Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/io.h>
13#include <linux/ioport.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include <linux/mmiotrace.h>
17#include <linux/cc_platform.h>
18#include <linux/efi.h>
19#include <linux/pgtable.h>
20#include <linux/kmsan.h>
21
22#include <asm/set_memory.h>
23#include <asm/e820/api.h>
24#include <asm/efi.h>
25#include <asm/fixmap.h>
26#include <asm/tlbflush.h>
27#include <asm/pgalloc.h>
28#include <asm/memtype.h>
29#include <asm/setup.h>
30
31#include "physaddr.h"
32
33/*
34 * Descriptor controlling ioremap() behavior.
35 */
36struct ioremap_desc {
37 unsigned int flags;
38};
39
40/*
41 * Fix up the linear direct mapping of the kernel to avoid cache attribute
42 * conflicts.
43 */
44int ioremap_change_attr(unsigned long vaddr, unsigned long size,
45 enum page_cache_mode pcm)
46{
47 unsigned long nrpages = size >> PAGE_SHIFT;
48 int err;
49
50 switch (pcm) {
51 case _PAGE_CACHE_MODE_UC:
52 default:
53 err = _set_memory_uc(vaddr, nrpages);
54 break;
55 case _PAGE_CACHE_MODE_WC:
56 err = _set_memory_wc(vaddr, nrpages);
57 break;
58 case _PAGE_CACHE_MODE_WT:
59 err = _set_memory_wt(vaddr, nrpages);
60 break;
61 case _PAGE_CACHE_MODE_WB:
62 err = _set_memory_wb(vaddr, nrpages);
63 break;
64 }
65
66 return err;
67}
68
69/* Does the range (or a subset of) contain normal RAM? */
70static unsigned int __ioremap_check_ram(struct resource *res)
71{
72 unsigned long start_pfn, stop_pfn;
73 unsigned long i;
74
75 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
76 return 0;
77
78 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
79 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
80 if (stop_pfn > start_pfn) {
81 for (i = 0; i < (stop_pfn - start_pfn); ++i)
82 if (pfn_valid(start_pfn + i) &&
83 !PageReserved(pfn_to_page(start_pfn + i)))
84 return IORES_MAP_SYSTEM_RAM;
85 }
86
87 return 0;
88}
89
90/*
91 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
92 * there the whole memory is already encrypted.
93 */
94static unsigned int __ioremap_check_encrypted(struct resource *res)
95{
96 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
97 return 0;
98
99 switch (res->desc) {
100 case IORES_DESC_NONE:
101 case IORES_DESC_RESERVED:
102 break;
103 default:
104 return IORES_MAP_ENCRYPTED;
105 }
106
107 return 0;
108}
109
110/*
111 * The EFI runtime services data area is not covered by walk_mem_res(), but must
112 * be mapped encrypted when SEV is active.
113 */
114static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115{
116 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
117 return;
118
119 if (!IS_ENABLED(CONFIG_EFI))
120 return;
121
122 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
123 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
124 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
125 desc->flags |= IORES_MAP_ENCRYPTED;
126}
127
128static int __ioremap_collect_map_flags(struct resource *res, void *arg)
129{
130 struct ioremap_desc *desc = arg;
131
132 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
133 desc->flags |= __ioremap_check_ram(res);
134
135 if (!(desc->flags & IORES_MAP_ENCRYPTED))
136 desc->flags |= __ioremap_check_encrypted(res);
137
138 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
139 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
140}
141
142/*
143 * To avoid multiple resource walks, this function walks resources marked as
144 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
145 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
146 *
147 * After that, deal with misc other ranges in __ioremap_check_other() which do
148 * not fall into the above category.
149 */
150static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
151 struct ioremap_desc *desc)
152{
153 u64 start, end;
154
155 start = (u64)addr;
156 end = start + size - 1;
157 memset(desc, 0, sizeof(struct ioremap_desc));
158
159 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
160
161 __ioremap_check_other(addr, desc);
162}
163
164/*
165 * Remap an arbitrary physical address space into the kernel virtual
166 * address space. It transparently creates kernel huge I/O mapping when
167 * the physical address is aligned by a huge page size (1GB or 2MB) and
168 * the requested size is at least the huge page size.
169 *
170 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
171 * Therefore, the mapping code falls back to use a smaller page toward 4KB
172 * when a mapping range is covered by non-WB type of MTRRs.
173 *
174 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
175 * have to convert them into an offset in a page-aligned mapping, but the
176 * caller shouldn't need to know that small detail.
177 */
178static void __iomem *
179__ioremap_caller(resource_size_t phys_addr, unsigned long size,
180 enum page_cache_mode pcm, void *caller, bool encrypted)
181{
182 unsigned long offset, vaddr;
183 resource_size_t last_addr;
184 const resource_size_t unaligned_phys_addr = phys_addr;
185 const unsigned long unaligned_size = size;
186 struct ioremap_desc io_desc;
187 struct vm_struct *area;
188 enum page_cache_mode new_pcm;
189 pgprot_t prot;
190 int retval;
191 void __iomem *ret_addr;
192
193 /* Don't allow wraparound or zero size */
194 last_addr = phys_addr + size - 1;
195 if (!size || last_addr < phys_addr)
196 return NULL;
197
198 if (!phys_addr_valid(phys_addr)) {
199 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
200 (unsigned long long)phys_addr);
201 WARN_ON_ONCE(1);
202 return NULL;
203 }
204
205 __ioremap_check_mem(phys_addr, size, &io_desc);
206
207 /*
208 * Don't allow anybody to remap normal RAM that we're using..
209 */
210 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
211 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
212 &phys_addr, &last_addr);
213 return NULL;
214 }
215
216 /*
217 * Mappings have to be page-aligned
218 */
219 offset = phys_addr & ~PAGE_MASK;
220 phys_addr &= PAGE_MASK;
221 size = PAGE_ALIGN(last_addr+1) - phys_addr;
222
223 /*
224 * Mask out any bits not part of the actual physical
225 * address, like memory encryption bits.
226 */
227 phys_addr &= PHYSICAL_PAGE_MASK;
228
229 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
230 pcm, &new_pcm);
231 if (retval) {
232 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
233 return NULL;
234 }
235
236 if (pcm != new_pcm) {
237 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
238 printk(KERN_ERR
239 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
240 (unsigned long long)phys_addr,
241 (unsigned long long)(phys_addr + size),
242 pcm, new_pcm);
243 goto err_free_memtype;
244 }
245 pcm = new_pcm;
246 }
247
248 /*
249 * If the page being mapped is in memory and SEV is active then
250 * make sure the memory encryption attribute is enabled in the
251 * resulting mapping.
252 * In TDX guests, memory is marked private by default. If encryption
253 * is not requested (using encrypted), explicitly set decrypt
254 * attribute in all IOREMAPPED memory.
255 */
256 prot = PAGE_KERNEL_IO;
257 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
258 prot = pgprot_encrypted(prot);
259 else
260 prot = pgprot_decrypted(prot);
261
262 switch (pcm) {
263 case _PAGE_CACHE_MODE_UC:
264 default:
265 prot = __pgprot(pgprot_val(prot) |
266 cachemode2protval(_PAGE_CACHE_MODE_UC));
267 break;
268 case _PAGE_CACHE_MODE_UC_MINUS:
269 prot = __pgprot(pgprot_val(prot) |
270 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
271 break;
272 case _PAGE_CACHE_MODE_WC:
273 prot = __pgprot(pgprot_val(prot) |
274 cachemode2protval(_PAGE_CACHE_MODE_WC));
275 break;
276 case _PAGE_CACHE_MODE_WT:
277 prot = __pgprot(pgprot_val(prot) |
278 cachemode2protval(_PAGE_CACHE_MODE_WT));
279 break;
280 case _PAGE_CACHE_MODE_WB:
281 break;
282 }
283
284 /*
285 * Ok, go for it..
286 */
287 area = get_vm_area_caller(size, VM_IOREMAP, caller);
288 if (!area)
289 goto err_free_memtype;
290 area->phys_addr = phys_addr;
291 vaddr = (unsigned long) area->addr;
292
293 if (memtype_kernel_map_sync(phys_addr, size, pcm))
294 goto err_free_area;
295
296 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
297 goto err_free_area;
298
299 ret_addr = (void __iomem *) (vaddr + offset);
300 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
301
302 /*
303 * Check if the request spans more than any BAR in the iomem resource
304 * tree.
305 */
306 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
307 pr_warn("caller %pS mapping multiple BARs\n", caller);
308
309 return ret_addr;
310err_free_area:
311 free_vm_area(area);
312err_free_memtype:
313 memtype_free(phys_addr, phys_addr + size);
314 return NULL;
315}
316
317/**
318 * ioremap - map bus memory into CPU space
319 * @phys_addr: bus address of the memory
320 * @size: size of the resource to map
321 *
322 * ioremap performs a platform specific sequence of operations to
323 * make bus memory CPU accessible via the readb/readw/readl/writeb/
324 * writew/writel functions and the other mmio helpers. The returned
325 * address is not guaranteed to be usable directly as a virtual
326 * address.
327 *
328 * This version of ioremap ensures that the memory is marked uncachable
329 * on the CPU as well as honouring existing caching rules from things like
330 * the PCI bus. Note that there are other caches and buffers on many
331 * busses. In particular driver authors should read up on PCI writes
332 *
333 * It's useful if some control registers are in such an area and
334 * write combining or read caching is not desirable:
335 *
336 * Must be freed with iounmap.
337 */
338void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
339{
340 /*
341 * Ideally, this should be:
342 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
343 *
344 * Till we fix all X drivers to use ioremap_wc(), we will use
345 * UC MINUS. Drivers that are certain they need or can already
346 * be converted over to strong UC can use ioremap_uc().
347 */
348 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
349
350 return __ioremap_caller(phys_addr, size, pcm,
351 __builtin_return_address(0), false);
352}
353EXPORT_SYMBOL(ioremap);
354
355/**
356 * ioremap_uc - map bus memory into CPU space as strongly uncachable
357 * @phys_addr: bus address of the memory
358 * @size: size of the resource to map
359 *
360 * ioremap_uc performs a platform specific sequence of operations to
361 * make bus memory CPU accessible via the readb/readw/readl/writeb/
362 * writew/writel functions and the other mmio helpers. The returned
363 * address is not guaranteed to be usable directly as a virtual
364 * address.
365 *
366 * This version of ioremap ensures that the memory is marked with a strong
367 * preference as completely uncachable on the CPU when possible. For non-PAT
368 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
369 * systems this will set the PAT entry for the pages as strong UC. This call
370 * will honor existing caching rules from things like the PCI bus. Note that
371 * there are other caches and buffers on many busses. In particular driver
372 * authors should read up on PCI writes.
373 *
374 * It's useful if some control registers are in such an area and
375 * write combining or read caching is not desirable:
376 *
377 * Must be freed with iounmap.
378 */
379void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
380{
381 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
382
383 return __ioremap_caller(phys_addr, size, pcm,
384 __builtin_return_address(0), false);
385}
386EXPORT_SYMBOL_GPL(ioremap_uc);
387
388/**
389 * ioremap_wc - map memory into CPU space write combined
390 * @phys_addr: bus address of the memory
391 * @size: size of the resource to map
392 *
393 * This version of ioremap ensures that the memory is marked write combining.
394 * Write combining allows faster writes to some hardware devices.
395 *
396 * Must be freed with iounmap.
397 */
398void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
399{
400 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
401 __builtin_return_address(0), false);
402}
403EXPORT_SYMBOL(ioremap_wc);
404
405/**
406 * ioremap_wt - map memory into CPU space write through
407 * @phys_addr: bus address of the memory
408 * @size: size of the resource to map
409 *
410 * This version of ioremap ensures that the memory is marked write through.
411 * Write through stores data into memory while keeping the cache up-to-date.
412 *
413 * Must be freed with iounmap.
414 */
415void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
416{
417 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
418 __builtin_return_address(0), false);
419}
420EXPORT_SYMBOL(ioremap_wt);
421
422void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
423{
424 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
425 __builtin_return_address(0), true);
426}
427EXPORT_SYMBOL(ioremap_encrypted);
428
429void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
430{
431 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
432 __builtin_return_address(0), false);
433}
434EXPORT_SYMBOL(ioremap_cache);
435
436void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
437 unsigned long prot_val)
438{
439 return __ioremap_caller(phys_addr, size,
440 pgprot2cachemode(__pgprot(prot_val)),
441 __builtin_return_address(0), false);
442}
443EXPORT_SYMBOL(ioremap_prot);
444
445/**
446 * iounmap - Free a IO remapping
447 * @addr: virtual address from ioremap_*
448 *
449 * Caller must ensure there is only one unmapping for the same pointer.
450 */
451void iounmap(volatile void __iomem *addr)
452{
453 struct vm_struct *p, *o;
454
455 if ((void __force *)addr <= high_memory)
456 return;
457
458 /*
459 * The PCI/ISA range special-casing was removed from __ioremap()
460 * so this check, in theory, can be removed. However, there are
461 * cases where iounmap() is called for addresses not obtained via
462 * ioremap() (vga16fb for example). Add a warning so that these
463 * cases can be caught and fixed.
464 */
465 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
466 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
467 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
468 return;
469 }
470
471 mmiotrace_iounmap(addr);
472
473 addr = (volatile void __iomem *)
474 (PAGE_MASK & (unsigned long __force)addr);
475
476 /* Use the vm area unlocked, assuming the caller
477 ensures there isn't another iounmap for the same address
478 in parallel. Reuse of the virtual address is prevented by
479 leaving it in the global lists until we're done with it.
480 cpa takes care of the direct mappings. */
481 p = find_vm_area((void __force *)addr);
482
483 if (!p) {
484 printk(KERN_ERR "iounmap: bad address %p\n", addr);
485 dump_stack();
486 return;
487 }
488
489 kmsan_iounmap_page_range((unsigned long)addr,
490 (unsigned long)addr + get_vm_area_size(p));
491 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
492
493 /* Finally remove it */
494 o = remove_vm_area((void __force *)addr);
495 BUG_ON(p != o || o == NULL);
496 kfree(p);
497}
498EXPORT_SYMBOL(iounmap);
499
500/*
501 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
502 * access
503 */
504void *xlate_dev_mem_ptr(phys_addr_t phys)
505{
506 unsigned long start = phys & PAGE_MASK;
507 unsigned long offset = phys & ~PAGE_MASK;
508 void *vaddr;
509
510 /* memremap() maps if RAM, otherwise falls back to ioremap() */
511 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
512
513 /* Only add the offset on success and return NULL if memremap() failed */
514 if (vaddr)
515 vaddr += offset;
516
517 return vaddr;
518}
519
520void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
521{
522 memunmap((void *)((unsigned long)addr & PAGE_MASK));
523}
524
525#ifdef CONFIG_AMD_MEM_ENCRYPT
526/*
527 * Examine the physical address to determine if it is an area of memory
528 * that should be mapped decrypted. If the memory is not part of the
529 * kernel usable area it was accessed and created decrypted, so these
530 * areas should be mapped decrypted. And since the encryption key can
531 * change across reboots, persistent memory should also be mapped
532 * decrypted.
533 *
534 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
535 * only persistent memory should be mapped decrypted.
536 */
537static bool memremap_should_map_decrypted(resource_size_t phys_addr,
538 unsigned long size)
539{
540 int is_pmem;
541
542 /*
543 * Check if the address is part of a persistent memory region.
544 * This check covers areas added by E820, EFI and ACPI.
545 */
546 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
547 IORES_DESC_PERSISTENT_MEMORY);
548 if (is_pmem != REGION_DISJOINT)
549 return true;
550
551 /*
552 * Check if the non-volatile attribute is set for an EFI
553 * reserved area.
554 */
555 if (efi_enabled(EFI_BOOT)) {
556 switch (efi_mem_type(phys_addr)) {
557 case EFI_RESERVED_TYPE:
558 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
559 return true;
560 break;
561 default:
562 break;
563 }
564 }
565
566 /* Check if the address is outside kernel usable area */
567 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
568 case E820_TYPE_RESERVED:
569 case E820_TYPE_ACPI:
570 case E820_TYPE_NVS:
571 case E820_TYPE_UNUSABLE:
572 /* For SEV, these areas are encrypted */
573 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
574 break;
575 fallthrough;
576
577 case E820_TYPE_PRAM:
578 return true;
579 default:
580 break;
581 }
582
583 return false;
584}
585
586/*
587 * Examine the physical address to determine if it is EFI data. Check
588 * it against the boot params structure and EFI tables and memory types.
589 */
590static bool memremap_is_efi_data(resource_size_t phys_addr,
591 unsigned long size)
592{
593 u64 paddr;
594
595 /* Check if the address is part of EFI boot/runtime data */
596 if (!efi_enabled(EFI_BOOT))
597 return false;
598
599 paddr = boot_params.efi_info.efi_memmap_hi;
600 paddr <<= 32;
601 paddr |= boot_params.efi_info.efi_memmap;
602 if (phys_addr == paddr)
603 return true;
604
605 paddr = boot_params.efi_info.efi_systab_hi;
606 paddr <<= 32;
607 paddr |= boot_params.efi_info.efi_systab;
608 if (phys_addr == paddr)
609 return true;
610
611 if (efi_is_table_address(phys_addr))
612 return true;
613
614 switch (efi_mem_type(phys_addr)) {
615 case EFI_BOOT_SERVICES_DATA:
616 case EFI_RUNTIME_SERVICES_DATA:
617 return true;
618 default:
619 break;
620 }
621
622 return false;
623}
624
625/*
626 * Examine the physical address to determine if it is boot data by checking
627 * it against the boot params setup_data chain.
628 */
629static bool memremap_is_setup_data(resource_size_t phys_addr,
630 unsigned long size)
631{
632 struct setup_indirect *indirect;
633 struct setup_data *data;
634 u64 paddr, paddr_next;
635
636 paddr = boot_params.hdr.setup_data;
637 while (paddr) {
638 unsigned int len;
639
640 if (phys_addr == paddr)
641 return true;
642
643 data = memremap(paddr, sizeof(*data),
644 MEMREMAP_WB | MEMREMAP_DEC);
645 if (!data) {
646 pr_warn("failed to memremap setup_data entry\n");
647 return false;
648 }
649
650 paddr_next = data->next;
651 len = data->len;
652
653 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
654 memunmap(data);
655 return true;
656 }
657
658 if (data->type == SETUP_INDIRECT) {
659 memunmap(data);
660 data = memremap(paddr, sizeof(*data) + len,
661 MEMREMAP_WB | MEMREMAP_DEC);
662 if (!data) {
663 pr_warn("failed to memremap indirect setup_data\n");
664 return false;
665 }
666
667 indirect = (struct setup_indirect *)data->data;
668
669 if (indirect->type != SETUP_INDIRECT) {
670 paddr = indirect->addr;
671 len = indirect->len;
672 }
673 }
674
675 memunmap(data);
676
677 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
678 return true;
679
680 paddr = paddr_next;
681 }
682
683 return false;
684}
685
686/*
687 * Examine the physical address to determine if it is boot data by checking
688 * it against the boot params setup_data chain (early boot version).
689 */
690static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
691 unsigned long size)
692{
693 struct setup_indirect *indirect;
694 struct setup_data *data;
695 u64 paddr, paddr_next;
696
697 paddr = boot_params.hdr.setup_data;
698 while (paddr) {
699 unsigned int len, size;
700
701 if (phys_addr == paddr)
702 return true;
703
704 data = early_memremap_decrypted(paddr, sizeof(*data));
705 if (!data) {
706 pr_warn("failed to early memremap setup_data entry\n");
707 return false;
708 }
709
710 size = sizeof(*data);
711
712 paddr_next = data->next;
713 len = data->len;
714
715 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
716 early_memunmap(data, sizeof(*data));
717 return true;
718 }
719
720 if (data->type == SETUP_INDIRECT) {
721 size += len;
722 early_memunmap(data, sizeof(*data));
723 data = early_memremap_decrypted(paddr, size);
724 if (!data) {
725 pr_warn("failed to early memremap indirect setup_data\n");
726 return false;
727 }
728
729 indirect = (struct setup_indirect *)data->data;
730
731 if (indirect->type != SETUP_INDIRECT) {
732 paddr = indirect->addr;
733 len = indirect->len;
734 }
735 }
736
737 early_memunmap(data, size);
738
739 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
740 return true;
741
742 paddr = paddr_next;
743 }
744
745 return false;
746}
747
748/*
749 * Architecture function to determine if RAM remap is allowed. By default, a
750 * RAM remap will map the data as encrypted. Determine if a RAM remap should
751 * not be done so that the data will be mapped decrypted.
752 */
753bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
754 unsigned long flags)
755{
756 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
757 return true;
758
759 if (flags & MEMREMAP_ENC)
760 return true;
761
762 if (flags & MEMREMAP_DEC)
763 return false;
764
765 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
766 if (memremap_is_setup_data(phys_addr, size) ||
767 memremap_is_efi_data(phys_addr, size))
768 return false;
769 }
770
771 return !memremap_should_map_decrypted(phys_addr, size);
772}
773
774/*
775 * Architecture override of __weak function to adjust the protection attributes
776 * used when remapping memory. By default, early_memremap() will map the data
777 * as encrypted. Determine if an encrypted mapping should not be done and set
778 * the appropriate protection attributes.
779 */
780pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
781 unsigned long size,
782 pgprot_t prot)
783{
784 bool encrypted_prot;
785
786 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
787 return prot;
788
789 encrypted_prot = true;
790
791 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
792 if (early_memremap_is_setup_data(phys_addr, size) ||
793 memremap_is_efi_data(phys_addr, size))
794 encrypted_prot = false;
795 }
796
797 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
798 encrypted_prot = false;
799
800 return encrypted_prot ? pgprot_encrypted(prot)
801 : pgprot_decrypted(prot);
802}
803
804bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
805{
806 return arch_memremap_can_ram_remap(phys_addr, size, 0);
807}
808
809/* Remap memory with encryption */
810void __init *early_memremap_encrypted(resource_size_t phys_addr,
811 unsigned long size)
812{
813 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
814}
815
816/*
817 * Remap memory with encryption and write-protected - cannot be called
818 * before pat_init() is called
819 */
820void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
821 unsigned long size)
822{
823 if (!x86_has_pat_wp())
824 return NULL;
825 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
826}
827
828/* Remap memory without encryption */
829void __init *early_memremap_decrypted(resource_size_t phys_addr,
830 unsigned long size)
831{
832 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
833}
834
835/*
836 * Remap memory without encryption and write-protected - cannot be called
837 * before pat_init() is called
838 */
839void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
840 unsigned long size)
841{
842 if (!x86_has_pat_wp())
843 return NULL;
844 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
845}
846#endif /* CONFIG_AMD_MEM_ENCRYPT */
847
848static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
849
850static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
851{
852 /* Don't assume we're using swapper_pg_dir at this point */
853 pgd_t *base = __va(read_cr3_pa());
854 pgd_t *pgd = &base[pgd_index(addr)];
855 p4d_t *p4d = p4d_offset(pgd, addr);
856 pud_t *pud = pud_offset(p4d, addr);
857 pmd_t *pmd = pmd_offset(pud, addr);
858
859 return pmd;
860}
861
862static inline pte_t * __init early_ioremap_pte(unsigned long addr)
863{
864 return &bm_pte[pte_index(addr)];
865}
866
867bool __init is_early_ioremap_ptep(pte_t *ptep)
868{
869 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
870}
871
872void __init early_ioremap_init(void)
873{
874 pmd_t *pmd;
875
876#ifdef CONFIG_X86_64
877 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
878#else
879 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
880#endif
881
882 early_ioremap_setup();
883
884 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
885 memset(bm_pte, 0, sizeof(bm_pte));
886 pmd_populate_kernel(&init_mm, pmd, bm_pte);
887
888 /*
889 * The boot-ioremap range spans multiple pmds, for which
890 * we are not prepared:
891 */
892#define __FIXADDR_TOP (-PAGE_SIZE)
893 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
894 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
895#undef __FIXADDR_TOP
896 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
897 WARN_ON(1);
898 printk(KERN_WARNING "pmd %p != %p\n",
899 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
900 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
901 fix_to_virt(FIX_BTMAP_BEGIN));
902 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
903 fix_to_virt(FIX_BTMAP_END));
904
905 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
906 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
907 FIX_BTMAP_BEGIN);
908 }
909}
910
911void __init __early_set_fixmap(enum fixed_addresses idx,
912 phys_addr_t phys, pgprot_t flags)
913{
914 unsigned long addr = __fix_to_virt(idx);
915 pte_t *pte;
916
917 if (idx >= __end_of_fixed_addresses) {
918 BUG();
919 return;
920 }
921 pte = early_ioremap_pte(addr);
922
923 /* Sanitize 'prot' against any unsupported bits: */
924 pgprot_val(flags) &= __supported_pte_mask;
925
926 if (pgprot_val(flags))
927 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
928 else
929 pte_clear(&init_mm, addr, pte);
930 flush_tlb_one_kernel(addr);
931}
1/*
2 * Re-map IO memory to kernel address space so that we can access it.
3 * This is needed for high PCI addresses that aren't mapped in the
4 * 640k-1MB IO memory area on PC's
5 *
6 * (C) Copyright 1995 1996 Linus Torvalds
7 */
8
9#include <linux/bootmem.h>
10#include <linux/init.h>
11#include <linux/io.h>
12#include <linux/ioport.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/mmiotrace.h>
16#include <linux/mem_encrypt.h>
17#include <linux/efi.h>
18
19#include <asm/set_memory.h>
20#include <asm/e820/api.h>
21#include <asm/fixmap.h>
22#include <asm/pgtable.h>
23#include <asm/tlbflush.h>
24#include <asm/pgalloc.h>
25#include <asm/pat.h>
26#include <asm/setup.h>
27
28#include "physaddr.h"
29
30struct ioremap_mem_flags {
31 bool system_ram;
32 bool desc_other;
33};
34
35/*
36 * Fix up the linear direct mapping of the kernel to avoid cache attribute
37 * conflicts.
38 */
39int ioremap_change_attr(unsigned long vaddr, unsigned long size,
40 enum page_cache_mode pcm)
41{
42 unsigned long nrpages = size >> PAGE_SHIFT;
43 int err;
44
45 switch (pcm) {
46 case _PAGE_CACHE_MODE_UC:
47 default:
48 err = _set_memory_uc(vaddr, nrpages);
49 break;
50 case _PAGE_CACHE_MODE_WC:
51 err = _set_memory_wc(vaddr, nrpages);
52 break;
53 case _PAGE_CACHE_MODE_WT:
54 err = _set_memory_wt(vaddr, nrpages);
55 break;
56 case _PAGE_CACHE_MODE_WB:
57 err = _set_memory_wb(vaddr, nrpages);
58 break;
59 }
60
61 return err;
62}
63
64static bool __ioremap_check_ram(struct resource *res)
65{
66 unsigned long start_pfn, stop_pfn;
67 unsigned long i;
68
69 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
70 return false;
71
72 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
73 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
74 if (stop_pfn > start_pfn) {
75 for (i = 0; i < (stop_pfn - start_pfn); ++i)
76 if (pfn_valid(start_pfn + i) &&
77 !PageReserved(pfn_to_page(start_pfn + i)))
78 return true;
79 }
80
81 return false;
82}
83
84static int __ioremap_check_desc_other(struct resource *res)
85{
86 return (res->desc != IORES_DESC_NONE);
87}
88
89static int __ioremap_res_check(struct resource *res, void *arg)
90{
91 struct ioremap_mem_flags *flags = arg;
92
93 if (!flags->system_ram)
94 flags->system_ram = __ioremap_check_ram(res);
95
96 if (!flags->desc_other)
97 flags->desc_other = __ioremap_check_desc_other(res);
98
99 return flags->system_ram && flags->desc_other;
100}
101
102/*
103 * To avoid multiple resource walks, this function walks resources marked as
104 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
105 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
106 */
107static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
108 struct ioremap_mem_flags *flags)
109{
110 u64 start, end;
111
112 start = (u64)addr;
113 end = start + size - 1;
114 memset(flags, 0, sizeof(*flags));
115
116 walk_mem_res(start, end, flags, __ioremap_res_check);
117}
118
119/*
120 * Remap an arbitrary physical address space into the kernel virtual
121 * address space. It transparently creates kernel huge I/O mapping when
122 * the physical address is aligned by a huge page size (1GB or 2MB) and
123 * the requested size is at least the huge page size.
124 *
125 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
126 * Therefore, the mapping code falls back to use a smaller page toward 4KB
127 * when a mapping range is covered by non-WB type of MTRRs.
128 *
129 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
130 * have to convert them into an offset in a page-aligned mapping, but the
131 * caller shouldn't need to know that small detail.
132 */
133static void __iomem *__ioremap_caller(resource_size_t phys_addr,
134 unsigned long size, enum page_cache_mode pcm, void *caller)
135{
136 unsigned long offset, vaddr;
137 resource_size_t last_addr;
138 const resource_size_t unaligned_phys_addr = phys_addr;
139 const unsigned long unaligned_size = size;
140 struct ioremap_mem_flags mem_flags;
141 struct vm_struct *area;
142 enum page_cache_mode new_pcm;
143 pgprot_t prot;
144 int retval;
145 void __iomem *ret_addr;
146
147 /* Don't allow wraparound or zero size */
148 last_addr = phys_addr + size - 1;
149 if (!size || last_addr < phys_addr)
150 return NULL;
151
152 if (!phys_addr_valid(phys_addr)) {
153 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
154 (unsigned long long)phys_addr);
155 WARN_ON_ONCE(1);
156 return NULL;
157 }
158
159 __ioremap_check_mem(phys_addr, size, &mem_flags);
160
161 /*
162 * Don't allow anybody to remap normal RAM that we're using..
163 */
164 if (mem_flags.system_ram) {
165 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
166 &phys_addr, &last_addr);
167 return NULL;
168 }
169
170 /*
171 * Mappings have to be page-aligned
172 */
173 offset = phys_addr & ~PAGE_MASK;
174 phys_addr &= PHYSICAL_PAGE_MASK;
175 size = PAGE_ALIGN(last_addr+1) - phys_addr;
176
177 retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
178 pcm, &new_pcm);
179 if (retval) {
180 printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
181 return NULL;
182 }
183
184 if (pcm != new_pcm) {
185 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
186 printk(KERN_ERR
187 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
188 (unsigned long long)phys_addr,
189 (unsigned long long)(phys_addr + size),
190 pcm, new_pcm);
191 goto err_free_memtype;
192 }
193 pcm = new_pcm;
194 }
195
196 /*
197 * If the page being mapped is in memory and SEV is active then
198 * make sure the memory encryption attribute is enabled in the
199 * resulting mapping.
200 */
201 prot = PAGE_KERNEL_IO;
202 if (sev_active() && mem_flags.desc_other)
203 prot = pgprot_encrypted(prot);
204
205 switch (pcm) {
206 case _PAGE_CACHE_MODE_UC:
207 default:
208 prot = __pgprot(pgprot_val(prot) |
209 cachemode2protval(_PAGE_CACHE_MODE_UC));
210 break;
211 case _PAGE_CACHE_MODE_UC_MINUS:
212 prot = __pgprot(pgprot_val(prot) |
213 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
214 break;
215 case _PAGE_CACHE_MODE_WC:
216 prot = __pgprot(pgprot_val(prot) |
217 cachemode2protval(_PAGE_CACHE_MODE_WC));
218 break;
219 case _PAGE_CACHE_MODE_WT:
220 prot = __pgprot(pgprot_val(prot) |
221 cachemode2protval(_PAGE_CACHE_MODE_WT));
222 break;
223 case _PAGE_CACHE_MODE_WB:
224 break;
225 }
226
227 /*
228 * Ok, go for it..
229 */
230 area = get_vm_area_caller(size, VM_IOREMAP, caller);
231 if (!area)
232 goto err_free_memtype;
233 area->phys_addr = phys_addr;
234 vaddr = (unsigned long) area->addr;
235
236 if (kernel_map_sync_memtype(phys_addr, size, pcm))
237 goto err_free_area;
238
239 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
240 goto err_free_area;
241
242 ret_addr = (void __iomem *) (vaddr + offset);
243 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
244
245 /*
246 * Check if the request spans more than any BAR in the iomem resource
247 * tree.
248 */
249 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
250 pr_warn("caller %pS mapping multiple BARs\n", caller);
251
252 return ret_addr;
253err_free_area:
254 free_vm_area(area);
255err_free_memtype:
256 free_memtype(phys_addr, phys_addr + size);
257 return NULL;
258}
259
260/**
261 * ioremap_nocache - map bus memory into CPU space
262 * @phys_addr: bus address of the memory
263 * @size: size of the resource to map
264 *
265 * ioremap_nocache performs a platform specific sequence of operations to
266 * make bus memory CPU accessible via the readb/readw/readl/writeb/
267 * writew/writel functions and the other mmio helpers. The returned
268 * address is not guaranteed to be usable directly as a virtual
269 * address.
270 *
271 * This version of ioremap ensures that the memory is marked uncachable
272 * on the CPU as well as honouring existing caching rules from things like
273 * the PCI bus. Note that there are other caches and buffers on many
274 * busses. In particular driver authors should read up on PCI writes
275 *
276 * It's useful if some control registers are in such an area and
277 * write combining or read caching is not desirable:
278 *
279 * Must be freed with iounmap.
280 */
281void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
282{
283 /*
284 * Ideally, this should be:
285 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
286 *
287 * Till we fix all X drivers to use ioremap_wc(), we will use
288 * UC MINUS. Drivers that are certain they need or can already
289 * be converted over to strong UC can use ioremap_uc().
290 */
291 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
292
293 return __ioremap_caller(phys_addr, size, pcm,
294 __builtin_return_address(0));
295}
296EXPORT_SYMBOL(ioremap_nocache);
297
298/**
299 * ioremap_uc - map bus memory into CPU space as strongly uncachable
300 * @phys_addr: bus address of the memory
301 * @size: size of the resource to map
302 *
303 * ioremap_uc performs a platform specific sequence of operations to
304 * make bus memory CPU accessible via the readb/readw/readl/writeb/
305 * writew/writel functions and the other mmio helpers. The returned
306 * address is not guaranteed to be usable directly as a virtual
307 * address.
308 *
309 * This version of ioremap ensures that the memory is marked with a strong
310 * preference as completely uncachable on the CPU when possible. For non-PAT
311 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
312 * systems this will set the PAT entry for the pages as strong UC. This call
313 * will honor existing caching rules from things like the PCI bus. Note that
314 * there are other caches and buffers on many busses. In particular driver
315 * authors should read up on PCI writes.
316 *
317 * It's useful if some control registers are in such an area and
318 * write combining or read caching is not desirable:
319 *
320 * Must be freed with iounmap.
321 */
322void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
323{
324 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
325
326 return __ioremap_caller(phys_addr, size, pcm,
327 __builtin_return_address(0));
328}
329EXPORT_SYMBOL_GPL(ioremap_uc);
330
331/**
332 * ioremap_wc - map memory into CPU space write combined
333 * @phys_addr: bus address of the memory
334 * @size: size of the resource to map
335 *
336 * This version of ioremap ensures that the memory is marked write combining.
337 * Write combining allows faster writes to some hardware devices.
338 *
339 * Must be freed with iounmap.
340 */
341void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
342{
343 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
344 __builtin_return_address(0));
345}
346EXPORT_SYMBOL(ioremap_wc);
347
348/**
349 * ioremap_wt - map memory into CPU space write through
350 * @phys_addr: bus address of the memory
351 * @size: size of the resource to map
352 *
353 * This version of ioremap ensures that the memory is marked write through.
354 * Write through stores data into memory while keeping the cache up-to-date.
355 *
356 * Must be freed with iounmap.
357 */
358void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
359{
360 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
361 __builtin_return_address(0));
362}
363EXPORT_SYMBOL(ioremap_wt);
364
365void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
366{
367 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
368 __builtin_return_address(0));
369}
370EXPORT_SYMBOL(ioremap_cache);
371
372void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
373 unsigned long prot_val)
374{
375 return __ioremap_caller(phys_addr, size,
376 pgprot2cachemode(__pgprot(prot_val)),
377 __builtin_return_address(0));
378}
379EXPORT_SYMBOL(ioremap_prot);
380
381/**
382 * iounmap - Free a IO remapping
383 * @addr: virtual address from ioremap_*
384 *
385 * Caller must ensure there is only one unmapping for the same pointer.
386 */
387void iounmap(volatile void __iomem *addr)
388{
389 struct vm_struct *p, *o;
390
391 if ((void __force *)addr <= high_memory)
392 return;
393
394 /*
395 * The PCI/ISA range special-casing was removed from __ioremap()
396 * so this check, in theory, can be removed. However, there are
397 * cases where iounmap() is called for addresses not obtained via
398 * ioremap() (vga16fb for example). Add a warning so that these
399 * cases can be caught and fixed.
400 */
401 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
402 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
403 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
404 return;
405 }
406
407 mmiotrace_iounmap(addr);
408
409 addr = (volatile void __iomem *)
410 (PAGE_MASK & (unsigned long __force)addr);
411
412 /* Use the vm area unlocked, assuming the caller
413 ensures there isn't another iounmap for the same address
414 in parallel. Reuse of the virtual address is prevented by
415 leaving it in the global lists until we're done with it.
416 cpa takes care of the direct mappings. */
417 p = find_vm_area((void __force *)addr);
418
419 if (!p) {
420 printk(KERN_ERR "iounmap: bad address %p\n", addr);
421 dump_stack();
422 return;
423 }
424
425 free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
426
427 /* Finally remove it */
428 o = remove_vm_area((void __force *)addr);
429 BUG_ON(p != o || o == NULL);
430 kfree(p);
431}
432EXPORT_SYMBOL(iounmap);
433
434int __init arch_ioremap_pud_supported(void)
435{
436#ifdef CONFIG_X86_64
437 return boot_cpu_has(X86_FEATURE_GBPAGES);
438#else
439 return 0;
440#endif
441}
442
443int __init arch_ioremap_pmd_supported(void)
444{
445 return boot_cpu_has(X86_FEATURE_PSE);
446}
447
448/*
449 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
450 * access
451 */
452void *xlate_dev_mem_ptr(phys_addr_t phys)
453{
454 unsigned long start = phys & PAGE_MASK;
455 unsigned long offset = phys & ~PAGE_MASK;
456 void *vaddr;
457
458 /* memremap() maps if RAM, otherwise falls back to ioremap() */
459 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
460
461 /* Only add the offset on success and return NULL if memremap() failed */
462 if (vaddr)
463 vaddr += offset;
464
465 return vaddr;
466}
467
468void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
469{
470 memunmap((void *)((unsigned long)addr & PAGE_MASK));
471}
472
473/*
474 * Examine the physical address to determine if it is an area of memory
475 * that should be mapped decrypted. If the memory is not part of the
476 * kernel usable area it was accessed and created decrypted, so these
477 * areas should be mapped decrypted. And since the encryption key can
478 * change across reboots, persistent memory should also be mapped
479 * decrypted.
480 *
481 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
482 * only persistent memory should be mapped decrypted.
483 */
484static bool memremap_should_map_decrypted(resource_size_t phys_addr,
485 unsigned long size)
486{
487 int is_pmem;
488
489 /*
490 * Check if the address is part of a persistent memory region.
491 * This check covers areas added by E820, EFI and ACPI.
492 */
493 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
494 IORES_DESC_PERSISTENT_MEMORY);
495 if (is_pmem != REGION_DISJOINT)
496 return true;
497
498 /*
499 * Check if the non-volatile attribute is set for an EFI
500 * reserved area.
501 */
502 if (efi_enabled(EFI_BOOT)) {
503 switch (efi_mem_type(phys_addr)) {
504 case EFI_RESERVED_TYPE:
505 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
506 return true;
507 break;
508 default:
509 break;
510 }
511 }
512
513 /* Check if the address is outside kernel usable area */
514 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
515 case E820_TYPE_RESERVED:
516 case E820_TYPE_ACPI:
517 case E820_TYPE_NVS:
518 case E820_TYPE_UNUSABLE:
519 /* For SEV, these areas are encrypted */
520 if (sev_active())
521 break;
522 /* Fallthrough */
523
524 case E820_TYPE_PRAM:
525 return true;
526 default:
527 break;
528 }
529
530 return false;
531}
532
533/*
534 * Examine the physical address to determine if it is EFI data. Check
535 * it against the boot params structure and EFI tables and memory types.
536 */
537static bool memremap_is_efi_data(resource_size_t phys_addr,
538 unsigned long size)
539{
540 u64 paddr;
541
542 /* Check if the address is part of EFI boot/runtime data */
543 if (!efi_enabled(EFI_BOOT))
544 return false;
545
546 paddr = boot_params.efi_info.efi_memmap_hi;
547 paddr <<= 32;
548 paddr |= boot_params.efi_info.efi_memmap;
549 if (phys_addr == paddr)
550 return true;
551
552 paddr = boot_params.efi_info.efi_systab_hi;
553 paddr <<= 32;
554 paddr |= boot_params.efi_info.efi_systab;
555 if (phys_addr == paddr)
556 return true;
557
558 if (efi_is_table_address(phys_addr))
559 return true;
560
561 switch (efi_mem_type(phys_addr)) {
562 case EFI_BOOT_SERVICES_DATA:
563 case EFI_RUNTIME_SERVICES_DATA:
564 return true;
565 default:
566 break;
567 }
568
569 return false;
570}
571
572/*
573 * Examine the physical address to determine if it is boot data by checking
574 * it against the boot params setup_data chain.
575 */
576static bool memremap_is_setup_data(resource_size_t phys_addr,
577 unsigned long size)
578{
579 struct setup_data *data;
580 u64 paddr, paddr_next;
581
582 paddr = boot_params.hdr.setup_data;
583 while (paddr) {
584 unsigned int len;
585
586 if (phys_addr == paddr)
587 return true;
588
589 data = memremap(paddr, sizeof(*data),
590 MEMREMAP_WB | MEMREMAP_DEC);
591
592 paddr_next = data->next;
593 len = data->len;
594
595 memunmap(data);
596
597 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
598 return true;
599
600 paddr = paddr_next;
601 }
602
603 return false;
604}
605
606/*
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain (early boot version).
609 */
610static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
611 unsigned long size)
612{
613 struct setup_data *data;
614 u64 paddr, paddr_next;
615
616 paddr = boot_params.hdr.setup_data;
617 while (paddr) {
618 unsigned int len;
619
620 if (phys_addr == paddr)
621 return true;
622
623 data = early_memremap_decrypted(paddr, sizeof(*data));
624
625 paddr_next = data->next;
626 len = data->len;
627
628 early_memunmap(data, sizeof(*data));
629
630 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
631 return true;
632
633 paddr = paddr_next;
634 }
635
636 return false;
637}
638
639/*
640 * Architecture function to determine if RAM remap is allowed. By default, a
641 * RAM remap will map the data as encrypted. Determine if a RAM remap should
642 * not be done so that the data will be mapped decrypted.
643 */
644bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
645 unsigned long flags)
646{
647 if (!mem_encrypt_active())
648 return true;
649
650 if (flags & MEMREMAP_ENC)
651 return true;
652
653 if (flags & MEMREMAP_DEC)
654 return false;
655
656 if (sme_active()) {
657 if (memremap_is_setup_data(phys_addr, size) ||
658 memremap_is_efi_data(phys_addr, size))
659 return false;
660 }
661
662 return !memremap_should_map_decrypted(phys_addr, size);
663}
664
665/*
666 * Architecture override of __weak function to adjust the protection attributes
667 * used when remapping memory. By default, early_memremap() will map the data
668 * as encrypted. Determine if an encrypted mapping should not be done and set
669 * the appropriate protection attributes.
670 */
671pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
672 unsigned long size,
673 pgprot_t prot)
674{
675 bool encrypted_prot;
676
677 if (!mem_encrypt_active())
678 return prot;
679
680 encrypted_prot = true;
681
682 if (sme_active()) {
683 if (early_memremap_is_setup_data(phys_addr, size) ||
684 memremap_is_efi_data(phys_addr, size))
685 encrypted_prot = false;
686 }
687
688 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
689 encrypted_prot = false;
690
691 return encrypted_prot ? pgprot_encrypted(prot)
692 : pgprot_decrypted(prot);
693}
694
695bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
696{
697 return arch_memremap_can_ram_remap(phys_addr, size, 0);
698}
699
700#ifdef CONFIG_ARCH_USE_MEMREMAP_PROT
701/* Remap memory with encryption */
702void __init *early_memremap_encrypted(resource_size_t phys_addr,
703 unsigned long size)
704{
705 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
706}
707
708/*
709 * Remap memory with encryption and write-protected - cannot be called
710 * before pat_init() is called
711 */
712void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
713 unsigned long size)
714{
715 /* Be sure the write-protect PAT entry is set for write-protect */
716 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
717 return NULL;
718
719 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
720}
721
722/* Remap memory without encryption */
723void __init *early_memremap_decrypted(resource_size_t phys_addr,
724 unsigned long size)
725{
726 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
727}
728
729/*
730 * Remap memory without encryption and write-protected - cannot be called
731 * before pat_init() is called
732 */
733void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
734 unsigned long size)
735{
736 /* Be sure the write-protect PAT entry is set for write-protect */
737 if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
738 return NULL;
739
740 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
741}
742#endif /* CONFIG_ARCH_USE_MEMREMAP_PROT */
743
744static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
745
746static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
747{
748 /* Don't assume we're using swapper_pg_dir at this point */
749 pgd_t *base = __va(read_cr3_pa());
750 pgd_t *pgd = &base[pgd_index(addr)];
751 p4d_t *p4d = p4d_offset(pgd, addr);
752 pud_t *pud = pud_offset(p4d, addr);
753 pmd_t *pmd = pmd_offset(pud, addr);
754
755 return pmd;
756}
757
758static inline pte_t * __init early_ioremap_pte(unsigned long addr)
759{
760 return &bm_pte[pte_index(addr)];
761}
762
763bool __init is_early_ioremap_ptep(pte_t *ptep)
764{
765 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
766}
767
768void __init early_ioremap_init(void)
769{
770 pmd_t *pmd;
771
772#ifdef CONFIG_X86_64
773 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
774#else
775 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
776#endif
777
778 early_ioremap_setup();
779
780 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
781 memset(bm_pte, 0, sizeof(bm_pte));
782 pmd_populate_kernel(&init_mm, pmd, bm_pte);
783
784 /*
785 * The boot-ioremap range spans multiple pmds, for which
786 * we are not prepared:
787 */
788#define __FIXADDR_TOP (-PAGE_SIZE)
789 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
790 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
791#undef __FIXADDR_TOP
792 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
793 WARN_ON(1);
794 printk(KERN_WARNING "pmd %p != %p\n",
795 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
796 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
797 fix_to_virt(FIX_BTMAP_BEGIN));
798 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
799 fix_to_virt(FIX_BTMAP_END));
800
801 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
802 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
803 FIX_BTMAP_BEGIN);
804 }
805}
806
807void __init __early_set_fixmap(enum fixed_addresses idx,
808 phys_addr_t phys, pgprot_t flags)
809{
810 unsigned long addr = __fix_to_virt(idx);
811 pte_t *pte;
812
813 if (idx >= __end_of_fixed_addresses) {
814 BUG();
815 return;
816 }
817 pte = early_ioremap_pte(addr);
818
819 /* Sanitize 'prot' against any unsupported bits: */
820 pgprot_val(flags) &= __default_kernel_pte_mask;
821
822 if (pgprot_val(flags))
823 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
824 else
825 pte_clear(&init_mm, addr, pte);
826 __flush_tlb_one_kernel(addr);
827}