Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
  11#include <linux/acpi.h>
  12#include <linux/cpufreq.h>
  13#include <linux/device.h>
  14#include <linux/err.h>
  15#include <linux/fwnode.h>
  16#include <linux/init.h>
  17#include <linux/kstrtox.h>
  18#include <linux/module.h>
  19#include <linux/slab.h>
  20#include <linux/string.h>
  21#include <linux/kdev_t.h>
  22#include <linux/notifier.h>
  23#include <linux/of.h>
  24#include <linux/of_device.h>
  25#include <linux/blkdev.h>
  26#include <linux/mutex.h>
  27#include <linux/pm_runtime.h>
  28#include <linux/netdevice.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/mm.h>
  31#include <linux/swiotlb.h>
  32#include <linux/sysfs.h>
  33#include <linux/dma-map-ops.h> /* for dma_default_coherent */
  34
  35#include "base.h"
  36#include "physical_location.h"
  37#include "power/power.h"
  38
  39#ifdef CONFIG_SYSFS_DEPRECATED
  40#ifdef CONFIG_SYSFS_DEPRECATED_V2
  41long sysfs_deprecated = 1;
  42#else
  43long sysfs_deprecated = 0;
  44#endif
  45static int __init sysfs_deprecated_setup(char *arg)
  46{
  47	return kstrtol(arg, 10, &sysfs_deprecated);
  48}
  49early_param("sysfs.deprecated", sysfs_deprecated_setup);
  50#endif
  51
  52/* Device links support. */
  53static LIST_HEAD(deferred_sync);
  54static unsigned int defer_sync_state_count = 1;
  55static DEFINE_MUTEX(fwnode_link_lock);
  56static bool fw_devlink_is_permissive(void);
  57static bool fw_devlink_drv_reg_done;
  58static bool fw_devlink_best_effort;
  59
  60/**
  61 * fwnode_link_add - Create a link between two fwnode_handles.
  62 * @con: Consumer end of the link.
  63 * @sup: Supplier end of the link.
  64 *
  65 * Create a fwnode link between fwnode handles @con and @sup. The fwnode link
  66 * represents the detail that the firmware lists @sup fwnode as supplying a
  67 * resource to @con.
  68 *
  69 * The driver core will use the fwnode link to create a device link between the
  70 * two device objects corresponding to @con and @sup when they are created. The
  71 * driver core will automatically delete the fwnode link between @con and @sup
  72 * after doing that.
  73 *
  74 * Attempts to create duplicate links between the same pair of fwnode handles
  75 * are ignored and there is no reference counting.
  76 */
  77int fwnode_link_add(struct fwnode_handle *con, struct fwnode_handle *sup)
  78{
  79	struct fwnode_link *link;
  80	int ret = 0;
  81
  82	mutex_lock(&fwnode_link_lock);
  83
  84	list_for_each_entry(link, &sup->consumers, s_hook)
  85		if (link->consumer == con)
  86			goto out;
  87
  88	link = kzalloc(sizeof(*link), GFP_KERNEL);
  89	if (!link) {
  90		ret = -ENOMEM;
  91		goto out;
  92	}
  93
  94	link->supplier = sup;
  95	INIT_LIST_HEAD(&link->s_hook);
  96	link->consumer = con;
  97	INIT_LIST_HEAD(&link->c_hook);
  98
  99	list_add(&link->s_hook, &sup->consumers);
 100	list_add(&link->c_hook, &con->suppliers);
 101	pr_debug("%pfwP Linked as a fwnode consumer to %pfwP\n",
 102		 con, sup);
 103out:
 104	mutex_unlock(&fwnode_link_lock);
 105
 106	return ret;
 107}
 108
 109/**
 110 * __fwnode_link_del - Delete a link between two fwnode_handles.
 111 * @link: the fwnode_link to be deleted
 112 *
 113 * The fwnode_link_lock needs to be held when this function is called.
 114 */
 115static void __fwnode_link_del(struct fwnode_link *link)
 116{
 117	pr_debug("%pfwP Dropping the fwnode link to %pfwP\n",
 118		 link->consumer, link->supplier);
 119	list_del(&link->s_hook);
 120	list_del(&link->c_hook);
 121	kfree(link);
 122}
 123
 124/**
 125 * fwnode_links_purge_suppliers - Delete all supplier links of fwnode_handle.
 126 * @fwnode: fwnode whose supplier links need to be deleted
 127 *
 128 * Deletes all supplier links connecting directly to @fwnode.
 129 */
 130static void fwnode_links_purge_suppliers(struct fwnode_handle *fwnode)
 131{
 132	struct fwnode_link *link, *tmp;
 133
 134	mutex_lock(&fwnode_link_lock);
 135	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook)
 136		__fwnode_link_del(link);
 137	mutex_unlock(&fwnode_link_lock);
 138}
 139
 140/**
 141 * fwnode_links_purge_consumers - Delete all consumer links of fwnode_handle.
 142 * @fwnode: fwnode whose consumer links need to be deleted
 143 *
 144 * Deletes all consumer links connecting directly to @fwnode.
 145 */
 146static void fwnode_links_purge_consumers(struct fwnode_handle *fwnode)
 147{
 148	struct fwnode_link *link, *tmp;
 149
 150	mutex_lock(&fwnode_link_lock);
 151	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook)
 152		__fwnode_link_del(link);
 153	mutex_unlock(&fwnode_link_lock);
 154}
 155
 156/**
 157 * fwnode_links_purge - Delete all links connected to a fwnode_handle.
 158 * @fwnode: fwnode whose links needs to be deleted
 159 *
 160 * Deletes all links connecting directly to a fwnode.
 161 */
 162void fwnode_links_purge(struct fwnode_handle *fwnode)
 163{
 164	fwnode_links_purge_suppliers(fwnode);
 165	fwnode_links_purge_consumers(fwnode);
 166}
 167
 168void fw_devlink_purge_absent_suppliers(struct fwnode_handle *fwnode)
 169{
 170	struct fwnode_handle *child;
 171
 172	/* Don't purge consumer links of an added child */
 173	if (fwnode->dev)
 174		return;
 175
 176	fwnode->flags |= FWNODE_FLAG_NOT_DEVICE;
 177	fwnode_links_purge_consumers(fwnode);
 178
 179	fwnode_for_each_available_child_node(fwnode, child)
 180		fw_devlink_purge_absent_suppliers(child);
 181}
 182EXPORT_SYMBOL_GPL(fw_devlink_purge_absent_suppliers);
 183
 184#ifdef CONFIG_SRCU
 185static DEFINE_MUTEX(device_links_lock);
 186DEFINE_STATIC_SRCU(device_links_srcu);
 187
 188static inline void device_links_write_lock(void)
 189{
 190	mutex_lock(&device_links_lock);
 191}
 192
 193static inline void device_links_write_unlock(void)
 194{
 195	mutex_unlock(&device_links_lock);
 196}
 197
 198int device_links_read_lock(void) __acquires(&device_links_srcu)
 199{
 200	return srcu_read_lock(&device_links_srcu);
 201}
 202
 203void device_links_read_unlock(int idx) __releases(&device_links_srcu)
 204{
 205	srcu_read_unlock(&device_links_srcu, idx);
 206}
 207
 208int device_links_read_lock_held(void)
 209{
 210	return srcu_read_lock_held(&device_links_srcu);
 211}
 212
 213static void device_link_synchronize_removal(void)
 214{
 215	synchronize_srcu(&device_links_srcu);
 216}
 217
 218static void device_link_remove_from_lists(struct device_link *link)
 219{
 220	list_del_rcu(&link->s_node);
 221	list_del_rcu(&link->c_node);
 222}
 223#else /* !CONFIG_SRCU */
 224static DECLARE_RWSEM(device_links_lock);
 225
 226static inline void device_links_write_lock(void)
 227{
 228	down_write(&device_links_lock);
 229}
 230
 231static inline void device_links_write_unlock(void)
 232{
 233	up_write(&device_links_lock);
 234}
 235
 236int device_links_read_lock(void)
 237{
 238	down_read(&device_links_lock);
 239	return 0;
 240}
 241
 242void device_links_read_unlock(int not_used)
 243{
 244	up_read(&device_links_lock);
 245}
 246
 247#ifdef CONFIG_DEBUG_LOCK_ALLOC
 248int device_links_read_lock_held(void)
 249{
 250	return lockdep_is_held(&device_links_lock);
 251}
 252#endif
 253
 254static inline void device_link_synchronize_removal(void)
 255{
 256}
 257
 258static void device_link_remove_from_lists(struct device_link *link)
 259{
 260	list_del(&link->s_node);
 261	list_del(&link->c_node);
 262}
 263#endif /* !CONFIG_SRCU */
 264
 265static bool device_is_ancestor(struct device *dev, struct device *target)
 266{
 267	while (target->parent) {
 268		target = target->parent;
 269		if (dev == target)
 270			return true;
 271	}
 272	return false;
 273}
 274
 275/**
 276 * device_is_dependent - Check if one device depends on another one
 277 * @dev: Device to check dependencies for.
 278 * @target: Device to check against.
 279 *
 280 * Check if @target depends on @dev or any device dependent on it (its child or
 281 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 282 */
 283int device_is_dependent(struct device *dev, void *target)
 284{
 285	struct device_link *link;
 286	int ret;
 287
 288	/*
 289	 * The "ancestors" check is needed to catch the case when the target
 290	 * device has not been completely initialized yet and it is still
 291	 * missing from the list of children of its parent device.
 292	 */
 293	if (dev == target || device_is_ancestor(dev, target))
 294		return 1;
 295
 296	ret = device_for_each_child(dev, target, device_is_dependent);
 297	if (ret)
 298		return ret;
 299
 300	list_for_each_entry(link, &dev->links.consumers, s_node) {
 301		if ((link->flags & ~DL_FLAG_INFERRED) ==
 302		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 303			continue;
 304
 305		if (link->consumer == target)
 306			return 1;
 307
 308		ret = device_is_dependent(link->consumer, target);
 309		if (ret)
 310			break;
 311	}
 312	return ret;
 313}
 314
 315static void device_link_init_status(struct device_link *link,
 316				    struct device *consumer,
 317				    struct device *supplier)
 318{
 319	switch (supplier->links.status) {
 320	case DL_DEV_PROBING:
 321		switch (consumer->links.status) {
 322		case DL_DEV_PROBING:
 323			/*
 324			 * A consumer driver can create a link to a supplier
 325			 * that has not completed its probing yet as long as it
 326			 * knows that the supplier is already functional (for
 327			 * example, it has just acquired some resources from the
 328			 * supplier).
 329			 */
 330			link->status = DL_STATE_CONSUMER_PROBE;
 331			break;
 332		default:
 333			link->status = DL_STATE_DORMANT;
 334			break;
 335		}
 336		break;
 337	case DL_DEV_DRIVER_BOUND:
 338		switch (consumer->links.status) {
 339		case DL_DEV_PROBING:
 340			link->status = DL_STATE_CONSUMER_PROBE;
 341			break;
 342		case DL_DEV_DRIVER_BOUND:
 343			link->status = DL_STATE_ACTIVE;
 344			break;
 345		default:
 346			link->status = DL_STATE_AVAILABLE;
 347			break;
 348		}
 349		break;
 350	case DL_DEV_UNBINDING:
 351		link->status = DL_STATE_SUPPLIER_UNBIND;
 352		break;
 353	default:
 354		link->status = DL_STATE_DORMANT;
 355		break;
 356	}
 357}
 358
 359static int device_reorder_to_tail(struct device *dev, void *not_used)
 360{
 361	struct device_link *link;
 362
 363	/*
 364	 * Devices that have not been registered yet will be put to the ends
 365	 * of the lists during the registration, so skip them here.
 366	 */
 367	if (device_is_registered(dev))
 368		devices_kset_move_last(dev);
 369
 370	if (device_pm_initialized(dev))
 371		device_pm_move_last(dev);
 372
 373	device_for_each_child(dev, NULL, device_reorder_to_tail);
 374	list_for_each_entry(link, &dev->links.consumers, s_node) {
 375		if ((link->flags & ~DL_FLAG_INFERRED) ==
 376		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
 377			continue;
 378		device_reorder_to_tail(link->consumer, NULL);
 379	}
 380
 381	return 0;
 382}
 383
 384/**
 385 * device_pm_move_to_tail - Move set of devices to the end of device lists
 386 * @dev: Device to move
 387 *
 388 * This is a device_reorder_to_tail() wrapper taking the requisite locks.
 389 *
 390 * It moves the @dev along with all of its children and all of its consumers
 391 * to the ends of the device_kset and dpm_list, recursively.
 392 */
 393void device_pm_move_to_tail(struct device *dev)
 394{
 395	int idx;
 396
 397	idx = device_links_read_lock();
 398	device_pm_lock();
 399	device_reorder_to_tail(dev, NULL);
 400	device_pm_unlock();
 401	device_links_read_unlock(idx);
 402}
 403
 404#define to_devlink(dev)	container_of((dev), struct device_link, link_dev)
 405
 406static ssize_t status_show(struct device *dev,
 407			   struct device_attribute *attr, char *buf)
 408{
 409	const char *output;
 410
 411	switch (to_devlink(dev)->status) {
 412	case DL_STATE_NONE:
 413		output = "not tracked";
 414		break;
 415	case DL_STATE_DORMANT:
 416		output = "dormant";
 417		break;
 418	case DL_STATE_AVAILABLE:
 419		output = "available";
 420		break;
 421	case DL_STATE_CONSUMER_PROBE:
 422		output = "consumer probing";
 423		break;
 424	case DL_STATE_ACTIVE:
 425		output = "active";
 426		break;
 427	case DL_STATE_SUPPLIER_UNBIND:
 428		output = "supplier unbinding";
 429		break;
 430	default:
 431		output = "unknown";
 432		break;
 433	}
 434
 435	return sysfs_emit(buf, "%s\n", output);
 436}
 437static DEVICE_ATTR_RO(status);
 438
 439static ssize_t auto_remove_on_show(struct device *dev,
 440				   struct device_attribute *attr, char *buf)
 441{
 442	struct device_link *link = to_devlink(dev);
 443	const char *output;
 444
 445	if (link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 446		output = "supplier unbind";
 447	else if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER)
 448		output = "consumer unbind";
 449	else
 450		output = "never";
 451
 452	return sysfs_emit(buf, "%s\n", output);
 453}
 454static DEVICE_ATTR_RO(auto_remove_on);
 455
 456static ssize_t runtime_pm_show(struct device *dev,
 457			       struct device_attribute *attr, char *buf)
 458{
 459	struct device_link *link = to_devlink(dev);
 460
 461	return sysfs_emit(buf, "%d\n", !!(link->flags & DL_FLAG_PM_RUNTIME));
 462}
 463static DEVICE_ATTR_RO(runtime_pm);
 464
 465static ssize_t sync_state_only_show(struct device *dev,
 466				    struct device_attribute *attr, char *buf)
 467{
 468	struct device_link *link = to_devlink(dev);
 469
 470	return sysfs_emit(buf, "%d\n",
 471			  !!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 472}
 473static DEVICE_ATTR_RO(sync_state_only);
 474
 475static struct attribute *devlink_attrs[] = {
 476	&dev_attr_status.attr,
 477	&dev_attr_auto_remove_on.attr,
 478	&dev_attr_runtime_pm.attr,
 479	&dev_attr_sync_state_only.attr,
 480	NULL,
 481};
 482ATTRIBUTE_GROUPS(devlink);
 483
 484static void device_link_release_fn(struct work_struct *work)
 485{
 486	struct device_link *link = container_of(work, struct device_link, rm_work);
 487
 488	/* Ensure that all references to the link object have been dropped. */
 489	device_link_synchronize_removal();
 490
 491	pm_runtime_release_supplier(link);
 492	/*
 493	 * If supplier_preactivated is set, the link has been dropped between
 494	 * the pm_runtime_get_suppliers() and pm_runtime_put_suppliers() calls
 495	 * in __driver_probe_device().  In that case, drop the supplier's
 496	 * PM-runtime usage counter to remove the reference taken by
 497	 * pm_runtime_get_suppliers().
 498	 */
 499	if (link->supplier_preactivated)
 500		pm_runtime_put_noidle(link->supplier);
 501
 502	pm_request_idle(link->supplier);
 503
 504	put_device(link->consumer);
 505	put_device(link->supplier);
 506	kfree(link);
 507}
 508
 509static void devlink_dev_release(struct device *dev)
 510{
 511	struct device_link *link = to_devlink(dev);
 512
 513	INIT_WORK(&link->rm_work, device_link_release_fn);
 514	/*
 515	 * It may take a while to complete this work because of the SRCU
 516	 * synchronization in device_link_release_fn() and if the consumer or
 517	 * supplier devices get deleted when it runs, so put it into the "long"
 518	 * workqueue.
 519	 */
 520	queue_work(system_long_wq, &link->rm_work);
 521}
 522
 523static struct class devlink_class = {
 524	.name = "devlink",
 525	.owner = THIS_MODULE,
 526	.dev_groups = devlink_groups,
 527	.dev_release = devlink_dev_release,
 528};
 529
 530static int devlink_add_symlinks(struct device *dev,
 531				struct class_interface *class_intf)
 532{
 533	int ret;
 534	size_t len;
 535	struct device_link *link = to_devlink(dev);
 536	struct device *sup = link->supplier;
 537	struct device *con = link->consumer;
 538	char *buf;
 539
 540	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 541		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 542	len += strlen(":");
 543	len += strlen("supplier:") + 1;
 544	buf = kzalloc(len, GFP_KERNEL);
 545	if (!buf)
 546		return -ENOMEM;
 547
 548	ret = sysfs_create_link(&link->link_dev.kobj, &sup->kobj, "supplier");
 549	if (ret)
 550		goto out;
 551
 552	ret = sysfs_create_link(&link->link_dev.kobj, &con->kobj, "consumer");
 553	if (ret)
 554		goto err_con;
 555
 556	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 557	ret = sysfs_create_link(&sup->kobj, &link->link_dev.kobj, buf);
 558	if (ret)
 559		goto err_con_dev;
 560
 561	snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 562	ret = sysfs_create_link(&con->kobj, &link->link_dev.kobj, buf);
 563	if (ret)
 564		goto err_sup_dev;
 565
 566	goto out;
 567
 568err_sup_dev:
 569	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 570	sysfs_remove_link(&sup->kobj, buf);
 571err_con_dev:
 572	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 573err_con:
 574	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 575out:
 576	kfree(buf);
 577	return ret;
 578}
 579
 580static void devlink_remove_symlinks(struct device *dev,
 581				   struct class_interface *class_intf)
 582{
 583	struct device_link *link = to_devlink(dev);
 584	size_t len;
 585	struct device *sup = link->supplier;
 586	struct device *con = link->consumer;
 587	char *buf;
 588
 589	sysfs_remove_link(&link->link_dev.kobj, "consumer");
 590	sysfs_remove_link(&link->link_dev.kobj, "supplier");
 591
 592	len = max(strlen(dev_bus_name(sup)) + strlen(dev_name(sup)),
 593		  strlen(dev_bus_name(con)) + strlen(dev_name(con)));
 594	len += strlen(":");
 595	len += strlen("supplier:") + 1;
 596	buf = kzalloc(len, GFP_KERNEL);
 597	if (!buf) {
 598		WARN(1, "Unable to properly free device link symlinks!\n");
 599		return;
 600	}
 601
 602	if (device_is_registered(con)) {
 603		snprintf(buf, len, "supplier:%s:%s", dev_bus_name(sup), dev_name(sup));
 604		sysfs_remove_link(&con->kobj, buf);
 605	}
 606	snprintf(buf, len, "consumer:%s:%s", dev_bus_name(con), dev_name(con));
 607	sysfs_remove_link(&sup->kobj, buf);
 608	kfree(buf);
 609}
 610
 611static struct class_interface devlink_class_intf = {
 612	.class = &devlink_class,
 613	.add_dev = devlink_add_symlinks,
 614	.remove_dev = devlink_remove_symlinks,
 615};
 616
 617static int __init devlink_class_init(void)
 618{
 619	int ret;
 620
 621	ret = class_register(&devlink_class);
 622	if (ret)
 623		return ret;
 624
 625	ret = class_interface_register(&devlink_class_intf);
 626	if (ret)
 627		class_unregister(&devlink_class);
 628
 629	return ret;
 630}
 631postcore_initcall(devlink_class_init);
 632
 633#define DL_MANAGED_LINK_FLAGS (DL_FLAG_AUTOREMOVE_CONSUMER | \
 634			       DL_FLAG_AUTOREMOVE_SUPPLIER | \
 635			       DL_FLAG_AUTOPROBE_CONSUMER  | \
 636			       DL_FLAG_SYNC_STATE_ONLY | \
 637			       DL_FLAG_INFERRED)
 638
 639#define DL_ADD_VALID_FLAGS (DL_MANAGED_LINK_FLAGS | DL_FLAG_STATELESS | \
 640			    DL_FLAG_PM_RUNTIME | DL_FLAG_RPM_ACTIVE)
 641
 642/**
 643 * device_link_add - Create a link between two devices.
 644 * @consumer: Consumer end of the link.
 645 * @supplier: Supplier end of the link.
 646 * @flags: Link flags.
 647 *
 648 * The caller is responsible for the proper synchronization of the link creation
 649 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 650 * runtime PM framework to take the link into account.  Second, if the
 651 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 652 * be forced into the active meta state and reference-counted upon the creation
 653 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 654 * ignored.
 655 *
 656 * If DL_FLAG_STATELESS is set in @flags, the caller of this function is
 657 * expected to release the link returned by it directly with the help of either
 658 * device_link_del() or device_link_remove().
 659 *
 660 * If that flag is not set, however, the caller of this function is handing the
 661 * management of the link over to the driver core entirely and its return value
 662 * can only be used to check whether or not the link is present.  In that case,
 663 * the DL_FLAG_AUTOREMOVE_CONSUMER and DL_FLAG_AUTOREMOVE_SUPPLIER device link
 664 * flags can be used to indicate to the driver core when the link can be safely
 665 * deleted.  Namely, setting one of them in @flags indicates to the driver core
 666 * that the link is not going to be used (by the given caller of this function)
 667 * after unbinding the consumer or supplier driver, respectively, from its
 668 * device, so the link can be deleted at that point.  If none of them is set,
 669 * the link will be maintained until one of the devices pointed to by it (either
 670 * the consumer or the supplier) is unregistered.
 671 *
 672 * Also, if DL_FLAG_STATELESS, DL_FLAG_AUTOREMOVE_CONSUMER and
 673 * DL_FLAG_AUTOREMOVE_SUPPLIER are not set in @flags (that is, a persistent
 674 * managed device link is being added), the DL_FLAG_AUTOPROBE_CONSUMER flag can
 675 * be used to request the driver core to automatically probe for a consumer
 676 * driver after successfully binding a driver to the supplier device.
 677 *
 678 * The combination of DL_FLAG_STATELESS and one of DL_FLAG_AUTOREMOVE_CONSUMER,
 679 * DL_FLAG_AUTOREMOVE_SUPPLIER, or DL_FLAG_AUTOPROBE_CONSUMER set in @flags at
 680 * the same time is invalid and will cause NULL to be returned upfront.
 681 * However, if a device link between the given @consumer and @supplier pair
 682 * exists already when this function is called for them, the existing link will
 683 * be returned regardless of its current type and status (the link's flags may
 684 * be modified then).  The caller of this function is then expected to treat
 685 * the link as though it has just been created, so (in particular) if
 686 * DL_FLAG_STATELESS was passed in @flags, the link needs to be released
 687 * explicitly when not needed any more (as stated above).
 688 *
 689 * A side effect of the link creation is re-ordering of dpm_list and the
 690 * devices_kset list by moving the consumer device and all devices depending
 691 * on it to the ends of these lists (that does not happen to devices that have
 692 * not been registered when this function is called).
 693 *
 694 * The supplier device is required to be registered when this function is called
 695 * and NULL will be returned if that is not the case.  The consumer device need
 696 * not be registered, however.
 697 */
 698struct device_link *device_link_add(struct device *consumer,
 699				    struct device *supplier, u32 flags)
 700{
 701	struct device_link *link;
 702
 703	if (!consumer || !supplier || consumer == supplier ||
 704	    flags & ~DL_ADD_VALID_FLAGS ||
 705	    (flags & DL_FLAG_STATELESS && flags & DL_MANAGED_LINK_FLAGS) ||
 706	    (flags & DL_FLAG_SYNC_STATE_ONLY &&
 707	     (flags & ~DL_FLAG_INFERRED) != DL_FLAG_SYNC_STATE_ONLY) ||
 708	    (flags & DL_FLAG_AUTOPROBE_CONSUMER &&
 709	     flags & (DL_FLAG_AUTOREMOVE_CONSUMER |
 710		      DL_FLAG_AUTOREMOVE_SUPPLIER)))
 711		return NULL;
 712
 713	if (flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) {
 714		if (pm_runtime_get_sync(supplier) < 0) {
 715			pm_runtime_put_noidle(supplier);
 716			return NULL;
 717		}
 718	}
 719
 720	if (!(flags & DL_FLAG_STATELESS))
 721		flags |= DL_FLAG_MANAGED;
 722
 723	device_links_write_lock();
 724	device_pm_lock();
 725
 726	/*
 727	 * If the supplier has not been fully registered yet or there is a
 728	 * reverse (non-SYNC_STATE_ONLY) dependency between the consumer and
 729	 * the supplier already in the graph, return NULL. If the link is a
 730	 * SYNC_STATE_ONLY link, we don't check for reverse dependencies
 731	 * because it only affects sync_state() callbacks.
 732	 */
 733	if (!device_pm_initialized(supplier)
 734	    || (!(flags & DL_FLAG_SYNC_STATE_ONLY) &&
 735		  device_is_dependent(consumer, supplier))) {
 736		link = NULL;
 737		goto out;
 738	}
 739
 740	/*
 741	 * SYNC_STATE_ONLY links are useless once a consumer device has probed.
 742	 * So, only create it if the consumer hasn't probed yet.
 743	 */
 744	if (flags & DL_FLAG_SYNC_STATE_ONLY &&
 745	    consumer->links.status != DL_DEV_NO_DRIVER &&
 746	    consumer->links.status != DL_DEV_PROBING) {
 747		link = NULL;
 748		goto out;
 749	}
 750
 751	/*
 752	 * DL_FLAG_AUTOREMOVE_SUPPLIER indicates that the link will be needed
 753	 * longer than for DL_FLAG_AUTOREMOVE_CONSUMER and setting them both
 754	 * together doesn't make sense, so prefer DL_FLAG_AUTOREMOVE_SUPPLIER.
 755	 */
 756	if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
 757		flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 758
 759	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 760		if (link->consumer != consumer)
 761			continue;
 762
 763		if (link->flags & DL_FLAG_INFERRED &&
 764		    !(flags & DL_FLAG_INFERRED))
 765			link->flags &= ~DL_FLAG_INFERRED;
 766
 767		if (flags & DL_FLAG_PM_RUNTIME) {
 768			if (!(link->flags & DL_FLAG_PM_RUNTIME)) {
 769				pm_runtime_new_link(consumer);
 770				link->flags |= DL_FLAG_PM_RUNTIME;
 771			}
 772			if (flags & DL_FLAG_RPM_ACTIVE)
 773				refcount_inc(&link->rpm_active);
 774		}
 775
 776		if (flags & DL_FLAG_STATELESS) {
 777			kref_get(&link->kref);
 778			if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 779			    !(link->flags & DL_FLAG_STATELESS)) {
 780				link->flags |= DL_FLAG_STATELESS;
 781				goto reorder;
 782			} else {
 783				link->flags |= DL_FLAG_STATELESS;
 784				goto out;
 785			}
 786		}
 787
 788		/*
 789		 * If the life time of the link following from the new flags is
 790		 * longer than indicated by the flags of the existing link,
 791		 * update the existing link to stay around longer.
 792		 */
 793		if (flags & DL_FLAG_AUTOREMOVE_SUPPLIER) {
 794			if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
 795				link->flags &= ~DL_FLAG_AUTOREMOVE_CONSUMER;
 796				link->flags |= DL_FLAG_AUTOREMOVE_SUPPLIER;
 797			}
 798		} else if (!(flags & DL_FLAG_AUTOREMOVE_CONSUMER)) {
 799			link->flags &= ~(DL_FLAG_AUTOREMOVE_CONSUMER |
 800					 DL_FLAG_AUTOREMOVE_SUPPLIER);
 801		}
 802		if (!(link->flags & DL_FLAG_MANAGED)) {
 803			kref_get(&link->kref);
 804			link->flags |= DL_FLAG_MANAGED;
 805			device_link_init_status(link, consumer, supplier);
 806		}
 807		if (link->flags & DL_FLAG_SYNC_STATE_ONLY &&
 808		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
 809			link->flags &= ~DL_FLAG_SYNC_STATE_ONLY;
 810			goto reorder;
 811		}
 812
 813		goto out;
 814	}
 815
 816	link = kzalloc(sizeof(*link), GFP_KERNEL);
 817	if (!link)
 818		goto out;
 819
 820	refcount_set(&link->rpm_active, 1);
 821
 
 
 
 
 
 
 
 
 
 
 822	get_device(supplier);
 823	link->supplier = supplier;
 824	INIT_LIST_HEAD(&link->s_node);
 825	get_device(consumer);
 826	link->consumer = consumer;
 827	INIT_LIST_HEAD(&link->c_node);
 828	link->flags = flags;
 829	kref_init(&link->kref);
 830
 831	link->link_dev.class = &devlink_class;
 832	device_set_pm_not_required(&link->link_dev);
 833	dev_set_name(&link->link_dev, "%s:%s--%s:%s",
 834		     dev_bus_name(supplier), dev_name(supplier),
 835		     dev_bus_name(consumer), dev_name(consumer));
 836	if (device_register(&link->link_dev)) {
 837		put_device(&link->link_dev);
 838		link = NULL;
 839		goto out;
 840	}
 841
 842	if (flags & DL_FLAG_PM_RUNTIME) {
 843		if (flags & DL_FLAG_RPM_ACTIVE)
 844			refcount_inc(&link->rpm_active);
 845
 846		pm_runtime_new_link(consumer);
 847	}
 848
 849	/* Determine the initial link state. */
 850	if (flags & DL_FLAG_STATELESS)
 851		link->status = DL_STATE_NONE;
 852	else
 853		device_link_init_status(link, consumer, supplier);
 854
 855	/*
 856	 * Some callers expect the link creation during consumer driver probe to
 857	 * resume the supplier even without DL_FLAG_RPM_ACTIVE.
 858	 */
 859	if (link->status == DL_STATE_CONSUMER_PROBE &&
 860	    flags & DL_FLAG_PM_RUNTIME)
 861		pm_runtime_resume(supplier);
 862
 863	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 864	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 865
 866	if (flags & DL_FLAG_SYNC_STATE_ONLY) {
 867		dev_dbg(consumer,
 868			"Linked as a sync state only consumer to %s\n",
 869			dev_name(supplier));
 870		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 871	}
 872
 873reorder:
 874	/*
 875	 * Move the consumer and all of the devices depending on it to the end
 876	 * of dpm_list and the devices_kset list.
 877	 *
 878	 * It is necessary to hold dpm_list locked throughout all that or else
 879	 * we may end up suspending with a wrong ordering of it.
 880	 */
 881	device_reorder_to_tail(consumer, NULL);
 882
 883	dev_dbg(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 
 
 
 884
 885out:
 886	device_pm_unlock();
 887	device_links_write_unlock();
 888
 889	if ((flags & DL_FLAG_PM_RUNTIME && flags & DL_FLAG_RPM_ACTIVE) && !link)
 890		pm_runtime_put(supplier);
 891
 892	return link;
 893}
 894EXPORT_SYMBOL_GPL(device_link_add);
 895
 
 
 
 
 
 
 
 
 
 
 
 
 
 896static void __device_link_del(struct kref *kref)
 897{
 898	struct device_link *link = container_of(kref, struct device_link, kref);
 899
 900	dev_dbg(link->consumer, "Dropping the link to %s\n",
 901		dev_name(link->supplier));
 902
 903	pm_runtime_drop_link(link);
 
 904
 905	device_link_remove_from_lists(link);
 906	device_unregister(&link->link_dev);
 
 907}
 908
 909static void device_link_put_kref(struct device_link *link)
 910{
 911	if (link->flags & DL_FLAG_STATELESS)
 912		kref_put(&link->kref, __device_link_del);
 913	else if (!device_is_registered(link->consumer))
 914		__device_link_del(&link->kref);
 915	else
 916		WARN(1, "Unable to drop a managed device link reference\n");
 
 
 
 
 
 917}
 
 918
 919/**
 920 * device_link_del - Delete a stateless link between two devices.
 921 * @link: Device link to delete.
 922 *
 923 * The caller must ensure proper synchronization of this function with runtime
 924 * PM.  If the link was added multiple times, it needs to be deleted as often.
 925 * Care is required for hotplugged devices:  Their links are purged on removal
 926 * and calling device_link_del() is then no longer allowed.
 927 */
 928void device_link_del(struct device_link *link)
 929{
 930	device_links_write_lock();
 931	device_link_put_kref(link);
 
 
 932	device_links_write_unlock();
 933}
 934EXPORT_SYMBOL_GPL(device_link_del);
 935
 936/**
 937 * device_link_remove - Delete a stateless link between two devices.
 938 * @consumer: Consumer end of the link.
 939 * @supplier: Supplier end of the link.
 940 *
 941 * The caller must ensure proper synchronization of this function with runtime
 942 * PM.
 943 */
 944void device_link_remove(void *consumer, struct device *supplier)
 945{
 946	struct device_link *link;
 947
 948	if (WARN_ON(consumer == supplier))
 949		return;
 950
 951	device_links_write_lock();
 952
 953	list_for_each_entry(link, &supplier->links.consumers, s_node) {
 954		if (link->consumer == consumer) {
 955			device_link_put_kref(link);
 956			break;
 957		}
 958	}
 959
 960	device_links_write_unlock();
 961}
 962EXPORT_SYMBOL_GPL(device_link_remove);
 963
 964static void device_links_missing_supplier(struct device *dev)
 965{
 966	struct device_link *link;
 967
 968	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 969		if (link->status != DL_STATE_CONSUMER_PROBE)
 970			continue;
 971
 972		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 973			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 974		} else {
 975			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
 976			WRITE_ONCE(link->status, DL_STATE_DORMANT);
 977		}
 978	}
 979}
 980
 981static bool dev_is_best_effort(struct device *dev)
 982{
 983	return (fw_devlink_best_effort && dev->can_match) ||
 984		(dev->fwnode && (dev->fwnode->flags & FWNODE_FLAG_BEST_EFFORT));
 985}
 986
 987/**
 988 * device_links_check_suppliers - Check presence of supplier drivers.
 989 * @dev: Consumer device.
 990 *
 991 * Check links from this device to any suppliers.  Walk the list of the device's
 992 * links to suppliers and see if all of them are available.  If not, simply
 993 * return -EPROBE_DEFER.
 994 *
 995 * We need to guarantee that the supplier will not go away after the check has
 996 * been positive here.  It only can go away in __device_release_driver() and
 997 * that function  checks the device's links to consumers.  This means we need to
 998 * mark the link as "consumer probe in progress" to make the supplier removal
 999 * wait for us to complete (or bad things may happen).
1000 *
1001 * Links without the DL_FLAG_MANAGED flag set are ignored.
1002 */
1003int device_links_check_suppliers(struct device *dev)
1004{
1005	struct device_link *link;
1006	int ret = 0, fwnode_ret = 0;
1007	struct fwnode_handle *sup_fw;
1008
1009	/*
1010	 * Device waiting for supplier to become available is not allowed to
1011	 * probe.
1012	 */
1013	mutex_lock(&fwnode_link_lock);
1014	if (dev->fwnode && !list_empty(&dev->fwnode->suppliers) &&
1015	    !fw_devlink_is_permissive()) {
1016		sup_fw = list_first_entry(&dev->fwnode->suppliers,
1017					  struct fwnode_link,
1018					  c_hook)->supplier;
1019		if (!dev_is_best_effort(dev)) {
1020			fwnode_ret = -EPROBE_DEFER;
1021			dev_err_probe(dev, -EPROBE_DEFER,
1022				    "wait for supplier %pfwP\n", sup_fw);
1023		} else {
1024			fwnode_ret = -EAGAIN;
1025		}
1026	}
1027	mutex_unlock(&fwnode_link_lock);
1028	if (fwnode_ret == -EPROBE_DEFER)
1029		return fwnode_ret;
1030
1031	device_links_write_lock();
1032
1033	list_for_each_entry(link, &dev->links.suppliers, c_node) {
1034		if (!(link->flags & DL_FLAG_MANAGED))
1035			continue;
1036
1037		if (link->status != DL_STATE_AVAILABLE &&
1038		    !(link->flags & DL_FLAG_SYNC_STATE_ONLY)) {
1039
1040			if (dev_is_best_effort(dev) &&
1041			    link->flags & DL_FLAG_INFERRED &&
1042			    !link->supplier->can_match) {
1043				ret = -EAGAIN;
1044				continue;
1045			}
1046
1047			device_links_missing_supplier(dev);
1048			dev_err_probe(dev, -EPROBE_DEFER,
1049				      "supplier %s not ready\n",
1050				      dev_name(link->supplier));
1051			ret = -EPROBE_DEFER;
1052			break;
1053		}
1054		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1055	}
1056	dev->links.status = DL_DEV_PROBING;
1057
1058	device_links_write_unlock();
1059
1060	return ret ? ret : fwnode_ret;
1061}
1062
1063/**
1064 * __device_links_queue_sync_state - Queue a device for sync_state() callback
1065 * @dev: Device to call sync_state() on
1066 * @list: List head to queue the @dev on
1067 *
1068 * Queues a device for a sync_state() callback when the device links write lock
1069 * isn't held. This allows the sync_state() execution flow to use device links
1070 * APIs.  The caller must ensure this function is called with
1071 * device_links_write_lock() held.
1072 *
1073 * This function does a get_device() to make sure the device is not freed while
1074 * on this list.
1075 *
1076 * So the caller must also ensure that device_links_flush_sync_list() is called
1077 * as soon as the caller releases device_links_write_lock().  This is necessary
1078 * to make sure the sync_state() is called in a timely fashion and the
1079 * put_device() is called on this device.
1080 */
1081static void __device_links_queue_sync_state(struct device *dev,
1082					    struct list_head *list)
1083{
1084	struct device_link *link;
1085
1086	if (!dev_has_sync_state(dev))
1087		return;
1088	if (dev->state_synced)
1089		return;
1090
1091	list_for_each_entry(link, &dev->links.consumers, s_node) {
1092		if (!(link->flags & DL_FLAG_MANAGED))
1093			continue;
1094		if (link->status != DL_STATE_ACTIVE)
1095			return;
1096	}
1097
1098	/*
1099	 * Set the flag here to avoid adding the same device to a list more
1100	 * than once. This can happen if new consumers get added to the device
1101	 * and probed before the list is flushed.
1102	 */
1103	dev->state_synced = true;
1104
1105	if (WARN_ON(!list_empty(&dev->links.defer_sync)))
1106		return;
1107
1108	get_device(dev);
1109	list_add_tail(&dev->links.defer_sync, list);
1110}
1111
1112/**
1113 * device_links_flush_sync_list - Call sync_state() on a list of devices
1114 * @list: List of devices to call sync_state() on
1115 * @dont_lock_dev: Device for which lock is already held by the caller
1116 *
1117 * Calls sync_state() on all the devices that have been queued for it. This
1118 * function is used in conjunction with __device_links_queue_sync_state(). The
1119 * @dont_lock_dev parameter is useful when this function is called from a
1120 * context where a device lock is already held.
1121 */
1122static void device_links_flush_sync_list(struct list_head *list,
1123					 struct device *dont_lock_dev)
1124{
1125	struct device *dev, *tmp;
1126
1127	list_for_each_entry_safe(dev, tmp, list, links.defer_sync) {
1128		list_del_init(&dev->links.defer_sync);
1129
1130		if (dev != dont_lock_dev)
1131			device_lock(dev);
1132
1133		if (dev->bus->sync_state)
1134			dev->bus->sync_state(dev);
1135		else if (dev->driver && dev->driver->sync_state)
1136			dev->driver->sync_state(dev);
1137
1138		if (dev != dont_lock_dev)
1139			device_unlock(dev);
1140
1141		put_device(dev);
1142	}
1143}
1144
1145void device_links_supplier_sync_state_pause(void)
1146{
1147	device_links_write_lock();
1148	defer_sync_state_count++;
1149	device_links_write_unlock();
1150}
1151
1152void device_links_supplier_sync_state_resume(void)
1153{
1154	struct device *dev, *tmp;
1155	LIST_HEAD(sync_list);
1156
1157	device_links_write_lock();
1158	if (!defer_sync_state_count) {
1159		WARN(true, "Unmatched sync_state pause/resume!");
1160		goto out;
1161	}
1162	defer_sync_state_count--;
1163	if (defer_sync_state_count)
1164		goto out;
1165
1166	list_for_each_entry_safe(dev, tmp, &deferred_sync, links.defer_sync) {
1167		/*
1168		 * Delete from deferred_sync list before queuing it to
1169		 * sync_list because defer_sync is used for both lists.
1170		 */
1171		list_del_init(&dev->links.defer_sync);
1172		__device_links_queue_sync_state(dev, &sync_list);
1173	}
1174out:
1175	device_links_write_unlock();
1176
1177	device_links_flush_sync_list(&sync_list, NULL);
1178}
1179
1180static int sync_state_resume_initcall(void)
1181{
1182	device_links_supplier_sync_state_resume();
1183	return 0;
1184}
1185late_initcall(sync_state_resume_initcall);
1186
1187static void __device_links_supplier_defer_sync(struct device *sup)
1188{
1189	if (list_empty(&sup->links.defer_sync) && dev_has_sync_state(sup))
1190		list_add_tail(&sup->links.defer_sync, &deferred_sync);
1191}
1192
1193static void device_link_drop_managed(struct device_link *link)
1194{
1195	link->flags &= ~DL_FLAG_MANAGED;
1196	WRITE_ONCE(link->status, DL_STATE_NONE);
1197	kref_put(&link->kref, __device_link_del);
1198}
1199
1200static ssize_t waiting_for_supplier_show(struct device *dev,
1201					 struct device_attribute *attr,
1202					 char *buf)
1203{
1204	bool val;
1205
1206	device_lock(dev);
1207	val = !list_empty(&dev->fwnode->suppliers);
1208	device_unlock(dev);
1209	return sysfs_emit(buf, "%u\n", val);
1210}
1211static DEVICE_ATTR_RO(waiting_for_supplier);
1212
1213/**
1214 * device_links_force_bind - Prepares device to be force bound
1215 * @dev: Consumer device.
1216 *
1217 * device_bind_driver() force binds a device to a driver without calling any
1218 * driver probe functions. So the consumer really isn't going to wait for any
1219 * supplier before it's bound to the driver. We still want the device link
1220 * states to be sensible when this happens.
1221 *
1222 * In preparation for device_bind_driver(), this function goes through each
1223 * supplier device links and checks if the supplier is bound. If it is, then
1224 * the device link status is set to CONSUMER_PROBE. Otherwise, the device link
1225 * is dropped. Links without the DL_FLAG_MANAGED flag set are ignored.
1226 */
1227void device_links_force_bind(struct device *dev)
1228{
1229	struct device_link *link, *ln;
1230
1231	device_links_write_lock();
1232
1233	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1234		if (!(link->flags & DL_FLAG_MANAGED))
1235			continue;
1236
1237		if (link->status != DL_STATE_AVAILABLE) {
1238			device_link_drop_managed(link);
1239			continue;
1240		}
1241		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
1242	}
1243	dev->links.status = DL_DEV_PROBING;
1244
1245	device_links_write_unlock();
1246}
1247
1248/**
1249 * device_links_driver_bound - Update device links after probing its driver.
1250 * @dev: Device to update the links for.
1251 *
1252 * The probe has been successful, so update links from this device to any
1253 * consumers by changing their status to "available".
1254 *
1255 * Also change the status of @dev's links to suppliers to "active".
1256 *
1257 * Links without the DL_FLAG_MANAGED flag set are ignored.
1258 */
1259void device_links_driver_bound(struct device *dev)
1260{
1261	struct device_link *link, *ln;
1262	LIST_HEAD(sync_list);
1263
1264	/*
1265	 * If a device binds successfully, it's expected to have created all
1266	 * the device links it needs to or make new device links as it needs
1267	 * them. So, fw_devlink no longer needs to create device links to any
1268	 * of the device's suppliers.
1269	 *
1270	 * Also, if a child firmware node of this bound device is not added as
1271	 * a device by now, assume it is never going to be added and make sure
1272	 * other devices don't defer probe indefinitely by waiting for such a
1273	 * child device.
1274	 */
1275	if (dev->fwnode && dev->fwnode->dev == dev) {
1276		struct fwnode_handle *child;
1277		fwnode_links_purge_suppliers(dev->fwnode);
1278		fwnode_for_each_available_child_node(dev->fwnode, child)
1279			fw_devlink_purge_absent_suppliers(child);
1280	}
1281	device_remove_file(dev, &dev_attr_waiting_for_supplier);
1282
1283	device_links_write_lock();
1284
1285	list_for_each_entry(link, &dev->links.consumers, s_node) {
1286		if (!(link->flags & DL_FLAG_MANAGED))
1287			continue;
1288
1289		/*
1290		 * Links created during consumer probe may be in the "consumer
1291		 * probe" state to start with if the supplier is still probing
1292		 * when they are created and they may become "active" if the
1293		 * consumer probe returns first.  Skip them here.
1294		 */
1295		if (link->status == DL_STATE_CONSUMER_PROBE ||
1296		    link->status == DL_STATE_ACTIVE)
1297			continue;
1298
1299		WARN_ON(link->status != DL_STATE_DORMANT);
1300		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1301
1302		if (link->flags & DL_FLAG_AUTOPROBE_CONSUMER)
1303			driver_deferred_probe_add(link->consumer);
1304	}
1305
1306	if (defer_sync_state_count)
1307		__device_links_supplier_defer_sync(dev);
1308	else
1309		__device_links_queue_sync_state(dev, &sync_list);
1310
1311	list_for_each_entry_safe(link, ln, &dev->links.suppliers, c_node) {
1312		struct device *supplier;
1313
1314		if (!(link->flags & DL_FLAG_MANAGED))
1315			continue;
1316
1317		supplier = link->supplier;
1318		if (link->flags & DL_FLAG_SYNC_STATE_ONLY) {
1319			/*
1320			 * When DL_FLAG_SYNC_STATE_ONLY is set, it means no
1321			 * other DL_MANAGED_LINK_FLAGS have been set. So, it's
1322			 * save to drop the managed link completely.
1323			 */
1324			device_link_drop_managed(link);
1325		} else if (dev_is_best_effort(dev) &&
1326			   link->flags & DL_FLAG_INFERRED &&
1327			   link->status != DL_STATE_CONSUMER_PROBE &&
1328			   !link->supplier->can_match) {
1329			/*
1330			 * When dev_is_best_effort() is true, we ignore device
1331			 * links to suppliers that don't have a driver.  If the
1332			 * consumer device still managed to probe, there's no
1333			 * point in maintaining a device link in a weird state
1334			 * (consumer probed before supplier). So delete it.
1335			 */
1336			device_link_drop_managed(link);
1337		} else {
1338			WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
1339			WRITE_ONCE(link->status, DL_STATE_ACTIVE);
1340		}
1341
1342		/*
1343		 * This needs to be done even for the deleted
1344		 * DL_FLAG_SYNC_STATE_ONLY device link in case it was the last
1345		 * device link that was preventing the supplier from getting a
1346		 * sync_state() call.
1347		 */
1348		if (defer_sync_state_count)
1349			__device_links_supplier_defer_sync(supplier);
1350		else
1351			__device_links_queue_sync_state(supplier, &sync_list);
1352	}
1353
1354	dev->links.status = DL_DEV_DRIVER_BOUND;
1355
1356	device_links_write_unlock();
1357
1358	device_links_flush_sync_list(&sync_list, dev);
1359}
1360
1361/**
1362 * __device_links_no_driver - Update links of a device without a driver.
1363 * @dev: Device without a drvier.
1364 *
1365 * Delete all non-persistent links from this device to any suppliers.
1366 *
1367 * Persistent links stay around, but their status is changed to "available",
1368 * unless they already are in the "supplier unbind in progress" state in which
1369 * case they need not be updated.
1370 *
1371 * Links without the DL_FLAG_MANAGED flag set are ignored.
1372 */
1373static void __device_links_no_driver(struct device *dev)
1374{
1375	struct device_link *link, *ln;
1376
1377	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1378		if (!(link->flags & DL_FLAG_MANAGED))
1379			continue;
1380
1381		if (link->flags & DL_FLAG_AUTOREMOVE_CONSUMER) {
1382			device_link_drop_managed(link);
1383			continue;
1384		}
1385
1386		if (link->status != DL_STATE_CONSUMER_PROBE &&
1387		    link->status != DL_STATE_ACTIVE)
1388			continue;
1389
1390		if (link->supplier->links.status == DL_DEV_DRIVER_BOUND) {
 
 
1391			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
1392		} else {
1393			WARN_ON(!(link->flags & DL_FLAG_SYNC_STATE_ONLY));
1394			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1395		}
1396	}
1397
1398	dev->links.status = DL_DEV_NO_DRIVER;
1399}
1400
1401/**
1402 * device_links_no_driver - Update links after failing driver probe.
1403 * @dev: Device whose driver has just failed to probe.
1404 *
1405 * Clean up leftover links to consumers for @dev and invoke
1406 * %__device_links_no_driver() to update links to suppliers for it as
1407 * appropriate.
1408 *
1409 * Links without the DL_FLAG_MANAGED flag set are ignored.
1410 */
1411void device_links_no_driver(struct device *dev)
1412{
1413	struct device_link *link;
1414
1415	device_links_write_lock();
1416
1417	list_for_each_entry(link, &dev->links.consumers, s_node) {
1418		if (!(link->flags & DL_FLAG_MANAGED))
1419			continue;
1420
1421		/*
1422		 * The probe has failed, so if the status of the link is
1423		 * "consumer probe" or "active", it must have been added by
1424		 * a probing consumer while this device was still probing.
1425		 * Change its state to "dormant", as it represents a valid
1426		 * relationship, but it is not functionally meaningful.
1427		 */
1428		if (link->status == DL_STATE_CONSUMER_PROBE ||
1429		    link->status == DL_STATE_ACTIVE)
1430			WRITE_ONCE(link->status, DL_STATE_DORMANT);
1431	}
1432
1433	__device_links_no_driver(dev);
1434
1435	device_links_write_unlock();
1436}
1437
1438/**
1439 * device_links_driver_cleanup - Update links after driver removal.
1440 * @dev: Device whose driver has just gone away.
1441 *
1442 * Update links to consumers for @dev by changing their status to "dormant" and
1443 * invoke %__device_links_no_driver() to update links to suppliers for it as
1444 * appropriate.
1445 *
1446 * Links without the DL_FLAG_MANAGED flag set are ignored.
1447 */
1448void device_links_driver_cleanup(struct device *dev)
1449{
1450	struct device_link *link, *ln;
1451
1452	device_links_write_lock();
1453
1454	list_for_each_entry_safe(link, ln, &dev->links.consumers, s_node) {
1455		if (!(link->flags & DL_FLAG_MANAGED))
1456			continue;
1457
1458		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE_CONSUMER);
1459		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
1460
1461		/*
1462		 * autoremove the links between this @dev and its consumer
1463		 * devices that are not active, i.e. where the link state
1464		 * has moved to DL_STATE_SUPPLIER_UNBIND.
1465		 */
1466		if (link->status == DL_STATE_SUPPLIER_UNBIND &&
1467		    link->flags & DL_FLAG_AUTOREMOVE_SUPPLIER)
1468			device_link_drop_managed(link);
1469
1470		WRITE_ONCE(link->status, DL_STATE_DORMANT);
1471	}
1472
1473	list_del_init(&dev->links.defer_sync);
1474	__device_links_no_driver(dev);
1475
1476	device_links_write_unlock();
1477}
1478
1479/**
1480 * device_links_busy - Check if there are any busy links to consumers.
1481 * @dev: Device to check.
1482 *
1483 * Check each consumer of the device and return 'true' if its link's status
1484 * is one of "consumer probe" or "active" (meaning that the given consumer is
1485 * probing right now or its driver is present).  Otherwise, change the link
1486 * state to "supplier unbind" to prevent the consumer from being probed
1487 * successfully going forward.
1488 *
1489 * Return 'false' if there are no probing or active consumers.
1490 *
1491 * Links without the DL_FLAG_MANAGED flag set are ignored.
1492 */
1493bool device_links_busy(struct device *dev)
1494{
1495	struct device_link *link;
1496	bool ret = false;
1497
1498	device_links_write_lock();
1499
1500	list_for_each_entry(link, &dev->links.consumers, s_node) {
1501		if (!(link->flags & DL_FLAG_MANAGED))
1502			continue;
1503
1504		if (link->status == DL_STATE_CONSUMER_PROBE
1505		    || link->status == DL_STATE_ACTIVE) {
1506			ret = true;
1507			break;
1508		}
1509		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1510	}
1511
1512	dev->links.status = DL_DEV_UNBINDING;
1513
1514	device_links_write_unlock();
1515	return ret;
1516}
1517
1518/**
1519 * device_links_unbind_consumers - Force unbind consumers of the given device.
1520 * @dev: Device to unbind the consumers of.
1521 *
1522 * Walk the list of links to consumers for @dev and if any of them is in the
1523 * "consumer probe" state, wait for all device probes in progress to complete
1524 * and start over.
1525 *
1526 * If that's not the case, change the status of the link to "supplier unbind"
1527 * and check if the link was in the "active" state.  If so, force the consumer
1528 * driver to unbind and start over (the consumer will not re-probe as we have
1529 * changed the state of the link already).
1530 *
1531 * Links without the DL_FLAG_MANAGED flag set are ignored.
1532 */
1533void device_links_unbind_consumers(struct device *dev)
1534{
1535	struct device_link *link;
1536
1537 start:
1538	device_links_write_lock();
1539
1540	list_for_each_entry(link, &dev->links.consumers, s_node) {
1541		enum device_link_state status;
1542
1543		if (!(link->flags & DL_FLAG_MANAGED) ||
1544		    link->flags & DL_FLAG_SYNC_STATE_ONLY)
1545			continue;
1546
1547		status = link->status;
1548		if (status == DL_STATE_CONSUMER_PROBE) {
1549			device_links_write_unlock();
1550
1551			wait_for_device_probe();
1552			goto start;
1553		}
1554		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
1555		if (status == DL_STATE_ACTIVE) {
1556			struct device *consumer = link->consumer;
1557
1558			get_device(consumer);
1559
1560			device_links_write_unlock();
1561
1562			device_release_driver_internal(consumer, NULL,
1563						       consumer->parent);
1564			put_device(consumer);
1565			goto start;
1566		}
1567	}
1568
1569	device_links_write_unlock();
1570}
1571
1572/**
1573 * device_links_purge - Delete existing links to other devices.
1574 * @dev: Target device.
1575 */
1576static void device_links_purge(struct device *dev)
1577{
1578	struct device_link *link, *ln;
1579
1580	if (dev->class == &devlink_class)
1581		return;
1582
1583	/*
1584	 * Delete all of the remaining links from this device to any other
1585	 * devices (either consumers or suppliers).
1586	 */
1587	device_links_write_lock();
1588
1589	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
1590		WARN_ON(link->status == DL_STATE_ACTIVE);
1591		__device_link_del(&link->kref);
1592	}
1593
1594	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
1595		WARN_ON(link->status != DL_STATE_DORMANT &&
1596			link->status != DL_STATE_NONE);
1597		__device_link_del(&link->kref);
1598	}
1599
1600	device_links_write_unlock();
1601}
1602
1603#define FW_DEVLINK_FLAGS_PERMISSIVE	(DL_FLAG_INFERRED | \
1604					 DL_FLAG_SYNC_STATE_ONLY)
1605#define FW_DEVLINK_FLAGS_ON		(DL_FLAG_INFERRED | \
1606					 DL_FLAG_AUTOPROBE_CONSUMER)
1607#define FW_DEVLINK_FLAGS_RPM		(FW_DEVLINK_FLAGS_ON | \
1608					 DL_FLAG_PM_RUNTIME)
1609
1610static u32 fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1611static int __init fw_devlink_setup(char *arg)
1612{
1613	if (!arg)
1614		return -EINVAL;
1615
1616	if (strcmp(arg, "off") == 0) {
1617		fw_devlink_flags = 0;
1618	} else if (strcmp(arg, "permissive") == 0) {
1619		fw_devlink_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1620	} else if (strcmp(arg, "on") == 0) {
1621		fw_devlink_flags = FW_DEVLINK_FLAGS_ON;
1622	} else if (strcmp(arg, "rpm") == 0) {
1623		fw_devlink_flags = FW_DEVLINK_FLAGS_RPM;
1624	}
1625	return 0;
1626}
1627early_param("fw_devlink", fw_devlink_setup);
1628
1629static bool fw_devlink_strict;
1630static int __init fw_devlink_strict_setup(char *arg)
1631{
1632	return kstrtobool(arg, &fw_devlink_strict);
1633}
1634early_param("fw_devlink.strict", fw_devlink_strict_setup);
1635
1636u32 fw_devlink_get_flags(void)
1637{
1638	return fw_devlink_flags;
1639}
1640
1641static bool fw_devlink_is_permissive(void)
1642{
1643	return fw_devlink_flags == FW_DEVLINK_FLAGS_PERMISSIVE;
1644}
1645
1646bool fw_devlink_is_strict(void)
1647{
1648	return fw_devlink_strict && !fw_devlink_is_permissive();
1649}
1650
1651static void fw_devlink_parse_fwnode(struct fwnode_handle *fwnode)
1652{
1653	if (fwnode->flags & FWNODE_FLAG_LINKS_ADDED)
1654		return;
1655
1656	fwnode_call_int_op(fwnode, add_links);
1657	fwnode->flags |= FWNODE_FLAG_LINKS_ADDED;
1658}
1659
1660static void fw_devlink_parse_fwtree(struct fwnode_handle *fwnode)
1661{
1662	struct fwnode_handle *child = NULL;
1663
1664	fw_devlink_parse_fwnode(fwnode);
1665
1666	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
1667		fw_devlink_parse_fwtree(child);
1668}
1669
1670static void fw_devlink_relax_link(struct device_link *link)
1671{
1672	if (!(link->flags & DL_FLAG_INFERRED))
1673		return;
1674
1675	if (link->flags == (DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE))
1676		return;
1677
1678	pm_runtime_drop_link(link);
1679	link->flags = DL_FLAG_MANAGED | FW_DEVLINK_FLAGS_PERMISSIVE;
1680	dev_dbg(link->consumer, "Relaxing link with %s\n",
1681		dev_name(link->supplier));
1682}
1683
1684static int fw_devlink_no_driver(struct device *dev, void *data)
1685{
1686	struct device_link *link = to_devlink(dev);
1687
1688	if (!link->supplier->can_match)
1689		fw_devlink_relax_link(link);
1690
1691	return 0;
1692}
1693
1694void fw_devlink_drivers_done(void)
1695{
1696	fw_devlink_drv_reg_done = true;
1697	device_links_write_lock();
1698	class_for_each_device(&devlink_class, NULL, NULL,
1699			      fw_devlink_no_driver);
1700	device_links_write_unlock();
1701}
1702
1703/**
1704 * wait_for_init_devices_probe - Try to probe any device needed for init
1705 *
1706 * Some devices might need to be probed and bound successfully before the kernel
1707 * boot sequence can finish and move on to init/userspace. For example, a
1708 * network interface might need to be bound to be able to mount a NFS rootfs.
1709 *
1710 * With fw_devlink=on by default, some of these devices might be blocked from
1711 * probing because they are waiting on a optional supplier that doesn't have a
1712 * driver. While fw_devlink will eventually identify such devices and unblock
1713 * the probing automatically, it might be too late by the time it unblocks the
1714 * probing of devices. For example, the IP4 autoconfig might timeout before
1715 * fw_devlink unblocks probing of the network interface.
1716 *
1717 * This function is available to temporarily try and probe all devices that have
1718 * a driver even if some of their suppliers haven't been added or don't have
1719 * drivers.
1720 *
1721 * The drivers can then decide which of the suppliers are optional vs mandatory
1722 * and probe the device if possible. By the time this function returns, all such
1723 * "best effort" probes are guaranteed to be completed. If a device successfully
1724 * probes in this mode, we delete all fw_devlink discovered dependencies of that
1725 * device where the supplier hasn't yet probed successfully because they have to
1726 * be optional dependencies.
1727 *
1728 * Any devices that didn't successfully probe go back to being treated as if
1729 * this function was never called.
1730 *
1731 * This also means that some devices that aren't needed for init and could have
1732 * waited for their optional supplier to probe (when the supplier's module is
1733 * loaded later on) would end up probing prematurely with limited functionality.
1734 * So call this function only when boot would fail without it.
1735 */
1736void __init wait_for_init_devices_probe(void)
1737{
1738	if (!fw_devlink_flags || fw_devlink_is_permissive())
1739		return;
1740
1741	/*
1742	 * Wait for all ongoing probes to finish so that the "best effort" is
1743	 * only applied to devices that can't probe otherwise.
1744	 */
1745	wait_for_device_probe();
1746
1747	pr_info("Trying to probe devices needed for running init ...\n");
1748	fw_devlink_best_effort = true;
1749	driver_deferred_probe_trigger();
1750
1751	/*
1752	 * Wait for all "best effort" probes to finish before going back to
1753	 * normal enforcement.
1754	 */
1755	wait_for_device_probe();
1756	fw_devlink_best_effort = false;
1757}
1758
1759static void fw_devlink_unblock_consumers(struct device *dev)
1760{
1761	struct device_link *link;
1762
1763	if (!fw_devlink_flags || fw_devlink_is_permissive())
1764		return;
1765
1766	device_links_write_lock();
1767	list_for_each_entry(link, &dev->links.consumers, s_node)
1768		fw_devlink_relax_link(link);
1769	device_links_write_unlock();
1770}
1771
1772/**
1773 * fw_devlink_relax_cycle - Convert cyclic links to SYNC_STATE_ONLY links
1774 * @con: Device to check dependencies for.
1775 * @sup: Device to check against.
1776 *
1777 * Check if @sup depends on @con or any device dependent on it (its child or
1778 * its consumer etc).  When such a cyclic dependency is found, convert all
1779 * device links created solely by fw_devlink into SYNC_STATE_ONLY device links.
1780 * This is the equivalent of doing fw_devlink=permissive just between the
1781 * devices in the cycle. We need to do this because, at this point, fw_devlink
1782 * can't tell which of these dependencies is not a real dependency.
1783 *
1784 * Return 1 if a cycle is found. Otherwise, return 0.
1785 */
1786static int fw_devlink_relax_cycle(struct device *con, void *sup)
1787{
1788	struct device_link *link;
1789	int ret;
1790
1791	if (con == sup)
1792		return 1;
1793
1794	ret = device_for_each_child(con, sup, fw_devlink_relax_cycle);
1795	if (ret)
1796		return ret;
1797
1798	list_for_each_entry(link, &con->links.consumers, s_node) {
1799		if ((link->flags & ~DL_FLAG_INFERRED) ==
1800		    (DL_FLAG_SYNC_STATE_ONLY | DL_FLAG_MANAGED))
1801			continue;
1802
1803		if (!fw_devlink_relax_cycle(link->consumer, sup))
1804			continue;
1805
1806		ret = 1;
1807
1808		fw_devlink_relax_link(link);
1809	}
1810	return ret;
1811}
1812
1813/**
1814 * fw_devlink_create_devlink - Create a device link from a consumer to fwnode
1815 * @con: consumer device for the device link
1816 * @sup_handle: fwnode handle of supplier
1817 * @flags: devlink flags
1818 *
1819 * This function will try to create a device link between the consumer device
1820 * @con and the supplier device represented by @sup_handle.
1821 *
1822 * The supplier has to be provided as a fwnode because incorrect cycles in
1823 * fwnode links can sometimes cause the supplier device to never be created.
1824 * This function detects such cases and returns an error if it cannot create a
1825 * device link from the consumer to a missing supplier.
1826 *
1827 * Returns,
1828 * 0 on successfully creating a device link
1829 * -EINVAL if the device link cannot be created as expected
1830 * -EAGAIN if the device link cannot be created right now, but it may be
1831 *  possible to do that in the future
1832 */
1833static int fw_devlink_create_devlink(struct device *con,
1834				     struct fwnode_handle *sup_handle, u32 flags)
1835{
1836	struct device *sup_dev;
1837	int ret = 0;
1838
1839	/*
1840	 * In some cases, a device P might also be a supplier to its child node
1841	 * C. However, this would defer the probe of C until the probe of P
1842	 * completes successfully. This is perfectly fine in the device driver
1843	 * model. device_add() doesn't guarantee probe completion of the device
1844	 * by the time it returns.
1845	 *
1846	 * However, there are a few drivers that assume C will finish probing
1847	 * as soon as it's added and before P finishes probing. So, we provide
1848	 * a flag to let fw_devlink know not to delay the probe of C until the
1849	 * probe of P completes successfully.
1850	 *
1851	 * When such a flag is set, we can't create device links where P is the
1852	 * supplier of C as that would delay the probe of C.
1853	 */
1854	if (sup_handle->flags & FWNODE_FLAG_NEEDS_CHILD_BOUND_ON_ADD &&
1855	    fwnode_is_ancestor_of(sup_handle, con->fwnode))
1856		return -EINVAL;
1857
1858	sup_dev = get_dev_from_fwnode(sup_handle);
1859	if (sup_dev) {
1860		/*
1861		 * If it's one of those drivers that don't actually bind to
1862		 * their device using driver core, then don't wait on this
1863		 * supplier device indefinitely.
1864		 */
1865		if (sup_dev->links.status == DL_DEV_NO_DRIVER &&
1866		    sup_handle->flags & FWNODE_FLAG_INITIALIZED) {
1867			ret = -EINVAL;
1868			goto out;
1869		}
1870
1871		/*
1872		 * If this fails, it is due to cycles in device links.  Just
1873		 * give up on this link and treat it as invalid.
1874		 */
1875		if (!device_link_add(con, sup_dev, flags) &&
1876		    !(flags & DL_FLAG_SYNC_STATE_ONLY)) {
1877			dev_info(con, "Fixing up cyclic dependency with %s\n",
1878				 dev_name(sup_dev));
1879			device_links_write_lock();
1880			fw_devlink_relax_cycle(con, sup_dev);
1881			device_links_write_unlock();
1882			device_link_add(con, sup_dev,
1883					FW_DEVLINK_FLAGS_PERMISSIVE);
1884			ret = -EINVAL;
1885		}
1886
1887		goto out;
1888	}
1889
1890	/* Supplier that's already initialized without a struct device. */
1891	if (sup_handle->flags & FWNODE_FLAG_INITIALIZED)
1892		return -EINVAL;
1893
1894	/*
1895	 * DL_FLAG_SYNC_STATE_ONLY doesn't block probing and supports
1896	 * cycles. So cycle detection isn't necessary and shouldn't be
1897	 * done.
1898	 */
1899	if (flags & DL_FLAG_SYNC_STATE_ONLY)
1900		return -EAGAIN;
1901
1902	/*
1903	 * If we can't find the supplier device from its fwnode, it might be
1904	 * due to a cyclic dependency between fwnodes. Some of these cycles can
1905	 * be broken by applying logic. Check for these types of cycles and
1906	 * break them so that devices in the cycle probe properly.
1907	 *
1908	 * If the supplier's parent is dependent on the consumer, then the
1909	 * consumer and supplier have a cyclic dependency. Since fw_devlink
1910	 * can't tell which of the inferred dependencies are incorrect, don't
1911	 * enforce probe ordering between any of the devices in this cyclic
1912	 * dependency. Do this by relaxing all the fw_devlink device links in
1913	 * this cycle and by treating the fwnode link between the consumer and
1914	 * the supplier as an invalid dependency.
1915	 */
1916	sup_dev = fwnode_get_next_parent_dev(sup_handle);
1917	if (sup_dev && device_is_dependent(con, sup_dev)) {
1918		dev_info(con, "Fixing up cyclic dependency with %pfwP (%s)\n",
1919			 sup_handle, dev_name(sup_dev));
1920		device_links_write_lock();
1921		fw_devlink_relax_cycle(con, sup_dev);
1922		device_links_write_unlock();
1923		ret = -EINVAL;
1924	} else {
1925		/*
1926		 * Can't check for cycles or no cycles. So let's try
1927		 * again later.
1928		 */
1929		ret = -EAGAIN;
1930	}
1931
1932out:
1933	put_device(sup_dev);
1934	return ret;
1935}
1936
1937/**
1938 * __fw_devlink_link_to_consumers - Create device links to consumers of a device
1939 * @dev: Device that needs to be linked to its consumers
1940 *
1941 * This function looks at all the consumer fwnodes of @dev and creates device
1942 * links between the consumer device and @dev (supplier).
1943 *
1944 * If the consumer device has not been added yet, then this function creates a
1945 * SYNC_STATE_ONLY link between @dev (supplier) and the closest ancestor device
1946 * of the consumer fwnode. This is necessary to make sure @dev doesn't get a
1947 * sync_state() callback before the real consumer device gets to be added and
1948 * then probed.
1949 *
1950 * Once device links are created from the real consumer to @dev (supplier), the
1951 * fwnode links are deleted.
1952 */
1953static void __fw_devlink_link_to_consumers(struct device *dev)
1954{
1955	struct fwnode_handle *fwnode = dev->fwnode;
1956	struct fwnode_link *link, *tmp;
1957
1958	list_for_each_entry_safe(link, tmp, &fwnode->consumers, s_hook) {
1959		u32 dl_flags = fw_devlink_get_flags();
1960		struct device *con_dev;
1961		bool own_link = true;
1962		int ret;
1963
1964		con_dev = get_dev_from_fwnode(link->consumer);
1965		/*
1966		 * If consumer device is not available yet, make a "proxy"
1967		 * SYNC_STATE_ONLY link from the consumer's parent device to
1968		 * the supplier device. This is necessary to make sure the
1969		 * supplier doesn't get a sync_state() callback before the real
1970		 * consumer can create a device link to the supplier.
1971		 *
1972		 * This proxy link step is needed to handle the case where the
1973		 * consumer's parent device is added before the supplier.
1974		 */
1975		if (!con_dev) {
1976			con_dev = fwnode_get_next_parent_dev(link->consumer);
1977			/*
1978			 * However, if the consumer's parent device is also the
1979			 * parent of the supplier, don't create a
1980			 * consumer-supplier link from the parent to its child
1981			 * device. Such a dependency is impossible.
1982			 */
1983			if (con_dev &&
1984			    fwnode_is_ancestor_of(con_dev->fwnode, fwnode)) {
1985				put_device(con_dev);
1986				con_dev = NULL;
1987			} else {
1988				own_link = false;
1989				dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
1990			}
1991		}
1992
1993		if (!con_dev)
1994			continue;
1995
1996		ret = fw_devlink_create_devlink(con_dev, fwnode, dl_flags);
1997		put_device(con_dev);
1998		if (!own_link || ret == -EAGAIN)
1999			continue;
2000
2001		__fwnode_link_del(link);
2002	}
2003}
2004
2005/**
2006 * __fw_devlink_link_to_suppliers - Create device links to suppliers of a device
2007 * @dev: The consumer device that needs to be linked to its suppliers
2008 * @fwnode: Root of the fwnode tree that is used to create device links
2009 *
2010 * This function looks at all the supplier fwnodes of fwnode tree rooted at
2011 * @fwnode and creates device links between @dev (consumer) and all the
2012 * supplier devices of the entire fwnode tree at @fwnode.
2013 *
2014 * The function creates normal (non-SYNC_STATE_ONLY) device links between @dev
2015 * and the real suppliers of @dev. Once these device links are created, the
2016 * fwnode links are deleted. When such device links are successfully created,
2017 * this function is called recursively on those supplier devices. This is
2018 * needed to detect and break some invalid cycles in fwnode links.  See
2019 * fw_devlink_create_devlink() for more details.
2020 *
2021 * In addition, it also looks at all the suppliers of the entire fwnode tree
2022 * because some of the child devices of @dev that have not been added yet
2023 * (because @dev hasn't probed) might already have their suppliers added to
2024 * driver core. So, this function creates SYNC_STATE_ONLY device links between
2025 * @dev (consumer) and these suppliers to make sure they don't execute their
2026 * sync_state() callbacks before these child devices have a chance to create
2027 * their device links. The fwnode links that correspond to the child devices
2028 * aren't delete because they are needed later to create the device links
2029 * between the real consumer and supplier devices.
2030 */
2031static void __fw_devlink_link_to_suppliers(struct device *dev,
2032					   struct fwnode_handle *fwnode)
2033{
2034	bool own_link = (dev->fwnode == fwnode);
2035	struct fwnode_link *link, *tmp;
2036	struct fwnode_handle *child = NULL;
2037	u32 dl_flags;
2038
2039	if (own_link)
2040		dl_flags = fw_devlink_get_flags();
2041	else
2042		dl_flags = FW_DEVLINK_FLAGS_PERMISSIVE;
2043
2044	list_for_each_entry_safe(link, tmp, &fwnode->suppliers, c_hook) {
2045		int ret;
2046		struct device *sup_dev;
2047		struct fwnode_handle *sup = link->supplier;
2048
2049		ret = fw_devlink_create_devlink(dev, sup, dl_flags);
2050		if (!own_link || ret == -EAGAIN)
2051			continue;
2052
2053		__fwnode_link_del(link);
2054
2055		/* If no device link was created, nothing more to do. */
2056		if (ret)
2057			continue;
2058
2059		/*
2060		 * If a device link was successfully created to a supplier, we
2061		 * now need to try and link the supplier to all its suppliers.
2062		 *
2063		 * This is needed to detect and delete false dependencies in
2064		 * fwnode links that haven't been converted to a device link
2065		 * yet. See comments in fw_devlink_create_devlink() for more
2066		 * details on the false dependency.
2067		 *
2068		 * Without deleting these false dependencies, some devices will
2069		 * never probe because they'll keep waiting for their false
2070		 * dependency fwnode links to be converted to device links.
2071		 */
2072		sup_dev = get_dev_from_fwnode(sup);
2073		__fw_devlink_link_to_suppliers(sup_dev, sup_dev->fwnode);
2074		put_device(sup_dev);
2075	}
2076
2077	/*
2078	 * Make "proxy" SYNC_STATE_ONLY device links to represent the needs of
2079	 * all the descendants. This proxy link step is needed to handle the
2080	 * case where the supplier is added before the consumer's parent device
2081	 * (@dev).
2082	 */
2083	while ((child = fwnode_get_next_available_child_node(fwnode, child)))
2084		__fw_devlink_link_to_suppliers(dev, child);
2085}
2086
2087static void fw_devlink_link_device(struct device *dev)
2088{
2089	struct fwnode_handle *fwnode = dev->fwnode;
2090
2091	if (!fw_devlink_flags)
2092		return;
2093
2094	fw_devlink_parse_fwtree(fwnode);
2095
2096	mutex_lock(&fwnode_link_lock);
2097	__fw_devlink_link_to_consumers(dev);
2098	__fw_devlink_link_to_suppliers(dev, fwnode);
2099	mutex_unlock(&fwnode_link_lock);
2100}
2101
2102/* Device links support end. */
2103
2104int (*platform_notify)(struct device *dev) = NULL;
2105int (*platform_notify_remove)(struct device *dev) = NULL;
2106static struct kobject *dev_kobj;
2107struct kobject *sysfs_dev_char_kobj;
2108struct kobject *sysfs_dev_block_kobj;
2109
2110static DEFINE_MUTEX(device_hotplug_lock);
2111
2112void lock_device_hotplug(void)
2113{
2114	mutex_lock(&device_hotplug_lock);
2115}
2116
2117void unlock_device_hotplug(void)
2118{
2119	mutex_unlock(&device_hotplug_lock);
2120}
2121
2122int lock_device_hotplug_sysfs(void)
2123{
2124	if (mutex_trylock(&device_hotplug_lock))
2125		return 0;
2126
2127	/* Avoid busy looping (5 ms of sleep should do). */
2128	msleep(5);
2129	return restart_syscall();
2130}
2131
2132#ifdef CONFIG_BLOCK
2133static inline int device_is_not_partition(struct device *dev)
2134{
2135	return !(dev->type == &part_type);
2136}
2137#else
2138static inline int device_is_not_partition(struct device *dev)
2139{
2140	return 1;
2141}
2142#endif
2143
2144static void device_platform_notify(struct device *dev)
2145{
2146	acpi_device_notify(dev);
2147
2148	software_node_notify(dev);
2149
2150	if (platform_notify)
2151		platform_notify(dev);
2152}
2153
2154static void device_platform_notify_remove(struct device *dev)
2155{
2156	acpi_device_notify_remove(dev);
2157
2158	software_node_notify_remove(dev);
2159
2160	if (platform_notify_remove)
2161		platform_notify_remove(dev);
2162}
2163
2164/**
2165 * dev_driver_string - Return a device's driver name, if at all possible
2166 * @dev: struct device to get the name of
2167 *
2168 * Will return the device's driver's name if it is bound to a device.  If
2169 * the device is not bound to a driver, it will return the name of the bus
2170 * it is attached to.  If it is not attached to a bus either, an empty
2171 * string will be returned.
2172 */
2173const char *dev_driver_string(const struct device *dev)
2174{
2175	struct device_driver *drv;
2176
2177	/* dev->driver can change to NULL underneath us because of unbinding,
2178	 * so be careful about accessing it.  dev->bus and dev->class should
2179	 * never change once they are set, so they don't need special care.
2180	 */
2181	drv = READ_ONCE(dev->driver);
2182	return drv ? drv->name : dev_bus_name(dev);
 
 
2183}
2184EXPORT_SYMBOL(dev_driver_string);
2185
2186#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
2187
2188static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
2189			     char *buf)
2190{
2191	struct device_attribute *dev_attr = to_dev_attr(attr);
2192	struct device *dev = kobj_to_dev(kobj);
2193	ssize_t ret = -EIO;
2194
2195	if (dev_attr->show)
2196		ret = dev_attr->show(dev, dev_attr, buf);
2197	if (ret >= (ssize_t)PAGE_SIZE) {
2198		printk("dev_attr_show: %pS returned bad count\n",
2199				dev_attr->show);
2200	}
2201	return ret;
2202}
2203
2204static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
2205			      const char *buf, size_t count)
2206{
2207	struct device_attribute *dev_attr = to_dev_attr(attr);
2208	struct device *dev = kobj_to_dev(kobj);
2209	ssize_t ret = -EIO;
2210
2211	if (dev_attr->store)
2212		ret = dev_attr->store(dev, dev_attr, buf, count);
2213	return ret;
2214}
2215
2216static const struct sysfs_ops dev_sysfs_ops = {
2217	.show	= dev_attr_show,
2218	.store	= dev_attr_store,
2219};
2220
2221#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
2222
2223ssize_t device_store_ulong(struct device *dev,
2224			   struct device_attribute *attr,
2225			   const char *buf, size_t size)
2226{
2227	struct dev_ext_attribute *ea = to_ext_attr(attr);
2228	int ret;
2229	unsigned long new;
2230
2231	ret = kstrtoul(buf, 0, &new);
2232	if (ret)
2233		return ret;
2234	*(unsigned long *)(ea->var) = new;
2235	/* Always return full write size even if we didn't consume all */
2236	return size;
2237}
2238EXPORT_SYMBOL_GPL(device_store_ulong);
2239
2240ssize_t device_show_ulong(struct device *dev,
2241			  struct device_attribute *attr,
2242			  char *buf)
2243{
2244	struct dev_ext_attribute *ea = to_ext_attr(attr);
2245	return sysfs_emit(buf, "%lx\n", *(unsigned long *)(ea->var));
2246}
2247EXPORT_SYMBOL_GPL(device_show_ulong);
2248
2249ssize_t device_store_int(struct device *dev,
2250			 struct device_attribute *attr,
2251			 const char *buf, size_t size)
2252{
2253	struct dev_ext_attribute *ea = to_ext_attr(attr);
2254	int ret;
2255	long new;
2256
2257	ret = kstrtol(buf, 0, &new);
2258	if (ret)
2259		return ret;
2260
2261	if (new > INT_MAX || new < INT_MIN)
2262		return -EINVAL;
2263	*(int *)(ea->var) = new;
2264	/* Always return full write size even if we didn't consume all */
2265	return size;
2266}
2267EXPORT_SYMBOL_GPL(device_store_int);
2268
2269ssize_t device_show_int(struct device *dev,
2270			struct device_attribute *attr,
2271			char *buf)
2272{
2273	struct dev_ext_attribute *ea = to_ext_attr(attr);
2274
2275	return sysfs_emit(buf, "%d\n", *(int *)(ea->var));
2276}
2277EXPORT_SYMBOL_GPL(device_show_int);
2278
2279ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
2280			  const char *buf, size_t size)
2281{
2282	struct dev_ext_attribute *ea = to_ext_attr(attr);
2283
2284	if (kstrtobool(buf, ea->var) < 0)
2285		return -EINVAL;
2286
2287	return size;
2288}
2289EXPORT_SYMBOL_GPL(device_store_bool);
2290
2291ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
2292			 char *buf)
2293{
2294	struct dev_ext_attribute *ea = to_ext_attr(attr);
2295
2296	return sysfs_emit(buf, "%d\n", *(bool *)(ea->var));
2297}
2298EXPORT_SYMBOL_GPL(device_show_bool);
2299
2300/**
2301 * device_release - free device structure.
2302 * @kobj: device's kobject.
2303 *
2304 * This is called once the reference count for the object
2305 * reaches 0. We forward the call to the device's release
2306 * method, which should handle actually freeing the structure.
2307 */
2308static void device_release(struct kobject *kobj)
2309{
2310	struct device *dev = kobj_to_dev(kobj);
2311	struct device_private *p = dev->p;
2312
2313	/*
2314	 * Some platform devices are driven without driver attached
2315	 * and managed resources may have been acquired.  Make sure
2316	 * all resources are released.
2317	 *
2318	 * Drivers still can add resources into device after device
2319	 * is deleted but alive, so release devres here to avoid
2320	 * possible memory leak.
2321	 */
2322	devres_release_all(dev);
2323
2324	kfree(dev->dma_range_map);
2325
2326	if (dev->release)
2327		dev->release(dev);
2328	else if (dev->type && dev->type->release)
2329		dev->type->release(dev);
2330	else if (dev->class && dev->class->dev_release)
2331		dev->class->dev_release(dev);
2332	else
2333		WARN(1, KERN_ERR "Device '%s' does not have a release() function, it is broken and must be fixed. See Documentation/core-api/kobject.rst.\n",
 
2334			dev_name(dev));
2335	kfree(p);
2336}
2337
2338static const void *device_namespace(const struct kobject *kobj)
2339{
2340	const struct device *dev = kobj_to_dev(kobj);
2341	const void *ns = NULL;
2342
2343	if (dev->class && dev->class->ns_type)
2344		ns = dev->class->namespace(dev);
2345
2346	return ns;
2347}
2348
2349static void device_get_ownership(const struct kobject *kobj, kuid_t *uid, kgid_t *gid)
2350{
2351	const struct device *dev = kobj_to_dev(kobj);
2352
2353	if (dev->class && dev->class->get_ownership)
2354		dev->class->get_ownership(dev, uid, gid);
2355}
2356
2357static struct kobj_type device_ktype = {
2358	.release	= device_release,
2359	.sysfs_ops	= &dev_sysfs_ops,
2360	.namespace	= device_namespace,
2361	.get_ownership	= device_get_ownership,
2362};
2363
2364
2365static int dev_uevent_filter(const struct kobject *kobj)
2366{
2367	const struct kobj_type *ktype = get_ktype(kobj);
2368
2369	if (ktype == &device_ktype) {
2370		const struct device *dev = kobj_to_dev(kobj);
2371		if (dev->bus)
2372			return 1;
2373		if (dev->class)
2374			return 1;
2375	}
2376	return 0;
2377}
2378
2379static const char *dev_uevent_name(const struct kobject *kobj)
2380{
2381	const struct device *dev = kobj_to_dev(kobj);
2382
2383	if (dev->bus)
2384		return dev->bus->name;
2385	if (dev->class)
2386		return dev->class->name;
2387	return NULL;
2388}
2389
2390static int dev_uevent(struct kobject *kobj, struct kobj_uevent_env *env)
 
2391{
2392	struct device *dev = kobj_to_dev(kobj);
2393	int retval = 0;
2394
2395	/* add device node properties if present */
2396	if (MAJOR(dev->devt)) {
2397		const char *tmp;
2398		const char *name;
2399		umode_t mode = 0;
2400		kuid_t uid = GLOBAL_ROOT_UID;
2401		kgid_t gid = GLOBAL_ROOT_GID;
2402
2403		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
2404		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
2405		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
2406		if (name) {
2407			add_uevent_var(env, "DEVNAME=%s", name);
2408			if (mode)
2409				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
2410			if (!uid_eq(uid, GLOBAL_ROOT_UID))
2411				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
2412			if (!gid_eq(gid, GLOBAL_ROOT_GID))
2413				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
2414			kfree(tmp);
2415		}
2416	}
2417
2418	if (dev->type && dev->type->name)
2419		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
2420
2421	if (dev->driver)
2422		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
2423
2424	/* Add common DT information about the device */
2425	of_device_uevent(dev, env);
2426
2427	/* have the bus specific function add its stuff */
2428	if (dev->bus && dev->bus->uevent) {
2429		retval = dev->bus->uevent(dev, env);
2430		if (retval)
2431			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
2432				 dev_name(dev), __func__, retval);
2433	}
2434
2435	/* have the class specific function add its stuff */
2436	if (dev->class && dev->class->dev_uevent) {
2437		retval = dev->class->dev_uevent(dev, env);
2438		if (retval)
2439			pr_debug("device: '%s': %s: class uevent() "
2440				 "returned %d\n", dev_name(dev),
2441				 __func__, retval);
2442	}
2443
2444	/* have the device type specific function add its stuff */
2445	if (dev->type && dev->type->uevent) {
2446		retval = dev->type->uevent(dev, env);
2447		if (retval)
2448			pr_debug("device: '%s': %s: dev_type uevent() "
2449				 "returned %d\n", dev_name(dev),
2450				 __func__, retval);
2451	}
2452
2453	return retval;
2454}
2455
2456static const struct kset_uevent_ops device_uevent_ops = {
2457	.filter =	dev_uevent_filter,
2458	.name =		dev_uevent_name,
2459	.uevent =	dev_uevent,
2460};
2461
2462static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
2463			   char *buf)
2464{
2465	struct kobject *top_kobj;
2466	struct kset *kset;
2467	struct kobj_uevent_env *env = NULL;
2468	int i;
2469	int len = 0;
2470	int retval;
2471
2472	/* search the kset, the device belongs to */
2473	top_kobj = &dev->kobj;
2474	while (!top_kobj->kset && top_kobj->parent)
2475		top_kobj = top_kobj->parent;
2476	if (!top_kobj->kset)
2477		goto out;
2478
2479	kset = top_kobj->kset;
2480	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
2481		goto out;
2482
2483	/* respect filter */
2484	if (kset->uevent_ops && kset->uevent_ops->filter)
2485		if (!kset->uevent_ops->filter(&dev->kobj))
2486			goto out;
2487
2488	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
2489	if (!env)
2490		return -ENOMEM;
2491
2492	/* let the kset specific function add its keys */
2493	retval = kset->uevent_ops->uevent(&dev->kobj, env);
2494	if (retval)
2495		goto out;
2496
2497	/* copy keys to file */
2498	for (i = 0; i < env->envp_idx; i++)
2499		len += sysfs_emit_at(buf, len, "%s\n", env->envp[i]);
2500out:
2501	kfree(env);
2502	return len;
2503}
2504
2505static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
2506			    const char *buf, size_t count)
2507{
2508	int rc;
2509
2510	rc = kobject_synth_uevent(&dev->kobj, buf, count);
2511
2512	if (rc) {
2513		dev_err(dev, "uevent: failed to send synthetic uevent: %d\n", rc);
2514		return rc;
2515	}
2516
2517	return count;
2518}
2519static DEVICE_ATTR_RW(uevent);
2520
2521static ssize_t online_show(struct device *dev, struct device_attribute *attr,
2522			   char *buf)
2523{
2524	bool val;
2525
2526	device_lock(dev);
2527	val = !dev->offline;
2528	device_unlock(dev);
2529	return sysfs_emit(buf, "%u\n", val);
2530}
2531
2532static ssize_t online_store(struct device *dev, struct device_attribute *attr,
2533			    const char *buf, size_t count)
2534{
2535	bool val;
2536	int ret;
2537
2538	ret = kstrtobool(buf, &val);
2539	if (ret < 0)
2540		return ret;
2541
2542	ret = lock_device_hotplug_sysfs();
2543	if (ret)
2544		return ret;
2545
2546	ret = val ? device_online(dev) : device_offline(dev);
2547	unlock_device_hotplug();
2548	return ret < 0 ? ret : count;
2549}
2550static DEVICE_ATTR_RW(online);
2551
2552static ssize_t removable_show(struct device *dev, struct device_attribute *attr,
2553			      char *buf)
2554{
2555	const char *loc;
2556
2557	switch (dev->removable) {
2558	case DEVICE_REMOVABLE:
2559		loc = "removable";
2560		break;
2561	case DEVICE_FIXED:
2562		loc = "fixed";
2563		break;
2564	default:
2565		loc = "unknown";
2566	}
2567	return sysfs_emit(buf, "%s\n", loc);
2568}
2569static DEVICE_ATTR_RO(removable);
2570
2571int device_add_groups(struct device *dev, const struct attribute_group **groups)
2572{
2573	return sysfs_create_groups(&dev->kobj, groups);
2574}
2575EXPORT_SYMBOL_GPL(device_add_groups);
2576
2577void device_remove_groups(struct device *dev,
2578			  const struct attribute_group **groups)
2579{
2580	sysfs_remove_groups(&dev->kobj, groups);
2581}
2582EXPORT_SYMBOL_GPL(device_remove_groups);
2583
2584union device_attr_group_devres {
2585	const struct attribute_group *group;
2586	const struct attribute_group **groups;
2587};
2588
 
 
 
 
 
2589static void devm_attr_group_remove(struct device *dev, void *res)
2590{
2591	union device_attr_group_devres *devres = res;
2592	const struct attribute_group *group = devres->group;
2593
2594	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
2595	sysfs_remove_group(&dev->kobj, group);
2596}
2597
2598static void devm_attr_groups_remove(struct device *dev, void *res)
2599{
2600	union device_attr_group_devres *devres = res;
2601	const struct attribute_group **groups = devres->groups;
2602
2603	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
2604	sysfs_remove_groups(&dev->kobj, groups);
2605}
2606
2607/**
2608 * devm_device_add_group - given a device, create a managed attribute group
2609 * @dev:	The device to create the group for
2610 * @grp:	The attribute group to create
2611 *
2612 * This function creates a group for the first time.  It will explicitly
2613 * warn and error if any of the attribute files being created already exist.
2614 *
2615 * Returns 0 on success or error code on failure.
2616 */
2617int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
2618{
2619	union device_attr_group_devres *devres;
2620	int error;
2621
2622	devres = devres_alloc(devm_attr_group_remove,
2623			      sizeof(*devres), GFP_KERNEL);
2624	if (!devres)
2625		return -ENOMEM;
2626
2627	error = sysfs_create_group(&dev->kobj, grp);
2628	if (error) {
2629		devres_free(devres);
2630		return error;
2631	}
2632
2633	devres->group = grp;
2634	devres_add(dev, devres);
2635	return 0;
2636}
2637EXPORT_SYMBOL_GPL(devm_device_add_group);
2638
2639/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2640 * devm_device_add_groups - create a bunch of managed attribute groups
2641 * @dev:	The device to create the group for
2642 * @groups:	The attribute groups to create, NULL terminated
2643 *
2644 * This function creates a bunch of managed attribute groups.  If an error
2645 * occurs when creating a group, all previously created groups will be
2646 * removed, unwinding everything back to the original state when this
2647 * function was called.  It will explicitly warn and error if any of the
2648 * attribute files being created already exist.
2649 *
2650 * Returns 0 on success or error code from sysfs_create_group on failure.
2651 */
2652int devm_device_add_groups(struct device *dev,
2653			   const struct attribute_group **groups)
2654{
2655	union device_attr_group_devres *devres;
2656	int error;
2657
2658	devres = devres_alloc(devm_attr_groups_remove,
2659			      sizeof(*devres), GFP_KERNEL);
2660	if (!devres)
2661		return -ENOMEM;
2662
2663	error = sysfs_create_groups(&dev->kobj, groups);
2664	if (error) {
2665		devres_free(devres);
2666		return error;
2667	}
2668
2669	devres->groups = groups;
2670	devres_add(dev, devres);
2671	return 0;
2672}
2673EXPORT_SYMBOL_GPL(devm_device_add_groups);
2674
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2675static int device_add_attrs(struct device *dev)
2676{
2677	struct class *class = dev->class;
2678	const struct device_type *type = dev->type;
2679	int error;
2680
2681	if (class) {
2682		error = device_add_groups(dev, class->dev_groups);
2683		if (error)
2684			return error;
2685	}
2686
2687	if (type) {
2688		error = device_add_groups(dev, type->groups);
2689		if (error)
2690			goto err_remove_class_groups;
2691	}
2692
2693	error = device_add_groups(dev, dev->groups);
2694	if (error)
2695		goto err_remove_type_groups;
2696
2697	if (device_supports_offline(dev) && !dev->offline_disabled) {
2698		error = device_create_file(dev, &dev_attr_online);
2699		if (error)
2700			goto err_remove_dev_groups;
2701	}
2702
2703	if (fw_devlink_flags && !fw_devlink_is_permissive() && dev->fwnode) {
2704		error = device_create_file(dev, &dev_attr_waiting_for_supplier);
2705		if (error)
2706			goto err_remove_dev_online;
2707	}
2708
2709	if (dev_removable_is_valid(dev)) {
2710		error = device_create_file(dev, &dev_attr_removable);
2711		if (error)
2712			goto err_remove_dev_waiting_for_supplier;
2713	}
2714
2715	if (dev_add_physical_location(dev)) {
2716		error = device_add_group(dev,
2717			&dev_attr_physical_location_group);
2718		if (error)
2719			goto err_remove_dev_removable;
2720	}
2721
2722	return 0;
2723
2724 err_remove_dev_removable:
2725	device_remove_file(dev, &dev_attr_removable);
2726 err_remove_dev_waiting_for_supplier:
2727	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2728 err_remove_dev_online:
2729	device_remove_file(dev, &dev_attr_online);
2730 err_remove_dev_groups:
2731	device_remove_groups(dev, dev->groups);
2732 err_remove_type_groups:
2733	if (type)
2734		device_remove_groups(dev, type->groups);
2735 err_remove_class_groups:
2736	if (class)
2737		device_remove_groups(dev, class->dev_groups);
2738
2739	return error;
2740}
2741
2742static void device_remove_attrs(struct device *dev)
2743{
2744	struct class *class = dev->class;
2745	const struct device_type *type = dev->type;
2746
2747	if (dev->physical_location) {
2748		device_remove_group(dev, &dev_attr_physical_location_group);
2749		kfree(dev->physical_location);
2750	}
2751
2752	device_remove_file(dev, &dev_attr_removable);
2753	device_remove_file(dev, &dev_attr_waiting_for_supplier);
2754	device_remove_file(dev, &dev_attr_online);
2755	device_remove_groups(dev, dev->groups);
2756
2757	if (type)
2758		device_remove_groups(dev, type->groups);
2759
2760	if (class)
2761		device_remove_groups(dev, class->dev_groups);
2762}
2763
2764static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
2765			char *buf)
2766{
2767	return print_dev_t(buf, dev->devt);
2768}
2769static DEVICE_ATTR_RO(dev);
2770
2771/* /sys/devices/ */
2772struct kset *devices_kset;
2773
2774/**
2775 * devices_kset_move_before - Move device in the devices_kset's list.
2776 * @deva: Device to move.
2777 * @devb: Device @deva should come before.
2778 */
2779static void devices_kset_move_before(struct device *deva, struct device *devb)
2780{
2781	if (!devices_kset)
2782		return;
2783	pr_debug("devices_kset: Moving %s before %s\n",
2784		 dev_name(deva), dev_name(devb));
2785	spin_lock(&devices_kset->list_lock);
2786	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
2787	spin_unlock(&devices_kset->list_lock);
2788}
2789
2790/**
2791 * devices_kset_move_after - Move device in the devices_kset's list.
2792 * @deva: Device to move
2793 * @devb: Device @deva should come after.
2794 */
2795static void devices_kset_move_after(struct device *deva, struct device *devb)
2796{
2797	if (!devices_kset)
2798		return;
2799	pr_debug("devices_kset: Moving %s after %s\n",
2800		 dev_name(deva), dev_name(devb));
2801	spin_lock(&devices_kset->list_lock);
2802	list_move(&deva->kobj.entry, &devb->kobj.entry);
2803	spin_unlock(&devices_kset->list_lock);
2804}
2805
2806/**
2807 * devices_kset_move_last - move the device to the end of devices_kset's list.
2808 * @dev: device to move
2809 */
2810void devices_kset_move_last(struct device *dev)
2811{
2812	if (!devices_kset)
2813		return;
2814	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
2815	spin_lock(&devices_kset->list_lock);
2816	list_move_tail(&dev->kobj.entry, &devices_kset->list);
2817	spin_unlock(&devices_kset->list_lock);
2818}
2819
2820/**
2821 * device_create_file - create sysfs attribute file for device.
2822 * @dev: device.
2823 * @attr: device attribute descriptor.
2824 */
2825int device_create_file(struct device *dev,
2826		       const struct device_attribute *attr)
2827{
2828	int error = 0;
2829
2830	if (dev) {
2831		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
2832			"Attribute %s: write permission without 'store'\n",
2833			attr->attr.name);
2834		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
2835			"Attribute %s: read permission without 'show'\n",
2836			attr->attr.name);
2837		error = sysfs_create_file(&dev->kobj, &attr->attr);
2838	}
2839
2840	return error;
2841}
2842EXPORT_SYMBOL_GPL(device_create_file);
2843
2844/**
2845 * device_remove_file - remove sysfs attribute file.
2846 * @dev: device.
2847 * @attr: device attribute descriptor.
2848 */
2849void device_remove_file(struct device *dev,
2850			const struct device_attribute *attr)
2851{
2852	if (dev)
2853		sysfs_remove_file(&dev->kobj, &attr->attr);
2854}
2855EXPORT_SYMBOL_GPL(device_remove_file);
2856
2857/**
2858 * device_remove_file_self - remove sysfs attribute file from its own method.
2859 * @dev: device.
2860 * @attr: device attribute descriptor.
2861 *
2862 * See kernfs_remove_self() for details.
2863 */
2864bool device_remove_file_self(struct device *dev,
2865			     const struct device_attribute *attr)
2866{
2867	if (dev)
2868		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
2869	else
2870		return false;
2871}
2872EXPORT_SYMBOL_GPL(device_remove_file_self);
2873
2874/**
2875 * device_create_bin_file - create sysfs binary attribute file for device.
2876 * @dev: device.
2877 * @attr: device binary attribute descriptor.
2878 */
2879int device_create_bin_file(struct device *dev,
2880			   const struct bin_attribute *attr)
2881{
2882	int error = -EINVAL;
2883	if (dev)
2884		error = sysfs_create_bin_file(&dev->kobj, attr);
2885	return error;
2886}
2887EXPORT_SYMBOL_GPL(device_create_bin_file);
2888
2889/**
2890 * device_remove_bin_file - remove sysfs binary attribute file
2891 * @dev: device.
2892 * @attr: device binary attribute descriptor.
2893 */
2894void device_remove_bin_file(struct device *dev,
2895			    const struct bin_attribute *attr)
2896{
2897	if (dev)
2898		sysfs_remove_bin_file(&dev->kobj, attr);
2899}
2900EXPORT_SYMBOL_GPL(device_remove_bin_file);
2901
2902static void klist_children_get(struct klist_node *n)
2903{
2904	struct device_private *p = to_device_private_parent(n);
2905	struct device *dev = p->device;
2906
2907	get_device(dev);
2908}
2909
2910static void klist_children_put(struct klist_node *n)
2911{
2912	struct device_private *p = to_device_private_parent(n);
2913	struct device *dev = p->device;
2914
2915	put_device(dev);
2916}
2917
2918/**
2919 * device_initialize - init device structure.
2920 * @dev: device.
2921 *
2922 * This prepares the device for use by other layers by initializing
2923 * its fields.
2924 * It is the first half of device_register(), if called by
2925 * that function, though it can also be called separately, so one
2926 * may use @dev's fields. In particular, get_device()/put_device()
2927 * may be used for reference counting of @dev after calling this
2928 * function.
2929 *
2930 * All fields in @dev must be initialized by the caller to 0, except
2931 * for those explicitly set to some other value.  The simplest
2932 * approach is to use kzalloc() to allocate the structure containing
2933 * @dev.
2934 *
2935 * NOTE: Use put_device() to give up your reference instead of freeing
2936 * @dev directly once you have called this function.
2937 */
2938void device_initialize(struct device *dev)
2939{
2940	dev->kobj.kset = devices_kset;
2941	kobject_init(&dev->kobj, &device_ktype);
2942	INIT_LIST_HEAD(&dev->dma_pools);
2943	mutex_init(&dev->mutex);
2944	lockdep_set_novalidate_class(&dev->mutex);
2945	spin_lock_init(&dev->devres_lock);
2946	INIT_LIST_HEAD(&dev->devres_head);
2947	device_pm_init(dev);
2948	set_dev_node(dev, NUMA_NO_NODE);
 
 
 
2949	INIT_LIST_HEAD(&dev->links.consumers);
2950	INIT_LIST_HEAD(&dev->links.suppliers);
2951	INIT_LIST_HEAD(&dev->links.defer_sync);
2952	dev->links.status = DL_DEV_NO_DRIVER;
2953#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
2954    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
2955    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL)
2956	dev->dma_coherent = dma_default_coherent;
2957#endif
2958#ifdef CONFIG_SWIOTLB
2959	dev->dma_io_tlb_mem = &io_tlb_default_mem;
2960#endif
2961}
2962EXPORT_SYMBOL_GPL(device_initialize);
2963
2964struct kobject *virtual_device_parent(struct device *dev)
2965{
2966	static struct kobject *virtual_dir = NULL;
2967
2968	if (!virtual_dir)
2969		virtual_dir = kobject_create_and_add("virtual",
2970						     &devices_kset->kobj);
2971
2972	return virtual_dir;
2973}
2974
2975struct class_dir {
2976	struct kobject kobj;
2977	struct class *class;
2978};
2979
2980#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
2981
2982static void class_dir_release(struct kobject *kobj)
2983{
2984	struct class_dir *dir = to_class_dir(kobj);
2985	kfree(dir);
2986}
2987
2988static const
2989struct kobj_ns_type_operations *class_dir_child_ns_type(const struct kobject *kobj)
2990{
2991	const struct class_dir *dir = to_class_dir(kobj);
2992	return dir->class->ns_type;
2993}
2994
2995static struct kobj_type class_dir_ktype = {
2996	.release	= class_dir_release,
2997	.sysfs_ops	= &kobj_sysfs_ops,
2998	.child_ns_type	= class_dir_child_ns_type
2999};
3000
3001static struct kobject *
3002class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
3003{
3004	struct class_dir *dir;
3005	int retval;
3006
3007	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
3008	if (!dir)
3009		return ERR_PTR(-ENOMEM);
3010
3011	dir->class = class;
3012	kobject_init(&dir->kobj, &class_dir_ktype);
3013
3014	dir->kobj.kset = &class->p->glue_dirs;
3015
3016	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
3017	if (retval < 0) {
3018		kobject_put(&dir->kobj);
3019		return ERR_PTR(retval);
3020	}
3021	return &dir->kobj;
3022}
3023
3024static DEFINE_MUTEX(gdp_mutex);
3025
3026static struct kobject *get_device_parent(struct device *dev,
3027					 struct device *parent)
3028{
3029	if (dev->class) {
3030		struct kobject *kobj = NULL;
3031		struct kobject *parent_kobj;
3032		struct kobject *k;
3033
3034#ifdef CONFIG_BLOCK
3035		/* block disks show up in /sys/block */
3036		if (sysfs_deprecated && dev->class == &block_class) {
3037			if (parent && parent->class == &block_class)
3038				return &parent->kobj;
3039			return &block_class.p->subsys.kobj;
3040		}
3041#endif
3042
3043		/*
3044		 * If we have no parent, we live in "virtual".
3045		 * Class-devices with a non class-device as parent, live
3046		 * in a "glue" directory to prevent namespace collisions.
3047		 */
3048		if (parent == NULL)
3049			parent_kobj = virtual_device_parent(dev);
3050		else if (parent->class && !dev->class->ns_type)
3051			return &parent->kobj;
3052		else
3053			parent_kobj = &parent->kobj;
3054
3055		mutex_lock(&gdp_mutex);
3056
3057		/* find our class-directory at the parent and reference it */
3058		spin_lock(&dev->class->p->glue_dirs.list_lock);
3059		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
3060			if (k->parent == parent_kobj) {
3061				kobj = kobject_get(k);
3062				break;
3063			}
3064		spin_unlock(&dev->class->p->glue_dirs.list_lock);
3065		if (kobj) {
3066			mutex_unlock(&gdp_mutex);
3067			return kobj;
3068		}
3069
3070		/* or create a new class-directory at the parent device */
3071		k = class_dir_create_and_add(dev->class, parent_kobj);
3072		/* do not emit an uevent for this simple "glue" directory */
3073		mutex_unlock(&gdp_mutex);
3074		return k;
3075	}
3076
3077	/* subsystems can specify a default root directory for their devices */
3078	if (!parent && dev->bus && dev->bus->dev_root)
3079		return &dev->bus->dev_root->kobj;
3080
3081	if (parent)
3082		return &parent->kobj;
3083	return NULL;
3084}
3085
3086static inline bool live_in_glue_dir(struct kobject *kobj,
3087				    struct device *dev)
3088{
3089	if (!kobj || !dev->class ||
3090	    kobj->kset != &dev->class->p->glue_dirs)
3091		return false;
3092	return true;
3093}
3094
3095static inline struct kobject *get_glue_dir(struct device *dev)
3096{
3097	return dev->kobj.parent;
3098}
3099
3100/**
3101 * kobject_has_children - Returns whether a kobject has children.
3102 * @kobj: the object to test
3103 *
3104 * This will return whether a kobject has other kobjects as children.
3105 *
3106 * It does NOT account for the presence of attribute files, only sub
3107 * directories. It also assumes there is no concurrent addition or
3108 * removal of such children, and thus relies on external locking.
3109 */
3110static inline bool kobject_has_children(struct kobject *kobj)
3111{
3112	WARN_ON_ONCE(kref_read(&kobj->kref) == 0);
3113
3114	return kobj->sd && kobj->sd->dir.subdirs;
3115}
3116
3117/*
3118 * make sure cleaning up dir as the last step, we need to make
3119 * sure .release handler of kobject is run with holding the
3120 * global lock
3121 */
3122static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
3123{
3124	unsigned int ref;
3125
3126	/* see if we live in a "glue" directory */
3127	if (!live_in_glue_dir(glue_dir, dev))
3128		return;
3129
3130	mutex_lock(&gdp_mutex);
3131	/**
3132	 * There is a race condition between removing glue directory
3133	 * and adding a new device under the glue directory.
3134	 *
3135	 * CPU1:                                         CPU2:
3136	 *
3137	 * device_add()
3138	 *   get_device_parent()
3139	 *     class_dir_create_and_add()
3140	 *       kobject_add_internal()
3141	 *         create_dir()    // create glue_dir
3142	 *
3143	 *                                               device_add()
3144	 *                                                 get_device_parent()
3145	 *                                                   kobject_get() // get glue_dir
3146	 *
3147	 * device_del()
3148	 *   cleanup_glue_dir()
3149	 *     kobject_del(glue_dir)
3150	 *
3151	 *                                               kobject_add()
3152	 *                                                 kobject_add_internal()
3153	 *                                                   create_dir() // in glue_dir
3154	 *                                                     sysfs_create_dir_ns()
3155	 *                                                       kernfs_create_dir_ns(sd)
3156	 *
3157	 *       sysfs_remove_dir() // glue_dir->sd=NULL
3158	 *       sysfs_put()        // free glue_dir->sd
3159	 *
3160	 *                                                         // sd is freed
3161	 *                                                         kernfs_new_node(sd)
3162	 *                                                           kernfs_get(glue_dir)
3163	 *                                                           kernfs_add_one()
3164	 *                                                           kernfs_put()
3165	 *
3166	 * Before CPU1 remove last child device under glue dir, if CPU2 add
3167	 * a new device under glue dir, the glue_dir kobject reference count
3168	 * will be increase to 2 in kobject_get(k). And CPU2 has been called
3169	 * kernfs_create_dir_ns(). Meanwhile, CPU1 call sysfs_remove_dir()
3170	 * and sysfs_put(). This result in glue_dir->sd is freed.
3171	 *
3172	 * Then the CPU2 will see a stale "empty" but still potentially used
3173	 * glue dir around in kernfs_new_node().
3174	 *
3175	 * In order to avoid this happening, we also should make sure that
3176	 * kernfs_node for glue_dir is released in CPU1 only when refcount
3177	 * for glue_dir kobj is 1.
3178	 */
3179	ref = kref_read(&glue_dir->kref);
3180	if (!kobject_has_children(glue_dir) && !--ref)
3181		kobject_del(glue_dir);
3182	kobject_put(glue_dir);
3183	mutex_unlock(&gdp_mutex);
3184}
3185
3186static int device_add_class_symlinks(struct device *dev)
3187{
3188	struct device_node *of_node = dev_of_node(dev);
3189	int error;
3190
3191	if (of_node) {
3192		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
3193		if (error)
3194			dev_warn(dev, "Error %d creating of_node link\n",error);
3195		/* An error here doesn't warrant bringing down the device */
3196	}
3197
3198	if (!dev->class)
3199		return 0;
3200
3201	error = sysfs_create_link(&dev->kobj,
3202				  &dev->class->p->subsys.kobj,
3203				  "subsystem");
3204	if (error)
3205		goto out_devnode;
3206
3207	if (dev->parent && device_is_not_partition(dev)) {
3208		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
3209					  "device");
3210		if (error)
3211			goto out_subsys;
3212	}
3213
3214#ifdef CONFIG_BLOCK
3215	/* /sys/block has directories and does not need symlinks */
3216	if (sysfs_deprecated && dev->class == &block_class)
3217		return 0;
3218#endif
3219
3220	/* link in the class directory pointing to the device */
3221	error = sysfs_create_link(&dev->class->p->subsys.kobj,
3222				  &dev->kobj, dev_name(dev));
3223	if (error)
3224		goto out_device;
3225
3226	return 0;
3227
3228out_device:
3229	sysfs_remove_link(&dev->kobj, "device");
3230
3231out_subsys:
3232	sysfs_remove_link(&dev->kobj, "subsystem");
3233out_devnode:
3234	sysfs_remove_link(&dev->kobj, "of_node");
3235	return error;
3236}
3237
3238static void device_remove_class_symlinks(struct device *dev)
3239{
3240	if (dev_of_node(dev))
3241		sysfs_remove_link(&dev->kobj, "of_node");
3242
3243	if (!dev->class)
3244		return;
3245
3246	if (dev->parent && device_is_not_partition(dev))
3247		sysfs_remove_link(&dev->kobj, "device");
3248	sysfs_remove_link(&dev->kobj, "subsystem");
3249#ifdef CONFIG_BLOCK
3250	if (sysfs_deprecated && dev->class == &block_class)
3251		return;
3252#endif
3253	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
3254}
3255
3256/**
3257 * dev_set_name - set a device name
3258 * @dev: device
3259 * @fmt: format string for the device's name
3260 */
3261int dev_set_name(struct device *dev, const char *fmt, ...)
3262{
3263	va_list vargs;
3264	int err;
3265
3266	va_start(vargs, fmt);
3267	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
3268	va_end(vargs);
3269	return err;
3270}
3271EXPORT_SYMBOL_GPL(dev_set_name);
3272
3273/**
3274 * device_to_dev_kobj - select a /sys/dev/ directory for the device
3275 * @dev: device
3276 *
3277 * By default we select char/ for new entries.  Setting class->dev_obj
3278 * to NULL prevents an entry from being created.  class->dev_kobj must
3279 * be set (or cleared) before any devices are registered to the class
3280 * otherwise device_create_sys_dev_entry() and
3281 * device_remove_sys_dev_entry() will disagree about the presence of
3282 * the link.
3283 */
3284static struct kobject *device_to_dev_kobj(struct device *dev)
3285{
3286	struct kobject *kobj;
3287
3288	if (dev->class)
3289		kobj = dev->class->dev_kobj;
3290	else
3291		kobj = sysfs_dev_char_kobj;
3292
3293	return kobj;
3294}
3295
3296static int device_create_sys_dev_entry(struct device *dev)
3297{
3298	struct kobject *kobj = device_to_dev_kobj(dev);
3299	int error = 0;
3300	char devt_str[15];
3301
3302	if (kobj) {
3303		format_dev_t(devt_str, dev->devt);
3304		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
3305	}
3306
3307	return error;
3308}
3309
3310static void device_remove_sys_dev_entry(struct device *dev)
3311{
3312	struct kobject *kobj = device_to_dev_kobj(dev);
3313	char devt_str[15];
3314
3315	if (kobj) {
3316		format_dev_t(devt_str, dev->devt);
3317		sysfs_remove_link(kobj, devt_str);
3318	}
3319}
3320
3321static int device_private_init(struct device *dev)
3322{
3323	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
3324	if (!dev->p)
3325		return -ENOMEM;
3326	dev->p->device = dev;
3327	klist_init(&dev->p->klist_children, klist_children_get,
3328		   klist_children_put);
3329	INIT_LIST_HEAD(&dev->p->deferred_probe);
3330	return 0;
3331}
3332
3333/**
3334 * device_add - add device to device hierarchy.
3335 * @dev: device.
3336 *
3337 * This is part 2 of device_register(), though may be called
3338 * separately _iff_ device_initialize() has been called separately.
3339 *
3340 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
3341 * to the global and sibling lists for the device, then
3342 * adds it to the other relevant subsystems of the driver model.
3343 *
3344 * Do not call this routine or device_register() more than once for
3345 * any device structure.  The driver model core is not designed to work
3346 * with devices that get unregistered and then spring back to life.
3347 * (Among other things, it's very hard to guarantee that all references
3348 * to the previous incarnation of @dev have been dropped.)  Allocate
3349 * and register a fresh new struct device instead.
3350 *
3351 * NOTE: _Never_ directly free @dev after calling this function, even
3352 * if it returned an error! Always use put_device() to give up your
3353 * reference instead.
3354 *
3355 * Rule of thumb is: if device_add() succeeds, you should call
3356 * device_del() when you want to get rid of it. If device_add() has
3357 * *not* succeeded, use *only* put_device() to drop the reference
3358 * count.
3359 */
3360int device_add(struct device *dev)
3361{
3362	struct device *parent;
3363	struct kobject *kobj;
3364	struct class_interface *class_intf;
3365	int error = -EINVAL;
3366	struct kobject *glue_dir = NULL;
3367
3368	dev = get_device(dev);
3369	if (!dev)
3370		goto done;
3371
3372	if (!dev->p) {
3373		error = device_private_init(dev);
3374		if (error)
3375			goto done;
3376	}
3377
3378	/*
3379	 * for statically allocated devices, which should all be converted
3380	 * some day, we need to initialize the name. We prevent reading back
3381	 * the name, and force the use of dev_name()
3382	 */
3383	if (dev->init_name) {
3384		dev_set_name(dev, "%s", dev->init_name);
3385		dev->init_name = NULL;
3386	}
3387
3388	/* subsystems can specify simple device enumeration */
3389	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
3390		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
3391
3392	if (!dev_name(dev)) {
3393		error = -EINVAL;
3394		goto name_error;
3395	}
3396
3397	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3398
3399	parent = get_device(dev->parent);
3400	kobj = get_device_parent(dev, parent);
3401	if (IS_ERR(kobj)) {
3402		error = PTR_ERR(kobj);
3403		goto parent_error;
3404	}
3405	if (kobj)
3406		dev->kobj.parent = kobj;
3407
3408	/* use parent numa_node */
3409	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
3410		set_dev_node(dev, dev_to_node(parent));
3411
3412	/* first, register with generic layer. */
3413	/* we require the name to be set before, and pass NULL */
3414	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
3415	if (error) {
3416		glue_dir = get_glue_dir(dev);
3417		goto Error;
3418	}
3419
3420	/* notify platform of device entry */
3421	device_platform_notify(dev);
 
3422
3423	error = device_create_file(dev, &dev_attr_uevent);
3424	if (error)
3425		goto attrError;
3426
3427	error = device_add_class_symlinks(dev);
3428	if (error)
3429		goto SymlinkError;
3430	error = device_add_attrs(dev);
3431	if (error)
3432		goto AttrsError;
3433	error = bus_add_device(dev);
3434	if (error)
3435		goto BusError;
3436	error = dpm_sysfs_add(dev);
3437	if (error)
3438		goto DPMError;
3439	device_pm_add(dev);
3440
3441	if (MAJOR(dev->devt)) {
3442		error = device_create_file(dev, &dev_attr_dev);
3443		if (error)
3444			goto DevAttrError;
3445
3446		error = device_create_sys_dev_entry(dev);
3447		if (error)
3448			goto SysEntryError;
3449
3450		devtmpfs_create_node(dev);
3451	}
3452
3453	/* Notify clients of device addition.  This call must come
3454	 * after dpm_sysfs_add() and before kobject_uevent().
3455	 */
3456	if (dev->bus)
3457		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3458					     BUS_NOTIFY_ADD_DEVICE, dev);
3459
3460	kobject_uevent(&dev->kobj, KOBJ_ADD);
3461
3462	/*
3463	 * Check if any of the other devices (consumers) have been waiting for
3464	 * this device (supplier) to be added so that they can create a device
3465	 * link to it.
3466	 *
3467	 * This needs to happen after device_pm_add() because device_link_add()
3468	 * requires the supplier be registered before it's called.
3469	 *
3470	 * But this also needs to happen before bus_probe_device() to make sure
3471	 * waiting consumers can link to it before the driver is bound to the
3472	 * device and the driver sync_state callback is called for this device.
3473	 */
3474	if (dev->fwnode && !dev->fwnode->dev) {
3475		dev->fwnode->dev = dev;
3476		fw_devlink_link_device(dev);
3477	}
3478
3479	bus_probe_device(dev);
3480
3481	/*
3482	 * If all driver registration is done and a newly added device doesn't
3483	 * match with any driver, don't block its consumers from probing in
3484	 * case the consumer device is able to operate without this supplier.
3485	 */
3486	if (dev->fwnode && fw_devlink_drv_reg_done && !dev->can_match)
3487		fw_devlink_unblock_consumers(dev);
3488
3489	if (parent)
3490		klist_add_tail(&dev->p->knode_parent,
3491			       &parent->p->klist_children);
3492
3493	if (dev->class) {
3494		mutex_lock(&dev->class->p->mutex);
3495		/* tie the class to the device */
3496		klist_add_tail(&dev->p->knode_class,
3497			       &dev->class->p->klist_devices);
3498
3499		/* notify any interfaces that the device is here */
3500		list_for_each_entry(class_intf,
3501				    &dev->class->p->interfaces, node)
3502			if (class_intf->add_dev)
3503				class_intf->add_dev(dev, class_intf);
3504		mutex_unlock(&dev->class->p->mutex);
3505	}
3506done:
3507	put_device(dev);
3508	return error;
3509 SysEntryError:
3510	if (MAJOR(dev->devt))
3511		device_remove_file(dev, &dev_attr_dev);
3512 DevAttrError:
3513	device_pm_remove(dev);
3514	dpm_sysfs_remove(dev);
3515 DPMError:
3516	bus_remove_device(dev);
3517 BusError:
3518	device_remove_attrs(dev);
3519 AttrsError:
3520	device_remove_class_symlinks(dev);
3521 SymlinkError:
3522	device_remove_file(dev, &dev_attr_uevent);
3523 attrError:
3524	device_platform_notify_remove(dev);
3525	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3526	glue_dir = get_glue_dir(dev);
3527	kobject_del(&dev->kobj);
3528 Error:
3529	cleanup_glue_dir(dev, glue_dir);
3530parent_error:
3531	put_device(parent);
3532name_error:
3533	kfree(dev->p);
3534	dev->p = NULL;
3535	goto done;
3536}
3537EXPORT_SYMBOL_GPL(device_add);
3538
3539/**
3540 * device_register - register a device with the system.
3541 * @dev: pointer to the device structure
3542 *
3543 * This happens in two clean steps - initialize the device
3544 * and add it to the system. The two steps can be called
3545 * separately, but this is the easiest and most common.
3546 * I.e. you should only call the two helpers separately if
3547 * have a clearly defined need to use and refcount the device
3548 * before it is added to the hierarchy.
3549 *
3550 * For more information, see the kerneldoc for device_initialize()
3551 * and device_add().
3552 *
3553 * NOTE: _Never_ directly free @dev after calling this function, even
3554 * if it returned an error! Always use put_device() to give up the
3555 * reference initialized in this function instead.
3556 */
3557int device_register(struct device *dev)
3558{
3559	device_initialize(dev);
3560	return device_add(dev);
3561}
3562EXPORT_SYMBOL_GPL(device_register);
3563
3564/**
3565 * get_device - increment reference count for device.
3566 * @dev: device.
3567 *
3568 * This simply forwards the call to kobject_get(), though
3569 * we do take care to provide for the case that we get a NULL
3570 * pointer passed in.
3571 */
3572struct device *get_device(struct device *dev)
3573{
3574	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
3575}
3576EXPORT_SYMBOL_GPL(get_device);
3577
3578/**
3579 * put_device - decrement reference count.
3580 * @dev: device in question.
3581 */
3582void put_device(struct device *dev)
3583{
3584	/* might_sleep(); */
3585	if (dev)
3586		kobject_put(&dev->kobj);
3587}
3588EXPORT_SYMBOL_GPL(put_device);
3589
3590bool kill_device(struct device *dev)
3591{
3592	/*
3593	 * Require the device lock and set the "dead" flag to guarantee that
3594	 * the update behavior is consistent with the other bitfields near
3595	 * it and that we cannot have an asynchronous probe routine trying
3596	 * to run while we are tearing out the bus/class/sysfs from
3597	 * underneath the device.
3598	 */
3599	device_lock_assert(dev);
3600
3601	if (dev->p->dead)
3602		return false;
3603	dev->p->dead = true;
3604	return true;
3605}
3606EXPORT_SYMBOL_GPL(kill_device);
3607
3608/**
3609 * device_del - delete device from system.
3610 * @dev: device.
3611 *
3612 * This is the first part of the device unregistration
3613 * sequence. This removes the device from the lists we control
3614 * from here, has it removed from the other driver model
3615 * subsystems it was added to in device_add(), and removes it
3616 * from the kobject hierarchy.
3617 *
3618 * NOTE: this should be called manually _iff_ device_add() was
3619 * also called manually.
3620 */
3621void device_del(struct device *dev)
3622{
3623	struct device *parent = dev->parent;
3624	struct kobject *glue_dir = NULL;
3625	struct class_interface *class_intf;
3626	unsigned int noio_flag;
3627
3628	device_lock(dev);
3629	kill_device(dev);
3630	device_unlock(dev);
3631
3632	if (dev->fwnode && dev->fwnode->dev == dev)
3633		dev->fwnode->dev = NULL;
3634
3635	/* Notify clients of device removal.  This call must come
3636	 * before dpm_sysfs_remove().
3637	 */
3638	noio_flag = memalloc_noio_save();
3639	if (dev->bus)
3640		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3641					     BUS_NOTIFY_DEL_DEVICE, dev);
3642
3643	dpm_sysfs_remove(dev);
3644	if (parent)
3645		klist_del(&dev->p->knode_parent);
3646	if (MAJOR(dev->devt)) {
3647		devtmpfs_delete_node(dev);
3648		device_remove_sys_dev_entry(dev);
3649		device_remove_file(dev, &dev_attr_dev);
3650	}
3651	if (dev->class) {
3652		device_remove_class_symlinks(dev);
3653
3654		mutex_lock(&dev->class->p->mutex);
3655		/* notify any interfaces that the device is now gone */
3656		list_for_each_entry(class_intf,
3657				    &dev->class->p->interfaces, node)
3658			if (class_intf->remove_dev)
3659				class_intf->remove_dev(dev, class_intf);
3660		/* remove the device from the class list */
3661		klist_del(&dev->p->knode_class);
3662		mutex_unlock(&dev->class->p->mutex);
3663	}
3664	device_remove_file(dev, &dev_attr_uevent);
3665	device_remove_attrs(dev);
3666	bus_remove_device(dev);
3667	device_pm_remove(dev);
3668	driver_deferred_probe_del(dev);
3669	device_platform_notify_remove(dev);
3670	device_links_purge(dev);
3671
 
 
 
 
 
3672	if (dev->bus)
3673		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
3674					     BUS_NOTIFY_REMOVED_DEVICE, dev);
3675	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
3676	glue_dir = get_glue_dir(dev);
3677	kobject_del(&dev->kobj);
3678	cleanup_glue_dir(dev, glue_dir);
3679	memalloc_noio_restore(noio_flag);
3680	put_device(parent);
3681}
3682EXPORT_SYMBOL_GPL(device_del);
3683
3684/**
3685 * device_unregister - unregister device from system.
3686 * @dev: device going away.
3687 *
3688 * We do this in two parts, like we do device_register(). First,
3689 * we remove it from all the subsystems with device_del(), then
3690 * we decrement the reference count via put_device(). If that
3691 * is the final reference count, the device will be cleaned up
3692 * via device_release() above. Otherwise, the structure will
3693 * stick around until the final reference to the device is dropped.
3694 */
3695void device_unregister(struct device *dev)
3696{
3697	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3698	device_del(dev);
3699	put_device(dev);
3700}
3701EXPORT_SYMBOL_GPL(device_unregister);
3702
3703static struct device *prev_device(struct klist_iter *i)
3704{
3705	struct klist_node *n = klist_prev(i);
3706	struct device *dev = NULL;
3707	struct device_private *p;
3708
3709	if (n) {
3710		p = to_device_private_parent(n);
3711		dev = p->device;
3712	}
3713	return dev;
3714}
3715
3716static struct device *next_device(struct klist_iter *i)
3717{
3718	struct klist_node *n = klist_next(i);
3719	struct device *dev = NULL;
3720	struct device_private *p;
3721
3722	if (n) {
3723		p = to_device_private_parent(n);
3724		dev = p->device;
3725	}
3726	return dev;
3727}
3728
3729/**
3730 * device_get_devnode - path of device node file
3731 * @dev: device
3732 * @mode: returned file access mode
3733 * @uid: returned file owner
3734 * @gid: returned file group
3735 * @tmp: possibly allocated string
3736 *
3737 * Return the relative path of a possible device node.
3738 * Non-default names may need to allocate a memory to compose
3739 * a name. This memory is returned in tmp and needs to be
3740 * freed by the caller.
3741 */
3742const char *device_get_devnode(struct device *dev,
3743			       umode_t *mode, kuid_t *uid, kgid_t *gid,
3744			       const char **tmp)
3745{
3746	char *s;
3747
3748	*tmp = NULL;
3749
3750	/* the device type may provide a specific name */
3751	if (dev->type && dev->type->devnode)
3752		*tmp = dev->type->devnode(dev, mode, uid, gid);
3753	if (*tmp)
3754		return *tmp;
3755
3756	/* the class may provide a specific name */
3757	if (dev->class && dev->class->devnode)
3758		*tmp = dev->class->devnode(dev, mode);
3759	if (*tmp)
3760		return *tmp;
3761
3762	/* return name without allocation, tmp == NULL */
3763	if (strchr(dev_name(dev), '!') == NULL)
3764		return dev_name(dev);
3765
3766	/* replace '!' in the name with '/' */
3767	s = kstrdup(dev_name(dev), GFP_KERNEL);
3768	if (!s)
3769		return NULL;
3770	strreplace(s, '!', '/');
3771	return *tmp = s;
3772}
3773
3774/**
3775 * device_for_each_child - device child iterator.
3776 * @parent: parent struct device.
3777 * @fn: function to be called for each device.
3778 * @data: data for the callback.
3779 *
3780 * Iterate over @parent's child devices, and call @fn for each,
3781 * passing it @data.
3782 *
3783 * We check the return of @fn each time. If it returns anything
3784 * other than 0, we break out and return that value.
3785 */
3786int device_for_each_child(struct device *parent, void *data,
3787			  int (*fn)(struct device *dev, void *data))
3788{
3789	struct klist_iter i;
3790	struct device *child;
3791	int error = 0;
3792
3793	if (!parent->p)
3794		return 0;
3795
3796	klist_iter_init(&parent->p->klist_children, &i);
3797	while (!error && (child = next_device(&i)))
3798		error = fn(child, data);
3799	klist_iter_exit(&i);
3800	return error;
3801}
3802EXPORT_SYMBOL_GPL(device_for_each_child);
3803
3804/**
3805 * device_for_each_child_reverse - device child iterator in reversed order.
3806 * @parent: parent struct device.
3807 * @fn: function to be called for each device.
3808 * @data: data for the callback.
3809 *
3810 * Iterate over @parent's child devices, and call @fn for each,
3811 * passing it @data.
3812 *
3813 * We check the return of @fn each time. If it returns anything
3814 * other than 0, we break out and return that value.
3815 */
3816int device_for_each_child_reverse(struct device *parent, void *data,
3817				  int (*fn)(struct device *dev, void *data))
3818{
3819	struct klist_iter i;
3820	struct device *child;
3821	int error = 0;
3822
3823	if (!parent->p)
3824		return 0;
3825
3826	klist_iter_init(&parent->p->klist_children, &i);
3827	while ((child = prev_device(&i)) && !error)
3828		error = fn(child, data);
3829	klist_iter_exit(&i);
3830	return error;
3831}
3832EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
3833
3834/**
3835 * device_find_child - device iterator for locating a particular device.
3836 * @parent: parent struct device
3837 * @match: Callback function to check device
3838 * @data: Data to pass to match function
3839 *
3840 * This is similar to the device_for_each_child() function above, but it
3841 * returns a reference to a device that is 'found' for later use, as
3842 * determined by the @match callback.
3843 *
3844 * The callback should return 0 if the device doesn't match and non-zero
3845 * if it does.  If the callback returns non-zero and a reference to the
3846 * current device can be obtained, this function will return to the caller
3847 * and not iterate over any more devices.
3848 *
3849 * NOTE: you will need to drop the reference with put_device() after use.
3850 */
3851struct device *device_find_child(struct device *parent, void *data,
3852				 int (*match)(struct device *dev, void *data))
3853{
3854	struct klist_iter i;
3855	struct device *child;
3856
3857	if (!parent)
3858		return NULL;
3859
3860	klist_iter_init(&parent->p->klist_children, &i);
3861	while ((child = next_device(&i)))
3862		if (match(child, data) && get_device(child))
3863			break;
3864	klist_iter_exit(&i);
3865	return child;
3866}
3867EXPORT_SYMBOL_GPL(device_find_child);
3868
3869/**
3870 * device_find_child_by_name - device iterator for locating a child device.
3871 * @parent: parent struct device
3872 * @name: name of the child device
3873 *
3874 * This is similar to the device_find_child() function above, but it
3875 * returns a reference to a device that has the name @name.
3876 *
3877 * NOTE: you will need to drop the reference with put_device() after use.
3878 */
3879struct device *device_find_child_by_name(struct device *parent,
3880					 const char *name)
3881{
3882	struct klist_iter i;
3883	struct device *child;
3884
3885	if (!parent)
3886		return NULL;
3887
3888	klist_iter_init(&parent->p->klist_children, &i);
3889	while ((child = next_device(&i)))
3890		if (sysfs_streq(dev_name(child), name) && get_device(child))
3891			break;
3892	klist_iter_exit(&i);
3893	return child;
3894}
3895EXPORT_SYMBOL_GPL(device_find_child_by_name);
3896
3897static int match_any(struct device *dev, void *unused)
3898{
3899	return 1;
3900}
3901
3902/**
3903 * device_find_any_child - device iterator for locating a child device, if any.
3904 * @parent: parent struct device
3905 *
3906 * This is similar to the device_find_child() function above, but it
3907 * returns a reference to a child device, if any.
3908 *
3909 * NOTE: you will need to drop the reference with put_device() after use.
3910 */
3911struct device *device_find_any_child(struct device *parent)
3912{
3913	return device_find_child(parent, NULL, match_any);
3914}
3915EXPORT_SYMBOL_GPL(device_find_any_child);
3916
3917int __init devices_init(void)
3918{
3919	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
3920	if (!devices_kset)
3921		return -ENOMEM;
3922	dev_kobj = kobject_create_and_add("dev", NULL);
3923	if (!dev_kobj)
3924		goto dev_kobj_err;
3925	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
3926	if (!sysfs_dev_block_kobj)
3927		goto block_kobj_err;
3928	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
3929	if (!sysfs_dev_char_kobj)
3930		goto char_kobj_err;
3931
3932	return 0;
3933
3934 char_kobj_err:
3935	kobject_put(sysfs_dev_block_kobj);
3936 block_kobj_err:
3937	kobject_put(dev_kobj);
3938 dev_kobj_err:
3939	kset_unregister(devices_kset);
3940	return -ENOMEM;
3941}
3942
3943static int device_check_offline(struct device *dev, void *not_used)
3944{
3945	int ret;
3946
3947	ret = device_for_each_child(dev, NULL, device_check_offline);
3948	if (ret)
3949		return ret;
3950
3951	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
3952}
3953
3954/**
3955 * device_offline - Prepare the device for hot-removal.
3956 * @dev: Device to be put offline.
3957 *
3958 * Execute the device bus type's .offline() callback, if present, to prepare
3959 * the device for a subsequent hot-removal.  If that succeeds, the device must
3960 * not be used until either it is removed or its bus type's .online() callback
3961 * is executed.
3962 *
3963 * Call under device_hotplug_lock.
3964 */
3965int device_offline(struct device *dev)
3966{
3967	int ret;
3968
3969	if (dev->offline_disabled)
3970		return -EPERM;
3971
3972	ret = device_for_each_child(dev, NULL, device_check_offline);
3973	if (ret)
3974		return ret;
3975
3976	device_lock(dev);
3977	if (device_supports_offline(dev)) {
3978		if (dev->offline) {
3979			ret = 1;
3980		} else {
3981			ret = dev->bus->offline(dev);
3982			if (!ret) {
3983				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
3984				dev->offline = true;
3985			}
3986		}
3987	}
3988	device_unlock(dev);
3989
3990	return ret;
3991}
3992
3993/**
3994 * device_online - Put the device back online after successful device_offline().
3995 * @dev: Device to be put back online.
3996 *
3997 * If device_offline() has been successfully executed for @dev, but the device
3998 * has not been removed subsequently, execute its bus type's .online() callback
3999 * to indicate that the device can be used again.
4000 *
4001 * Call under device_hotplug_lock.
4002 */
4003int device_online(struct device *dev)
4004{
4005	int ret = 0;
4006
4007	device_lock(dev);
4008	if (device_supports_offline(dev)) {
4009		if (dev->offline) {
4010			ret = dev->bus->online(dev);
4011			if (!ret) {
4012				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
4013				dev->offline = false;
4014			}
4015		} else {
4016			ret = 1;
4017		}
4018	}
4019	device_unlock(dev);
4020
4021	return ret;
4022}
4023
4024struct root_device {
4025	struct device dev;
4026	struct module *owner;
4027};
4028
4029static inline struct root_device *to_root_device(struct device *d)
4030{
4031	return container_of(d, struct root_device, dev);
4032}
4033
4034static void root_device_release(struct device *dev)
4035{
4036	kfree(to_root_device(dev));
4037}
4038
4039/**
4040 * __root_device_register - allocate and register a root device
4041 * @name: root device name
4042 * @owner: owner module of the root device, usually THIS_MODULE
4043 *
4044 * This function allocates a root device and registers it
4045 * using device_register(). In order to free the returned
4046 * device, use root_device_unregister().
4047 *
4048 * Root devices are dummy devices which allow other devices
4049 * to be grouped under /sys/devices. Use this function to
4050 * allocate a root device and then use it as the parent of
4051 * any device which should appear under /sys/devices/{name}
4052 *
4053 * The /sys/devices/{name} directory will also contain a
4054 * 'module' symlink which points to the @owner directory
4055 * in sysfs.
4056 *
4057 * Returns &struct device pointer on success, or ERR_PTR() on error.
4058 *
4059 * Note: You probably want to use root_device_register().
4060 */
4061struct device *__root_device_register(const char *name, struct module *owner)
4062{
4063	struct root_device *root;
4064	int err = -ENOMEM;
4065
4066	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
4067	if (!root)
4068		return ERR_PTR(err);
4069
4070	err = dev_set_name(&root->dev, "%s", name);
4071	if (err) {
4072		kfree(root);
4073		return ERR_PTR(err);
4074	}
4075
4076	root->dev.release = root_device_release;
4077
4078	err = device_register(&root->dev);
4079	if (err) {
4080		put_device(&root->dev);
4081		return ERR_PTR(err);
4082	}
4083
4084#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
4085	if (owner) {
4086		struct module_kobject *mk = &owner->mkobj;
4087
4088		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
4089		if (err) {
4090			device_unregister(&root->dev);
4091			return ERR_PTR(err);
4092		}
4093		root->owner = owner;
4094	}
4095#endif
4096
4097	return &root->dev;
4098}
4099EXPORT_SYMBOL_GPL(__root_device_register);
4100
4101/**
4102 * root_device_unregister - unregister and free a root device
4103 * @dev: device going away
4104 *
4105 * This function unregisters and cleans up a device that was created by
4106 * root_device_register().
4107 */
4108void root_device_unregister(struct device *dev)
4109{
4110	struct root_device *root = to_root_device(dev);
4111
4112	if (root->owner)
4113		sysfs_remove_link(&root->dev.kobj, "module");
4114
4115	device_unregister(dev);
4116}
4117EXPORT_SYMBOL_GPL(root_device_unregister);
4118
4119
4120static void device_create_release(struct device *dev)
4121{
4122	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
4123	kfree(dev);
4124}
4125
4126static __printf(6, 0) struct device *
4127device_create_groups_vargs(struct class *class, struct device *parent,
4128			   dev_t devt, void *drvdata,
4129			   const struct attribute_group **groups,
4130			   const char *fmt, va_list args)
4131{
4132	struct device *dev = NULL;
4133	int retval = -ENODEV;
4134
4135	if (IS_ERR_OR_NULL(class))
4136		goto error;
4137
4138	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
4139	if (!dev) {
4140		retval = -ENOMEM;
4141		goto error;
4142	}
4143
4144	device_initialize(dev);
4145	dev->devt = devt;
4146	dev->class = class;
4147	dev->parent = parent;
4148	dev->groups = groups;
4149	dev->release = device_create_release;
4150	dev_set_drvdata(dev, drvdata);
4151
4152	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
4153	if (retval)
4154		goto error;
4155
4156	retval = device_add(dev);
4157	if (retval)
4158		goto error;
4159
4160	return dev;
4161
4162error:
4163	put_device(dev);
4164	return ERR_PTR(retval);
4165}
4166
4167/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4168 * device_create - creates a device and registers it with sysfs
4169 * @class: pointer to the struct class that this device should be registered to
4170 * @parent: pointer to the parent struct device of this new device, if any
4171 * @devt: the dev_t for the char device to be added
4172 * @drvdata: the data to be added to the device for callbacks
4173 * @fmt: string for the device's name
4174 *
4175 * This function can be used by char device classes.  A struct device
4176 * will be created in sysfs, registered to the specified class.
4177 *
4178 * A "dev" file will be created, showing the dev_t for the device, if
4179 * the dev_t is not 0,0.
4180 * If a pointer to a parent struct device is passed in, the newly created
4181 * struct device will be a child of that device in sysfs.
4182 * The pointer to the struct device will be returned from the call.
4183 * Any further sysfs files that might be required can be created using this
4184 * pointer.
4185 *
4186 * Returns &struct device pointer on success, or ERR_PTR() on error.
4187 *
4188 * Note: the struct class passed to this function must have previously
4189 * been created with a call to class_create().
4190 */
4191struct device *device_create(struct class *class, struct device *parent,
4192			     dev_t devt, void *drvdata, const char *fmt, ...)
4193{
4194	va_list vargs;
4195	struct device *dev;
4196
4197	va_start(vargs, fmt);
4198	dev = device_create_groups_vargs(class, parent, devt, drvdata, NULL,
4199					  fmt, vargs);
4200	va_end(vargs);
4201	return dev;
4202}
4203EXPORT_SYMBOL_GPL(device_create);
4204
4205/**
4206 * device_create_with_groups - creates a device and registers it with sysfs
4207 * @class: pointer to the struct class that this device should be registered to
4208 * @parent: pointer to the parent struct device of this new device, if any
4209 * @devt: the dev_t for the char device to be added
4210 * @drvdata: the data to be added to the device for callbacks
4211 * @groups: NULL-terminated list of attribute groups to be created
4212 * @fmt: string for the device's name
4213 *
4214 * This function can be used by char device classes.  A struct device
4215 * will be created in sysfs, registered to the specified class.
4216 * Additional attributes specified in the groups parameter will also
4217 * be created automatically.
4218 *
4219 * A "dev" file will be created, showing the dev_t for the device, if
4220 * the dev_t is not 0,0.
4221 * If a pointer to a parent struct device is passed in, the newly created
4222 * struct device will be a child of that device in sysfs.
4223 * The pointer to the struct device will be returned from the call.
4224 * Any further sysfs files that might be required can be created using this
4225 * pointer.
4226 *
4227 * Returns &struct device pointer on success, or ERR_PTR() on error.
4228 *
4229 * Note: the struct class passed to this function must have previously
4230 * been created with a call to class_create().
4231 */
4232struct device *device_create_with_groups(struct class *class,
4233					 struct device *parent, dev_t devt,
4234					 void *drvdata,
4235					 const struct attribute_group **groups,
4236					 const char *fmt, ...)
4237{
4238	va_list vargs;
4239	struct device *dev;
4240
4241	va_start(vargs, fmt);
4242	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
4243					 fmt, vargs);
4244	va_end(vargs);
4245	return dev;
4246}
4247EXPORT_SYMBOL_GPL(device_create_with_groups);
4248
 
 
 
 
 
 
 
4249/**
4250 * device_destroy - removes a device that was created with device_create()
4251 * @class: pointer to the struct class that this device was registered with
4252 * @devt: the dev_t of the device that was previously registered
4253 *
4254 * This call unregisters and cleans up a device that was created with a
4255 * call to device_create().
4256 */
4257void device_destroy(struct class *class, dev_t devt)
4258{
4259	struct device *dev;
4260
4261	dev = class_find_device_by_devt(class, devt);
4262	if (dev) {
4263		put_device(dev);
4264		device_unregister(dev);
4265	}
4266}
4267EXPORT_SYMBOL_GPL(device_destroy);
4268
4269/**
4270 * device_rename - renames a device
4271 * @dev: the pointer to the struct device to be renamed
4272 * @new_name: the new name of the device
4273 *
4274 * It is the responsibility of the caller to provide mutual
4275 * exclusion between two different calls of device_rename
4276 * on the same device to ensure that new_name is valid and
4277 * won't conflict with other devices.
4278 *
4279 * Note: Don't call this function.  Currently, the networking layer calls this
4280 * function, but that will change.  The following text from Kay Sievers offers
4281 * some insight:
4282 *
4283 * Renaming devices is racy at many levels, symlinks and other stuff are not
4284 * replaced atomically, and you get a "move" uevent, but it's not easy to
4285 * connect the event to the old and new device. Device nodes are not renamed at
4286 * all, there isn't even support for that in the kernel now.
4287 *
4288 * In the meantime, during renaming, your target name might be taken by another
4289 * driver, creating conflicts. Or the old name is taken directly after you
4290 * renamed it -- then you get events for the same DEVPATH, before you even see
4291 * the "move" event. It's just a mess, and nothing new should ever rely on
4292 * kernel device renaming. Besides that, it's not even implemented now for
4293 * other things than (driver-core wise very simple) network devices.
4294 *
4295 * We are currently about to change network renaming in udev to completely
4296 * disallow renaming of devices in the same namespace as the kernel uses,
4297 * because we can't solve the problems properly, that arise with swapping names
4298 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
4299 * be allowed to some other name than eth[0-9]*, for the aforementioned
4300 * reasons.
4301 *
4302 * Make up a "real" name in the driver before you register anything, or add
4303 * some other attributes for userspace to find the device, or use udev to add
4304 * symlinks -- but never rename kernel devices later, it's a complete mess. We
4305 * don't even want to get into that and try to implement the missing pieces in
4306 * the core. We really have other pieces to fix in the driver core mess. :)
4307 */
4308int device_rename(struct device *dev, const char *new_name)
4309{
4310	struct kobject *kobj = &dev->kobj;
4311	char *old_device_name = NULL;
4312	int error;
4313
4314	dev = get_device(dev);
4315	if (!dev)
4316		return -EINVAL;
4317
4318	dev_dbg(dev, "renaming to %s\n", new_name);
4319
4320	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
4321	if (!old_device_name) {
4322		error = -ENOMEM;
4323		goto out;
4324	}
4325
4326	if (dev->class) {
4327		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
4328					     kobj, old_device_name,
4329					     new_name, kobject_namespace(kobj));
4330		if (error)
4331			goto out;
4332	}
4333
4334	error = kobject_rename(kobj, new_name);
4335	if (error)
4336		goto out;
4337
4338out:
4339	put_device(dev);
4340
4341	kfree(old_device_name);
4342
4343	return error;
4344}
4345EXPORT_SYMBOL_GPL(device_rename);
4346
4347static int device_move_class_links(struct device *dev,
4348				   struct device *old_parent,
4349				   struct device *new_parent)
4350{
4351	int error = 0;
4352
4353	if (old_parent)
4354		sysfs_remove_link(&dev->kobj, "device");
4355	if (new_parent)
4356		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
4357					  "device");
4358	return error;
4359}
4360
4361/**
4362 * device_move - moves a device to a new parent
4363 * @dev: the pointer to the struct device to be moved
4364 * @new_parent: the new parent of the device (can be NULL)
4365 * @dpm_order: how to reorder the dpm_list
4366 */
4367int device_move(struct device *dev, struct device *new_parent,
4368		enum dpm_order dpm_order)
4369{
4370	int error;
4371	struct device *old_parent;
4372	struct kobject *new_parent_kobj;
4373
4374	dev = get_device(dev);
4375	if (!dev)
4376		return -EINVAL;
4377
4378	device_pm_lock();
4379	new_parent = get_device(new_parent);
4380	new_parent_kobj = get_device_parent(dev, new_parent);
4381	if (IS_ERR(new_parent_kobj)) {
4382		error = PTR_ERR(new_parent_kobj);
4383		put_device(new_parent);
4384		goto out;
4385	}
4386
4387	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
4388		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
4389	error = kobject_move(&dev->kobj, new_parent_kobj);
4390	if (error) {
4391		cleanup_glue_dir(dev, new_parent_kobj);
4392		put_device(new_parent);
4393		goto out;
4394	}
4395	old_parent = dev->parent;
4396	dev->parent = new_parent;
4397	if (old_parent)
4398		klist_remove(&dev->p->knode_parent);
4399	if (new_parent) {
4400		klist_add_tail(&dev->p->knode_parent,
4401			       &new_parent->p->klist_children);
4402		set_dev_node(dev, dev_to_node(new_parent));
4403	}
4404
4405	if (dev->class) {
4406		error = device_move_class_links(dev, old_parent, new_parent);
4407		if (error) {
4408			/* We ignore errors on cleanup since we're hosed anyway... */
4409			device_move_class_links(dev, new_parent, old_parent);
4410			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
4411				if (new_parent)
4412					klist_remove(&dev->p->knode_parent);
4413				dev->parent = old_parent;
4414				if (old_parent) {
4415					klist_add_tail(&dev->p->knode_parent,
4416						       &old_parent->p->klist_children);
4417					set_dev_node(dev, dev_to_node(old_parent));
4418				}
4419			}
4420			cleanup_glue_dir(dev, new_parent_kobj);
4421			put_device(new_parent);
4422			goto out;
4423		}
4424	}
4425	switch (dpm_order) {
4426	case DPM_ORDER_NONE:
4427		break;
4428	case DPM_ORDER_DEV_AFTER_PARENT:
4429		device_pm_move_after(dev, new_parent);
4430		devices_kset_move_after(dev, new_parent);
4431		break;
4432	case DPM_ORDER_PARENT_BEFORE_DEV:
4433		device_pm_move_before(new_parent, dev);
4434		devices_kset_move_before(new_parent, dev);
4435		break;
4436	case DPM_ORDER_DEV_LAST:
4437		device_pm_move_last(dev);
4438		devices_kset_move_last(dev);
4439		break;
4440	}
4441
4442	put_device(old_parent);
4443out:
4444	device_pm_unlock();
4445	put_device(dev);
4446	return error;
4447}
4448EXPORT_SYMBOL_GPL(device_move);
4449
4450static int device_attrs_change_owner(struct device *dev, kuid_t kuid,
4451				     kgid_t kgid)
4452{
4453	struct kobject *kobj = &dev->kobj;
4454	struct class *class = dev->class;
4455	const struct device_type *type = dev->type;
4456	int error;
4457
4458	if (class) {
4459		/*
4460		 * Change the device groups of the device class for @dev to
4461		 * @kuid/@kgid.
4462		 */
4463		error = sysfs_groups_change_owner(kobj, class->dev_groups, kuid,
4464						  kgid);
4465		if (error)
4466			return error;
4467	}
4468
4469	if (type) {
4470		/*
4471		 * Change the device groups of the device type for @dev to
4472		 * @kuid/@kgid.
4473		 */
4474		error = sysfs_groups_change_owner(kobj, type->groups, kuid,
4475						  kgid);
4476		if (error)
4477			return error;
4478	}
4479
4480	/* Change the device groups of @dev to @kuid/@kgid. */
4481	error = sysfs_groups_change_owner(kobj, dev->groups, kuid, kgid);
4482	if (error)
4483		return error;
4484
4485	if (device_supports_offline(dev) && !dev->offline_disabled) {
4486		/* Change online device attributes of @dev to @kuid/@kgid. */
4487		error = sysfs_file_change_owner(kobj, dev_attr_online.attr.name,
4488						kuid, kgid);
4489		if (error)
4490			return error;
4491	}
4492
4493	return 0;
4494}
4495
4496/**
4497 * device_change_owner - change the owner of an existing device.
4498 * @dev: device.
4499 * @kuid: new owner's kuid
4500 * @kgid: new owner's kgid
4501 *
4502 * This changes the owner of @dev and its corresponding sysfs entries to
4503 * @kuid/@kgid. This function closely mirrors how @dev was added via driver
4504 * core.
4505 *
4506 * Returns 0 on success or error code on failure.
4507 */
4508int device_change_owner(struct device *dev, kuid_t kuid, kgid_t kgid)
4509{
4510	int error;
4511	struct kobject *kobj = &dev->kobj;
4512
4513	dev = get_device(dev);
4514	if (!dev)
4515		return -EINVAL;
4516
4517	/*
4518	 * Change the kobject and the default attributes and groups of the
4519	 * ktype associated with it to @kuid/@kgid.
4520	 */
4521	error = sysfs_change_owner(kobj, kuid, kgid);
4522	if (error)
4523		goto out;
4524
4525	/*
4526	 * Change the uevent file for @dev to the new owner. The uevent file
4527	 * was created in a separate step when @dev got added and we mirror
4528	 * that step here.
4529	 */
4530	error = sysfs_file_change_owner(kobj, dev_attr_uevent.attr.name, kuid,
4531					kgid);
4532	if (error)
4533		goto out;
4534
4535	/*
4536	 * Change the device groups, the device groups associated with the
4537	 * device class, and the groups associated with the device type of @dev
4538	 * to @kuid/@kgid.
4539	 */
4540	error = device_attrs_change_owner(dev, kuid, kgid);
4541	if (error)
4542		goto out;
4543
4544	error = dpm_sysfs_change_owner(dev, kuid, kgid);
4545	if (error)
4546		goto out;
4547
4548#ifdef CONFIG_BLOCK
4549	if (sysfs_deprecated && dev->class == &block_class)
4550		goto out;
4551#endif
4552
4553	/*
4554	 * Change the owner of the symlink located in the class directory of
4555	 * the device class associated with @dev which points to the actual
4556	 * directory entry for @dev to @kuid/@kgid. This ensures that the
4557	 * symlink shows the same permissions as its target.
4558	 */
4559	error = sysfs_link_change_owner(&dev->class->p->subsys.kobj, &dev->kobj,
4560					dev_name(dev), kuid, kgid);
4561	if (error)
4562		goto out;
4563
4564out:
4565	put_device(dev);
4566	return error;
4567}
4568EXPORT_SYMBOL_GPL(device_change_owner);
4569
4570/**
4571 * device_shutdown - call ->shutdown() on each device to shutdown.
4572 */
4573void device_shutdown(void)
4574{
4575	struct device *dev, *parent;
4576
4577	wait_for_device_probe();
4578	device_block_probing();
4579
4580	cpufreq_suspend();
4581
4582	spin_lock(&devices_kset->list_lock);
4583	/*
4584	 * Walk the devices list backward, shutting down each in turn.
4585	 * Beware that device unplug events may also start pulling
4586	 * devices offline, even as the system is shutting down.
4587	 */
4588	while (!list_empty(&devices_kset->list)) {
4589		dev = list_entry(devices_kset->list.prev, struct device,
4590				kobj.entry);
4591
4592		/*
4593		 * hold reference count of device's parent to
4594		 * prevent it from being freed because parent's
4595		 * lock is to be held
4596		 */
4597		parent = get_device(dev->parent);
4598		get_device(dev);
4599		/*
4600		 * Make sure the device is off the kset list, in the
4601		 * event that dev->*->shutdown() doesn't remove it.
4602		 */
4603		list_del_init(&dev->kobj.entry);
4604		spin_unlock(&devices_kset->list_lock);
4605
4606		/* hold lock to avoid race with probe/release */
4607		if (parent)
4608			device_lock(parent);
4609		device_lock(dev);
4610
4611		/* Don't allow any more runtime suspends */
4612		pm_runtime_get_noresume(dev);
4613		pm_runtime_barrier(dev);
4614
4615		if (dev->class && dev->class->shutdown_pre) {
4616			if (initcall_debug)
4617				dev_info(dev, "shutdown_pre\n");
4618			dev->class->shutdown_pre(dev);
4619		}
4620		if (dev->bus && dev->bus->shutdown) {
4621			if (initcall_debug)
4622				dev_info(dev, "shutdown\n");
4623			dev->bus->shutdown(dev);
4624		} else if (dev->driver && dev->driver->shutdown) {
4625			if (initcall_debug)
4626				dev_info(dev, "shutdown\n");
4627			dev->driver->shutdown(dev);
4628		}
4629
4630		device_unlock(dev);
4631		if (parent)
4632			device_unlock(parent);
4633
4634		put_device(dev);
4635		put_device(parent);
4636
4637		spin_lock(&devices_kset->list_lock);
4638	}
4639	spin_unlock(&devices_kset->list_lock);
4640}
4641
4642/*
4643 * Device logging functions
4644 */
4645
4646#ifdef CONFIG_PRINTK
4647static void
4648set_dev_info(const struct device *dev, struct dev_printk_info *dev_info)
4649{
4650	const char *subsys;
4651
4652	memset(dev_info, 0, sizeof(*dev_info));
4653
4654	if (dev->class)
4655		subsys = dev->class->name;
4656	else if (dev->bus)
4657		subsys = dev->bus->name;
4658	else
4659		return;
4660
4661	strscpy(dev_info->subsystem, subsys, sizeof(dev_info->subsystem));
 
 
4662
4663	/*
4664	 * Add device identifier DEVICE=:
4665	 *   b12:8         block dev_t
4666	 *   c127:3        char dev_t
4667	 *   n8            netdev ifindex
4668	 *   +sound:card0  subsystem:devname
4669	 */
4670	if (MAJOR(dev->devt)) {
4671		char c;
4672
4673		if (strcmp(subsys, "block") == 0)
4674			c = 'b';
4675		else
4676			c = 'c';
4677
4678		snprintf(dev_info->device, sizeof(dev_info->device),
4679			 "%c%u:%u", c, MAJOR(dev->devt), MINOR(dev->devt));
 
4680	} else if (strcmp(subsys, "net") == 0) {
4681		struct net_device *net = to_net_dev(dev);
4682
4683		snprintf(dev_info->device, sizeof(dev_info->device),
4684			 "n%u", net->ifindex);
 
4685	} else {
4686		snprintf(dev_info->device, sizeof(dev_info->device),
4687			 "+%s:%s", subsys, dev_name(dev));
 
4688	}
 
 
 
 
 
 
 
 
 
4689}
4690
4691int dev_vprintk_emit(int level, const struct device *dev,
4692		     const char *fmt, va_list args)
4693{
4694	struct dev_printk_info dev_info;
 
4695
4696	set_dev_info(dev, &dev_info);
4697
4698	return vprintk_emit(0, level, &dev_info, fmt, args);
4699}
4700EXPORT_SYMBOL(dev_vprintk_emit);
4701
4702int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
4703{
4704	va_list args;
4705	int r;
4706
4707	va_start(args, fmt);
4708
4709	r = dev_vprintk_emit(level, dev, fmt, args);
4710
4711	va_end(args);
4712
4713	return r;
4714}
4715EXPORT_SYMBOL(dev_printk_emit);
4716
4717static void __dev_printk(const char *level, const struct device *dev,
4718			struct va_format *vaf)
4719{
4720	if (dev)
4721		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
4722				dev_driver_string(dev), dev_name(dev), vaf);
4723	else
4724		printk("%s(NULL device *): %pV", level, vaf);
4725}
4726
4727void _dev_printk(const char *level, const struct device *dev,
4728		 const char *fmt, ...)
4729{
4730	struct va_format vaf;
4731	va_list args;
4732
4733	va_start(args, fmt);
4734
4735	vaf.fmt = fmt;
4736	vaf.va = &args;
4737
4738	__dev_printk(level, dev, &vaf);
4739
4740	va_end(args);
4741}
4742EXPORT_SYMBOL(_dev_printk);
4743
4744#define define_dev_printk_level(func, kern_level)		\
4745void func(const struct device *dev, const char *fmt, ...)	\
4746{								\
4747	struct va_format vaf;					\
4748	va_list args;						\
4749								\
4750	va_start(args, fmt);					\
4751								\
4752	vaf.fmt = fmt;						\
4753	vaf.va = &args;						\
4754								\
4755	__dev_printk(kern_level, dev, &vaf);			\
4756								\
4757	va_end(args);						\
4758}								\
4759EXPORT_SYMBOL(func);
4760
4761define_dev_printk_level(_dev_emerg, KERN_EMERG);
4762define_dev_printk_level(_dev_alert, KERN_ALERT);
4763define_dev_printk_level(_dev_crit, KERN_CRIT);
4764define_dev_printk_level(_dev_err, KERN_ERR);
4765define_dev_printk_level(_dev_warn, KERN_WARNING);
4766define_dev_printk_level(_dev_notice, KERN_NOTICE);
4767define_dev_printk_level(_dev_info, KERN_INFO);
4768
4769#endif
4770
4771/**
4772 * dev_err_probe - probe error check and log helper
4773 * @dev: the pointer to the struct device
4774 * @err: error value to test
4775 * @fmt: printf-style format string
4776 * @...: arguments as specified in the format string
4777 *
4778 * This helper implements common pattern present in probe functions for error
4779 * checking: print debug or error message depending if the error value is
4780 * -EPROBE_DEFER and propagate error upwards.
4781 * In case of -EPROBE_DEFER it sets also defer probe reason, which can be
4782 * checked later by reading devices_deferred debugfs attribute.
4783 * It replaces code sequence::
4784 *
4785 * 	if (err != -EPROBE_DEFER)
4786 * 		dev_err(dev, ...);
4787 * 	else
4788 * 		dev_dbg(dev, ...);
4789 * 	return err;
4790 *
4791 * with::
4792 *
4793 * 	return dev_err_probe(dev, err, ...);
4794 *
4795 * Note that it is deemed acceptable to use this function for error
4796 * prints during probe even if the @err is known to never be -EPROBE_DEFER.
4797 * The benefit compared to a normal dev_err() is the standardized format
4798 * of the error code and the fact that the error code is returned.
4799 *
4800 * Returns @err.
4801 *
4802 */
4803int dev_err_probe(const struct device *dev, int err, const char *fmt, ...)
4804{
4805	struct va_format vaf;
4806	va_list args;
4807
4808	va_start(args, fmt);
4809	vaf.fmt = fmt;
4810	vaf.va = &args;
4811
4812	if (err != -EPROBE_DEFER) {
4813		dev_err(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4814	} else {
4815		device_set_deferred_probe_reason(dev, &vaf);
4816		dev_dbg(dev, "error %pe: %pV", ERR_PTR(err), &vaf);
4817	}
4818
4819	va_end(args);
4820
4821	return err;
4822}
4823EXPORT_SYMBOL_GPL(dev_err_probe);
4824
4825static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
4826{
4827	return fwnode && !IS_ERR(fwnode->secondary);
4828}
4829
4830/**
4831 * set_primary_fwnode - Change the primary firmware node of a given device.
4832 * @dev: Device to handle.
4833 * @fwnode: New primary firmware node of the device.
4834 *
4835 * Set the device's firmware node pointer to @fwnode, but if a secondary
4836 * firmware node of the device is present, preserve it.
4837 *
4838 * Valid fwnode cases are:
4839 *  - primary --> secondary --> -ENODEV
4840 *  - primary --> NULL
4841 *  - secondary --> -ENODEV
4842 *  - NULL
4843 */
4844void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4845{
4846	struct device *parent = dev->parent;
4847	struct fwnode_handle *fn = dev->fwnode;
4848
4849	if (fwnode) {
 
 
4850		if (fwnode_is_primary(fn))
4851			fn = fn->secondary;
4852
4853		if (fn) {
4854			WARN_ON(fwnode->secondary);
4855			fwnode->secondary = fn;
4856		}
4857		dev->fwnode = fwnode;
4858	} else {
4859		if (fwnode_is_primary(fn)) {
4860			dev->fwnode = fn->secondary;
4861			/* Set fn->secondary = NULL, so fn remains the primary fwnode */
4862			if (!(parent && fn == parent->fwnode))
4863				fn->secondary = NULL;
4864		} else {
4865			dev->fwnode = NULL;
4866		}
4867	}
4868}
4869EXPORT_SYMBOL_GPL(set_primary_fwnode);
4870
4871/**
4872 * set_secondary_fwnode - Change the secondary firmware node of a given device.
4873 * @dev: Device to handle.
4874 * @fwnode: New secondary firmware node of the device.
4875 *
4876 * If a primary firmware node of the device is present, set its secondary
4877 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
4878 * @fwnode.
4879 */
4880void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
4881{
4882	if (fwnode)
4883		fwnode->secondary = ERR_PTR(-ENODEV);
4884
4885	if (fwnode_is_primary(dev->fwnode))
4886		dev->fwnode->secondary = fwnode;
4887	else
4888		dev->fwnode = fwnode;
4889}
4890EXPORT_SYMBOL_GPL(set_secondary_fwnode);
4891
4892/**
4893 * device_set_of_node_from_dev - reuse device-tree node of another device
4894 * @dev: device whose device-tree node is being set
4895 * @dev2: device whose device-tree node is being reused
4896 *
4897 * Takes another reference to the new device-tree node after first dropping
4898 * any reference held to the old node.
4899 */
4900void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
4901{
4902	of_node_put(dev->of_node);
4903	dev->of_node = of_node_get(dev2->of_node);
4904	dev->of_node_reused = true;
4905}
4906EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);
4907
4908void device_set_node(struct device *dev, struct fwnode_handle *fwnode)
4909{
4910	dev->fwnode = fwnode;
4911	dev->of_node = to_of_node(fwnode);
4912}
4913EXPORT_SYMBOL_GPL(device_set_node);
4914
4915int device_match_name(struct device *dev, const void *name)
4916{
4917	return sysfs_streq(dev_name(dev), name);
4918}
4919EXPORT_SYMBOL_GPL(device_match_name);
4920
4921int device_match_of_node(struct device *dev, const void *np)
4922{
4923	return dev->of_node == np;
4924}
4925EXPORT_SYMBOL_GPL(device_match_of_node);
4926
4927int device_match_fwnode(struct device *dev, const void *fwnode)
4928{
4929	return dev_fwnode(dev) == fwnode;
4930}
4931EXPORT_SYMBOL_GPL(device_match_fwnode);
4932
4933int device_match_devt(struct device *dev, const void *pdevt)
4934{
4935	return dev->devt == *(dev_t *)pdevt;
4936}
4937EXPORT_SYMBOL_GPL(device_match_devt);
4938
4939int device_match_acpi_dev(struct device *dev, const void *adev)
4940{
4941	return ACPI_COMPANION(dev) == adev;
4942}
4943EXPORT_SYMBOL(device_match_acpi_dev);
4944
4945int device_match_acpi_handle(struct device *dev, const void *handle)
4946{
4947	return ACPI_HANDLE(dev) == handle;
4948}
4949EXPORT_SYMBOL(device_match_acpi_handle);
4950
4951int device_match_any(struct device *dev, const void *unused)
4952{
4953	return 1;
4954}
4955EXPORT_SYMBOL_GPL(device_match_any);
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * drivers/base/core.c - core driver model code (device registration, etc)
   4 *
   5 * Copyright (c) 2002-3 Patrick Mochel
   6 * Copyright (c) 2002-3 Open Source Development Labs
   7 * Copyright (c) 2006 Greg Kroah-Hartman <gregkh@suse.de>
   8 * Copyright (c) 2006 Novell, Inc.
   9 */
  10
 
 
  11#include <linux/device.h>
  12#include <linux/err.h>
  13#include <linux/fwnode.h>
  14#include <linux/init.h>
 
  15#include <linux/module.h>
  16#include <linux/slab.h>
  17#include <linux/string.h>
  18#include <linux/kdev_t.h>
  19#include <linux/notifier.h>
  20#include <linux/of.h>
  21#include <linux/of_device.h>
  22#include <linux/genhd.h>
  23#include <linux/mutex.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/netdevice.h>
  26#include <linux/sched/signal.h>
 
 
  27#include <linux/sysfs.h>
 
  28
  29#include "base.h"
 
  30#include "power/power.h"
  31
  32#ifdef CONFIG_SYSFS_DEPRECATED
  33#ifdef CONFIG_SYSFS_DEPRECATED_V2
  34long sysfs_deprecated = 1;
  35#else
  36long sysfs_deprecated = 0;
  37#endif
  38static int __init sysfs_deprecated_setup(char *arg)
  39{
  40	return kstrtol(arg, 10, &sysfs_deprecated);
  41}
  42early_param("sysfs.deprecated", sysfs_deprecated_setup);
  43#endif
  44
  45/* Device links support. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47#ifdef CONFIG_SRCU
  48static DEFINE_MUTEX(device_links_lock);
  49DEFINE_STATIC_SRCU(device_links_srcu);
  50
  51static inline void device_links_write_lock(void)
  52{
  53	mutex_lock(&device_links_lock);
  54}
  55
  56static inline void device_links_write_unlock(void)
  57{
  58	mutex_unlock(&device_links_lock);
  59}
  60
  61int device_links_read_lock(void)
  62{
  63	return srcu_read_lock(&device_links_srcu);
  64}
  65
  66void device_links_read_unlock(int idx)
  67{
  68	srcu_read_unlock(&device_links_srcu, idx);
  69}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  70#else /* !CONFIG_SRCU */
  71static DECLARE_RWSEM(device_links_lock);
  72
  73static inline void device_links_write_lock(void)
  74{
  75	down_write(&device_links_lock);
  76}
  77
  78static inline void device_links_write_unlock(void)
  79{
  80	up_write(&device_links_lock);
  81}
  82
  83int device_links_read_lock(void)
  84{
  85	down_read(&device_links_lock);
  86	return 0;
  87}
  88
  89void device_links_read_unlock(int not_used)
  90{
  91	up_read(&device_links_lock);
  92}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  93#endif /* !CONFIG_SRCU */
  94
 
 
 
 
 
 
 
 
 
 
  95/**
  96 * device_is_dependent - Check if one device depends on another one
  97 * @dev: Device to check dependencies for.
  98 * @target: Device to check against.
  99 *
 100 * Check if @target depends on @dev or any device dependent on it (its child or
 101 * its consumer etc).  Return 1 if that is the case or 0 otherwise.
 102 */
 103static int device_is_dependent(struct device *dev, void *target)
 104{
 105	struct device_link *link;
 106	int ret;
 107
 108	if (WARN_ON(dev == target))
 
 
 
 
 
 109		return 1;
 110
 111	ret = device_for_each_child(dev, target, device_is_dependent);
 112	if (ret)
 113		return ret;
 114
 115	list_for_each_entry(link, &dev->links.consumers, s_node) {
 116		if (WARN_ON(link->consumer == target))
 
 
 
 
 117			return 1;
 118
 119		ret = device_is_dependent(link->consumer, target);
 120		if (ret)
 121			break;
 122	}
 123	return ret;
 124}
 125
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 126static int device_reorder_to_tail(struct device *dev, void *not_used)
 127{
 128	struct device_link *link;
 129
 130	/*
 131	 * Devices that have not been registered yet will be put to the ends
 132	 * of the lists during the registration, so skip them here.
 133	 */
 134	if (device_is_registered(dev))
 135		devices_kset_move_last(dev);
 136
 137	if (device_pm_initialized(dev))
 138		device_pm_move_last(dev);
 139
 140	device_for_each_child(dev, NULL, device_reorder_to_tail);
 141	list_for_each_entry(link, &dev->links.consumers, s_node)
 
 
 
 142		device_reorder_to_tail(link->consumer, NULL);
 
 143
 144	return 0;
 145}
 146
 147/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 148 * device_link_add - Create a link between two devices.
 149 * @consumer: Consumer end of the link.
 150 * @supplier: Supplier end of the link.
 151 * @flags: Link flags.
 152 *
 153 * The caller is responsible for the proper synchronization of the link creation
 154 * with runtime PM.  First, setting the DL_FLAG_PM_RUNTIME flag will cause the
 155 * runtime PM framework to take the link into account.  Second, if the
 156 * DL_FLAG_RPM_ACTIVE flag is set in addition to it, the supplier devices will
 157 * be forced into the active metastate and reference-counted upon the creation
 158 * of the link.  If DL_FLAG_PM_RUNTIME is not set, DL_FLAG_RPM_ACTIVE will be
 159 * ignored.
 160 *
 161 * If the DL_FLAG_AUTOREMOVE is set, the link will be removed automatically
 162 * when the consumer device driver unbinds from it.  The combination of both
 163 * DL_FLAG_AUTOREMOVE and DL_FLAG_STATELESS set is invalid and will cause NULL
 164 * to be returned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 165 *
 166 * A side effect of the link creation is re-ordering of dpm_list and the
 167 * devices_kset list by moving the consumer device and all devices depending
 168 * on it to the ends of these lists (that does not happen to devices that have
 169 * not been registered when this function is called).
 170 *
 171 * The supplier device is required to be registered when this function is called
 172 * and NULL will be returned if that is not the case.  The consumer device need
 173 * not be registered, however.
 174 */
 175struct device_link *device_link_add(struct device *consumer,
 176				    struct device *supplier, u32 flags)
 177{
 178	struct device_link *link;
 179
 180	if (!consumer || !supplier ||
 181	    ((flags & DL_FLAG_STATELESS) && (flags & DL_FLAG_AUTOREMOVE)))
 
 
 
 
 
 
 182		return NULL;
 183
 
 
 
 
 
 
 
 
 
 
 184	device_links_write_lock();
 185	device_pm_lock();
 186
 187	/*
 188	 * If the supplier has not been fully registered yet or there is a
 189	 * reverse dependency between the consumer and the supplier already in
 190	 * the graph, return NULL.
 
 
 191	 */
 192	if (!device_pm_initialized(supplier)
 193	    || device_is_dependent(consumer, supplier)) {
 
 
 
 
 
 
 
 
 
 
 
 
 194		link = NULL;
 195		goto out;
 196	}
 197
 198	list_for_each_entry(link, &supplier->links.consumers, s_node)
 199		if (link->consumer == consumer) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 200			kref_get(&link->kref);
 201			goto out;
 
 
 
 
 
 
 202		}
 203
 
 
 
 204	link = kzalloc(sizeof(*link), GFP_KERNEL);
 205	if (!link)
 206		goto out;
 207
 208	if (flags & DL_FLAG_PM_RUNTIME) {
 209		if (flags & DL_FLAG_RPM_ACTIVE) {
 210			if (pm_runtime_get_sync(supplier) < 0) {
 211				pm_runtime_put_noidle(supplier);
 212				kfree(link);
 213				link = NULL;
 214				goto out;
 215			}
 216			link->rpm_active = true;
 217		}
 218		pm_runtime_new_link(consumer);
 219	}
 220	get_device(supplier);
 221	link->supplier = supplier;
 222	INIT_LIST_HEAD(&link->s_node);
 223	get_device(consumer);
 224	link->consumer = consumer;
 225	INIT_LIST_HEAD(&link->c_node);
 226	link->flags = flags;
 227	kref_init(&link->kref);
 228
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 229	/* Determine the initial link state. */
 230	if (flags & DL_FLAG_STATELESS) {
 231		link->status = DL_STATE_NONE;
 232	} else {
 233		switch (supplier->links.status) {
 234		case DL_DEV_DRIVER_BOUND:
 235			switch (consumer->links.status) {
 236			case DL_DEV_PROBING:
 237				/*
 238				 * Balance the decrementation of the supplier's
 239				 * runtime PM usage counter after consumer probe
 240				 * in driver_probe_device().
 241				 */
 242				if (flags & DL_FLAG_PM_RUNTIME)
 243					pm_runtime_get_sync(supplier);
 
 244
 245				link->status = DL_STATE_CONSUMER_PROBE;
 246				break;
 247			case DL_DEV_DRIVER_BOUND:
 248				link->status = DL_STATE_ACTIVE;
 249				break;
 250			default:
 251				link->status = DL_STATE_AVAILABLE;
 252				break;
 253			}
 254			break;
 255		case DL_DEV_UNBINDING:
 256			link->status = DL_STATE_SUPPLIER_UNBIND;
 257			break;
 258		default:
 259			link->status = DL_STATE_DORMANT;
 260			break;
 261		}
 262	}
 263
 
 264	/*
 265	 * Move the consumer and all of the devices depending on it to the end
 266	 * of dpm_list and the devices_kset list.
 267	 *
 268	 * It is necessary to hold dpm_list locked throughout all that or else
 269	 * we may end up suspending with a wrong ordering of it.
 270	 */
 271	device_reorder_to_tail(consumer, NULL);
 272
 273	list_add_tail_rcu(&link->s_node, &supplier->links.consumers);
 274	list_add_tail_rcu(&link->c_node, &consumer->links.suppliers);
 275
 276	dev_info(consumer, "Linked as a consumer to %s\n", dev_name(supplier));
 277
 278 out:
 279	device_pm_unlock();
 280	device_links_write_unlock();
 
 
 
 
 281	return link;
 282}
 283EXPORT_SYMBOL_GPL(device_link_add);
 284
 285static void device_link_free(struct device_link *link)
 286{
 287	put_device(link->consumer);
 288	put_device(link->supplier);
 289	kfree(link);
 290}
 291
 292#ifdef CONFIG_SRCU
 293static void __device_link_free_srcu(struct rcu_head *rhead)
 294{
 295	device_link_free(container_of(rhead, struct device_link, rcu_head));
 296}
 297
 298static void __device_link_del(struct kref *kref)
 299{
 300	struct device_link *link = container_of(kref, struct device_link, kref);
 301
 302	dev_info(link->consumer, "Dropping the link to %s\n",
 303		 dev_name(link->supplier));
 304
 305	if (link->flags & DL_FLAG_PM_RUNTIME)
 306		pm_runtime_drop_link(link->consumer);
 307
 308	list_del_rcu(&link->s_node);
 309	list_del_rcu(&link->c_node);
 310	call_srcu(&device_links_srcu, &link->rcu_head, __device_link_free_srcu);
 311}
 312#else /* !CONFIG_SRCU */
 313static void __device_link_del(struct kref *kref)
 314{
 315	struct device_link *link = container_of(kref, struct device_link, kref);
 316
 317	dev_info(link->consumer, "Dropping the link to %s\n",
 318		 dev_name(link->supplier));
 319
 320	if (link->flags & DL_FLAG_PM_RUNTIME)
 321		pm_runtime_drop_link(link->consumer);
 322
 323	list_del(&link->s_node);
 324	list_del(&link->c_node);
 325	device_link_free(link);
 326}
 327#endif /* !CONFIG_SRCU */
 328
 329/**
 330 * device_link_del - Delete a link between two devices.
 331 * @link: Device link to delete.
 332 *
 333 * The caller must ensure proper synchronization of this function with runtime
 334 * PM.  If the link was added multiple times, it needs to be deleted as often.
 335 * Care is required for hotplugged devices:  Their links are purged on removal
 336 * and calling device_link_del() is then no longer allowed.
 337 */
 338void device_link_del(struct device_link *link)
 339{
 340	device_links_write_lock();
 341	device_pm_lock();
 342	kref_put(&link->kref, __device_link_del);
 343	device_pm_unlock();
 344	device_links_write_unlock();
 345}
 346EXPORT_SYMBOL_GPL(device_link_del);
 347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348static void device_links_missing_supplier(struct device *dev)
 349{
 350	struct device_link *link;
 351
 352	list_for_each_entry(link, &dev->links.suppliers, c_node)
 353		if (link->status == DL_STATE_CONSUMER_PROBE)
 
 
 
 354			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 
 
 
 
 
 
 
 
 355}
 356
 357/**
 358 * device_links_check_suppliers - Check presence of supplier drivers.
 359 * @dev: Consumer device.
 360 *
 361 * Check links from this device to any suppliers.  Walk the list of the device's
 362 * links to suppliers and see if all of them are available.  If not, simply
 363 * return -EPROBE_DEFER.
 364 *
 365 * We need to guarantee that the supplier will not go away after the check has
 366 * been positive here.  It only can go away in __device_release_driver() and
 367 * that function  checks the device's links to consumers.  This means we need to
 368 * mark the link as "consumer probe in progress" to make the supplier removal
 369 * wait for us to complete (or bad things may happen).
 370 *
 371 * Links with the DL_FLAG_STATELESS flag set are ignored.
 372 */
 373int device_links_check_suppliers(struct device *dev)
 374{
 375	struct device_link *link;
 376	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 377
 378	device_links_write_lock();
 379
 380	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 381		if (link->flags & DL_FLAG_STATELESS)
 382			continue;
 383
 384		if (link->status != DL_STATE_AVAILABLE) {
 
 
 
 
 
 
 
 
 
 385			device_links_missing_supplier(dev);
 
 
 
 386			ret = -EPROBE_DEFER;
 387			break;
 388		}
 389		WRITE_ONCE(link->status, DL_STATE_CONSUMER_PROBE);
 390	}
 391	dev->links.status = DL_DEV_PROBING;
 392
 393	device_links_write_unlock();
 394	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395}
 396
 397/**
 398 * device_links_driver_bound - Update device links after probing its driver.
 399 * @dev: Device to update the links for.
 400 *
 401 * The probe has been successful, so update links from this device to any
 402 * consumers by changing their status to "available".
 403 *
 404 * Also change the status of @dev's links to suppliers to "active".
 405 *
 406 * Links with the DL_FLAG_STATELESS flag set are ignored.
 407 */
 408void device_links_driver_bound(struct device *dev)
 409{
 410	struct device_link *link;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 411
 412	device_links_write_lock();
 413
 414	list_for_each_entry(link, &dev->links.consumers, s_node) {
 415		if (link->flags & DL_FLAG_STATELESS)
 
 
 
 
 
 
 
 
 
 
 416			continue;
 417
 418		WARN_ON(link->status != DL_STATE_DORMANT);
 419		WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 420	}
 421
 422	list_for_each_entry(link, &dev->links.suppliers, c_node) {
 423		if (link->flags & DL_FLAG_STATELESS)
 
 
 
 
 
 
 
 424			continue;
 425
 426		WARN_ON(link->status != DL_STATE_CONSUMER_PROBE);
 427		WRITE_ONCE(link->status, DL_STATE_ACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 428	}
 429
 430	dev->links.status = DL_DEV_DRIVER_BOUND;
 431
 432	device_links_write_unlock();
 
 
 433}
 434
 435/**
 436 * __device_links_no_driver - Update links of a device without a driver.
 437 * @dev: Device without a drvier.
 438 *
 439 * Delete all non-persistent links from this device to any suppliers.
 440 *
 441 * Persistent links stay around, but their status is changed to "available",
 442 * unless they already are in the "supplier unbind in progress" state in which
 443 * case they need not be updated.
 444 *
 445 * Links with the DL_FLAG_STATELESS flag set are ignored.
 446 */
 447static void __device_links_no_driver(struct device *dev)
 448{
 449	struct device_link *link, *ln;
 450
 451	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 452		if (link->flags & DL_FLAG_STATELESS)
 
 
 
 
 
 
 
 
 
 453			continue;
 454
 455		if (link->flags & DL_FLAG_AUTOREMOVE)
 456			kref_put(&link->kref, __device_link_del);
 457		else if (link->status != DL_STATE_SUPPLIER_UNBIND)
 458			WRITE_ONCE(link->status, DL_STATE_AVAILABLE);
 
 
 
 
 459	}
 460
 461	dev->links.status = DL_DEV_NO_DRIVER;
 462}
 463
 
 
 
 
 
 
 
 
 
 
 464void device_links_no_driver(struct device *dev)
 465{
 
 
 466	device_links_write_lock();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 467	__device_links_no_driver(dev);
 
 468	device_links_write_unlock();
 469}
 470
 471/**
 472 * device_links_driver_cleanup - Update links after driver removal.
 473 * @dev: Device whose driver has just gone away.
 474 *
 475 * Update links to consumers for @dev by changing their status to "dormant" and
 476 * invoke %__device_links_no_driver() to update links to suppliers for it as
 477 * appropriate.
 478 *
 479 * Links with the DL_FLAG_STATELESS flag set are ignored.
 480 */
 481void device_links_driver_cleanup(struct device *dev)
 482{
 483	struct device_link *link;
 484
 485	device_links_write_lock();
 486
 487	list_for_each_entry(link, &dev->links.consumers, s_node) {
 488		if (link->flags & DL_FLAG_STATELESS)
 489			continue;
 490
 491		WARN_ON(link->flags & DL_FLAG_AUTOREMOVE);
 492		WARN_ON(link->status != DL_STATE_SUPPLIER_UNBIND);
 
 
 
 
 
 
 
 
 
 
 493		WRITE_ONCE(link->status, DL_STATE_DORMANT);
 494	}
 495
 
 496	__device_links_no_driver(dev);
 497
 498	device_links_write_unlock();
 499}
 500
 501/**
 502 * device_links_busy - Check if there are any busy links to consumers.
 503 * @dev: Device to check.
 504 *
 505 * Check each consumer of the device and return 'true' if its link's status
 506 * is one of "consumer probe" or "active" (meaning that the given consumer is
 507 * probing right now or its driver is present).  Otherwise, change the link
 508 * state to "supplier unbind" to prevent the consumer from being probed
 509 * successfully going forward.
 510 *
 511 * Return 'false' if there are no probing or active consumers.
 512 *
 513 * Links with the DL_FLAG_STATELESS flag set are ignored.
 514 */
 515bool device_links_busy(struct device *dev)
 516{
 517	struct device_link *link;
 518	bool ret = false;
 519
 520	device_links_write_lock();
 521
 522	list_for_each_entry(link, &dev->links.consumers, s_node) {
 523		if (link->flags & DL_FLAG_STATELESS)
 524			continue;
 525
 526		if (link->status == DL_STATE_CONSUMER_PROBE
 527		    || link->status == DL_STATE_ACTIVE) {
 528			ret = true;
 529			break;
 530		}
 531		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 532	}
 533
 534	dev->links.status = DL_DEV_UNBINDING;
 535
 536	device_links_write_unlock();
 537	return ret;
 538}
 539
 540/**
 541 * device_links_unbind_consumers - Force unbind consumers of the given device.
 542 * @dev: Device to unbind the consumers of.
 543 *
 544 * Walk the list of links to consumers for @dev and if any of them is in the
 545 * "consumer probe" state, wait for all device probes in progress to complete
 546 * and start over.
 547 *
 548 * If that's not the case, change the status of the link to "supplier unbind"
 549 * and check if the link was in the "active" state.  If so, force the consumer
 550 * driver to unbind and start over (the consumer will not re-probe as we have
 551 * changed the state of the link already).
 552 *
 553 * Links with the DL_FLAG_STATELESS flag set are ignored.
 554 */
 555void device_links_unbind_consumers(struct device *dev)
 556{
 557	struct device_link *link;
 558
 559 start:
 560	device_links_write_lock();
 561
 562	list_for_each_entry(link, &dev->links.consumers, s_node) {
 563		enum device_link_state status;
 564
 565		if (link->flags & DL_FLAG_STATELESS)
 
 566			continue;
 567
 568		status = link->status;
 569		if (status == DL_STATE_CONSUMER_PROBE) {
 570			device_links_write_unlock();
 571
 572			wait_for_device_probe();
 573			goto start;
 574		}
 575		WRITE_ONCE(link->status, DL_STATE_SUPPLIER_UNBIND);
 576		if (status == DL_STATE_ACTIVE) {
 577			struct device *consumer = link->consumer;
 578
 579			get_device(consumer);
 580
 581			device_links_write_unlock();
 582
 583			device_release_driver_internal(consumer, NULL,
 584						       consumer->parent);
 585			put_device(consumer);
 586			goto start;
 587		}
 588	}
 589
 590	device_links_write_unlock();
 591}
 592
 593/**
 594 * device_links_purge - Delete existing links to other devices.
 595 * @dev: Target device.
 596 */
 597static void device_links_purge(struct device *dev)
 598{
 599	struct device_link *link, *ln;
 600
 
 
 
 601	/*
 602	 * Delete all of the remaining links from this device to any other
 603	 * devices (either consumers or suppliers).
 604	 */
 605	device_links_write_lock();
 606
 607	list_for_each_entry_safe_reverse(link, ln, &dev->links.suppliers, c_node) {
 608		WARN_ON(link->status == DL_STATE_ACTIVE);
 609		__device_link_del(&link->kref);
 610	}
 611
 612	list_for_each_entry_safe_reverse(link, ln, &dev->links.consumers, s_node) {
 613		WARN_ON(link->status != DL_STATE_DORMANT &&
 614			link->status != DL_STATE_NONE);
 615		__device_link_del(&link->kref);
 616	}
 617
 618	device_links_write_unlock();
 619}
 620
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 621/* Device links support end. */
 622
 623int (*platform_notify)(struct device *dev) = NULL;
 624int (*platform_notify_remove)(struct device *dev) = NULL;
 625static struct kobject *dev_kobj;
 626struct kobject *sysfs_dev_char_kobj;
 627struct kobject *sysfs_dev_block_kobj;
 628
 629static DEFINE_MUTEX(device_hotplug_lock);
 630
 631void lock_device_hotplug(void)
 632{
 633	mutex_lock(&device_hotplug_lock);
 634}
 635
 636void unlock_device_hotplug(void)
 637{
 638	mutex_unlock(&device_hotplug_lock);
 639}
 640
 641int lock_device_hotplug_sysfs(void)
 642{
 643	if (mutex_trylock(&device_hotplug_lock))
 644		return 0;
 645
 646	/* Avoid busy looping (5 ms of sleep should do). */
 647	msleep(5);
 648	return restart_syscall();
 649}
 650
 651#ifdef CONFIG_BLOCK
 652static inline int device_is_not_partition(struct device *dev)
 653{
 654	return !(dev->type == &part_type);
 655}
 656#else
 657static inline int device_is_not_partition(struct device *dev)
 658{
 659	return 1;
 660}
 661#endif
 662
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 663/**
 664 * dev_driver_string - Return a device's driver name, if at all possible
 665 * @dev: struct device to get the name of
 666 *
 667 * Will return the device's driver's name if it is bound to a device.  If
 668 * the device is not bound to a driver, it will return the name of the bus
 669 * it is attached to.  If it is not attached to a bus either, an empty
 670 * string will be returned.
 671 */
 672const char *dev_driver_string(const struct device *dev)
 673{
 674	struct device_driver *drv;
 675
 676	/* dev->driver can change to NULL underneath us because of unbinding,
 677	 * so be careful about accessing it.  dev->bus and dev->class should
 678	 * never change once they are set, so they don't need special care.
 679	 */
 680	drv = READ_ONCE(dev->driver);
 681	return drv ? drv->name :
 682			(dev->bus ? dev->bus->name :
 683			(dev->class ? dev->class->name : ""));
 684}
 685EXPORT_SYMBOL(dev_driver_string);
 686
 687#define to_dev_attr(_attr) container_of(_attr, struct device_attribute, attr)
 688
 689static ssize_t dev_attr_show(struct kobject *kobj, struct attribute *attr,
 690			     char *buf)
 691{
 692	struct device_attribute *dev_attr = to_dev_attr(attr);
 693	struct device *dev = kobj_to_dev(kobj);
 694	ssize_t ret = -EIO;
 695
 696	if (dev_attr->show)
 697		ret = dev_attr->show(dev, dev_attr, buf);
 698	if (ret >= (ssize_t)PAGE_SIZE) {
 699		printk("dev_attr_show: %pS returned bad count\n",
 700				dev_attr->show);
 701	}
 702	return ret;
 703}
 704
 705static ssize_t dev_attr_store(struct kobject *kobj, struct attribute *attr,
 706			      const char *buf, size_t count)
 707{
 708	struct device_attribute *dev_attr = to_dev_attr(attr);
 709	struct device *dev = kobj_to_dev(kobj);
 710	ssize_t ret = -EIO;
 711
 712	if (dev_attr->store)
 713		ret = dev_attr->store(dev, dev_attr, buf, count);
 714	return ret;
 715}
 716
 717static const struct sysfs_ops dev_sysfs_ops = {
 718	.show	= dev_attr_show,
 719	.store	= dev_attr_store,
 720};
 721
 722#define to_ext_attr(x) container_of(x, struct dev_ext_attribute, attr)
 723
 724ssize_t device_store_ulong(struct device *dev,
 725			   struct device_attribute *attr,
 726			   const char *buf, size_t size)
 727{
 728	struct dev_ext_attribute *ea = to_ext_attr(attr);
 729	char *end;
 730	unsigned long new = simple_strtoul(buf, &end, 0);
 731	if (end == buf)
 732		return -EINVAL;
 
 
 733	*(unsigned long *)(ea->var) = new;
 734	/* Always return full write size even if we didn't consume all */
 735	return size;
 736}
 737EXPORT_SYMBOL_GPL(device_store_ulong);
 738
 739ssize_t device_show_ulong(struct device *dev,
 740			  struct device_attribute *attr,
 741			  char *buf)
 742{
 743	struct dev_ext_attribute *ea = to_ext_attr(attr);
 744	return snprintf(buf, PAGE_SIZE, "%lx\n", *(unsigned long *)(ea->var));
 745}
 746EXPORT_SYMBOL_GPL(device_show_ulong);
 747
 748ssize_t device_store_int(struct device *dev,
 749			 struct device_attribute *attr,
 750			 const char *buf, size_t size)
 751{
 752	struct dev_ext_attribute *ea = to_ext_attr(attr);
 753	char *end;
 754	long new = simple_strtol(buf, &end, 0);
 755	if (end == buf || new > INT_MAX || new < INT_MIN)
 
 
 
 
 
 756		return -EINVAL;
 757	*(int *)(ea->var) = new;
 758	/* Always return full write size even if we didn't consume all */
 759	return size;
 760}
 761EXPORT_SYMBOL_GPL(device_store_int);
 762
 763ssize_t device_show_int(struct device *dev,
 764			struct device_attribute *attr,
 765			char *buf)
 766{
 767	struct dev_ext_attribute *ea = to_ext_attr(attr);
 768
 769	return snprintf(buf, PAGE_SIZE, "%d\n", *(int *)(ea->var));
 770}
 771EXPORT_SYMBOL_GPL(device_show_int);
 772
 773ssize_t device_store_bool(struct device *dev, struct device_attribute *attr,
 774			  const char *buf, size_t size)
 775{
 776	struct dev_ext_attribute *ea = to_ext_attr(attr);
 777
 778	if (strtobool(buf, ea->var) < 0)
 779		return -EINVAL;
 780
 781	return size;
 782}
 783EXPORT_SYMBOL_GPL(device_store_bool);
 784
 785ssize_t device_show_bool(struct device *dev, struct device_attribute *attr,
 786			 char *buf)
 787{
 788	struct dev_ext_attribute *ea = to_ext_attr(attr);
 789
 790	return snprintf(buf, PAGE_SIZE, "%d\n", *(bool *)(ea->var));
 791}
 792EXPORT_SYMBOL_GPL(device_show_bool);
 793
 794/**
 795 * device_release - free device structure.
 796 * @kobj: device's kobject.
 797 *
 798 * This is called once the reference count for the object
 799 * reaches 0. We forward the call to the device's release
 800 * method, which should handle actually freeing the structure.
 801 */
 802static void device_release(struct kobject *kobj)
 803{
 804	struct device *dev = kobj_to_dev(kobj);
 805	struct device_private *p = dev->p;
 806
 807	/*
 808	 * Some platform devices are driven without driver attached
 809	 * and managed resources may have been acquired.  Make sure
 810	 * all resources are released.
 811	 *
 812	 * Drivers still can add resources into device after device
 813	 * is deleted but alive, so release devres here to avoid
 814	 * possible memory leak.
 815	 */
 816	devres_release_all(dev);
 817
 
 
 818	if (dev->release)
 819		dev->release(dev);
 820	else if (dev->type && dev->type->release)
 821		dev->type->release(dev);
 822	else if (dev->class && dev->class->dev_release)
 823		dev->class->dev_release(dev);
 824	else
 825		WARN(1, KERN_ERR "Device '%s' does not have a release() "
 826			"function, it is broken and must be fixed.\n",
 827			dev_name(dev));
 828	kfree(p);
 829}
 830
 831static const void *device_namespace(struct kobject *kobj)
 832{
 833	struct device *dev = kobj_to_dev(kobj);
 834	const void *ns = NULL;
 835
 836	if (dev->class && dev->class->ns_type)
 837		ns = dev->class->namespace(dev);
 838
 839	return ns;
 840}
 841
 
 
 
 
 
 
 
 
 842static struct kobj_type device_ktype = {
 843	.release	= device_release,
 844	.sysfs_ops	= &dev_sysfs_ops,
 845	.namespace	= device_namespace,
 
 846};
 847
 848
 849static int dev_uevent_filter(struct kset *kset, struct kobject *kobj)
 850{
 851	struct kobj_type *ktype = get_ktype(kobj);
 852
 853	if (ktype == &device_ktype) {
 854		struct device *dev = kobj_to_dev(kobj);
 855		if (dev->bus)
 856			return 1;
 857		if (dev->class)
 858			return 1;
 859	}
 860	return 0;
 861}
 862
 863static const char *dev_uevent_name(struct kset *kset, struct kobject *kobj)
 864{
 865	struct device *dev = kobj_to_dev(kobj);
 866
 867	if (dev->bus)
 868		return dev->bus->name;
 869	if (dev->class)
 870		return dev->class->name;
 871	return NULL;
 872}
 873
 874static int dev_uevent(struct kset *kset, struct kobject *kobj,
 875		      struct kobj_uevent_env *env)
 876{
 877	struct device *dev = kobj_to_dev(kobj);
 878	int retval = 0;
 879
 880	/* add device node properties if present */
 881	if (MAJOR(dev->devt)) {
 882		const char *tmp;
 883		const char *name;
 884		umode_t mode = 0;
 885		kuid_t uid = GLOBAL_ROOT_UID;
 886		kgid_t gid = GLOBAL_ROOT_GID;
 887
 888		add_uevent_var(env, "MAJOR=%u", MAJOR(dev->devt));
 889		add_uevent_var(env, "MINOR=%u", MINOR(dev->devt));
 890		name = device_get_devnode(dev, &mode, &uid, &gid, &tmp);
 891		if (name) {
 892			add_uevent_var(env, "DEVNAME=%s", name);
 893			if (mode)
 894				add_uevent_var(env, "DEVMODE=%#o", mode & 0777);
 895			if (!uid_eq(uid, GLOBAL_ROOT_UID))
 896				add_uevent_var(env, "DEVUID=%u", from_kuid(&init_user_ns, uid));
 897			if (!gid_eq(gid, GLOBAL_ROOT_GID))
 898				add_uevent_var(env, "DEVGID=%u", from_kgid(&init_user_ns, gid));
 899			kfree(tmp);
 900		}
 901	}
 902
 903	if (dev->type && dev->type->name)
 904		add_uevent_var(env, "DEVTYPE=%s", dev->type->name);
 905
 906	if (dev->driver)
 907		add_uevent_var(env, "DRIVER=%s", dev->driver->name);
 908
 909	/* Add common DT information about the device */
 910	of_device_uevent(dev, env);
 911
 912	/* have the bus specific function add its stuff */
 913	if (dev->bus && dev->bus->uevent) {
 914		retval = dev->bus->uevent(dev, env);
 915		if (retval)
 916			pr_debug("device: '%s': %s: bus uevent() returned %d\n",
 917				 dev_name(dev), __func__, retval);
 918	}
 919
 920	/* have the class specific function add its stuff */
 921	if (dev->class && dev->class->dev_uevent) {
 922		retval = dev->class->dev_uevent(dev, env);
 923		if (retval)
 924			pr_debug("device: '%s': %s: class uevent() "
 925				 "returned %d\n", dev_name(dev),
 926				 __func__, retval);
 927	}
 928
 929	/* have the device type specific function add its stuff */
 930	if (dev->type && dev->type->uevent) {
 931		retval = dev->type->uevent(dev, env);
 932		if (retval)
 933			pr_debug("device: '%s': %s: dev_type uevent() "
 934				 "returned %d\n", dev_name(dev),
 935				 __func__, retval);
 936	}
 937
 938	return retval;
 939}
 940
 941static const struct kset_uevent_ops device_uevent_ops = {
 942	.filter =	dev_uevent_filter,
 943	.name =		dev_uevent_name,
 944	.uevent =	dev_uevent,
 945};
 946
 947static ssize_t uevent_show(struct device *dev, struct device_attribute *attr,
 948			   char *buf)
 949{
 950	struct kobject *top_kobj;
 951	struct kset *kset;
 952	struct kobj_uevent_env *env = NULL;
 953	int i;
 954	size_t count = 0;
 955	int retval;
 956
 957	/* search the kset, the device belongs to */
 958	top_kobj = &dev->kobj;
 959	while (!top_kobj->kset && top_kobj->parent)
 960		top_kobj = top_kobj->parent;
 961	if (!top_kobj->kset)
 962		goto out;
 963
 964	kset = top_kobj->kset;
 965	if (!kset->uevent_ops || !kset->uevent_ops->uevent)
 966		goto out;
 967
 968	/* respect filter */
 969	if (kset->uevent_ops && kset->uevent_ops->filter)
 970		if (!kset->uevent_ops->filter(kset, &dev->kobj))
 971			goto out;
 972
 973	env = kzalloc(sizeof(struct kobj_uevent_env), GFP_KERNEL);
 974	if (!env)
 975		return -ENOMEM;
 976
 977	/* let the kset specific function add its keys */
 978	retval = kset->uevent_ops->uevent(kset, &dev->kobj, env);
 979	if (retval)
 980		goto out;
 981
 982	/* copy keys to file */
 983	for (i = 0; i < env->envp_idx; i++)
 984		count += sprintf(&buf[count], "%s\n", env->envp[i]);
 985out:
 986	kfree(env);
 987	return count;
 988}
 989
 990static ssize_t uevent_store(struct device *dev, struct device_attribute *attr,
 991			    const char *buf, size_t count)
 992{
 993	if (kobject_synth_uevent(&dev->kobj, buf, count))
 994		dev_err(dev, "uevent: failed to send synthetic uevent\n");
 
 
 
 
 
 
 995
 996	return count;
 997}
 998static DEVICE_ATTR_RW(uevent);
 999
1000static ssize_t online_show(struct device *dev, struct device_attribute *attr,
1001			   char *buf)
1002{
1003	bool val;
1004
1005	device_lock(dev);
1006	val = !dev->offline;
1007	device_unlock(dev);
1008	return sprintf(buf, "%u\n", val);
1009}
1010
1011static ssize_t online_store(struct device *dev, struct device_attribute *attr,
1012			    const char *buf, size_t count)
1013{
1014	bool val;
1015	int ret;
1016
1017	ret = strtobool(buf, &val);
1018	if (ret < 0)
1019		return ret;
1020
1021	ret = lock_device_hotplug_sysfs();
1022	if (ret)
1023		return ret;
1024
1025	ret = val ? device_online(dev) : device_offline(dev);
1026	unlock_device_hotplug();
1027	return ret < 0 ? ret : count;
1028}
1029static DEVICE_ATTR_RW(online);
1030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1031int device_add_groups(struct device *dev, const struct attribute_group **groups)
1032{
1033	return sysfs_create_groups(&dev->kobj, groups);
1034}
1035EXPORT_SYMBOL_GPL(device_add_groups);
1036
1037void device_remove_groups(struct device *dev,
1038			  const struct attribute_group **groups)
1039{
1040	sysfs_remove_groups(&dev->kobj, groups);
1041}
1042EXPORT_SYMBOL_GPL(device_remove_groups);
1043
1044union device_attr_group_devres {
1045	const struct attribute_group *group;
1046	const struct attribute_group **groups;
1047};
1048
1049static int devm_attr_group_match(struct device *dev, void *res, void *data)
1050{
1051	return ((union device_attr_group_devres *)res)->group == data;
1052}
1053
1054static void devm_attr_group_remove(struct device *dev, void *res)
1055{
1056	union device_attr_group_devres *devres = res;
1057	const struct attribute_group *group = devres->group;
1058
1059	dev_dbg(dev, "%s: removing group %p\n", __func__, group);
1060	sysfs_remove_group(&dev->kobj, group);
1061}
1062
1063static void devm_attr_groups_remove(struct device *dev, void *res)
1064{
1065	union device_attr_group_devres *devres = res;
1066	const struct attribute_group **groups = devres->groups;
1067
1068	dev_dbg(dev, "%s: removing groups %p\n", __func__, groups);
1069	sysfs_remove_groups(&dev->kobj, groups);
1070}
1071
1072/**
1073 * devm_device_add_group - given a device, create a managed attribute group
1074 * @dev:	The device to create the group for
1075 * @grp:	The attribute group to create
1076 *
1077 * This function creates a group for the first time.  It will explicitly
1078 * warn and error if any of the attribute files being created already exist.
1079 *
1080 * Returns 0 on success or error code on failure.
1081 */
1082int devm_device_add_group(struct device *dev, const struct attribute_group *grp)
1083{
1084	union device_attr_group_devres *devres;
1085	int error;
1086
1087	devres = devres_alloc(devm_attr_group_remove,
1088			      sizeof(*devres), GFP_KERNEL);
1089	if (!devres)
1090		return -ENOMEM;
1091
1092	error = sysfs_create_group(&dev->kobj, grp);
1093	if (error) {
1094		devres_free(devres);
1095		return error;
1096	}
1097
1098	devres->group = grp;
1099	devres_add(dev, devres);
1100	return 0;
1101}
1102EXPORT_SYMBOL_GPL(devm_device_add_group);
1103
1104/**
1105 * devm_device_remove_group: remove a managed group from a device
1106 * @dev:	device to remove the group from
1107 * @grp:	group to remove
1108 *
1109 * This function removes a group of attributes from a device. The attributes
1110 * previously have to have been created for this group, otherwise it will fail.
1111 */
1112void devm_device_remove_group(struct device *dev,
1113			      const struct attribute_group *grp)
1114{
1115	WARN_ON(devres_release(dev, devm_attr_group_remove,
1116			       devm_attr_group_match,
1117			       /* cast away const */ (void *)grp));
1118}
1119EXPORT_SYMBOL_GPL(devm_device_remove_group);
1120
1121/**
1122 * devm_device_add_groups - create a bunch of managed attribute groups
1123 * @dev:	The device to create the group for
1124 * @groups:	The attribute groups to create, NULL terminated
1125 *
1126 * This function creates a bunch of managed attribute groups.  If an error
1127 * occurs when creating a group, all previously created groups will be
1128 * removed, unwinding everything back to the original state when this
1129 * function was called.  It will explicitly warn and error if any of the
1130 * attribute files being created already exist.
1131 *
1132 * Returns 0 on success or error code from sysfs_create_group on failure.
1133 */
1134int devm_device_add_groups(struct device *dev,
1135			   const struct attribute_group **groups)
1136{
1137	union device_attr_group_devres *devres;
1138	int error;
1139
1140	devres = devres_alloc(devm_attr_groups_remove,
1141			      sizeof(*devres), GFP_KERNEL);
1142	if (!devres)
1143		return -ENOMEM;
1144
1145	error = sysfs_create_groups(&dev->kobj, groups);
1146	if (error) {
1147		devres_free(devres);
1148		return error;
1149	}
1150
1151	devres->groups = groups;
1152	devres_add(dev, devres);
1153	return 0;
1154}
1155EXPORT_SYMBOL_GPL(devm_device_add_groups);
1156
1157/**
1158 * devm_device_remove_groups - remove a list of managed groups
1159 *
1160 * @dev:	The device for the groups to be removed from
1161 * @groups:	NULL terminated list of groups to be removed
1162 *
1163 * If groups is not NULL, remove the specified groups from the device.
1164 */
1165void devm_device_remove_groups(struct device *dev,
1166			       const struct attribute_group **groups)
1167{
1168	WARN_ON(devres_release(dev, devm_attr_groups_remove,
1169			       devm_attr_group_match,
1170			       /* cast away const */ (void *)groups));
1171}
1172EXPORT_SYMBOL_GPL(devm_device_remove_groups);
1173
1174static int device_add_attrs(struct device *dev)
1175{
1176	struct class *class = dev->class;
1177	const struct device_type *type = dev->type;
1178	int error;
1179
1180	if (class) {
1181		error = device_add_groups(dev, class->dev_groups);
1182		if (error)
1183			return error;
1184	}
1185
1186	if (type) {
1187		error = device_add_groups(dev, type->groups);
1188		if (error)
1189			goto err_remove_class_groups;
1190	}
1191
1192	error = device_add_groups(dev, dev->groups);
1193	if (error)
1194		goto err_remove_type_groups;
1195
1196	if (device_supports_offline(dev) && !dev->offline_disabled) {
1197		error = device_create_file(dev, &dev_attr_online);
1198		if (error)
1199			goto err_remove_dev_groups;
1200	}
1201
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202	return 0;
1203
 
 
 
 
 
 
1204 err_remove_dev_groups:
1205	device_remove_groups(dev, dev->groups);
1206 err_remove_type_groups:
1207	if (type)
1208		device_remove_groups(dev, type->groups);
1209 err_remove_class_groups:
1210	if (class)
1211		device_remove_groups(dev, class->dev_groups);
1212
1213	return error;
1214}
1215
1216static void device_remove_attrs(struct device *dev)
1217{
1218	struct class *class = dev->class;
1219	const struct device_type *type = dev->type;
1220
 
 
 
 
 
 
 
1221	device_remove_file(dev, &dev_attr_online);
1222	device_remove_groups(dev, dev->groups);
1223
1224	if (type)
1225		device_remove_groups(dev, type->groups);
1226
1227	if (class)
1228		device_remove_groups(dev, class->dev_groups);
1229}
1230
1231static ssize_t dev_show(struct device *dev, struct device_attribute *attr,
1232			char *buf)
1233{
1234	return print_dev_t(buf, dev->devt);
1235}
1236static DEVICE_ATTR_RO(dev);
1237
1238/* /sys/devices/ */
1239struct kset *devices_kset;
1240
1241/**
1242 * devices_kset_move_before - Move device in the devices_kset's list.
1243 * @deva: Device to move.
1244 * @devb: Device @deva should come before.
1245 */
1246static void devices_kset_move_before(struct device *deva, struct device *devb)
1247{
1248	if (!devices_kset)
1249		return;
1250	pr_debug("devices_kset: Moving %s before %s\n",
1251		 dev_name(deva), dev_name(devb));
1252	spin_lock(&devices_kset->list_lock);
1253	list_move_tail(&deva->kobj.entry, &devb->kobj.entry);
1254	spin_unlock(&devices_kset->list_lock);
1255}
1256
1257/**
1258 * devices_kset_move_after - Move device in the devices_kset's list.
1259 * @deva: Device to move
1260 * @devb: Device @deva should come after.
1261 */
1262static void devices_kset_move_after(struct device *deva, struct device *devb)
1263{
1264	if (!devices_kset)
1265		return;
1266	pr_debug("devices_kset: Moving %s after %s\n",
1267		 dev_name(deva), dev_name(devb));
1268	spin_lock(&devices_kset->list_lock);
1269	list_move(&deva->kobj.entry, &devb->kobj.entry);
1270	spin_unlock(&devices_kset->list_lock);
1271}
1272
1273/**
1274 * devices_kset_move_last - move the device to the end of devices_kset's list.
1275 * @dev: device to move
1276 */
1277void devices_kset_move_last(struct device *dev)
1278{
1279	if (!devices_kset)
1280		return;
1281	pr_debug("devices_kset: Moving %s to end of list\n", dev_name(dev));
1282	spin_lock(&devices_kset->list_lock);
1283	list_move_tail(&dev->kobj.entry, &devices_kset->list);
1284	spin_unlock(&devices_kset->list_lock);
1285}
1286
1287/**
1288 * device_create_file - create sysfs attribute file for device.
1289 * @dev: device.
1290 * @attr: device attribute descriptor.
1291 */
1292int device_create_file(struct device *dev,
1293		       const struct device_attribute *attr)
1294{
1295	int error = 0;
1296
1297	if (dev) {
1298		WARN(((attr->attr.mode & S_IWUGO) && !attr->store),
1299			"Attribute %s: write permission without 'store'\n",
1300			attr->attr.name);
1301		WARN(((attr->attr.mode & S_IRUGO) && !attr->show),
1302			"Attribute %s: read permission without 'show'\n",
1303			attr->attr.name);
1304		error = sysfs_create_file(&dev->kobj, &attr->attr);
1305	}
1306
1307	return error;
1308}
1309EXPORT_SYMBOL_GPL(device_create_file);
1310
1311/**
1312 * device_remove_file - remove sysfs attribute file.
1313 * @dev: device.
1314 * @attr: device attribute descriptor.
1315 */
1316void device_remove_file(struct device *dev,
1317			const struct device_attribute *attr)
1318{
1319	if (dev)
1320		sysfs_remove_file(&dev->kobj, &attr->attr);
1321}
1322EXPORT_SYMBOL_GPL(device_remove_file);
1323
1324/**
1325 * device_remove_file_self - remove sysfs attribute file from its own method.
1326 * @dev: device.
1327 * @attr: device attribute descriptor.
1328 *
1329 * See kernfs_remove_self() for details.
1330 */
1331bool device_remove_file_self(struct device *dev,
1332			     const struct device_attribute *attr)
1333{
1334	if (dev)
1335		return sysfs_remove_file_self(&dev->kobj, &attr->attr);
1336	else
1337		return false;
1338}
1339EXPORT_SYMBOL_GPL(device_remove_file_self);
1340
1341/**
1342 * device_create_bin_file - create sysfs binary attribute file for device.
1343 * @dev: device.
1344 * @attr: device binary attribute descriptor.
1345 */
1346int device_create_bin_file(struct device *dev,
1347			   const struct bin_attribute *attr)
1348{
1349	int error = -EINVAL;
1350	if (dev)
1351		error = sysfs_create_bin_file(&dev->kobj, attr);
1352	return error;
1353}
1354EXPORT_SYMBOL_GPL(device_create_bin_file);
1355
1356/**
1357 * device_remove_bin_file - remove sysfs binary attribute file
1358 * @dev: device.
1359 * @attr: device binary attribute descriptor.
1360 */
1361void device_remove_bin_file(struct device *dev,
1362			    const struct bin_attribute *attr)
1363{
1364	if (dev)
1365		sysfs_remove_bin_file(&dev->kobj, attr);
1366}
1367EXPORT_SYMBOL_GPL(device_remove_bin_file);
1368
1369static void klist_children_get(struct klist_node *n)
1370{
1371	struct device_private *p = to_device_private_parent(n);
1372	struct device *dev = p->device;
1373
1374	get_device(dev);
1375}
1376
1377static void klist_children_put(struct klist_node *n)
1378{
1379	struct device_private *p = to_device_private_parent(n);
1380	struct device *dev = p->device;
1381
1382	put_device(dev);
1383}
1384
1385/**
1386 * device_initialize - init device structure.
1387 * @dev: device.
1388 *
1389 * This prepares the device for use by other layers by initializing
1390 * its fields.
1391 * It is the first half of device_register(), if called by
1392 * that function, though it can also be called separately, so one
1393 * may use @dev's fields. In particular, get_device()/put_device()
1394 * may be used for reference counting of @dev after calling this
1395 * function.
1396 *
1397 * All fields in @dev must be initialized by the caller to 0, except
1398 * for those explicitly set to some other value.  The simplest
1399 * approach is to use kzalloc() to allocate the structure containing
1400 * @dev.
1401 *
1402 * NOTE: Use put_device() to give up your reference instead of freeing
1403 * @dev directly once you have called this function.
1404 */
1405void device_initialize(struct device *dev)
1406{
1407	dev->kobj.kset = devices_kset;
1408	kobject_init(&dev->kobj, &device_ktype);
1409	INIT_LIST_HEAD(&dev->dma_pools);
1410	mutex_init(&dev->mutex);
1411	lockdep_set_novalidate_class(&dev->mutex);
1412	spin_lock_init(&dev->devres_lock);
1413	INIT_LIST_HEAD(&dev->devres_head);
1414	device_pm_init(dev);
1415	set_dev_node(dev, -1);
1416#ifdef CONFIG_GENERIC_MSI_IRQ
1417	INIT_LIST_HEAD(&dev->msi_list);
1418#endif
1419	INIT_LIST_HEAD(&dev->links.consumers);
1420	INIT_LIST_HEAD(&dev->links.suppliers);
 
1421	dev->links.status = DL_DEV_NO_DRIVER;
 
 
 
 
 
 
 
 
1422}
1423EXPORT_SYMBOL_GPL(device_initialize);
1424
1425struct kobject *virtual_device_parent(struct device *dev)
1426{
1427	static struct kobject *virtual_dir = NULL;
1428
1429	if (!virtual_dir)
1430		virtual_dir = kobject_create_and_add("virtual",
1431						     &devices_kset->kobj);
1432
1433	return virtual_dir;
1434}
1435
1436struct class_dir {
1437	struct kobject kobj;
1438	struct class *class;
1439};
1440
1441#define to_class_dir(obj) container_of(obj, struct class_dir, kobj)
1442
1443static void class_dir_release(struct kobject *kobj)
1444{
1445	struct class_dir *dir = to_class_dir(kobj);
1446	kfree(dir);
1447}
1448
1449static const
1450struct kobj_ns_type_operations *class_dir_child_ns_type(struct kobject *kobj)
1451{
1452	struct class_dir *dir = to_class_dir(kobj);
1453	return dir->class->ns_type;
1454}
1455
1456static struct kobj_type class_dir_ktype = {
1457	.release	= class_dir_release,
1458	.sysfs_ops	= &kobj_sysfs_ops,
1459	.child_ns_type	= class_dir_child_ns_type
1460};
1461
1462static struct kobject *
1463class_dir_create_and_add(struct class *class, struct kobject *parent_kobj)
1464{
1465	struct class_dir *dir;
1466	int retval;
1467
1468	dir = kzalloc(sizeof(*dir), GFP_KERNEL);
1469	if (!dir)
1470		return NULL;
1471
1472	dir->class = class;
1473	kobject_init(&dir->kobj, &class_dir_ktype);
1474
1475	dir->kobj.kset = &class->p->glue_dirs;
1476
1477	retval = kobject_add(&dir->kobj, parent_kobj, "%s", class->name);
1478	if (retval < 0) {
1479		kobject_put(&dir->kobj);
1480		return NULL;
1481	}
1482	return &dir->kobj;
1483}
1484
1485static DEFINE_MUTEX(gdp_mutex);
1486
1487static struct kobject *get_device_parent(struct device *dev,
1488					 struct device *parent)
1489{
1490	if (dev->class) {
1491		struct kobject *kobj = NULL;
1492		struct kobject *parent_kobj;
1493		struct kobject *k;
1494
1495#ifdef CONFIG_BLOCK
1496		/* block disks show up in /sys/block */
1497		if (sysfs_deprecated && dev->class == &block_class) {
1498			if (parent && parent->class == &block_class)
1499				return &parent->kobj;
1500			return &block_class.p->subsys.kobj;
1501		}
1502#endif
1503
1504		/*
1505		 * If we have no parent, we live in "virtual".
1506		 * Class-devices with a non class-device as parent, live
1507		 * in a "glue" directory to prevent namespace collisions.
1508		 */
1509		if (parent == NULL)
1510			parent_kobj = virtual_device_parent(dev);
1511		else if (parent->class && !dev->class->ns_type)
1512			return &parent->kobj;
1513		else
1514			parent_kobj = &parent->kobj;
1515
1516		mutex_lock(&gdp_mutex);
1517
1518		/* find our class-directory at the parent and reference it */
1519		spin_lock(&dev->class->p->glue_dirs.list_lock);
1520		list_for_each_entry(k, &dev->class->p->glue_dirs.list, entry)
1521			if (k->parent == parent_kobj) {
1522				kobj = kobject_get(k);
1523				break;
1524			}
1525		spin_unlock(&dev->class->p->glue_dirs.list_lock);
1526		if (kobj) {
1527			mutex_unlock(&gdp_mutex);
1528			return kobj;
1529		}
1530
1531		/* or create a new class-directory at the parent device */
1532		k = class_dir_create_and_add(dev->class, parent_kobj);
1533		/* do not emit an uevent for this simple "glue" directory */
1534		mutex_unlock(&gdp_mutex);
1535		return k;
1536	}
1537
1538	/* subsystems can specify a default root directory for their devices */
1539	if (!parent && dev->bus && dev->bus->dev_root)
1540		return &dev->bus->dev_root->kobj;
1541
1542	if (parent)
1543		return &parent->kobj;
1544	return NULL;
1545}
1546
1547static inline bool live_in_glue_dir(struct kobject *kobj,
1548				    struct device *dev)
1549{
1550	if (!kobj || !dev->class ||
1551	    kobj->kset != &dev->class->p->glue_dirs)
1552		return false;
1553	return true;
1554}
1555
1556static inline struct kobject *get_glue_dir(struct device *dev)
1557{
1558	return dev->kobj.parent;
1559}
1560
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1561/*
1562 * make sure cleaning up dir as the last step, we need to make
1563 * sure .release handler of kobject is run with holding the
1564 * global lock
1565 */
1566static void cleanup_glue_dir(struct device *dev, struct kobject *glue_dir)
1567{
 
 
1568	/* see if we live in a "glue" directory */
1569	if (!live_in_glue_dir(glue_dir, dev))
1570		return;
1571
1572	mutex_lock(&gdp_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1573	kobject_put(glue_dir);
1574	mutex_unlock(&gdp_mutex);
1575}
1576
1577static int device_add_class_symlinks(struct device *dev)
1578{
1579	struct device_node *of_node = dev_of_node(dev);
1580	int error;
1581
1582	if (of_node) {
1583		error = sysfs_create_link(&dev->kobj, of_node_kobj(of_node), "of_node");
1584		if (error)
1585			dev_warn(dev, "Error %d creating of_node link\n",error);
1586		/* An error here doesn't warrant bringing down the device */
1587	}
1588
1589	if (!dev->class)
1590		return 0;
1591
1592	error = sysfs_create_link(&dev->kobj,
1593				  &dev->class->p->subsys.kobj,
1594				  "subsystem");
1595	if (error)
1596		goto out_devnode;
1597
1598	if (dev->parent && device_is_not_partition(dev)) {
1599		error = sysfs_create_link(&dev->kobj, &dev->parent->kobj,
1600					  "device");
1601		if (error)
1602			goto out_subsys;
1603	}
1604
1605#ifdef CONFIG_BLOCK
1606	/* /sys/block has directories and does not need symlinks */
1607	if (sysfs_deprecated && dev->class == &block_class)
1608		return 0;
1609#endif
1610
1611	/* link in the class directory pointing to the device */
1612	error = sysfs_create_link(&dev->class->p->subsys.kobj,
1613				  &dev->kobj, dev_name(dev));
1614	if (error)
1615		goto out_device;
1616
1617	return 0;
1618
1619out_device:
1620	sysfs_remove_link(&dev->kobj, "device");
1621
1622out_subsys:
1623	sysfs_remove_link(&dev->kobj, "subsystem");
1624out_devnode:
1625	sysfs_remove_link(&dev->kobj, "of_node");
1626	return error;
1627}
1628
1629static void device_remove_class_symlinks(struct device *dev)
1630{
1631	if (dev_of_node(dev))
1632		sysfs_remove_link(&dev->kobj, "of_node");
1633
1634	if (!dev->class)
1635		return;
1636
1637	if (dev->parent && device_is_not_partition(dev))
1638		sysfs_remove_link(&dev->kobj, "device");
1639	sysfs_remove_link(&dev->kobj, "subsystem");
1640#ifdef CONFIG_BLOCK
1641	if (sysfs_deprecated && dev->class == &block_class)
1642		return;
1643#endif
1644	sysfs_delete_link(&dev->class->p->subsys.kobj, &dev->kobj, dev_name(dev));
1645}
1646
1647/**
1648 * dev_set_name - set a device name
1649 * @dev: device
1650 * @fmt: format string for the device's name
1651 */
1652int dev_set_name(struct device *dev, const char *fmt, ...)
1653{
1654	va_list vargs;
1655	int err;
1656
1657	va_start(vargs, fmt);
1658	err = kobject_set_name_vargs(&dev->kobj, fmt, vargs);
1659	va_end(vargs);
1660	return err;
1661}
1662EXPORT_SYMBOL_GPL(dev_set_name);
1663
1664/**
1665 * device_to_dev_kobj - select a /sys/dev/ directory for the device
1666 * @dev: device
1667 *
1668 * By default we select char/ for new entries.  Setting class->dev_obj
1669 * to NULL prevents an entry from being created.  class->dev_kobj must
1670 * be set (or cleared) before any devices are registered to the class
1671 * otherwise device_create_sys_dev_entry() and
1672 * device_remove_sys_dev_entry() will disagree about the presence of
1673 * the link.
1674 */
1675static struct kobject *device_to_dev_kobj(struct device *dev)
1676{
1677	struct kobject *kobj;
1678
1679	if (dev->class)
1680		kobj = dev->class->dev_kobj;
1681	else
1682		kobj = sysfs_dev_char_kobj;
1683
1684	return kobj;
1685}
1686
1687static int device_create_sys_dev_entry(struct device *dev)
1688{
1689	struct kobject *kobj = device_to_dev_kobj(dev);
1690	int error = 0;
1691	char devt_str[15];
1692
1693	if (kobj) {
1694		format_dev_t(devt_str, dev->devt);
1695		error = sysfs_create_link(kobj, &dev->kobj, devt_str);
1696	}
1697
1698	return error;
1699}
1700
1701static void device_remove_sys_dev_entry(struct device *dev)
1702{
1703	struct kobject *kobj = device_to_dev_kobj(dev);
1704	char devt_str[15];
1705
1706	if (kobj) {
1707		format_dev_t(devt_str, dev->devt);
1708		sysfs_remove_link(kobj, devt_str);
1709	}
1710}
1711
1712int device_private_init(struct device *dev)
1713{
1714	dev->p = kzalloc(sizeof(*dev->p), GFP_KERNEL);
1715	if (!dev->p)
1716		return -ENOMEM;
1717	dev->p->device = dev;
1718	klist_init(&dev->p->klist_children, klist_children_get,
1719		   klist_children_put);
1720	INIT_LIST_HEAD(&dev->p->deferred_probe);
1721	return 0;
1722}
1723
1724/**
1725 * device_add - add device to device hierarchy.
1726 * @dev: device.
1727 *
1728 * This is part 2 of device_register(), though may be called
1729 * separately _iff_ device_initialize() has been called separately.
1730 *
1731 * This adds @dev to the kobject hierarchy via kobject_add(), adds it
1732 * to the global and sibling lists for the device, then
1733 * adds it to the other relevant subsystems of the driver model.
1734 *
1735 * Do not call this routine or device_register() more than once for
1736 * any device structure.  The driver model core is not designed to work
1737 * with devices that get unregistered and then spring back to life.
1738 * (Among other things, it's very hard to guarantee that all references
1739 * to the previous incarnation of @dev have been dropped.)  Allocate
1740 * and register a fresh new struct device instead.
1741 *
1742 * NOTE: _Never_ directly free @dev after calling this function, even
1743 * if it returned an error! Always use put_device() to give up your
1744 * reference instead.
 
 
 
 
 
1745 */
1746int device_add(struct device *dev)
1747{
1748	struct device *parent;
1749	struct kobject *kobj;
1750	struct class_interface *class_intf;
1751	int error = -EINVAL;
1752	struct kobject *glue_dir = NULL;
1753
1754	dev = get_device(dev);
1755	if (!dev)
1756		goto done;
1757
1758	if (!dev->p) {
1759		error = device_private_init(dev);
1760		if (error)
1761			goto done;
1762	}
1763
1764	/*
1765	 * for statically allocated devices, which should all be converted
1766	 * some day, we need to initialize the name. We prevent reading back
1767	 * the name, and force the use of dev_name()
1768	 */
1769	if (dev->init_name) {
1770		dev_set_name(dev, "%s", dev->init_name);
1771		dev->init_name = NULL;
1772	}
1773
1774	/* subsystems can specify simple device enumeration */
1775	if (!dev_name(dev) && dev->bus && dev->bus->dev_name)
1776		dev_set_name(dev, "%s%u", dev->bus->dev_name, dev->id);
1777
1778	if (!dev_name(dev)) {
1779		error = -EINVAL;
1780		goto name_error;
1781	}
1782
1783	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
1784
1785	parent = get_device(dev->parent);
1786	kobj = get_device_parent(dev, parent);
 
 
 
 
1787	if (kobj)
1788		dev->kobj.parent = kobj;
1789
1790	/* use parent numa_node */
1791	if (parent && (dev_to_node(dev) == NUMA_NO_NODE))
1792		set_dev_node(dev, dev_to_node(parent));
1793
1794	/* first, register with generic layer. */
1795	/* we require the name to be set before, and pass NULL */
1796	error = kobject_add(&dev->kobj, dev->kobj.parent, NULL);
1797	if (error) {
1798		glue_dir = get_glue_dir(dev);
1799		goto Error;
1800	}
1801
1802	/* notify platform of device entry */
1803	if (platform_notify)
1804		platform_notify(dev);
1805
1806	error = device_create_file(dev, &dev_attr_uevent);
1807	if (error)
1808		goto attrError;
1809
1810	error = device_add_class_symlinks(dev);
1811	if (error)
1812		goto SymlinkError;
1813	error = device_add_attrs(dev);
1814	if (error)
1815		goto AttrsError;
1816	error = bus_add_device(dev);
1817	if (error)
1818		goto BusError;
1819	error = dpm_sysfs_add(dev);
1820	if (error)
1821		goto DPMError;
1822	device_pm_add(dev);
1823
1824	if (MAJOR(dev->devt)) {
1825		error = device_create_file(dev, &dev_attr_dev);
1826		if (error)
1827			goto DevAttrError;
1828
1829		error = device_create_sys_dev_entry(dev);
1830		if (error)
1831			goto SysEntryError;
1832
1833		devtmpfs_create_node(dev);
1834	}
1835
1836	/* Notify clients of device addition.  This call must come
1837	 * after dpm_sysfs_add() and before kobject_uevent().
1838	 */
1839	if (dev->bus)
1840		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1841					     BUS_NOTIFY_ADD_DEVICE, dev);
1842
1843	kobject_uevent(&dev->kobj, KOBJ_ADD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844	bus_probe_device(dev);
 
 
 
 
 
 
 
 
 
1845	if (parent)
1846		klist_add_tail(&dev->p->knode_parent,
1847			       &parent->p->klist_children);
1848
1849	if (dev->class) {
1850		mutex_lock(&dev->class->p->mutex);
1851		/* tie the class to the device */
1852		klist_add_tail(&dev->knode_class,
1853			       &dev->class->p->klist_devices);
1854
1855		/* notify any interfaces that the device is here */
1856		list_for_each_entry(class_intf,
1857				    &dev->class->p->interfaces, node)
1858			if (class_intf->add_dev)
1859				class_intf->add_dev(dev, class_intf);
1860		mutex_unlock(&dev->class->p->mutex);
1861	}
1862done:
1863	put_device(dev);
1864	return error;
1865 SysEntryError:
1866	if (MAJOR(dev->devt))
1867		device_remove_file(dev, &dev_attr_dev);
1868 DevAttrError:
1869	device_pm_remove(dev);
1870	dpm_sysfs_remove(dev);
1871 DPMError:
1872	bus_remove_device(dev);
1873 BusError:
1874	device_remove_attrs(dev);
1875 AttrsError:
1876	device_remove_class_symlinks(dev);
1877 SymlinkError:
1878	device_remove_file(dev, &dev_attr_uevent);
1879 attrError:
 
1880	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
1881	glue_dir = get_glue_dir(dev);
1882	kobject_del(&dev->kobj);
1883 Error:
1884	cleanup_glue_dir(dev, glue_dir);
 
1885	put_device(parent);
1886name_error:
1887	kfree(dev->p);
1888	dev->p = NULL;
1889	goto done;
1890}
1891EXPORT_SYMBOL_GPL(device_add);
1892
1893/**
1894 * device_register - register a device with the system.
1895 * @dev: pointer to the device structure
1896 *
1897 * This happens in two clean steps - initialize the device
1898 * and add it to the system. The two steps can be called
1899 * separately, but this is the easiest and most common.
1900 * I.e. you should only call the two helpers separately if
1901 * have a clearly defined need to use and refcount the device
1902 * before it is added to the hierarchy.
1903 *
1904 * For more information, see the kerneldoc for device_initialize()
1905 * and device_add().
1906 *
1907 * NOTE: _Never_ directly free @dev after calling this function, even
1908 * if it returned an error! Always use put_device() to give up the
1909 * reference initialized in this function instead.
1910 */
1911int device_register(struct device *dev)
1912{
1913	device_initialize(dev);
1914	return device_add(dev);
1915}
1916EXPORT_SYMBOL_GPL(device_register);
1917
1918/**
1919 * get_device - increment reference count for device.
1920 * @dev: device.
1921 *
1922 * This simply forwards the call to kobject_get(), though
1923 * we do take care to provide for the case that we get a NULL
1924 * pointer passed in.
1925 */
1926struct device *get_device(struct device *dev)
1927{
1928	return dev ? kobj_to_dev(kobject_get(&dev->kobj)) : NULL;
1929}
1930EXPORT_SYMBOL_GPL(get_device);
1931
1932/**
1933 * put_device - decrement reference count.
1934 * @dev: device in question.
1935 */
1936void put_device(struct device *dev)
1937{
1938	/* might_sleep(); */
1939	if (dev)
1940		kobject_put(&dev->kobj);
1941}
1942EXPORT_SYMBOL_GPL(put_device);
1943
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944/**
1945 * device_del - delete device from system.
1946 * @dev: device.
1947 *
1948 * This is the first part of the device unregistration
1949 * sequence. This removes the device from the lists we control
1950 * from here, has it removed from the other driver model
1951 * subsystems it was added to in device_add(), and removes it
1952 * from the kobject hierarchy.
1953 *
1954 * NOTE: this should be called manually _iff_ device_add() was
1955 * also called manually.
1956 */
1957void device_del(struct device *dev)
1958{
1959	struct device *parent = dev->parent;
1960	struct kobject *glue_dir = NULL;
1961	struct class_interface *class_intf;
 
 
 
 
 
 
 
 
1962
1963	/* Notify clients of device removal.  This call must come
1964	 * before dpm_sysfs_remove().
1965	 */
 
1966	if (dev->bus)
1967		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
1968					     BUS_NOTIFY_DEL_DEVICE, dev);
1969
1970	dpm_sysfs_remove(dev);
1971	if (parent)
1972		klist_del(&dev->p->knode_parent);
1973	if (MAJOR(dev->devt)) {
1974		devtmpfs_delete_node(dev);
1975		device_remove_sys_dev_entry(dev);
1976		device_remove_file(dev, &dev_attr_dev);
1977	}
1978	if (dev->class) {
1979		device_remove_class_symlinks(dev);
1980
1981		mutex_lock(&dev->class->p->mutex);
1982		/* notify any interfaces that the device is now gone */
1983		list_for_each_entry(class_intf,
1984				    &dev->class->p->interfaces, node)
1985			if (class_intf->remove_dev)
1986				class_intf->remove_dev(dev, class_intf);
1987		/* remove the device from the class list */
1988		klist_del(&dev->knode_class);
1989		mutex_unlock(&dev->class->p->mutex);
1990	}
1991	device_remove_file(dev, &dev_attr_uevent);
1992	device_remove_attrs(dev);
1993	bus_remove_device(dev);
1994	device_pm_remove(dev);
1995	driver_deferred_probe_del(dev);
1996	device_remove_properties(dev);
1997	device_links_purge(dev);
1998
1999	/* Notify the platform of the removal, in case they
2000	 * need to do anything...
2001	 */
2002	if (platform_notify_remove)
2003		platform_notify_remove(dev);
2004	if (dev->bus)
2005		blocking_notifier_call_chain(&dev->bus->p->bus_notifier,
2006					     BUS_NOTIFY_REMOVED_DEVICE, dev);
2007	kobject_uevent(&dev->kobj, KOBJ_REMOVE);
2008	glue_dir = get_glue_dir(dev);
2009	kobject_del(&dev->kobj);
2010	cleanup_glue_dir(dev, glue_dir);
 
2011	put_device(parent);
2012}
2013EXPORT_SYMBOL_GPL(device_del);
2014
2015/**
2016 * device_unregister - unregister device from system.
2017 * @dev: device going away.
2018 *
2019 * We do this in two parts, like we do device_register(). First,
2020 * we remove it from all the subsystems with device_del(), then
2021 * we decrement the reference count via put_device(). If that
2022 * is the final reference count, the device will be cleaned up
2023 * via device_release() above. Otherwise, the structure will
2024 * stick around until the final reference to the device is dropped.
2025 */
2026void device_unregister(struct device *dev)
2027{
2028	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2029	device_del(dev);
2030	put_device(dev);
2031}
2032EXPORT_SYMBOL_GPL(device_unregister);
2033
2034static struct device *prev_device(struct klist_iter *i)
2035{
2036	struct klist_node *n = klist_prev(i);
2037	struct device *dev = NULL;
2038	struct device_private *p;
2039
2040	if (n) {
2041		p = to_device_private_parent(n);
2042		dev = p->device;
2043	}
2044	return dev;
2045}
2046
2047static struct device *next_device(struct klist_iter *i)
2048{
2049	struct klist_node *n = klist_next(i);
2050	struct device *dev = NULL;
2051	struct device_private *p;
2052
2053	if (n) {
2054		p = to_device_private_parent(n);
2055		dev = p->device;
2056	}
2057	return dev;
2058}
2059
2060/**
2061 * device_get_devnode - path of device node file
2062 * @dev: device
2063 * @mode: returned file access mode
2064 * @uid: returned file owner
2065 * @gid: returned file group
2066 * @tmp: possibly allocated string
2067 *
2068 * Return the relative path of a possible device node.
2069 * Non-default names may need to allocate a memory to compose
2070 * a name. This memory is returned in tmp and needs to be
2071 * freed by the caller.
2072 */
2073const char *device_get_devnode(struct device *dev,
2074			       umode_t *mode, kuid_t *uid, kgid_t *gid,
2075			       const char **tmp)
2076{
2077	char *s;
2078
2079	*tmp = NULL;
2080
2081	/* the device type may provide a specific name */
2082	if (dev->type && dev->type->devnode)
2083		*tmp = dev->type->devnode(dev, mode, uid, gid);
2084	if (*tmp)
2085		return *tmp;
2086
2087	/* the class may provide a specific name */
2088	if (dev->class && dev->class->devnode)
2089		*tmp = dev->class->devnode(dev, mode);
2090	if (*tmp)
2091		return *tmp;
2092
2093	/* return name without allocation, tmp == NULL */
2094	if (strchr(dev_name(dev), '!') == NULL)
2095		return dev_name(dev);
2096
2097	/* replace '!' in the name with '/' */
2098	s = kstrdup(dev_name(dev), GFP_KERNEL);
2099	if (!s)
2100		return NULL;
2101	strreplace(s, '!', '/');
2102	return *tmp = s;
2103}
2104
2105/**
2106 * device_for_each_child - device child iterator.
2107 * @parent: parent struct device.
2108 * @fn: function to be called for each device.
2109 * @data: data for the callback.
2110 *
2111 * Iterate over @parent's child devices, and call @fn for each,
2112 * passing it @data.
2113 *
2114 * We check the return of @fn each time. If it returns anything
2115 * other than 0, we break out and return that value.
2116 */
2117int device_for_each_child(struct device *parent, void *data,
2118			  int (*fn)(struct device *dev, void *data))
2119{
2120	struct klist_iter i;
2121	struct device *child;
2122	int error = 0;
2123
2124	if (!parent->p)
2125		return 0;
2126
2127	klist_iter_init(&parent->p->klist_children, &i);
2128	while (!error && (child = next_device(&i)))
2129		error = fn(child, data);
2130	klist_iter_exit(&i);
2131	return error;
2132}
2133EXPORT_SYMBOL_GPL(device_for_each_child);
2134
2135/**
2136 * device_for_each_child_reverse - device child iterator in reversed order.
2137 * @parent: parent struct device.
2138 * @fn: function to be called for each device.
2139 * @data: data for the callback.
2140 *
2141 * Iterate over @parent's child devices, and call @fn for each,
2142 * passing it @data.
2143 *
2144 * We check the return of @fn each time. If it returns anything
2145 * other than 0, we break out and return that value.
2146 */
2147int device_for_each_child_reverse(struct device *parent, void *data,
2148				  int (*fn)(struct device *dev, void *data))
2149{
2150	struct klist_iter i;
2151	struct device *child;
2152	int error = 0;
2153
2154	if (!parent->p)
2155		return 0;
2156
2157	klist_iter_init(&parent->p->klist_children, &i);
2158	while ((child = prev_device(&i)) && !error)
2159		error = fn(child, data);
2160	klist_iter_exit(&i);
2161	return error;
2162}
2163EXPORT_SYMBOL_GPL(device_for_each_child_reverse);
2164
2165/**
2166 * device_find_child - device iterator for locating a particular device.
2167 * @parent: parent struct device
2168 * @match: Callback function to check device
2169 * @data: Data to pass to match function
2170 *
2171 * This is similar to the device_for_each_child() function above, but it
2172 * returns a reference to a device that is 'found' for later use, as
2173 * determined by the @match callback.
2174 *
2175 * The callback should return 0 if the device doesn't match and non-zero
2176 * if it does.  If the callback returns non-zero and a reference to the
2177 * current device can be obtained, this function will return to the caller
2178 * and not iterate over any more devices.
2179 *
2180 * NOTE: you will need to drop the reference with put_device() after use.
2181 */
2182struct device *device_find_child(struct device *parent, void *data,
2183				 int (*match)(struct device *dev, void *data))
2184{
2185	struct klist_iter i;
2186	struct device *child;
2187
2188	if (!parent)
2189		return NULL;
2190
2191	klist_iter_init(&parent->p->klist_children, &i);
2192	while ((child = next_device(&i)))
2193		if (match(child, data) && get_device(child))
2194			break;
2195	klist_iter_exit(&i);
2196	return child;
2197}
2198EXPORT_SYMBOL_GPL(device_find_child);
2199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2200int __init devices_init(void)
2201{
2202	devices_kset = kset_create_and_add("devices", &device_uevent_ops, NULL);
2203	if (!devices_kset)
2204		return -ENOMEM;
2205	dev_kobj = kobject_create_and_add("dev", NULL);
2206	if (!dev_kobj)
2207		goto dev_kobj_err;
2208	sysfs_dev_block_kobj = kobject_create_and_add("block", dev_kobj);
2209	if (!sysfs_dev_block_kobj)
2210		goto block_kobj_err;
2211	sysfs_dev_char_kobj = kobject_create_and_add("char", dev_kobj);
2212	if (!sysfs_dev_char_kobj)
2213		goto char_kobj_err;
2214
2215	return 0;
2216
2217 char_kobj_err:
2218	kobject_put(sysfs_dev_block_kobj);
2219 block_kobj_err:
2220	kobject_put(dev_kobj);
2221 dev_kobj_err:
2222	kset_unregister(devices_kset);
2223	return -ENOMEM;
2224}
2225
2226static int device_check_offline(struct device *dev, void *not_used)
2227{
2228	int ret;
2229
2230	ret = device_for_each_child(dev, NULL, device_check_offline);
2231	if (ret)
2232		return ret;
2233
2234	return device_supports_offline(dev) && !dev->offline ? -EBUSY : 0;
2235}
2236
2237/**
2238 * device_offline - Prepare the device for hot-removal.
2239 * @dev: Device to be put offline.
2240 *
2241 * Execute the device bus type's .offline() callback, if present, to prepare
2242 * the device for a subsequent hot-removal.  If that succeeds, the device must
2243 * not be used until either it is removed or its bus type's .online() callback
2244 * is executed.
2245 *
2246 * Call under device_hotplug_lock.
2247 */
2248int device_offline(struct device *dev)
2249{
2250	int ret;
2251
2252	if (dev->offline_disabled)
2253		return -EPERM;
2254
2255	ret = device_for_each_child(dev, NULL, device_check_offline);
2256	if (ret)
2257		return ret;
2258
2259	device_lock(dev);
2260	if (device_supports_offline(dev)) {
2261		if (dev->offline) {
2262			ret = 1;
2263		} else {
2264			ret = dev->bus->offline(dev);
2265			if (!ret) {
2266				kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2267				dev->offline = true;
2268			}
2269		}
2270	}
2271	device_unlock(dev);
2272
2273	return ret;
2274}
2275
2276/**
2277 * device_online - Put the device back online after successful device_offline().
2278 * @dev: Device to be put back online.
2279 *
2280 * If device_offline() has been successfully executed for @dev, but the device
2281 * has not been removed subsequently, execute its bus type's .online() callback
2282 * to indicate that the device can be used again.
2283 *
2284 * Call under device_hotplug_lock.
2285 */
2286int device_online(struct device *dev)
2287{
2288	int ret = 0;
2289
2290	device_lock(dev);
2291	if (device_supports_offline(dev)) {
2292		if (dev->offline) {
2293			ret = dev->bus->online(dev);
2294			if (!ret) {
2295				kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2296				dev->offline = false;
2297			}
2298		} else {
2299			ret = 1;
2300		}
2301	}
2302	device_unlock(dev);
2303
2304	return ret;
2305}
2306
2307struct root_device {
2308	struct device dev;
2309	struct module *owner;
2310};
2311
2312static inline struct root_device *to_root_device(struct device *d)
2313{
2314	return container_of(d, struct root_device, dev);
2315}
2316
2317static void root_device_release(struct device *dev)
2318{
2319	kfree(to_root_device(dev));
2320}
2321
2322/**
2323 * __root_device_register - allocate and register a root device
2324 * @name: root device name
2325 * @owner: owner module of the root device, usually THIS_MODULE
2326 *
2327 * This function allocates a root device and registers it
2328 * using device_register(). In order to free the returned
2329 * device, use root_device_unregister().
2330 *
2331 * Root devices are dummy devices which allow other devices
2332 * to be grouped under /sys/devices. Use this function to
2333 * allocate a root device and then use it as the parent of
2334 * any device which should appear under /sys/devices/{name}
2335 *
2336 * The /sys/devices/{name} directory will also contain a
2337 * 'module' symlink which points to the @owner directory
2338 * in sysfs.
2339 *
2340 * Returns &struct device pointer on success, or ERR_PTR() on error.
2341 *
2342 * Note: You probably want to use root_device_register().
2343 */
2344struct device *__root_device_register(const char *name, struct module *owner)
2345{
2346	struct root_device *root;
2347	int err = -ENOMEM;
2348
2349	root = kzalloc(sizeof(struct root_device), GFP_KERNEL);
2350	if (!root)
2351		return ERR_PTR(err);
2352
2353	err = dev_set_name(&root->dev, "%s", name);
2354	if (err) {
2355		kfree(root);
2356		return ERR_PTR(err);
2357	}
2358
2359	root->dev.release = root_device_release;
2360
2361	err = device_register(&root->dev);
2362	if (err) {
2363		put_device(&root->dev);
2364		return ERR_PTR(err);
2365	}
2366
2367#ifdef CONFIG_MODULES	/* gotta find a "cleaner" way to do this */
2368	if (owner) {
2369		struct module_kobject *mk = &owner->mkobj;
2370
2371		err = sysfs_create_link(&root->dev.kobj, &mk->kobj, "module");
2372		if (err) {
2373			device_unregister(&root->dev);
2374			return ERR_PTR(err);
2375		}
2376		root->owner = owner;
2377	}
2378#endif
2379
2380	return &root->dev;
2381}
2382EXPORT_SYMBOL_GPL(__root_device_register);
2383
2384/**
2385 * root_device_unregister - unregister and free a root device
2386 * @dev: device going away
2387 *
2388 * This function unregisters and cleans up a device that was created by
2389 * root_device_register().
2390 */
2391void root_device_unregister(struct device *dev)
2392{
2393	struct root_device *root = to_root_device(dev);
2394
2395	if (root->owner)
2396		sysfs_remove_link(&root->dev.kobj, "module");
2397
2398	device_unregister(dev);
2399}
2400EXPORT_SYMBOL_GPL(root_device_unregister);
2401
2402
2403static void device_create_release(struct device *dev)
2404{
2405	pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
2406	kfree(dev);
2407}
2408
2409static struct device *
2410device_create_groups_vargs(struct class *class, struct device *parent,
2411			   dev_t devt, void *drvdata,
2412			   const struct attribute_group **groups,
2413			   const char *fmt, va_list args)
2414{
2415	struct device *dev = NULL;
2416	int retval = -ENODEV;
2417
2418	if (class == NULL || IS_ERR(class))
2419		goto error;
2420
2421	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2422	if (!dev) {
2423		retval = -ENOMEM;
2424		goto error;
2425	}
2426
2427	device_initialize(dev);
2428	dev->devt = devt;
2429	dev->class = class;
2430	dev->parent = parent;
2431	dev->groups = groups;
2432	dev->release = device_create_release;
2433	dev_set_drvdata(dev, drvdata);
2434
2435	retval = kobject_set_name_vargs(&dev->kobj, fmt, args);
2436	if (retval)
2437		goto error;
2438
2439	retval = device_add(dev);
2440	if (retval)
2441		goto error;
2442
2443	return dev;
2444
2445error:
2446	put_device(dev);
2447	return ERR_PTR(retval);
2448}
2449
2450/**
2451 * device_create_vargs - creates a device and registers it with sysfs
2452 * @class: pointer to the struct class that this device should be registered to
2453 * @parent: pointer to the parent struct device of this new device, if any
2454 * @devt: the dev_t for the char device to be added
2455 * @drvdata: the data to be added to the device for callbacks
2456 * @fmt: string for the device's name
2457 * @args: va_list for the device's name
2458 *
2459 * This function can be used by char device classes.  A struct device
2460 * will be created in sysfs, registered to the specified class.
2461 *
2462 * A "dev" file will be created, showing the dev_t for the device, if
2463 * the dev_t is not 0,0.
2464 * If a pointer to a parent struct device is passed in, the newly created
2465 * struct device will be a child of that device in sysfs.
2466 * The pointer to the struct device will be returned from the call.
2467 * Any further sysfs files that might be required can be created using this
2468 * pointer.
2469 *
2470 * Returns &struct device pointer on success, or ERR_PTR() on error.
2471 *
2472 * Note: the struct class passed to this function must have previously
2473 * been created with a call to class_create().
2474 */
2475struct device *device_create_vargs(struct class *class, struct device *parent,
2476				   dev_t devt, void *drvdata, const char *fmt,
2477				   va_list args)
2478{
2479	return device_create_groups_vargs(class, parent, devt, drvdata, NULL,
2480					  fmt, args);
2481}
2482EXPORT_SYMBOL_GPL(device_create_vargs);
2483
2484/**
2485 * device_create - creates a device and registers it with sysfs
2486 * @class: pointer to the struct class that this device should be registered to
2487 * @parent: pointer to the parent struct device of this new device, if any
2488 * @devt: the dev_t for the char device to be added
2489 * @drvdata: the data to be added to the device for callbacks
2490 * @fmt: string for the device's name
2491 *
2492 * This function can be used by char device classes.  A struct device
2493 * will be created in sysfs, registered to the specified class.
2494 *
2495 * A "dev" file will be created, showing the dev_t for the device, if
2496 * the dev_t is not 0,0.
2497 * If a pointer to a parent struct device is passed in, the newly created
2498 * struct device will be a child of that device in sysfs.
2499 * The pointer to the struct device will be returned from the call.
2500 * Any further sysfs files that might be required can be created using this
2501 * pointer.
2502 *
2503 * Returns &struct device pointer on success, or ERR_PTR() on error.
2504 *
2505 * Note: the struct class passed to this function must have previously
2506 * been created with a call to class_create().
2507 */
2508struct device *device_create(struct class *class, struct device *parent,
2509			     dev_t devt, void *drvdata, const char *fmt, ...)
2510{
2511	va_list vargs;
2512	struct device *dev;
2513
2514	va_start(vargs, fmt);
2515	dev = device_create_vargs(class, parent, devt, drvdata, fmt, vargs);
 
2516	va_end(vargs);
2517	return dev;
2518}
2519EXPORT_SYMBOL_GPL(device_create);
2520
2521/**
2522 * device_create_with_groups - creates a device and registers it with sysfs
2523 * @class: pointer to the struct class that this device should be registered to
2524 * @parent: pointer to the parent struct device of this new device, if any
2525 * @devt: the dev_t for the char device to be added
2526 * @drvdata: the data to be added to the device for callbacks
2527 * @groups: NULL-terminated list of attribute groups to be created
2528 * @fmt: string for the device's name
2529 *
2530 * This function can be used by char device classes.  A struct device
2531 * will be created in sysfs, registered to the specified class.
2532 * Additional attributes specified in the groups parameter will also
2533 * be created automatically.
2534 *
2535 * A "dev" file will be created, showing the dev_t for the device, if
2536 * the dev_t is not 0,0.
2537 * If a pointer to a parent struct device is passed in, the newly created
2538 * struct device will be a child of that device in sysfs.
2539 * The pointer to the struct device will be returned from the call.
2540 * Any further sysfs files that might be required can be created using this
2541 * pointer.
2542 *
2543 * Returns &struct device pointer on success, or ERR_PTR() on error.
2544 *
2545 * Note: the struct class passed to this function must have previously
2546 * been created with a call to class_create().
2547 */
2548struct device *device_create_with_groups(struct class *class,
2549					 struct device *parent, dev_t devt,
2550					 void *drvdata,
2551					 const struct attribute_group **groups,
2552					 const char *fmt, ...)
2553{
2554	va_list vargs;
2555	struct device *dev;
2556
2557	va_start(vargs, fmt);
2558	dev = device_create_groups_vargs(class, parent, devt, drvdata, groups,
2559					 fmt, vargs);
2560	va_end(vargs);
2561	return dev;
2562}
2563EXPORT_SYMBOL_GPL(device_create_with_groups);
2564
2565static int __match_devt(struct device *dev, const void *data)
2566{
2567	const dev_t *devt = data;
2568
2569	return dev->devt == *devt;
2570}
2571
2572/**
2573 * device_destroy - removes a device that was created with device_create()
2574 * @class: pointer to the struct class that this device was registered with
2575 * @devt: the dev_t of the device that was previously registered
2576 *
2577 * This call unregisters and cleans up a device that was created with a
2578 * call to device_create().
2579 */
2580void device_destroy(struct class *class, dev_t devt)
2581{
2582	struct device *dev;
2583
2584	dev = class_find_device(class, NULL, &devt, __match_devt);
2585	if (dev) {
2586		put_device(dev);
2587		device_unregister(dev);
2588	}
2589}
2590EXPORT_SYMBOL_GPL(device_destroy);
2591
2592/**
2593 * device_rename - renames a device
2594 * @dev: the pointer to the struct device to be renamed
2595 * @new_name: the new name of the device
2596 *
2597 * It is the responsibility of the caller to provide mutual
2598 * exclusion between two different calls of device_rename
2599 * on the same device to ensure that new_name is valid and
2600 * won't conflict with other devices.
2601 *
2602 * Note: Don't call this function.  Currently, the networking layer calls this
2603 * function, but that will change.  The following text from Kay Sievers offers
2604 * some insight:
2605 *
2606 * Renaming devices is racy at many levels, symlinks and other stuff are not
2607 * replaced atomically, and you get a "move" uevent, but it's not easy to
2608 * connect the event to the old and new device. Device nodes are not renamed at
2609 * all, there isn't even support for that in the kernel now.
2610 *
2611 * In the meantime, during renaming, your target name might be taken by another
2612 * driver, creating conflicts. Or the old name is taken directly after you
2613 * renamed it -- then you get events for the same DEVPATH, before you even see
2614 * the "move" event. It's just a mess, and nothing new should ever rely on
2615 * kernel device renaming. Besides that, it's not even implemented now for
2616 * other things than (driver-core wise very simple) network devices.
2617 *
2618 * We are currently about to change network renaming in udev to completely
2619 * disallow renaming of devices in the same namespace as the kernel uses,
2620 * because we can't solve the problems properly, that arise with swapping names
2621 * of multiple interfaces without races. Means, renaming of eth[0-9]* will only
2622 * be allowed to some other name than eth[0-9]*, for the aforementioned
2623 * reasons.
2624 *
2625 * Make up a "real" name in the driver before you register anything, or add
2626 * some other attributes for userspace to find the device, or use udev to add
2627 * symlinks -- but never rename kernel devices later, it's a complete mess. We
2628 * don't even want to get into that and try to implement the missing pieces in
2629 * the core. We really have other pieces to fix in the driver core mess. :)
2630 */
2631int device_rename(struct device *dev, const char *new_name)
2632{
2633	struct kobject *kobj = &dev->kobj;
2634	char *old_device_name = NULL;
2635	int error;
2636
2637	dev = get_device(dev);
2638	if (!dev)
2639		return -EINVAL;
2640
2641	dev_dbg(dev, "renaming to %s\n", new_name);
2642
2643	old_device_name = kstrdup(dev_name(dev), GFP_KERNEL);
2644	if (!old_device_name) {
2645		error = -ENOMEM;
2646		goto out;
2647	}
2648
2649	if (dev->class) {
2650		error = sysfs_rename_link_ns(&dev->class->p->subsys.kobj,
2651					     kobj, old_device_name,
2652					     new_name, kobject_namespace(kobj));
2653		if (error)
2654			goto out;
2655	}
2656
2657	error = kobject_rename(kobj, new_name);
2658	if (error)
2659		goto out;
2660
2661out:
2662	put_device(dev);
2663
2664	kfree(old_device_name);
2665
2666	return error;
2667}
2668EXPORT_SYMBOL_GPL(device_rename);
2669
2670static int device_move_class_links(struct device *dev,
2671				   struct device *old_parent,
2672				   struct device *new_parent)
2673{
2674	int error = 0;
2675
2676	if (old_parent)
2677		sysfs_remove_link(&dev->kobj, "device");
2678	if (new_parent)
2679		error = sysfs_create_link(&dev->kobj, &new_parent->kobj,
2680					  "device");
2681	return error;
2682}
2683
2684/**
2685 * device_move - moves a device to a new parent
2686 * @dev: the pointer to the struct device to be moved
2687 * @new_parent: the new parent of the device (can by NULL)
2688 * @dpm_order: how to reorder the dpm_list
2689 */
2690int device_move(struct device *dev, struct device *new_parent,
2691		enum dpm_order dpm_order)
2692{
2693	int error;
2694	struct device *old_parent;
2695	struct kobject *new_parent_kobj;
2696
2697	dev = get_device(dev);
2698	if (!dev)
2699		return -EINVAL;
2700
2701	device_pm_lock();
2702	new_parent = get_device(new_parent);
2703	new_parent_kobj = get_device_parent(dev, new_parent);
 
 
 
 
 
2704
2705	pr_debug("device: '%s': %s: moving to '%s'\n", dev_name(dev),
2706		 __func__, new_parent ? dev_name(new_parent) : "<NULL>");
2707	error = kobject_move(&dev->kobj, new_parent_kobj);
2708	if (error) {
2709		cleanup_glue_dir(dev, new_parent_kobj);
2710		put_device(new_parent);
2711		goto out;
2712	}
2713	old_parent = dev->parent;
2714	dev->parent = new_parent;
2715	if (old_parent)
2716		klist_remove(&dev->p->knode_parent);
2717	if (new_parent) {
2718		klist_add_tail(&dev->p->knode_parent,
2719			       &new_parent->p->klist_children);
2720		set_dev_node(dev, dev_to_node(new_parent));
2721	}
2722
2723	if (dev->class) {
2724		error = device_move_class_links(dev, old_parent, new_parent);
2725		if (error) {
2726			/* We ignore errors on cleanup since we're hosed anyway... */
2727			device_move_class_links(dev, new_parent, old_parent);
2728			if (!kobject_move(&dev->kobj, &old_parent->kobj)) {
2729				if (new_parent)
2730					klist_remove(&dev->p->knode_parent);
2731				dev->parent = old_parent;
2732				if (old_parent) {
2733					klist_add_tail(&dev->p->knode_parent,
2734						       &old_parent->p->klist_children);
2735					set_dev_node(dev, dev_to_node(old_parent));
2736				}
2737			}
2738			cleanup_glue_dir(dev, new_parent_kobj);
2739			put_device(new_parent);
2740			goto out;
2741		}
2742	}
2743	switch (dpm_order) {
2744	case DPM_ORDER_NONE:
2745		break;
2746	case DPM_ORDER_DEV_AFTER_PARENT:
2747		device_pm_move_after(dev, new_parent);
2748		devices_kset_move_after(dev, new_parent);
2749		break;
2750	case DPM_ORDER_PARENT_BEFORE_DEV:
2751		device_pm_move_before(new_parent, dev);
2752		devices_kset_move_before(new_parent, dev);
2753		break;
2754	case DPM_ORDER_DEV_LAST:
2755		device_pm_move_last(dev);
2756		devices_kset_move_last(dev);
2757		break;
2758	}
2759
2760	put_device(old_parent);
2761out:
2762	device_pm_unlock();
2763	put_device(dev);
2764	return error;
2765}
2766EXPORT_SYMBOL_GPL(device_move);
2767
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2768/**
2769 * device_shutdown - call ->shutdown() on each device to shutdown.
2770 */
2771void device_shutdown(void)
2772{
2773	struct device *dev, *parent;
2774
 
 
 
 
 
2775	spin_lock(&devices_kset->list_lock);
2776	/*
2777	 * Walk the devices list backward, shutting down each in turn.
2778	 * Beware that device unplug events may also start pulling
2779	 * devices offline, even as the system is shutting down.
2780	 */
2781	while (!list_empty(&devices_kset->list)) {
2782		dev = list_entry(devices_kset->list.prev, struct device,
2783				kobj.entry);
2784
2785		/*
2786		 * hold reference count of device's parent to
2787		 * prevent it from being freed because parent's
2788		 * lock is to be held
2789		 */
2790		parent = get_device(dev->parent);
2791		get_device(dev);
2792		/*
2793		 * Make sure the device is off the kset list, in the
2794		 * event that dev->*->shutdown() doesn't remove it.
2795		 */
2796		list_del_init(&dev->kobj.entry);
2797		spin_unlock(&devices_kset->list_lock);
2798
2799		/* hold lock to avoid race with probe/release */
2800		if (parent)
2801			device_lock(parent);
2802		device_lock(dev);
2803
2804		/* Don't allow any more runtime suspends */
2805		pm_runtime_get_noresume(dev);
2806		pm_runtime_barrier(dev);
2807
2808		if (dev->class && dev->class->shutdown_pre) {
2809			if (initcall_debug)
2810				dev_info(dev, "shutdown_pre\n");
2811			dev->class->shutdown_pre(dev);
2812		}
2813		if (dev->bus && dev->bus->shutdown) {
2814			if (initcall_debug)
2815				dev_info(dev, "shutdown\n");
2816			dev->bus->shutdown(dev);
2817		} else if (dev->driver && dev->driver->shutdown) {
2818			if (initcall_debug)
2819				dev_info(dev, "shutdown\n");
2820			dev->driver->shutdown(dev);
2821		}
2822
2823		device_unlock(dev);
2824		if (parent)
2825			device_unlock(parent);
2826
2827		put_device(dev);
2828		put_device(parent);
2829
2830		spin_lock(&devices_kset->list_lock);
2831	}
2832	spin_unlock(&devices_kset->list_lock);
2833}
2834
2835/*
2836 * Device logging functions
2837 */
2838
2839#ifdef CONFIG_PRINTK
2840static int
2841create_syslog_header(const struct device *dev, char *hdr, size_t hdrlen)
2842{
2843	const char *subsys;
2844	size_t pos = 0;
 
2845
2846	if (dev->class)
2847		subsys = dev->class->name;
2848	else if (dev->bus)
2849		subsys = dev->bus->name;
2850	else
2851		return 0;
2852
2853	pos += snprintf(hdr + pos, hdrlen - pos, "SUBSYSTEM=%s", subsys);
2854	if (pos >= hdrlen)
2855		goto overflow;
2856
2857	/*
2858	 * Add device identifier DEVICE=:
2859	 *   b12:8         block dev_t
2860	 *   c127:3        char dev_t
2861	 *   n8            netdev ifindex
2862	 *   +sound:card0  subsystem:devname
2863	 */
2864	if (MAJOR(dev->devt)) {
2865		char c;
2866
2867		if (strcmp(subsys, "block") == 0)
2868			c = 'b';
2869		else
2870			c = 'c';
2871		pos++;
2872		pos += snprintf(hdr + pos, hdrlen - pos,
2873				"DEVICE=%c%u:%u",
2874				c, MAJOR(dev->devt), MINOR(dev->devt));
2875	} else if (strcmp(subsys, "net") == 0) {
2876		struct net_device *net = to_net_dev(dev);
2877
2878		pos++;
2879		pos += snprintf(hdr + pos, hdrlen - pos,
2880				"DEVICE=n%u", net->ifindex);
2881	} else {
2882		pos++;
2883		pos += snprintf(hdr + pos, hdrlen - pos,
2884				"DEVICE=+%s:%s", subsys, dev_name(dev));
2885	}
2886
2887	if (pos >= hdrlen)
2888		goto overflow;
2889
2890	return pos;
2891
2892overflow:
2893	dev_WARN(dev, "device/subsystem name too long");
2894	return 0;
2895}
2896
2897int dev_vprintk_emit(int level, const struct device *dev,
2898		     const char *fmt, va_list args)
2899{
2900	char hdr[128];
2901	size_t hdrlen;
2902
2903	hdrlen = create_syslog_header(dev, hdr, sizeof(hdr));
2904
2905	return vprintk_emit(0, level, hdrlen ? hdr : NULL, hdrlen, fmt, args);
2906}
2907EXPORT_SYMBOL(dev_vprintk_emit);
2908
2909int dev_printk_emit(int level, const struct device *dev, const char *fmt, ...)
2910{
2911	va_list args;
2912	int r;
2913
2914	va_start(args, fmt);
2915
2916	r = dev_vprintk_emit(level, dev, fmt, args);
2917
2918	va_end(args);
2919
2920	return r;
2921}
2922EXPORT_SYMBOL(dev_printk_emit);
2923
2924static void __dev_printk(const char *level, const struct device *dev,
2925			struct va_format *vaf)
2926{
2927	if (dev)
2928		dev_printk_emit(level[1] - '0', dev, "%s %s: %pV",
2929				dev_driver_string(dev), dev_name(dev), vaf);
2930	else
2931		printk("%s(NULL device *): %pV", level, vaf);
2932}
2933
2934void dev_printk(const char *level, const struct device *dev,
2935		const char *fmt, ...)
2936{
2937	struct va_format vaf;
2938	va_list args;
2939
2940	va_start(args, fmt);
2941
2942	vaf.fmt = fmt;
2943	vaf.va = &args;
2944
2945	__dev_printk(level, dev, &vaf);
2946
2947	va_end(args);
2948}
2949EXPORT_SYMBOL(dev_printk);
2950
2951#define define_dev_printk_level(func, kern_level)		\
2952void func(const struct device *dev, const char *fmt, ...)	\
2953{								\
2954	struct va_format vaf;					\
2955	va_list args;						\
2956								\
2957	va_start(args, fmt);					\
2958								\
2959	vaf.fmt = fmt;						\
2960	vaf.va = &args;						\
2961								\
2962	__dev_printk(kern_level, dev, &vaf);			\
2963								\
2964	va_end(args);						\
2965}								\
2966EXPORT_SYMBOL(func);
2967
2968define_dev_printk_level(dev_emerg, KERN_EMERG);
2969define_dev_printk_level(dev_alert, KERN_ALERT);
2970define_dev_printk_level(dev_crit, KERN_CRIT);
2971define_dev_printk_level(dev_err, KERN_ERR);
2972define_dev_printk_level(dev_warn, KERN_WARNING);
2973define_dev_printk_level(dev_notice, KERN_NOTICE);
2974define_dev_printk_level(_dev_info, KERN_INFO);
2975
2976#endif
2977
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2978static inline bool fwnode_is_primary(struct fwnode_handle *fwnode)
2979{
2980	return fwnode && !IS_ERR(fwnode->secondary);
2981}
2982
2983/**
2984 * set_primary_fwnode - Change the primary firmware node of a given device.
2985 * @dev: Device to handle.
2986 * @fwnode: New primary firmware node of the device.
2987 *
2988 * Set the device's firmware node pointer to @fwnode, but if a secondary
2989 * firmware node of the device is present, preserve it.
 
 
 
 
 
 
2990 */
2991void set_primary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
2992{
 
 
 
2993	if (fwnode) {
2994		struct fwnode_handle *fn = dev->fwnode;
2995
2996		if (fwnode_is_primary(fn))
2997			fn = fn->secondary;
2998
2999		if (fn) {
3000			WARN_ON(fwnode->secondary);
3001			fwnode->secondary = fn;
3002		}
3003		dev->fwnode = fwnode;
3004	} else {
3005		dev->fwnode = fwnode_is_primary(dev->fwnode) ?
3006			dev->fwnode->secondary : NULL;
 
 
 
 
 
 
3007	}
3008}
3009EXPORT_SYMBOL_GPL(set_primary_fwnode);
3010
3011/**
3012 * set_secondary_fwnode - Change the secondary firmware node of a given device.
3013 * @dev: Device to handle.
3014 * @fwnode: New secondary firmware node of the device.
3015 *
3016 * If a primary firmware node of the device is present, set its secondary
3017 * pointer to @fwnode.  Otherwise, set the device's firmware node pointer to
3018 * @fwnode.
3019 */
3020void set_secondary_fwnode(struct device *dev, struct fwnode_handle *fwnode)
3021{
3022	if (fwnode)
3023		fwnode->secondary = ERR_PTR(-ENODEV);
3024
3025	if (fwnode_is_primary(dev->fwnode))
3026		dev->fwnode->secondary = fwnode;
3027	else
3028		dev->fwnode = fwnode;
3029}
 
3030
3031/**
3032 * device_set_of_node_from_dev - reuse device-tree node of another device
3033 * @dev: device whose device-tree node is being set
3034 * @dev2: device whose device-tree node is being reused
3035 *
3036 * Takes another reference to the new device-tree node after first dropping
3037 * any reference held to the old node.
3038 */
3039void device_set_of_node_from_dev(struct device *dev, const struct device *dev2)
3040{
3041	of_node_put(dev->of_node);
3042	dev->of_node = of_node_get(dev2->of_node);
3043	dev->of_node_reused = true;
3044}
3045EXPORT_SYMBOL_GPL(device_set_of_node_from_dev);