Linux Audio

Check our new training course

Loading...
Note: File does not exist in v6.2.
   1/*
   2 * Handle caching attributes in page tables (PAT)
   3 *
   4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
   5 *          Suresh B Siddha <suresh.b.siddha@intel.com>
   6 *
   7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
   8 */
   9
  10#include <linux/seq_file.h>
  11#include <linux/bootmem.h>
  12#include <linux/debugfs.h>
  13#include <linux/ioport.h>
  14#include <linux/kernel.h>
  15#include <linux/pfn_t.h>
  16#include <linux/slab.h>
  17#include <linux/mm.h>
  18#include <linux/fs.h>
  19#include <linux/rbtree.h>
  20
  21#include <asm/cacheflush.h>
  22#include <asm/processor.h>
  23#include <asm/tlbflush.h>
  24#include <asm/x86_init.h>
  25#include <asm/pgtable.h>
  26#include <asm/fcntl.h>
  27#include <asm/e820/api.h>
  28#include <asm/mtrr.h>
  29#include <asm/page.h>
  30#include <asm/msr.h>
  31#include <asm/pat.h>
  32#include <asm/io.h>
  33
  34#include "pat_internal.h"
  35#include "mm_internal.h"
  36
  37#undef pr_fmt
  38#define pr_fmt(fmt) "" fmt
  39
  40static bool __read_mostly boot_cpu_done;
  41static bool __read_mostly pat_disabled = !IS_ENABLED(CONFIG_X86_PAT);
  42static bool __read_mostly pat_initialized;
  43static bool __read_mostly init_cm_done;
  44
  45void pat_disable(const char *reason)
  46{
  47	if (pat_disabled)
  48		return;
  49
  50	if (boot_cpu_done) {
  51		WARN_ONCE(1, "x86/PAT: PAT cannot be disabled after initialization\n");
  52		return;
  53	}
  54
  55	pat_disabled = true;
  56	pr_info("x86/PAT: %s\n", reason);
  57}
  58
  59static int __init nopat(char *str)
  60{
  61	pat_disable("PAT support disabled.");
  62	return 0;
  63}
  64early_param("nopat", nopat);
  65
  66bool pat_enabled(void)
  67{
  68	return pat_initialized;
  69}
  70EXPORT_SYMBOL_GPL(pat_enabled);
  71
  72int pat_debug_enable;
  73
  74static int __init pat_debug_setup(char *str)
  75{
  76	pat_debug_enable = 1;
  77	return 0;
  78}
  79__setup("debugpat", pat_debug_setup);
  80
  81#ifdef CONFIG_X86_PAT
  82/*
  83 * X86 PAT uses page flags arch_1 and uncached together to keep track of
  84 * memory type of pages that have backing page struct.
  85 *
  86 * X86 PAT supports 4 different memory types:
  87 *  - _PAGE_CACHE_MODE_WB
  88 *  - _PAGE_CACHE_MODE_WC
  89 *  - _PAGE_CACHE_MODE_UC_MINUS
  90 *  - _PAGE_CACHE_MODE_WT
  91 *
  92 * _PAGE_CACHE_MODE_WB is the default type.
  93 */
  94
  95#define _PGMT_WB		0
  96#define _PGMT_WC		(1UL << PG_arch_1)
  97#define _PGMT_UC_MINUS		(1UL << PG_uncached)
  98#define _PGMT_WT		(1UL << PG_uncached | 1UL << PG_arch_1)
  99#define _PGMT_MASK		(1UL << PG_uncached | 1UL << PG_arch_1)
 100#define _PGMT_CLEAR_MASK	(~_PGMT_MASK)
 101
 102static inline enum page_cache_mode get_page_memtype(struct page *pg)
 103{
 104	unsigned long pg_flags = pg->flags & _PGMT_MASK;
 105
 106	if (pg_flags == _PGMT_WB)
 107		return _PAGE_CACHE_MODE_WB;
 108	else if (pg_flags == _PGMT_WC)
 109		return _PAGE_CACHE_MODE_WC;
 110	else if (pg_flags == _PGMT_UC_MINUS)
 111		return _PAGE_CACHE_MODE_UC_MINUS;
 112	else
 113		return _PAGE_CACHE_MODE_WT;
 114}
 115
 116static inline void set_page_memtype(struct page *pg,
 117				    enum page_cache_mode memtype)
 118{
 119	unsigned long memtype_flags;
 120	unsigned long old_flags;
 121	unsigned long new_flags;
 122
 123	switch (memtype) {
 124	case _PAGE_CACHE_MODE_WC:
 125		memtype_flags = _PGMT_WC;
 126		break;
 127	case _PAGE_CACHE_MODE_UC_MINUS:
 128		memtype_flags = _PGMT_UC_MINUS;
 129		break;
 130	case _PAGE_CACHE_MODE_WT:
 131		memtype_flags = _PGMT_WT;
 132		break;
 133	case _PAGE_CACHE_MODE_WB:
 134	default:
 135		memtype_flags = _PGMT_WB;
 136		break;
 137	}
 138
 139	do {
