Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
9#include <linux/capability.h>
10#include <linux/mman.h>
11#include <linux/mm.h>
12#include <linux/sched/user.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/pagemap.h>
16#include <linux/pagevec.h>
17#include <linux/pagewalk.h>
18#include <linux/mempolicy.h>
19#include <linux/syscalls.h>
20#include <linux/sched.h>
21#include <linux/export.h>
22#include <linux/rmap.h>
23#include <linux/mmzone.h>
24#include <linux/hugetlb.h>
25#include <linux/memcontrol.h>
26#include <linux/mm_inline.h>
27#include <linux/secretmem.h>
28
29#include "internal.h"
30
31struct mlock_pvec {
32 local_lock_t lock;
33 struct pagevec vec;
34};
35
36static DEFINE_PER_CPU(struct mlock_pvec, mlock_pvec) = {
37 .lock = INIT_LOCAL_LOCK(lock),
38};
39
40bool can_do_mlock(void)
41{
42 if (rlimit(RLIMIT_MEMLOCK) != 0)
43 return true;
44 if (capable(CAP_IPC_LOCK))
45 return true;
46 return false;
47}
48EXPORT_SYMBOL(can_do_mlock);
49
50/*
51 * Mlocked pages are marked with PageMlocked() flag for efficient testing
52 * in vmscan and, possibly, the fault path; and to support semi-accurate
53 * statistics.
54 *
55 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
56 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
57 * The unevictable list is an LRU sibling list to the [in]active lists.
58 * PageUnevictable is set to indicate the unevictable state.
59 */
60
61static struct lruvec *__mlock_page(struct page *page, struct lruvec *lruvec)
62{
63 /* There is nothing more we can do while it's off LRU */
64 if (!TestClearPageLRU(page))
65 return lruvec;
66
67 lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
68
69 if (unlikely(page_evictable(page))) {
70 /*
71 * This is a little surprising, but quite possible:
72 * PageMlocked must have got cleared already by another CPU.
73 * Could this page be on the Unevictable LRU? I'm not sure,
74 * but move it now if so.
75 */
76 if (PageUnevictable(page)) {
77 del_page_from_lru_list(page, lruvec);
78 ClearPageUnevictable(page);
79 add_page_to_lru_list(page, lruvec);
80 __count_vm_events(UNEVICTABLE_PGRESCUED,
81 thp_nr_pages(page));
82 }
83 goto out;
84 }
85
86 if (PageUnevictable(page)) {
87 if (PageMlocked(page))
88 page->mlock_count++;
89 goto out;
90 }
91
92 del_page_from_lru_list(page, lruvec);
93 ClearPageActive(page);
94 SetPageUnevictable(page);
95 page->mlock_count = !!PageMlocked(page);
96 add_page_to_lru_list(page, lruvec);
97 __count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
98out:
99 SetPageLRU(page);
100 return lruvec;
101}
102
103static struct lruvec *__mlock_new_page(struct page *page, struct lruvec *lruvec)
104{
105 VM_BUG_ON_PAGE(PageLRU(page), page);
106
107 lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
108
109 /* As above, this is a little surprising, but possible */
110 if (unlikely(page_evictable(page)))
111 goto out;
112
113 SetPageUnevictable(page);
114 page->mlock_count = !!PageMlocked(page);
115 __count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
116out:
117 add_page_to_lru_list(page, lruvec);
118 SetPageLRU(page);
119 return lruvec;
120}
121
122static struct lruvec *__munlock_page(struct page *page, struct lruvec *lruvec)
123{
124 int nr_pages = thp_nr_pages(page);
125 bool isolated = false;
126
127 if (!TestClearPageLRU(page))
128 goto munlock;
129
130 isolated = true;
131 lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
132
133 if (PageUnevictable(page)) {
134 /* Then mlock_count is maintained, but might undercount */
135 if (page->mlock_count)
136 page->mlock_count--;
137 if (page->mlock_count)
138 goto out;
139 }
140 /* else assume that was the last mlock: reclaim will fix it if not */
141
142munlock:
143 if (TestClearPageMlocked(page)) {
144 __mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
145 if (isolated || !PageUnevictable(page))
146 __count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
147 else
148 __count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
149 }
150
151 /* page_evictable() has to be checked *after* clearing Mlocked */
152 if (isolated && PageUnevictable(page) && page_evictable(page)) {
153 del_page_from_lru_list(page, lruvec);
154 ClearPageUnevictable(page);
155 add_page_to_lru_list(page, lruvec);
156 __count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
157 }
158out:
159 if (isolated)
160 SetPageLRU(page);
161 return lruvec;
162}
163
164/*
165 * Flags held in the low bits of a struct page pointer on the mlock_pvec.
166 */
167#define LRU_PAGE 0x1
168#define NEW_PAGE 0x2
169static inline struct page *mlock_lru(struct page *page)
170{
171 return (struct page *)((unsigned long)page + LRU_PAGE);
172}
173
174static inline struct page *mlock_new(struct page *page)
175{
176 return (struct page *)((unsigned long)page + NEW_PAGE);
177}
178
179/*
180 * mlock_pagevec() is derived from pagevec_lru_move_fn():
181 * perhaps that can make use of such page pointer flags in future,
182 * but for now just keep it for mlock. We could use three separate
183 * pagevecs instead, but one feels better (munlocking a full pagevec
184 * does not need to drain mlocking pagevecs first).
185 */
186static void mlock_pagevec(struct pagevec *pvec)
187{
188 struct lruvec *lruvec = NULL;
189 unsigned long mlock;
190 struct page *page;
191 int i;
192
193 for (i = 0; i < pagevec_count(pvec); i++) {
194 page = pvec->pages[i];
195 mlock = (unsigned long)page & (LRU_PAGE | NEW_PAGE);
196 page = (struct page *)((unsigned long)page - mlock);
197 pvec->pages[i] = page;
198
199 if (mlock & LRU_PAGE)
200 lruvec = __mlock_page(page, lruvec);
201 else if (mlock & NEW_PAGE)
202 lruvec = __mlock_new_page(page, lruvec);
203 else
204 lruvec = __munlock_page(page, lruvec);
205 }
206
207 if (lruvec)
208 unlock_page_lruvec_irq(lruvec);
209 release_pages(pvec->pages, pvec->nr);
210 pagevec_reinit(pvec);
211}
212
213void mlock_page_drain_local(void)
214{
215 struct pagevec *pvec;
216
217 local_lock(&mlock_pvec.lock);
218 pvec = this_cpu_ptr(&mlock_pvec.vec);
219 if (pagevec_count(pvec))
220 mlock_pagevec(pvec);
221 local_unlock(&mlock_pvec.lock);
222}
223
224void mlock_page_drain_remote(int cpu)
225{
226 struct pagevec *pvec;
227
228 WARN_ON_ONCE(cpu_online(cpu));
229 pvec = &per_cpu(mlock_pvec.vec, cpu);
230 if (pagevec_count(pvec))
231 mlock_pagevec(pvec);
232}
233
234bool need_mlock_page_drain(int cpu)
235{
236 return pagevec_count(&per_cpu(mlock_pvec.vec, cpu));
237}
238
239/**
240 * mlock_folio - mlock a folio already on (or temporarily off) LRU
241 * @folio: folio to be mlocked.
242 */
243void mlock_folio(struct folio *folio)
244{
245 struct pagevec *pvec;
246
247 local_lock(&mlock_pvec.lock);
248 pvec = this_cpu_ptr(&mlock_pvec.vec);
249
250 if (!folio_test_set_mlocked(folio)) {
251 int nr_pages = folio_nr_pages(folio);
252
253 zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
254 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
255 }
256
257 folio_get(folio);
258 if (!pagevec_add(pvec, mlock_lru(&folio->page)) ||
259 folio_test_large(folio) || lru_cache_disabled())
260 mlock_pagevec(pvec);
261 local_unlock(&mlock_pvec.lock);
262}
263
264/**
265 * mlock_new_page - mlock a newly allocated page not yet on LRU
266 * @page: page to be mlocked, either a normal page or a THP head.
267 */
268void mlock_new_page(struct page *page)
269{
270 struct pagevec *pvec;
271 int nr_pages = thp_nr_pages(page);
272
273 local_lock(&mlock_pvec.lock);
274 pvec = this_cpu_ptr(&mlock_pvec.vec);
275 SetPageMlocked(page);
276 mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
277 __count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
278
279 get_page(page);
280 if (!pagevec_add(pvec, mlock_new(page)) ||
281 PageHead(page) || lru_cache_disabled())
282 mlock_pagevec(pvec);
283 local_unlock(&mlock_pvec.lock);
284}
285
286/**
287 * munlock_page - munlock a page
288 * @page: page to be munlocked, either a normal page or a THP head.
289 */
290void munlock_page(struct page *page)
291{
292 struct pagevec *pvec;
293
294 local_lock(&mlock_pvec.lock);
295 pvec = this_cpu_ptr(&mlock_pvec.vec);
296 /*
297 * TestClearPageMlocked(page) must be left to __munlock_page(),
298 * which will check whether the page is multiply mlocked.
299 */
300
301 get_page(page);
302 if (!pagevec_add(pvec, page) ||
303 PageHead(page) || lru_cache_disabled())
304 mlock_pagevec(pvec);
305 local_unlock(&mlock_pvec.lock);
306}
307
308static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
309 unsigned long end, struct mm_walk *walk)
310
311{
312 struct vm_area_struct *vma = walk->vma;
313 spinlock_t *ptl;
314 pte_t *start_pte, *pte;
315 struct page *page;
316
317 ptl = pmd_trans_huge_lock(pmd, vma);
318 if (ptl) {
319 if (!pmd_present(*pmd))
320 goto out;
321 if (is_huge_zero_pmd(*pmd))
322 goto out;
323 page = pmd_page(*pmd);
324 if (vma->vm_flags & VM_LOCKED)
325 mlock_folio(page_folio(page));
326 else
327 munlock_page(page);
328 goto out;
329 }
330
331 start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
332 for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
333 if (!pte_present(*pte))
334 continue;
335 page = vm_normal_page(vma, addr, *pte);
336 if (!page || is_zone_device_page(page))
337 continue;
338 if (PageTransCompound(page))
339 continue;
340 if (vma->vm_flags & VM_LOCKED)
341 mlock_folio(page_folio(page));
342 else
343 munlock_page(page);
344 }
345 pte_unmap(start_pte);
346out:
347 spin_unlock(ptl);
348 cond_resched();
349 return 0;
350}
351
352/*
353 * mlock_vma_pages_range() - mlock any pages already in the range,
354 * or munlock all pages in the range.
355 * @vma - vma containing range to be mlock()ed or munlock()ed
356 * @start - start address in @vma of the range
357 * @end - end of range in @vma
358 * @newflags - the new set of flags for @vma.
359 *
360 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
361 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
362 */
363static void mlock_vma_pages_range(struct vm_area_struct *vma,
364 unsigned long start, unsigned long end, vm_flags_t newflags)
365{
366 static const struct mm_walk_ops mlock_walk_ops = {
367 .pmd_entry = mlock_pte_range,
368 };
369
370 /*
371 * There is a slight chance that concurrent page migration,
372 * or page reclaim finding a page of this now-VM_LOCKED vma,
373 * will call mlock_vma_page() and raise page's mlock_count:
374 * double counting, leaving the page unevictable indefinitely.
375 * Communicate this danger to mlock_vma_page() with VM_IO,
376 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
377 * mmap_lock is held in write mode here, so this weird
378 * combination should not be visible to other mmap_lock users;
379 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
380 */
381 if (newflags & VM_LOCKED)
382 newflags |= VM_IO;
383 WRITE_ONCE(vma->vm_flags, newflags);
384
385 lru_add_drain();
386 walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
387 lru_add_drain();
388
389 if (newflags & VM_IO) {
390 newflags &= ~VM_IO;
391 WRITE_ONCE(vma->vm_flags, newflags);
392 }
393}
394
395/*
396 * mlock_fixup - handle mlock[all]/munlock[all] requests.
397 *
398 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
399 * munlock is a no-op. However, for some special vmas, we go ahead and
400 * populate the ptes.
401 *
402 * For vmas that pass the filters, merge/split as appropriate.
403 */
404static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
405 unsigned long start, unsigned long end, vm_flags_t newflags)
406{
407 struct mm_struct *mm = vma->vm_mm;
408 pgoff_t pgoff;
409 int nr_pages;
410 int ret = 0;
411 vm_flags_t oldflags = vma->vm_flags;
412
413 if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
414 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
415 vma_is_dax(vma) || vma_is_secretmem(vma))
416 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
417 goto out;
418
419 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
420 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
421 vma->vm_file, pgoff, vma_policy(vma),
422 vma->vm_userfaultfd_ctx, anon_vma_name(vma));
423 if (*prev) {
424 vma = *prev;
425 goto success;
426 }
427
428 if (start != vma->vm_start) {
429 ret = split_vma(mm, vma, start, 1);
430 if (ret)
431 goto out;
432 }
433
434 if (end != vma->vm_end) {
435 ret = split_vma(mm, vma, end, 0);
436 if (ret)
437 goto out;
438 }
439
440success:
441 /*
442 * Keep track of amount of locked VM.
443 */
444 nr_pages = (end - start) >> PAGE_SHIFT;
445 if (!(newflags & VM_LOCKED))
446 nr_pages = -nr_pages;
447 else if (oldflags & VM_LOCKED)
448 nr_pages = 0;
449 mm->locked_vm += nr_pages;
450
451 /*
452 * vm_flags is protected by the mmap_lock held in write mode.
453 * It's okay if try_to_unmap_one unmaps a page just after we
454 * set VM_LOCKED, populate_vma_page_range will bring it back.
455 */
456
457 if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
458 /* No work to do, and mlocking twice would be wrong */
459 vma->vm_flags = newflags;
460 } else {
461 mlock_vma_pages_range(vma, start, end, newflags);
462 }
463out:
464 *prev = vma;
465 return ret;
466}
467
468static int apply_vma_lock_flags(unsigned long start, size_t len,
469 vm_flags_t flags)
470{
471 unsigned long nstart, end, tmp;
472 struct vm_area_struct *vma, *prev;
473 int error;
474 MA_STATE(mas, ¤t->mm->mm_mt, start, start);
475
476 VM_BUG_ON(offset_in_page(start));
477 VM_BUG_ON(len != PAGE_ALIGN(len));
478 end = start + len;
479 if (end < start)
480 return -EINVAL;
481 if (end == start)
482 return 0;
483 vma = mas_walk(&mas);
484 if (!vma)
485 return -ENOMEM;
486
487 if (start > vma->vm_start)
488 prev = vma;
489 else
490 prev = mas_prev(&mas, 0);
491
492 for (nstart = start ; ; ) {
493 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
494
495 newflags |= flags;
496
497 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
498 tmp = vma->vm_end;
499 if (tmp > end)
500 tmp = end;
501 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
502 if (error)
503 break;
504 nstart = tmp;
505 if (nstart < prev->vm_end)
506 nstart = prev->vm_end;
507 if (nstart >= end)
508 break;
509
510 vma = find_vma(prev->vm_mm, prev->vm_end);
511 if (!vma || vma->vm_start != nstart) {
512 error = -ENOMEM;
513 break;
514 }
515 }
516 return error;
517}
518
519/*
520 * Go through vma areas and sum size of mlocked
521 * vma pages, as return value.
522 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
523 * is also counted.
524 * Return value: previously mlocked page counts
525 */
526static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
527 unsigned long start, size_t len)
528{
529 struct vm_area_struct *vma;
530 unsigned long count = 0;
531 unsigned long end;
532 VMA_ITERATOR(vmi, mm, start);
533
534 /* Don't overflow past ULONG_MAX */
535 if (unlikely(ULONG_MAX - len < start))
536 end = ULONG_MAX;
537 else
538 end = start + len;
539
540 for_each_vma_range(vmi, vma, end) {
541 if (vma->vm_flags & VM_LOCKED) {
542 if (start > vma->vm_start)
543 count -= (start - vma->vm_start);
544 if (end < vma->vm_end) {
545 count += end - vma->vm_start;
546 break;
547 }
548 count += vma->vm_end - vma->vm_start;
549 }
550 }
551
552 return count >> PAGE_SHIFT;
553}
554
555/*
556 * convert get_user_pages() return value to posix mlock() error
557 */
558static int __mlock_posix_error_return(long retval)
559{
560 if (retval == -EFAULT)
561 retval = -ENOMEM;
562 else if (retval == -ENOMEM)
563 retval = -EAGAIN;
564 return retval;
565}
566
567static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
568{
569 unsigned long locked;
570 unsigned long lock_limit;
571 int error = -ENOMEM;
572
573 start = untagged_addr(start);
574
575 if (!can_do_mlock())
576 return -EPERM;
577
578 len = PAGE_ALIGN(len + (offset_in_page(start)));
579 start &= PAGE_MASK;
580
581 lock_limit = rlimit(RLIMIT_MEMLOCK);
582 lock_limit >>= PAGE_SHIFT;
583 locked = len >> PAGE_SHIFT;
584
585 if (mmap_write_lock_killable(current->mm))
586 return -EINTR;
587
588 locked += current->mm->locked_vm;
589 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
590 /*
591 * It is possible that the regions requested intersect with
592 * previously mlocked areas, that part area in "mm->locked_vm"
593 * should not be counted to new mlock increment count. So check
594 * and adjust locked count if necessary.
595 */
596 locked -= count_mm_mlocked_page_nr(current->mm,
597 start, len);
598 }
599
600 /* check against resource limits */
601 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
602 error = apply_vma_lock_flags(start, len, flags);
603
604 mmap_write_unlock(current->mm);
605 if (error)
606 return error;
607
608 error = __mm_populate(start, len, 0);
609 if (error)
610 return __mlock_posix_error_return(error);
611 return 0;
612}
613
614SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
615{
616 return do_mlock(start, len, VM_LOCKED);
617}
618
619SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
620{
621 vm_flags_t vm_flags = VM_LOCKED;
622
623 if (flags & ~MLOCK_ONFAULT)
624 return -EINVAL;
625
626 if (flags & MLOCK_ONFAULT)
627 vm_flags |= VM_LOCKONFAULT;
628
629 return do_mlock(start, len, vm_flags);
630}
631
632SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
633{
634 int ret;
635
636 start = untagged_addr(start);
637
638 len = PAGE_ALIGN(len + (offset_in_page(start)));
639 start &= PAGE_MASK;
640
641 if (mmap_write_lock_killable(current->mm))
642 return -EINTR;
643 ret = apply_vma_lock_flags(start, len, 0);
644 mmap_write_unlock(current->mm);
645
646 return ret;
647}
648
649/*
650 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
651 * and translate into the appropriate modifications to mm->def_flags and/or the
652 * flags for all current VMAs.
653 *
654 * There are a couple of subtleties with this. If mlockall() is called multiple
655 * times with different flags, the values do not necessarily stack. If mlockall
656 * is called once including the MCL_FUTURE flag and then a second time without
657 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
658 */
659static int apply_mlockall_flags(int flags)
660{
661 MA_STATE(mas, ¤t->mm->mm_mt, 0, 0);
662 struct vm_area_struct *vma, *prev = NULL;
663 vm_flags_t to_add = 0;
664
665 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
666 if (flags & MCL_FUTURE) {
667 current->mm->def_flags |= VM_LOCKED;
668
669 if (flags & MCL_ONFAULT)
670 current->mm->def_flags |= VM_LOCKONFAULT;
671
672 if (!(flags & MCL_CURRENT))
673 goto out;
674 }
675
676 if (flags & MCL_CURRENT) {
677 to_add |= VM_LOCKED;
678 if (flags & MCL_ONFAULT)
679 to_add |= VM_LOCKONFAULT;
680 }
681
682 mas_for_each(&mas, vma, ULONG_MAX) {
683 vm_flags_t newflags;
684
685 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
686 newflags |= to_add;
687
688 /* Ignore errors */
689 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
690 mas_pause(&mas);
691 cond_resched();
692 }
693out:
694 return 0;
695}
696
697SYSCALL_DEFINE1(mlockall, int, flags)
698{
699 unsigned long lock_limit;
700 int ret;
701
702 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
703 flags == MCL_ONFAULT)
704 return -EINVAL;
705
706 if (!can_do_mlock())
707 return -EPERM;
708
709 lock_limit = rlimit(RLIMIT_MEMLOCK);
710 lock_limit >>= PAGE_SHIFT;
711
712 if (mmap_write_lock_killable(current->mm))
713 return -EINTR;
714
715 ret = -ENOMEM;
716 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
717 capable(CAP_IPC_LOCK))
718 ret = apply_mlockall_flags(flags);
719 mmap_write_unlock(current->mm);
720 if (!ret && (flags & MCL_CURRENT))
721 mm_populate(0, TASK_SIZE);
722
723 return ret;
724}
725
726SYSCALL_DEFINE0(munlockall)
727{
728 int ret;
729
730 if (mmap_write_lock_killable(current->mm))
731 return -EINTR;
732 ret = apply_mlockall_flags(0);
733 mmap_write_unlock(current->mm);
734 return ret;
735}
736
737/*
738 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
739 * shm segments) get accounted against the user_struct instead.
740 */
741static DEFINE_SPINLOCK(shmlock_user_lock);
742
743int user_shm_lock(size_t size, struct ucounts *ucounts)
744{
745 unsigned long lock_limit, locked;
746 long memlock;
747 int allowed = 0;
748
749 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
750 lock_limit = rlimit(RLIMIT_MEMLOCK);
751 if (lock_limit != RLIM_INFINITY)
752 lock_limit >>= PAGE_SHIFT;
753 spin_lock(&shmlock_user_lock);
754 memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
755
756 if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
757 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
758 goto out;
759 }
760 if (!get_ucounts(ucounts)) {
761 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
762 allowed = 0;
763 goto out;
764 }
765 allowed = 1;
766out:
767 spin_unlock(&shmlock_user_lock);
768 return allowed;
769}
770
771void user_shm_unlock(size_t size, struct ucounts *ucounts)
772{
773 spin_lock(&shmlock_user_lock);
774 dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
775 spin_unlock(&shmlock_user_lock);
776 put_ucounts(ucounts);
777}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/mm/mlock.c
4 *
5 * (C) Copyright 1995 Linus Torvalds
6 * (C) Copyright 2002 Christoph Hellwig
7 */
8
9#include <linux/capability.h>
10#include <linux/mman.h>
11#include <linux/mm.h>
12#include <linux/sched/user.h>
13#include <linux/swap.h>
14#include <linux/swapops.h>
15#include <linux/pagemap.h>
16#include <linux/pagevec.h>
17#include <linux/mempolicy.h>
18#include <linux/syscalls.h>
19#include <linux/sched.h>
20#include <linux/export.h>
21#include <linux/rmap.h>
22#include <linux/mmzone.h>
23#include <linux/hugetlb.h>
24#include <linux/memcontrol.h>
25#include <linux/mm_inline.h>
26
27#include "internal.h"
28
29bool can_do_mlock(void)
30{
31 if (rlimit(RLIMIT_MEMLOCK) != 0)
32 return true;
33 if (capable(CAP_IPC_LOCK))
34 return true;
35 return false;
36}
37EXPORT_SYMBOL(can_do_mlock);
38
39/*
40 * Mlocked pages are marked with PageMlocked() flag for efficient testing
41 * in vmscan and, possibly, the fault path; and to support semi-accurate
42 * statistics.
43 *
44 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
45 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
46 * The unevictable list is an LRU sibling list to the [in]active lists.
47 * PageUnevictable is set to indicate the unevictable state.
48 *
49 * When lazy mlocking via vmscan, it is important to ensure that the
50 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
51 * may have mlocked a page that is being munlocked. So lazy mlock must take
52 * the mmap_sem for read, and verify that the vma really is locked
53 * (see mm/rmap.c).
54 */
55
56/*
57 * LRU accounting for clear_page_mlock()
58 */
59void clear_page_mlock(struct page *page)
60{
61 if (!TestClearPageMlocked(page))
62 return;
63
64 mod_zone_page_state(page_zone(page), NR_MLOCK,
65 -hpage_nr_pages(page));
66 count_vm_event(UNEVICTABLE_PGCLEARED);
67 /*
68 * The previous TestClearPageMlocked() corresponds to the smp_mb()
69 * in __pagevec_lru_add_fn().
70 *
71 * See __pagevec_lru_add_fn for more explanation.
72 */
73 if (!isolate_lru_page(page)) {
74 putback_lru_page(page);
75 } else {
76 /*
77 * We lost the race. the page already moved to evictable list.
78 */
79 if (PageUnevictable(page))
80 count_vm_event(UNEVICTABLE_PGSTRANDED);
81 }
82}
83
84/*
85 * Mark page as mlocked if not already.
86 * If page on LRU, isolate and putback to move to unevictable list.
87 */
88void mlock_vma_page(struct page *page)
89{
90 /* Serialize with page migration */
91 BUG_ON(!PageLocked(page));
92
93 VM_BUG_ON_PAGE(PageTail(page), page);
94 VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
95
96 if (!TestSetPageMlocked(page)) {
97 mod_zone_page_state(page_zone(page), NR_MLOCK,
98 hpage_nr_pages(page));
99 count_vm_event(UNEVICTABLE_PGMLOCKED);
100 if (!isolate_lru_page(page))
101 putback_lru_page(page);
102 }
103}
104
105/*
106 * Isolate a page from LRU with optional get_page() pin.
107 * Assumes lru_lock already held and page already pinned.
108 */
109static bool __munlock_isolate_lru_page(struct page *page, bool getpage)
110{
111 if (PageLRU(page)) {
112 struct lruvec *lruvec;
113
114 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
115 if (getpage)
116 get_page(page);
117 ClearPageLRU(page);
118 del_page_from_lru_list(page, lruvec, page_lru(page));
119 return true;
120 }
121
122 return false;
123}
124
125/*
126 * Finish munlock after successful page isolation
127 *
128 * Page must be locked. This is a wrapper for try_to_munlock()
129 * and putback_lru_page() with munlock accounting.
130 */
131static void __munlock_isolated_page(struct page *page)
132{
133 /*
134 * Optimization: if the page was mapped just once, that's our mapping
135 * and we don't need to check all the other vmas.
136 */
137 if (page_mapcount(page) > 1)
138 try_to_munlock(page);
139
140 /* Did try_to_unlock() succeed or punt? */
141 if (!PageMlocked(page))
142 count_vm_event(UNEVICTABLE_PGMUNLOCKED);
143
144 putback_lru_page(page);
145}
146
147/*
148 * Accounting for page isolation fail during munlock
149 *
150 * Performs accounting when page isolation fails in munlock. There is nothing
151 * else to do because it means some other task has already removed the page
152 * from the LRU. putback_lru_page() will take care of removing the page from
153 * the unevictable list, if necessary. vmscan [page_referenced()] will move
154 * the page back to the unevictable list if some other vma has it mlocked.
155 */
156static void __munlock_isolation_failed(struct page *page)
157{
158 if (PageUnevictable(page))
159 __count_vm_event(UNEVICTABLE_PGSTRANDED);
160 else
161 __count_vm_event(UNEVICTABLE_PGMUNLOCKED);
162}
163
164/**
165 * munlock_vma_page - munlock a vma page
166 * @page: page to be unlocked, either a normal page or THP page head
167 *
168 * returns the size of the page as a page mask (0 for normal page,
169 * HPAGE_PMD_NR - 1 for THP head page)
170 *
171 * called from munlock()/munmap() path with page supposedly on the LRU.
172 * When we munlock a page, because the vma where we found the page is being
173 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
174 * page locked so that we can leave it on the unevictable lru list and not
175 * bother vmscan with it. However, to walk the page's rmap list in
176 * try_to_munlock() we must isolate the page from the LRU. If some other
177 * task has removed the page from the LRU, we won't be able to do that.
178 * So we clear the PageMlocked as we might not get another chance. If we
179 * can't isolate the page, we leave it for putback_lru_page() and vmscan
180 * [page_referenced()/try_to_unmap()] to deal with.
181 */
182unsigned int munlock_vma_page(struct page *page)
183{
184 int nr_pages;
185 struct zone *zone = page_zone(page);
186
187 /* For try_to_munlock() and to serialize with page migration */
188 BUG_ON(!PageLocked(page));
189
190 VM_BUG_ON_PAGE(PageTail(page), page);
191
192 /*
193 * Serialize with any parallel __split_huge_page_refcount() which
194 * might otherwise copy PageMlocked to part of the tail pages before
195 * we clear it in the head page. It also stabilizes hpage_nr_pages().
196 */
197 spin_lock_irq(zone_lru_lock(zone));
198
199 if (!TestClearPageMlocked(page)) {
200 /* Potentially, PTE-mapped THP: do not skip the rest PTEs */
201 nr_pages = 1;
202 goto unlock_out;
203 }
204
205 nr_pages = hpage_nr_pages(page);
206 __mod_zone_page_state(zone, NR_MLOCK, -nr_pages);
207
208 if (__munlock_isolate_lru_page(page, true)) {
209 spin_unlock_irq(zone_lru_lock(zone));
210 __munlock_isolated_page(page);
211 goto out;
212 }
213 __munlock_isolation_failed(page);
214
215unlock_out:
216 spin_unlock_irq(zone_lru_lock(zone));
217
218out:
219 return nr_pages - 1;
220}
221
222/*
223 * convert get_user_pages() return value to posix mlock() error
224 */
225static int __mlock_posix_error_return(long retval)
226{
227 if (retval == -EFAULT)
228 retval = -ENOMEM;
229 else if (retval == -ENOMEM)
230 retval = -EAGAIN;
231 return retval;
232}
233
234/*
235 * Prepare page for fast batched LRU putback via putback_lru_evictable_pagevec()
236 *
237 * The fast path is available only for evictable pages with single mapping.
238 * Then we can bypass the per-cpu pvec and get better performance.
239 * when mapcount > 1 we need try_to_munlock() which can fail.
240 * when !page_evictable(), we need the full redo logic of putback_lru_page to
241 * avoid leaving evictable page in unevictable list.
242 *
243 * In case of success, @page is added to @pvec and @pgrescued is incremented
244 * in case that the page was previously unevictable. @page is also unlocked.
245 */
246static bool __putback_lru_fast_prepare(struct page *page, struct pagevec *pvec,
247 int *pgrescued)
248{
249 VM_BUG_ON_PAGE(PageLRU(page), page);
250 VM_BUG_ON_PAGE(!PageLocked(page), page);
251
252 if (page_mapcount(page) <= 1 && page_evictable(page)) {
253 pagevec_add(pvec, page);
254 if (TestClearPageUnevictable(page))
255 (*pgrescued)++;
256 unlock_page(page);
257 return true;
258 }
259
260 return false;
261}
262
263/*
264 * Putback multiple evictable pages to the LRU
265 *
266 * Batched putback of evictable pages that bypasses the per-cpu pvec. Some of
267 * the pages might have meanwhile become unevictable but that is OK.
268 */
269static void __putback_lru_fast(struct pagevec *pvec, int pgrescued)
270{
271 count_vm_events(UNEVICTABLE_PGMUNLOCKED, pagevec_count(pvec));
272 /*
273 *__pagevec_lru_add() calls release_pages() so we don't call
274 * put_page() explicitly
275 */
276 __pagevec_lru_add(pvec);
277 count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
278}
279
280/*
281 * Munlock a batch of pages from the same zone
282 *
283 * The work is split to two main phases. First phase clears the Mlocked flag
284 * and attempts to isolate the pages, all under a single zone lru lock.
285 * The second phase finishes the munlock only for pages where isolation
286 * succeeded.
287 *
288 * Note that the pagevec may be modified during the process.
289 */
290static void __munlock_pagevec(struct pagevec *pvec, struct zone *zone)
291{
292 int i;
293 int nr = pagevec_count(pvec);
294 int delta_munlocked = -nr;
295 struct pagevec pvec_putback;
296 int pgrescued = 0;
297
298 pagevec_init(&pvec_putback);
299
300 /* Phase 1: page isolation */
301 spin_lock_irq(zone_lru_lock(zone));
302 for (i = 0; i < nr; i++) {
303 struct page *page = pvec->pages[i];
304
305 if (TestClearPageMlocked(page)) {
306 /*
307 * We already have pin from follow_page_mask()
308 * so we can spare the get_page() here.
309 */
310 if (__munlock_isolate_lru_page(page, false))
311 continue;
312 else
313 __munlock_isolation_failed(page);
314 } else {
315 delta_munlocked++;
316 }
317
318 /*
319 * We won't be munlocking this page in the next phase
320 * but we still need to release the follow_page_mask()
321 * pin. We cannot do it under lru_lock however. If it's
322 * the last pin, __page_cache_release() would deadlock.
323 */
324 pagevec_add(&pvec_putback, pvec->pages[i]);
325 pvec->pages[i] = NULL;
326 }
327 __mod_zone_page_state(zone, NR_MLOCK, delta_munlocked);
328 spin_unlock_irq(zone_lru_lock(zone));
329
330 /* Now we can release pins of pages that we are not munlocking */
331 pagevec_release(&pvec_putback);
332
333 /* Phase 2: page munlock */
334 for (i = 0; i < nr; i++) {
335 struct page *page = pvec->pages[i];
336
337 if (page) {
338 lock_page(page);
339 if (!__putback_lru_fast_prepare(page, &pvec_putback,
340 &pgrescued)) {
341 /*
342 * Slow path. We don't want to lose the last
343 * pin before unlock_page()
344 */
345 get_page(page); /* for putback_lru_page() */
346 __munlock_isolated_page(page);
347 unlock_page(page);
348 put_page(page); /* from follow_page_mask() */
349 }
350 }
351 }
352
353 /*
354 * Phase 3: page putback for pages that qualified for the fast path
355 * This will also call put_page() to return pin from follow_page_mask()
356 */
357 if (pagevec_count(&pvec_putback))
358 __putback_lru_fast(&pvec_putback, pgrescued);
359}
360
361/*
362 * Fill up pagevec for __munlock_pagevec using pte walk
363 *
364 * The function expects that the struct page corresponding to @start address is
365 * a non-TPH page already pinned and in the @pvec, and that it belongs to @zone.
366 *
367 * The rest of @pvec is filled by subsequent pages within the same pmd and same
368 * zone, as long as the pte's are present and vm_normal_page() succeeds. These
369 * pages also get pinned.
370 *
371 * Returns the address of the next page that should be scanned. This equals
372 * @start + PAGE_SIZE when no page could be added by the pte walk.
373 */
374static unsigned long __munlock_pagevec_fill(struct pagevec *pvec,
375 struct vm_area_struct *vma, struct zone *zone,
376 unsigned long start, unsigned long end)
377{
378 pte_t *pte;
379 spinlock_t *ptl;
380
381 /*
382 * Initialize pte walk starting at the already pinned page where we
383 * are sure that there is a pte, as it was pinned under the same
384 * mmap_sem write op.
385 */
386 pte = get_locked_pte(vma->vm_mm, start, &ptl);
387 /* Make sure we do not cross the page table boundary */
388 end = pgd_addr_end(start, end);
389 end = p4d_addr_end(start, end);
390 end = pud_addr_end(start, end);
391 end = pmd_addr_end(start, end);
392
393 /* The page next to the pinned page is the first we will try to get */
394 start += PAGE_SIZE;
395 while (start < end) {
396 struct page *page = NULL;
397 pte++;
398 if (pte_present(*pte))
399 page = vm_normal_page(vma, start, *pte);
400 /*
401 * Break if page could not be obtained or the page's node+zone does not
402 * match
403 */
404 if (!page || page_zone(page) != zone)
405 break;
406
407 /*
408 * Do not use pagevec for PTE-mapped THP,
409 * munlock_vma_pages_range() will handle them.
410 */
411 if (PageTransCompound(page))
412 break;
413
414 get_page(page);
415 /*
416 * Increase the address that will be returned *before* the
417 * eventual break due to pvec becoming full by adding the page
418 */
419 start += PAGE_SIZE;
420 if (pagevec_add(pvec, page) == 0)
421 break;
422 }
423 pte_unmap_unlock(pte, ptl);
424 return start;
425}
426
427/*
428 * munlock_vma_pages_range() - munlock all pages in the vma range.'
429 * @vma - vma containing range to be munlock()ed.
430 * @start - start address in @vma of the range
431 * @end - end of range in @vma.
432 *
433 * For mremap(), munmap() and exit().
434 *
435 * Called with @vma VM_LOCKED.
436 *
437 * Returns with VM_LOCKED cleared. Callers must be prepared to
438 * deal with this.
439 *
440 * We don't save and restore VM_LOCKED here because pages are
441 * still on lru. In unmap path, pages might be scanned by reclaim
442 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
443 * free them. This will result in freeing mlocked pages.
444 */
445void munlock_vma_pages_range(struct vm_area_struct *vma,
446 unsigned long start, unsigned long end)
447{
448 vma->vm_flags &= VM_LOCKED_CLEAR_MASK;
449
450 while (start < end) {
451 struct page *page;
452 unsigned int page_mask = 0;
453 unsigned long page_increm;
454 struct pagevec pvec;
455 struct zone *zone;
456
457 pagevec_init(&pvec);
458 /*
459 * Although FOLL_DUMP is intended for get_dump_page(),
460 * it just so happens that its special treatment of the
461 * ZERO_PAGE (returning an error instead of doing get_page)
462 * suits munlock very well (and if somehow an abnormal page
463 * has sneaked into the range, we won't oops here: great).
464 */
465 page = follow_page(vma, start, FOLL_GET | FOLL_DUMP);
466
467 if (page && !IS_ERR(page)) {
468 if (PageTransTail(page)) {
469 VM_BUG_ON_PAGE(PageMlocked(page), page);
470 put_page(page); /* follow_page_mask() */
471 } else if (PageTransHuge(page)) {
472 lock_page(page);
473 /*
474 * Any THP page found by follow_page_mask() may
475 * have gotten split before reaching
476 * munlock_vma_page(), so we need to compute
477 * the page_mask here instead.
478 */
479 page_mask = munlock_vma_page(page);
480 unlock_page(page);
481 put_page(page); /* follow_page_mask() */
482 } else {
483 /*
484 * Non-huge pages are handled in batches via
485 * pagevec. The pin from follow_page_mask()
486 * prevents them from collapsing by THP.
487 */
488 pagevec_add(&pvec, page);
489 zone = page_zone(page);
490
491 /*
492 * Try to fill the rest of pagevec using fast
493 * pte walk. This will also update start to
494 * the next page to process. Then munlock the
495 * pagevec.
496 */
497 start = __munlock_pagevec_fill(&pvec, vma,
498 zone, start, end);
499 __munlock_pagevec(&pvec, zone);
500 goto next;
501 }
502 }
503 page_increm = 1 + page_mask;
504 start += page_increm * PAGE_SIZE;
505next:
506 cond_resched();
507 }
508}
509
510/*
511 * mlock_fixup - handle mlock[all]/munlock[all] requests.
512 *
513 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
514 * munlock is a no-op. However, for some special vmas, we go ahead and
515 * populate the ptes.
516 *
517 * For vmas that pass the filters, merge/split as appropriate.
518 */
519static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
520 unsigned long start, unsigned long end, vm_flags_t newflags)
521{
522 struct mm_struct *mm = vma->vm_mm;
523 pgoff_t pgoff;
524 int nr_pages;
525 int ret = 0;
526 int lock = !!(newflags & VM_LOCKED);
527 vm_flags_t old_flags = vma->vm_flags;
528
529 if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
530 is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
531 /* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
532 goto out;
533
534 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
535 *prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
536 vma->vm_file, pgoff, vma_policy(vma),
537 vma->vm_userfaultfd_ctx);
538 if (*prev) {
539 vma = *prev;
540 goto success;
541 }
542
543 if (start != vma->vm_start) {
544 ret = split_vma(mm, vma, start, 1);
545 if (ret)
546 goto out;
547 }
548
549 if (end != vma->vm_end) {
550 ret = split_vma(mm, vma, end, 0);
551 if (ret)
552 goto out;
553 }
554
555success:
556 /*
557 * Keep track of amount of locked VM.
558 */
559 nr_pages = (end - start) >> PAGE_SHIFT;
560 if (!lock)
561 nr_pages = -nr_pages;
562 else if (old_flags & VM_LOCKED)
563 nr_pages = 0;
564 mm->locked_vm += nr_pages;
565
566 /*
567 * vm_flags is protected by the mmap_sem held in write mode.
568 * It's okay if try_to_unmap_one unmaps a page just after we
569 * set VM_LOCKED, populate_vma_page_range will bring it back.
570 */
571
572 if (lock)
573 vma->vm_flags = newflags;
574 else
575 munlock_vma_pages_range(vma, start, end);
576
577out:
578 *prev = vma;
579 return ret;
580}
581
582static int apply_vma_lock_flags(unsigned long start, size_t len,
583 vm_flags_t flags)
584{
585 unsigned long nstart, end, tmp;
586 struct vm_area_struct * vma, * prev;
587 int error;
588
589 VM_BUG_ON(offset_in_page(start));
590 VM_BUG_ON(len != PAGE_ALIGN(len));
591 end = start + len;
592 if (end < start)
593 return -EINVAL;
594 if (end == start)
595 return 0;
596 vma = find_vma(current->mm, start);
597 if (!vma || vma->vm_start > start)
598 return -ENOMEM;
599
600 prev = vma->vm_prev;
601 if (start > vma->vm_start)
602 prev = vma;
603
604 for (nstart = start ; ; ) {
605 vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
606
607 newflags |= flags;
608
609 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
610 tmp = vma->vm_end;
611 if (tmp > end)
612 tmp = end;
613 error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
614 if (error)
615 break;
616 nstart = tmp;
617 if (nstart < prev->vm_end)
618 nstart = prev->vm_end;
619 if (nstart >= end)
620 break;
621
622 vma = prev->vm_next;
623 if (!vma || vma->vm_start != nstart) {
624 error = -ENOMEM;
625 break;
626 }
627 }
628 return error;
629}
630
631/*
632 * Go through vma areas and sum size of mlocked
633 * vma pages, as return value.
634 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
635 * is also counted.
636 * Return value: previously mlocked page counts
637 */
638static int count_mm_mlocked_page_nr(struct mm_struct *mm,
639 unsigned long start, size_t len)
640{
641 struct vm_area_struct *vma;
642 int count = 0;
643
644 if (mm == NULL)
645 mm = current->mm;
646
647 vma = find_vma(mm, start);
648 if (vma == NULL)
649 vma = mm->mmap;
650
651 for (; vma ; vma = vma->vm_next) {
652 if (start >= vma->vm_end)
653 continue;
654 if (start + len <= vma->vm_start)
655 break;
656 if (vma->vm_flags & VM_LOCKED) {
657 if (start > vma->vm_start)
658 count -= (start - vma->vm_start);
659 if (start + len < vma->vm_end) {
660 count += start + len - vma->vm_start;
661 break;
662 }
663 count += vma->vm_end - vma->vm_start;
664 }
665 }
666
667 return count >> PAGE_SHIFT;
668}
669
670static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
671{
672 unsigned long locked;
673 unsigned long lock_limit;
674 int error = -ENOMEM;
675
676 if (!can_do_mlock())
677 return -EPERM;
678
679 len = PAGE_ALIGN(len + (offset_in_page(start)));
680 start &= PAGE_MASK;
681
682 lock_limit = rlimit(RLIMIT_MEMLOCK);
683 lock_limit >>= PAGE_SHIFT;
684 locked = len >> PAGE_SHIFT;
685
686 if (down_write_killable(¤t->mm->mmap_sem))
687 return -EINTR;
688
689 locked += current->mm->locked_vm;
690 if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
691 /*
692 * It is possible that the regions requested intersect with
693 * previously mlocked areas, that part area in "mm->locked_vm"
694 * should not be counted to new mlock increment count. So check
695 * and adjust locked count if necessary.
696 */
697 locked -= count_mm_mlocked_page_nr(current->mm,
698 start, len);
699 }
700
701 /* check against resource limits */
702 if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
703 error = apply_vma_lock_flags(start, len, flags);
704
705 up_write(¤t->mm->mmap_sem);
706 if (error)
707 return error;
708
709 error = __mm_populate(start, len, 0);
710 if (error)
711 return __mlock_posix_error_return(error);
712 return 0;
713}
714
715SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
716{
717 return do_mlock(start, len, VM_LOCKED);
718}
719
720SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
721{
722 vm_flags_t vm_flags = VM_LOCKED;
723
724 if (flags & ~MLOCK_ONFAULT)
725 return -EINVAL;
726
727 if (flags & MLOCK_ONFAULT)
728 vm_flags |= VM_LOCKONFAULT;
729
730 return do_mlock(start, len, vm_flags);
731}
732
733SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
734{
735 int ret;
736
737 len = PAGE_ALIGN(len + (offset_in_page(start)));
738 start &= PAGE_MASK;
739
740 if (down_write_killable(¤t->mm->mmap_sem))
741 return -EINTR;
742 ret = apply_vma_lock_flags(start, len, 0);
743 up_write(¤t->mm->mmap_sem);
744
745 return ret;
746}
747
748/*
749 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
750 * and translate into the appropriate modifications to mm->def_flags and/or the
751 * flags for all current VMAs.
752 *
753 * There are a couple of subtleties with this. If mlockall() is called multiple
754 * times with different flags, the values do not necessarily stack. If mlockall
755 * is called once including the MCL_FUTURE flag and then a second time without
756 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
757 */
758static int apply_mlockall_flags(int flags)
759{
760 struct vm_area_struct * vma, * prev = NULL;
761 vm_flags_t to_add = 0;
762
763 current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
764 if (flags & MCL_FUTURE) {
765 current->mm->def_flags |= VM_LOCKED;
766
767 if (flags & MCL_ONFAULT)
768 current->mm->def_flags |= VM_LOCKONFAULT;
769
770 if (!(flags & MCL_CURRENT))
771 goto out;
772 }
773
774 if (flags & MCL_CURRENT) {
775 to_add |= VM_LOCKED;
776 if (flags & MCL_ONFAULT)
777 to_add |= VM_LOCKONFAULT;
778 }
779
780 for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
781 vm_flags_t newflags;
782
783 newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
784 newflags |= to_add;
785
786 /* Ignore errors */
787 mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
788 cond_resched();
789 }
790out:
791 return 0;
792}
793
794SYSCALL_DEFINE1(mlockall, int, flags)
795{
796 unsigned long lock_limit;
797 int ret;
798
799 if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)))
800 return -EINVAL;
801
802 if (!can_do_mlock())
803 return -EPERM;
804
805 lock_limit = rlimit(RLIMIT_MEMLOCK);
806 lock_limit >>= PAGE_SHIFT;
807
808 if (down_write_killable(¤t->mm->mmap_sem))
809 return -EINTR;
810
811 ret = -ENOMEM;
812 if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
813 capable(CAP_IPC_LOCK))
814 ret = apply_mlockall_flags(flags);
815 up_write(¤t->mm->mmap_sem);
816 if (!ret && (flags & MCL_CURRENT))
817 mm_populate(0, TASK_SIZE);
818
819 return ret;
820}
821
822SYSCALL_DEFINE0(munlockall)
823{
824 int ret;
825
826 if (down_write_killable(¤t->mm->mmap_sem))
827 return -EINTR;
828 ret = apply_mlockall_flags(0);
829 up_write(¤t->mm->mmap_sem);
830 return ret;
831}
832
833/*
834 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
835 * shm segments) get accounted against the user_struct instead.
836 */
837static DEFINE_SPINLOCK(shmlock_user_lock);
838
839int user_shm_lock(size_t size, struct user_struct *user)
840{
841 unsigned long lock_limit, locked;
842 int allowed = 0;
843
844 locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
845 lock_limit = rlimit(RLIMIT_MEMLOCK);
846 if (lock_limit == RLIM_INFINITY)
847 allowed = 1;
848 lock_limit >>= PAGE_SHIFT;
849 spin_lock(&shmlock_user_lock);
850 if (!allowed &&
851 locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
852 goto out;
853 get_uid(user);
854 user->locked_shm += locked;
855 allowed = 1;
856out:
857 spin_unlock(&shmlock_user_lock);
858 return allowed;
859}
860
861void user_shm_unlock(size_t size, struct user_struct *user)
862{
863 spin_lock(&shmlock_user_lock);
864 user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
865 spin_unlock(&shmlock_user_lock);
866 free_uid(user);
867}