Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * Handle caching attributes in page tables (PAT)
   3 *
   4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   5 *          Suresh B Siddha <suresh.b.siddha@intel.com>
   6 *
   7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
   8 */
   9
  10#include <linux/seq_file.h>
  11#include <linux/bootmem.h>
  12#include <linux/debugfs.h>
  13#include <linux/kernel.h>
  14#include <linux/module.h>
  15#include <linux/pfn_t.h>
  16#include <linux/slab.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/rbtree.h>
  20
  21#include <asm/cacheflush.h>
  22#include <asm/processor.h>
  23#include <asm/tlbflush.h>
  24#include <asm/x86_init.h>
  25#include <asm/pgtable.h>
  26#include <asm/fcntl.h>
  27#include <asm/e820.h>
  28#include <asm/mtrr.h>
  29#include <asm/page.h>
  30#include <asm/msr.h>
  31#include <asm/pat.h>
  32#include <asm/io.h>
  33
  34#include "pat_internal.h"
  35#include "mm_internal.h"
  36
  37#undef pr_fmt
  38#define pr_fmt(fmt) "" fmt
  39
  40static bool boot_cpu_done;
  41
  42static int __read_mostly __pat_enabled = IS_ENABLED(CONFIG_X86_PAT);
  43
  44static inline void pat_disable(const char *reason)
  45{
  46	__pat_enabled = 0;
  47	pr_info("x86/PAT: %s\n", reason);
  48}
  49
  50static int __init nopat(char *str)
  51{
  52	pat_disable("PAT support disabled.");
  53	return 0;
  54}
  55early_param("nopat", nopat);
  56
  57bool pat_enabled(void)
  58{
  59	return !!__pat_enabled;
  60}
  61EXPORT_SYMBOL_GPL(pat_enabled);
  62
  63int pat_debug_enable;
  64
  65static int __init pat_debug_setup(char *str)
  66{
  67	pat_debug_enable = 1;
  68	return 0;
  69}
  70__setup("debugpat", pat_debug_setup);
  71
  72#ifdef CONFIG_X86_PAT
  73/*
  74 * X86 PAT uses page flags arch_1 and uncached together to keep track of
  75 * memory type of pages that have backing page struct.
  76 *
  77 * X86 PAT supports 4 different memory types:
  78 *  - _PAGE_CACHE_MODE_WB
  79 *  - _PAGE_CACHE_MODE_WC
  80 *  - _PAGE_CACHE_MODE_UC_MINUS
  81 *  - _PAGE_CACHE_MODE_WT
  82 *
  83 * _PAGE_CACHE_MODE_WB is the default type.
  84 */
  85
  86#define _PGMT_WB		0
  87#define _PGMT_WC		(1UL << PG_arch_1)
  88#define _PGMT_UC_MINUS		(1UL << PG_uncached)
  89#define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
  90#define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
  91#define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
  92
  93static inline enum page_cache_mode get_page_memtype(struct page *pg)
  94{
  95	unsigned long pg_flags = pg->flags & _PGMT_MASK;
  96
  97	if (pg_flags == _PGMT_WB)
  98		return _PAGE_CACHE_MODE_WB;
  99	else if (pg_flags == _PGMT_WC)
 100		return _PAGE_CACHE_MODE_WC;
 101	else if (pg_flags == _PGMT_UC_MINUS)
 102		return _PAGE_CACHE_MODE_UC_MINUS;
 103	else
 104		return _PAGE_CACHE_MODE_WT;
 105}
 106
 107static inline void set_page_memtype(struct page *pg,
 108				    enum page_cache_mode memtype)
 109{
 110	unsigned long memtype_flags;
 111	unsigned long old_flags;
 112	unsigned long new_flags;
 113
 114	switch (memtype) {
 115	case _PAGE_CACHE_MODE_WC:
 116		memtype_flags = _PGMT_WC;
 117		break;
 118	case _PAGE_CACHE_MODE_UC_MINUS:
 119		memtype_flags = _PGMT_UC_MINUS;
 120		break;
 121	case _PAGE_CACHE_MODE_WT:
 122		memtype_flags = _PGMT_WT;
 123		break;
 124	case _PAGE_CACHE_MODE_WB:
 125	default:
 126		memtype_flags = _PGMT_WB;
 127		break;
 128	}
 129
 130	do {
 131		old_flags = pg->flags;
 132		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
 133	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
 134}
 135#else
 136static inline enum page_cache_mode get_page_memtype(struct page *pg)
 137{
 138	return -1;
 139}
 140static inline void set_page_memtype(struct page *pg,
 141				    enum page_cache_mode memtype)
 142{
 143}
 144#endif
 145
 146enum {
 147	PAT_UC = 0,		/* uncached */