 140		old_flags = pg->flags;
 141		new_flags = (old_flags & _PGMT_CLEAR_MASK) | memtype_flags;
 142	} while (cmpxchg(&pg->flags, old_flags, new_flags) != old_flags);
 143}
 144#else
 145static inline enum page_cache_mode get_page_memtype(struct page *pg)
 146{
 147	return -1;
 148}
 149static inline void set_page_memtype(struct page *pg,
 150				    enum page_cache_mode memtype)
 151{
 152}
 153#endif
 154
 155enum {
 156	PAT_UC = 0,		/* uncached */
 157	PAT_WC = 1,		/* Write combining */
 158	PAT_WT = 4,		/* Write Through */
 159	PAT_WP = 5,		/* Write Protected */
 160	PAT_WB = 6,		/* Write Back (default) */
 161	PAT_UC_MINUS = 7,	/* UC, but can be overridden by MTRR */
 162};
 163
 164#define CM(c) (_PAGE_CACHE_MODE_ ## c)
 165
 166static enum page_cache_mode pat_get_cache_mode(unsigned pat_val, char *msg)
 167{
 168	enum page_cache_mode cache;
 169	char *cache_mode;
 170
 171	switch (pat_val) {
 172	case PAT_UC:       cache = CM(UC);       cache_mode = "UC  "; break;
 173	case PAT_WC:       cache = CM(WC);       cache_mode = "WC  "; break;
 174	case PAT_WT:       cache = CM(WT);       cache_mode = "WT  "; break;
 175	case PAT_WP:       cache = CM(WP);       cache_mode = "WP  "; break;
 176	case PAT_WB:       cache = CM(WB);       cache_mode = "WB  "; break;
 177	case PAT_UC_MINUS: cache = CM(UC_MINUS); cache_mode = "UC- "; break;
 178	default:           cache = CM(WB);       cache_mode = "WB  "; break;
 179	}
 180
 181	memcpy(msg, cache_mode, 4);
 182
 183	return cache;
 184}
 185
 186#undef CM
 187
 188/*
 189 * Update the cache mode to pgprot translation tables according to PAT
 190 * configuration.
 191 * Using lower indices is preferred, so we start with highest index.
 192 */
 193static void __init_cache_modes(u64 pat)
 194{
 195	enum page_cache_mode cache;
 196	char pat_msg[33];
 197	int i;
 198
 199	pat_msg[32] = 0;
 200	for (i = 7; i >= 0; i--) {
 201		cache = pat_get_cache_mode((pat >> (i * 8)) & 7,
 202					   pat_msg + 4 * i);
 203		update_cache_mode_entry(i, cache);
 204	}
 205	pr_info("x86/PAT: Configuration [0-7]: %s\n", pat_msg);
 206
 207	init_cm_done = true;
 208}
 209
 210#define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
 211
 212static void pat_bsp_init(u64 pat)
 213{
 214	u64 tmp_pat;
 215
 216	if (!boot_cpu_has(X86_FEATURE_PAT)) {
 217		pat_disable("PAT not supported by CPU.");
 218		return;
 219	}
 220
 221	rdmsrl(MSR_IA32_CR_PAT, tmp_pat);
 222	if (!tmp_pat) {
 223		pat_disable("PAT MSR is 0, disabled.");
 224		return;
 225	}
 226
 227	wrmsrl(MSR_IA32_CR_PAT, pat);
 228	pat_initialized = true;
 229
 230	__init_cache_modes(pat);
 231}
 232
 233static void pat_ap_init(u64 pat)
 234{
 235	if (!boot_cpu_has(X86_FEATURE_PAT)) {
 236		/*
 237		 * If this happens we are on a secondary CPU, but switched to
 238		 * PAT on the boot CPU. We have no way to undo PAT.
 239		 */
 240		panic("x86/PAT: PAT enabled, but not supported by secondary CPU\n");
 241	}
 242
 243	wrmsrl(MSR_IA32_CR_PAT, pat);
 244}
 245
 246void init_cache_modes(void)
 247{
 248	u64 pat = 0;
 249
 250	if (init_cm_done)
 251		return;
 252
 253	if (boot_cpu_has(X86_FEATURE_PAT)) {
 254		/*
 255		 * CPU supports PAT. Set PAT table to be consistent with
 256		 * PAT MSR. This case supports "nopat" boot option, and
 257		 * virtual machine environments which support PAT without
 258		 * MTRRs. In specific, Xen has unique setup to PAT MSR.
 259		 *
 260		 * If PAT MSR returns 0, it is considered invalid and emulates
 261		 * as No PAT.
 262		 */
 263		rdmsrl(MSR_IA32_CR_PAT, pat);
 264	}
 265
 266	if (!pat) {
 267		/*
 268		 * No PAT. Emulate the PAT table that corresponds to the two
 269		 * cache bits, PWT (Write Through) and PCD (Cache Disable).
 270		 * This setup is also the same as the BIOS default setup.
