);
1867	}
1868	default:
1869		driver = get_tty_driver(device, index);
1870		if (!driver)
1871			return ERR_PTR(-ENODEV);
1872		break;
1873	}
1874	return driver;
1875}
1876
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1877/**
1878 *	tty_open		-	open a tty device
1879 *	@inode: inode of device file
1880 *	@filp: file pointer to tty
1881 *
1882 *	tty_open and tty_release keep up the tty count that contains the
1883 *	number of opens done on a tty. We cannot use the inode-count, as
1884 *	different inodes might point to the same tty.
1885 *
1886 *	Open-counting is needed for pty masters, as well as for keeping
1887 *	track of serial lines: DTR is dropped when the last close happens.
1888 *	(This is not done solely through tty->count, now.  - Ted 1/27/92)
1889 *
1890 *	The termios state of a pty is reset on first open so that
1891 *	settings don't persist across reuse.
1892 *
1893 *	Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1894 *		 tty->count should protect the rest.
1895 *		 ->siglock protects ->signal/->sighand
1896 */
 
 
 
 
 
1897
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1898static int tty_open(struct inode *inode, struct file *filp)
1899{
1900	struct tty_struct *tty;
1901	int noctty, retval;
1902	struct tty_driver *driver = NULL;
1903	int index;
1904	dev_t device = inode->i_rdev;
1905	unsigned saved_flags = filp->f_flags;
1906
1907	nonseekable_open(inode, filp);
1908
1909retry_open:
1910	retval = tty_alloc_file(filp);
1911	if (retval)
1912		return -ENOMEM;
1913
1914	noctty = filp->f_flags & O_NOCTTY;
1915	index  = -1;
1916	retval = 0;
1917
1918	mutex_lock(&tty_mutex);
1919	tty_lock();
1920
1921	tty = tty_open_current_tty(device, filp);
1922	if (IS_ERR(tty)) {
1923		retval = PTR_ERR(tty);
1924		goto err_unlock;
1925	} else if (!tty) {
1926		driver = tty_lookup_driver(device, filp, &noctty, &index);
1927		if (IS_ERR(driver)) {
1928			retval = PTR_ERR(driver);
1929			goto err_unlock;
1930		}
1931
1932		/* check whether we're reopening an existing tty */
1933		tty = tty_driver_lookup_tty(driver, inode, index);
1934		if (IS_ERR(tty)) {
1935			retval = PTR_ERR(tty);
1936			goto err_unlock;
1937		}
1938	}
1939
1940	if (tty) {
1941		retval = tty_reopen(tty);
1942		if (retval)
1943			tty = ERR_PTR(retval);
1944	} else
1945		tty = tty_init_dev(driver, index);
1946
1947	mutex_unlock(&tty_mutex);
1948	if (driver)
1949		tty_driver_kref_put(driver);
1950	if (IS_ERR(tty)) {
1951		tty_unlock();
1952		retval = PTR_ERR(tty);
1953		goto err_file;
 
 
 
1954	}
1955
1956	tty_add_file(tty, filp);
1957
1958	check_tty_count(tty, __func__);
1959	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1960	    tty->driver->subtype == PTY_TYPE_MASTER)
1961		noctty = 1;
1962#ifdef TTY_DEBUG_HANGUP
1963	printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
1964#endif
1965	if (tty->ops->open)
1966		retval = tty->ops->open(tty, filp);
1967	else
1968		retval = -ENODEV;
1969	filp->f_flags = saved_flags;
1970
1971	if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1972						!capable(CAP_SYS_ADMIN))
1973		retval = -EBUSY;
1974
1975	if (retval) {
1976#ifdef TTY_DEBUG_HANGUP
1977		printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
1978				retval, tty->name);
1979#endif
1980		tty_unlock(); /* need to call tty_release without BTM */
1981		tty_release(inode, filp);
1982		if (retval != -ERESTARTSYS)
1983			return retval;
1984
1985		if (signal_pending(current))
1986			return retval;
1987
1988		schedule();
1989		/*
1990		 * Need to reset f_op in case a hangup happened.
1991		 */
1992		tty_lock();
1993		if (filp->f_op == &hung_up_tty_fops)
1994			filp->f_op = &tty_fops;
1995		tty_unlock();
1996		goto retry_open;
1997	}
1998	tty_unlock();
1999
2000
2001	mutex_lock(&tty_mutex);
2002	tty_lock();
2003	spin_lock_irq(&current->sighand->siglock);
2004	if (!noctty &&
2005	    current->signal->leader &&
2006	    !current->signal->tty &&
2007	    tty->session == NULL)
2008		__proc_set_tty(current, tty);
2009	spin_unlock_irq(&current->sighand->siglock);
2010	tty_unlock();
2011	mutex_unlock(&tty_mutex);
2012	return 0;
2013err_unlock:
2014	tty_unlock();
2015	mutex_unlock(&tty_mutex);
2016	/* after locks to avoid deadlock */
2017	if (!IS_ERR_OR_NULL(driver))
2018		tty_driver_kref_put(driver);
2019err_file:
2020	tty_free_file(filp);
2021	return retval;
2022}
2023
2024
2025
2026/**
2027 *	tty_poll	-	check tty status
2028 *	@filp: file being polled
2029 *	@wait: poll wait structures to update
2030 *
2031 *	Call the line discipline polling method to obtain the poll
2032 *	status of the device.
2033 *
2034 *	Locking: locks called line discipline but ldisc poll method
2035 *	may be re-entered freely by other callers.
2036 */
2037
2038static unsigned int tty_poll(struct file *filp, poll_table *wait)
2039{
2040	struct tty_struct *tty = file_tty(filp);
2041	struct tty_ldisc *ld;
2042	int ret = 0;
2043
2044	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2045		return 0;
2046
2047	ld = tty_ldisc_ref_wait(tty);
 