 148	PAT_WC = 1,		/* Write combining */
 149	PAT_WT = 4,		/* Write Through */
 150	PAT_WP = 5,		/* Write Protected */
 151	PAT_WB = 6,		/* Write Back (default) */
 152	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
 153};
 154
 155#define CM(c) (_PAGE_CACHE_MODE_ ## c)
 156
 157static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
 158{
 159	enum page_cache_mode cache;
 160	char *cache_mode;
 161
 162	switch (pat_val) {
 163	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
 164	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
 165	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
 166	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
 167	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
 168	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
 169	default:           cache = CM(WB);       cache_mode = "WB  "; break;
 170	}
 171
 172	memcpy(msg, cache_mode, 4);
 173
 174	return cache;
 175}
 176
 177#undef CM
 178
 179/*
 180 * Update the cache mode to pgprot translation tables according to PAT
 181 * configuration.
 182 * Using lower indices is preferred, so we start with highest index.
 183 */
 184void pat_init_cache_modes(u64 pat)
 185{
 186	enum page_cache_mode cache;
 187	char pat_msg[33];
 188	int i;
 189
 190	pat_msg[32] = 0;
 191	for (i = 7; i >= 0; i--) {
 192		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
 193					   pat_msg + 4 * i);
 194		update_cache_mode_entry(i, cache);
 195	}
 196	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
 197}
 198
 199#define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
 200
 201static void pat_bsp_init(u64 pat)
 202{
 203	u64 tmp_pat;
 204
 205	if (!cpu_has_pat) {
 206		pat_disable("PAT not supported by CPU.");
 207		return;
 208	}
 209
 210	if (!pat_enabled())
 211		goto done;
 212
 213	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
 214	if (!tmp_pat) {
 215		pat_disable("PAT MSR is 0, disabled.");
 216		return;
 217	}
 218
 219	wrmsrl(MSR_IA32_CR_PAT, pat);
 220
 221done:
 222	pat_init_cache_modes(pat);
 223}
 224
 225static void pat_ap_init(u64 pat)
 226{
 227	if (!pat_enabled())
 228		return;
 229
 230	if (!cpu_has_pat) {
 231		/*
 232		 * If this happens we are on a secondary CPU, but switched to
 233		 * PAT on the boot CPU. We have no way to undo PAT.
 234		 */
 235		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
 236	}
 237
 238	wrmsrl(MSR_IA32_CR_PAT, pat);
 239}
 240
 241void pat_init(void)
 242{
 243	u64 pat;
 244	struct cpuinfo_x86 *c = &boot_cpu_data;
 245
 246	if (!pat_enabled()) {
 247		/*
 248		 * No PAT. Emulate the PAT table that corresponds to the two
 249		 * cache bits, PWT (Write Through) and PCD (Cache Disable). This
 250		 * setup is the same as the BIOS default setup when the system
 251		 * has PAT but the "nopat" boot option has been specified. This
 252		 * emulated PAT table is used when MSR_IA32_CR_PAT returns 0.
 253		 *
 254		 * PTE encoding:
 255		 *
 256		 *       PCD
 257		 *       |PWT  PAT
 258		 *       ||    slot
 259		 *       00    0    WB : _PAGE_CACHE_MODE_WB
 260		 *       01    1    WT : _PAGE_CACHE_MODE_WT
 261		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 262		 *       11    3    UC : _PAGE_CACHE_MODE_UC
 263		 *
 264		 * NOTE: When WC or WP is used, it is redirected to UC- per
 265		 * the default setup in __cachemode2pte_tbl[].
 266		 */
 267		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
 268		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
 269
 270	} else if ((c->x86_vendor == X86_VENDOR_INTEL) &&
 271		   (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
 272		    ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
 273		/*
 274		 * PAT support with the lower four entries. Intel Pentium 2,
 275		 * 3, M, and 4 are affected by PAT errata, which makes the
 276		 * upper four entries unusable. To be on the safe side, we don't
 277		 * use those.
 278		 *
 279		 *  PTE encoding:
 280		 *      PAT
 281		 *      |PCD
 282		 *      ||PWT  PAT
 283		 *      |||    slot
 284		 *      000    0    WB : _PAGE_CACHE_MODE_WB
 285		 *      001    1    WC : _PAGE_CACHE_MODE_WC
 286		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 287		 *      011    3    UC : _PAGE_CACHE_MODE_UC
 288		 * PAT bit unused
 289		 *
 290		 * NOTE: When WT or WP is used, it is redirected to UC- per
 291		 * the default setup in __cachemode2pte_tbl[].
 292		 */
 293		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 294		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
 295	} else {
 296		/*
 297		 * Full PAT support.  We put WT in slot 7 to improve
 298		 * robustness in the presence of errata that might cause
 299		 * the high PAT bit to be ignored.  This way, a buggy slot 7
 300		 * access will hit slot 3, and slot 3 is UC, so at worst
 301		 * we lose performance without causing a correctness issue.
 302		 * Pentium 4 erratum N46 is an example for such an erratum,
 303		 * although we try not to use PAT at all on affected CPUs.
 304		 *
 305		 *  PTE encoding:
 306		 *      PAT
 307		 *      |PCD
 308		 *      ||PWT  PAT
 309		 *      |||    slot
 310		 *      000    0    WB : _PAGE_CACHE_MODE_WB
 311		 *      001    1    WC : _PAGE_CACHE_MODE_WC
 312		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 313		 *      011    3    UC : _PAGE_CACHE_MODE_UC
 314		 *      100    4    WB : Reserved
 315		 *      101    5    WC : Reserved
 316		 *      110    6    UC-: Reserved
 317		 *      111    7    WT : _PAGE_CACHE_MODE_WT
 318		 *
 319		 * The reserved slots are unused, but mapped to their
 320		 * corresponding types in the presence of PAT errata.
 321		 */
 322		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 323		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, WT);
 324	}
 325
 326	if (!boot_cpu_done) {
 327		pat_bsp_init(pat);
 328		boot_cpu_done = true;
 329	} else {
 330		pat_ap_init(pat);
 331	}
 332}
 333
 334#undef PAT
 335
 336static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
 337
 338/*
 339 * Does intersection of PAT memory type and MTRR memory type and returns
 340 * the resulting memory type as PAT understands it.
 341 * (Type in pat and mtrr will not have same value)
 342 * The intersection is based on "Effective Memory Type" tables in IA-32
 343 * SDM vol 3a
 344 */
 345static unsigned long pat_x_mtrr_type(u64 start, u64 end,
 346				     enum page_cache_mode req_type)
 347{
 348	/*
 349	 * Look for MTRR hint to get the effective type in case where PAT
 350	 * request is for WB.
 351	 */
 352	if (req_type == _PAGE_CACHE_MODE_WB) {
 353		u8 mtrr_type, uniform;
 354
 355		mtrr_type = mtrr_type_lookup(start, end, &uniform);
 356		if (mtrr_type != MTRR_TYPE_WRBACK)
 357			return _PAGE_CACHE_MODE_UC_MINUS;
 358
 359		return _PAGE_CACHE_MODE_WB;
 360	}
 361
 362	return req_type;
 363}
 364
 365struct pagerange_state {
 366	unsigned long		cur_pfn;
 367	int			ram;
 368	int			not_ram;
 369};
 370
 371static int
 372pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
 373{
 374	struct pagerange_state *state = arg;
 375
 376	state->not_ram	|= initial_pfn > state->cur_pfn;
 377	state->ram	|= total_nr_pages > 0;
 378	state->cur_pfn	 = initial_pfn + total_nr_pages;
 379
 380	return state->ram && state->not_ram;
 381}
 382
 383static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
 384{
 385	int ret = 0;
 386	unsigned long start_pfn = start >> PAGE_SHIFT;
 387	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 388	struct pagerange_state state = {start_pfn, 0, 0};
 389
 390	/*
 391	 * For legacy reasons, physical address range in the legacy ISA
 392	 * region is tracked as non-RAM. This will allow users of
 393	 * /dev/mem to map portions of legacy ISA region, even when
 394	 * some of those portions are listed(or not even listed) with
 395	 * different e820 types(RAM/reserved/..)
 396	 */
 397	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
 398		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
 399
 400	if (start_pfn < end_pfn) {
 401		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
 402				&state, pagerange_is_ram_callback);
 403	}
 404
 405	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
 406}
 407
 408/*
 409 * For RAM pages, we use page flags to mark the pages with appropriate type.
 410 * The page flags are limited to four types, WB (default), WC, WT and UC-.
 411 * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
 412 * a new memory type is only allowed for a page mapped with the default WB
 413 * type.
 414 *
 415 * Here we do two passes:
 416 * - Find the memtype of all the pages in the range, look for any conflicts.
 417 * - In case of no conflicts, set the new memtype for pages in the range.
 418 */
 419static int reserve_ram_pages_type(u64 start, u64 end,
 420				  enum page_cache_mode req_type,
 421				  enum page_cache_mode *new_type)
 422{
 423	struct page *page;
 424	u64 pfn;
 425
 426	if (req_type == _PAGE_CACHE_MODE_WP) {
 427		if (new_type)
 428			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
 429		return -EINVAL;
 430	}
 431
 432	if (req_type == _PAGE_CACHE_MODE_UC) {
 433		/* We do not support strong UC */
 434		WARN_ON_ONCE(1);
 435		req_type = _PAGE_CACHE_MODE_UC_MINUS;
 436	}
 437
 438	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 439		enum page_cache_mode type;
 440
 441		page = pfn_to_page(pfn);
 442		type = get_page_memtype(page);
 443		if (type != _PAGE_CACHE_MODE_WB) {
 444			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
 445				start, end - 1, type, req_type);
 446			if (new_type)
 447				*new_type = type;
 448
 449			return -EBUSY;
 450		}
 451	}
 452
 453	if (new_type)
 454		*new_type = req_type;
 455
 456	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 457		page = pfn_to_page(pfn);
 458		set_page_memtype(page, req_type);
 459	}
 460	return 0;
 461}
 462
 463static int free_ram_pages_type(u64 start, u64 end)
 464{
 465	struct page *page;
 466	u64 pfn;
 467
 468	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 469		page = pfn_to_page(pfn);
 470		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
 471	}
 472	return 0;
 473}
 474
 475/*
 476 * req_type typically has one of the:
 477 * - _PAGE_CACHE_MODE_WB
 478 * - _PAGE_CACHE_MODE_WC
 479 * - _PAGE_CACHE_MODE_UC_MINUS
 480 * - _PAGE_CACHE_MODE_UC
 481 * - _PAGE_CACHE_MODE_WT
 482 *
 483 * If new_type is NULL, function will return an error if it cannot reserve the
 484 * region with req_type. If new_type is non-NULL, function will return
 485 * available type in new_type in case of no error. In case of any error
 486 * it will return a negative return value.
 487 */
 488int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
 489		    enum page_cache_mode *new_type)
 490{
 491	struct memtype *new;
 492	enum page_cache_mode actual_type;
 493	int is_range_ram;
 494	int err = 0;
 495
 496	BUG_ON(start >= end); /* end is exclusive */
 497
 498	if (!pat_enabled()) {
 499		/* This is identical to page table setting without PAT */
 500		if (new_type)
 501			*new_type = req_type;
 502		return 0;
 503	}
 504
 505	/* Low ISA region is always mapped WB in page table. No need to track */
 506	if (x86_platform.is_untracked_pat_range(start, end)) {
 507		if (new_type)
 508			*new_type = _PAGE_CACHE_MODE_WB;
 509		return 0;
 510	}
 511
 512	/*
 513	 * Call mtrr_lookup to get the type hint. This is an
 514	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
 515	 * tools and ACPI tools). Use WB request for WB memory and use
 516	 * UC_MINUS otherwise.
 517	 */
 518	actual_type = pat_x_mtrr_type(start, end, req_type);
 519
 520	if (new_type)
 521		*new_type = actual_type;
 522
 523	is_range_ram = pat_pagerange_is_ram(start, end);
 524	if (is_range_ram == 1) {
 525
 526		err = reserve_ram_pages_type(start, end, req_type, new_type);
 527
 528		return err;
 529	} else if (is_range_ram < 0) {
 530		return -EINVAL;
 531	}
 532
 533	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
 534	if (!new)
 535		return -ENOMEM;
 536
 537	new->start	= start;
 538	new->end	= end;
 539	new->type	= actual_type;
 540
 541	spin_lock(&memtype_lock);
 542
 543	err = rbt_memtype_check_insert(new, new_type);
 544	if (err) {
 545		pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
 546			start, end - 1,
 547			cattr_name(new->type), cattr_name(req_type));
 548		kfree(new);
 549		spin_unlock(&memtype_lock);
 550
 551		return err;
 552	}
 553
 554	spin_unlock(&memtype_lock);
 555
 556	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
 557		start, end - 1, cattr_name(new->type), cattr_name(req_type),
 558		new_type ? cattr_name(*new_type) : "-");
 559
 560	return err;
 561}
 562
 563int free_memtype(u64 start, u64 end)
 564{
 565	int err = -EINVAL;
 566	int is_range_ram;
 567	struct memtype *entry;
 568
 569	if (!pat_enabled())
 570		return 0;
 571
 572	/* Low ISA region is always mapped WB. No need to track */
 573	if (x86_platform.is_untracked_pat_range(start, end))
 574		return 0;
 575
 576	is_range_ram = pat_pagerange_is_ram(start, end);
 577	if (is_range_ram == 1) {
 578
 579		err = free_ram_pages_type(start, end);
 580
 581		return err;
 582	} else if (is_range_ram < 0) {
 583		return -EINVAL;
 584	}
 585
 586	spin_lock(&memtype_lock);
 587	entry = rbt_memtype_erase(start, end);
 588	spin_unlock(&memtype_lock);
 589
 590	if (IS_ERR(entry)) {
 591		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
 592			current->comm, current->pid, start, end - 1);
 593		return -EINVAL;
 594	}
 595
 596	kfree(entry);
 597
 598	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
 599
 600	return 0;
 601}
 602
 603
 604/**
 605 * lookup_memtype - Looksup the memory type for a physical address
 606 * @paddr: physical address of which memory type needs to be looked up
 607 *
 608 * Only to be called when PAT is enabled
 609 *
 610 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
 611 * or _PAGE_CACHE_MODE_WT.
 612 */
 613static enum page_cache_mode lookup_memtype(u64 paddr)
 614{
 615	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
 616	struct memtype *entry;
 617
 618	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
 619		return rettype;
 620
 621	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
 622		struct page *page;
 623
 624		page = pfn_to_page(paddr >> PAGE_SHIFT);
 625		return get_page_memtype(page);
 626	}
 627
 628	spin_lock(&memtype_lock);
 629
 630	entry = rbt_memtype_lookup(paddr);
 631	if (entry != NULL)
 632		rettype = entry->type;
 633	else
 634		rettype = _PAGE_CACHE_MODE_UC_MINUS;
 635
 636	spin_unlock(&memtype_lock);
 637	return rettype;
 638}
 639
 640/**
 641 * io_reserve_memtype - Request a memory type mapping for a region of memory
 642 * @start: start (physical address) of the region
 643 * @end: end (physical address) of the region
 644 * @type: A pointer to memtype, with requested type. On success, requested
 645 * or any other compatible type that was available for the region is returned
 646 *
 647 * On success, returns 0
 648 * On failure, returns non-zero
 649 */
 650int io_reserve_memtype(resource_size_t start, resource_size_t end,
 651			enum page_cache_mode *type)
 652{
 653	resource_size_t size = end - start;
 654	enum page_cache_mode req_type = *type;
 655	enum page_cache_mode new_type;
 656	int ret;
 657
 658	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
 659
 660	ret = reserve_memtype(start, end, req_type, &new_type);
 661	if (ret)
 662		goto out_err;
 663
 664	if (!is_new_memtype_allowed(start, size, req_type, new_type))
 665		goto out_free;
 666
 667	if (kernel_map_sync_memtype(start, size, new_type) < 0)
 668		goto out_free;
 669
 670	*type = new_type;
 671	return 0;
 672
 673out_free:
 674	free_memtype(start, end);
 675	ret = -EBUSY;
 676out_err:
 677	return ret;
 678}
 679
 680/**
 681 * io_free_memtype - Release a memory type mapping for a region of memory
 682 * @start: start (physical address) of the region
 683 * @end: end (physical address) of the region
 684 */
 685void io_free_memtype(resource_size_t start, resource_size_t end)
 686{
 687	free_memtype(start, end);
 688}
 689
 690pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 691				unsigned long size, pgprot_t vma_prot)
 692{
 693	return vma_prot;
 694}
 695
 696#ifdef CONFIG_STRICT_DEVMEM
 697/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
 698static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 699{
 700	return 1;
 701}
 702#else
 703/* This check is needed to avoid cache aliasing when PAT is enabled */
 704static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 705{
 706	u64 from = ((u64)pfn) << PAGE_SHIFT;
 707	u64 to = from + size;
 708	u64 cursor = from;
 709
 710	if (!pat_enabled())
 711		return 1;
 712
 713	while (cursor < to) {
 714		if (!devmem_is_allowed(pfn)) {
 715			pr_info("x86/PAT: Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx], PAT prevents it\n",
 716				current->comm, from, to - 1);
 717			return 0;
 718		}
 719		cursor += PAGE_SIZE;
 720		pfn++;
 721	}
 722	return 1;
 723}
 724#endif /* CONFIG_STRICT_DEVMEM */
 725
 726int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 727				unsigned long size, pgprot_t *vma_prot)
 728{
 729	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
 730
 731	if (!range_is_allowed(pfn, size))
 732		return 0;
 733
 734	if (file->f_flags & O_DSYNC)
 735		pcm = _PAGE_CACHE_MODE_UC_MINUS;
 736
 737#ifdef CONFIG_X86_32
 738	/*
 739	 * On the PPro and successors, the MTRRs are used to set
 740	 * memory types for physical addresses outside main memory,
 741	 * so blindly setting UC or PWT on those pages is wrong.
 742	 * For Pentiums and earlier, the surround logic should disable
 743	 * caching for the high addresses through the KEN pin, but
 744	 * we maintain the tradition of paranoia in this code.
 745	 */
 746	if (!pat_enabled() &&
 747	    !(boot_cpu_has(X86_FEATURE_MTRR) ||
 748	      boot_cpu_has(X86_FEATURE_K6_MTRR) ||
 749	      boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
 750	      boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
 751	    (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
 752		pcm = _PAGE_CACHE_MODE_UC;
 753	}
 754#endif
 755
 756	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
 757			     cachemode2protval(pcm));
 758	return 1;
 759}
 760
 761/*
 762 * Change the memory type for the physial address range in kernel identity
 763 * mapping space if that range is a part of identity map.
 764 */
 765int kernel_map_sync_memtype(u64 base, unsigned long size,
 766			    enum page_cache_mode pcm)
 767{
 768	unsigned long id_sz;
 769
 770	if (base > __pa(high_memory-1))
 771		return 0;
 772
 773	/*
 774	 * some areas in the middle of the kernel identity range
 775	 * are not mapped, like the PCI space.
 776	 */
 777	if (!page_is_ram(base >> PAGE_SHIFT))
 778		return 0;
 779
 780	id_sz = (__pa(high_memory-1) <= base + size) ?
 781				__pa(high_memory) - base :
 782				size;
 783
 784	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
 785		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
 786			current->comm, current->pid,
 787			cattr_name(pcm),
 788			base, (unsigned long long)(base + size-1));
 789		return -EINVAL;
 790	}
 791	return 0;
 792}
 793
 794/*
 795 * Internal interface to reserve a range of physical memory with prot.
 796 * Reserved non RAM regions only and after successful reserve_memtype,
 797 * this func also keeps identity mapping (if any) in sync with this new prot.
 798 */
 799static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
 800				int strict_prot)
 801{
 802	int is_ram = 0;
 803	int ret;
 804	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
 805	enum page_cache_mode pcm = want_pcm;
 806
 807	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 808
 809	/*
 810	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
 811	 * track of number of mappings of RAM pages. We can assert that
 812	 * the type requested matches the type of first page in the range.
 813	 */
 814	if (is_ram) {
 815		if (!pat_enabled())
 816			return 0;
 817
 818		pcm = lookup_memtype(paddr);
 819		if (want_pcm != pcm) {
 820			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
 821				current->comm, current->pid,
 822				cattr_name(want_pcm),
 823				(unsigned long long)paddr,
 824				(unsigned long long)(paddr + size - 1),
 825				cattr_name(pcm));
 826			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
 827					     (~_PAGE_CACHE_MASK)) |
 828					     cachemode2protval(pcm));
 829		}
 830		return 0;
 831	}
 832
 833	ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
 834	if (ret)
 835		return ret;
 836
 837	if (pcm != want_pcm) {
 838		if (strict_prot ||
 839		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
 840			free_memtype(paddr, paddr + size);
 841			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
 842			       current->comm, current->pid,
 843			       cattr_name(want_pcm),
 844			       (unsigned long long)paddr,
 845			       (unsigned long long)(paddr + size - 1),
 846			       cattr_name(pcm));
 847			return -EINVAL;
 848		}
 849		/*
 850		 * We allow returning different type than the one requested in
 851		 * non strict case.
 852		 */
 853		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
 854				      (~_PAGE_CACHE_MASK)) |
 855				     cachemode2protval(pcm));
 856	}
 857
 858	if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
 859		free_memtype(paddr, paddr + size);
 860		return -EINVAL;
 861	}
 862	return 0;
 863}
 864
 865/*
 866 * Internal interface to free a range of physical memory.
 867 * Frees non RAM regions only.
 868 */
 869static void free_pfn_range(u64 paddr, unsigned long size)
 870{
 871	int is_ram;
 872
 873	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 874	if (is_ram == 0)
 875		free_memtype(paddr, paddr + size);
 876}
 877
 878/*
 879 * track_pfn_copy is called when vma that is covering the pfnmap gets
 880 * copied through copy_page_range().
 881 *
 882 * If the vma has a linear pfn mapping for the entire range, we get the prot
 883 * from pte and reserve the entire vma range with single reserve_pfn_range call.
 884 */
 885int track_pfn_copy(struct vm_area_struct *vma)
 886{
 887	resource_size_t paddr;
 888	unsigned long prot;
 889	unsigned long vma_size = vma->vm_end - vma->vm_start;
 890	pgprot_t pgprot;
 891
 892	if (vma->vm_flags & VM_PAT) {
 893		/*
 894		 * reserve the whole chunk covered by vma. We need the
 895		 * starting address and protection from pte.
 896		 */
 897		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 898			WARN_ON_ONCE(1);
 899			return -EINVAL;
 900		}
 901		pgprot = __pgprot(prot);
 902		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
 903	}
 904
 905	return 0;
 906}
 907
 908/*
 909 * prot is passed in as a parameter for the new mapping. If the vma has a
 910 * linear pfn mapping for the entire range reserve the entire vma range with
 911 * single reserve_pfn_range call.
 912 */
 913int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 914		    unsigned long pfn, unsigned long addr, unsigned long size)
 915{
 916	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
 917	enum page_cache_mode pcm;
 918
 919	/* reserve the whole chunk starting from paddr */
 920	if (addr == vma->vm_start && size == (vma->vm_end - vma->vm_start)) {
 921		int ret;
 922
 923		ret = reserve_pfn_range(paddr, size, prot, 0);
 924		if (!ret)
 925			vma->vm_flags |= VM_PAT;
 926		return ret;
 927	}
 928
 929	if (!pat_enabled())
 930		return 0;
 931
 932	/*
 933	 * For anything smaller than the vma size we set prot based on the
 934	 * lookup.
 935	 */
 936	pcm = lookup_memtype(paddr);
 937
 938	/* Check memtype for the remaining pages */
 939	while (size > PAGE_SIZE) {
 940		size -= PAGE_SIZE;
 941		paddr += PAGE_SIZE;
 942		if (pcm != lookup_memtype(paddr))
 943			return -EINVAL;
 944	}
 945
 946	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
 947			 cachemode2protval(pcm));
 948
 949	return 0;
 950}
 951
 952int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
 953		     pfn_t pfn)
 954{
 955	enum page_cache_mode pcm;
 956
 957	if (!pat_enabled())
 958		return 0;
 959
 960	/* Set prot based on lookup */
 961	pcm = lookup_memtype(pfn_t_to_phys(pfn));
 962	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
 963			 cachemode2protval(pcm));
 964
 965	return 0;
 966}
 967
 968/*
 969 * untrack_pfn is called while unmapping a pfnmap for a region.
 970 * untrack can be called for a specific region indicated by pfn and size or
 971 * can be for the entire vma (in which case pfn, size are zero).
 972 */
 973void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
 974		 unsigned long size)
 975{
 976	resource_size_t paddr;
 977	unsigned long prot;
 978
 979	if (!(vma->vm_flags & VM_PAT))
 980		return;
 981
 982	/* free the chunk starting from pfn or the whole chunk */
 983	paddr = (resource_size_t)pfn << PAGE_SHIFT;
 984	if (!paddr && !size) {
 985		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 986			WARN_ON_ONCE(1);
 987			return;
 988		}
 989
 990		size = vma->vm_end - vma->vm_start;
 991	}
 992	free_pfn_range(paddr, size);
 993	vma->vm_flags &= ~VM_PAT;
 994}
 995
 996/*
 997 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
 998 * with the old vma after its pfnmap page table has been removed.  The new
 999 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1000 */
1001void untrack_pfn_moved(struct vm_area_struct *vma)
1002{
1003	vma->vm_flags &= ~VM_PAT;
1004}
1005
1006pgprot_t pgprot_writecombine(pgprot_t prot)
1007{
1008	return __pgprot(pgprot_val(prot) |
1009				cachemode2protval(_PAGE_CACHE_MODE_WC));
1010}
1011EXPORT_SYMBOL_GPL(pgprot_writecombine);
1012
1013pgprot_t pgprot_writethrough(pgprot_t prot)
1014{
1015	return __pgprot(pgprot_val(prot) |
1016				cachemode2protval(_PAGE_CACHE_MODE_WT));
1017}
1018EXPORT_SYMBOL_GPL(pgprot_writethrough);
1019
1020#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1021
1022static struct memtype *memtype_get_idx(loff_t pos)
1023{
1024	struct memtype *print_entry;
1025	int ret;
1026
1027	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1028	if (!print_entry)
1029		return NULL;
1030
1031	spin_lock(&memtype_lock);
1032	ret = rbt_memtype_copy_nth_element(print_entry, pos);
1033	spin_unlock(&memtype_lock);
1034
1035	if (!ret) {
1036		return print_entry;
1037	} else {
1038		kfree(print_entry);
1039		return NULL;
1040	}
1041}
1042
1043static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1044{
1045	if (*pos == 0) {
1046		++*pos;
1047		seq_puts(seq, "PAT memtype list:\n");
1048	}
1049
1050	return memtype_get_idx(*pos);
1051}
1052
1053static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1054{
1055	++*pos;
1056	return memtype_get_idx(*pos);
1057}
1058
1059static void memtype_seq_stop(struct seq_file *seq, void *v)
1060{
1061}
1062
1063static int memtype_seq_show(struct seq_file *seq, void *v)
1064{
1065	struct memtype *print_entry = (struct memtype *)v;
1066
1067	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1068			print_entry->start, print_entry->end);
1069	kfree(print_entry);
1070
1071	return 0;
1072}
1073
1074static const struct seq_operations memtype_seq_ops = {
1075	.start = memtype_seq_start,
1076	.next  = memtype_seq_next,
1077	.stop  = memtype_seq_stop,
1078	.show  = memtype_seq_show,
1079};
1080
1081static int memtype_seq_open(struct inode *inode, struct file *file)
1082{
1083	return seq_open(file, &memtype_seq_ops);
1084}
1085
1086static const struct file_operations memtype_fops = {
1087	.open    = memtype_seq_open,
1088	.read    = seq_read,
1089	.llseek  = seq_lseek,
1090	.release = seq_release,
1091};
1092
1093static int __init pat_memtype_list_init(void)
1094{
1095	if (pat_enabled()) {
1096		debugfs_create_file("pat_memtype_list", S_IRUSR,
1097				    arch_debugfs_dir, NULL, &memtype_fops);
1098	}
1099	return 0;
1100}
1101
1102late_initcall(pat_memtype_list_init);
1103
1104#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */