Linux Audio

Check our new training course

Loading...
  1/*
  2 * Handle caching attributes in page tables (PAT)
  3 *
  4 * Authors: Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
  5 *          Suresh B Siddha <suresh.b.siddha@intel.com>
  6 *
  7 * Loosely based on earlier PAT patchset from Eric Biederman and Andi Kleen.
  8 */
  9
 10#include <linux/seq_file.h>
 11#include <linux/bootmem.h>
 12#include <linux/debugfs.h>
 13#include <linux/kernel.h>
 14#include <linux/module.h>
 15#include <linux/slab.h>
 16#include <linux/mm.h>
 17#include <linux/fs.h>
 18#include <linux/rbtree.h>
 19
 20#include <asm/cacheflush.h>
 21#include <asm/processor.h>
 22#include <asm/tlbflush.h>
 23#include <asm/x86_init.h>
 24#include <asm/pgtable.h>
 25#include <asm/fcntl.h>
 26#include <asm/e820.h>
 27#include <asm/mtrr.h>
 28#include <asm/page.h>
 29#include <asm/msr.h>
 30#include <asm/pat.h>
 31#include <asm/io.h>
 32
 33#include "pat_internal.h"
 34
 35#ifdef CONFIG_X86_PAT
 36int __read_mostly pat_enabled = 1;
 37
 38static inline void pat_disable(const char *reason)
 39{
 40	pat_enabled = 0;
 41	printk(KERN_INFO "%s\n", reason);
 42}
 43
 44static int __init nopat(char *str)
 45{
 46	pat_disable("PAT support disabled.");
 47	return 0;
 48}
 49early_param("nopat", nopat);
 50#else
 51static inline void pat_disable(const char *reason)
 52{
 53	(void)reason;
 54}
 55#endif
 56
 57
 58int pat_debug_enable;
 59
 60static int __init pat_debug_setup(char *str)
 61{
 62	pat_debug_enable = 1;
 63	return 0;
 64}
 65__setup("debugpat", pat_debug_setup);
 66
 67static u64 __read_mostly boot_pat_state;
 68
 69enum {
 70	PAT_UC = 0,		/* uncached */
 71	PAT_WC = 1,		/* Write combining */
 72	PAT_WT = 4,		/* Write Through */
 73	PAT_WP = 5,		/* Write Protected */
 74	PAT_WB = 6,		/* Write Back (default) */
 75	PAT_UC_MINUS = 7,	/* UC, but can be overriden by MTRR */
 76};
 77
 78#define PAT(x, y)	((u64)PAT_ ## y << ((x)*8))
 79
 80void pat_init(void)
 81{
 82	u64 pat;
 83	bool boot_cpu = !boot_pat_state;
 84
 85	if (!pat_enabled)
 86		return;
 87
 88	if (!cpu_has_pat) {
 89		if (!boot_pat_state) {
 90			pat_disable("PAT not supported by CPU.");
 91			return;
 92		} else {
 93			/*
 94			 * If this happens we are on a secondary CPU, but
 95			 * switched to PAT on the boot CPU. We have no way to
 96			 * undo PAT.
 97			 */
 98			printk(KERN_ERR "PAT enabled, "
 99			       "but not supported by secondary CPU\n");
100			BUG();
101		}
102	}
103
104	/* Set PWT to Write-Combining. All other bits stay the same */
105	/*
106	 * PTE encoding used in Linux:
107	 *      PAT
108	 *      |PCD
109	 *      ||PWT
110	 *      |||
111	 *      000 WB		_PAGE_CACHE_WB
112	 *      001 WC		_PAGE_CACHE_WC
113	 *      010 UC-		_PAGE_CACHE_UC_MINUS
114	 *      011 UC		_PAGE_CACHE_UC
115	 * PAT bit unused
116	 */
117	pat = PAT(0, WB) | PAT(1, WC) | PAT(2, UC_MINUS) | PAT(3, UC) |
118	      PAT(4, WB) | PAT(5, WC) | PAT(6, UC_MINUS) | PAT(7, UC);
119
120	/* Boot CPU check */
121	if (!boot_pat_state)
122		rdmsrl(MSR_IA32_CR_PAT, boot_pat_state);
123
124	wrmsrl(MSR_IA32_CR_PAT, pat);
125
126	if (boot_cpu)
127		printk(KERN_INFO "x86 PAT enabled: cpu %d, old 0x%Lx, new 0x%Lx\n",
128		       smp_processor_id(), boot_pat_state, pat);
129}
130
131#undef PAT
132
133static DEFINE_SPINLOCK(memtype_lock);	/* protects memtype accesses */
134
135/*
136 * Does intersection of PAT memory type and MTRR memory type and returns
137 * the resulting memory type as PAT understands it.
138 * (Type in pat and mtrr will not have same value)
139 * The intersection is based on "Effective Memory Type" tables in IA-32
140 * SDM vol 3a
141 */
142static unsigned long pat_x_mtrr_type(u64 start, u64 end, unsigned long req_type)
143{
144	/*
145	 * Look for MTRR hint to get the effective type in case where PAT
146	 * request is for WB.
147	 */
148	if (req_type == _PAGE_CACHE_WB) {
149		u8 mtrr_type;
150
151		mtrr_type = mtrr_type_lookup(start, end);
152		if (mtrr_type != MTRR_TYPE_WRBACK)
153			return _PAGE_CACHE_UC_MINUS;
154
155		return _PAGE_CACHE_WB;
156	}
157
158	return req_type;
159}
160
161struct pagerange_state {
162	unsigned long		cur_pfn;
163	int			ram;
164	int			not_ram;
165};
166
167static int
168pagerange_is_ram_callback(unsigned long initial_pfn, unsigned long total_nr_pages, void *arg)
169{
170	struct pagerange_state *state = arg;
171
172	state->not_ram	|= initial_pfn > state->cur_pfn;
173	state->ram	|= total_nr_pages > 0;
174	state->cur_pfn	 = initial_pfn + total_nr_pages;
175
176	return state->ram && state->not_ram;
177}
178
179static int pat_pagerange_is_ram(resource_size_t start, resource_size_t end)
180{
181	int ret = 0;
182	unsigned long start_pfn = start >> PAGE_SHIFT;
183	unsigned long end_pfn = (end + PAGE_SIZE - 1) >> PAGE_SHIFT;
184	struct pagerange_state state = {start_pfn, 0, 0};
185
186	/*
187	 * For legacy reasons, physical address range in the legacy ISA
188	 * region is tracked as non-RAM. This will allow users of
189	 * /dev/mem to map portions of legacy ISA region, even when
190	 * some of those portions are listed(or not even listed) with
191	 * different e820 types(RAM/reserved/..)
192	 */
193	if (start_pfn < ISA_END_ADDRESS >> PAGE_SHIFT)
194		start_pfn = ISA_END_ADDRESS >> PAGE_SHIFT;
195
196	if (start_pfn < end_pfn) {
197		ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn,
198				&state, pagerange_is_ram_callback);
199	}
200
201	return (ret > 0) ? -1 : (state.ram ? 1 : 0);
202}
203
204/*
205 * For RAM pages, we use page flags to mark the pages with appropriate type.
206 * Here we do two pass:
207 * - Find the memtype of all the pages in the range, look for any conflicts
208 * - In case of no conflicts, set the new memtype for pages in the range
209 */
210static int reserve_ram_pages_type(u64 start, u64 end, unsigned long req_type,
211				  unsigned long *new_type)
212{
213	struct page *page;
214	u64 pfn;
215
216	if (req_type == _PAGE_CACHE_UC) {
217		/* We do not support strong UC */
218		WARN_ON_ONCE(1);
219		req_type = _PAGE_CACHE_UC_MINUS;
220	}
221
222	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
223		unsigned long type;
224
225		page = pfn_to_page(pfn);
226		type = get_page_memtype(page);
227		if (type != -1) {
228			printk(KERN_INFO "reserve_ram_pages_type failed [mem %#010Lx-%#010Lx], track 0x%lx, req 0x%lx\n",
229				start, end - 1, type, req_type);
230			if (new_type)
231				*new_type = type;
232
233			return -EBUSY;
234		}
235	}
236
237	if (new_type)
238		*new_type = req_type;
239
240	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
241		page = pfn_to_page(pfn);
242		set_page_memtype(page, req_type);
243	}
244	return 0;
245}
246
247static int free_ram_pages_type(u64 start, u64 end)
248{
249	struct page *page;
250	u64 pfn;
251
252	for (pfn = (start >> PAGE_SHIFT); pfn < (end >> PAGE_SHIFT); ++pfn) {
253		page = pfn_to_page(pfn);
254		set_page_memtype(page, -1);
255	}
256	return 0;
257}
258
259/*
260 * req_type typically has one of the:
261 * - _PAGE_CACHE_WB
262 * - _PAGE_CACHE_WC
263 * - _PAGE_CACHE_UC_MINUS
264 * - _PAGE_CACHE_UC
265 *
266 * If new_type is NULL, function will return an error if it cannot reserve the
267 * region with req_type. If new_type is non-NULL, function will return
268 * available type in new_type in case of no error. In case of any error
269 * it will return a negative return value.
270 */
271int reserve_memtype(u64 start, u64 end, unsigned long req_type,
272		    unsigned long *new_type)
273{
274	struct memtype *new;
275	unsigned long actual_type;
276	int is_range_ram;
277	int err = 0;
278
279	BUG_ON(start >= end); /* end is exclusive */
280
281	if (!pat_enabled) {
282		/* This is identical to page table setting without PAT */
283		if (new_type) {
284			if (req_type == _PAGE_CACHE_WC)
285				*new_type = _PAGE_CACHE_UC_MINUS;
286			else
287				*new_type = req_type & _PAGE_CACHE_MASK;
288		}
289		return 0;
290	}
291
292	/* Low ISA region is always mapped WB in page table. No need to track */
293	if (x86_platform.is_untracked_pat_range(start, end)) {
294		if (new_type)
295			*new_type = _PAGE_CACHE_WB;
296		return 0;
297	}
298
299	/*
300	 * Call mtrr_lookup to get the type hint. This is an
301	 * optimization for /dev/mem mmap'ers into WB memory (BIOS
302	 * tools and ACPI tools). Use WB request for WB memory and use
303	 * UC_MINUS otherwise.
304	 */
305	actual_type = pat_x_mtrr_type(start, end, req_type & _PAGE_CACHE_MASK);
306
307	if (new_type)
308		*new_type = actual_type;
309
310	is_range_ram = pat_pagerange_is_ram(start, end);
311	if (is_range_ram == 1) {
312
313		err = reserve_ram_pages_type(start, end, req_type, new_type);
314
315		return err;
316	} else if (is_range_ram < 0) {
317		return -EINVAL;
318	}
319
320	new  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
321	if (!new)
322		return -ENOMEM;
323
324	new->start	= start;
325	new->end	= end;
326	new->type	= actual_type;
327
328	spin_lock(&memtype_lock);
329
330	err = rbt_memtype_check_insert(new, new_type);
331	if (err) {
332		printk(KERN_INFO "reserve_memtype failed [mem %#010Lx-%#010Lx], track %s, req %s\n",
333		       start, end - 1,
334		       cattr_name(new->type), cattr_name(req_type));
335		kfree(new);
336		spin_unlock(&memtype_lock);
337
338		return err;
339	}
340
341	spin_unlock(&memtype_lock);
342
343	dprintk("reserve_memtype added [mem %#010Lx-%#010Lx], track %s, req %s, ret %s\n",
344		start, end - 1, cattr_name(new->type), cattr_name(req_type),
345		new_type ? cattr_name(*new_type) : "-");
346
347	return err;
348}
349
350int free_memtype(u64 start, u64 end)
351{
352	int err = -EINVAL;
353	int is_range_ram;
354	struct memtype *entry;
355
356	if (!pat_enabled)
357		return 0;
358
359	/* Low ISA region is always mapped WB. No need to track */
360	if (x86_platform.is_untracked_pat_range(start, end))
361		return 0;
362
363	is_range_ram = pat_pagerange_is_ram(start, end);
364	if (is_range_ram == 1) {
365
366		err = free_ram_pages_type(start, end);
367
368		return err;
369	} else if (is_range_ram < 0) {
370		return -EINVAL;
371	}
372
373	spin_lock(&memtype_lock);
374	entry = rbt_memtype_erase(start, end);
375	spin_unlock(&memtype_lock);
376
377	if (!entry) {
378		printk(KERN_INFO "%s:%d freeing invalid memtype [mem %#010Lx-%#010Lx]\n",
379		       current->comm, current->pid, start, end - 1);
380		return -EINVAL;
381	}
382
383	kfree(entry);
384
385	dprintk("free_memtype request [mem %#010Lx-%#010Lx]\n", start, end - 1);
386
387	return 0;
388}
389
390
391/**
392 * lookup_memtype - Looksup the memory type for a physical address
393 * @paddr: physical address of which memory type needs to be looked up
394 *
395 * Only to be called when PAT is enabled
396 *
397 * Returns _PAGE_CACHE_WB, _PAGE_CACHE_WC, _PAGE_CACHE_UC_MINUS or
398 * _PAGE_CACHE_UC
399 */
400static unsigned long lookup_memtype(u64 paddr)
401{
402	int rettype = _PAGE_CACHE_WB;
403	struct memtype *entry;
404
405	if (x86_platform.is_untracked_pat_range(paddr, paddr + PAGE_SIZE))
406		return rettype;
407
408	if (pat_pagerange_is_ram(paddr, paddr + PAGE_SIZE)) {
409		struct page *page;
410		page = pfn_to_page(paddr >> PAGE_SHIFT);
411		rettype = get_page_memtype(page);
412		/*
413		 * -1 from get_page_memtype() implies RAM page is in its
414		 * default state and not reserved, and hence of type WB
415		 */
416		if (rettype == -1)
417			rettype = _PAGE_CACHE_WB;
418
419		return rettype;
420	}
421
422	spin_lock(&memtype_lock);
423
424	entry = rbt_memtype_lookup(paddr);
425	if (entry != NULL)
426		rettype = entry->type;
427	else
428		rettype = _PAGE_CACHE_UC_MINUS;
429
430	spin_unlock(&memtype_lock);
431	return rettype;
432}
433
434/**
435 * io_reserve_memtype - Request a memory type mapping for a region of memory
436 * @start: start (physical address) of the region
437 * @end: end (physical address) of the region
438 * @type: A pointer to memtype, with requested type. On success, requested
439 * or any other compatible type that was available for the region is returned
440 *
441 * On success, returns 0
442 * On failure, returns non-zero
443 */
444int io_reserve_memtype(resource_size_t start, resource_size_t end,
445			unsigned long *type)
446{
447	resource_size_t size = end - start;
448	unsigned long req_type = *type;
449	unsigned long new_type;
450	int ret;
451
452	WARN_ON_ONCE(iomem_map_sanity_check(start, size));
453
454	ret = reserve_memtype(start, end, req_type, &new_type);
455	if (ret)
456		goto out_err;
457
458	if (!is_new_memtype_allowed(start, size, req_type, new_type))
459		goto out_free;
460
461	if (kernel_map_sync_memtype(start, size, new_type) < 0)
462		goto out_free;
463
464	*type = new_type;
465	return 0;
466
467out_free:
468	free_memtype(start, end);
469	ret = -EBUSY;
470out_err:
471	return ret;
472}
473
474/**
475 * io_free_memtype - Release a memory type mapping for a region of memory
476 * @start: start (physical address) of the region
477 * @end: end (physical address) of the region
478 */
479void io_free_memtype(resource_size_t start, resource_size_t end)
480{
481	free_memtype(start, end);
482}
483
484pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
485				unsigned long size, pgprot_t vma_prot)
486{
487	return vma_prot;
488}
489
490#ifdef CONFIG_STRICT_DEVMEM
491/* This check is done in drivers/char/mem.c in case of STRICT_DEVMEM*/
492static inline int range_is_allowed(unsigned long pfn, unsigned long size)
493{
494	return 1;
495}
496#else
497/* This check is needed to avoid cache aliasing when PAT is enabled */
498static inline int range_is_allowed(unsigned long pfn, unsigned long size)
499{
500	u64 from = ((u64)pfn) << PAGE_SHIFT;
501	u64 to = from + size;
502	u64 cursor = from;
503
504	if (!pat_enabled)
505		return 1;
506
507	while (cursor < to) {
508		if (!devmem_is_allowed(pfn)) {
509			printk(KERN_INFO "Program %s tried to access /dev/mem between [mem %#010Lx-%#010Lx]\n",
510				current->comm, from, to - 1);
511			return 0;
512		}
513		cursor += PAGE_SIZE;
514		pfn++;
515	}
516	return 1;
517}
518#endif /* CONFIG_STRICT_DEVMEM */
519
520int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
521				unsigned long size, pgprot_t *vma_prot)
522{
523	unsigned long flags = _PAGE_CACHE_WB;
524
525	if (!range_is_allowed(pfn, size))
526		return 0;
527
528	if (file->f_flags & O_DSYNC)
529		flags = _PAGE_CACHE_UC_MINUS;
530
531#ifdef CONFIG_X86_32
532	/*
533	 * On the PPro and successors, the MTRRs are used to set
534	 * memory types for physical addresses outside main memory,
535	 * so blindly setting UC or PWT on those pages is wrong.
536	 * For Pentiums and earlier, the surround logic should disable
537	 * caching for the high addresses through the KEN pin, but
538	 * we maintain the tradition of paranoia in this code.
539	 */
540	if (!pat_enabled &&
541	    !(boot_cpu_has(X86_FEATURE_MTRR) ||
542	      boot_cpu_has(X86_FEATURE_K6_MTRR) ||
543	      boot_cpu_has(X86_FEATURE_CYRIX_ARR) ||
544	      boot_cpu_has(X86_FEATURE_CENTAUR_MCR)) &&
545	    (pfn << PAGE_SHIFT) >= __pa(high_memory)) {
546		flags = _PAGE_CACHE_UC;
547	}
548#endif
549
550	*vma_prot = __pgprot((pgprot_val(*vma_prot) & ~_PAGE_CACHE_MASK) |
551			     flags);
552	return 1;
553}
554
555/*
556 * Change the memory type for the physial address range in kernel identity
557 * mapping space if that range is a part of identity map.
558 */
559int kernel_map_sync_memtype(u64 base, unsigned long size, unsigned long flags)
560{
561	unsigned long id_sz;
562
563	if (base >= __pa(high_memory))
564		return 0;
565
566	id_sz = (__pa(high_memory) < base + size) ?
567				__pa(high_memory) - base :
568				size;
569
570	if (ioremap_change_attr((unsigned long)__va(base), id_sz, flags) < 0) {
571		printk(KERN_INFO "%s:%d ioremap_change_attr failed %s "
572			"for [mem %#010Lx-%#010Lx]\n",
573			current->comm, current->pid,
574			cattr_name(flags),
575			base, (unsigned long long)(base + size-1));
576		return -EINVAL;
577	}
578	return 0;
579}
580
581/*
582 * Internal interface to reserve a range of physical memory with prot.
583 * Reserved non RAM regions only and after successful reserve_memtype,
584 * this func also keeps identity mapping (if any) in sync with this new prot.
585 */
586static int reserve_pfn_range(u64 paddr, unsigned long size, pgprot_t *vma_prot,
587				int strict_prot)
588{
589	int is_ram = 0;
590	int ret;
591	unsigned long want_flags = (pgprot_val(*vma_prot) & _PAGE_CACHE_MASK);
592	unsigned long flags = want_flags;
593
594	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
595
596	/*
597	 * reserve_pfn_range() for RAM pages. We do not refcount to keep
598	 * track of number of mappings of RAM pages. We can assert that
599	 * the type requested matches the type of first page in the range.
600	 */
601	if (is_ram) {
602		if (!pat_enabled)
603			return 0;
604
605		flags = lookup_memtype(paddr);
606		if (want_flags != flags) {
607			printk(KERN_WARNING "%s:%d map pfn RAM range req %s for [mem %#010Lx-%#010Lx], got %s\n",
608				current->comm, current->pid,
609				cattr_name(want_flags),
610				(unsigned long long)paddr,
611				(unsigned long long)(paddr + size - 1),
612				cattr_name(flags));
613			*vma_prot = __pgprot((pgprot_val(*vma_prot) &
614					      (~_PAGE_CACHE_MASK)) |
615					     flags);
616		}
617		return 0;
618	}
619
620	ret = reserve_memtype(paddr, paddr + size, want_flags, &flags);
621	if (ret)
622		return ret;
623
624	if (flags != want_flags) {
625		if (strict_prot ||
626		    !is_new_memtype_allowed(paddr, size, want_flags, flags)) {
627			free_memtype(paddr, paddr + size);
628			printk(KERN_ERR "%s:%d map pfn expected mapping type %s"
629				" for [mem %#010Lx-%#010Lx], got %s\n",
630				current->comm, current->pid,
631				cattr_name(want_flags),
632				(unsigned long long)paddr,
633				(unsigned long long)(paddr + size - 1),
634				cattr_name(flags));
635			return -EINVAL;
636		}
637		/*
638		 * We allow returning different type than the one requested in
639		 * non strict case.
640		 */
641		*vma_prot = __pgprot((pgprot_val(*vma_prot) &
642				      (~_PAGE_CACHE_MASK)) |
643				     flags);
644	}
645
646	if (kernel_map_sync_memtype(paddr, size, flags) < 0) {
647		free_memtype(paddr, paddr + size);
648		return -EINVAL;
649	}
650	return 0;
651}
652
653/*
654 * Internal interface to free a range of physical memory.
655 * Frees non RAM regions only.
656 */
657static void free_pfn_range(u64 paddr, unsigned long size)
658{
659	int is_ram;
660
661	is_ram = pat_pagerange_is_ram(paddr, paddr + size);
662	if (is_ram == 0)
663		free_memtype(paddr, paddr + size);
664}
665
666/*
667 * track_pfn_vma_copy is called when vma that is covering the pfnmap gets
668 * copied through copy_page_range().
669 *
670 * If the vma has a linear pfn mapping for the entire range, we get the prot
671 * from pte and reserve the entire vma range with single reserve_pfn_range call.
672 */
673int track_pfn_vma_copy(struct vm_area_struct *vma)
674{
675	resource_size_t paddr;
676	unsigned long prot;
677	unsigned long vma_size = vma->vm_end - vma->vm_start;
678	pgprot_t pgprot;
679
680	if (is_linear_pfn_mapping(vma)) {
681		/*
682		 * reserve the whole chunk covered by vma. We need the
683		 * starting address and protection from pte.
684		 */
685		if (follow_phys(vma, vma->vm_start, 0, &prot, &paddr)) {
686			WARN_ON_ONCE(1);
687			return -EINVAL;
688		}
689		pgprot = __pgprot(prot);
690		return reserve_pfn_range(paddr, vma_size, &pgprot, 1);
691	}
692
693	return 0;
694}
695
696/*
697 * track_pfn_vma_new is called when a _new_ pfn mapping is being established
698 * for physical range indicated by pfn and size.
699 *
700 * prot is passed in as a parameter for the new mapping. If the vma has a
701 * linear pfn mapping for the entire range reserve the entire vma range with
702 * single reserve_pfn_range call.
703 */
704int track_pfn_vma_new(struct vm_area_struct *vma, pgprot_t *prot,
705			unsigned long pfn, unsigned long size)
706{
707	unsigned long flags;
708	resource_size_t paddr;
709	unsigned long vma_size = vma->vm_end - vma->vm_start;
710
711	if (is_linear_pfn_mapping(vma)) {
712		/* reserve the whole chunk starting from vm_pgoff */
713		paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
714		return reserve_pfn_range(paddr, vma_size, prot, 0);
715	}
716
717	if (!pat_enabled)
718		return 0;
719
720	/* for vm_insert_pfn and friends, we set prot based on lookup */
721	flags = lookup_memtype(pfn << PAGE_SHIFT);
722	*prot = __pgprot((pgprot_val(vma->vm_page_prot) & (~_PAGE_CACHE_MASK)) |
723			 flags);
724
725	return 0;
726}
727
728/*
729 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
730 * untrack can be called for a specific region indicated by pfn and size or
731 * can be for the entire vma (in which case size can be zero).
732 */
733void untrack_pfn_vma(struct vm_area_struct *vma, unsigned long pfn,
734			unsigned long size)
735{
736	resource_size_t paddr;
737	unsigned long vma_size = vma->vm_end - vma->vm_start;
738
739	if (is_linear_pfn_mapping(vma)) {
740		/* free the whole chunk starting from vm_pgoff */
741		paddr = (resource_size_t)vma->vm_pgoff << PAGE_SHIFT;
742		free_pfn_range(paddr, vma_size);
743		return;
744	}
745}
746
747pgprot_t pgprot_writecombine(pgprot_t prot)
748{
749	if (pat_enabled)
750		return __pgprot(pgprot_val(prot) | _PAGE_CACHE_WC);
751	else
752		return pgprot_noncached(prot);
753}
754EXPORT_SYMBOL_GPL(pgprot_writecombine);
755
756#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_X86_PAT)
757
758static struct memtype *memtype_get_idx(loff_t pos)
759{
760	struct memtype *print_entry;
761	int ret;
762
763	print_entry  = kzalloc(sizeof(struct memtype), GFP_KERNEL);
764	if (!print_entry)
765		return NULL;
766
767	spin_lock(&memtype_lock);
768	ret = rbt_memtype_copy_nth_element(print_entry, pos);
769	spin_unlock(&memtype_lock);
770
771	if (!ret) {
772		return print_entry;
773	} else {
774		kfree(print_entry);
775		return NULL;
776	}
777}
778
779static void *memtype_seq_start(struct seq_file *seq, loff_t *pos)
780{
781	if (*pos == 0) {
782		++*pos;
783		seq_printf(seq, "PAT memtype list:\n");
784	}
785
786	return memtype_get_idx(*pos);
787}
788
789static void *memtype_seq_next(struct seq_file *seq, void *v, loff_t *pos)
790{
791	++*pos;
792	return memtype_get_idx(*pos);
793}
794
795static void memtype_seq_stop(struct seq_file *seq, void *v)
796{
797}
798
799static int memtype_seq_show(struct seq_file *seq, void *v)
800{
801	struct memtype *print_entry = (struct memtype *)v;
802
803	seq_printf(seq, "%s @ 0x%Lx-0x%Lx\n", cattr_name(print_entry->type),
804			print_entry->start, print_entry->end);
805	kfree(print_entry);
806
807	return 0;
808}
809
810static const struct seq_operations memtype_seq_ops = {
811	.start = memtype_seq_start,
812	.next  = memtype_seq_next,
813	.stop  = memtype_seq_stop,
814	.show  = memtype_seq_show,
815};
816
817static int memtype_seq_open(struct inode *inode, struct file *file)
818{
819	return seq_open(file, &memtype_seq_ops);
820}
821
822static const struct file_operations memtype_fops = {
823	.open    = memtype_seq_open,
824	.read    = seq_read,
825	.llseek  = seq_lseek,
826	.release = seq_release,
827};
828
829static int __init pat_memtype_list_init(void)
830{
831	if (pat_enabled) {
832		debugfs_create_file("pat_memtype_list", S_IRUSR,
833				    arch_debugfs_dir, NULL, &memtype_fops);
834	}
835	return 0;
836}
837
838late_initcall(pat_memtype_list_init);
839
840#endif /* CONFIG_DEBUG_FS && CONFIG_X86_PAT */