 
2048	if (ld->ops->poll)
2049		ret = (ld->ops->poll)(tty, filp, wait);
2050	tty_ldisc_deref(ld);
2051	return ret;
2052}
2053
2054static int __tty_fasync(int fd, struct file *filp, int on)
2055{
2056	struct tty_struct *tty = file_tty(filp);
2057	unsigned long flags;
2058	int retval = 0;
2059
2060	if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2061		goto out;
2062
2063	retval = fasync_helper(fd, filp, on, &tty->fasync);
2064	if (retval <= 0)
2065		goto out;
2066
2067	if (on) {
2068		enum pid_type type;
2069		struct pid *pid;
2070		if (!waitqueue_active(&tty->read_wait))
2071			tty->minimum_to_wake = 1;
2072		spin_lock_irqsave(&tty->ctrl_lock, flags);
2073		if (tty->pgrp) {
2074			pid = tty->pgrp;
2075			type = PIDTYPE_PGID;
2076		} else {
2077			pid = task_pid(current);
2078			type = PIDTYPE_PID;
2079		}
2080		get_pid(pid);
2081		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2082		retval = __f_setown(filp, pid, type, 0);
2083		put_pid(pid);
2084		if (retval)
2085			goto out;
2086	} else {
2087		if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2088			tty->minimum_to_wake = N_TTY_BUF_SIZE;
2089	}
2090	retval = 0;
2091out:
2092	return retval;
2093}
2094
2095static int tty_fasync(int fd, struct file *filp, int on)
2096{
2097	int retval;
2098	tty_lock();
2099	retval = __tty_fasync(fd, filp, on);
2100	tty_unlock();
 
 
 
 
2101	return retval;
2102}
2103
 
2104/**
2105 *	tiocsti			-	fake input character
2106 *	@tty: tty to fake input into
2107 *	@p: pointer to character
2108 *
2109 *	Fake input to a tty device. Does the necessary locking and
2110 *	input management.
2111 *
2112 *	FIXME: does not honour flow control ??
2113 *
2114 *	Locking:
2115 *		Called functions take tty_ldisc_lock
2116 *		current->signal->tty check is safe without locks
2117 *
2118 *	FIXME: may race normal receive processing
 
 
2119 */
2120
2121static int tiocsti(struct tty_struct *tty, char __user *p)
2122{
2123	char ch, mbz = 0;
2124	struct tty_ldisc *ld;
2125
 
 
 
2126	if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2127		return -EPERM;
2128	if (get_user(ch, p))
2129		return -EFAULT;
2130	tty_audit_tiocsti(tty, ch);
2131	ld = tty_ldisc_ref_wait(tty);
2132	ld->ops->receive_buf(tty, &ch, &mbz, 1);
 
 
 
 
 
2133	tty_ldisc_deref(ld);
2134	return 0;
2135}
2136
2137/**
2138 *	tiocgwinsz		-	implement window query ioctl
2139 *	@tty; tty
2140 *	@arg: user buffer for result
2141 *
2142 *	Copies the kernel idea of the window size into the user buffer.
2143 *
2144 *	Locking: tty->termios_mutex is taken to ensure the winsize data
2145 *		is consistent.
2146 */
2147
2148static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2149{
2150	int err;
2151
2152	mutex_lock(&tty->termios_mutex);
2153	err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2154	mutex_unlock(&tty->termios_mutex);
2155
2156	return err ? -EFAULT: 0;
2157}
2158
2159/**
2160 *	tty_do_resize		-	resize event
2161 *	@tty: tty being resized
2162 *	@rows: rows (character)
2163 *	@cols: cols (character)
2164 *
2165 *	Update the termios variables and send the necessary signals to
2166 *	peform a terminal resize correctly
2167 */
2168
2169int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2170{
2171	struct pid *pgrp;
2172	unsigned long flags;
2173
2174	/* Lock the tty */
2175	mutex_lock(&tty->termios_mutex);
2176	if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2177		goto done;
2178	/* Get the PID values and reference them so we can
2179	   avoid holding the tty ctrl lock while sending signals */
2180	spin_lock_irqsave(&tty->ctrl_lock, flags);
2181	pgrp = get_pid(tty->pgrp);
2182	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2183
 
 
2184	if (pgrp)
2185		kill_pgrp(pgrp, SIGWINCH, 1);
2186	put_pid(pgrp);
2187
2188	tty->winsize = *ws;
2189done:
2190	mutex_unlock(&tty->termios_mutex);
2191	return 0;
2192}
 
2193
2194/**
2195 *	tiocswinsz		-	implement window size set ioctl
2196 *	@tty; tty side of tty
2197 *	@arg: user buffer for result
2198 *
2199 *	Copies the user idea of the window size to the kernel. Traditionally
2200 *	this is just advisory information but for the Linux console it
2201 *	actually has driver level meaning and triggers a VC resize.
2202 *
2203 *	Locking:
2204 *		Driver dependent. The default do_resize method takes the
2205 *	tty termios mutex and ctrl_lock. The console takes its own lock
2206 *	then calls into the default method.
2207 */
2208
2209static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2210{
2211	struct winsize tmp_ws;
 
2212	if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2213		return -EFAULT;
2214
2215	if (tty->ops->resize)
2216		return tty->ops->resize(tty, &tmp_ws);
2217	else
2218		return tty_do_resize(tty, &tmp_ws);
2219}
2220
2221/**
2222 *	tioccons	-	allow admin to move logical console
2223 *	@file: the file to become console
2224 *
2225 *	Allow the administrator to move the redirected console device
2226 *
2227 *	Locking: uses redirect_lock to guard the redirect information
2228 */
2229
2230static int tioccons(struct file *file)
2231{
2232	if (!capable(CAP_SYS_ADMIN))
2233		return -EPERM;
2234	if (file->f_op->write == redirected_tty_write) {
2235		struct file *f;
 
2236		spin_lock(&redirect_lock);
2237		f = redirect;
2238		redirect = NULL;
2239		spin_unlock(&redirect_lock);
2240		if (f)
2241			fput(f);
2242		return 0;
2243	}
 
 
 
 
 
 
2244	spin_lock(&redirect_lock);
2245	if (redirect) {
2246		spin_unlock(&redirect_lock);
2247		return -EBUSY;
2248	}
2249	get_file(file);
2250	redirect = file;
2251	spin_unlock(&redirect_lock);
2252	return 0;
2253}
2254
2255/**
2256 *	fionbio		-	non blocking ioctl
2257 *	@file: file to set blocking value
2258 *	@p: user parameter
2259 *
2260 *	Historical tty interfaces had a blocking control ioctl before
2261 *	the generic functionality existed. This piece of history is preserved
2262 *	in the expected tty API of posix OS's.
2263 *
2264 *	Locking: none, the open file handle ensures it won't go away.
2265 */
2266
2267static int fionbio(struct file *file, int __user *p)
2268{
2269	int nonblock;
 
2270
2271	if (get_user(nonblock, p))
2272		return -EFAULT;
2273
2274	spin_lock(&file->f_lock);
2275	if (nonblock)
2276		file->f_flags |= O_NONBLOCK;
2277	else
2278		file->f_flags &= ~O_NONBLOCK;
2279	spin_unlock(&file->f_lock);
2280	return 0;
2281}
2282
2283/**
2284 *	tiocsctty	-	set controlling tty
2285 *	@tty: tty structure
2286 *	@arg: user argument
2287 *
2288 *	This ioctl is used to manage job control. It permits a session
2289 *	leader to set this tty as the controlling tty for the session.
2290 *
2291 *	Locking:
2292 *		Takes tty_mutex() to protect tty instance
2293 *		Takes tasklist_lock internally to walk sessions
2294 *		Takes ->siglock() when updating signal->tty
2295 */
2296
2297static int tiocsctty(struct tty_struct *tty, int arg)
2298{
2299	int ret = 0;
2300	if (current->signal->leader && (task_session(current) == tty->session))
2301		return ret;
2302
2303	mutex_lock(&tty_mutex);
2304	/*
2305	 * The process must be a session leader and
2306	 * not have a controlling tty already.
2307	 */
2308	if (!current->signal->leader || current->signal->tty) {
2309		ret = -EPERM;
2310		goto unlock;
2311	}
2312
2313	if (tty->session) {
2314		/*
2315		 * This tty is already the controlling
2316		 * tty for another session group!
2317		 */
2318		if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2319			/*
2320			 * Steal it away
2321			 */
2322			read_lock(&tasklist_lock);
2323			session_clear_tty(tty->session);
2324			read_unlock(&tasklist_lock);
2325		} else {
2326			ret = -EPERM;
2327			goto unlock;
2328		}
2329	}
2330	proc_set_tty(current, tty);
2331unlock:
2332	mutex_unlock(&tty_mutex);
2333	return ret;
2334}
2335
2336/**
2337 *	tty_get_pgrp	-	return a ref counted pgrp pid
2338 *	@tty: tty to read
 
2339 *
2340 *	Returns a refcounted instance of the pid struct for the process
2341 *	group controlling the tty.
2342 */
2343
2344struct pid *tty_get_pgrp(struct tty_struct *tty)
2345{
2346	unsigned long flags;
2347	struct pid *pgrp;
2348
2349	spin_lock_irqsave(&tty->ctrl_lock, flags);
2350	pgrp = get_pid(tty->pgrp);
2351	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2352
2353	return pgrp;
2354}
2355EXPORT_SYMBOL_GPL(tty_get_pgrp);
2356
2357/**
2358 *	tiocgpgrp		-	get process group
2359 *	@tty: tty passed by user
2360 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2361 *	@p: returned pid
2362 *
2363 *	Obtain the process group of the tty. If there is no process group
2364 *	return an error.
2365 *
2366 *	Locking: none. Reference to current->signal->tty is safe.
 
2367 */
2368
2369static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2370{
2371	struct pid *pid;
2372	int ret;
2373	/*
2374	 * (tty == real_tty) is a cheap way of
2375	 * testing if the tty is NOT a master pty.
2376	 */
2377	if (tty == real_tty && current->signal->tty != real_tty)
2378		return -ENOTTY;
2379	pid = tty_get_pgrp(real_tty);
2380	ret =  put_user(pid_vnr(pid), p);
2381	put_pid(pid);
2382	return ret;
2383}
2384
2385/**
2386 *	tiocspgrp		-	attempt to set process group
2387 *	@tty: tty passed by user
2388 *	@real_tty: tty side device matching tty passed by user
2389 *	@p: pid pointer
2390 *
2391 *	Set the process group of the tty to the session passed. Only
2392 *	permitted where the tty session is our session.
2393 *
2394 *	Locking: RCU, ctrl lock
2395 */
2396
2397static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2398{
2399	struct pid *pgrp;
2400	pid_t pgrp_nr;
2401	int retval = tty_check_change(real_tty);
2402	unsigned long flags;
2403
2404	if (retval == -EIO)
2405		return -ENOTTY;
2406	if (retval)
2407		return retval;
2408	if (!current->signal->tty ||
2409	    (current->signal->tty != real_tty) ||
2410	    (real_tty->session != task_session(current)))
2411		return -ENOTTY;
2412	if (get_user(pgrp_nr, p))
2413		return -EFAULT;
2414	if (pgrp_nr < 0)
2415		return -EINVAL;
2416	rcu_read_lock();
2417	pgrp = find_vpid(pgrp_nr);
2418	retval = -ESRCH;
2419	if (!pgrp)
2420		goto out_unlock;
2421	retval = -EPERM;
2422	if (session_of_pgrp(pgrp) != task_session(current))
2423		goto out_unlock;
2424	retval = 0;
2425	spin_lock_irqsave(&tty->ctrl_lock, flags);
2426	put_pid(real_tty->pgrp);
2427	real_tty->pgrp = get_pid(pgrp);
2428	spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2429out_unlock:
2430	rcu_read_unlock();
2431	return retval;
2432}
2433
2434/**
2435 *	tiocgsid		-	get session id
2436 *	@tty: tty passed by user
2437 *	@real_tty: tty side of the tty passed by the user if a pty else the tty
2438 *	@p: pointer to returned session id
2439 *
2440 *	Obtain the session id of the tty. If there is no session
2441 *	return an error.
2442 *
2443 *	Locking: none. Reference to current->signal->tty is safe.
2444 */
2445
2446static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2447{
2448	/*
2449	 * (tty == real_tty) is a cheap way of
2450	 * testing if the tty is NOT a master pty.
2451	*/
2452	if (tty == real_tty && current->signal->tty != real_tty)
2453		return -ENOTTY;
2454	if (!real_tty->session)
2455		return -ENOTTY;
2456	return put_user(pid_vnr(real_tty->session), p);
2457}
2458
2459/**
2460 *	tiocsetd	-	set line discipline
2461 *	@tty: tty device
2462 *	@p: pointer to user data
2463 *
2464 *	Set the line discipline according to user request.
2465 *
2466 *	Locking: see tty_set_ldisc, this function is just a helper
2467 */
2468
2469static int tiocsetd(struct tty_struct *tty, int __user *p)
2470{
2471	int ldisc;
2472	int ret;
2473
2474	if (get_user(ldisc, p))
2475		return -EFAULT;
2476
2477	ret = tty_set_ldisc(tty, ldisc);
2478
 
 
 
 
 
2479	return ret;
2480}
2481
2482/**
2483 *	send_break	-	performed time break
2484 *	@tty: device to break on
2485 *	@duration: timeout in mS
2486 *
2487 *	Perform a timed break on hardware that lacks its own driver level
2488 *	timed break functionality.
2489 *
2490 *	Locking:
2491 *		atomic_write_lock serializes
2492 *
 
 
2493 */
2494
2495static int send_break(struct tty_struct *tty, unsigned int duration)
2496{
2497	int retval;
2498
2499	if (tty->ops->break_ctl == NULL)
2500		return 0;
2501
2502	if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2503		retval = tty->ops->break_ctl(tty, duration);
2504	else {
2505		/* Do the work ourselves */
2506		if (tty_write_lock(tty, 0) < 0)
2507			return -EINTR;
2508		retval = tty->ops->break_ctl(tty, -1);
2509		if (retval)
2510			goto out;
2511		if (!signal_pending(current))
2512			msleep_interruptible(duration);
2513		retval = tty->ops->break_ctl(tty, 0);
2514out:
2515		tty_write_unlock(tty);
2516		if (signal_pending(current))
2517			retval = -EINTR;
2518	}
2519	return retval;
2520}
2521
2522/**
2523 *	tty_tiocmget		-	get modem status
2524 *	@tty: tty device
2525 *	@file: user file pointer
2526 *	@p: pointer to result
2527 *
2528 *	Obtain the modem status bits from the tty driver if the feature
2529 *	is supported. Return -EINVAL if it is not available.
2530 *
2531 *	Locking: none (up to the driver)
2532 */
2533
2534static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2535{
2536	int retval = -EINVAL;
2537
2538	if (tty->ops->tiocmget) {
2539		retval = tty->ops->tiocmget(tty);
2540
2541		if (retval >= 0)
2542			retval = put_user(retval, p);
2543	}
2544	return retval;
2545}
2546
2547/**
2548 *	tty_tiocmset		-	set modem status
2549 *	@tty: tty device
2550 *	@cmd: command - clear bits, set bits or set all
2551 *	@p: pointer to desired bits
2552 *
2553 *	Set the modem status bits from the tty driver if the feature
2554 *	is supported. Return -EINVAL if it is not available.
2555 *
2556 *	Locking: none (up to the driver)
2557 */
2558
2559static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2560	     unsigned __user *p)
2561{
2562	int retval;
2563	unsigned int set, clear, val;
2564
2565	if (tty->ops->tiocmset == NULL)
2566		return -EINVAL;
2567
2568	retval = get_user(val, p);
2569	if (retval)
2570		return retval;
2571	set = clear = 0;
2572	switch (cmd) {
2573	case TIOCMBIS:
2574		set = val;
2575		break;
2576	case TIOCMBIC:
2577		clear = val;
2578		break;
2579	case TIOCMSET:
2580		set = val;
2581		clear = ~val;
2582		break;
2583	}
2584	set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2585	clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2586	return tty->ops->tiocmset(tty, set, clear);
2587}
2588
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2589static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2590{
2591	int retval = -EINVAL;
2592	struct serial_icounter_struct icount;
2593	memset(&icount, 0, sizeof(icount));
2594	if (tty->ops->get_icount)
2595		retval = tty->ops->get_icount(tty, &icount);
2596	if (retval != 0)
2597		return retval;
 
2598	if (copy_to_user(arg, &icount, sizeof(icount)))
2599		return -EFAULT;
2600	return 0;
2601}
2602
2603struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2604{
2605	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2606	    tty->driver->subtype == PTY_TYPE_MASTER)
2607		tty = tty->link;
2608	return tty;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2609}
2610EXPORT_SYMBOL(tty_pair_get_tty);
2611
2612struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613{
2614	if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2615	    tty->driver->subtype == PTY_TYPE_MASTER)
2616	    return tty;
2617	return tty->link;
2618}
2619EXPORT_SYMBOL(tty_pair_get_pty);
2620
2621/*
2622 * Split this up, as gcc can choke on it otherwise..
2623 */
2624long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2625{
2626	struct tty_struct *tty = file_tty(file);
2627	struct tty_struct *real_tty;
2628	void __user *p = (void __user *)arg;
2629	int retval;
2630	struct tty_ldisc *ld;
2631	struct inode *inode = file->f_dentry->d_inode;
2632
2633	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2634		return -EINVAL;
2635
2636	real_tty = tty_pair_get_tty(tty);
2637
2638	/*
2639	 * Factor out some common prep work
2640	 */
2641	switch (cmd) {
2642	case TIOCSETD:
2643	case TIOCSBRK:
2644	case TIOCCBRK:
2645	case TCSBRK:
2646	case TCSBRKP:
2647		retval = tty_check_change(tty);
2648		if (retval)
2649			return retval;
2650		if (cmd != TIOCCBRK) {
2651			tty_wait_until_sent(tty, 0);
2652			if (signal_pending(current))
2653				return -EINTR;
2654		}
2655		break;
2656	}
2657
2658	/*
2659	 *	Now do the stuff.
2660	 */
2661	switch (cmd) {
2662	case TIOCSTI:
2663		return tiocsti(tty, p);
2664	case TIOCGWINSZ:
2665		return tiocgwinsz(real_tty, p);
2666	case TIOCSWINSZ:
2667		return tiocswinsz(real_tty, p);
2668	case TIOCCONS:
2669		return real_tty != tty ? -EINVAL : tioccons(file);
2670	case FIONBIO:
2671		return fionbio(file, p);
2672	case TIOCEXCL:
2673		set_bit(TTY_EXCLUSIVE, &tty->flags);
2674		return 0;
2675	case TIOCNXCL:
2676		clear_bit(TTY_EXCLUSIVE, &tty->flags);
2677		return 0;
2678	case TIOCNOTTY:
2679		if (current->signal->tty != tty)
2680			return -ENOTTY;
2681		no_tty();
2682		return 0;
2683	case TIOCSCTTY:
2684		return tiocsctty(tty, arg);
2685	case TIOCGPGRP:
2686		return tiocgpgrp(tty, real_tty, p);
2687	case TIOCSPGRP:
2688		return tiocspgrp(tty, real_tty, p);
2689	case TIOCGSID:
2690		return tiocgsid(tty, real_tty, p);
2691	case TIOCGETD:
2692		return put_user(tty->ldisc->ops->num, (int __user *)p);
2693	case TIOCSETD:
2694		return tiocsetd(tty, p);
2695	case TIOCVHANGUP:
2696		if (!capable(CAP_SYS_ADMIN))
2697			return -EPERM;
2698		tty_vhangup(tty);
2699		return 0;
2700	case TIOCGDEV:
2701	{
2702		unsigned int ret = new_encode_dev(tty_devnum(real_tty));
 
