Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 *	linux/mm/mlock.c
  4 *
  5 *  (C) Copyright 1995 Linus Torvalds
  6 *  (C) Copyright 2002 Christoph Hellwig
  7 */
  8
  9#include <linux/capability.h>
 10#include <linux/mman.h>
 11#include <linux/mm.h>
 12#include <linux/sched/user.h>
 13#include <linux/swap.h>
 14#include <linux/swapops.h>
 15#include <linux/pagemap.h>
 16#include <linux/pagevec.h>
 17#include <linux/pagewalk.h>
 18#include <linux/mempolicy.h>
 19#include <linux/syscalls.h>
 20#include <linux/sched.h>
 21#include <linux/export.h>
 22#include <linux/rmap.h>
 23#include <linux/mmzone.h>
 24#include <linux/hugetlb.h>
 25#include <linux/memcontrol.h>
 26#include <linux/mm_inline.h>
 27#include <linux/secretmem.h>
 28
 29#include "internal.h"
 30
 31struct mlock_pvec {
 32	local_lock_t lock;
 33	struct pagevec vec;
 34};
 35
 36static DEFINE_PER_CPU(struct mlock_pvec, mlock_pvec) = {
 37	.lock = INIT_LOCAL_LOCK(lock),
 38};
 39
 40bool can_do_mlock(void)
 41{
 42	if (rlimit(RLIMIT_MEMLOCK) != 0)
 43		return true;
 44	if (capable(CAP_IPC_LOCK))
 45		return true;
 46	return false;
 
 
 47}
 48EXPORT_SYMBOL(can_do_mlock);
 49
 50/*
 51 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 52 * in vmscan and, possibly, the fault path; and to support semi-accurate
 53 * statistics.
 54 *
 55 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 56 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 57 * The unevictable list is an LRU sibling list to the [in]active lists.
 58 * PageUnevictable is set to indicate the unevictable state.
 
 
 
 
 
 
 59 */
 60
 61static struct lruvec *__mlock_page(struct page *page, struct lruvec *lruvec)
 
 
 
 62{
 63	/* There is nothing more we can do while it's off LRU */
 64	if (!TestClearPageLRU(page))
 65		return lruvec;
 66
 67	lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
 
 
 68
 69	if (unlikely(page_evictable(page))) {
 
 
 
 
 70		/*
 71		 * This is a little surprising, but quite possible:
 72		 * PageMlocked must have got cleared already by another CPU.
 73		 * Could this page be on the Unevictable LRU?  I'm not sure,
 74		 * but move it now if so.
 75		 */
 76		if (PageUnevictable(page)) {
 77			del_page_from_lru_list(page, lruvec);
 78			ClearPageUnevictable(page);
 79			add_page_to_lru_list(page, lruvec);
 80			__count_vm_events(UNEVICTABLE_PGRESCUED,
 81					  thp_nr_pages(page));
 82		}
 83		goto out;
 84	}
 85
 86	if (PageUnevictable(page)) {
 87		if (PageMlocked(page))
 88			page->mlock_count++;
 89		goto out;
 90	}
 91
 92	del_page_from_lru_list(page, lruvec);
 93	ClearPageActive(page);
 94	SetPageUnevictable(page);
 95	page->mlock_count = !!PageMlocked(page);
 96	add_page_to_lru_list(page, lruvec);
 97	__count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
 98out:
 99	SetPageLRU(page);
100	return lruvec;
101}
102
103static struct lruvec *__mlock_new_page(struct page *page, struct lruvec *lruvec)
104{
105	VM_BUG_ON_PAGE(PageLRU(page), page);
106
107	lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
108
109	/* As above, this is a little surprising, but possible */
110	if (unlikely(page_evictable(page)))
111		goto out;
112
113	SetPageUnevictable(page);
114	page->mlock_count = !!PageMlocked(page);
115	__count_vm_events(UNEVICTABLE_PGCULLED, thp_nr_pages(page));
116out:
117	add_page_to_lru_list(page, lruvec);
118	SetPageLRU(page);
119	return lruvec;
120}
121
122static struct lruvec *__munlock_page(struct page *page, struct lruvec *lruvec)
123{
124	int nr_pages = thp_nr_pages(page);
125	bool isolated = false;
126
127	if (!TestClearPageLRU(page))
128		goto munlock;
129
130	isolated = true;
131	lruvec = folio_lruvec_relock_irq(page_folio(page), lruvec);
132
133	if (PageUnevictable(page)) {
134		/* Then mlock_count is maintained, but might undercount */
135		if (page->mlock_count)
136			page->mlock_count--;
137		if (page->mlock_count)
138			goto out;
139	}
140	/* else assume that was the last mlock: reclaim will fix it if not */
141
142munlock:
143	if (TestClearPageMlocked(page)) {
144		__mod_zone_page_state(page_zone(page), NR_MLOCK, -nr_pages);
145		if (isolated || !PageUnevictable(page))
146			__count_vm_events(UNEVICTABLE_PGMUNLOCKED, nr_pages);
147		else
148			__count_vm_events(UNEVICTABLE_PGSTRANDED, nr_pages);
149	}
150
151	/* page_evictable() has to be checked *after* clearing Mlocked */
152	if (isolated && PageUnevictable(page) && page_evictable(page)) {
153		del_page_from_lru_list(page, lruvec);
154		ClearPageUnevictable(page);
155		add_page_to_lru_list(page, lruvec);
156		__count_vm_events(UNEVICTABLE_PGRESCUED, nr_pages);
157	}
158out:
159	if (isolated)
160		SetPageLRU(page);
161	return lruvec;
162}
163
164/*
165 * Flags held in the low bits of a struct page pointer on the mlock_pvec.
 
166 */
167#define LRU_PAGE 0x1
168#define NEW_PAGE 0x2
169static inline struct page *mlock_lru(struct page *page)
170{
171	return (struct page *)((unsigned long)page + LRU_PAGE);
172}
173
174static inline struct page *mlock_new(struct page *page)
175{
176	return (struct page *)((unsigned long)page + NEW_PAGE);
 
 
 
177}
178
179/*
180 * mlock_pagevec() is derived from pagevec_lru_move_fn():
181 * perhaps that can make use of such page pointer flags in future,
182 * but for now just keep it for mlock.  We could use three separate
183 * pagevecs instead, but one feels better (munlocking a full pagevec
184 * does not need to drain mlocking pagevecs first).
 
 
 
 
 
 
 
 
185 */
186static void mlock_pagevec(struct pagevec *pvec)
187{
188	struct lruvec *lruvec = NULL;
189	unsigned long mlock;
190	struct page *page;
191	int i;
192
193	for (i = 0; i < pagevec_count(pvec); i++) {
194		page = pvec->pages[i];
195		mlock = (unsigned long)page & (LRU_PAGE | NEW_PAGE);
196		page = (struct page *)((unsigned long)page - mlock);
197		pvec->pages[i] = page;
198
199		if (mlock & LRU_PAGE)
200			lruvec = __mlock_page(page, lruvec);
201		else if (mlock & NEW_PAGE)
202			lruvec = __mlock_new_page(page, lruvec);
203		else
204			lruvec = __munlock_page(page, lruvec);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
205	}
206
207	if (lruvec)
208		unlock_page_lruvec_irq(lruvec);
209	release_pages(pvec->pages, pvec->nr);
210	pagevec_reinit(pvec);
211}
212
213void mlock_page_drain_local(void)
214{
215	struct pagevec *pvec;
216
217	local_lock(&mlock_pvec.lock);
218	pvec = this_cpu_ptr(&mlock_pvec.vec);
219	if (pagevec_count(pvec))
220		mlock_pagevec(pvec);
221	local_unlock(&mlock_pvec.lock);
222}
223
224void mlock_page_drain_remote(int cpu)
225{
226	struct pagevec *pvec;
227
228	WARN_ON_ONCE(cpu_online(cpu));
229	pvec = &per_cpu(mlock_pvec.vec, cpu);
230	if (pagevec_count(pvec))
231		mlock_pagevec(pvec);
232}
233
234bool need_mlock_page_drain(int cpu)
235{
236	return pagevec_count(&per_cpu(mlock_pvec.vec, cpu));
237}
238
239/**
240 * mlock_folio - mlock a folio already on (or temporarily off) LRU
241 * @folio: folio to be mlocked.
 
 
 
 
 
 
 
 
242 */
243void mlock_folio(struct folio *folio)
 
 
244{
245	struct pagevec *pvec;
246
247	local_lock(&mlock_pvec.lock);
248	pvec = this_cpu_ptr(&mlock_pvec.vec);
 
 
 
 
 
 
249
250	if (!folio_test_set_mlocked(folio)) {
251		int nr_pages = folio_nr_pages(folio);
 
 
 
 
 
 
252
253		zone_stat_mod_folio(folio, NR_MLOCK, nr_pages);
254		__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
255	}
 
 
 
256
257	folio_get(folio);
258	if (!pagevec_add(pvec, mlock_lru(&folio->page)) ||
259	    folio_test_large(folio) || lru_cache_disabled())
260		mlock_pagevec(pvec);
261	local_unlock(&mlock_pvec.lock);
262}
263
264/**
265 * mlock_new_page - mlock a newly allocated page not yet on LRU
266 * @page: page to be mlocked, either a normal page or a THP head.
267 */
268void mlock_new_page(struct page *page)
269{
270	struct pagevec *pvec;
271	int nr_pages = thp_nr_pages(page);
272
273	local_lock(&mlock_pvec.lock);
274	pvec = this_cpu_ptr(&mlock_pvec.vec);
275	SetPageMlocked(page);
276	mod_zone_page_state(page_zone(page), NR_MLOCK, nr_pages);
277	__count_vm_events(UNEVICTABLE_PGMLOCKED, nr_pages);
278
279	get_page(page);
280	if (!pagevec_add(pvec, mlock_new(page)) ||
281	    PageHead(page) || lru_cache_disabled())
282		mlock_pagevec(pvec);
283	local_unlock(&mlock_pvec.lock);
284}
285
286/**
287 * munlock_page - munlock a page
288 * @page: page to be munlocked, either a normal page or a THP head.
 
 
 
 
 
 
 
 
 
289 */
290void munlock_page(struct page *page)
 
291{
292	struct pagevec *pvec;
 
293
294	local_lock(&mlock_pvec.lock);
295	pvec = this_cpu_ptr(&mlock_pvec.vec);
296	/*
297	 * TestClearPageMlocked(page) must be left to __munlock_page(),
298	 * which will check whether the page is multiply mlocked.
299	 */
 
 
300
301	get_page(page);
302	if (!pagevec_add(pvec, page) ||
303	    PageHead(page) || lru_cache_disabled())
304		mlock_pagevec(pvec);
305	local_unlock(&mlock_pvec.lock);
306}
307
308static int mlock_pte_range(pmd_t *pmd, unsigned long addr,
309			   unsigned long end, struct mm_walk *walk)
310
311{
312	struct vm_area_struct *vma = walk->vma;
313	spinlock_t *ptl;
314	pte_t *start_pte, *pte;
315	struct page *page;
316
317	ptl = pmd_trans_huge_lock(pmd, vma);
318	if (ptl) {
319		if (!pmd_present(*pmd))
320			goto out;
321		if (is_huge_zero_pmd(*pmd))
322			goto out;
323		page = pmd_page(*pmd);
324		if (vma->vm_flags & VM_LOCKED)
325			mlock_folio(page_folio(page));
326		else
327			munlock_page(page);
328		goto out;
329	}
330
331	start_pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
332	for (pte = start_pte; addr != end; pte++, addr += PAGE_SIZE) {
333		if (!pte_present(*pte))
334			continue;
335		page = vm_normal_page(vma, addr, *pte);
336		if (!page || is_zone_device_page(page))
337			continue;
338		if (PageTransCompound(page))
339			continue;
340		if (vma->vm_flags & VM_LOCKED)
341			mlock_folio(page_folio(page));
342		else
343			munlock_page(page);
344	}
345	pte_unmap(start_pte);
346out:
347	spin_unlock(ptl);
348	cond_resched();
349	return 0;
350}
351
352/*
353 * mlock_vma_pages_range() - mlock any pages already in the range,
354 *                           or munlock all pages in the range.
355 * @vma - vma containing range to be mlock()ed or munlock()ed
356 * @start - start address in @vma of the range
357 * @end - end of range in @vma
358 * @newflags - the new set of flags for @vma.
359 *
360 * Called for mlock(), mlock2() and mlockall(), to set @vma VM_LOCKED;
361 * called for munlock() and munlockall(), to clear VM_LOCKED from @vma.
 
 
 
 
 
 
 
 
 
362 */
363static void mlock_vma_pages_range(struct vm_area_struct *vma,
364	unsigned long start, unsigned long end, vm_flags_t newflags)
365{
366	static const struct mm_walk_ops mlock_walk_ops = {
367		.pmd_entry = mlock_pte_range,
368	};
369
370	/*
371	 * There is a slight chance that concurrent page migration,
372	 * or page reclaim finding a page of this now-VM_LOCKED vma,
373	 * will call mlock_vma_page() and raise page's mlock_count:
374	 * double counting, leaving the page unevictable indefinitely.
375	 * Communicate this danger to mlock_vma_page() with VM_IO,
376	 * which is a VM_SPECIAL flag not allowed on VM_LOCKED vmas.
377	 * mmap_lock is held in write mode here, so this weird
378	 * combination should not be visible to other mmap_lock users;
379	 * but WRITE_ONCE so rmap walkers must see VM_IO if VM_LOCKED.
380	 */
381	if (newflags & VM_LOCKED)
382		newflags |= VM_IO;
383	WRITE_ONCE(vma->vm_flags, newflags);
384
385	lru_add_drain();
386	walk_page_range(vma->vm_mm, start, end, &mlock_walk_ops, NULL);
387	lru_add_drain();
 
388
389	if (newflags & VM_IO) {
390		newflags &= ~VM_IO;
391		WRITE_ONCE(vma->vm_flags, newflags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
392	}
393}
394
395/*
396 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
397 *
398 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
399 * munlock is a no-op.  However, for some special vmas, we go ahead and
400 * populate the ptes.
401 *
402 * For vmas that pass the filters, merge/split as appropriate.
403 */
404static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
405	unsigned long start, unsigned long end, vm_flags_t newflags)
406{
407	struct mm_struct *mm = vma->vm_mm;
408	pgoff_t pgoff;
409	int nr_pages;
410	int ret = 0;
411	vm_flags_t oldflags = vma->vm_flags;
412
413	if (newflags == oldflags || (oldflags & VM_SPECIAL) ||
414	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm) ||
415	    vma_is_dax(vma) || vma_is_secretmem(vma))
416		/* don't set VM_LOCKED or VM_LOCKONFAULT and don't count */
417		goto out;
418
419	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
420	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
421			  vma->vm_file, pgoff, vma_policy(vma),
422			  vma->vm_userfaultfd_ctx, anon_vma_name(vma));
423	if (*prev) {
424		vma = *prev;
425		goto success;
426	}
427
428	if (start != vma->vm_start) {
429		ret = split_vma(mm, vma, start, 1);
430		if (ret)
431			goto out;
432	}
433
434	if (end != vma->vm_end) {
435		ret = split_vma(mm, vma, end, 0);
436		if (ret)
437			goto out;
438	}
439
440success:
441	/*
442	 * Keep track of amount of locked VM.
443	 */
444	nr_pages = (end - start) >> PAGE_SHIFT;
445	if (!(newflags & VM_LOCKED))
446		nr_pages = -nr_pages;
447	else if (oldflags & VM_LOCKED)
448		nr_pages = 0;
449	mm->locked_vm += nr_pages;
450
451	/*
452	 * vm_flags is protected by the mmap_lock held in write mode.
453	 * It's okay if try_to_unmap_one unmaps a page just after we
454	 * set VM_LOCKED, populate_vma_page_range will bring it back.
455	 */
456
457	if ((newflags & VM_LOCKED) && (oldflags & VM_LOCKED)) {
458		/* No work to do, and mlocking twice would be wrong */
459		vma->vm_flags = newflags;
460	} else {
461		mlock_vma_pages_range(vma, start, end, newflags);
462	}
463out:
464	*prev = vma;
465	return ret;
466}
467
468static int apply_vma_lock_flags(unsigned long start, size_t len,
469				vm_flags_t flags)
470{
471	unsigned long nstart, end, tmp;
472	struct vm_area_struct *vma, *prev;
473	int error;
474	MA_STATE(mas, &current->mm->mm_mt, start, start);
475
476	VM_BUG_ON(offset_in_page(start));
477	VM_BUG_ON(len != PAGE_ALIGN(len));
478	end = start + len;
479	if (end < start)
480		return -EINVAL;
481	if (end == start)
482		return 0;
483	vma = mas_walk(&mas);
484	if (!vma)
485		return -ENOMEM;
486
 
487	if (start > vma->vm_start)
488		prev = vma;
489	else
490		prev = mas_prev(&mas, 0);
491
492	for (nstart = start ; ; ) {
493		vm_flags_t newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
494
495		newflags |= flags;
496
497		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
 
 
 
 
 
498		tmp = vma->vm_end;
499		if (tmp > end)
500			tmp = end;
501		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
502		if (error)
503			break;
504		nstart = tmp;
505		if (nstart < prev->vm_end)
506			nstart = prev->vm_end;
507		if (nstart >= end)
508			break;
509
510		vma = find_vma(prev->vm_mm, prev->vm_end);
511		if (!vma || vma->vm_start != nstart) {
512			error = -ENOMEM;
513			break;
514		}
515	}
516	return error;
517}
518
519/*
520 * Go through vma areas and sum size of mlocked
521 * vma pages, as return value.
522 * Note deferred memory locking case(mlock2(,,MLOCK_ONFAULT)
523 * is also counted.
524 * Return value: previously mlocked page counts
525 */
526static unsigned long count_mm_mlocked_page_nr(struct mm_struct *mm,
527		unsigned long start, size_t len)
528{
529	struct vm_area_struct *vma;
530	unsigned long count = 0;
531	unsigned long end;
532	VMA_ITERATOR(vmi, mm, start);
533
534	/* Don't overflow past ULONG_MAX */
535	if (unlikely(ULONG_MAX - len < start))
536		end = ULONG_MAX;
537	else
538		end = start + len;
539
540	for_each_vma_range(vmi, vma, end) {
541		if (vma->vm_flags & VM_LOCKED) {
542			if (start > vma->vm_start)
543				count -= (start - vma->vm_start);
544			if (end < vma->vm_end) {
545				count += end - vma->vm_start;
546				break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
547			}
548			count += vma->vm_end - vma->vm_start;
 
549		}
 
 
550	}
551
552	return count >> PAGE_SHIFT;
553}
554
555/*
556 * convert get_user_pages() return value to posix mlock() error
557 */
558static int __mlock_posix_error_return(long retval)
559{
560	if (retval == -EFAULT)
561		retval = -ENOMEM;
562	else if (retval == -ENOMEM)
563		retval = -EAGAIN;
564	return retval;
565}
566
567static __must_check int do_mlock(unsigned long start, size_t len, vm_flags_t flags)
568{
569	unsigned long locked;
570	unsigned long lock_limit;
571	int error = -ENOMEM;
572
573	start = untagged_addr(start);
574
575	if (!can_do_mlock())
576		return -EPERM;
577
578	len = PAGE_ALIGN(len + (offset_in_page(start)));
 
 
 
579	start &= PAGE_MASK;
580
581	lock_limit = rlimit(RLIMIT_MEMLOCK);
582	lock_limit >>= PAGE_SHIFT;
583	locked = len >> PAGE_SHIFT;
584
585	if (mmap_write_lock_killable(current->mm))
586		return -EINTR;
587
588	locked += current->mm->locked_vm;
589	if ((locked > lock_limit) && (!capable(CAP_IPC_LOCK))) {
590		/*
591		 * It is possible that the regions requested intersect with
592		 * previously mlocked areas, that part area in "mm->locked_vm"
593		 * should not be counted to new mlock increment count. So check
594		 * and adjust locked count if necessary.
595		 */
596		locked -= count_mm_mlocked_page_nr(current->mm,
597				start, len);
598	}
599
600	/* check against resource limits */
601	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
602		error = apply_vma_lock_flags(start, len, flags);
603
604	mmap_write_unlock(current->mm);
605	if (error)
606		return error;
607
608	error = __mm_populate(start, len, 0);
609	if (error)
610		return __mlock_posix_error_return(error);
611	return 0;
612}
613
614SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
615{
616	return do_mlock(start, len, VM_LOCKED);
617}
618
619SYSCALL_DEFINE3(mlock2, unsigned long, start, size_t, len, int, flags)
620{
621	vm_flags_t vm_flags = VM_LOCKED;
622
623	if (flags & ~MLOCK_ONFAULT)
624		return -EINVAL;
625
626	if (flags & MLOCK_ONFAULT)
627		vm_flags |= VM_LOCKONFAULT;
628
629	return do_mlock(start, len, vm_flags);
630}
631
632SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
633{
634	int ret;
635
636	start = untagged_addr(start);
637
638	len = PAGE_ALIGN(len + (offset_in_page(start)));
639	start &= PAGE_MASK;
640
641	if (mmap_write_lock_killable(current->mm))
642		return -EINTR;
643	ret = apply_vma_lock_flags(start, len, 0);
644	mmap_write_unlock(current->mm);
645
646	return ret;
647}
648
649/*
650 * Take the MCL_* flags passed into mlockall (or 0 if called from munlockall)
651 * and translate into the appropriate modifications to mm->def_flags and/or the
652 * flags for all current VMAs.
653 *
654 * There are a couple of subtleties with this.  If mlockall() is called multiple
655 * times with different flags, the values do not necessarily stack.  If mlockall
656 * is called once including the MCL_FUTURE flag and then a second time without
657 * it, VM_LOCKED and VM_LOCKONFAULT will be cleared from mm->def_flags.
658 */
659static int apply_mlockall_flags(int flags)
660{
661	MA_STATE(mas, &current->mm->mm_mt, 0, 0);
662	struct vm_area_struct *vma, *prev = NULL;
663	vm_flags_t to_add = 0;
664
665	current->mm->def_flags &= VM_LOCKED_CLEAR_MASK;
666	if (flags & MCL_FUTURE) {
667		current->mm->def_flags |= VM_LOCKED;
668
669		if (flags & MCL_ONFAULT)
670			current->mm->def_flags |= VM_LOCKONFAULT;
671
672		if (!(flags & MCL_CURRENT))
673			goto out;
674	}
675
676	if (flags & MCL_CURRENT) {
677		to_add |= VM_LOCKED;
678		if (flags & MCL_ONFAULT)
679			to_add |= VM_LOCKONFAULT;
680	}
681
682	mas_for_each(&mas, vma, ULONG_MAX) {
683		vm_flags_t newflags;
684
685		newflags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
686		newflags |= to_add;
 
687
688		/* Ignore errors */
689		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
690		mas_pause(&mas);
691		cond_resched();
692	}
693out:
694	return 0;
695}
696
697SYSCALL_DEFINE1(mlockall, int, flags)
698{
699	unsigned long lock_limit;
700	int ret;
701
702	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE | MCL_ONFAULT)) ||
703	    flags == MCL_ONFAULT)
704		return -EINVAL;
705
 
706	if (!can_do_mlock())
707		return -EPERM;
 
 
 
 
 
708
709	lock_limit = rlimit(RLIMIT_MEMLOCK);
710	lock_limit >>= PAGE_SHIFT;
711
712	if (mmap_write_lock_killable(current->mm))
713		return -EINTR;
714
715	ret = -ENOMEM;
716	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
717	    capable(CAP_IPC_LOCK))
718		ret = apply_mlockall_flags(flags);
719	mmap_write_unlock(current->mm);
720	if (!ret && (flags & MCL_CURRENT))
721		mm_populate(0, TASK_SIZE);
722
 
 
723	return ret;
724}
725
726SYSCALL_DEFINE0(munlockall)
727{
728	int ret;
729
730	if (mmap_write_lock_killable(current->mm))
731		return -EINTR;
732	ret = apply_mlockall_flags(0);
733	mmap_write_unlock(current->mm);
734	return ret;
735}
736
737/*
738 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
739 * shm segments) get accounted against the user_struct instead.
740 */
741static DEFINE_SPINLOCK(shmlock_user_lock);
742
743int user_shm_lock(size_t size, struct ucounts *ucounts)
744{
745	unsigned long lock_limit, locked;
746	long memlock;
747	int allowed = 0;
748
749	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
750	lock_limit = rlimit(RLIMIT_MEMLOCK);
751	if (lock_limit != RLIM_INFINITY)
752		lock_limit >>= PAGE_SHIFT;
 
753	spin_lock(&shmlock_user_lock);
754	memlock = inc_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
755
756	if ((memlock == LONG_MAX || memlock > lock_limit) && !capable(CAP_IPC_LOCK)) {
757		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
758		goto out;
759	}
760	if (!get_ucounts(ucounts)) {
761		dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, locked);
762		allowed = 0;
763		goto out;
764	}
765	allowed = 1;
766out:
767	spin_unlock(&shmlock_user_lock);
768	return allowed;
769}
770
771void user_shm_unlock(size_t size, struct ucounts *ucounts)
772{
773	spin_lock(&shmlock_user_lock);
774	dec_rlimit_ucounts(ucounts, UCOUNT_RLIMIT_MEMLOCK, (size + PAGE_SIZE - 1) >> PAGE_SHIFT);
775	spin_unlock(&shmlock_user_lock);
776	put_ucounts(ucounts);
777}
v3.5.6
 
  1/*
  2 *	linux/mm/mlock.c
  3 *
  4 *  (C) Copyright 1995 Linus Torvalds
  5 *  (C) Copyright 2002 Christoph Hellwig
  6 */
  7
  8#include <linux/capability.h>
  9#include <linux/mman.h>
 10#include <linux/mm.h>
 
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/pagemap.h>
 
 
 14#include <linux/mempolicy.h>
 15#include <linux/syscalls.h>
 16#include <linux/sched.h>
 17#include <linux/export.h>
 18#include <linux/rmap.h>
 19#include <linux/mmzone.h>
 20#include <linux/hugetlb.h>
 
 
 
 21
 22#include "internal.h"
 23
 24int can_do_mlock(void)
 
 
 
 
 
 
 
 
 
 25{
 
 
 26	if (capable(CAP_IPC_LOCK))
 27		return 1;
 28	if (rlimit(RLIMIT_MEMLOCK) != 0)
 29		return 1;
 30	return 0;
 31}
 32EXPORT_SYMBOL(can_do_mlock);
 33
 34/*
 35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
 36 * in vmscan and, possibly, the fault path; and to support semi-accurate
 37 * statistics.
 38 *
 39 * An mlocked page [PageMlocked(page)] is unevictable.  As such, it will
 40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
 41 * The unevictable list is an LRU sibling list to the [in]active lists.
 42 * PageUnevictable is set to indicate the unevictable state.
 43 *
 44 * When lazy mlocking via vmscan, it is important to ensure that the
 45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
 46 * may have mlocked a page that is being munlocked. So lazy mlock must take
 47 * the mmap_sem for read, and verify that the vma really is locked
 48 * (see mm/rmap.c).
 49 */
 50
 51/*
 52 *  LRU accounting for clear_page_mlock()
 53 */
 54void __clear_page_mlock(struct page *page)
 55{
 56	VM_BUG_ON(!PageLocked(page));
 
 
 57
 58	if (!page->mapping) {	/* truncated ? */
 59		return;
 60	}
 61
 62	dec_zone_page_state(page, NR_MLOCK);
 63	count_vm_event(UNEVICTABLE_PGCLEARED);
 64	if (!isolate_lru_page(page)) {
 65		putback_lru_page(page);
 66	} else {
 67		/*
 68		 * We lost the race. the page already moved to evictable list.
 
 
 
 69		 */
 70		if (PageUnevictable(page))
 71			count_vm_event(UNEVICTABLE_PGSTRANDED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 72	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 73}
 74
 75/*
 76 * Mark page as mlocked if not already.
 77 * If page on LRU, isolate and putback to move to unevictable list.
 78 */
 79void mlock_vma_page(struct page *page)
 
 
 80{
 81	BUG_ON(!PageLocked(page));
 
 82
 83	if (!TestSetPageMlocked(page)) {
 84		inc_zone_page_state(page, NR_MLOCK);
 85		count_vm_event(UNEVICTABLE_PGMLOCKED);
 86		if (!isolate_lru_page(page))
 87			putback_lru_page(page);
 88	}
 89}
 90
 91/**
 92 * munlock_vma_page - munlock a vma page
 93 * @page - page to be unlocked
 94 *
 95 * called from munlock()/munmap() path with page supposedly on the LRU.
 96 * When we munlock a page, because the vma where we found the page is being
 97 * munlock()ed or munmap()ed, we want to check whether other vmas hold the
 98 * page locked so that we can leave it on the unevictable lru list and not
 99 * bother vmscan with it.  However, to walk the page's rmap list in
100 * try_to_munlock() we must isolate the page from the LRU.  If some other
101 * task has removed the page from the LRU, we won't be able to do that.
102 * So we clear the PageMlocked as we might not get another chance.  If we
103 * can't isolate the page, we leave it for putback_lru_page() and vmscan
104 * [page_referenced()/try_to_unmap()] to deal with.
105 */
106void munlock_vma_page(struct page *page)
107{
108	BUG_ON(!PageLocked(page));
 
 
 
 
 
 
 
 
 
109
110	if (TestClearPageMlocked(page)) {
111		dec_zone_page_state(page, NR_MLOCK);
112		if (!isolate_lru_page(page)) {
113			int ret = SWAP_AGAIN;
114
115			/*
116			 * Optimization: if the page was mapped just once,
117			 * that's our mapping and we don't need to check all the
118			 * other vmas.
119			 */
120			if (page_mapcount(page) > 1)
121				ret = try_to_munlock(page);
122			/*
123			 * did try_to_unlock() succeed or punt?
124			 */
125			if (ret != SWAP_MLOCK)
126				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
127
128			putback_lru_page(page);
129		} else {
130			/*
131			 * Some other task has removed the page from the LRU.
132			 * putback_lru_page() will take care of removing the
133			 * page from the unevictable list, if necessary.
134			 * vmscan [page_referenced()] will move the page back
135			 * to the unevictable list if some other vma has it
136			 * mlocked.
137			 */
138			if (PageUnevictable(page))
139				count_vm_event(UNEVICTABLE_PGSTRANDED);
140			else
141				count_vm_event(UNEVICTABLE_PGMUNLOCKED);
142		}
143	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
144}
145
146/**
147 * __mlock_vma_pages_range() -  mlock a range of pages in the vma.
148 * @vma:   target vma
149 * @start: start address
150 * @end:   end address
151 *
152 * This takes care of making the pages present too.
153 *
154 * return 0 on success, negative error code on error.
155 *
156 * vma->vm_mm->mmap_sem must be held for at least read.
157 */
158static long __mlock_vma_pages_range(struct vm_area_struct *vma,
159				    unsigned long start, unsigned long end,
160				    int *nonblocking)
161{
162	struct mm_struct *mm = vma->vm_mm;
163	unsigned long addr = start;
164	int nr_pages = (end - start) / PAGE_SIZE;
165	int gup_flags;
166
167	VM_BUG_ON(start & ~PAGE_MASK);
168	VM_BUG_ON(end   & ~PAGE_MASK);
169	VM_BUG_ON(start < vma->vm_start);
170	VM_BUG_ON(end   > vma->vm_end);
171	VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
172
173	gup_flags = FOLL_TOUCH | FOLL_MLOCK;
174	/*
175	 * We want to touch writable mappings with a write fault in order
176	 * to break COW, except for shared mappings because these don't COW
177	 * and we would not want to dirty them for nothing.
178	 */
179	if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
180		gup_flags |= FOLL_WRITE;
181
182	/*
183	 * We want mlock to succeed for regions that have any permissions
184	 * other than PROT_NONE.
185	 */
186	if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
187		gup_flags |= FOLL_FORCE;
188
189	return __get_user_pages(current, mm, addr, nr_pages, gup_flags,
190				NULL, NULL, nonblocking);
 
 
 
191}
192
193/*
194 * convert get_user_pages() return value to posix mlock() error
 
195 */
196static int __mlock_posix_error_return(long retval)
197{
198	if (retval == -EFAULT)
199		retval = -ENOMEM;
200	else if (retval == -ENOMEM)
201		retval = -EAGAIN;
202	return retval;
 
 
 
 
 
 
 
 
 
203}
204
205/**
206 * mlock_vma_pages_range() - mlock pages in specified vma range.
207 * @vma - the vma containing the specfied address range
208 * @start - starting address in @vma to mlock
209 * @end   - end address [+1] in @vma to mlock
210 *
211 * For mmap()/mremap()/expansion of mlocked vma.
212 *
213 * return 0 on success for "normal" vmas.
214 *
215 * return number of pages [> 0] to be removed from locked_vm on success
216 * of "special" vmas.
217 */
218long mlock_vma_pages_range(struct vm_area_struct *vma,
219			unsigned long start, unsigned long end)
220{
221	int nr_pages = (end - start) / PAGE_SIZE;
222	BUG_ON(!(vma->vm_flags & VM_LOCKED));
223
 
 
224	/*
225	 * filter unlockable vmas
 
226	 */
227	if (vma->vm_flags & (VM_IO | VM_PFNMAP))
228		goto no_mlock;
229
230	if (!((vma->vm_flags & (VM_DONTEXPAND | VM_RESERVED)) ||
231			is_vm_hugetlb_page(vma) ||
232			vma == get_gate_vma(current->mm))) {
 
 
 
 
 
 
233
234		__mlock_vma_pages_range(vma, start, end, NULL);
 
 
 
 
235
236		/* Hide errors from mmap() and other callers */
237		return 0;
 
 
 
 
 
 
 
 
 
 
238	}
239
240	/*
241	 * User mapped kernel pages or huge pages:
242	 * make these pages present to populate the ptes, but
243	 * fall thru' to reset VM_LOCKED--no need to unlock, and
244	 * return nr_pages so these don't get counted against task's
245	 * locked limit.  huge pages are already counted against
246	 * locked vm limit.
247	 */
248	make_pages_present(start, end);
249
250no_mlock:
251	vma->vm_flags &= ~VM_LOCKED;	/* and don't come back! */
252	return nr_pages;		/* error or pages NOT mlocked */
 
 
 
 
 
 
253}
254
255/*
256 * munlock_vma_pages_range() - munlock all pages in the vma range.'
257 * @vma - vma containing range to be munlock()ed.
 
258 * @start - start address in @vma of the range
259 * @end - end of range in @vma.
 
260 *
261 *  For mremap(), munmap() and exit().
262 *
263 * Called with @vma VM_LOCKED.
264 *
265 * Returns with VM_LOCKED cleared.  Callers must be prepared to
266 * deal with this.
267 *
268 * We don't save and restore VM_LOCKED here because pages are
269 * still on lru.  In unmap path, pages might be scanned by reclaim
270 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
271 * free them.  This will result in freeing mlocked pages.
272 */
273void munlock_vma_pages_range(struct vm_area_struct *vma,
274			     unsigned long start, unsigned long end)
275{
276	unsigned long addr;
 
 
277
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
278	lru_add_drain();
279	vma->vm_flags &= ~VM_LOCKED;
280
281	for (addr = start; addr < end; addr += PAGE_SIZE) {
282		struct page *page;
283		/*
284		 * Although FOLL_DUMP is intended for get_dump_page(),
285		 * it just so happens that its special treatment of the
286		 * ZERO_PAGE (returning an error instead of doing get_page)
287		 * suits munlock very well (and if somehow an abnormal page
288		 * has sneaked into the range, we won't oops here: great).
289		 */
290		page = follow_page(vma, addr, FOLL_GET | FOLL_DUMP);
291		if (page && !IS_ERR(page)) {
292			lock_page(page);
293			/*
294			 * Like in __mlock_vma_pages_range(),
295			 * because we lock page here and migration is
296			 * blocked by the elevated reference, we need
297			 * only check for file-cache page truncation.
298			 */
299			if (page->mapping)
300				munlock_vma_page(page);
301			unlock_page(page);
302			put_page(page);
303		}
304		cond_resched();
305	}
306}
307
308/*
309 * mlock_fixup  - handle mlock[all]/munlock[all] requests.
310 *
311 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
312 * munlock is a no-op.  However, for some special vmas, we go ahead and
313 * populate the ptes via make_pages_present().
314 *
315 * For vmas that pass the filters, merge/split as appropriate.
316 */
317static int mlock_fixup(struct vm_area_struct *vma, struct vm_area_struct **prev,
318	unsigned long start, unsigned long end, vm_flags_t newflags)
319{
320	struct mm_struct *mm = vma->vm_mm;
321	pgoff_t pgoff;
322	int nr_pages;
323	int ret = 0;
324	int lock = !!(newflags & VM_LOCKED);
325
326	if (newflags == vma->vm_flags || (vma->vm_flags & VM_SPECIAL) ||
327	    is_vm_hugetlb_page(vma) || vma == get_gate_vma(current->mm))
328		goto out;	/* don't set VM_LOCKED,  don't count */
 
 
329
330	pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
331	*prev = vma_merge(mm, *prev, start, end, newflags, vma->anon_vma,
332			  vma->vm_file, pgoff, vma_policy(vma));
 
333	if (*prev) {
334		vma = *prev;
335		goto success;
336	}
337
338	if (start != vma->vm_start) {
339		ret = split_vma(mm, vma, start, 1);
340		if (ret)
341			goto out;
342	}
343
344	if (end != vma->vm_end) {
345		ret = split_vma(mm, vma, end, 0);
346		if (ret)
347			goto out;
348	}
349
350success:
351	/*
352	 * Keep track of amount of locked VM.
353	 */
354	nr_pages = (end - start) >> PAGE_SHIFT;
355	if (!lock)
356		nr_pages = -nr_pages;
 
 
357	mm->locked_vm += nr_pages;
358
359	/*
360	 * vm_flags is protected by the mmap_sem held in write mode.
361	 * It's okay if try_to_unmap_one unmaps a page just after we
362	 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
363	 */
364
365	if (lock)
 
366		vma->vm_flags = newflags;
367	else
368		munlock_vma_pages_range(vma, start, end);
369
370out:
371	*prev = vma;
372	return ret;
373}
374
375static int do_mlock(unsigned long start, size_t len, int on)
 
376{
377	unsigned long nstart, end, tmp;
378	struct vm_area_struct * vma, * prev;
379	int error;
 
380
381	VM_BUG_ON(start & ~PAGE_MASK);
382	VM_BUG_ON(len != PAGE_ALIGN(len));
383	end = start + len;
384	if (end < start)
385		return -EINVAL;
386	if (end == start)
387		return 0;
388	vma = find_vma(current->mm, start);
389	if (!vma || vma->vm_start > start)
390		return -ENOMEM;
391
392	prev = vma->vm_prev;
393	if (start > vma->vm_start)
394		prev = vma;
 
 
395
396	for (nstart = start ; ; ) {
397		vm_flags_t newflags;
 
 
398
399		/* Here we know that  vma->vm_start <= nstart < vma->vm_end. */
400
401		newflags = vma->vm_flags | VM_LOCKED;
402		if (!on)
403			newflags &= ~VM_LOCKED;
404
405		tmp = vma->vm_end;
406		if (tmp > end)
407			tmp = end;
408		error = mlock_fixup(vma, &prev, nstart, tmp, newflags);
409		if (error)
410			break;
411		nstart = tmp;
412		if (nstart < prev->vm_end)
413			nstart = prev->vm_end;
414		if (nstart >= end)
415			break;
416
417		vma = prev->vm_next;
418		if (!vma || vma->vm_start != nstart) {
419			error = -ENOMEM;
420			break;
421		}
422	}
423	return error;
424}
425
426static int do_mlock_pages(unsigned long start, size_t len, int ignore_errors)
427{
428	struct mm_struct *mm = current->mm;
429	unsigned long end, nstart, nend;
430	struct vm_area_struct *vma = NULL;
431	int locked = 0;
432	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
433
434	VM_BUG_ON(start & ~PAGE_MASK);
435	VM_BUG_ON(len != PAGE_ALIGN(len));
436	end = start + len;
437
438	for (nstart = start; nstart < end; nstart = nend) {
439		/*
440		 * We want to fault in pages for [nstart; end) address range.
441		 * Find first corresponding VMA.
442		 */
443		if (!locked) {
444			locked = 1;
445			down_read(&mm->mmap_sem);
446			vma = find_vma(mm, nstart);
447		} else if (nstart >= vma->vm_end)
448			vma = vma->vm_next;
449		if (!vma || vma->vm_start >= end)
450			break;
451		/*
452		 * Set [nstart; nend) to intersection of desired address
453		 * range with the first VMA. Also, skip undesirable VMA types.
454		 */
455		nend = min(end, vma->vm_end);
456		if (vma->vm_flags & (VM_IO | VM_PFNMAP))
457			continue;
458		if (nstart < vma->vm_start)
459			nstart = vma->vm_start;
460		/*
461		 * Now fault in a range of pages. __mlock_vma_pages_range()
462		 * double checks the vma flags, so that it won't mlock pages
463		 * if the vma was already munlocked.
464		 */
465		ret = __mlock_vma_pages_range(vma, nstart, nend, &locked);
466		if (ret < 0) {
467			if (ignore_errors) {
468				ret = 0;
469				continue;	/* continue at next VMA */
470			}
471			ret = __mlock_posix_error_return(ret);
472			break;
473		}
474		nend = nstart + ret * PAGE_SIZE;
475		ret = 0;
476	}
477	if (locked)
478		up_read(&mm->mmap_sem);
479	return ret;	/* 0 or negative error code */
 
 
 
 
 
 
 
 
 
 
 
480}
481
482SYSCALL_DEFINE2(mlock, unsigned long, start, size_t, len)
483{
484	unsigned long locked;
485	unsigned long lock_limit;
486	int error = -ENOMEM;
487
 
 
488	if (!can_do_mlock())
489		return -EPERM;
490
491	lru_add_drain_all();	/* flush pagevec */
492
493	down_write(&current->mm->mmap_sem);
494	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
495	start &= PAGE_MASK;
496
 
 
497	locked = len >> PAGE_SHIFT;
 
 
 
 
498	locked += current->mm->locked_vm;
499
500	lock_limit = rlimit(RLIMIT_MEMLOCK);
501	lock_limit >>= PAGE_SHIFT;
 
 
 
 
 
 
 
502
503	/* check against resource limits */
504	if ((locked <= lock_limit) || capable(CAP_IPC_LOCK))
505		error = do_mlock(start, len, 1);
506	up_write(&current->mm->mmap_sem);
507	if (!error)
508		error = do_mlock_pages(start, len, 0);
509	return error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
510}
511
512SYSCALL_DEFINE2(munlock, unsigned long, start, size_t, len)
513{
514	int ret;
515
516	down_write(&current->mm->mmap_sem);
517	len = PAGE_ALIGN(len + (start & ~PAGE_MASK));
 
518	start &= PAGE_MASK;
519	ret = do_mlock(start, len, 0);
520	up_write(&current->mm->mmap_sem);
 
 
 
 
521	return ret;
522}
523
524static int do_mlockall(int flags)
525{
526	struct vm_area_struct * vma, * prev = NULL;
527	unsigned int def_flags = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
528
529	if (flags & MCL_FUTURE)
530		def_flags = VM_LOCKED;
531	current->mm->def_flags = def_flags;
532	if (flags == MCL_FUTURE)
533		goto out;
534
535	for (vma = current->mm->mmap; vma ; vma = prev->vm_next) {
536		vm_flags_t newflags;
537
538		newflags = vma->vm_flags | VM_LOCKED;
539		if (!(flags & MCL_CURRENT))
540			newflags &= ~VM_LOCKED;
541
542		/* Ignore errors */
543		mlock_fixup(vma, &prev, vma->vm_start, vma->vm_end, newflags);
 
 
544	}
545out:
546	return 0;
547}
548
549SYSCALL_DEFINE1(mlockall, int, flags)
550{
551	unsigned long lock_limit;
552	int ret = -EINVAL;
553
554	if (!flags || (flags & ~(MCL_CURRENT | MCL_FUTURE)))
555		goto out;
 
556
557	ret = -EPERM;
558	if (!can_do_mlock())
559		goto out;
560
561	if (flags & MCL_CURRENT)
562		lru_add_drain_all();	/* flush pagevec */
563
564	down_write(&current->mm->mmap_sem);
565
566	lock_limit = rlimit(RLIMIT_MEMLOCK);
567	lock_limit >>= PAGE_SHIFT;
568
 
 
 
569	ret = -ENOMEM;
570	if (!(flags & MCL_CURRENT) || (current->mm->total_vm <= lock_limit) ||
571	    capable(CAP_IPC_LOCK))
572		ret = do_mlockall(flags);
573	up_write(&current->mm->mmap_sem);
574	if (!ret && (flags & MCL_CURRENT)) {
575		/* Ignore errors */
576		do_mlock_pages(0, TASK_SIZE, 1);
577	}
578out:
579	return ret;
580}
581
582SYSCALL_DEFINE0(munlockall)
583{
584	int ret;
585
586	down_write(&current->mm->mmap_sem);
587	ret = do_mlockall(0);
588	up_write(&current->mm->mmap_sem);
 
589	return ret;
590}
591
592/*
593 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
594 * shm segments) get accounted against the user_struct instead.
595 */
596static DEFINE_SPINLOCK(shmlock_user_lock);
597
598int user_shm_lock(size_t size, struct user_struct *user)
599{
600	unsigned long lock_limit, locked;
 
601	int allowed = 0;
602
603	locked = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
604	lock_limit = rlimit(RLIMIT_MEMLOCK);
605	if (lock_limit == RLIM_INFINITY)
606		allowed = 1;
607	lock_limit >>= PAGE_SHIFT;
608	spin_lock(&shmlock_user_lock);
609	if (!allowed &&
610	    locked + user->locked_shm > lock_limit && !capable(CAP_IPC_LOCK))
 
 
611		goto out;
612	get_uid(user);
613	user->locked_shm += locked;
 
 
 
 
614	allowed = 1;
615out:
616	spin_unlock(&shmlock_user_lock);
617	return allowed;
618}
619
620void user_shm_unlock(size_t size, struct user_struct *user)
621{
622	spin_lock(&shmlock_user_lock);
623	user->locked_shm -= (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
624	spin_unlock(&shmlock_user_lock);
625	free_uid(user);
626}