Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) STMicroelectronics SA 2017
4 * Author: Fabien Dessenne <fabien.dessenne@st.com>
5 * Ux500 support taken from snippets in the old Ux500 cryp driver
6 */
7
8#include <linux/clk.h>
9#include <linux/delay.h>
10#include <linux/interrupt.h>
11#include <linux/iopoll.h>
12#include <linux/module.h>
13#include <linux/of_device.h>
14#include <linux/platform_device.h>
15#include <linux/pm_runtime.h>
16#include <linux/reset.h>
17
18#include <crypto/aes.h>
19#include <crypto/internal/des.h>
20#include <crypto/engine.h>
21#include <crypto/scatterwalk.h>
22#include <crypto/internal/aead.h>
23#include <crypto/internal/skcipher.h>
24
25#define DRIVER_NAME "stm32-cryp"
26
27/* Bit [0] encrypt / decrypt */
28#define FLG_ENCRYPT BIT(0)
29/* Bit [8..1] algo & operation mode */
30#define FLG_AES BIT(1)
31#define FLG_DES BIT(2)
32#define FLG_TDES BIT(3)
33#define FLG_ECB BIT(4)
34#define FLG_CBC BIT(5)
35#define FLG_CTR BIT(6)
36#define FLG_GCM BIT(7)
37#define FLG_CCM BIT(8)
38/* Mode mask = bits [15..0] */
39#define FLG_MODE_MASK GENMASK(15, 0)
40/* Bit [31..16] status */
41
42/* Registers */
43#define CRYP_CR 0x00000000
44#define CRYP_SR 0x00000004
45#define CRYP_DIN 0x00000008
46#define CRYP_DOUT 0x0000000C
47#define CRYP_DMACR 0x00000010
48#define CRYP_IMSCR 0x00000014
49#define CRYP_RISR 0x00000018
50#define CRYP_MISR 0x0000001C
51#define CRYP_K0LR 0x00000020
52#define CRYP_K0RR 0x00000024
53#define CRYP_K1LR 0x00000028
54#define CRYP_K1RR 0x0000002C
55#define CRYP_K2LR 0x00000030
56#define CRYP_K2RR 0x00000034
57#define CRYP_K3LR 0x00000038
58#define CRYP_K3RR 0x0000003C
59#define CRYP_IV0LR 0x00000040
60#define CRYP_IV0RR 0x00000044
61#define CRYP_IV1LR 0x00000048
62#define CRYP_IV1RR 0x0000004C
63#define CRYP_CSGCMCCM0R 0x00000050
64#define CRYP_CSGCM0R 0x00000070
65
66#define UX500_CRYP_CR 0x00000000
67#define UX500_CRYP_SR 0x00000004
68#define UX500_CRYP_DIN 0x00000008
69#define UX500_CRYP_DINSIZE 0x0000000C
70#define UX500_CRYP_DOUT 0x00000010
71#define UX500_CRYP_DOUSIZE 0x00000014
72#define UX500_CRYP_DMACR 0x00000018
73#define UX500_CRYP_IMSC 0x0000001C
74#define UX500_CRYP_RIS 0x00000020
75#define UX500_CRYP_MIS 0x00000024
76#define UX500_CRYP_K1L 0x00000028
77#define UX500_CRYP_K1R 0x0000002C
78#define UX500_CRYP_K2L 0x00000030
79#define UX500_CRYP_K2R 0x00000034
80#define UX500_CRYP_K3L 0x00000038
81#define UX500_CRYP_K3R 0x0000003C
82#define UX500_CRYP_K4L 0x00000040
83#define UX500_CRYP_K4R 0x00000044
84#define UX500_CRYP_IV0L 0x00000048
85#define UX500_CRYP_IV0R 0x0000004C
86#define UX500_CRYP_IV1L 0x00000050
87#define UX500_CRYP_IV1R 0x00000054
88
89/* Registers values */
90#define CR_DEC_NOT_ENC 0x00000004
91#define CR_TDES_ECB 0x00000000
92#define CR_TDES_CBC 0x00000008
93#define CR_DES_ECB 0x00000010
94#define CR_DES_CBC 0x00000018
95#define CR_AES_ECB 0x00000020
96#define CR_AES_CBC 0x00000028
97#define CR_AES_CTR 0x00000030
98#define CR_AES_KP 0x00000038 /* Not on Ux500 */
99#define CR_AES_XTS 0x00000038 /* Only on Ux500 */
100#define CR_AES_GCM 0x00080000
101#define CR_AES_CCM 0x00080008
102#define CR_AES_UNKNOWN 0xFFFFFFFF
103#define CR_ALGO_MASK 0x00080038
104#define CR_DATA32 0x00000000
105#define CR_DATA16 0x00000040
106#define CR_DATA8 0x00000080
107#define CR_DATA1 0x000000C0
108#define CR_KEY128 0x00000000
109#define CR_KEY192 0x00000100
110#define CR_KEY256 0x00000200
111#define CR_KEYRDEN 0x00000400 /* Only on Ux500 */
112#define CR_KSE 0x00000800 /* Only on Ux500 */
113#define CR_FFLUSH 0x00004000
114#define CR_CRYPEN 0x00008000
115#define CR_PH_INIT 0x00000000
116#define CR_PH_HEADER 0x00010000
117#define CR_PH_PAYLOAD 0x00020000
118#define CR_PH_FINAL 0x00030000
119#define CR_PH_MASK 0x00030000
120#define CR_NBPBL_SHIFT 20
121
122#define SR_BUSY 0x00000010
123#define SR_OFNE 0x00000004
124
125#define IMSCR_IN BIT(0)
126#define IMSCR_OUT BIT(1)
127
128#define MISR_IN BIT(0)
129#define MISR_OUT BIT(1)
130
131/* Misc */
132#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
133#define GCM_CTR_INIT 2
134#define CRYP_AUTOSUSPEND_DELAY 50
135
136struct stm32_cryp_caps {
137 bool aeads_support;
138 bool linear_aes_key;
139 bool kp_mode;
140 bool iv_protection;
141 bool swap_final;
142 bool padding_wa;
143 u32 cr;
144 u32 sr;
145 u32 din;
146 u32 dout;
147 u32 imsc;
148 u32 mis;
149 u32 k1l;
150 u32 k1r;
151 u32 k3r;
152 u32 iv0l;
153 u32 iv0r;
154 u32 iv1l;
155 u32 iv1r;
156};
157
158struct stm32_cryp_ctx {
159 struct crypto_engine_ctx enginectx;
160 struct stm32_cryp *cryp;
161 int keylen;
162 __be32 key[AES_KEYSIZE_256 / sizeof(u32)];
163 unsigned long flags;
164};
165
166struct stm32_cryp_reqctx {
167 unsigned long mode;
168};
169
170struct stm32_cryp {
171 struct list_head list;
172 struct device *dev;
173 void __iomem *regs;
174 struct clk *clk;
175 unsigned long flags;
176 u32 irq_status;
177 const struct stm32_cryp_caps *caps;
178 struct stm32_cryp_ctx *ctx;
179
180 struct crypto_engine *engine;
181
182 struct skcipher_request *req;
183 struct aead_request *areq;
184
185 size_t authsize;
186 size_t hw_blocksize;
187
188 size_t payload_in;
189 size_t header_in;
190 size_t payload_out;
191
192 struct scatterlist *out_sg;
193
194 struct scatter_walk in_walk;
195 struct scatter_walk out_walk;
196
197 __be32 last_ctr[4];
198 u32 gcm_ctr;
199};
200
201struct stm32_cryp_list {
202 struct list_head dev_list;
203 spinlock_t lock; /* protect dev_list */
204};
205
206static struct stm32_cryp_list cryp_list = {
207 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
208 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
209};
210
211static inline bool is_aes(struct stm32_cryp *cryp)
212{
213 return cryp->flags & FLG_AES;
214}
215
216static inline bool is_des(struct stm32_cryp *cryp)
217{
218 return cryp->flags & FLG_DES;
219}
220
221static inline bool is_tdes(struct stm32_cryp *cryp)
222{
223 return cryp->flags & FLG_TDES;
224}
225
226static inline bool is_ecb(struct stm32_cryp *cryp)
227{
228 return cryp->flags & FLG_ECB;
229}
230
231static inline bool is_cbc(struct stm32_cryp *cryp)
232{
233 return cryp->flags & FLG_CBC;
234}
235
236static inline bool is_ctr(struct stm32_cryp *cryp)
237{
238 return cryp->flags & FLG_CTR;
239}
240
241static inline bool is_gcm(struct stm32_cryp *cryp)
242{
243 return cryp->flags & FLG_GCM;
244}
245
246static inline bool is_ccm(struct stm32_cryp *cryp)
247{
248 return cryp->flags & FLG_CCM;
249}
250
251static inline bool is_encrypt(struct stm32_cryp *cryp)
252{
253 return cryp->flags & FLG_ENCRYPT;
254}
255
256static inline bool is_decrypt(struct stm32_cryp *cryp)
257{
258 return !is_encrypt(cryp);
259}
260
261static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
262{
263 return readl_relaxed(cryp->regs + ofst);
264}
265
266static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
267{
268 writel_relaxed(val, cryp->regs + ofst);
269}
270
271static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
272{
273 u32 status;
274
275 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
276 !(status & SR_BUSY), 10, 100000);
277}
278
279static inline void stm32_cryp_enable(struct stm32_cryp *cryp)
280{
281 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_CRYPEN,
282 cryp->regs + cryp->caps->cr);
283}
284
285static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
286{
287 u32 status;
288
289 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->cr, status,
290 !(status & CR_CRYPEN), 10, 100000);
291}
292
293static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
294{
295 u32 status;
296
297 return readl_relaxed_poll_timeout(cryp->regs + cryp->caps->sr, status,
298 status & SR_OFNE, 10, 100000);
299}
300
301static inline void stm32_cryp_key_read_enable(struct stm32_cryp *cryp)
302{
303 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) | CR_KEYRDEN,
304 cryp->regs + cryp->caps->cr);
305}
306
307static inline void stm32_cryp_key_read_disable(struct stm32_cryp *cryp)
308{
309 writel_relaxed(readl_relaxed(cryp->regs + cryp->caps->cr) & ~CR_KEYRDEN,
310 cryp->regs + cryp->caps->cr);
311}
312
313static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
314static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err);
315
316static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
317{
318 struct stm32_cryp *tmp, *cryp = NULL;
319
320 spin_lock_bh(&cryp_list.lock);
321 if (!ctx->cryp) {
322 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
323 cryp = tmp;
324 break;
325 }
326 ctx->cryp = cryp;
327 } else {
328 cryp = ctx->cryp;
329 }
330
331 spin_unlock_bh(&cryp_list.lock);
332
333 return cryp;
334}
335
336static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, __be32 *iv)
337{
338 if (!iv)
339 return;
340
341 stm32_cryp_write(cryp, cryp->caps->iv0l, be32_to_cpu(*iv++));
342 stm32_cryp_write(cryp, cryp->caps->iv0r, be32_to_cpu(*iv++));
343
344 if (is_aes(cryp)) {
345 stm32_cryp_write(cryp, cryp->caps->iv1l, be32_to_cpu(*iv++));
346 stm32_cryp_write(cryp, cryp->caps->iv1r, be32_to_cpu(*iv++));
347 }
348}
349
350static void stm32_cryp_get_iv(struct stm32_cryp *cryp)
351{
352 struct skcipher_request *req = cryp->req;
353 __be32 *tmp = (void *)req->iv;
354
355 if (!tmp)
356 return;
357
358 if (cryp->caps->iv_protection)
359 stm32_cryp_key_read_enable(cryp);
360
361 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
362 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
363
364 if (is_aes(cryp)) {
365 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
366 *tmp++ = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
367 }
368
369 if (cryp->caps->iv_protection)
370 stm32_cryp_key_read_disable(cryp);
371}
372
373/**
374 * ux500_swap_bits_in_byte() - mirror the bits in a byte
375 * @b: the byte to be mirrored
376 *
377 * The bits are swapped the following way:
378 * Byte b include bits 0-7, nibble 1 (n1) include bits 0-3 and
379 * nibble 2 (n2) bits 4-7.
380 *
381 * Nibble 1 (n1):
382 * (The "old" (moved) bit is replaced with a zero)
383 * 1. Move bit 6 and 7, 4 positions to the left.
384 * 2. Move bit 3 and 5, 2 positions to the left.
385 * 3. Move bit 1-4, 1 position to the left.
386 *
387 * Nibble 2 (n2):
388 * 1. Move bit 0 and 1, 4 positions to the right.
389 * 2. Move bit 2 and 4, 2 positions to the right.
390 * 3. Move bit 3-6, 1 position to the right.
391 *
392 * Combine the two nibbles to a complete and swapped byte.
393 */
394static inline u8 ux500_swap_bits_in_byte(u8 b)
395{
396#define R_SHIFT_4_MASK 0xc0 /* Bits 6 and 7, right shift 4 */
397#define R_SHIFT_2_MASK 0x28 /* (After right shift 4) Bits 3 and 5,
398 right shift 2 */
399#define R_SHIFT_1_MASK 0x1e /* (After right shift 2) Bits 1-4,
400 right shift 1 */
401#define L_SHIFT_4_MASK 0x03 /* Bits 0 and 1, left shift 4 */
402#define L_SHIFT_2_MASK 0x14 /* (After left shift 4) Bits 2 and 4,
403 left shift 2 */
404#define L_SHIFT_1_MASK 0x78 /* (After left shift 1) Bits 3-6,
405 left shift 1 */
406
407 u8 n1;
408 u8 n2;
409
410 /* Swap most significant nibble */
411 /* Right shift 4, bits 6 and 7 */
412 n1 = ((b & R_SHIFT_4_MASK) >> 4) | (b & ~(R_SHIFT_4_MASK >> 4));
413 /* Right shift 2, bits 3 and 5 */
414 n1 = ((n1 & R_SHIFT_2_MASK) >> 2) | (n1 & ~(R_SHIFT_2_MASK >> 2));
415 /* Right shift 1, bits 1-4 */
416 n1 = (n1 & R_SHIFT_1_MASK) >> 1;
417
418 /* Swap least significant nibble */
419 /* Left shift 4, bits 0 and 1 */
420 n2 = ((b & L_SHIFT_4_MASK) << 4) | (b & ~(L_SHIFT_4_MASK << 4));
421 /* Left shift 2, bits 2 and 4 */
422 n2 = ((n2 & L_SHIFT_2_MASK) << 2) | (n2 & ~(L_SHIFT_2_MASK << 2));
423 /* Left shift 1, bits 3-6 */
424 n2 = (n2 & L_SHIFT_1_MASK) << 1;
425
426 return n1 | n2;
427}
428
429/**
430 * ux500_swizzle_key() - Shuffle around words and bits in the AES key
431 * @in: key to swizzle
432 * @out: swizzled key
433 * @len: length of key, in bytes
434 *
435 * This "key swizzling procedure" is described in the examples in the
436 * DB8500 design specification. There is no real description of why
437 * the bits have been arranged like this in the hardware.
438 */
439static inline void ux500_swizzle_key(const u8 *in, u8 *out, u32 len)
440{
441 int i = 0;
442 int bpw = sizeof(u32);
443 int j;
444 int index = 0;
445
446 j = len - bpw;
447 while (j >= 0) {
448 for (i = 0; i < bpw; i++) {
449 index = len - j - bpw + i;
450 out[j + i] =
451 ux500_swap_bits_in_byte(in[index]);
452 }
453 j -= bpw;
454 }
455}
456
457static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
458{
459 unsigned int i;
460 int r_id;
461
462 if (is_des(c)) {
463 stm32_cryp_write(c, c->caps->k1l, be32_to_cpu(c->ctx->key[0]));
464 stm32_cryp_write(c, c->caps->k1r, be32_to_cpu(c->ctx->key[1]));
465 return;
466 }
467
468 /*
469 * On the Ux500 the AES key is considered as a single bit sequence
470 * of 128, 192 or 256 bits length. It is written linearly into the
471 * registers from K1L and down, and need to be processed to become
472 * a proper big-endian bit sequence.
473 */
474 if (is_aes(c) && c->caps->linear_aes_key) {
475 u32 tmpkey[8];
476
477 ux500_swizzle_key((u8 *)c->ctx->key,
478 (u8 *)tmpkey, c->ctx->keylen);
479
480 r_id = c->caps->k1l;
481 for (i = 0; i < c->ctx->keylen / sizeof(u32); i++, r_id += 4)
482 stm32_cryp_write(c, r_id, tmpkey[i]);
483
484 return;
485 }
486
487 r_id = c->caps->k3r;
488 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
489 stm32_cryp_write(c, r_id, be32_to_cpu(c->ctx->key[i - 1]));
490}
491
492static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
493{
494 if (is_aes(cryp) && is_ecb(cryp))
495 return CR_AES_ECB;
496
497 if (is_aes(cryp) && is_cbc(cryp))
498 return CR_AES_CBC;
499
500 if (is_aes(cryp) && is_ctr(cryp))
501 return CR_AES_CTR;
502
503 if (is_aes(cryp) && is_gcm(cryp))
504 return CR_AES_GCM;
505
506 if (is_aes(cryp) && is_ccm(cryp))
507 return CR_AES_CCM;
508
509 if (is_des(cryp) && is_ecb(cryp))
510 return CR_DES_ECB;
511
512 if (is_des(cryp) && is_cbc(cryp))
513 return CR_DES_CBC;
514
515 if (is_tdes(cryp) && is_ecb(cryp))
516 return CR_TDES_ECB;
517
518 if (is_tdes(cryp) && is_cbc(cryp))
519 return CR_TDES_CBC;
520
521 dev_err(cryp->dev, "Unknown mode\n");
522 return CR_AES_UNKNOWN;
523}
524
525static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
526{
527 return is_encrypt(cryp) ? cryp->areq->cryptlen :
528 cryp->areq->cryptlen - cryp->authsize;
529}
530
531static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
532{
533 int ret;
534 __be32 iv[4];
535
536 /* Phase 1 : init */
537 memcpy(iv, cryp->areq->iv, 12);
538 iv[3] = cpu_to_be32(GCM_CTR_INIT);
539 cryp->gcm_ctr = GCM_CTR_INIT;
540 stm32_cryp_hw_write_iv(cryp, iv);
541
542 stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
543
544 /* Wait for end of processing */
545 ret = stm32_cryp_wait_enable(cryp);
546 if (ret) {
547 dev_err(cryp->dev, "Timeout (gcm init)\n");
548 return ret;
549 }
550
551 /* Prepare next phase */
552 if (cryp->areq->assoclen) {
553 cfg |= CR_PH_HEADER;
554 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
555 } else if (stm32_cryp_get_input_text_len(cryp)) {
556 cfg |= CR_PH_PAYLOAD;
557 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
558 }
559
560 return 0;
561}
562
563static void stm32_crypt_gcmccm_end_header(struct stm32_cryp *cryp)
564{
565 u32 cfg;
566 int err;
567
568 /* Check if whole header written */
569 if (!cryp->header_in) {
570 /* Wait for completion */
571 err = stm32_cryp_wait_busy(cryp);
572 if (err) {
573 dev_err(cryp->dev, "Timeout (gcm/ccm header)\n");
574 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
575 stm32_cryp_finish_req(cryp, err);
576 return;
577 }
578
579 if (stm32_cryp_get_input_text_len(cryp)) {
580 /* Phase 3 : payload */
581 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
582 cfg &= ~CR_CRYPEN;
583 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
584
585 cfg &= ~CR_PH_MASK;
586 cfg |= CR_PH_PAYLOAD | CR_CRYPEN;
587 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
588 } else {
589 /*
590 * Phase 4 : tag.
591 * Nothing to read, nothing to write, caller have to
592 * end request
593 */
594 }
595 }
596}
597
598static void stm32_cryp_write_ccm_first_header(struct stm32_cryp *cryp)
599{
600 unsigned int i;
601 size_t written;
602 size_t len;
603 u32 alen = cryp->areq->assoclen;
604 u32 block[AES_BLOCK_32] = {0};
605 u8 *b8 = (u8 *)block;
606
607 if (alen <= 65280) {
608 /* Write first u32 of B1 */
609 b8[0] = (alen >> 8) & 0xFF;
610 b8[1] = alen & 0xFF;
611 len = 2;
612 } else {
613 /* Build the two first u32 of B1 */
614 b8[0] = 0xFF;
615 b8[1] = 0xFE;
616 b8[2] = (alen & 0xFF000000) >> 24;
617 b8[3] = (alen & 0x00FF0000) >> 16;
618 b8[4] = (alen & 0x0000FF00) >> 8;
619 b8[5] = alen & 0x000000FF;
620 len = 6;
621 }
622
623 written = min_t(size_t, AES_BLOCK_SIZE - len, alen);
624
625 scatterwalk_copychunks((char *)block + len, &cryp->in_walk, written, 0);
626 for (i = 0; i < AES_BLOCK_32; i++)
627 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
628
629 cryp->header_in -= written;
630
631 stm32_crypt_gcmccm_end_header(cryp);
632}
633
634static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
635{
636 int ret;
637 u32 iv_32[AES_BLOCK_32], b0_32[AES_BLOCK_32];
638 u8 *iv = (u8 *)iv_32, *b0 = (u8 *)b0_32;
639 __be32 *bd;
640 u32 *d;
641 unsigned int i, textlen;
642
643 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
644 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
645 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
646 iv[AES_BLOCK_SIZE - 1] = 1;
647 stm32_cryp_hw_write_iv(cryp, (__be32 *)iv);
648
649 /* Build B0 */
650 memcpy(b0, iv, AES_BLOCK_SIZE);
651
652 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
653
654 if (cryp->areq->assoclen)
655 b0[0] |= 0x40;
656
657 textlen = stm32_cryp_get_input_text_len(cryp);
658
659 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
660 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
661
662 /* Enable HW */
663 stm32_cryp_write(cryp, cryp->caps->cr, cfg | CR_PH_INIT | CR_CRYPEN);
664
665 /* Write B0 */
666 d = (u32 *)b0;
667 bd = (__be32 *)b0;
668
669 for (i = 0; i < AES_BLOCK_32; i++) {
670 u32 xd = d[i];
671
672 if (!cryp->caps->padding_wa)
673 xd = be32_to_cpu(bd[i]);
674 stm32_cryp_write(cryp, cryp->caps->din, xd);
675 }
676
677 /* Wait for end of processing */
678 ret = stm32_cryp_wait_enable(cryp);
679 if (ret) {
680 dev_err(cryp->dev, "Timeout (ccm init)\n");
681 return ret;
682 }
683
684 /* Prepare next phase */
685 if (cryp->areq->assoclen) {
686 cfg |= CR_PH_HEADER | CR_CRYPEN;
687 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
688
689 /* Write first (special) block (may move to next phase [payload]) */
690 stm32_cryp_write_ccm_first_header(cryp);
691 } else if (stm32_cryp_get_input_text_len(cryp)) {
692 cfg |= CR_PH_PAYLOAD;
693 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
694 }
695
696 return 0;
697}
698
699static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
700{
701 int ret;
702 u32 cfg, hw_mode;
703
704 pm_runtime_get_sync(cryp->dev);
705
706 /* Disable interrupt */
707 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
708
709 /* Set configuration */
710 cfg = CR_DATA8 | CR_FFLUSH;
711
712 switch (cryp->ctx->keylen) {
713 case AES_KEYSIZE_128:
714 cfg |= CR_KEY128;
715 break;
716
717 case AES_KEYSIZE_192:
718 cfg |= CR_KEY192;
719 break;
720
721 default:
722 case AES_KEYSIZE_256:
723 cfg |= CR_KEY256;
724 break;
725 }
726
727 hw_mode = stm32_cryp_get_hw_mode(cryp);
728 if (hw_mode == CR_AES_UNKNOWN)
729 return -EINVAL;
730
731 /* AES ECB/CBC decrypt: run key preparation first */
732 if (is_decrypt(cryp) &&
733 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
734 /* Configure in key preparation mode */
735 if (cryp->caps->kp_mode)
736 stm32_cryp_write(cryp, cryp->caps->cr,
737 cfg | CR_AES_KP);
738 else
739 stm32_cryp_write(cryp,
740 cryp->caps->cr, cfg | CR_AES_ECB | CR_KSE);
741
742 /* Set key only after full configuration done */
743 stm32_cryp_hw_write_key(cryp);
744
745 /* Start prepare key */
746 stm32_cryp_enable(cryp);
747 /* Wait for end of processing */
748 ret = stm32_cryp_wait_busy(cryp);
749 if (ret) {
750 dev_err(cryp->dev, "Timeout (key preparation)\n");
751 return ret;
752 }
753
754 cfg |= hw_mode | CR_DEC_NOT_ENC;
755
756 /* Apply updated config (Decrypt + algo) and flush */
757 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
758 } else {
759 cfg |= hw_mode;
760 if (is_decrypt(cryp))
761 cfg |= CR_DEC_NOT_ENC;
762
763 /* Apply config and flush */
764 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
765
766 /* Set key only after configuration done */
767 stm32_cryp_hw_write_key(cryp);
768 }
769
770 switch (hw_mode) {
771 case CR_AES_GCM:
772 case CR_AES_CCM:
773 /* Phase 1 : init */
774 if (hw_mode == CR_AES_CCM)
775 ret = stm32_cryp_ccm_init(cryp, cfg);
776 else
777 ret = stm32_cryp_gcm_init(cryp, cfg);
778
779 if (ret)
780 return ret;
781
782 break;
783
784 case CR_DES_CBC:
785 case CR_TDES_CBC:
786 case CR_AES_CBC:
787 case CR_AES_CTR:
788 stm32_cryp_hw_write_iv(cryp, (__be32 *)cryp->req->iv);
789 break;
790
791 default:
792 break;
793 }
794
795 /* Enable now */
796 stm32_cryp_enable(cryp);
797
798 return 0;
799}
800
801static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
802{
803 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
804 /* Phase 4 : output tag */
805 err = stm32_cryp_read_auth_tag(cryp);
806
807 if (!err && (!(is_gcm(cryp) || is_ccm(cryp) || is_ecb(cryp))))
808 stm32_cryp_get_iv(cryp);
809
810 pm_runtime_mark_last_busy(cryp->dev);
811 pm_runtime_put_autosuspend(cryp->dev);
812
813 if (is_gcm(cryp) || is_ccm(cryp))
814 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
815 else
816 crypto_finalize_skcipher_request(cryp->engine, cryp->req,
817 err);
818}
819
820static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
821{
822 /* Enable interrupt and let the IRQ handler do everything */
823 stm32_cryp_write(cryp, cryp->caps->imsc, IMSCR_IN | IMSCR_OUT);
824
825 return 0;
826}
827
828static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
829static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
830 void *areq);
831
832static int stm32_cryp_init_tfm(struct crypto_skcipher *tfm)
833{
834 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
835
836 crypto_skcipher_set_reqsize(tfm, sizeof(struct stm32_cryp_reqctx));
837
838 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
839 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
840 ctx->enginectx.op.unprepare_request = NULL;
841 return 0;
842}
843
844static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
845static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
846 void *areq);
847
848static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
849{
850 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
851
852 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
853
854 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
855 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
856 ctx->enginectx.op.unprepare_request = NULL;
857
858 return 0;
859}
860
861static int stm32_cryp_crypt(struct skcipher_request *req, unsigned long mode)
862{
863 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
864 crypto_skcipher_reqtfm(req));
865 struct stm32_cryp_reqctx *rctx = skcipher_request_ctx(req);
866 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
867
868 if (!cryp)
869 return -ENODEV;
870
871 rctx->mode = mode;
872
873 return crypto_transfer_skcipher_request_to_engine(cryp->engine, req);
874}
875
876static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
877{
878 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
879 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
880 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
881
882 if (!cryp)
883 return -ENODEV;
884
885 rctx->mode = mode;
886
887 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
888}
889
890static int stm32_cryp_setkey(struct crypto_skcipher *tfm, const u8 *key,
891 unsigned int keylen)
892{
893 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(tfm);
894
895 memcpy(ctx->key, key, keylen);
896 ctx->keylen = keylen;
897
898 return 0;
899}
900
901static int stm32_cryp_aes_setkey(struct crypto_skcipher *tfm, const u8 *key,
902 unsigned int keylen)
903{
904 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
905 keylen != AES_KEYSIZE_256)
906 return -EINVAL;
907 else
908 return stm32_cryp_setkey(tfm, key, keylen);
909}
910
911static int stm32_cryp_des_setkey(struct crypto_skcipher *tfm, const u8 *key,
912 unsigned int keylen)
913{
914 return verify_skcipher_des_key(tfm, key) ?:
915 stm32_cryp_setkey(tfm, key, keylen);
916}
917
918static int stm32_cryp_tdes_setkey(struct crypto_skcipher *tfm, const u8 *key,
919 unsigned int keylen)
920{
921 return verify_skcipher_des3_key(tfm, key) ?:
922 stm32_cryp_setkey(tfm, key, keylen);
923}
924
925static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
926 unsigned int keylen)
927{
928 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
929
930 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
931 keylen != AES_KEYSIZE_256)
932 return -EINVAL;
933
934 memcpy(ctx->key, key, keylen);
935 ctx->keylen = keylen;
936
937 return 0;
938}
939
940static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
941 unsigned int authsize)
942{
943 switch (authsize) {
944 case 4:
945 case 8:
946 case 12:
947 case 13:
948 case 14:
949 case 15:
950 case 16:
951 break;
952 default:
953 return -EINVAL;
954 }
955
956 return 0;
957}
958
959static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
960 unsigned int authsize)
961{
962 switch (authsize) {
963 case 4:
964 case 6:
965 case 8:
966 case 10:
967 case 12:
968 case 14:
969 case 16:
970 break;
971 default:
972 return -EINVAL;
973 }
974
975 return 0;
976}
977
978static int stm32_cryp_aes_ecb_encrypt(struct skcipher_request *req)
979{
980 if (req->cryptlen % AES_BLOCK_SIZE)
981 return -EINVAL;
982
983 if (req->cryptlen == 0)
984 return 0;
985
986 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
987}
988
989static int stm32_cryp_aes_ecb_decrypt(struct skcipher_request *req)
990{
991 if (req->cryptlen % AES_BLOCK_SIZE)
992 return -EINVAL;
993
994 if (req->cryptlen == 0)
995 return 0;
996
997 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
998}
999
1000static int stm32_cryp_aes_cbc_encrypt(struct skcipher_request *req)
1001{
1002 if (req->cryptlen % AES_BLOCK_SIZE)
1003 return -EINVAL;
1004
1005 if (req->cryptlen == 0)
1006 return 0;
1007
1008 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
1009}
1010
1011static int stm32_cryp_aes_cbc_decrypt(struct skcipher_request *req)
1012{
1013 if (req->cryptlen % AES_BLOCK_SIZE)
1014 return -EINVAL;
1015
1016 if (req->cryptlen == 0)
1017 return 0;
1018
1019 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
1020}
1021
1022static int stm32_cryp_aes_ctr_encrypt(struct skcipher_request *req)
1023{
1024 if (req->cryptlen == 0)
1025 return 0;
1026
1027 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
1028}
1029
1030static int stm32_cryp_aes_ctr_decrypt(struct skcipher_request *req)
1031{
1032 if (req->cryptlen == 0)
1033 return 0;
1034
1035 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
1036}
1037
1038static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
1039{
1040 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
1041}
1042
1043static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
1044{
1045 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
1046}
1047
1048static inline int crypto_ccm_check_iv(const u8 *iv)
1049{
1050 /* 2 <= L <= 8, so 1 <= L' <= 7. */
1051 if (iv[0] < 1 || iv[0] > 7)
1052 return -EINVAL;
1053
1054 return 0;
1055}
1056
1057static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
1058{
1059 int err;
1060
1061 err = crypto_ccm_check_iv(req->iv);
1062 if (err)
1063 return err;
1064
1065 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
1066}
1067
1068static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
1069{
1070 int err;
1071
1072 err = crypto_ccm_check_iv(req->iv);
1073 if (err)
1074 return err;
1075
1076 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
1077}
1078
1079static int stm32_cryp_des_ecb_encrypt(struct skcipher_request *req)
1080{
1081 if (req->cryptlen % DES_BLOCK_SIZE)
1082 return -EINVAL;
1083
1084 if (req->cryptlen == 0)
1085 return 0;
1086
1087 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
1088}
1089
1090static int stm32_cryp_des_ecb_decrypt(struct skcipher_request *req)
1091{
1092 if (req->cryptlen % DES_BLOCK_SIZE)
1093 return -EINVAL;
1094
1095 if (req->cryptlen == 0)
1096 return 0;
1097
1098 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
1099}
1100
1101static int stm32_cryp_des_cbc_encrypt(struct skcipher_request *req)
1102{
1103 if (req->cryptlen % DES_BLOCK_SIZE)
1104 return -EINVAL;
1105
1106 if (req->cryptlen == 0)
1107 return 0;
1108
1109 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
1110}
1111
1112static int stm32_cryp_des_cbc_decrypt(struct skcipher_request *req)
1113{
1114 if (req->cryptlen % DES_BLOCK_SIZE)
1115 return -EINVAL;
1116
1117 if (req->cryptlen == 0)
1118 return 0;
1119
1120 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
1121}
1122
1123static int stm32_cryp_tdes_ecb_encrypt(struct skcipher_request *req)
1124{
1125 if (req->cryptlen % DES_BLOCK_SIZE)
1126 return -EINVAL;
1127
1128 if (req->cryptlen == 0)
1129 return 0;
1130
1131 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
1132}
1133
1134static int stm32_cryp_tdes_ecb_decrypt(struct skcipher_request *req)
1135{
1136 if (req->cryptlen % DES_BLOCK_SIZE)
1137 return -EINVAL;
1138
1139 if (req->cryptlen == 0)
1140 return 0;
1141
1142 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
1143}
1144
1145static int stm32_cryp_tdes_cbc_encrypt(struct skcipher_request *req)
1146{
1147 if (req->cryptlen % DES_BLOCK_SIZE)
1148 return -EINVAL;
1149
1150 if (req->cryptlen == 0)
1151 return 0;
1152
1153 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
1154}
1155
1156static int stm32_cryp_tdes_cbc_decrypt(struct skcipher_request *req)
1157{
1158 if (req->cryptlen % DES_BLOCK_SIZE)
1159 return -EINVAL;
1160
1161 if (req->cryptlen == 0)
1162 return 0;
1163
1164 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
1165}
1166
1167static int stm32_cryp_prepare_req(struct skcipher_request *req,
1168 struct aead_request *areq)
1169{
1170 struct stm32_cryp_ctx *ctx;
1171 struct stm32_cryp *cryp;
1172 struct stm32_cryp_reqctx *rctx;
1173 struct scatterlist *in_sg;
1174 int ret;
1175
1176 if (!req && !areq)
1177 return -EINVAL;
1178
1179 ctx = req ? crypto_skcipher_ctx(crypto_skcipher_reqtfm(req)) :
1180 crypto_aead_ctx(crypto_aead_reqtfm(areq));
1181
1182 cryp = ctx->cryp;
1183
1184 if (!cryp)
1185 return -ENODEV;
1186
1187 rctx = req ? skcipher_request_ctx(req) : aead_request_ctx(areq);
1188 rctx->mode &= FLG_MODE_MASK;
1189
1190 ctx->cryp = cryp;
1191
1192 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
1193 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
1194 cryp->ctx = ctx;
1195
1196 if (req) {
1197 cryp->req = req;
1198 cryp->areq = NULL;
1199 cryp->header_in = 0;
1200 cryp->payload_in = req->cryptlen;
1201 cryp->payload_out = req->cryptlen;
1202 cryp->authsize = 0;
1203 } else {
1204 /*
1205 * Length of input and output data:
1206 * Encryption case:
1207 * INPUT = AssocData || PlainText
1208 * <- assoclen -> <- cryptlen ->
1209 *
1210 * OUTPUT = AssocData || CipherText || AuthTag
1211 * <- assoclen -> <-- cryptlen --> <- authsize ->
1212 *
1213 * Decryption case:
1214 * INPUT = AssocData || CipherTex || AuthTag
1215 * <- assoclen ---> <---------- cryptlen ---------->
1216 *
1217 * OUTPUT = AssocData || PlainText
1218 * <- assoclen -> <- cryptlen - authsize ->
1219 */
1220 cryp->areq = areq;
1221 cryp->req = NULL;
1222 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
1223 if (is_encrypt(cryp)) {
1224 cryp->payload_in = areq->cryptlen;
1225 cryp->header_in = areq->assoclen;
1226 cryp->payload_out = areq->cryptlen;
1227 } else {
1228 cryp->payload_in = areq->cryptlen - cryp->authsize;
1229 cryp->header_in = areq->assoclen;
1230 cryp->payload_out = cryp->payload_in;
1231 }
1232 }
1233
1234 in_sg = req ? req->src : areq->src;
1235 scatterwalk_start(&cryp->in_walk, in_sg);
1236
1237 cryp->out_sg = req ? req->dst : areq->dst;
1238 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1239
1240 if (is_gcm(cryp) || is_ccm(cryp)) {
1241 /* In output, jump after assoc data */
1242 scatterwalk_copychunks(NULL, &cryp->out_walk, cryp->areq->assoclen, 2);
1243 }
1244
1245 if (is_ctr(cryp))
1246 memset(cryp->last_ctr, 0, sizeof(cryp->last_ctr));
1247
1248 ret = stm32_cryp_hw_init(cryp);
1249 return ret;
1250}
1251
1252static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1253 void *areq)
1254{
1255 struct skcipher_request *req = container_of(areq,
1256 struct skcipher_request,
1257 base);
1258
1259 return stm32_cryp_prepare_req(req, NULL);
1260}
1261
1262static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1263{
1264 struct skcipher_request *req = container_of(areq,
1265 struct skcipher_request,
1266 base);
1267 struct stm32_cryp_ctx *ctx = crypto_skcipher_ctx(
1268 crypto_skcipher_reqtfm(req));
1269 struct stm32_cryp *cryp = ctx->cryp;
1270
1271 if (!cryp)
1272 return -ENODEV;
1273
1274 return stm32_cryp_cpu_start(cryp);
1275}
1276
1277static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1278{
1279 struct aead_request *req = container_of(areq, struct aead_request,
1280 base);
1281
1282 return stm32_cryp_prepare_req(NULL, req);
1283}
1284
1285static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1286{
1287 struct aead_request *req = container_of(areq, struct aead_request,
1288 base);
1289 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1290 struct stm32_cryp *cryp = ctx->cryp;
1291
1292 if (!cryp)
1293 return -ENODEV;
1294
1295 if (unlikely(!cryp->payload_in && !cryp->header_in)) {
1296 /* No input data to process: get tag and finish */
1297 stm32_cryp_finish_req(cryp, 0);
1298 return 0;
1299 }
1300
1301 return stm32_cryp_cpu_start(cryp);
1302}
1303
1304static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1305{
1306 u32 cfg, size_bit;
1307 unsigned int i;
1308 int ret = 0;
1309
1310 /* Update Config */
1311 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1312
1313 cfg &= ~CR_PH_MASK;
1314 cfg |= CR_PH_FINAL;
1315 cfg &= ~CR_DEC_NOT_ENC;
1316 cfg |= CR_CRYPEN;
1317
1318 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1319
1320 if (is_gcm(cryp)) {
1321 /* GCM: write aad and payload size (in bits) */
1322 size_bit = cryp->areq->assoclen * 8;
1323 if (cryp->caps->swap_final)
1324 size_bit = (__force u32)cpu_to_be32(size_bit);
1325
1326 stm32_cryp_write(cryp, cryp->caps->din, 0);
1327 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1328
1329 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1330 cryp->areq->cryptlen - cryp->authsize;
1331 size_bit *= 8;
1332 if (cryp->caps->swap_final)
1333 size_bit = (__force u32)cpu_to_be32(size_bit);
1334
1335 stm32_cryp_write(cryp, cryp->caps->din, 0);
1336 stm32_cryp_write(cryp, cryp->caps->din, size_bit);
1337 } else {
1338 /* CCM: write CTR0 */
1339 u32 iv32[AES_BLOCK_32];
1340 u8 *iv = (u8 *)iv32;
1341 __be32 *biv = (__be32 *)iv32;
1342
1343 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1344 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1345
1346 for (i = 0; i < AES_BLOCK_32; i++) {
1347 u32 xiv = iv32[i];
1348
1349 if (!cryp->caps->padding_wa)
1350 xiv = be32_to_cpu(biv[i]);
1351 stm32_cryp_write(cryp, cryp->caps->din, xiv);
1352 }
1353 }
1354
1355 /* Wait for output data */
1356 ret = stm32_cryp_wait_output(cryp);
1357 if (ret) {
1358 dev_err(cryp->dev, "Timeout (read tag)\n");
1359 return ret;
1360 }
1361
1362 if (is_encrypt(cryp)) {
1363 u32 out_tag[AES_BLOCK_32];
1364
1365 /* Get and write tag */
1366 for (i = 0; i < AES_BLOCK_32; i++)
1367 out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1368
1369 scatterwalk_copychunks(out_tag, &cryp->out_walk, cryp->authsize, 1);
1370 } else {
1371 /* Get and check tag */
1372 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1373
1374 scatterwalk_copychunks(in_tag, &cryp->in_walk, cryp->authsize, 0);
1375
1376 for (i = 0; i < AES_BLOCK_32; i++)
1377 out_tag[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1378
1379 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1380 ret = -EBADMSG;
1381 }
1382
1383 /* Disable cryp */
1384 cfg &= ~CR_CRYPEN;
1385 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1386
1387 return ret;
1388}
1389
1390static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1391{
1392 u32 cr;
1393
1394 if (unlikely(cryp->last_ctr[3] == cpu_to_be32(0xFFFFFFFF))) {
1395 /*
1396 * In this case, we need to increment manually the ctr counter,
1397 * as HW doesn't handle the U32 carry.
1398 */
1399 crypto_inc((u8 *)cryp->last_ctr, sizeof(cryp->last_ctr));
1400
1401 cr = stm32_cryp_read(cryp, cryp->caps->cr);
1402 stm32_cryp_write(cryp, cryp->caps->cr, cr & ~CR_CRYPEN);
1403
1404 stm32_cryp_hw_write_iv(cryp, cryp->last_ctr);
1405
1406 stm32_cryp_write(cryp, cryp->caps->cr, cr);
1407 }
1408
1409 /* The IV registers are BE */
1410 cryp->last_ctr[0] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0l));
1411 cryp->last_ctr[1] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv0r));
1412 cryp->last_ctr[2] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1l));
1413 cryp->last_ctr[3] = cpu_to_be32(stm32_cryp_read(cryp, cryp->caps->iv1r));
1414}
1415
1416static void stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1417{
1418 unsigned int i;
1419 u32 block[AES_BLOCK_32];
1420
1421 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1422 block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1423
1424 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1425 cryp->payload_out), 1);
1426 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1427 cryp->payload_out);
1428}
1429
1430static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1431{
1432 unsigned int i;
1433 u32 block[AES_BLOCK_32] = {0};
1434
1435 scatterwalk_copychunks(block, &cryp->in_walk, min_t(size_t, cryp->hw_blocksize,
1436 cryp->payload_in), 0);
1437 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1438 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1439
1440 cryp->payload_in -= min_t(size_t, cryp->hw_blocksize, cryp->payload_in);
1441}
1442
1443static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1444{
1445 int err;
1446 u32 cfg, block[AES_BLOCK_32] = {0};
1447 unsigned int i;
1448
1449 /* 'Special workaround' procedure described in the datasheet */
1450
1451 /* a) disable ip */
1452 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1453 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1454 cfg &= ~CR_CRYPEN;
1455 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1456
1457 /* b) Update IV1R */
1458 stm32_cryp_write(cryp, cryp->caps->iv1r, cryp->gcm_ctr - 2);
1459
1460 /* c) change mode to CTR */
1461 cfg &= ~CR_ALGO_MASK;
1462 cfg |= CR_AES_CTR;
1463 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1464
1465 /* a) enable IP */
1466 cfg |= CR_CRYPEN;
1467 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1468
1469 /* b) pad and write the last block */
1470 stm32_cryp_irq_write_block(cryp);
1471 /* wait end of process */
1472 err = stm32_cryp_wait_output(cryp);
1473 if (err) {
1474 dev_err(cryp->dev, "Timeout (write gcm last data)\n");
1475 return stm32_cryp_finish_req(cryp, err);
1476 }
1477
1478 /* c) get and store encrypted data */
1479 /*
1480 * Same code as stm32_cryp_irq_read_data(), but we want to store
1481 * block value
1482 */
1483 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1484 block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1485
1486 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1487 cryp->payload_out), 1);
1488 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize,
1489 cryp->payload_out);
1490
1491 /* d) change mode back to AES GCM */
1492 cfg &= ~CR_ALGO_MASK;
1493 cfg |= CR_AES_GCM;
1494 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1495
1496 /* e) change phase to Final */
1497 cfg &= ~CR_PH_MASK;
1498 cfg |= CR_PH_FINAL;
1499 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1500
1501 /* f) write padded data */
1502 for (i = 0; i < AES_BLOCK_32; i++)
1503 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1504
1505 /* g) Empty fifo out */
1506 err = stm32_cryp_wait_output(cryp);
1507 if (err) {
1508 dev_err(cryp->dev, "Timeout (write gcm padded data)\n");
1509 return stm32_cryp_finish_req(cryp, err);
1510 }
1511
1512 for (i = 0; i < AES_BLOCK_32; i++)
1513 stm32_cryp_read(cryp, cryp->caps->dout);
1514
1515 /* h) run the he normal Final phase */
1516 stm32_cryp_finish_req(cryp, 0);
1517}
1518
1519static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1520{
1521 u32 cfg;
1522
1523 /* disable ip, set NPBLB and reneable ip */
1524 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1525 cfg &= ~CR_CRYPEN;
1526 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1527
1528 cfg |= (cryp->hw_blocksize - cryp->payload_in) << CR_NBPBL_SHIFT;
1529 cfg |= CR_CRYPEN;
1530 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1531}
1532
1533static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1534{
1535 int err = 0;
1536 u32 cfg, iv1tmp;
1537 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32];
1538 u32 block[AES_BLOCK_32] = {0};
1539 unsigned int i;
1540
1541 /* 'Special workaround' procedure described in the datasheet */
1542
1543 /* a) disable ip */
1544 stm32_cryp_write(cryp, cryp->caps->imsc, 0);
1545
1546 cfg = stm32_cryp_read(cryp, cryp->caps->cr);
1547 cfg &= ~CR_CRYPEN;
1548 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1549
1550 /* b) get IV1 from CRYP_CSGCMCCM7 */
1551 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1552
1553 /* c) Load CRYP_CSGCMCCMxR */
1554 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1555 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1556
1557 /* d) Write IV1R */
1558 stm32_cryp_write(cryp, cryp->caps->iv1r, iv1tmp);
1559
1560 /* e) change mode to CTR */
1561 cfg &= ~CR_ALGO_MASK;
1562 cfg |= CR_AES_CTR;
1563 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1564
1565 /* a) enable IP */
1566 cfg |= CR_CRYPEN;
1567 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1568
1569 /* b) pad and write the last block */
1570 stm32_cryp_irq_write_block(cryp);
1571 /* wait end of process */
1572 err = stm32_cryp_wait_output(cryp);
1573 if (err) {
1574 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1575 return stm32_cryp_finish_req(cryp, err);
1576 }
1577
1578 /* c) get and store decrypted data */
1579 /*
1580 * Same code as stm32_cryp_irq_read_data(), but we want to store
1581 * block value
1582 */
1583 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++)
1584 block[i] = stm32_cryp_read(cryp, cryp->caps->dout);
1585
1586 scatterwalk_copychunks(block, &cryp->out_walk, min_t(size_t, cryp->hw_blocksize,
1587 cryp->payload_out), 1);
1588 cryp->payload_out -= min_t(size_t, cryp->hw_blocksize, cryp->payload_out);
1589
1590 /* d) Load again CRYP_CSGCMCCMxR */
1591 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1592 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1593
1594 /* e) change mode back to AES CCM */
1595 cfg &= ~CR_ALGO_MASK;
1596 cfg |= CR_AES_CCM;
1597 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1598
1599 /* f) change phase to header */
1600 cfg &= ~CR_PH_MASK;
1601 cfg |= CR_PH_HEADER;
1602 stm32_cryp_write(cryp, cryp->caps->cr, cfg);
1603
1604 /* g) XOR and write padded data */
1605 for (i = 0; i < ARRAY_SIZE(block); i++) {
1606 block[i] ^= cstmp1[i];
1607 block[i] ^= cstmp2[i];
1608 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1609 }
1610
1611 /* h) wait for completion */
1612 err = stm32_cryp_wait_busy(cryp);
1613 if (err)
1614 dev_err(cryp->dev, "Timeout (write ccm padded data)\n");
1615
1616 /* i) run the he normal Final phase */
1617 stm32_cryp_finish_req(cryp, err);
1618}
1619
1620static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1621{
1622 if (unlikely(!cryp->payload_in)) {
1623 dev_warn(cryp->dev, "No more data to process\n");
1624 return;
1625 }
1626
1627 if (unlikely(cryp->payload_in < AES_BLOCK_SIZE &&
1628 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1629 is_encrypt(cryp))) {
1630 /* Padding for AES GCM encryption */
1631 if (cryp->caps->padding_wa) {
1632 /* Special case 1 */
1633 stm32_cryp_irq_write_gcm_padded_data(cryp);
1634 return;
1635 }
1636
1637 /* Setting padding bytes (NBBLB) */
1638 stm32_cryp_irq_set_npblb(cryp);
1639 }
1640
1641 if (unlikely((cryp->payload_in < AES_BLOCK_SIZE) &&
1642 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1643 is_decrypt(cryp))) {
1644 /* Padding for AES CCM decryption */
1645 if (cryp->caps->padding_wa) {
1646 /* Special case 2 */
1647 stm32_cryp_irq_write_ccm_padded_data(cryp);
1648 return;
1649 }
1650
1651 /* Setting padding bytes (NBBLB) */
1652 stm32_cryp_irq_set_npblb(cryp);
1653 }
1654
1655 if (is_aes(cryp) && is_ctr(cryp))
1656 stm32_cryp_check_ctr_counter(cryp);
1657
1658 stm32_cryp_irq_write_block(cryp);
1659}
1660
1661static void stm32_cryp_irq_write_gcmccm_header(struct stm32_cryp *cryp)
1662{
1663 unsigned int i;
1664 u32 block[AES_BLOCK_32] = {0};
1665 size_t written;
1666
1667 written = min_t(size_t, AES_BLOCK_SIZE, cryp->header_in);
1668
1669 scatterwalk_copychunks(block, &cryp->in_walk, written, 0);
1670 for (i = 0; i < AES_BLOCK_32; i++)
1671 stm32_cryp_write(cryp, cryp->caps->din, block[i]);
1672
1673 cryp->header_in -= written;
1674
1675 stm32_crypt_gcmccm_end_header(cryp);
1676}
1677
1678static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1679{
1680 struct stm32_cryp *cryp = arg;
1681 u32 ph;
1682 u32 it_mask = stm32_cryp_read(cryp, cryp->caps->imsc);
1683
1684 if (cryp->irq_status & MISR_OUT)
1685 /* Output FIFO IRQ: read data */
1686 stm32_cryp_irq_read_data(cryp);
1687
1688 if (cryp->irq_status & MISR_IN) {
1689 if (is_gcm(cryp) || is_ccm(cryp)) {
1690 ph = stm32_cryp_read(cryp, cryp->caps->cr) & CR_PH_MASK;
1691 if (unlikely(ph == CR_PH_HEADER))
1692 /* Write Header */
1693 stm32_cryp_irq_write_gcmccm_header(cryp);
1694 else
1695 /* Input FIFO IRQ: write data */
1696 stm32_cryp_irq_write_data(cryp);
1697 if (is_gcm(cryp))
1698 cryp->gcm_ctr++;
1699 } else {
1700 /* Input FIFO IRQ: write data */
1701 stm32_cryp_irq_write_data(cryp);
1702 }
1703 }
1704
1705 /* Mask useless interrupts */
1706 if (!cryp->payload_in && !cryp->header_in)
1707 it_mask &= ~IMSCR_IN;
1708 if (!cryp->payload_out)
1709 it_mask &= ~IMSCR_OUT;
1710 stm32_cryp_write(cryp, cryp->caps->imsc, it_mask);
1711
1712 if (!cryp->payload_in && !cryp->header_in && !cryp->payload_out)
1713 stm32_cryp_finish_req(cryp, 0);
1714
1715 return IRQ_HANDLED;
1716}
1717
1718static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1719{
1720 struct stm32_cryp *cryp = arg;
1721
1722 cryp->irq_status = stm32_cryp_read(cryp, cryp->caps->mis);
1723
1724 return IRQ_WAKE_THREAD;
1725}
1726
1727static struct skcipher_alg crypto_algs[] = {
1728{
1729 .base.cra_name = "ecb(aes)",
1730 .base.cra_driver_name = "stm32-ecb-aes",
1731 .base.cra_priority = 200,
1732 .base.cra_flags = CRYPTO_ALG_ASYNC,
1733 .base.cra_blocksize = AES_BLOCK_SIZE,
1734 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1735 .base.cra_alignmask = 0,
1736 .base.cra_module = THIS_MODULE,
1737
1738 .init = stm32_cryp_init_tfm,
1739 .min_keysize = AES_MIN_KEY_SIZE,
1740 .max_keysize = AES_MAX_KEY_SIZE,
1741 .setkey = stm32_cryp_aes_setkey,
1742 .encrypt = stm32_cryp_aes_ecb_encrypt,
1743 .decrypt = stm32_cryp_aes_ecb_decrypt,
1744},
1745{
1746 .base.cra_name = "cbc(aes)",
1747 .base.cra_driver_name = "stm32-cbc-aes",
1748 .base.cra_priority = 200,
1749 .base.cra_flags = CRYPTO_ALG_ASYNC,
1750 .base.cra_blocksize = AES_BLOCK_SIZE,
1751 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1752 .base.cra_alignmask = 0,
1753 .base.cra_module = THIS_MODULE,
1754
1755 .init = stm32_cryp_init_tfm,
1756 .min_keysize = AES_MIN_KEY_SIZE,
1757 .max_keysize = AES_MAX_KEY_SIZE,
1758 .ivsize = AES_BLOCK_SIZE,
1759 .setkey = stm32_cryp_aes_setkey,
1760 .encrypt = stm32_cryp_aes_cbc_encrypt,
1761 .decrypt = stm32_cryp_aes_cbc_decrypt,
1762},
1763{
1764 .base.cra_name = "ctr(aes)",
1765 .base.cra_driver_name = "stm32-ctr-aes",
1766 .base.cra_priority = 200,
1767 .base.cra_flags = CRYPTO_ALG_ASYNC,
1768 .base.cra_blocksize = 1,
1769 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1770 .base.cra_alignmask = 0,
1771 .base.cra_module = THIS_MODULE,
1772
1773 .init = stm32_cryp_init_tfm,
1774 .min_keysize = AES_MIN_KEY_SIZE,
1775 .max_keysize = AES_MAX_KEY_SIZE,
1776 .ivsize = AES_BLOCK_SIZE,
1777 .setkey = stm32_cryp_aes_setkey,
1778 .encrypt = stm32_cryp_aes_ctr_encrypt,
1779 .decrypt = stm32_cryp_aes_ctr_decrypt,
1780},
1781{
1782 .base.cra_name = "ecb(des)",
1783 .base.cra_driver_name = "stm32-ecb-des",
1784 .base.cra_priority = 200,
1785 .base.cra_flags = CRYPTO_ALG_ASYNC,
1786 .base.cra_blocksize = DES_BLOCK_SIZE,
1787 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1788 .base.cra_alignmask = 0,
1789 .base.cra_module = THIS_MODULE,
1790
1791 .init = stm32_cryp_init_tfm,
1792 .min_keysize = DES_BLOCK_SIZE,
1793 .max_keysize = DES_BLOCK_SIZE,
1794 .setkey = stm32_cryp_des_setkey,
1795 .encrypt = stm32_cryp_des_ecb_encrypt,
1796 .decrypt = stm32_cryp_des_ecb_decrypt,
1797},
1798{
1799 .base.cra_name = "cbc(des)",
1800 .base.cra_driver_name = "stm32-cbc-des",
1801 .base.cra_priority = 200,
1802 .base.cra_flags = CRYPTO_ALG_ASYNC,
1803 .base.cra_blocksize = DES_BLOCK_SIZE,
1804 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1805 .base.cra_alignmask = 0,
1806 .base.cra_module = THIS_MODULE,
1807
1808 .init = stm32_cryp_init_tfm,
1809 .min_keysize = DES_BLOCK_SIZE,
1810 .max_keysize = DES_BLOCK_SIZE,
1811 .ivsize = DES_BLOCK_SIZE,
1812 .setkey = stm32_cryp_des_setkey,
1813 .encrypt = stm32_cryp_des_cbc_encrypt,
1814 .decrypt = stm32_cryp_des_cbc_decrypt,
1815},
1816{
1817 .base.cra_name = "ecb(des3_ede)",
1818 .base.cra_driver_name = "stm32-ecb-des3",
1819 .base.cra_priority = 200,
1820 .base.cra_flags = CRYPTO_ALG_ASYNC,
1821 .base.cra_blocksize = DES_BLOCK_SIZE,
1822 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1823 .base.cra_alignmask = 0,
1824 .base.cra_module = THIS_MODULE,
1825
1826 .init = stm32_cryp_init_tfm,
1827 .min_keysize = 3 * DES_BLOCK_SIZE,
1828 .max_keysize = 3 * DES_BLOCK_SIZE,
1829 .setkey = stm32_cryp_tdes_setkey,
1830 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1831 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1832},
1833{
1834 .base.cra_name = "cbc(des3_ede)",
1835 .base.cra_driver_name = "stm32-cbc-des3",
1836 .base.cra_priority = 200,
1837 .base.cra_flags = CRYPTO_ALG_ASYNC,
1838 .base.cra_blocksize = DES_BLOCK_SIZE,
1839 .base.cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1840 .base.cra_alignmask = 0,
1841 .base.cra_module = THIS_MODULE,
1842
1843 .init = stm32_cryp_init_tfm,
1844 .min_keysize = 3 * DES_BLOCK_SIZE,
1845 .max_keysize = 3 * DES_BLOCK_SIZE,
1846 .ivsize = DES_BLOCK_SIZE,
1847 .setkey = stm32_cryp_tdes_setkey,
1848 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1849 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1850},
1851};
1852
1853static struct aead_alg aead_algs[] = {
1854{
1855 .setkey = stm32_cryp_aes_aead_setkey,
1856 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1857 .encrypt = stm32_cryp_aes_gcm_encrypt,
1858 .decrypt = stm32_cryp_aes_gcm_decrypt,
1859 .init = stm32_cryp_aes_aead_init,
1860 .ivsize = 12,
1861 .maxauthsize = AES_BLOCK_SIZE,
1862
1863 .base = {
1864 .cra_name = "gcm(aes)",
1865 .cra_driver_name = "stm32-gcm-aes",
1866 .cra_priority = 200,
1867 .cra_flags = CRYPTO_ALG_ASYNC,
1868 .cra_blocksize = 1,
1869 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1870 .cra_alignmask = 0,
1871 .cra_module = THIS_MODULE,
1872 },
1873},
1874{
1875 .setkey = stm32_cryp_aes_aead_setkey,
1876 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1877 .encrypt = stm32_cryp_aes_ccm_encrypt,
1878 .decrypt = stm32_cryp_aes_ccm_decrypt,
1879 .init = stm32_cryp_aes_aead_init,
1880 .ivsize = AES_BLOCK_SIZE,
1881 .maxauthsize = AES_BLOCK_SIZE,
1882
1883 .base = {
1884 .cra_name = "ccm(aes)",
1885 .cra_driver_name = "stm32-ccm-aes",
1886 .cra_priority = 200,
1887 .cra_flags = CRYPTO_ALG_ASYNC,
1888 .cra_blocksize = 1,
1889 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1890 .cra_alignmask = 0,
1891 .cra_module = THIS_MODULE,
1892 },
1893},
1894};
1895
1896static const struct stm32_cryp_caps ux500_data = {
1897 .aeads_support = false,
1898 .linear_aes_key = true,
1899 .kp_mode = false,
1900 .iv_protection = true,
1901 .swap_final = true,
1902 .padding_wa = true,
1903 .cr = UX500_CRYP_CR,
1904 .sr = UX500_CRYP_SR,
1905 .din = UX500_CRYP_DIN,
1906 .dout = UX500_CRYP_DOUT,
1907 .imsc = UX500_CRYP_IMSC,
1908 .mis = UX500_CRYP_MIS,
1909 .k1l = UX500_CRYP_K1L,
1910 .k1r = UX500_CRYP_K1R,
1911 .k3r = UX500_CRYP_K3R,
1912 .iv0l = UX500_CRYP_IV0L,
1913 .iv0r = UX500_CRYP_IV0R,
1914 .iv1l = UX500_CRYP_IV1L,
1915 .iv1r = UX500_CRYP_IV1R,
1916};
1917
1918static const struct stm32_cryp_caps f7_data = {
1919 .aeads_support = true,
1920 .linear_aes_key = false,
1921 .kp_mode = true,
1922 .iv_protection = false,
1923 .swap_final = true,
1924 .padding_wa = true,
1925 .cr = CRYP_CR,
1926 .sr = CRYP_SR,
1927 .din = CRYP_DIN,
1928 .dout = CRYP_DOUT,
1929 .imsc = CRYP_IMSCR,
1930 .mis = CRYP_MISR,
1931 .k1l = CRYP_K1LR,
1932 .k1r = CRYP_K1RR,
1933 .k3r = CRYP_K3RR,
1934 .iv0l = CRYP_IV0LR,
1935 .iv0r = CRYP_IV0RR,
1936 .iv1l = CRYP_IV1LR,
1937 .iv1r = CRYP_IV1RR,
1938};
1939
1940static const struct stm32_cryp_caps mp1_data = {
1941 .aeads_support = true,
1942 .linear_aes_key = false,
1943 .kp_mode = true,
1944 .iv_protection = false,
1945 .swap_final = false,
1946 .padding_wa = false,
1947 .cr = CRYP_CR,
1948 .sr = CRYP_SR,
1949 .din = CRYP_DIN,
1950 .dout = CRYP_DOUT,
1951 .imsc = CRYP_IMSCR,
1952 .mis = CRYP_MISR,
1953 .k1l = CRYP_K1LR,
1954 .k1r = CRYP_K1RR,
1955 .k3r = CRYP_K3RR,
1956 .iv0l = CRYP_IV0LR,
1957 .iv0r = CRYP_IV0RR,
1958 .iv1l = CRYP_IV1LR,
1959 .iv1r = CRYP_IV1RR,
1960};
1961
1962static const struct of_device_id stm32_dt_ids[] = {
1963 { .compatible = "stericsson,ux500-cryp", .data = &ux500_data},
1964 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1965 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1966 {},
1967};
1968MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1969
1970static int stm32_cryp_probe(struct platform_device *pdev)
1971{
1972 struct device *dev = &pdev->dev;
1973 struct stm32_cryp *cryp;
1974 struct reset_control *rst;
1975 int irq, ret;
1976
1977 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1978 if (!cryp)
1979 return -ENOMEM;
1980
1981 cryp->caps = of_device_get_match_data(dev);
1982 if (!cryp->caps)
1983 return -ENODEV;
1984
1985 cryp->dev = dev;
1986
1987 cryp->regs = devm_platform_ioremap_resource(pdev, 0);
1988 if (IS_ERR(cryp->regs))
1989 return PTR_ERR(cryp->regs);
1990
1991 irq = platform_get_irq(pdev, 0);
1992 if (irq < 0)
1993 return irq;
1994
1995 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1996 stm32_cryp_irq_thread, IRQF_ONESHOT,
1997 dev_name(dev), cryp);
1998 if (ret) {
1999 dev_err(dev, "Cannot grab IRQ\n");
2000 return ret;
2001 }
2002
2003 cryp->clk = devm_clk_get(dev, NULL);
2004 if (IS_ERR(cryp->clk)) {
2005 dev_err_probe(dev, PTR_ERR(cryp->clk), "Could not get clock\n");
2006
2007 return PTR_ERR(cryp->clk);
2008 }
2009
2010 ret = clk_prepare_enable(cryp->clk);
2011 if (ret) {
2012 dev_err(cryp->dev, "Failed to enable clock\n");
2013 return ret;
2014 }
2015
2016 pm_runtime_set_autosuspend_delay(dev, CRYP_AUTOSUSPEND_DELAY);
2017 pm_runtime_use_autosuspend(dev);
2018
2019 pm_runtime_get_noresume(dev);
2020 pm_runtime_set_active(dev);
2021 pm_runtime_enable(dev);
2022
2023 rst = devm_reset_control_get(dev, NULL);
2024 if (IS_ERR(rst)) {
2025 ret = PTR_ERR(rst);
2026 if (ret == -EPROBE_DEFER)
2027 goto err_rst;
2028 } else {
2029 reset_control_assert(rst);
2030 udelay(2);
2031 reset_control_deassert(rst);
2032 }
2033
2034 platform_set_drvdata(pdev, cryp);
2035
2036 spin_lock(&cryp_list.lock);
2037 list_add(&cryp->list, &cryp_list.dev_list);
2038 spin_unlock(&cryp_list.lock);
2039
2040 /* Initialize crypto engine */
2041 cryp->engine = crypto_engine_alloc_init(dev, 1);
2042 if (!cryp->engine) {
2043 dev_err(dev, "Could not init crypto engine\n");
2044 ret = -ENOMEM;
2045 goto err_engine1;
2046 }
2047
2048 ret = crypto_engine_start(cryp->engine);
2049 if (ret) {
2050 dev_err(dev, "Could not start crypto engine\n");
2051 goto err_engine2;
2052 }
2053
2054 ret = crypto_register_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2055 if (ret) {
2056 dev_err(dev, "Could not register algs\n");
2057 goto err_algs;
2058 }
2059
2060 if (cryp->caps->aeads_support) {
2061 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2062 if (ret)
2063 goto err_aead_algs;
2064 }
2065
2066 dev_info(dev, "Initialized\n");
2067
2068 pm_runtime_put_sync(dev);
2069
2070 return 0;
2071
2072err_aead_algs:
2073 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2074err_algs:
2075err_engine2:
2076 crypto_engine_exit(cryp->engine);
2077err_engine1:
2078 spin_lock(&cryp_list.lock);
2079 list_del(&cryp->list);
2080 spin_unlock(&cryp_list.lock);
2081err_rst:
2082 pm_runtime_disable(dev);
2083 pm_runtime_put_noidle(dev);
2084
2085 clk_disable_unprepare(cryp->clk);
2086
2087 return ret;
2088}
2089
2090static int stm32_cryp_remove(struct platform_device *pdev)
2091{
2092 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2093 int ret;
2094
2095 if (!cryp)
2096 return -ENODEV;
2097
2098 ret = pm_runtime_resume_and_get(cryp->dev);
2099 if (ret < 0)
2100 return ret;
2101
2102 if (cryp->caps->aeads_support)
2103 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2104 crypto_unregister_skciphers(crypto_algs, ARRAY_SIZE(crypto_algs));
2105
2106 crypto_engine_exit(cryp->engine);
2107
2108 spin_lock(&cryp_list.lock);
2109 list_del(&cryp->list);
2110 spin_unlock(&cryp_list.lock);
2111
2112 pm_runtime_disable(cryp->dev);
2113 pm_runtime_put_noidle(cryp->dev);
2114
2115 clk_disable_unprepare(cryp->clk);
2116
2117 return 0;
2118}
2119
2120#ifdef CONFIG_PM
2121static int stm32_cryp_runtime_suspend(struct device *dev)
2122{
2123 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2124
2125 clk_disable_unprepare(cryp->clk);
2126
2127 return 0;
2128}
2129
2130static int stm32_cryp_runtime_resume(struct device *dev)
2131{
2132 struct stm32_cryp *cryp = dev_get_drvdata(dev);
2133 int ret;
2134
2135 ret = clk_prepare_enable(cryp->clk);
2136 if (ret) {
2137 dev_err(cryp->dev, "Failed to prepare_enable clock\n");
2138 return ret;
2139 }
2140
2141 return 0;
2142}
2143#endif
2144
2145static const struct dev_pm_ops stm32_cryp_pm_ops = {
2146 SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend,
2147 pm_runtime_force_resume)
2148 SET_RUNTIME_PM_OPS(stm32_cryp_runtime_suspend,
2149 stm32_cryp_runtime_resume, NULL)
2150};
2151
2152static struct platform_driver stm32_cryp_driver = {
2153 .probe = stm32_cryp_probe,
2154 .remove = stm32_cryp_remove,
2155 .driver = {
2156 .name = DRIVER_NAME,
2157 .pm = &stm32_cryp_pm_ops,
2158 .of_match_table = stm32_dt_ids,
2159 },
2160};
2161
2162module_platform_driver(stm32_cryp_driver);
2163
2164MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2165MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2166MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) STMicroelectronics SA 2017
3 * Author: Fabien Dessenne <fabien.dessenne@st.com>
4 * License terms: GNU General Public License (GPL), version 2
5 */
6
7#include <linux/clk.h>
8#include <linux/delay.h>
9#include <linux/interrupt.h>
10#include <linux/iopoll.h>
11#include <linux/module.h>
12#include <linux/of_device.h>
13#include <linux/platform_device.h>
14#include <linux/reset.h>
15
16#include <crypto/aes.h>
17#include <crypto/des.h>
18#include <crypto/engine.h>
19#include <crypto/scatterwalk.h>
20#include <crypto/internal/aead.h>
21
22#define DRIVER_NAME "stm32-cryp"
23
24/* Bit [0] encrypt / decrypt */
25#define FLG_ENCRYPT BIT(0)
26/* Bit [8..1] algo & operation mode */
27#define FLG_AES BIT(1)
28#define FLG_DES BIT(2)
29#define FLG_TDES BIT(3)
30#define FLG_ECB BIT(4)
31#define FLG_CBC BIT(5)
32#define FLG_CTR BIT(6)
33#define FLG_GCM BIT(7)
34#define FLG_CCM BIT(8)
35/* Mode mask = bits [15..0] */
36#define FLG_MODE_MASK GENMASK(15, 0)
37/* Bit [31..16] status */
38#define FLG_CCM_PADDED_WA BIT(16)
39
40/* Registers */
41#define CRYP_CR 0x00000000
42#define CRYP_SR 0x00000004
43#define CRYP_DIN 0x00000008
44#define CRYP_DOUT 0x0000000C
45#define CRYP_DMACR 0x00000010
46#define CRYP_IMSCR 0x00000014
47#define CRYP_RISR 0x00000018
48#define CRYP_MISR 0x0000001C
49#define CRYP_K0LR 0x00000020
50#define CRYP_K0RR 0x00000024
51#define CRYP_K1LR 0x00000028
52#define CRYP_K1RR 0x0000002C
53#define CRYP_K2LR 0x00000030
54#define CRYP_K2RR 0x00000034
55#define CRYP_K3LR 0x00000038
56#define CRYP_K3RR 0x0000003C
57#define CRYP_IV0LR 0x00000040
58#define CRYP_IV0RR 0x00000044
59#define CRYP_IV1LR 0x00000048
60#define CRYP_IV1RR 0x0000004C
61#define CRYP_CSGCMCCM0R 0x00000050
62#define CRYP_CSGCM0R 0x00000070
63
64/* Registers values */
65#define CR_DEC_NOT_ENC 0x00000004
66#define CR_TDES_ECB 0x00000000
67#define CR_TDES_CBC 0x00000008
68#define CR_DES_ECB 0x00000010
69#define CR_DES_CBC 0x00000018
70#define CR_AES_ECB 0x00000020
71#define CR_AES_CBC 0x00000028
72#define CR_AES_CTR 0x00000030
73#define CR_AES_KP 0x00000038
74#define CR_AES_GCM 0x00080000
75#define CR_AES_CCM 0x00080008
76#define CR_AES_UNKNOWN 0xFFFFFFFF
77#define CR_ALGO_MASK 0x00080038
78#define CR_DATA32 0x00000000
79#define CR_DATA16 0x00000040
80#define CR_DATA8 0x00000080
81#define CR_DATA1 0x000000C0
82#define CR_KEY128 0x00000000
83#define CR_KEY192 0x00000100
84#define CR_KEY256 0x00000200
85#define CR_FFLUSH 0x00004000
86#define CR_CRYPEN 0x00008000
87#define CR_PH_INIT 0x00000000
88#define CR_PH_HEADER 0x00010000
89#define CR_PH_PAYLOAD 0x00020000
90#define CR_PH_FINAL 0x00030000
91#define CR_PH_MASK 0x00030000
92#define CR_NBPBL_SHIFT 20
93
94#define SR_BUSY 0x00000010
95#define SR_OFNE 0x00000004
96
97#define IMSCR_IN BIT(0)
98#define IMSCR_OUT BIT(1)
99
100#define MISR_IN BIT(0)
101#define MISR_OUT BIT(1)
102
103/* Misc */
104#define AES_BLOCK_32 (AES_BLOCK_SIZE / sizeof(u32))
105#define GCM_CTR_INIT 2
106#define _walked_in (cryp->in_walk.offset - cryp->in_sg->offset)
107#define _walked_out (cryp->out_walk.offset - cryp->out_sg->offset)
108
109struct stm32_cryp_caps {
110 bool swap_final;
111 bool padding_wa;
112};
113
114struct stm32_cryp_ctx {
115 struct crypto_engine_ctx enginectx;
116 struct stm32_cryp *cryp;
117 int keylen;
118 u32 key[AES_KEYSIZE_256 / sizeof(u32)];
119 unsigned long flags;
120};
121
122struct stm32_cryp_reqctx {
123 unsigned long mode;
124};
125
126struct stm32_cryp {
127 struct list_head list;
128 struct device *dev;
129 void __iomem *regs;
130 struct clk *clk;
131 unsigned long flags;
132 u32 irq_status;
133 const struct stm32_cryp_caps *caps;
134 struct stm32_cryp_ctx *ctx;
135
136 struct crypto_engine *engine;
137
138 struct mutex lock; /* protects req / areq */
139 struct ablkcipher_request *req;
140 struct aead_request *areq;
141
142 size_t authsize;
143 size_t hw_blocksize;
144
145 size_t total_in;
146 size_t total_in_save;
147 size_t total_out;
148 size_t total_out_save;
149
150 struct scatterlist *in_sg;
151 struct scatterlist *out_sg;
152 struct scatterlist *out_sg_save;
153
154 struct scatterlist in_sgl;
155 struct scatterlist out_sgl;
156 bool sgs_copied;
157
158 int in_sg_len;
159 int out_sg_len;
160
161 struct scatter_walk in_walk;
162 struct scatter_walk out_walk;
163
164 u32 last_ctr[4];
165 u32 gcm_ctr;
166};
167
168struct stm32_cryp_list {
169 struct list_head dev_list;
170 spinlock_t lock; /* protect dev_list */
171};
172
173static struct stm32_cryp_list cryp_list = {
174 .dev_list = LIST_HEAD_INIT(cryp_list.dev_list),
175 .lock = __SPIN_LOCK_UNLOCKED(cryp_list.lock),
176};
177
178static inline bool is_aes(struct stm32_cryp *cryp)
179{
180 return cryp->flags & FLG_AES;
181}
182
183static inline bool is_des(struct stm32_cryp *cryp)
184{
185 return cryp->flags & FLG_DES;
186}
187
188static inline bool is_tdes(struct stm32_cryp *cryp)
189{
190 return cryp->flags & FLG_TDES;
191}
192
193static inline bool is_ecb(struct stm32_cryp *cryp)
194{
195 return cryp->flags & FLG_ECB;
196}
197
198static inline bool is_cbc(struct stm32_cryp *cryp)
199{
200 return cryp->flags & FLG_CBC;
201}
202
203static inline bool is_ctr(struct stm32_cryp *cryp)
204{
205 return cryp->flags & FLG_CTR;
206}
207
208static inline bool is_gcm(struct stm32_cryp *cryp)
209{
210 return cryp->flags & FLG_GCM;
211}
212
213static inline bool is_ccm(struct stm32_cryp *cryp)
214{
215 return cryp->flags & FLG_CCM;
216}
217
218static inline bool is_encrypt(struct stm32_cryp *cryp)
219{
220 return cryp->flags & FLG_ENCRYPT;
221}
222
223static inline bool is_decrypt(struct stm32_cryp *cryp)
224{
225 return !is_encrypt(cryp);
226}
227
228static inline u32 stm32_cryp_read(struct stm32_cryp *cryp, u32 ofst)
229{
230 return readl_relaxed(cryp->regs + ofst);
231}
232
233static inline void stm32_cryp_write(struct stm32_cryp *cryp, u32 ofst, u32 val)
234{
235 writel_relaxed(val, cryp->regs + ofst);
236}
237
238static inline int stm32_cryp_wait_busy(struct stm32_cryp *cryp)
239{
240 u32 status;
241
242 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
243 !(status & SR_BUSY), 10, 100000);
244}
245
246static inline int stm32_cryp_wait_enable(struct stm32_cryp *cryp)
247{
248 u32 status;
249
250 return readl_relaxed_poll_timeout(cryp->regs + CRYP_CR, status,
251 !(status & CR_CRYPEN), 10, 100000);
252}
253
254static inline int stm32_cryp_wait_output(struct stm32_cryp *cryp)
255{
256 u32 status;
257
258 return readl_relaxed_poll_timeout(cryp->regs + CRYP_SR, status,
259 status & SR_OFNE, 10, 100000);
260}
261
262static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp);
263
264static struct stm32_cryp *stm32_cryp_find_dev(struct stm32_cryp_ctx *ctx)
265{
266 struct stm32_cryp *tmp, *cryp = NULL;
267
268 spin_lock_bh(&cryp_list.lock);
269 if (!ctx->cryp) {
270 list_for_each_entry(tmp, &cryp_list.dev_list, list) {
271 cryp = tmp;
272 break;
273 }
274 ctx->cryp = cryp;
275 } else {
276 cryp = ctx->cryp;
277 }
278
279 spin_unlock_bh(&cryp_list.lock);
280
281 return cryp;
282}
283
284static int stm32_cryp_check_aligned(struct scatterlist *sg, size_t total,
285 size_t align)
286{
287 int len = 0;
288
289 if (!total)
290 return 0;
291
292 if (!IS_ALIGNED(total, align))
293 return -EINVAL;
294
295 while (sg) {
296 if (!IS_ALIGNED(sg->offset, sizeof(u32)))
297 return -EINVAL;
298
299 if (!IS_ALIGNED(sg->length, align))
300 return -EINVAL;
301
302 len += sg->length;
303 sg = sg_next(sg);
304 }
305
306 if (len != total)
307 return -EINVAL;
308
309 return 0;
310}
311
312static int stm32_cryp_check_io_aligned(struct stm32_cryp *cryp)
313{
314 int ret;
315
316 ret = stm32_cryp_check_aligned(cryp->in_sg, cryp->total_in,
317 cryp->hw_blocksize);
318 if (ret)
319 return ret;
320
321 ret = stm32_cryp_check_aligned(cryp->out_sg, cryp->total_out,
322 cryp->hw_blocksize);
323
324 return ret;
325}
326
327static void sg_copy_buf(void *buf, struct scatterlist *sg,
328 unsigned int start, unsigned int nbytes, int out)
329{
330 struct scatter_walk walk;
331
332 if (!nbytes)
333 return;
334
335 scatterwalk_start(&walk, sg);
336 scatterwalk_advance(&walk, start);
337 scatterwalk_copychunks(buf, &walk, nbytes, out);
338 scatterwalk_done(&walk, out, 0);
339}
340
341static int stm32_cryp_copy_sgs(struct stm32_cryp *cryp)
342{
343 void *buf_in, *buf_out;
344 int pages, total_in, total_out;
345
346 if (!stm32_cryp_check_io_aligned(cryp)) {
347 cryp->sgs_copied = 0;
348 return 0;
349 }
350
351 total_in = ALIGN(cryp->total_in, cryp->hw_blocksize);
352 pages = total_in ? get_order(total_in) : 1;
353 buf_in = (void *)__get_free_pages(GFP_ATOMIC, pages);
354
355 total_out = ALIGN(cryp->total_out, cryp->hw_blocksize);
356 pages = total_out ? get_order(total_out) : 1;
357 buf_out = (void *)__get_free_pages(GFP_ATOMIC, pages);
358
359 if (!buf_in || !buf_out) {
360 dev_err(cryp->dev, "Can't allocate pages when unaligned\n");
361 cryp->sgs_copied = 0;
362 return -EFAULT;
363 }
364
365 sg_copy_buf(buf_in, cryp->in_sg, 0, cryp->total_in, 0);
366
367 sg_init_one(&cryp->in_sgl, buf_in, total_in);
368 cryp->in_sg = &cryp->in_sgl;
369 cryp->in_sg_len = 1;
370
371 sg_init_one(&cryp->out_sgl, buf_out, total_out);
372 cryp->out_sg_save = cryp->out_sg;
373 cryp->out_sg = &cryp->out_sgl;
374 cryp->out_sg_len = 1;
375
376 cryp->sgs_copied = 1;
377
378 return 0;
379}
380
381static void stm32_cryp_hw_write_iv(struct stm32_cryp *cryp, u32 *iv)
382{
383 if (!iv)
384 return;
385
386 stm32_cryp_write(cryp, CRYP_IV0LR, cpu_to_be32(*iv++));
387 stm32_cryp_write(cryp, CRYP_IV0RR, cpu_to_be32(*iv++));
388
389 if (is_aes(cryp)) {
390 stm32_cryp_write(cryp, CRYP_IV1LR, cpu_to_be32(*iv++));
391 stm32_cryp_write(cryp, CRYP_IV1RR, cpu_to_be32(*iv++));
392 }
393}
394
395static void stm32_cryp_hw_write_key(struct stm32_cryp *c)
396{
397 unsigned int i;
398 int r_id;
399
400 if (is_des(c)) {
401 stm32_cryp_write(c, CRYP_K1LR, cpu_to_be32(c->ctx->key[0]));
402 stm32_cryp_write(c, CRYP_K1RR, cpu_to_be32(c->ctx->key[1]));
403 } else {
404 r_id = CRYP_K3RR;
405 for (i = c->ctx->keylen / sizeof(u32); i > 0; i--, r_id -= 4)
406 stm32_cryp_write(c, r_id,
407 cpu_to_be32(c->ctx->key[i - 1]));
408 }
409}
410
411static u32 stm32_cryp_get_hw_mode(struct stm32_cryp *cryp)
412{
413 if (is_aes(cryp) && is_ecb(cryp))
414 return CR_AES_ECB;
415
416 if (is_aes(cryp) && is_cbc(cryp))
417 return CR_AES_CBC;
418
419 if (is_aes(cryp) && is_ctr(cryp))
420 return CR_AES_CTR;
421
422 if (is_aes(cryp) && is_gcm(cryp))
423 return CR_AES_GCM;
424
425 if (is_aes(cryp) && is_ccm(cryp))
426 return CR_AES_CCM;
427
428 if (is_des(cryp) && is_ecb(cryp))
429 return CR_DES_ECB;
430
431 if (is_des(cryp) && is_cbc(cryp))
432 return CR_DES_CBC;
433
434 if (is_tdes(cryp) && is_ecb(cryp))
435 return CR_TDES_ECB;
436
437 if (is_tdes(cryp) && is_cbc(cryp))
438 return CR_TDES_CBC;
439
440 dev_err(cryp->dev, "Unknown mode\n");
441 return CR_AES_UNKNOWN;
442}
443
444static unsigned int stm32_cryp_get_input_text_len(struct stm32_cryp *cryp)
445{
446 return is_encrypt(cryp) ? cryp->areq->cryptlen :
447 cryp->areq->cryptlen - cryp->authsize;
448}
449
450static int stm32_cryp_gcm_init(struct stm32_cryp *cryp, u32 cfg)
451{
452 int ret;
453 u32 iv[4];
454
455 /* Phase 1 : init */
456 memcpy(iv, cryp->areq->iv, 12);
457 iv[3] = cpu_to_be32(GCM_CTR_INIT);
458 cryp->gcm_ctr = GCM_CTR_INIT;
459 stm32_cryp_hw_write_iv(cryp, iv);
460
461 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
462
463 /* Wait for end of processing */
464 ret = stm32_cryp_wait_enable(cryp);
465 if (ret)
466 dev_err(cryp->dev, "Timeout (gcm init)\n");
467
468 return ret;
469}
470
471static int stm32_cryp_ccm_init(struct stm32_cryp *cryp, u32 cfg)
472{
473 int ret;
474 u8 iv[AES_BLOCK_SIZE], b0[AES_BLOCK_SIZE];
475 u32 *d;
476 unsigned int i, textlen;
477
478 /* Phase 1 : init. Firstly set the CTR value to 1 (not 0) */
479 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
480 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
481 iv[AES_BLOCK_SIZE - 1] = 1;
482 stm32_cryp_hw_write_iv(cryp, (u32 *)iv);
483
484 /* Build B0 */
485 memcpy(b0, iv, AES_BLOCK_SIZE);
486
487 b0[0] |= (8 * ((cryp->authsize - 2) / 2));
488
489 if (cryp->areq->assoclen)
490 b0[0] |= 0x40;
491
492 textlen = stm32_cryp_get_input_text_len(cryp);
493
494 b0[AES_BLOCK_SIZE - 2] = textlen >> 8;
495 b0[AES_BLOCK_SIZE - 1] = textlen & 0xFF;
496
497 /* Enable HW */
498 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_PH_INIT | CR_CRYPEN);
499
500 /* Write B0 */
501 d = (u32 *)b0;
502
503 for (i = 0; i < AES_BLOCK_32; i++) {
504 if (!cryp->caps->padding_wa)
505 *d = cpu_to_be32(*d);
506 stm32_cryp_write(cryp, CRYP_DIN, *d++);
507 }
508
509 /* Wait for end of processing */
510 ret = stm32_cryp_wait_enable(cryp);
511 if (ret)
512 dev_err(cryp->dev, "Timeout (ccm init)\n");
513
514 return ret;
515}
516
517static int stm32_cryp_hw_init(struct stm32_cryp *cryp)
518{
519 int ret;
520 u32 cfg, hw_mode;
521
522 /* Disable interrupt */
523 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
524
525 /* Set key */
526 stm32_cryp_hw_write_key(cryp);
527
528 /* Set configuration */
529 cfg = CR_DATA8 | CR_FFLUSH;
530
531 switch (cryp->ctx->keylen) {
532 case AES_KEYSIZE_128:
533 cfg |= CR_KEY128;
534 break;
535
536 case AES_KEYSIZE_192:
537 cfg |= CR_KEY192;
538 break;
539
540 default:
541 case AES_KEYSIZE_256:
542 cfg |= CR_KEY256;
543 break;
544 }
545
546 hw_mode = stm32_cryp_get_hw_mode(cryp);
547 if (hw_mode == CR_AES_UNKNOWN)
548 return -EINVAL;
549
550 /* AES ECB/CBC decrypt: run key preparation first */
551 if (is_decrypt(cryp) &&
552 ((hw_mode == CR_AES_ECB) || (hw_mode == CR_AES_CBC))) {
553 stm32_cryp_write(cryp, CRYP_CR, cfg | CR_AES_KP | CR_CRYPEN);
554
555 /* Wait for end of processing */
556 ret = stm32_cryp_wait_busy(cryp);
557 if (ret) {
558 dev_err(cryp->dev, "Timeout (key preparation)\n");
559 return ret;
560 }
561 }
562
563 cfg |= hw_mode;
564
565 if (is_decrypt(cryp))
566 cfg |= CR_DEC_NOT_ENC;
567
568 /* Apply config and flush (valid when CRYPEN = 0) */
569 stm32_cryp_write(cryp, CRYP_CR, cfg);
570
571 switch (hw_mode) {
572 case CR_AES_GCM:
573 case CR_AES_CCM:
574 /* Phase 1 : init */
575 if (hw_mode == CR_AES_CCM)
576 ret = stm32_cryp_ccm_init(cryp, cfg);
577 else
578 ret = stm32_cryp_gcm_init(cryp, cfg);
579
580 if (ret)
581 return ret;
582
583 /* Phase 2 : header (authenticated data) */
584 if (cryp->areq->assoclen) {
585 cfg |= CR_PH_HEADER;
586 } else if (stm32_cryp_get_input_text_len(cryp)) {
587 cfg |= CR_PH_PAYLOAD;
588 stm32_cryp_write(cryp, CRYP_CR, cfg);
589 } else {
590 cfg |= CR_PH_INIT;
591 }
592
593 break;
594
595 case CR_DES_CBC:
596 case CR_TDES_CBC:
597 case CR_AES_CBC:
598 case CR_AES_CTR:
599 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->req->info);
600 break;
601
602 default:
603 break;
604 }
605
606 /* Enable now */
607 cfg |= CR_CRYPEN;
608
609 stm32_cryp_write(cryp, CRYP_CR, cfg);
610
611 cryp->flags &= ~FLG_CCM_PADDED_WA;
612
613 return 0;
614}
615
616static void stm32_cryp_finish_req(struct stm32_cryp *cryp, int err)
617{
618 if (!err && (is_gcm(cryp) || is_ccm(cryp)))
619 /* Phase 4 : output tag */
620 err = stm32_cryp_read_auth_tag(cryp);
621
622 if (cryp->sgs_copied) {
623 void *buf_in, *buf_out;
624 int pages, len;
625
626 buf_in = sg_virt(&cryp->in_sgl);
627 buf_out = sg_virt(&cryp->out_sgl);
628
629 sg_copy_buf(buf_out, cryp->out_sg_save, 0,
630 cryp->total_out_save, 1);
631
632 len = ALIGN(cryp->total_in_save, cryp->hw_blocksize);
633 pages = len ? get_order(len) : 1;
634 free_pages((unsigned long)buf_in, pages);
635
636 len = ALIGN(cryp->total_out_save, cryp->hw_blocksize);
637 pages = len ? get_order(len) : 1;
638 free_pages((unsigned long)buf_out, pages);
639 }
640
641 if (is_gcm(cryp) || is_ccm(cryp)) {
642 crypto_finalize_aead_request(cryp->engine, cryp->areq, err);
643 cryp->areq = NULL;
644 } else {
645 crypto_finalize_ablkcipher_request(cryp->engine, cryp->req,
646 err);
647 cryp->req = NULL;
648 }
649
650 memset(cryp->ctx->key, 0, cryp->ctx->keylen);
651
652 mutex_unlock(&cryp->lock);
653}
654
655static int stm32_cryp_cpu_start(struct stm32_cryp *cryp)
656{
657 /* Enable interrupt and let the IRQ handler do everything */
658 stm32_cryp_write(cryp, CRYP_IMSCR, IMSCR_IN | IMSCR_OUT);
659
660 return 0;
661}
662
663static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq);
664static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
665 void *areq);
666
667static int stm32_cryp_cra_init(struct crypto_tfm *tfm)
668{
669 struct stm32_cryp_ctx *ctx = crypto_tfm_ctx(tfm);
670
671 tfm->crt_ablkcipher.reqsize = sizeof(struct stm32_cryp_reqctx);
672
673 ctx->enginectx.op.do_one_request = stm32_cryp_cipher_one_req;
674 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_cipher_req;
675 ctx->enginectx.op.unprepare_request = NULL;
676 return 0;
677}
678
679static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq);
680static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine,
681 void *areq);
682
683static int stm32_cryp_aes_aead_init(struct crypto_aead *tfm)
684{
685 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
686
687 tfm->reqsize = sizeof(struct stm32_cryp_reqctx);
688
689 ctx->enginectx.op.do_one_request = stm32_cryp_aead_one_req;
690 ctx->enginectx.op.prepare_request = stm32_cryp_prepare_aead_req;
691 ctx->enginectx.op.unprepare_request = NULL;
692
693 return 0;
694}
695
696static int stm32_cryp_crypt(struct ablkcipher_request *req, unsigned long mode)
697{
698 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
699 crypto_ablkcipher_reqtfm(req));
700 struct stm32_cryp_reqctx *rctx = ablkcipher_request_ctx(req);
701 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
702
703 if (!cryp)
704 return -ENODEV;
705
706 rctx->mode = mode;
707
708 return crypto_transfer_ablkcipher_request_to_engine(cryp->engine, req);
709}
710
711static int stm32_cryp_aead_crypt(struct aead_request *req, unsigned long mode)
712{
713 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
714 struct stm32_cryp_reqctx *rctx = aead_request_ctx(req);
715 struct stm32_cryp *cryp = stm32_cryp_find_dev(ctx);
716
717 if (!cryp)
718 return -ENODEV;
719
720 rctx->mode = mode;
721
722 return crypto_transfer_aead_request_to_engine(cryp->engine, req);
723}
724
725static int stm32_cryp_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
726 unsigned int keylen)
727{
728 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
729
730 memcpy(ctx->key, key, keylen);
731 ctx->keylen = keylen;
732
733 return 0;
734}
735
736static int stm32_cryp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
737 unsigned int keylen)
738{
739 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
740 keylen != AES_KEYSIZE_256)
741 return -EINVAL;
742 else
743 return stm32_cryp_setkey(tfm, key, keylen);
744}
745
746static int stm32_cryp_des_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
747 unsigned int keylen)
748{
749 if (keylen != DES_KEY_SIZE)
750 return -EINVAL;
751 else
752 return stm32_cryp_setkey(tfm, key, keylen);
753}
754
755static int stm32_cryp_tdes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
756 unsigned int keylen)
757{
758 if (keylen != (3 * DES_KEY_SIZE))
759 return -EINVAL;
760 else
761 return stm32_cryp_setkey(tfm, key, keylen);
762}
763
764static int stm32_cryp_aes_aead_setkey(struct crypto_aead *tfm, const u8 *key,
765 unsigned int keylen)
766{
767 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(tfm);
768
769 if (keylen != AES_KEYSIZE_128 && keylen != AES_KEYSIZE_192 &&
770 keylen != AES_KEYSIZE_256)
771 return -EINVAL;
772
773 memcpy(ctx->key, key, keylen);
774 ctx->keylen = keylen;
775
776 return 0;
777}
778
779static int stm32_cryp_aes_gcm_setauthsize(struct crypto_aead *tfm,
780 unsigned int authsize)
781{
782 return authsize == AES_BLOCK_SIZE ? 0 : -EINVAL;
783}
784
785static int stm32_cryp_aes_ccm_setauthsize(struct crypto_aead *tfm,
786 unsigned int authsize)
787{
788 switch (authsize) {
789 case 4:
790 case 6:
791 case 8:
792 case 10:
793 case 12:
794 case 14:
795 case 16:
796 break;
797 default:
798 return -EINVAL;
799 }
800
801 return 0;
802}
803
804static int stm32_cryp_aes_ecb_encrypt(struct ablkcipher_request *req)
805{
806 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB | FLG_ENCRYPT);
807}
808
809static int stm32_cryp_aes_ecb_decrypt(struct ablkcipher_request *req)
810{
811 return stm32_cryp_crypt(req, FLG_AES | FLG_ECB);
812}
813
814static int stm32_cryp_aes_cbc_encrypt(struct ablkcipher_request *req)
815{
816 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC | FLG_ENCRYPT);
817}
818
819static int stm32_cryp_aes_cbc_decrypt(struct ablkcipher_request *req)
820{
821 return stm32_cryp_crypt(req, FLG_AES | FLG_CBC);
822}
823
824static int stm32_cryp_aes_ctr_encrypt(struct ablkcipher_request *req)
825{
826 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR | FLG_ENCRYPT);
827}
828
829static int stm32_cryp_aes_ctr_decrypt(struct ablkcipher_request *req)
830{
831 return stm32_cryp_crypt(req, FLG_AES | FLG_CTR);
832}
833
834static int stm32_cryp_aes_gcm_encrypt(struct aead_request *req)
835{
836 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM | FLG_ENCRYPT);
837}
838
839static int stm32_cryp_aes_gcm_decrypt(struct aead_request *req)
840{
841 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_GCM);
842}
843
844static int stm32_cryp_aes_ccm_encrypt(struct aead_request *req)
845{
846 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM | FLG_ENCRYPT);
847}
848
849static int stm32_cryp_aes_ccm_decrypt(struct aead_request *req)
850{
851 return stm32_cryp_aead_crypt(req, FLG_AES | FLG_CCM);
852}
853
854static int stm32_cryp_des_ecb_encrypt(struct ablkcipher_request *req)
855{
856 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB | FLG_ENCRYPT);
857}
858
859static int stm32_cryp_des_ecb_decrypt(struct ablkcipher_request *req)
860{
861 return stm32_cryp_crypt(req, FLG_DES | FLG_ECB);
862}
863
864static int stm32_cryp_des_cbc_encrypt(struct ablkcipher_request *req)
865{
866 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC | FLG_ENCRYPT);
867}
868
869static int stm32_cryp_des_cbc_decrypt(struct ablkcipher_request *req)
870{
871 return stm32_cryp_crypt(req, FLG_DES | FLG_CBC);
872}
873
874static int stm32_cryp_tdes_ecb_encrypt(struct ablkcipher_request *req)
875{
876 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB | FLG_ENCRYPT);
877}
878
879static int stm32_cryp_tdes_ecb_decrypt(struct ablkcipher_request *req)
880{
881 return stm32_cryp_crypt(req, FLG_TDES | FLG_ECB);
882}
883
884static int stm32_cryp_tdes_cbc_encrypt(struct ablkcipher_request *req)
885{
886 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC | FLG_ENCRYPT);
887}
888
889static int stm32_cryp_tdes_cbc_decrypt(struct ablkcipher_request *req)
890{
891 return stm32_cryp_crypt(req, FLG_TDES | FLG_CBC);
892}
893
894static int stm32_cryp_prepare_req(struct ablkcipher_request *req,
895 struct aead_request *areq)
896{
897 struct stm32_cryp_ctx *ctx;
898 struct stm32_cryp *cryp;
899 struct stm32_cryp_reqctx *rctx;
900 int ret;
901
902 if (!req && !areq)
903 return -EINVAL;
904
905 ctx = req ? crypto_ablkcipher_ctx(crypto_ablkcipher_reqtfm(req)) :
906 crypto_aead_ctx(crypto_aead_reqtfm(areq));
907
908 cryp = ctx->cryp;
909
910 if (!cryp)
911 return -ENODEV;
912
913 mutex_lock(&cryp->lock);
914
915 rctx = req ? ablkcipher_request_ctx(req) : aead_request_ctx(areq);
916 rctx->mode &= FLG_MODE_MASK;
917
918 ctx->cryp = cryp;
919
920 cryp->flags = (cryp->flags & ~FLG_MODE_MASK) | rctx->mode;
921 cryp->hw_blocksize = is_aes(cryp) ? AES_BLOCK_SIZE : DES_BLOCK_SIZE;
922 cryp->ctx = ctx;
923
924 if (req) {
925 cryp->req = req;
926 cryp->total_in = req->nbytes;
927 cryp->total_out = cryp->total_in;
928 } else {
929 /*
930 * Length of input and output data:
931 * Encryption case:
932 * INPUT = AssocData || PlainText
933 * <- assoclen -> <- cryptlen ->
934 * <------- total_in ----------->
935 *
936 * OUTPUT = AssocData || CipherText || AuthTag
937 * <- assoclen -> <- cryptlen -> <- authsize ->
938 * <---------------- total_out ----------------->
939 *
940 * Decryption case:
941 * INPUT = AssocData || CipherText || AuthTag
942 * <- assoclen -> <--------- cryptlen --------->
943 * <- authsize ->
944 * <---------------- total_in ------------------>
945 *
946 * OUTPUT = AssocData || PlainText
947 * <- assoclen -> <- crypten - authsize ->
948 * <---------- total_out ----------------->
949 */
950 cryp->areq = areq;
951 cryp->authsize = crypto_aead_authsize(crypto_aead_reqtfm(areq));
952 cryp->total_in = areq->assoclen + areq->cryptlen;
953 if (is_encrypt(cryp))
954 /* Append auth tag to output */
955 cryp->total_out = cryp->total_in + cryp->authsize;
956 else
957 /* No auth tag in output */
958 cryp->total_out = cryp->total_in - cryp->authsize;
959 }
960
961 cryp->total_in_save = cryp->total_in;
962 cryp->total_out_save = cryp->total_out;
963
964 cryp->in_sg = req ? req->src : areq->src;
965 cryp->out_sg = req ? req->dst : areq->dst;
966 cryp->out_sg_save = cryp->out_sg;
967
968 cryp->in_sg_len = sg_nents_for_len(cryp->in_sg, cryp->total_in);
969 if (cryp->in_sg_len < 0) {
970 dev_err(cryp->dev, "Cannot get in_sg_len\n");
971 ret = cryp->in_sg_len;
972 goto out;
973 }
974
975 cryp->out_sg_len = sg_nents_for_len(cryp->out_sg, cryp->total_out);
976 if (cryp->out_sg_len < 0) {
977 dev_err(cryp->dev, "Cannot get out_sg_len\n");
978 ret = cryp->out_sg_len;
979 goto out;
980 }
981
982 ret = stm32_cryp_copy_sgs(cryp);
983 if (ret)
984 goto out;
985
986 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
987 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
988
989 if (is_gcm(cryp) || is_ccm(cryp)) {
990 /* In output, jump after assoc data */
991 scatterwalk_advance(&cryp->out_walk, cryp->areq->assoclen);
992 cryp->total_out -= cryp->areq->assoclen;
993 }
994
995 ret = stm32_cryp_hw_init(cryp);
996out:
997 if (ret)
998 mutex_unlock(&cryp->lock);
999
1000 return ret;
1001}
1002
1003static int stm32_cryp_prepare_cipher_req(struct crypto_engine *engine,
1004 void *areq)
1005{
1006 struct ablkcipher_request *req = container_of(areq,
1007 struct ablkcipher_request,
1008 base);
1009
1010 return stm32_cryp_prepare_req(req, NULL);
1011}
1012
1013static int stm32_cryp_cipher_one_req(struct crypto_engine *engine, void *areq)
1014{
1015 struct ablkcipher_request *req = container_of(areq,
1016 struct ablkcipher_request,
1017 base);
1018 struct stm32_cryp_ctx *ctx = crypto_ablkcipher_ctx(
1019 crypto_ablkcipher_reqtfm(req));
1020 struct stm32_cryp *cryp = ctx->cryp;
1021
1022 if (!cryp)
1023 return -ENODEV;
1024
1025 return stm32_cryp_cpu_start(cryp);
1026}
1027
1028static int stm32_cryp_prepare_aead_req(struct crypto_engine *engine, void *areq)
1029{
1030 struct aead_request *req = container_of(areq, struct aead_request,
1031 base);
1032
1033 return stm32_cryp_prepare_req(NULL, req);
1034}
1035
1036static int stm32_cryp_aead_one_req(struct crypto_engine *engine, void *areq)
1037{
1038 struct aead_request *req = container_of(areq, struct aead_request,
1039 base);
1040 struct stm32_cryp_ctx *ctx = crypto_aead_ctx(crypto_aead_reqtfm(req));
1041 struct stm32_cryp *cryp = ctx->cryp;
1042
1043 if (!cryp)
1044 return -ENODEV;
1045
1046 if (unlikely(!cryp->areq->assoclen &&
1047 !stm32_cryp_get_input_text_len(cryp))) {
1048 /* No input data to process: get tag and finish */
1049 stm32_cryp_finish_req(cryp, 0);
1050 return 0;
1051 }
1052
1053 return stm32_cryp_cpu_start(cryp);
1054}
1055
1056static u32 *stm32_cryp_next_out(struct stm32_cryp *cryp, u32 *dst,
1057 unsigned int n)
1058{
1059 scatterwalk_advance(&cryp->out_walk, n);
1060
1061 if (unlikely(cryp->out_sg->length == _walked_out)) {
1062 cryp->out_sg = sg_next(cryp->out_sg);
1063 if (cryp->out_sg) {
1064 scatterwalk_start(&cryp->out_walk, cryp->out_sg);
1065 return (sg_virt(cryp->out_sg) + _walked_out);
1066 }
1067 }
1068
1069 return (u32 *)((u8 *)dst + n);
1070}
1071
1072static u32 *stm32_cryp_next_in(struct stm32_cryp *cryp, u32 *src,
1073 unsigned int n)
1074{
1075 scatterwalk_advance(&cryp->in_walk, n);
1076
1077 if (unlikely(cryp->in_sg->length == _walked_in)) {
1078 cryp->in_sg = sg_next(cryp->in_sg);
1079 if (cryp->in_sg) {
1080 scatterwalk_start(&cryp->in_walk, cryp->in_sg);
1081 return (sg_virt(cryp->in_sg) + _walked_in);
1082 }
1083 }
1084
1085 return (u32 *)((u8 *)src + n);
1086}
1087
1088static int stm32_cryp_read_auth_tag(struct stm32_cryp *cryp)
1089{
1090 u32 cfg, size_bit, *dst, d32;
1091 u8 *d8;
1092 unsigned int i, j;
1093 int ret = 0;
1094
1095 /* Update Config */
1096 cfg = stm32_cryp_read(cryp, CRYP_CR);
1097
1098 cfg &= ~CR_PH_MASK;
1099 cfg |= CR_PH_FINAL;
1100 cfg &= ~CR_DEC_NOT_ENC;
1101 cfg |= CR_CRYPEN;
1102
1103 stm32_cryp_write(cryp, CRYP_CR, cfg);
1104
1105 if (is_gcm(cryp)) {
1106 /* GCM: write aad and payload size (in bits) */
1107 size_bit = cryp->areq->assoclen * 8;
1108 if (cryp->caps->swap_final)
1109 size_bit = cpu_to_be32(size_bit);
1110
1111 stm32_cryp_write(cryp, CRYP_DIN, 0);
1112 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1113
1114 size_bit = is_encrypt(cryp) ? cryp->areq->cryptlen :
1115 cryp->areq->cryptlen - AES_BLOCK_SIZE;
1116 size_bit *= 8;
1117 if (cryp->caps->swap_final)
1118 size_bit = cpu_to_be32(size_bit);
1119
1120 stm32_cryp_write(cryp, CRYP_DIN, 0);
1121 stm32_cryp_write(cryp, CRYP_DIN, size_bit);
1122 } else {
1123 /* CCM: write CTR0 */
1124 u8 iv[AES_BLOCK_SIZE];
1125 u32 *iv32 = (u32 *)iv;
1126
1127 memcpy(iv, cryp->areq->iv, AES_BLOCK_SIZE);
1128 memset(iv + AES_BLOCK_SIZE - 1 - iv[0], 0, iv[0] + 1);
1129
1130 for (i = 0; i < AES_BLOCK_32; i++) {
1131 if (!cryp->caps->padding_wa)
1132 *iv32 = cpu_to_be32(*iv32);
1133 stm32_cryp_write(cryp, CRYP_DIN, *iv32++);
1134 }
1135 }
1136
1137 /* Wait for output data */
1138 ret = stm32_cryp_wait_output(cryp);
1139 if (ret) {
1140 dev_err(cryp->dev, "Timeout (read tag)\n");
1141 return ret;
1142 }
1143
1144 if (is_encrypt(cryp)) {
1145 /* Get and write tag */
1146 dst = sg_virt(cryp->out_sg) + _walked_out;
1147
1148 for (i = 0; i < AES_BLOCK_32; i++) {
1149 if (cryp->total_out >= sizeof(u32)) {
1150 /* Read a full u32 */
1151 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1152
1153 dst = stm32_cryp_next_out(cryp, dst,
1154 sizeof(u32));
1155 cryp->total_out -= sizeof(u32);
1156 } else if (!cryp->total_out) {
1157 /* Empty fifo out (data from input padding) */
1158 stm32_cryp_read(cryp, CRYP_DOUT);
1159 } else {
1160 /* Read less than an u32 */
1161 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1162 d8 = (u8 *)&d32;
1163
1164 for (j = 0; j < cryp->total_out; j++) {
1165 *((u8 *)dst) = *(d8++);
1166 dst = stm32_cryp_next_out(cryp, dst, 1);
1167 }
1168 cryp->total_out = 0;
1169 }
1170 }
1171 } else {
1172 /* Get and check tag */
1173 u32 in_tag[AES_BLOCK_32], out_tag[AES_BLOCK_32];
1174
1175 scatterwalk_map_and_copy(in_tag, cryp->in_sg,
1176 cryp->total_in_save - cryp->authsize,
1177 cryp->authsize, 0);
1178
1179 for (i = 0; i < AES_BLOCK_32; i++)
1180 out_tag[i] = stm32_cryp_read(cryp, CRYP_DOUT);
1181
1182 if (crypto_memneq(in_tag, out_tag, cryp->authsize))
1183 ret = -EBADMSG;
1184 }
1185
1186 /* Disable cryp */
1187 cfg &= ~CR_CRYPEN;
1188 stm32_cryp_write(cryp, CRYP_CR, cfg);
1189
1190 return ret;
1191}
1192
1193static void stm32_cryp_check_ctr_counter(struct stm32_cryp *cryp)
1194{
1195 u32 cr;
1196
1197 if (unlikely(cryp->last_ctr[3] == 0xFFFFFFFF)) {
1198 cryp->last_ctr[3] = 0;
1199 cryp->last_ctr[2]++;
1200 if (!cryp->last_ctr[2]) {
1201 cryp->last_ctr[1]++;
1202 if (!cryp->last_ctr[1])
1203 cryp->last_ctr[0]++;
1204 }
1205
1206 cr = stm32_cryp_read(cryp, CRYP_CR);
1207 stm32_cryp_write(cryp, CRYP_CR, cr & ~CR_CRYPEN);
1208
1209 stm32_cryp_hw_write_iv(cryp, (u32 *)cryp->last_ctr);
1210
1211 stm32_cryp_write(cryp, CRYP_CR, cr);
1212 }
1213
1214 cryp->last_ctr[0] = stm32_cryp_read(cryp, CRYP_IV0LR);
1215 cryp->last_ctr[1] = stm32_cryp_read(cryp, CRYP_IV0RR);
1216 cryp->last_ctr[2] = stm32_cryp_read(cryp, CRYP_IV1LR);
1217 cryp->last_ctr[3] = stm32_cryp_read(cryp, CRYP_IV1RR);
1218}
1219
1220static bool stm32_cryp_irq_read_data(struct stm32_cryp *cryp)
1221{
1222 unsigned int i, j;
1223 u32 d32, *dst;
1224 u8 *d8;
1225 size_t tag_size;
1226
1227 /* Do no read tag now (if any) */
1228 if (is_encrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1229 tag_size = cryp->authsize;
1230 else
1231 tag_size = 0;
1232
1233 dst = sg_virt(cryp->out_sg) + _walked_out;
1234
1235 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1236 if (likely(cryp->total_out - tag_size >= sizeof(u32))) {
1237 /* Read a full u32 */
1238 *dst = stm32_cryp_read(cryp, CRYP_DOUT);
1239
1240 dst = stm32_cryp_next_out(cryp, dst, sizeof(u32));
1241 cryp->total_out -= sizeof(u32);
1242 } else if (cryp->total_out == tag_size) {
1243 /* Empty fifo out (data from input padding) */
1244 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1245 } else {
1246 /* Read less than an u32 */
1247 d32 = stm32_cryp_read(cryp, CRYP_DOUT);
1248 d8 = (u8 *)&d32;
1249
1250 for (j = 0; j < cryp->total_out - tag_size; j++) {
1251 *((u8 *)dst) = *(d8++);
1252 dst = stm32_cryp_next_out(cryp, dst, 1);
1253 }
1254 cryp->total_out = tag_size;
1255 }
1256 }
1257
1258 return !(cryp->total_out - tag_size) || !cryp->total_in;
1259}
1260
1261static void stm32_cryp_irq_write_block(struct stm32_cryp *cryp)
1262{
1263 unsigned int i, j;
1264 u32 *src;
1265 u8 d8[4];
1266 size_t tag_size;
1267
1268 /* Do no write tag (if any) */
1269 if (is_decrypt(cryp) && (is_gcm(cryp) || is_ccm(cryp)))
1270 tag_size = cryp->authsize;
1271 else
1272 tag_size = 0;
1273
1274 src = sg_virt(cryp->in_sg) + _walked_in;
1275
1276 for (i = 0; i < cryp->hw_blocksize / sizeof(u32); i++) {
1277 if (likely(cryp->total_in - tag_size >= sizeof(u32))) {
1278 /* Write a full u32 */
1279 stm32_cryp_write(cryp, CRYP_DIN, *src);
1280
1281 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1282 cryp->total_in -= sizeof(u32);
1283 } else if (cryp->total_in == tag_size) {
1284 /* Write padding data */
1285 stm32_cryp_write(cryp, CRYP_DIN, 0);
1286 } else {
1287 /* Write less than an u32 */
1288 memset(d8, 0, sizeof(u32));
1289 for (j = 0; j < cryp->total_in - tag_size; j++) {
1290 d8[j] = *((u8 *)src);
1291 src = stm32_cryp_next_in(cryp, src, 1);
1292 }
1293
1294 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1295 cryp->total_in = tag_size;
1296 }
1297 }
1298}
1299
1300static void stm32_cryp_irq_write_gcm_padded_data(struct stm32_cryp *cryp)
1301{
1302 int err;
1303 u32 cfg, tmp[AES_BLOCK_32];
1304 size_t total_in_ori = cryp->total_in;
1305 struct scatterlist *out_sg_ori = cryp->out_sg;
1306 unsigned int i;
1307
1308 /* 'Special workaround' procedure described in the datasheet */
1309
1310 /* a) disable ip */
1311 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1312 cfg = stm32_cryp_read(cryp, CRYP_CR);
1313 cfg &= ~CR_CRYPEN;
1314 stm32_cryp_write(cryp, CRYP_CR, cfg);
1315
1316 /* b) Update IV1R */
1317 stm32_cryp_write(cryp, CRYP_IV1RR, cryp->gcm_ctr - 2);
1318
1319 /* c) change mode to CTR */
1320 cfg &= ~CR_ALGO_MASK;
1321 cfg |= CR_AES_CTR;
1322 stm32_cryp_write(cryp, CRYP_CR, cfg);
1323
1324 /* a) enable IP */
1325 cfg |= CR_CRYPEN;
1326 stm32_cryp_write(cryp, CRYP_CR, cfg);
1327
1328 /* b) pad and write the last block */
1329 stm32_cryp_irq_write_block(cryp);
1330 cryp->total_in = total_in_ori;
1331 err = stm32_cryp_wait_output(cryp);
1332 if (err) {
1333 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1334 return stm32_cryp_finish_req(cryp, err);
1335 }
1336
1337 /* c) get and store encrypted data */
1338 stm32_cryp_irq_read_data(cryp);
1339 scatterwalk_map_and_copy(tmp, out_sg_ori,
1340 cryp->total_in_save - total_in_ori,
1341 total_in_ori, 0);
1342
1343 /* d) change mode back to AES GCM */
1344 cfg &= ~CR_ALGO_MASK;
1345 cfg |= CR_AES_GCM;
1346 stm32_cryp_write(cryp, CRYP_CR, cfg);
1347
1348 /* e) change phase to Final */
1349 cfg &= ~CR_PH_MASK;
1350 cfg |= CR_PH_FINAL;
1351 stm32_cryp_write(cryp, CRYP_CR, cfg);
1352
1353 /* f) write padded data */
1354 for (i = 0; i < AES_BLOCK_32; i++) {
1355 if (cryp->total_in)
1356 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1357 else
1358 stm32_cryp_write(cryp, CRYP_DIN, 0);
1359
1360 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1361 }
1362
1363 /* g) Empty fifo out */
1364 err = stm32_cryp_wait_output(cryp);
1365 if (err) {
1366 dev_err(cryp->dev, "Timeout (write gcm header)\n");
1367 return stm32_cryp_finish_req(cryp, err);
1368 }
1369
1370 for (i = 0; i < AES_BLOCK_32; i++)
1371 stm32_cryp_read(cryp, CRYP_DOUT);
1372
1373 /* h) run the he normal Final phase */
1374 stm32_cryp_finish_req(cryp, 0);
1375}
1376
1377static void stm32_cryp_irq_set_npblb(struct stm32_cryp *cryp)
1378{
1379 u32 cfg, payload_bytes;
1380
1381 /* disable ip, set NPBLB and reneable ip */
1382 cfg = stm32_cryp_read(cryp, CRYP_CR);
1383 cfg &= ~CR_CRYPEN;
1384 stm32_cryp_write(cryp, CRYP_CR, cfg);
1385
1386 payload_bytes = is_decrypt(cryp) ? cryp->total_in - cryp->authsize :
1387 cryp->total_in;
1388 cfg |= (cryp->hw_blocksize - payload_bytes) << CR_NBPBL_SHIFT;
1389 cfg |= CR_CRYPEN;
1390 stm32_cryp_write(cryp, CRYP_CR, cfg);
1391}
1392
1393static void stm32_cryp_irq_write_ccm_padded_data(struct stm32_cryp *cryp)
1394{
1395 int err = 0;
1396 u32 cfg, iv1tmp;
1397 u32 cstmp1[AES_BLOCK_32], cstmp2[AES_BLOCK_32], tmp[AES_BLOCK_32];
1398 size_t last_total_out, total_in_ori = cryp->total_in;
1399 struct scatterlist *out_sg_ori = cryp->out_sg;
1400 unsigned int i;
1401
1402 /* 'Special workaround' procedure described in the datasheet */
1403 cryp->flags |= FLG_CCM_PADDED_WA;
1404
1405 /* a) disable ip */
1406 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1407
1408 cfg = stm32_cryp_read(cryp, CRYP_CR);
1409 cfg &= ~CR_CRYPEN;
1410 stm32_cryp_write(cryp, CRYP_CR, cfg);
1411
1412 /* b) get IV1 from CRYP_CSGCMCCM7 */
1413 iv1tmp = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + 7 * 4);
1414
1415 /* c) Load CRYP_CSGCMCCMxR */
1416 for (i = 0; i < ARRAY_SIZE(cstmp1); i++)
1417 cstmp1[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1418
1419 /* d) Write IV1R */
1420 stm32_cryp_write(cryp, CRYP_IV1RR, iv1tmp);
1421
1422 /* e) change mode to CTR */
1423 cfg &= ~CR_ALGO_MASK;
1424 cfg |= CR_AES_CTR;
1425 stm32_cryp_write(cryp, CRYP_CR, cfg);
1426
1427 /* a) enable IP */
1428 cfg |= CR_CRYPEN;
1429 stm32_cryp_write(cryp, CRYP_CR, cfg);
1430
1431 /* b) pad and write the last block */
1432 stm32_cryp_irq_write_block(cryp);
1433 cryp->total_in = total_in_ori;
1434 err = stm32_cryp_wait_output(cryp);
1435 if (err) {
1436 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1437 return stm32_cryp_finish_req(cryp, err);
1438 }
1439
1440 /* c) get and store decrypted data */
1441 last_total_out = cryp->total_out;
1442 stm32_cryp_irq_read_data(cryp);
1443
1444 memset(tmp, 0, sizeof(tmp));
1445 scatterwalk_map_and_copy(tmp, out_sg_ori,
1446 cryp->total_out_save - last_total_out,
1447 last_total_out, 0);
1448
1449 /* d) Load again CRYP_CSGCMCCMxR */
1450 for (i = 0; i < ARRAY_SIZE(cstmp2); i++)
1451 cstmp2[i] = stm32_cryp_read(cryp, CRYP_CSGCMCCM0R + i * 4);
1452
1453 /* e) change mode back to AES CCM */
1454 cfg &= ~CR_ALGO_MASK;
1455 cfg |= CR_AES_CCM;
1456 stm32_cryp_write(cryp, CRYP_CR, cfg);
1457
1458 /* f) change phase to header */
1459 cfg &= ~CR_PH_MASK;
1460 cfg |= CR_PH_HEADER;
1461 stm32_cryp_write(cryp, CRYP_CR, cfg);
1462
1463 /* g) XOR and write padded data */
1464 for (i = 0; i < ARRAY_SIZE(tmp); i++) {
1465 tmp[i] ^= cstmp1[i];
1466 tmp[i] ^= cstmp2[i];
1467 stm32_cryp_write(cryp, CRYP_DIN, tmp[i]);
1468 }
1469
1470 /* h) wait for completion */
1471 err = stm32_cryp_wait_busy(cryp);
1472 if (err)
1473 dev_err(cryp->dev, "Timeout (wite ccm padded data)\n");
1474
1475 /* i) run the he normal Final phase */
1476 stm32_cryp_finish_req(cryp, err);
1477}
1478
1479static void stm32_cryp_irq_write_data(struct stm32_cryp *cryp)
1480{
1481 if (unlikely(!cryp->total_in)) {
1482 dev_warn(cryp->dev, "No more data to process\n");
1483 return;
1484 }
1485
1486 if (unlikely(cryp->total_in < AES_BLOCK_SIZE &&
1487 (stm32_cryp_get_hw_mode(cryp) == CR_AES_GCM) &&
1488 is_encrypt(cryp))) {
1489 /* Padding for AES GCM encryption */
1490 if (cryp->caps->padding_wa)
1491 /* Special case 1 */
1492 return stm32_cryp_irq_write_gcm_padded_data(cryp);
1493
1494 /* Setting padding bytes (NBBLB) */
1495 stm32_cryp_irq_set_npblb(cryp);
1496 }
1497
1498 if (unlikely((cryp->total_in - cryp->authsize < AES_BLOCK_SIZE) &&
1499 (stm32_cryp_get_hw_mode(cryp) == CR_AES_CCM) &&
1500 is_decrypt(cryp))) {
1501 /* Padding for AES CCM decryption */
1502 if (cryp->caps->padding_wa)
1503 /* Special case 2 */
1504 return stm32_cryp_irq_write_ccm_padded_data(cryp);
1505
1506 /* Setting padding bytes (NBBLB) */
1507 stm32_cryp_irq_set_npblb(cryp);
1508 }
1509
1510 if (is_aes(cryp) && is_ctr(cryp))
1511 stm32_cryp_check_ctr_counter(cryp);
1512
1513 stm32_cryp_irq_write_block(cryp);
1514}
1515
1516static void stm32_cryp_irq_write_gcm_header(struct stm32_cryp *cryp)
1517{
1518 int err;
1519 unsigned int i, j;
1520 u32 cfg, *src;
1521
1522 src = sg_virt(cryp->in_sg) + _walked_in;
1523
1524 for (i = 0; i < AES_BLOCK_32; i++) {
1525 stm32_cryp_write(cryp, CRYP_DIN, *src);
1526
1527 src = stm32_cryp_next_in(cryp, src, sizeof(u32));
1528 cryp->total_in -= min_t(size_t, sizeof(u32), cryp->total_in);
1529
1530 /* Check if whole header written */
1531 if ((cryp->total_in_save - cryp->total_in) ==
1532 cryp->areq->assoclen) {
1533 /* Write padding if needed */
1534 for (j = i + 1; j < AES_BLOCK_32; j++)
1535 stm32_cryp_write(cryp, CRYP_DIN, 0);
1536
1537 /* Wait for completion */
1538 err = stm32_cryp_wait_busy(cryp);
1539 if (err) {
1540 dev_err(cryp->dev, "Timeout (gcm header)\n");
1541 return stm32_cryp_finish_req(cryp, err);
1542 }
1543
1544 if (stm32_cryp_get_input_text_len(cryp)) {
1545 /* Phase 3 : payload */
1546 cfg = stm32_cryp_read(cryp, CRYP_CR);
1547 cfg &= ~CR_CRYPEN;
1548 stm32_cryp_write(cryp, CRYP_CR, cfg);
1549
1550 cfg &= ~CR_PH_MASK;
1551 cfg |= CR_PH_PAYLOAD;
1552 cfg |= CR_CRYPEN;
1553 stm32_cryp_write(cryp, CRYP_CR, cfg);
1554 } else {
1555 /* Phase 4 : tag */
1556 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1557 stm32_cryp_finish_req(cryp, 0);
1558 }
1559
1560 break;
1561 }
1562
1563 if (!cryp->total_in)
1564 break;
1565 }
1566}
1567
1568static void stm32_cryp_irq_write_ccm_header(struct stm32_cryp *cryp)
1569{
1570 int err;
1571 unsigned int i = 0, j, k;
1572 u32 alen, cfg, *src;
1573 u8 d8[4];
1574
1575 src = sg_virt(cryp->in_sg) + _walked_in;
1576 alen = cryp->areq->assoclen;
1577
1578 if (!_walked_in) {
1579 if (cryp->areq->assoclen <= 65280) {
1580 /* Write first u32 of B1 */
1581 d8[0] = (alen >> 8) & 0xFF;
1582 d8[1] = alen & 0xFF;
1583 d8[2] = *((u8 *)src);
1584 src = stm32_cryp_next_in(cryp, src, 1);
1585 d8[3] = *((u8 *)src);
1586 src = stm32_cryp_next_in(cryp, src, 1);
1587
1588 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1589 i++;
1590
1591 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1592 } else {
1593 /* Build the two first u32 of B1 */
1594 d8[0] = 0xFF;
1595 d8[1] = 0xFE;
1596 d8[2] = alen & 0xFF000000;
1597 d8[3] = alen & 0x00FF0000;
1598
1599 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1600 i++;
1601
1602 d8[0] = alen & 0x0000FF00;
1603 d8[1] = alen & 0x000000FF;
1604 d8[2] = *((u8 *)src);
1605 src = stm32_cryp_next_in(cryp, src, 1);
1606 d8[3] = *((u8 *)src);
1607 src = stm32_cryp_next_in(cryp, src, 1);
1608
1609 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1610 i++;
1611
1612 cryp->total_in -= min_t(size_t, 2, cryp->total_in);
1613 }
1614 }
1615
1616 /* Write next u32 */
1617 for (; i < AES_BLOCK_32; i++) {
1618 /* Build an u32 */
1619 memset(d8, 0, sizeof(u32));
1620 for (k = 0; k < sizeof(u32); k++) {
1621 d8[k] = *((u8 *)src);
1622 src = stm32_cryp_next_in(cryp, src, 1);
1623
1624 cryp->total_in -= min_t(size_t, 1, cryp->total_in);
1625 if ((cryp->total_in_save - cryp->total_in) == alen)
1626 break;
1627 }
1628
1629 stm32_cryp_write(cryp, CRYP_DIN, *(u32 *)d8);
1630
1631 if ((cryp->total_in_save - cryp->total_in) == alen) {
1632 /* Write padding if needed */
1633 for (j = i + 1; j < AES_BLOCK_32; j++)
1634 stm32_cryp_write(cryp, CRYP_DIN, 0);
1635
1636 /* Wait for completion */
1637 err = stm32_cryp_wait_busy(cryp);
1638 if (err) {
1639 dev_err(cryp->dev, "Timeout (ccm header)\n");
1640 return stm32_cryp_finish_req(cryp, err);
1641 }
1642
1643 if (stm32_cryp_get_input_text_len(cryp)) {
1644 /* Phase 3 : payload */
1645 cfg = stm32_cryp_read(cryp, CRYP_CR);
1646 cfg &= ~CR_CRYPEN;
1647 stm32_cryp_write(cryp, CRYP_CR, cfg);
1648
1649 cfg &= ~CR_PH_MASK;
1650 cfg |= CR_PH_PAYLOAD;
1651 cfg |= CR_CRYPEN;
1652 stm32_cryp_write(cryp, CRYP_CR, cfg);
1653 } else {
1654 /* Phase 4 : tag */
1655 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1656 stm32_cryp_finish_req(cryp, 0);
1657 }
1658
1659 break;
1660 }
1661 }
1662}
1663
1664static irqreturn_t stm32_cryp_irq_thread(int irq, void *arg)
1665{
1666 struct stm32_cryp *cryp = arg;
1667 u32 ph;
1668
1669 if (cryp->irq_status & MISR_OUT)
1670 /* Output FIFO IRQ: read data */
1671 if (unlikely(stm32_cryp_irq_read_data(cryp))) {
1672 /* All bytes processed, finish */
1673 stm32_cryp_write(cryp, CRYP_IMSCR, 0);
1674 stm32_cryp_finish_req(cryp, 0);
1675 return IRQ_HANDLED;
1676 }
1677
1678 if (cryp->irq_status & MISR_IN) {
1679 if (is_gcm(cryp)) {
1680 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1681 if (unlikely(ph == CR_PH_HEADER))
1682 /* Write Header */
1683 stm32_cryp_irq_write_gcm_header(cryp);
1684 else
1685 /* Input FIFO IRQ: write data */
1686 stm32_cryp_irq_write_data(cryp);
1687 cryp->gcm_ctr++;
1688 } else if (is_ccm(cryp)) {
1689 ph = stm32_cryp_read(cryp, CRYP_CR) & CR_PH_MASK;
1690 if (unlikely(ph == CR_PH_HEADER))
1691 /* Write Header */
1692 stm32_cryp_irq_write_ccm_header(cryp);
1693 else
1694 /* Input FIFO IRQ: write data */
1695 stm32_cryp_irq_write_data(cryp);
1696 } else {
1697 /* Input FIFO IRQ: write data */
1698 stm32_cryp_irq_write_data(cryp);
1699 }
1700 }
1701
1702 return IRQ_HANDLED;
1703}
1704
1705static irqreturn_t stm32_cryp_irq(int irq, void *arg)
1706{
1707 struct stm32_cryp *cryp = arg;
1708
1709 cryp->irq_status = stm32_cryp_read(cryp, CRYP_MISR);
1710
1711 return IRQ_WAKE_THREAD;
1712}
1713
1714static struct crypto_alg crypto_algs[] = {
1715{
1716 .cra_name = "ecb(aes)",
1717 .cra_driver_name = "stm32-ecb-aes",
1718 .cra_priority = 200,
1719 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1720 CRYPTO_ALG_ASYNC,
1721 .cra_blocksize = AES_BLOCK_SIZE,
1722 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1723 .cra_alignmask = 0xf,
1724 .cra_type = &crypto_ablkcipher_type,
1725 .cra_module = THIS_MODULE,
1726 .cra_init = stm32_cryp_cra_init,
1727 .cra_ablkcipher = {
1728 .min_keysize = AES_MIN_KEY_SIZE,
1729 .max_keysize = AES_MAX_KEY_SIZE,
1730 .setkey = stm32_cryp_aes_setkey,
1731 .encrypt = stm32_cryp_aes_ecb_encrypt,
1732 .decrypt = stm32_cryp_aes_ecb_decrypt,
1733 }
1734},
1735{
1736 .cra_name = "cbc(aes)",
1737 .cra_driver_name = "stm32-cbc-aes",
1738 .cra_priority = 200,
1739 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1740 CRYPTO_ALG_ASYNC,
1741 .cra_blocksize = AES_BLOCK_SIZE,
1742 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1743 .cra_alignmask = 0xf,
1744 .cra_type = &crypto_ablkcipher_type,
1745 .cra_module = THIS_MODULE,
1746 .cra_init = stm32_cryp_cra_init,
1747 .cra_ablkcipher = {
1748 .min_keysize = AES_MIN_KEY_SIZE,
1749 .max_keysize = AES_MAX_KEY_SIZE,
1750 .ivsize = AES_BLOCK_SIZE,
1751 .setkey = stm32_cryp_aes_setkey,
1752 .encrypt = stm32_cryp_aes_cbc_encrypt,
1753 .decrypt = stm32_cryp_aes_cbc_decrypt,
1754 }
1755},
1756{
1757 .cra_name = "ctr(aes)",
1758 .cra_driver_name = "stm32-ctr-aes",
1759 .cra_priority = 200,
1760 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1761 CRYPTO_ALG_ASYNC,
1762 .cra_blocksize = 1,
1763 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1764 .cra_alignmask = 0xf,
1765 .cra_type = &crypto_ablkcipher_type,
1766 .cra_module = THIS_MODULE,
1767 .cra_init = stm32_cryp_cra_init,
1768 .cra_ablkcipher = {
1769 .min_keysize = AES_MIN_KEY_SIZE,
1770 .max_keysize = AES_MAX_KEY_SIZE,
1771 .ivsize = AES_BLOCK_SIZE,
1772 .setkey = stm32_cryp_aes_setkey,
1773 .encrypt = stm32_cryp_aes_ctr_encrypt,
1774 .decrypt = stm32_cryp_aes_ctr_decrypt,
1775 }
1776},
1777{
1778 .cra_name = "ecb(des)",
1779 .cra_driver_name = "stm32-ecb-des",
1780 .cra_priority = 200,
1781 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1782 CRYPTO_ALG_ASYNC,
1783 .cra_blocksize = DES_BLOCK_SIZE,
1784 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1785 .cra_alignmask = 0xf,
1786 .cra_type = &crypto_ablkcipher_type,
1787 .cra_module = THIS_MODULE,
1788 .cra_init = stm32_cryp_cra_init,
1789 .cra_ablkcipher = {
1790 .min_keysize = DES_BLOCK_SIZE,
1791 .max_keysize = DES_BLOCK_SIZE,
1792 .setkey = stm32_cryp_des_setkey,
1793 .encrypt = stm32_cryp_des_ecb_encrypt,
1794 .decrypt = stm32_cryp_des_ecb_decrypt,
1795 }
1796},
1797{
1798 .cra_name = "cbc(des)",
1799 .cra_driver_name = "stm32-cbc-des",
1800 .cra_priority = 200,
1801 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1802 CRYPTO_ALG_ASYNC,
1803 .cra_blocksize = DES_BLOCK_SIZE,
1804 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1805 .cra_alignmask = 0xf,
1806 .cra_type = &crypto_ablkcipher_type,
1807 .cra_module = THIS_MODULE,
1808 .cra_init = stm32_cryp_cra_init,
1809 .cra_ablkcipher = {
1810 .min_keysize = DES_BLOCK_SIZE,
1811 .max_keysize = DES_BLOCK_SIZE,
1812 .ivsize = DES_BLOCK_SIZE,
1813 .setkey = stm32_cryp_des_setkey,
1814 .encrypt = stm32_cryp_des_cbc_encrypt,
1815 .decrypt = stm32_cryp_des_cbc_decrypt,
1816 }
1817},
1818{
1819 .cra_name = "ecb(des3_ede)",
1820 .cra_driver_name = "stm32-ecb-des3",
1821 .cra_priority = 200,
1822 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1823 CRYPTO_ALG_ASYNC,
1824 .cra_blocksize = DES_BLOCK_SIZE,
1825 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1826 .cra_alignmask = 0xf,
1827 .cra_type = &crypto_ablkcipher_type,
1828 .cra_module = THIS_MODULE,
1829 .cra_init = stm32_cryp_cra_init,
1830 .cra_ablkcipher = {
1831 .min_keysize = 3 * DES_BLOCK_SIZE,
1832 .max_keysize = 3 * DES_BLOCK_SIZE,
1833 .setkey = stm32_cryp_tdes_setkey,
1834 .encrypt = stm32_cryp_tdes_ecb_encrypt,
1835 .decrypt = stm32_cryp_tdes_ecb_decrypt,
1836 }
1837},
1838{
1839 .cra_name = "cbc(des3_ede)",
1840 .cra_driver_name = "stm32-cbc-des3",
1841 .cra_priority = 200,
1842 .cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1843 CRYPTO_ALG_ASYNC,
1844 .cra_blocksize = DES_BLOCK_SIZE,
1845 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1846 .cra_alignmask = 0xf,
1847 .cra_type = &crypto_ablkcipher_type,
1848 .cra_module = THIS_MODULE,
1849 .cra_init = stm32_cryp_cra_init,
1850 .cra_ablkcipher = {
1851 .min_keysize = 3 * DES_BLOCK_SIZE,
1852 .max_keysize = 3 * DES_BLOCK_SIZE,
1853 .ivsize = DES_BLOCK_SIZE,
1854 .setkey = stm32_cryp_tdes_setkey,
1855 .encrypt = stm32_cryp_tdes_cbc_encrypt,
1856 .decrypt = stm32_cryp_tdes_cbc_decrypt,
1857 }
1858},
1859};
1860
1861static struct aead_alg aead_algs[] = {
1862{
1863 .setkey = stm32_cryp_aes_aead_setkey,
1864 .setauthsize = stm32_cryp_aes_gcm_setauthsize,
1865 .encrypt = stm32_cryp_aes_gcm_encrypt,
1866 .decrypt = stm32_cryp_aes_gcm_decrypt,
1867 .init = stm32_cryp_aes_aead_init,
1868 .ivsize = 12,
1869 .maxauthsize = AES_BLOCK_SIZE,
1870
1871 .base = {
1872 .cra_name = "gcm(aes)",
1873 .cra_driver_name = "stm32-gcm-aes",
1874 .cra_priority = 200,
1875 .cra_flags = CRYPTO_ALG_ASYNC,
1876 .cra_blocksize = 1,
1877 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1878 .cra_alignmask = 0xf,
1879 .cra_module = THIS_MODULE,
1880 },
1881},
1882{
1883 .setkey = stm32_cryp_aes_aead_setkey,
1884 .setauthsize = stm32_cryp_aes_ccm_setauthsize,
1885 .encrypt = stm32_cryp_aes_ccm_encrypt,
1886 .decrypt = stm32_cryp_aes_ccm_decrypt,
1887 .init = stm32_cryp_aes_aead_init,
1888 .ivsize = AES_BLOCK_SIZE,
1889 .maxauthsize = AES_BLOCK_SIZE,
1890
1891 .base = {
1892 .cra_name = "ccm(aes)",
1893 .cra_driver_name = "stm32-ccm-aes",
1894 .cra_priority = 200,
1895 .cra_flags = CRYPTO_ALG_ASYNC,
1896 .cra_blocksize = 1,
1897 .cra_ctxsize = sizeof(struct stm32_cryp_ctx),
1898 .cra_alignmask = 0xf,
1899 .cra_module = THIS_MODULE,
1900 },
1901},
1902};
1903
1904static const struct stm32_cryp_caps f7_data = {
1905 .swap_final = true,
1906 .padding_wa = true,
1907};
1908
1909static const struct stm32_cryp_caps mp1_data = {
1910 .swap_final = false,
1911 .padding_wa = false,
1912};
1913
1914static const struct of_device_id stm32_dt_ids[] = {
1915 { .compatible = "st,stm32f756-cryp", .data = &f7_data},
1916 { .compatible = "st,stm32mp1-cryp", .data = &mp1_data},
1917 {},
1918};
1919MODULE_DEVICE_TABLE(of, stm32_dt_ids);
1920
1921static int stm32_cryp_probe(struct platform_device *pdev)
1922{
1923 struct device *dev = &pdev->dev;
1924 struct stm32_cryp *cryp;
1925 struct resource *res;
1926 struct reset_control *rst;
1927 int irq, ret;
1928
1929 cryp = devm_kzalloc(dev, sizeof(*cryp), GFP_KERNEL);
1930 if (!cryp)
1931 return -ENOMEM;
1932
1933 cryp->caps = of_device_get_match_data(dev);
1934 if (!cryp->caps)
1935 return -ENODEV;
1936
1937 cryp->dev = dev;
1938
1939 mutex_init(&cryp->lock);
1940
1941 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1942 cryp->regs = devm_ioremap_resource(dev, res);
1943 if (IS_ERR(cryp->regs))
1944 return PTR_ERR(cryp->regs);
1945
1946 irq = platform_get_irq(pdev, 0);
1947 if (irq < 0) {
1948 dev_err(dev, "Cannot get IRQ resource\n");
1949 return irq;
1950 }
1951
1952 ret = devm_request_threaded_irq(dev, irq, stm32_cryp_irq,
1953 stm32_cryp_irq_thread, IRQF_ONESHOT,
1954 dev_name(dev), cryp);
1955 if (ret) {
1956 dev_err(dev, "Cannot grab IRQ\n");
1957 return ret;
1958 }
1959
1960 cryp->clk = devm_clk_get(dev, NULL);
1961 if (IS_ERR(cryp->clk)) {
1962 dev_err(dev, "Could not get clock\n");
1963 return PTR_ERR(cryp->clk);
1964 }
1965
1966 ret = clk_prepare_enable(cryp->clk);
1967 if (ret) {
1968 dev_err(cryp->dev, "Failed to enable clock\n");
1969 return ret;
1970 }
1971
1972 rst = devm_reset_control_get(dev, NULL);
1973 if (!IS_ERR(rst)) {
1974 reset_control_assert(rst);
1975 udelay(2);
1976 reset_control_deassert(rst);
1977 }
1978
1979 platform_set_drvdata(pdev, cryp);
1980
1981 spin_lock(&cryp_list.lock);
1982 list_add(&cryp->list, &cryp_list.dev_list);
1983 spin_unlock(&cryp_list.lock);
1984
1985 /* Initialize crypto engine */
1986 cryp->engine = crypto_engine_alloc_init(dev, 1);
1987 if (!cryp->engine) {
1988 dev_err(dev, "Could not init crypto engine\n");
1989 ret = -ENOMEM;
1990 goto err_engine1;
1991 }
1992
1993 ret = crypto_engine_start(cryp->engine);
1994 if (ret) {
1995 dev_err(dev, "Could not start crypto engine\n");
1996 goto err_engine2;
1997 }
1998
1999 ret = crypto_register_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2000 if (ret) {
2001 dev_err(dev, "Could not register algs\n");
2002 goto err_algs;
2003 }
2004
2005 ret = crypto_register_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2006 if (ret)
2007 goto err_aead_algs;
2008
2009 dev_info(dev, "Initialized\n");
2010
2011 return 0;
2012
2013err_aead_algs:
2014 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2015err_algs:
2016err_engine2:
2017 crypto_engine_exit(cryp->engine);
2018err_engine1:
2019 spin_lock(&cryp_list.lock);
2020 list_del(&cryp->list);
2021 spin_unlock(&cryp_list.lock);
2022
2023 clk_disable_unprepare(cryp->clk);
2024
2025 return ret;
2026}
2027
2028static int stm32_cryp_remove(struct platform_device *pdev)
2029{
2030 struct stm32_cryp *cryp = platform_get_drvdata(pdev);
2031
2032 if (!cryp)
2033 return -ENODEV;
2034
2035 crypto_unregister_aeads(aead_algs, ARRAY_SIZE(aead_algs));
2036 crypto_unregister_algs(crypto_algs, ARRAY_SIZE(crypto_algs));
2037
2038 crypto_engine_exit(cryp->engine);
2039
2040 spin_lock(&cryp_list.lock);
2041 list_del(&cryp->list);
2042 spin_unlock(&cryp_list.lock);
2043
2044 clk_disable_unprepare(cryp->clk);
2045
2046 return 0;
2047}
2048
2049static struct platform_driver stm32_cryp_driver = {
2050 .probe = stm32_cryp_probe,
2051 .remove = stm32_cryp_remove,
2052 .driver = {
2053 .name = DRIVER_NAME,
2054 .of_match_table = stm32_dt_ids,
2055 },
2056};
2057
2058module_platform_driver(stm32_cryp_driver);
2059
2060MODULE_AUTHOR("Fabien Dessenne <fabien.dessenne@st.com>");
2061MODULE_DESCRIPTION("STMicrolectronics STM32 CRYP hardware driver");
2062MODULE_LICENSE("GPL");