2703		return put_user(ret, (unsigned int __user *)p);
2704	}
2705	/*
2706	 * Break handling
2707	 */
2708	case TIOCSBRK:	/* Turn break on, unconditionally */
2709		if (tty->ops->break_ctl)
2710			return tty->ops->break_ctl(tty, -1);
2711		return 0;
2712	case TIOCCBRK:	/* Turn break off, unconditionally */
2713		if (tty->ops->break_ctl)
2714			return tty->ops->break_ctl(tty, 0);
2715		return 0;
2716	case TCSBRK:   /* SVID version: non-zero arg --> no break */
2717		/* non-zero arg means wait for all output data
2718		 * to be sent (performed above) but don't send break.
2719		 * This is used by the tcdrain() termios function.
2720		 */
2721		if (!arg)
2722			return send_break(tty, 250);
2723		return 0;
2724	case TCSBRKP:	/* support for POSIX tcsendbreak() */
2725		return send_break(tty, arg ? arg*100 : 250);
2726
2727	case TIOCMGET:
2728		return tty_tiocmget(tty, p);
2729	case TIOCMSET:
2730	case TIOCMBIC:
2731	case TIOCMBIS:
2732		return tty_tiocmset(tty, cmd, p);
2733	case TIOCGICOUNT:
2734		retval = tty_tiocgicount(tty, p);
2735		/* For the moment allow fall through to the old method */
2736        	if (retval != -EINVAL)
2737			return retval;
2738		break;
2739	case TCFLSH:
2740		switch (arg) {
2741		case TCIFLUSH:
2742		case TCIOFLUSH:
2743		/* flush tty buffer and allow ldisc to process ioctl */
2744			tty_buffer_flush(tty);
2745			break;
2746		}
2747		break;
 
 
 
 
 
 
 
 
 
 
 
2748	}
2749	if (tty->ops->ioctl) {
2750		retval = (tty->ops->ioctl)(tty, cmd, arg);
2751		if (retval != -ENOIOCTLCMD)
2752			return retval;
2753	}
2754	ld = tty_ldisc_ref_wait(tty);
 
 
2755	retval = -EINVAL;
2756	if (ld->ops->ioctl) {
2757		retval = ld->ops->ioctl(tty, file, cmd, arg);
2758		if (retval == -ENOIOCTLCMD)
2759			retval = -EINVAL;
2760	}
2761	tty_ldisc_deref(ld);
2762	return retval;
2763}
2764
2765#ifdef CONFIG_COMPAT
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2766static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2767				unsigned long arg)
2768{
2769	struct inode *inode = file->f_dentry->d_inode;
2770	struct tty_struct *tty = file_tty(file);
2771	struct tty_ldisc *ld;
2772	int retval = -ENOIOCTLCMD;
2773
2774	if (tty_paranoia_check(tty, inode, "tty_ioctl"))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2775		return -EINVAL;
2776
 
 
 
 
 
 
2777	if (tty->ops->compat_ioctl) {
2778		retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2779		if (retval != -ENOIOCTLCMD)
2780			return retval;
2781	}
2782
2783	ld = tty_ldisc_ref_wait(tty);
 
 
2784	if (ld->ops->compat_ioctl)
2785		retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2786	else
2787		retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
 
2788	tty_ldisc_deref(ld);
2789
2790	return retval;
2791}
2792#endif
2793
 
 
 
 
 
 
 
2794/*
2795 * This implements the "Secure Attention Key" ---  the idea is to
2796 * prevent trojan horses by killing all processes associated with this
2797 * tty when the user hits the "Secure Attention Key".  Required for
2798 * super-paranoid applications --- see the Orange Book for more details.
2799 *
2800 * This code could be nicer; ideally it should send a HUP, wait a few
2801 * seconds, then send a INT, and then a KILL signal.  But you then
2802 * have to coordinate with the init process, since all processes associated
2803 * with the current tty must be dead before the new getty is allowed
2804 * to spawn.
2805 *
2806 * Now, if it would be correct ;-/ The current code has a nasty hole -
2807 * it doesn't catch files in flight. We may send the descriptor to ourselves
2808 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2809 *
2810 * Nasty bug: do_SAK is being called in interrupt context.  This can
2811 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2812 */
2813void __do_SAK(struct tty_struct *tty)
2814{
2815#ifdef TTY_SOFT_SAK
2816	tty_hangup(tty);
2817#else
2818	struct task_struct *g, *p;
2819	struct pid *session;
2820	int		i;
2821	struct file	*filp;
2822	struct fdtable *fdt;
2823
2824	if (!tty)
2825		return;
2826	session = tty->session;
2827
2828	tty_ldisc_flush(tty);
2829
2830	tty_driver_flush_buffer(tty);
2831
2832	read_lock(&tasklist_lock);
2833	/* Kill the entire session */
2834	do_each_pid_task(session, PIDTYPE_SID, p) {
2835		printk(KERN_NOTICE "SAK: killed process %d"
2836			" (%s): task_session(p)==tty->session\n",
2837			task_pid_nr(p), p->comm);
2838		send_sig(SIGKILL, p, 1);
2839	} while_each_pid_task(session, PIDTYPE_SID, p);
2840	/* Now kill any processes that happen to have the
2841	 * tty open.
2842	 */
2843	do_each_thread(g, p) {
2844		if (p->signal->tty == tty) {
2845			printk(KERN_NOTICE "SAK: killed process %d"
2846			    " (%s): task_session(p)==tty->session\n",
2847			    task_pid_nr(p), p->comm);
2848			send_sig(SIGKILL, p, 1);
2849			continue;
2850		}
2851		task_lock(p);
2852		if (p->files) {
2853			/*
2854			 * We don't take a ref to the file, so we must
2855			 * hold ->file_lock instead.
2856			 */
2857			spin_lock(&p->files->file_lock);
2858			fdt = files_fdtable(p->files);
2859			for (i = 0; i < fdt->max_fds; i++) {
2860				filp = fcheck_files(p->files, i);
2861				if (!filp)
2862					continue;
2863				if (filp->f_op->read == tty_read &&
2864				    file_tty(filp) == tty) {
2865					printk(KERN_NOTICE "SAK: killed process %d"
2866					    " (%s): fd#%d opened to the tty\n",
2867					    task_pid_nr(p), p->comm, i);
2868					force_sig(SIGKILL, p);
2869					break;
2870				}
2871			}
2872			spin_unlock(&p->files->file_lock);
2873		}
2874		task_unlock(p);
2875	} while_each_thread(g, p);
2876	read_unlock(&tasklist_lock);
2877#endif
2878}
2879
2880static void do_SAK_work(struct work_struct *work)
2881{
2882	struct tty_struct *tty =
2883		container_of(work, struct tty_struct, SAK_work);
2884	__do_SAK(tty);
2885}
2886
2887/*
2888 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2889 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2890 * the values which we write to it will be identical to the values which it
2891 * already has. --akpm
2892 */
2893void do_SAK(struct tty_struct *tty)
2894{
2895	if (!tty)
2896		return;
2897	schedule_work(&tty->SAK_work);
2898}
2899
2900EXPORT_SYMBOL(do_SAK);
2901
2902static int dev_match_devt(struct device *dev, void *data)
2903{
2904	dev_t *devt = data;
2905	return dev->devt == *devt;
2906}
2907
2908/* Must put_device() after it's unused! */
2909static struct device *tty_get_device(struct tty_struct *tty)
2910{
2911	dev_t devt = tty_devnum(tty);
2912	return class_find_device(tty_class, NULL, &devt, dev_match_devt);
 
2913}
2914
2915
2916/**
2917 *	initialize_tty_struct
2918 *	@tty: tty to initialize
 
2919 *
2920 *	This subroutine initializes a tty structure that has been newly
2921 *	allocated.
2922 *
2923 *	Locking: none - tty in question must not be exposed at this point
2924 */
 
 
 
 
 
 
 
2925
2926void initialize_tty_struct(struct tty_struct *tty,
2927		struct tty_driver *driver, int idx)
2928{
2929	memset(tty, 0, sizeof(struct tty_struct));
2930	kref_init(&tty->kref);
2931	tty->magic = TTY_MAGIC;
2932	tty_ldisc_init(tty);
2933	tty->session = NULL;
2934	tty->pgrp = NULL;
2935	tty->overrun_time = jiffies;
2936	tty_buffer_init(tty);
2937	mutex_init(&tty->termios_mutex);
2938	mutex_init(&tty->ldisc_mutex);
 
 
 
2939	init_waitqueue_head(&tty->write_wait);
2940	init_waitqueue_head(&tty->read_wait);
2941	INIT_WORK(&tty->hangup_work, do_tty_hangup);
2942	mutex_init(&tty->atomic_read_lock);
2943	mutex_init(&tty->atomic_write_lock);
2944	mutex_init(&tty->output_lock);
2945	mutex_init(&tty->echo_lock);
2946	spin_lock_init(&tty->read_lock);
2947	spin_lock_init(&tty->ctrl_lock);
2948	INIT_LIST_HEAD(&tty->tty_files);
2949	INIT_WORK(&tty->SAK_work, do_SAK_work);
2950
2951	tty->driver = driver;
2952	tty->ops = driver->ops;
2953	tty->index = idx;
2954	tty_line_name(driver, idx, tty->name);
2955	tty->dev = tty_get_device(tty);
 
 
2956}
2957
2958/**
2959 *	deinitialize_tty_struct
2960 *	@tty: tty to deinitialize
 
2961 *
2962 *	This subroutine deinitializes a tty structure that has been newly
2963 *	allocated but tty_release cannot be called on that yet.
2964 *
2965 *	Locking: none - tty in question must not be exposed at this point
2966 */
2967void deinitialize_tty_struct(struct tty_struct *tty)
2968{
2969	tty_ldisc_deinit(tty);
2970}
2971
2972/**
2973 *	tty_put_char	-	write one character to a tty
2974 *	@tty: tty
2975 *	@ch: character
2976 *
2977 *	Write one byte to the tty using the provided put_char method
2978 *	if present. Returns the number of characters successfully output.
2979 *
2980 *	Note: the specific put_char operation in the driver layer may go
2981 *	away soon. Don't call it directly, use this method
2982 */
2983
2984int tty_put_char(struct tty_struct *tty, unsigned char ch)
2985{
2986	if (tty->ops->put_char)
2987		return tty->ops->put_char(tty, ch);
2988	return tty->ops->write(tty, &ch, 1);
2989}
2990EXPORT_SYMBOL_GPL(tty_put_char);
2991
2992struct class *tty_class;
2993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2994/**
2995 *	tty_register_device - register a tty device
2996 *	@driver: the tty driver that describes the tty device
2997 *	@index: the index in the tty driver for this tty device
2998 *	@device: a struct device that is associated with this tty device.
2999 *		This field is optional, if there is no known struct device
3000 *		for this tty device it can be set to NULL safely.
3001 *
3002 *	Returns a pointer to the struct device for this tty device
3003 *	(or ERR_PTR(-EFOO) on error).
3004 *
3005 *	This call is required to be made to register an individual tty device
3006 *	if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3007 *	that bit is not set, this function should not be called by a tty
3008 *	driver.
3009 *
3010 *	Locking: ??
 
3011 */
3012
3013struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3014				   struct device *device)
3015{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3016	char name[64];
3017	dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
 
 
 
3018
3019	if (index >= driver->num) {
3020		printk(KERN_ERR "Attempt to register invalid tty line number "
3021		       " (%d).\n", index);
3022		return ERR_PTR(-EINVAL);
3023	}
3024
3025	if (driver->type == TTY_DRIVER_TYPE_PTY)
3026		pty_line_name(driver, index, name);
3027	else
3028		tty_line_name(driver, index, name);
3029
3030	return device_create(tty_class, device, dev, NULL, name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3031}
3032EXPORT_SYMBOL(tty_register_device);
3033
3034/**
3035 * 	tty_unregister_device - unregister a tty device
3036 * 	@driver: the tty driver that describes the tty device
3037 * 	@index: the index in the tty driver for this tty device
3038 *
3039 * 	If a tty device is registered with a call to tty_register_device() then
3040 *	this function must be called when the tty device is gone.
3041 *
3042 *	Locking: ??
3043 */
3044
3045void tty_unregister_device(struct tty_driver *driver, unsigned index)
3046{
3047	device_destroy(tty_class,
3048		MKDEV(driver->major, driver->minor_start) + index);
 
 
 
 
3049}
3050EXPORT_SYMBOL(tty_unregister_device);
3051
3052struct tty_driver *__alloc_tty_driver(int lines, struct module *owner)
 
 
 
 
 
 
 
 
 
 
3053{
3054	struct tty_driver *driver;
 
 
3055
3056	driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3057	if (driver) {
3058		kref_init(&driver->kref);
3059		driver->magic = TTY_DRIVER_MAGIC;
3060		driver->num = lines;
3061		driver->owner = owner;
3062		/* later we'll move allocation of tables here */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3063	}
 
3064	return driver;
 
 
 
 
 
 
 
3065}
3066EXPORT_SYMBOL(__alloc_tty_driver);
3067
3068static void destruct_tty_driver(struct kref *kref)
3069{
3070	struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3071	int i;
3072	struct ktermios *tp;
3073	void *p;
3074
3075	if (driver->flags & TTY_DRIVER_INSTALLED) {
3076		/*
3077		 * Free the termios and termios_locked structures because
3078		 * we don't want to get memory leaks when modular tty
3079		 * drivers are removed from the kernel.
3080		 */
3081		for (i = 0; i < driver->num; i++) {
3082			tp = driver->termios[i];
3083			if (tp) {
3084				driver->termios[i] = NULL;
3085				kfree(tp);
3086			}
3087			if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3088				tty_unregister_device(driver, i);
3089		}
3090		p = driver->ttys;
3091		proc_tty_unregister_driver(driver);
3092		driver->ttys = NULL;
3093		driver->termios = NULL;
3094		kfree(p);
3095		cdev_del(&driver->cdev);
3096	}
 
 
 
 
3097	kfree(driver);
3098}
3099
 
 
 
 
 
 
3100void tty_driver_kref_put(struct tty_driver *driver)
3101{
3102	kref_put(&driver->kref, destruct_tty_driver);
3103}
3104EXPORT_SYMBOL(tty_driver_kref_put);
3105
3106void tty_set_operations(struct tty_driver *driver,
3107			const struct tty_operations *op)
3108{
3109	driver->ops = op;
3110};
3111EXPORT_SYMBOL(tty_set_operations);
3112
3113void put_tty_driver(struct tty_driver *d)
3114{
3115	tty_driver_kref_put(d);
3116}
3117EXPORT_SYMBOL(put_tty_driver);
3118
3119/*
3120 * Called by a tty driver to register itself.
3121 */
3122int tty_register_driver(struct tty_driver *driver)
3123{
3124	int error;
3125	int i;
3126	dev_t dev;
3127	void **p = NULL;
3128	struct device *d;
3129
3130	if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
3131		p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
3132		if (!p)
3133			return -ENOMEM;
3134	}
3135
3136	if (!driver->major) {
3137		error = alloc_chrdev_region(&dev, driver->minor_start,
3138						driver->num, driver->name);
3139		if (!error) {
3140			driver->major = MAJOR(dev);
3141			driver->minor_start = MINOR(dev);
3142		}
3143	} else {
3144		dev = MKDEV(driver->major, driver->minor_start);
3145		error = register_chrdev_region(dev, driver->num, driver->name);
3146	}
3147	if (error < 0) {
3148		kfree(p);
3149		return error;
3150	}
3151
3152	if (p) {
3153		driver->ttys = (struct tty_struct **)p;
3154		driver->termios = (struct ktermios **)(p + driver->num);
3155	} else {
3156		driver->ttys = NULL;
3157		driver->termios = NULL;
3158	}
3159
3160	cdev_init(&driver->cdev, &tty_fops);
3161	driver->cdev.owner = driver->owner;
3162	error = cdev_add(&driver->cdev, dev, driver->num);
3163	if (error) {
3164		unregister_chrdev_region(dev, driver->num);
3165		driver->ttys = NULL;
3166		driver->termios = NULL;
3167		kfree(p);
3168		return error;
3169	}
3170
3171	mutex_lock(&tty_mutex);
3172	list_add(&driver->tty_drivers, &tty_drivers);
3173	mutex_unlock(&tty_mutex);
3174
3175	if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3176		for (i = 0; i < driver->num; i++) {
3177			d = tty_register_device(driver, i, NULL);
3178			if (IS_ERR(d)) {
3179				error = PTR_ERR(d);
3180				goto err;
3181			}
3182		}
3183	}
3184	proc_tty_register_driver(driver);
3185	driver->flags |= TTY_DRIVER_INSTALLED;
3186	return 0;
3187
3188err:
3189	for (i--; i >= 0; i--)
3190		tty_unregister_device(driver, i);
3191
3192	mutex_lock(&tty_mutex);
3193	list_del(&driver->tty_drivers);
3194	mutex_unlock(&tty_mutex);
3195
 
3196	unregister_chrdev_region(dev, driver->num);
3197	driver->ttys = NULL;
3198	driver->termios = NULL;
3199	kfree(p);
3200	return error;
3201}
3202
3203EXPORT_SYMBOL(tty_register_driver);
3204
3205/*
 
 
 
3206 * Called by a tty driver to unregister itself.
3207 */
3208int tty_unregister_driver(struct tty_driver *driver)
3209{
3210#if 0
3211	/* FIXME */
3212	if (driver->refcount)
3213		return -EBUSY;
3214#endif
3215	unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3216				driver->num);
3217	mutex_lock(&tty_mutex);
3218	list_del(&driver->tty_drivers);
3219	mutex_unlock(&tty_mutex);
3220	return 0;
3221}
3222
3223EXPORT_SYMBOL(tty_unregister_driver);
3224
3225dev_t tty_devnum(struct tty_struct *tty)
3226{
3227	return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3228}
3229EXPORT_SYMBOL(tty_devnum);
3230
3231void proc_clear_tty(struct task_struct *p)
3232{
3233	unsigned long flags;
3234	struct tty_struct *tty;
3235	spin_lock_irqsave(&p->sighand->siglock, flags);
3236	tty = p->signal->tty;
3237	p->signal->tty = NULL;
3238	spin_unlock_irqrestore(&p->sighand->siglock, flags);
3239	tty_kref_put(tty);
3240}
3241
3242/* Called under the sighand lock */
3243
3244static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3245{
3246	if (tty) {
3247		unsigned long flags;
3248		/* We should not have a session or pgrp to put here but.... */
3249		spin_lock_irqsave(&tty->ctrl_lock, flags);
3250		put_pid(tty->session);
3251		put_pid(tty->pgrp);
3252		tty->pgrp = get_pid(task_pgrp(tsk));
3253		spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3254		tty->session = get_pid(task_session(tsk));
3255		if (tsk->signal->tty) {
3256			printk(KERN_DEBUG "tty not NULL!!\n");
3257			tty_kref_put(tsk->signal->tty);
3258		}
3259	}
3260	put_pid(tsk->signal->tty_old_pgrp);
3261	tsk->signal->tty = tty_kref_get(tty);
3262	tsk->signal->tty_old_pgrp = NULL;
3263}
3264
3265static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3266{
3267	spin_lock_irq(&tsk->sighand->siglock);
3268	__proc_set_tty(tsk, tty);
3269	spin_unlock_irq(&tsk->sighand->siglock);
3270}
3271
3272struct tty_struct *get_current_tty(void)
3273{
3274	struct tty_struct *tty;
3275	unsigned long flags;
3276
3277	spin_lock_irqsave(&current->sighand->siglock, flags);
3278	tty = tty_kref_get(current->signal->tty);
3279	spin_unlock_irqrestore(&current->sighand->siglock, flags);
3280	return tty;
3281}
3282EXPORT_SYMBOL_GPL(get_current_tty);
3283
3284void tty_default_fops(struct file_operations *fops)
3285{
3286	*fops = tty_fops;
3287}
3288
3289/*
3290 * Initialize the console device. This is called *early*, so
3291 * we can't necessarily depend on lots of kernel help here.
3292 * Just do some early initializations, and do the complex setup
3293 * later.
3294 */
3295void __init console_init(void)
3296{
3297	initcall_t *call;
3298
3299	/* Setup the default TTY line discipline. */
3300	tty_ldisc_begin();
3301
3302	/*
3303	 * set up the console device so that later boot sequences can
3304	 * inform about problems etc..
3305	 */
3306	call = __con_initcall_start;
3307	while (call < __con_initcall_end) {
3308		(*call)();
3309		call++;
3310	}
3311}
3312
3313static char *tty_devnode(struct device *dev, umode_t *mode)
3314{
3315	if (!mode)
3316		return NULL;
3317	if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3318	    dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3319		*mode = 0666;
3320	return NULL;
3321}
3322
3323static int __init tty_class_init(void)
3324{
3325	tty_class = class_create(THIS_MODULE, "tty");
3326	if (IS_ERR(tty_class))
3327		return PTR_ERR(tty_class);
3328	tty_class->devnode = tty_devnode;
3329	return 0;
3330}
3331
3332postcore_initcall(tty_class_init);
3333
3334/* 3/2004 jmc: why do these devices exist? */
3335static struct cdev tty_cdev, console_cdev;
3336
3337static ssize_t show_cons_active(struct device *dev,
3338				struct device_attribute *attr, char *buf)
3339{
3340	struct console *cs[16];
3341	int i = 0;
3342	struct console *c;
3343	ssize_t count = 0;
3344
3345	console_lock();
 
 
 
 
 
 
 
3346	for_each_console(c) {
3347		if (!c->device)
3348			continue;
3349		if (!c->write)
3350			continue;
3351		if ((c->flags & CON_ENABLED) == 0)
3352			continue;
3353		cs[i++] = c;
3354		if (i >= ARRAY_SIZE(cs))
3355			break;
3356	}
3357	while (i--)
3358		count += sprintf(buf + count, "%s%d%c",
3359				 cs[i]->name, cs[i]->index, i ? ' ':'\n');
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3360	console_unlock();
3361
 
 
3362	return count;
3363}
3364static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3365
 
 
 
 
 
 
 
3366static struct device *consdev;
3367
3368void console_sysfs_notify(void)
3369{
3370	if (consdev)
3371		sysfs_notify(&consdev->kobj, NULL, "active");
3372}
3373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3374/*
3375 * Ok, now we can initialize the rest of the tty devices and can count
3376 * on memory allocations, interrupts etc..
3377 */
3378int __init tty_init(void)
3379{
 
3380	cdev_init(&tty_cdev, &tty_fops);
3381	if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3382	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3383		panic("Couldn't register /dev/tty driver\n");
3384	device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3385
3386	cdev_init(&console_cdev, &console_fops);
3387	if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3388	    register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3389		panic("Couldn't register /dev/console driver\n");
3390	consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3391			      "console");
 
3392	if (IS_ERR(consdev))
3393		consdev = NULL;
3394	else
3395		WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3396
3397#ifdef CONFIG_VT
3398	vty_init(&console_fops);
3399#endif
3400	return 0;
3401}
3402