 271		 *
 272		 * PTE encoding:
 273		 *
 274		 *       PCD
 275		 *       |PWT  PAT
 276		 *       ||    slot
 277		 *       00    0    WB : _PAGE_CACHE_MODE_WB
 278		 *       01    1    WT : _PAGE_CACHE_MODE_WT
 279		 *       10    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 280		 *       11    3    UC : _PAGE_CACHE_MODE_UC
 281		 *
 282		 * NOTE: When WC or WP is used, it is redirected to UC- per
 283		 * the default setup in __cachemode2pte_tbl[].
 284		 */
 285		pat = PAT(0, WB) | PAT(1, WT) | PAT(2, UC_MINUS) | PAT(3, UC) |
 286		      PAT(4, WB) | PAT(5, WT) | PAT(6, UC_MINUS) | PAT(7, UC);
 287	}
 288
 289	__init_cache_modes(pat);
 290}
 291
 292/**
 293 * pat_init - Initialize PAT MSR and PAT table
 294 *
 295 * This function initializes PAT MSR and PAT table with an OS-defined value
 296 * to enable additional cache attributes, WC, WT and WP.
 297 *
 298 * This function must be called on all CPUs using the specific sequence of
 299 * operations defined in Intel SDM. mtrr_rendezvous_handler() provides this
 300 * procedure for PAT.
 301 */
 302void pat_init(void)
 303{
 304	u64 pat;
 305	struct cpuinfo_x86 *c = &boot_cpu_data;
 306
 307	if (pat_disabled)
 308		return;
 309
 310	if ((c->x86_vendor == X86_VENDOR_INTEL) &&
 311	    (((c->x86 == 0x6) && (c->x86_model <= 0xd)) ||
 312	     ((c->x86 == 0xf) && (c->x86_model <= 0x6)))) {
 313		/*
 314		 * PAT support with the lower four entries. Intel Pentium 2,
 315		 * 3, M, and 4 are affected by PAT errata, which makes the
 316		 * upper four entries unusable. To be on the safe side, we don't
 317		 * use those.
 318		 *
 319		 *  PTE encoding:
 320		 *      PAT
 321		 *      |PCD
 322		 *      ||PWT  PAT
 323		 *      |||    slot
 324		 *      000    0    WB : _PAGE_CACHE_MODE_WB
 325		 *      001    1    WC : _PAGE_CACHE_MODE_WC
 326		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 327		 *      011    3    UC : _PAGE_CACHE_MODE_UC
 328		 * PAT bit unused
 329		 *
 330		 * NOTE: When WT or WP is used, it is redirected to UC- per
 331		 * the default setup in __cachemode2pte_tbl[].
 332		 */
 333		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 334		      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
 335	} else {
 336		/*
 337		 * Full PAT support.  We put WT in slot 7 to improve
 338		 * robustness in the presence of errata that might cause
 339		 * the high PAT bit to be ignored.  This way, a buggy slot 7
 340		 * access will hit slot 3, and slot 3 is UC, so at worst
 341		 * we lose performance without causing a correctness issue.
 342		 * Pentium 4 erratum N46 is an example for such an erratum,
 343		 * although we try not to use PAT at all on affected CPUs.
 344		 *
 345		 *  PTE encoding:
 346		 *      PAT
 347		 *      |PCD
 348		 *      ||PWT  PAT
 349		 *      |||    slot
 350		 *      000    0    WB : _PAGE_CACHE_MODE_WB
 351		 *      001    1    WC : _PAGE_CACHE_MODE_WC
 352		 *      010    2    UC-: _PAGE_CACHE_MODE_UC_MINUS
 353		 *      011    3    UC : _PAGE_CACHE_MODE_UC
 354		 *      100    4    WB : Reserved
 355		 *      101    5    WP : _PAGE_CACHE_MODE_WP
 356		 *      110    6    UC-: Reserved
 357		 *      111    7    WT : _PAGE_CACHE_MODE_WT
 358		 *
 359		 * The reserved slots are unused, but mapped to their
 360		 * corresponding types in the presence of PAT errata.
 361		 */
 362		pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
 363		      PAT(4, WB) | PAT(5, WP) | PAT(6, UC_MINUS) | PAT(7, WT);
 364	}
 365
 366	if (!boot_cpu_done) {
 367		pat_bsp_init(pat);
 368		boot_cpu_done = true;
 369	} else {
 370		pat_ap_init(pat);
 371	}
 372}
 373
 374#undef PAT
 375
 376static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
 377
 378/*
 379 * Does intersection of PAT memory type and MTRR memory type and returns
 380 * the resulting memory type as PAT understands it.
 381 * (Type in pat and mtrr will not have same value)
 382 * The intersection is based on "Effective Memory Type" tables in IA-32
 383 * SDM vol 3a
 384 */
 385static unsigned long pat_x_mtrr_type(u64 start, u64 end,
 386				     enum page_cache_mode req_type)
 387{
 388	/*
 389	 * Look for MTRR hint to get the effective type in case where PAT
 390	 * request is for WB.
 391	 */
 392	if (req_type == _PAGE_CACHE_MODE_WB) {
 393		u8 mtrr_type, uniform;
 394
 395		mtrr_type = mtrr_type_lookup(start, end, &uniform);
 396		if (mtrr_type != MTRR_TYPE_WRBACK)
 397			return _PAGE_CACHE_MODE_UC_MINUS;
 398
 399		return _PAGE_CACHE_MODE_WB;
 400	}
 401
 402	return req_type;
 403}
 404
 405struct pagerange_state {
 406	unsigned long		cur_pfn;
 407	int			ram;
 408	int			not_ram;
 409};
 410
 411static int
 412pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
 413{
 414	struct pagerange_state *state = arg;
 415
 416	state->not_ram	|= initial_pfn > state->cur_pfn;
 417	state->ram	|= total_nr_pages > 0;
 418	state->cur_pfn	 = initial_pfn + total_nr_pages;
 419
 420	return state->ram && state->not_ram;
 421}
 422
 423static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
 424{
 425	int ret = 0;
 426	unsigned long start_pfn = start >> PAGE_SHIFT;
 427	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
 428	struct pagerange_state state = {start_pfn, 0, 0};
 429
 430	/*
 431	 * For legacy reasons, physical address range in the legacy ISA
 432	 * region is tracked as non-RAM. This will allow users of
 433	 * /dev/mem to map portions of legacy ISA region, even when
 434	 * some of those portions are listed(or not even listed) with
 435	 * different e820 types(RAM/reserved/..)
 436	 */
 437	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
 438		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
 439
 440	if (start_pfn < end_pfn) {
 441		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
 442				&state, pagerange_is_ram_callback);
 443	}
 444
 445	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
 446}
 447
 448/*
 449 * For RAM pages, we use page flags to mark the pages with appropriate type.
 450 * The page flags are limited to four types, WB (default), WC, WT and UC-.
 451 * WP request fails with -EINVAL, and UC gets redirected to UC-.  Setting
 452 * a new memory type is only allowed for a page mapped with the default WB
 453 * type.
 454 *
 455 * Here we do two passes:
 456 * - Find the memtype of all the pages in the range, look for any conflicts.
 457 * - In case of no conflicts, set the new memtype for pages in the range.
 458 */
 459static int reserve_ram_pages_type(u64 start, u64 end,
 460				  enum page_cache_mode req_type,
 461				  enum page_cache_mode *new_type)
 462{
 463	struct page *page;
 464	u64 pfn;
 465
 466	if (req_type == _PAGE_CACHE_MODE_WP) {
 467		if (new_type)
 468			*new_type = _PAGE_CACHE_MODE_UC_MINUS;
 469		return -EINVAL;
 470	}
 471
 472	if (req_type == _PAGE_CACHE_MODE_UC) {
 473		/* We do not support strong UC */
 474		WARN_ON_ONCE(1);
 475		req_type = _PAGE_CACHE_MODE_UC_MINUS;
 476	}
 477
 478	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 479		enum page_cache_mode type;
 480
 481		page = pfn_to_page(pfn);
 482		type = get_page_memtype(page);
 483		if (type != _PAGE_CACHE_MODE_WB) {
 484			pr_info("x86/PAT: reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%x, req 0x%x\n",
 485				start, end - 1, type, req_type);
 486			if (new_type)
 487				*new_type = type;
 488
 489			return -EBUSY;
 490		}
 491	}
 492
 493	if (new_type)
 494		*new_type = req_type;
 495
 496	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 497		page = pfn_to_page(pfn);
 498		set_page_memtype(page, req_type);
 499	}
 500	return 0;
 501}
 502
 503static int free_ram_pages_type(u64 start, u64 end)
 504{
 505	struct page *page;
 506	u64 pfn;
 507
 508	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
 509		page = pfn_to_page(pfn);
 510		set_page_memtype(page, _PAGE_CACHE_MODE_WB);
 511	}
 512	return 0;
 513}
 514
 515/*
 516 * req_type typically has one of the:
 517 * - _PAGE_CACHE_MODE_WB
 518 * - _PAGE_CACHE_MODE_WC
 519 * - _PAGE_CACHE_MODE_UC_MINUS
 520 * - _PAGE_CACHE_MODE_UC
 521 * - _PAGE_CACHE_MODE_WT
 522 *
 523 * If new_type is NULL, function will return an error if it cannot reserve the
 524 * region with req_type. If new_type is non-NULL, function will return
 525 * available type in new_type in case of no error. In case of any error
 526 * it will return a negative return value.
 527 */
 528int reserve_memtype(u64 start, u64 end, enum page_cache_mode req_type,
 529		    enum page_cache_mode *new_type)
 530{
 531	struct memtype *new;
 532	enum page_cache_mode actual_type;
 533	int is_range_ram;
 534	int err = 0;
 535
 536	BUG_ON(start >= end); /* end is exclusive */
 537
 538	if (!pat_enabled()) {
 539		/* This is identical to page table setting without PAT */
 540		if (new_type)
 541			*new_type = req_type;
 542		return 0;
 543	}
 544
 545	/* Low ISA region is always mapped WB in page table. No need to track */
 546	if (x86_platform.is_untracked_pat_range(start, end)) {
 547		if (new_type)
 548			*new_type = _PAGE_CACHE_MODE_WB;
 549		return 0;
 550	}
 551
 552	/*
 553	 * Call mtrr_lookup to get the type hint. This is an
 554	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
 555	 * tools and ACPI tools). Use WB request for WB memory and use
 556	 * UC_MINUS otherwise.
 557	 */
 558	actual_type = pat_x_mtrr_type(start, end, req_type);
 559
 560	if (new_type)
 561		*new_type = actual_type;
 562
 563	is_range_ram = pat_pagerange_is_ram(start, end);
 564	if (is_range_ram == 1) {
 565
 566		err = reserve_ram_pages_type(start, end, req_type, new_type);
 567
 568		return err;
 569	} else if (is_range_ram < 0) {
 570		return -EINVAL;
 571	}
 572
 573	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
 574	if (!new)
 575		return -ENOMEM;
 576
 577	new->start	= start;
 578	new->end	= end;
 579	new->type	= actual_type;
 580
 581	spin_lock(&memtype_lock);
 582
 583	err = rbt_memtype_check_insert(new, new_type);
 584	if (err) {
 585		pr_info("x86/PAT: reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
 586			start, end - 1,
 587			cattr_name(new->type), cattr_name(req_type));
 588		kfree(new);
 589		spin_unlock(&memtype_lock);
 590
 591		return err;
 592	}
 593
 594	spin_unlock(&memtype_lock);
 595
 596	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
 597		start, end - 1, cattr_name(new->type), cattr_name(req_type),
 598		new_type ? cattr_name(*new_type) : "-");
 599
 600	return err;
 601}
 602
 603int free_memtype(u64 start, u64 end)
 604{
 605	int err = -EINVAL;
 606	int is_range_ram;
 607	struct memtype *entry;
 608
 609	if (!pat_enabled())
 610		return 0;
 611
 612	/* Low ISA region is always mapped WB. No need to track */
 613	if (x86_platform.is_untracked_pat_range(start, end))
 614		return 0;
 615
 616	is_range_ram = pat_pagerange_is_ram(start, end);
 617	if (is_range_ram == 1) {
 618
 619		err = free_ram_pages_type(start, end);
 620
 621		return err;
 622	} else if (is_range_ram < 0) {
 623		return -EINVAL;
 624	}
 625
 626	spin_lock(&memtype_lock);
 627	entry = rbt_memtype_erase(start, end);
 628	spin_unlock(&memtype_lock);
 629
 630	if (IS_ERR(entry)) {
 631		pr_info("x86/PAT: %s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
 632			current->comm, current->pid, start, end - 1);
 633		return -EINVAL;
 634	}
 635
 636	kfree(entry);
 637
 638	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
 639
 640	return 0;
 641}
 642
 643
 644/**
 645 * lookup_memtype - Looksup the memory type for a physical address
 646 * @paddr: physical address of which memory type needs to be looked up
 647 *
 648 * Only to be called when PAT is enabled
 649 *
 650 * Returns _PAGE_CACHE_MODE_WB, _PAGE_CACHE_MODE_WC, _PAGE_CACHE_MODE_UC_MINUS
 651 * or _PAGE_CACHE_MODE_WT.
 652 */
 653static enum page_cache_mode lookup_memtype(u64 paddr)
 654{
 655	enum page_cache_mode rettype = _PAGE_CACHE_MODE_WB;
 656	struct memtype *entry;
 657
 658	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
 659		return rettype;
 660
 661	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
 662		struct page *page;
 663
 664		page = pfn_to_page(paddr >> PAGE_SHIFT);
 665		return get_page_memtype(page);
 666	}
 667
 668	spin_lock(&memtype_lock);
 669
 670	entry = rbt_memtype_lookup(paddr);
 671	if (entry != NULL)
 672		rettype = entry->type;
 673	else
 674		rettype = _PAGE_CACHE_MODE_UC_MINUS;
 675
 676	spin_unlock(&memtype_lock);
 677	return rettype;
 678}
 679
 680/**
 681 * pat_pfn_immune_to_uc_mtrr - Check whether the PAT memory type
 682 * of @pfn cannot be overridden by UC MTRR memory type.
 683 *
 684 * Only to be called when PAT is enabled.
 685 *
 686 * Returns true, if the PAT memory type of @pfn is UC, UC-, or WC.
 687 * Returns false in other cases.
 688 */
 689bool pat_pfn_immune_to_uc_mtrr(unsigned long pfn)
 690{
 691	enum page_cache_mode cm = lookup_memtype(PFN_PHYS(pfn));
 692
 693	return cm == _PAGE_CACHE_MODE_UC ||
 694	       cm == _PAGE_CACHE_MODE_UC_MINUS ||
 695	       cm == _PAGE_CACHE_MODE_WC;
 696}
 697EXPORT_SYMBOL_GPL(pat_pfn_immune_to_uc_mtrr);
 698
 699/**
 700 * io_reserve_memtype - Request a memory type mapping for a region of memory
 701 * @start: start (physical address) of the region
 702 * @end: end (physical address) of the region
 703 * @type: A pointer to memtype, with requested type. On success, requested
 704 * or any other compatible type that was available for the region is returned
 705 *
 706 * On success, returns 0
 707 * On failure, returns non-zero
 708 */
 709int io_reserve_memtype(resource_size_t start, resource_size_t end,
 710			enum page_cache_mode *type)
 711{
 712	resource_size_t size = end - start;
 713	enum page_cache_mode req_type = *type;
 714	enum page_cache_mode new_type;
 715	int ret;
 716
 717	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
 718
 719	ret = reserve_memtype(start, end, req_type, &new_type);
 720	if (ret)
 721		goto out_err;
 722
 723	if (!is_new_memtype_allowed(start, size, req_type, new_type))
 724		goto out_free;
 725
 726	if (kernel_map_sync_memtype(start, size, new_type) < 0)
 727		goto out_free;
 728
 729	*type = new_type;
 730	return 0;
 731
 732out_free:
 733	free_memtype(start, end);
 734	ret = -EBUSY;
 735out_err:
 736	return ret;
 737}
 738
 739/**
 740 * io_free_memtype - Release a memory type mapping for a region of memory
 741 * @start: start (physical address) of the region
 742 * @end: end (physical address) of the region
 743 */
 744void io_free_memtype(resource_size_t start, resource_size_t end)
 745{
 746	free_memtype(start, end);
 747}
 748
 749int arch_io_reserve_memtype_wc(resource_size_t start, resource_size_t size)
 750{
 751	enum page_cache_mode type = _PAGE_CACHE_MODE_WC;
 752
 753	return io_reserve_memtype(start, start + size, &type);
 754}
 755EXPORT_SYMBOL(arch_io_reserve_memtype_wc);
 756
 757void arch_io_free_memtype_wc(resource_size_t start, resource_size_t size)
 758{
 759	io_free_memtype(start, start + size);
 760}
 761EXPORT_SYMBOL(arch_io_free_memtype_wc);
 762
 763pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
 764				unsigned long size, pgprot_t vma_prot)
 765{
 766	if (!phys_mem_access_encrypted(pfn << PAGE_SHIFT, size))
 767		vma_prot = pgprot_decrypted(vma_prot);
 768
 769	return vma_prot;
 770}
 771
 772#ifdef CONFIG_STRICT_DEVMEM
 773/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM */
 774static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 775{
 776	return 1;
 777}
 778#else
 779/* This check is needed to avoid cache aliasing when PAT is enabled */
 780static inline int range_is_allowed(unsigned long pfn, unsigned long size)
 781{
 782	u64 from = ((u64)pfn) << PAGE_SHIFT;
 783	u64 to = from + size;
 784	u64 cursor = from;
 785
 786	if (!pat_enabled())
 787		return 1;
 788
 789	while (cursor < to) {
 790		if (!devmem_is_allowed(pfn))
 791			return 0;
 792		cursor += PAGE_SIZE;
 793		pfn++;
 794	}
 795	return 1;
 796}
 797#endif /* CONFIG_STRICT_DEVMEM */
 798
 799int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
 800				unsigned long size, pgprot_t *vma_prot)
 801{
 802	enum page_cache_mode pcm = _PAGE_CACHE_MODE_WB;
 803
 804	if (!range_is_allowed(pfn, size))
 805		return 0;
 806
 807	if (file->f_flags & O_DSYNC)
 808		pcm = _PAGE_CACHE_MODE_UC_MINUS;
 809
 810	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
 811			     cachemode2protval(pcm));
 812	return 1;
 813}
 814
 815/*
 816 * Change the memory type for the physial address range in kernel identity
 817 * mapping space if that range is a part of identity map.
 818 */
 819int kernel_map_sync_memtype(u64 base, unsigned long size,
 820			    enum page_cache_mode pcm)
 821{
 822	unsigned long id_sz;
 823
 824	if (base > __pa(high_memory-1))
 825		return 0;
 826
 827	/*
 828	 * some areas in the middle of the kernel identity range
 829	 * are not mapped, like the PCI space.
 830	 */
 831	if (!page_is_ram(base >> PAGE_SHIFT))
 832		return 0;
 833
 834	id_sz = (__pa(high_memory-1) <= base + size) ?
 835				__pa(high_memory) - base :
 836				size;
 837
 838	if (ioremap_change_attr((unsigned long)__va(base), id_sz, pcm) < 0) {
 839		pr_info("x86/PAT: %s:%d ioremap_change_attr failed %s for [mem %#010Lx-%#010Lx]\n",
 840			current->comm, current->pid,
 841			cattr_name(pcm),
 842			base, (unsigned long long)(base + size-1));
 843		return -EINVAL;
 844	}
 845	return 0;
 846}
 847
 848/*
 849 * Internal interface to reserve a range of physical memory with prot.
 850 * Reserved non RAM regions only and after successful reserve_memtype,
 851 * this func also keeps identity mapping (if any) in sync with this new prot.
 852 */
 853static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
 854				int strict_prot)
 855{
 856	int is_ram = 0;
 857	int ret;
 858	enum page_cache_mode want_pcm = pgprot2cachemode(*vma_prot);
 859	enum page_cache_mode pcm = want_pcm;
 860
 861	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 862
 863	/*
 864	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
 865	 * track of number of mappings of RAM pages. We can assert that
 866	 * the type requested matches the type of first page in the range.
 867	 */
 868	if (is_ram) {
 869		if (!pat_enabled())
 870			return 0;
 871
 872		pcm = lookup_memtype(paddr);
 873		if (want_pcm != pcm) {
 874			pr_warn("x86/PAT: %s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
 875				current->comm, current->pid,
 876				cattr_name(want_pcm),
 877				(unsigned long long)paddr,
 878				(unsigned long long)(paddr + size - 1),
 879				cattr_name(pcm));
 880			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
 881					     (~_PAGE_CACHE_MASK)) |
 882					     cachemode2protval(pcm));
 883		}
 884		return 0;
 885	}
 886
 887	ret = reserve_memtype(paddr, paddr + size, want_pcm, &pcm);
 888	if (ret)
 889		return ret;
 890
 891	if (pcm != want_pcm) {
 892		if (strict_prot ||
 893		    !is_new_memtype_allowed(paddr, size, want_pcm, pcm)) {
 894			free_memtype(paddr, paddr + size);
 895			pr_err("x86/PAT: %s:%d map pfn expected mapping type %s for [mem %#010Lx-%#010Lx], got %s\n",
 896			       current->comm, current->pid,
 897			       cattr_name(want_pcm),
 898			       (unsigned long long)paddr,
 899			       (unsigned long long)(paddr + size - 1),
 900			       cattr_name(pcm));
 901			return -EINVAL;
 902		}
 903		/*
 904		 * We allow returning different type than the one requested in
 905		 * non strict case.
 906		 */
 907		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
 908				      (~_PAGE_CACHE_MASK)) |
 909				     cachemode2protval(pcm));
 910	}
 911
 912	if (kernel_map_sync_memtype(paddr, size, pcm) < 0) {
 913		free_memtype(paddr, paddr + size);
 914		return -EINVAL;
 915	}
 916	return 0;
 917}
 918
 919/*
 920 * Internal interface to free a range of physical memory.
 921 * Frees non RAM regions only.
 922 */
 923static void free_pfn_range(u64 paddr, unsigned long size)
 924{
 925	int is_ram;
 926
 927	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
 928	if (is_ram == 0)
 929		free_memtype(paddr, paddr + size);
 930}
 931
 932/*
 933 * track_pfn_copy is called when vma that is covering the pfnmap gets
 934 * copied through copy_page_range().
 935 *
 936 * If the vma has a linear pfn mapping for the entire range, we get the prot
 937 * from pte and reserve the entire vma range with single reserve_pfn_range call.
 938 */
 939int track_pfn_copy(struct vm_area_struct *vma)
 940{
 941	resource_size_t paddr;
 942	unsigned long prot;
 943	unsigned long vma_size = vma->vm_end - vma->vm_start;
 944	pgprot_t pgprot;
 945
 946	if (vma->vm_flags & VM_PAT) {
 947		/*
 948		 * reserve the whole chunk covered by vma. We need the
 949		 * starting address and protection from pte.
 950		 */
 951		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
 952			WARN_ON_ONCE(1);
 953			return -EINVAL;
 954		}
 955		pgprot = __pgprot(prot);
 956		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
 957	}
 958
 959	return 0;
 960}
 961
 962/*
 963 * prot is passed in as a parameter for the new mapping. If the vma has
 964 * a linear pfn mapping for the entire range, or no vma is provided,
 965 * reserve the entire pfn + size range with single reserve_pfn_range
 966 * call.
 967 */
 968int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
 969		    unsigned long pfn, unsigned long addr, unsigned long size)
 970{
 971	resource_size_t paddr = (resource_size_t)pfn << PAGE_SHIFT;
 972	enum page_cache_mode pcm;
 973
 974	/* reserve the whole chunk starting from paddr */
 975	if (!vma || (addr == vma->vm_start
 976				&& size == (vma->vm_end - vma->vm_start))) {
 977		int ret;
 978
 979		ret = reserve_pfn_range(paddr, size, prot, 0);
 980		if (ret == 0 && vma)
 981			vma->vm_flags |= VM_PAT;
 982		return ret;
 983	}
 984
 985	if (!pat_enabled())
 986		return 0;
 987
 988	/*
 989	 * For anything smaller than the vma size we set prot based on the
 990	 * lookup.
 991	 */
 992	pcm = lookup_memtype(paddr);
 993
 994	/* Check memtype for the remaining pages */
 995	while (size > PAGE_SIZE) {
 996		size -= PAGE_SIZE;
 997		paddr += PAGE_SIZE;
 998		if (pcm != lookup_memtype(paddr))
 999			return -EINVAL;
1000	}
1001
1002	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1003			 cachemode2protval(pcm));
1004
1005	return 0;
1006}
1007
1008void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot, pfn_t pfn)
1009{
1010	enum page_cache_mode pcm;
1011
1012	if (!pat_enabled())
1013		return;
1014
1015	/* Set prot based on lookup */
1016	pcm = lookup_memtype(pfn_t_to_phys(pfn));
1017	*prot = __pgprot((pgprot_val(*prot) & (~_PAGE_CACHE_MASK)) |
1018			 cachemode2protval(pcm));
1019}
1020
1021/*
1022 * untrack_pfn is called while unmapping a pfnmap for a region.
1023 * untrack can be called for a specific region indicated by pfn and size or
1024 * can be for the entire vma (in which case pfn, size are zero).
1025 */
1026void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1027		 unsigned long size)
1028{
1029	resource_size_t paddr;
1030	unsigned long prot;
1031
1032	if (vma && !(vma->vm_flags & VM_PAT))
1033		return;
1034
1035	/* free the chunk starting from pfn or the whole chunk */
1036	paddr = (resource_size_t)pfn << PAGE_SHIFT;
1037	if (!paddr && !size) {
1038		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
1039			WARN_ON_ONCE(1);
1040			return;
1041		}
1042
1043		size = vma->vm_end - vma->vm_start;
1044	}
1045	free_pfn_range(paddr, size);
1046	if (vma)
1047		vma->vm_flags &= ~VM_PAT;
1048}
1049
1050/*
1051 * untrack_pfn_moved is called, while mremapping a pfnmap for a new region,
1052 * with the old vma after its pfnmap page table has been removed.  The new
1053 * vma has a new pfnmap to the same pfn & cache type with VM_PAT set.
1054 */
1055void untrack_pfn_moved(struct vm_area_struct *vma)
1056{
1057	vma->vm_flags &= ~VM_PAT;
1058}
1059
1060pgprot_t pgprot_writecombine(pgprot_t prot)
1061{
1062	return __pgprot(pgprot_val(prot) |
1063				cachemode2protval(_PAGE_CACHE_MODE_WC));
1064}
1065EXPORT_SYMBOL_GPL(pgprot_writecombine);
1066
1067pgprot_t pgprot_writethrough(pgprot_t prot)
1068{
1069	return __pgprot(pgprot_val(prot) |
1070				cachemode2protval(_PAGE_CACHE_MODE_WT));
1071}
1072EXPORT_SYMBOL_GPL(pgprot_writethrough);
1073
1074#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
1075
1076static struct memtype *memtype_get_idx(loff_t pos)
1077{
1078	struct memtype *print_entry;
1079	int ret;
1080
1081	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
1082	if (!print_entry)
1083		return NULL;
1084
1085	spin_lock(&memtype_lock);
1086	ret = rbt_memtype_copy_nth_element(print_entry, pos);
1087	spin_unlock(&memtype_lock);
1088
1089	if (!ret) {
1090		return print_entry;
1091	} else {
1092		kfree(print_entry);
1093		return NULL;
1094	}
1095}
1096
1097static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
1098{
1099	if (*pos == 0) {
1100		++*pos;
1101		seq_puts(seq, "PAT memtype list:\n");
1102	}
1103
1104	return memtype_get_idx(*pos);
1105}
1106
1107static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1108{
1109	++*pos;
1110	return memtype_get_idx(*pos);
1111}
1112
1113static void memtype_seq_stop(struct seq_file *seq, void *v)
1114{
1115}
1116
1117static int memtype_seq_show(struct seq_file *seq, void *v)
1118{
1119	struct memtype *print_entry = (struct memtype *)v;
1120
1121	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
1122			print_entry->start, print_entry->end);
1123	kfree(print_entry);
1124
1125	return 0;
1126}
1127
1128static const struct seq_operations memtype_seq_ops = {
1129	.start = memtype_seq_start,
1130	.next  = memtype_seq_next,
1131	.stop  = memtype_seq_stop,
1132	.show  = memtype_seq_show,
1133};
1134
1135static int memtype_seq_open(struct inode *inode, struct file *file)
1136{
1137	return seq_open(file, &memtype_seq_ops);
1138}
1139
1140static const struct file_operations memtype_fops = {
1141	.open    = memtype_seq_open,
1142	.read    = seq_read,
1143	.llseek  = seq_lseek,
1144	.release = seq_release,
1145};
1146
1147static int __init pat_memtype_list_init(void)
1148{
1149	if (pat_enabled()) {
1150		debugfs_create_file("pat_memtype_list", S_IRUSR,
1151				    arch_debugfs_dir, NULL, &memtype_fops);
1152	}
1153	return 0;
1154}
1155
1156late_initcall(pat_memtype_list_init);
1157
1158#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */