Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/cc_platform.h>
 18#include <linux/efi.h>
 19#include <linux/pgtable.h>
 20#include <linux/kmsan.h>
 21
 22#include <asm/set_memory.h>
 23#include <asm/e820/api.h>
 24#include <asm/efi.h>
 25#include <asm/fixmap.h>
 
 26#include <asm/tlbflush.h>
 27#include <asm/pgalloc.h>
 28#include <asm/memtype.h>
 29#include <asm/setup.h>
 30
 31#include "physaddr.h"
 32
 33/*
 34 * Descriptor controlling ioremap() behavior.
 35 */
 36struct ioremap_desc {
 37	unsigned int flags;
 38};
 39
 40/*
 41 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 42 * conflicts.
 43 */
 44int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 45			enum page_cache_mode pcm)
 46{
 47	unsigned long nrpages = size >> PAGE_SHIFT;
 48	int err;
 49
 50	switch (pcm) {
 51	case _PAGE_CACHE_MODE_UC:
 52	default:
 53		err = _set_memory_uc(vaddr, nrpages);
 54		break;
 55	case _PAGE_CACHE_MODE_WC:
 56		err = _set_memory_wc(vaddr, nrpages);
 57		break;
 58	case _PAGE_CACHE_MODE_WT:
 59		err = _set_memory_wt(vaddr, nrpages);
 60		break;
 61	case _PAGE_CACHE_MODE_WB:
 62		err = _set_memory_wb(vaddr, nrpages);
 63		break;
 64	}
 65
 66	return err;
 67}
 68
 69/* Does the range (or a subset of) contain normal RAM? */
 70static unsigned int __ioremap_check_ram(struct resource *res)
 71{
 72	unsigned long start_pfn, stop_pfn;
 73	unsigned long i;
 74
 75	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 76		return 0;
 77
 78	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 79	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 80	if (stop_pfn > start_pfn) {
 81		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 82			if (pfn_valid(start_pfn + i) &&
 83			    !PageReserved(pfn_to_page(start_pfn + i)))
 84				return IORES_MAP_SYSTEM_RAM;
 85	}
 86
 87	return 0;
 88}
 89
 90/*
 91 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 92 * there the whole memory is already encrypted.
 93 */
 94static unsigned int __ioremap_check_encrypted(struct resource *res)
 95{
 96	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
 97		return 0;
 98
 99	switch (res->desc) {
100	case IORES_DESC_NONE:
101	case IORES_DESC_RESERVED:
102		break;
103	default:
104		return IORES_MAP_ENCRYPTED;
105	}
106
107	return 0;
108}
109
110/*
111 * The EFI runtime services data area is not covered by walk_mem_res(), but must
112 * be mapped encrypted when SEV is active.
113 */
114static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115{
116	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
117		return;
118
119	if (!IS_ENABLED(CONFIG_EFI))
120		return;
121
122	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
123	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
124	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
125		desc->flags |= IORES_MAP_ENCRYPTED;
126}
127
128static int __ioremap_collect_map_flags(struct resource *res, void *arg)
129{
130	struct ioremap_desc *desc = arg;
131
132	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
133		desc->flags |= __ioremap_check_ram(res);
134
135	if (!(desc->flags & IORES_MAP_ENCRYPTED))
136		desc->flags |= __ioremap_check_encrypted(res);
137
138	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
139			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
140}
141
142/*
143 * To avoid multiple resource walks, this function walks resources marked as
144 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
145 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
146 *
147 * After that, deal with misc other ranges in __ioremap_check_other() which do
148 * not fall into the above category.
149 */
150static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
151				struct ioremap_desc *desc)
152{
153	u64 start, end;
154
155	start = (u64)addr;
156	end = start + size - 1;
157	memset(desc, 0, sizeof(struct ioremap_desc));
158
159	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
160
161	__ioremap_check_other(addr, desc);
162}
163
164/*
165 * Remap an arbitrary physical address space into the kernel virtual
166 * address space. It transparently creates kernel huge I/O mapping when
167 * the physical address is aligned by a huge page size (1GB or 2MB) and
168 * the requested size is at least the huge page size.
169 *
170 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
171 * Therefore, the mapping code falls back to use a smaller page toward 4KB
172 * when a mapping range is covered by non-WB type of MTRRs.
173 *
174 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
175 * have to convert them into an offset in a page-aligned mapping, but the
176 * caller shouldn't need to know that small detail.
177 */
178static void __iomem *
179__ioremap_caller(resource_size_t phys_addr, unsigned long size,
180		 enum page_cache_mode pcm, void *caller, bool encrypted)
181{
182	unsigned long offset, vaddr;
183	resource_size_t last_addr;
184	const resource_size_t unaligned_phys_addr = phys_addr;
185	const unsigned long unaligned_size = size;
186	struct ioremap_desc io_desc;
187	struct vm_struct *area;
188	enum page_cache_mode new_pcm;
189	pgprot_t prot;
190	int retval;
191	void __iomem *ret_addr;
192
193	/* Don't allow wraparound or zero size */
194	last_addr = phys_addr + size - 1;
195	if (!size || last_addr < phys_addr)
196		return NULL;
197
198	if (!phys_addr_valid(phys_addr)) {
199		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
200		       (unsigned long long)phys_addr);
201		WARN_ON_ONCE(1);
202		return NULL;
203	}
204
205	__ioremap_check_mem(phys_addr, size, &io_desc);
206
207	/*
208	 * Don't allow anybody to remap normal RAM that we're using..
209	 */
210	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
211		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
212			  &phys_addr, &last_addr);
213		return NULL;
214	}
215
216	/*
217	 * Mappings have to be page-aligned
218	 */
219	offset = phys_addr & ~PAGE_MASK;
220	phys_addr &= PAGE_MASK;
221	size = PAGE_ALIGN(last_addr+1) - phys_addr;
222
223	/*
224	 * Mask out any bits not part of the actual physical
225	 * address, like memory encryption bits.
226	 */
227	phys_addr &= PHYSICAL_PAGE_MASK;
 
228
229	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
230						pcm, &new_pcm);
231	if (retval) {
232		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
233		return NULL;
234	}
235
236	if (pcm != new_pcm) {
237		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
238			printk(KERN_ERR
239		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
240				(unsigned long long)phys_addr,
241				(unsigned long long)(phys_addr + size),
242				pcm, new_pcm);
243			goto err_free_memtype;
244		}
245		pcm = new_pcm;
246	}
247
248	/*
249	 * If the page being mapped is in memory and SEV is active then
250	 * make sure the memory encryption attribute is enabled in the
251	 * resulting mapping.
252	 * In TDX guests, memory is marked private by default. If encryption
253	 * is not requested (using encrypted), explicitly set decrypt
254	 * attribute in all IOREMAPPED memory.
255	 */
256	prot = PAGE_KERNEL_IO;
257	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
258		prot = pgprot_encrypted(prot);
259	else
260		prot = pgprot_decrypted(prot);
261
262	switch (pcm) {
263	case _PAGE_CACHE_MODE_UC:
264	default:
265		prot = __pgprot(pgprot_val(prot) |
266				cachemode2protval(_PAGE_CACHE_MODE_UC));
267		break;
268	case _PAGE_CACHE_MODE_UC_MINUS:
269		prot = __pgprot(pgprot_val(prot) |
270				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
271		break;
272	case _PAGE_CACHE_MODE_WC:
273		prot = __pgprot(pgprot_val(prot) |
274				cachemode2protval(_PAGE_CACHE_MODE_WC));
275		break;
276	case _PAGE_CACHE_MODE_WT:
277		prot = __pgprot(pgprot_val(prot) |
278				cachemode2protval(_PAGE_CACHE_MODE_WT));
279		break;
280	case _PAGE_CACHE_MODE_WB:
281		break;
282	}
283
284	/*
285	 * Ok, go for it..
286	 */
287	area = get_vm_area_caller(size, VM_IOREMAP, caller);
288	if (!area)
289		goto err_free_memtype;
290	area->phys_addr = phys_addr;
291	vaddr = (unsigned long) area->addr;
292
293	if (memtype_kernel_map_sync(phys_addr, size, pcm))
294		goto err_free_area;
295
296	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
297		goto err_free_area;
298
299	ret_addr = (void __iomem *) (vaddr + offset);
300	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
301
302	/*
303	 * Check if the request spans more than any BAR in the iomem resource
304	 * tree.
305	 */
306	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
307		pr_warn("caller %pS mapping multiple BARs\n", caller);
308
309	return ret_addr;
310err_free_area:
311	free_vm_area(area);
312err_free_memtype:
313	memtype_free(phys_addr, phys_addr + size);
314	return NULL;
315}
316
317/**
318 * ioremap     -   map bus memory into CPU space
319 * @phys_addr:    bus address of the memory
320 * @size:      size of the resource to map
321 *
322 * ioremap performs a platform specific sequence of operations to
323 * make bus memory CPU accessible via the readb/readw/readl/writeb/
324 * writew/writel functions and the other mmio helpers. The returned
325 * address is not guaranteed to be usable directly as a virtual
326 * address.
327 *
328 * This version of ioremap ensures that the memory is marked uncachable
329 * on the CPU as well as honouring existing caching rules from things like
330 * the PCI bus. Note that there are other caches and buffers on many
331 * busses. In particular driver authors should read up on PCI writes
332 *
333 * It's useful if some control registers are in such an area and
334 * write combining or read caching is not desirable:
335 *
336 * Must be freed with iounmap.
337 */
338void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
339{
340	/*
341	 * Ideally, this should be:
342	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
343	 *
344	 * Till we fix all X drivers to use ioremap_wc(), we will use
345	 * UC MINUS. Drivers that are certain they need or can already
346	 * be converted over to strong UC can use ioremap_uc().
347	 */
348	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
349
350	return __ioremap_caller(phys_addr, size, pcm,
351				__builtin_return_address(0), false);
352}
353EXPORT_SYMBOL(ioremap);
354
355/**
356 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
357 * @phys_addr:    bus address of the memory
358 * @size:      size of the resource to map
359 *
360 * ioremap_uc performs a platform specific sequence of operations to
361 * make bus memory CPU accessible via the readb/readw/readl/writeb/
362 * writew/writel functions and the other mmio helpers. The returned
363 * address is not guaranteed to be usable directly as a virtual
364 * address.
365 *
366 * This version of ioremap ensures that the memory is marked with a strong
367 * preference as completely uncachable on the CPU when possible. For non-PAT
368 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
369 * systems this will set the PAT entry for the pages as strong UC.  This call
370 * will honor existing caching rules from things like the PCI bus. Note that
371 * there are other caches and buffers on many busses. In particular driver
372 * authors should read up on PCI writes.
373 *
374 * It's useful if some control registers are in such an area and
375 * write combining or read caching is not desirable:
376 *
377 * Must be freed with iounmap.
378 */
379void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
380{
381	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
382
383	return __ioremap_caller(phys_addr, size, pcm,
384				__builtin_return_address(0), false);
385}
386EXPORT_SYMBOL_GPL(ioremap_uc);
387
388/**
389 * ioremap_wc	-	map memory into CPU space write combined
390 * @phys_addr:	bus address of the memory
391 * @size:	size of the resource to map
392 *
393 * This version of ioremap ensures that the memory is marked write combining.
394 * Write combining allows faster writes to some hardware devices.
395 *
396 * Must be freed with iounmap.
397 */
398void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
399{
400	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
401					__builtin_return_address(0), false);
402}
403EXPORT_SYMBOL(ioremap_wc);
404
405/**
406 * ioremap_wt	-	map memory into CPU space write through
407 * @phys_addr:	bus address of the memory
408 * @size:	size of the resource to map
409 *
410 * This version of ioremap ensures that the memory is marked write through.
411 * Write through stores data into memory while keeping the cache up-to-date.
412 *
413 * Must be freed with iounmap.
414 */
415void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
416{
417	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
418					__builtin_return_address(0), false);
419}
420EXPORT_SYMBOL(ioremap_wt);
421
422void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
423{
424	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
425				__builtin_return_address(0), true);
426}
427EXPORT_SYMBOL(ioremap_encrypted);
428
429void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
430{
431	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
432				__builtin_return_address(0), false);
433}
434EXPORT_SYMBOL(ioremap_cache);
435
436void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
437				unsigned long prot_val)
438{
439	return __ioremap_caller(phys_addr, size,
440				pgprot2cachemode(__pgprot(prot_val)),
441				__builtin_return_address(0), false);
442}
443EXPORT_SYMBOL(ioremap_prot);
444
445/**
446 * iounmap - Free a IO remapping
447 * @addr: virtual address from ioremap_*
448 *
449 * Caller must ensure there is only one unmapping for the same pointer.
450 */
451void iounmap(volatile void __iomem *addr)
452{
453	struct vm_struct *p, *o;
454
455	if ((void __force *)addr <= high_memory)
456		return;
457
458	/*
459	 * The PCI/ISA range special-casing was removed from __ioremap()
460	 * so this check, in theory, can be removed. However, there are
461	 * cases where iounmap() is called for addresses not obtained via
462	 * ioremap() (vga16fb for example). Add a warning so that these
463	 * cases can be caught and fixed.
464	 */
465	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
466	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
467		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
468		return;
469	}
470
471	mmiotrace_iounmap(addr);
472
473	addr = (volatile void __iomem *)
474		(PAGE_MASK & (unsigned long __force)addr);
475
476	/* Use the vm area unlocked, assuming the caller
477	   ensures there isn't another iounmap for the same address
478	   in parallel. Reuse of the virtual address is prevented by
479	   leaving it in the global lists until we're done with it.
480	   cpa takes care of the direct mappings. */
481	p = find_vm_area((void __force *)addr);
482
483	if (!p) {
484		printk(KERN_ERR "iounmap: bad address %p\n", addr);
485		dump_stack();
486		return;
487	}
488
489	kmsan_iounmap_page_range((unsigned long)addr,
490		(unsigned long)addr + get_vm_area_size(p));
491	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
492
493	/* Finally remove it */
494	o = remove_vm_area((void __force *)addr);
495	BUG_ON(p != o || o == NULL);
496	kfree(p);
497}
498EXPORT_SYMBOL(iounmap);
499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500/*
501 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
502 * access
503 */
504void *xlate_dev_mem_ptr(phys_addr_t phys)
505{
506	unsigned long start  = phys &  PAGE_MASK;
507	unsigned long offset = phys & ~PAGE_MASK;
508	void *vaddr;
509
510	/* memremap() maps if RAM, otherwise falls back to ioremap() */
511	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
512
513	/* Only add the offset on success and return NULL if memremap() failed */
514	if (vaddr)
515		vaddr += offset;
516
517	return vaddr;
518}
519
520void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
521{
522	memunmap((void *)((unsigned long)addr & PAGE_MASK));
523}
524
525#ifdef CONFIG_AMD_MEM_ENCRYPT
526/*
527 * Examine the physical address to determine if it is an area of memory
528 * that should be mapped decrypted.  If the memory is not part of the
529 * kernel usable area it was accessed and created decrypted, so these
530 * areas should be mapped decrypted. And since the encryption key can
531 * change across reboots, persistent memory should also be mapped
532 * decrypted.
533 *
534 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
535 * only persistent memory should be mapped decrypted.
536 */
537static bool memremap_should_map_decrypted(resource_size_t phys_addr,
538					  unsigned long size)
539{
540	int is_pmem;
541
542	/*
543	 * Check if the address is part of a persistent memory region.
544	 * This check covers areas added by E820, EFI and ACPI.
545	 */
546	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
547				    IORES_DESC_PERSISTENT_MEMORY);
548	if (is_pmem != REGION_DISJOINT)
549		return true;
550
551	/*
552	 * Check if the non-volatile attribute is set for an EFI
553	 * reserved area.
554	 */
555	if (efi_enabled(EFI_BOOT)) {
556		switch (efi_mem_type(phys_addr)) {
557		case EFI_RESERVED_TYPE:
558			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
559				return true;
560			break;
561		default:
562			break;
563		}
564	}
565
566	/* Check if the address is outside kernel usable area */
567	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
568	case E820_TYPE_RESERVED:
569	case E820_TYPE_ACPI:
570	case E820_TYPE_NVS:
571	case E820_TYPE_UNUSABLE:
572		/* For SEV, these areas are encrypted */
573		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
574			break;
575		fallthrough;
576
577	case E820_TYPE_PRAM:
578		return true;
579	default:
580		break;
581	}
582
583	return false;
584}
585
586/*
587 * Examine the physical address to determine if it is EFI data. Check
588 * it against the boot params structure and EFI tables and memory types.
589 */
590static bool memremap_is_efi_data(resource_size_t phys_addr,
591				 unsigned long size)
592{
593	u64 paddr;
594
595	/* Check if the address is part of EFI boot/runtime data */
596	if (!efi_enabled(EFI_BOOT))
597		return false;
598
599	paddr = boot_params.efi_info.efi_memmap_hi;
600	paddr <<= 32;
601	paddr |= boot_params.efi_info.efi_memmap;
602	if (phys_addr == paddr)
603		return true;
604
605	paddr = boot_params.efi_info.efi_systab_hi;
606	paddr <<= 32;
607	paddr |= boot_params.efi_info.efi_systab;
608	if (phys_addr == paddr)
609		return true;
610
611	if (efi_is_table_address(phys_addr))
612		return true;
613
614	switch (efi_mem_type(phys_addr)) {
615	case EFI_BOOT_SERVICES_DATA:
616	case EFI_RUNTIME_SERVICES_DATA:
617		return true;
618	default:
619		break;
620	}
621
622	return false;
623}
624
625/*
626 * Examine the physical address to determine if it is boot data by checking
627 * it against the boot params setup_data chain.
628 */
629static bool memremap_is_setup_data(resource_size_t phys_addr,
630				   unsigned long size)
631{
632	struct setup_indirect *indirect;
633	struct setup_data *data;
634	u64 paddr, paddr_next;
635
636	paddr = boot_params.hdr.setup_data;
637	while (paddr) {
638		unsigned int len;
639
640		if (phys_addr == paddr)
641			return true;
642
643		data = memremap(paddr, sizeof(*data),
644				MEMREMAP_WB | MEMREMAP_DEC);
645		if (!data) {
646			pr_warn("failed to memremap setup_data entry\n");
647			return false;
648		}
649
650		paddr_next = data->next;
651		len = data->len;
652
653		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
654			memunmap(data);
655			return true;
656		}
657
658		if (data->type == SETUP_INDIRECT) {
659			memunmap(data);
660			data = memremap(paddr, sizeof(*data) + len,
661					MEMREMAP_WB | MEMREMAP_DEC);
662			if (!data) {
663				pr_warn("failed to memremap indirect setup_data\n");
664				return false;
665			}
666
667			indirect = (struct setup_indirect *)data->data;
668
669			if (indirect->type != SETUP_INDIRECT) {
670				paddr = indirect->addr;
671				len = indirect->len;
672			}
673		}
674
675		memunmap(data);
676
677		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
678			return true;
679
680		paddr = paddr_next;
681	}
682
683	return false;
684}
685
686/*
687 * Examine the physical address to determine if it is boot data by checking
688 * it against the boot params setup_data chain (early boot version).
689 */
690static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
691						unsigned long size)
692{
693	struct setup_indirect *indirect;
694	struct setup_data *data;
695	u64 paddr, paddr_next;
696
697	paddr = boot_params.hdr.setup_data;
698	while (paddr) {
699		unsigned int len, size;
700
701		if (phys_addr == paddr)
702			return true;
703
704		data = early_memremap_decrypted(paddr, sizeof(*data));
705		if (!data) {
706			pr_warn("failed to early memremap setup_data entry\n");
707			return false;
708		}
709
710		size = sizeof(*data);
711
712		paddr_next = data->next;
713		len = data->len;
714
715		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
716			early_memunmap(data, sizeof(*data));
717			return true;
718		}
719
720		if (data->type == SETUP_INDIRECT) {
721			size += len;
722			early_memunmap(data, sizeof(*data));
723			data = early_memremap_decrypted(paddr, size);
724			if (!data) {
725				pr_warn("failed to early memremap indirect setup_data\n");
726				return false;
727			}
728
729			indirect = (struct setup_indirect *)data->data;
730
731			if (indirect->type != SETUP_INDIRECT) {
732				paddr = indirect->addr;
733				len = indirect->len;
734			}
735		}
736
737		early_memunmap(data, size);
738
739		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
740			return true;
741
742		paddr = paddr_next;
743	}
744
745	return false;
746}
747
748/*
749 * Architecture function to determine if RAM remap is allowed. By default, a
750 * RAM remap will map the data as encrypted. Determine if a RAM remap should
751 * not be done so that the data will be mapped decrypted.
752 */
753bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
754				 unsigned long flags)
755{
756	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
757		return true;
758
759	if (flags & MEMREMAP_ENC)
760		return true;
761
762	if (flags & MEMREMAP_DEC)
763		return false;
764
765	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
766		if (memremap_is_setup_data(phys_addr, size) ||
767		    memremap_is_efi_data(phys_addr, size))
768			return false;
769	}
770
771	return !memremap_should_map_decrypted(phys_addr, size);
772}
773
774/*
775 * Architecture override of __weak function to adjust the protection attributes
776 * used when remapping memory. By default, early_memremap() will map the data
777 * as encrypted. Determine if an encrypted mapping should not be done and set
778 * the appropriate protection attributes.
779 */
780pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
781					     unsigned long size,
782					     pgprot_t prot)
783{
784	bool encrypted_prot;
785
786	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
787		return prot;
788
789	encrypted_prot = true;
790
791	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
792		if (early_memremap_is_setup_data(phys_addr, size) ||
793		    memremap_is_efi_data(phys_addr, size))
794			encrypted_prot = false;
795	}
796
797	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
798		encrypted_prot = false;
799
800	return encrypted_prot ? pgprot_encrypted(prot)
801			      : pgprot_decrypted(prot);
802}
803
804bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
805{
806	return arch_memremap_can_ram_remap(phys_addr, size, 0);
807}
808
 
809/* Remap memory with encryption */
810void __init *early_memremap_encrypted(resource_size_t phys_addr,
811				      unsigned long size)
812{
813	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
814}
815
816/*
817 * Remap memory with encryption and write-protected - cannot be called
818 * before pat_init() is called
819 */
820void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
821					 unsigned long size)
822{
823	if (!x86_has_pat_wp())
 
824		return NULL;
 
825	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
826}
827
828/* Remap memory without encryption */
829void __init *early_memremap_decrypted(resource_size_t phys_addr,
830				      unsigned long size)
831{
832	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
833}
834
835/*
836 * Remap memory without encryption and write-protected - cannot be called
837 * before pat_init() is called
838 */
839void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
840					 unsigned long size)
841{
842	if (!x86_has_pat_wp())
 
843		return NULL;
 
844	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
845}
846#endif	/* CONFIG_AMD_MEM_ENCRYPT */
847
848static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
849
850static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
851{
852	/* Don't assume we're using swapper_pg_dir at this point */
853	pgd_t *base = __va(read_cr3_pa());
854	pgd_t *pgd = &base[pgd_index(addr)];
855	p4d_t *p4d = p4d_offset(pgd, addr);
856	pud_t *pud = pud_offset(p4d, addr);
857	pmd_t *pmd = pmd_offset(pud, addr);
858
859	return pmd;
860}
861
862static inline pte_t * __init early_ioremap_pte(unsigned long addr)
863{
864	return &bm_pte[pte_index(addr)];
865}
866
867bool __init is_early_ioremap_ptep(pte_t *ptep)
868{
869	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
870}
871
872void __init early_ioremap_init(void)
873{
874	pmd_t *pmd;
875
876#ifdef CONFIG_X86_64
877	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
878#else
879	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
880#endif
881
882	early_ioremap_setup();
883
884	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
885	memset(bm_pte, 0, sizeof(bm_pte));
886	pmd_populate_kernel(&init_mm, pmd, bm_pte);
887
888	/*
889	 * The boot-ioremap range spans multiple pmds, for which
890	 * we are not prepared:
891	 */
892#define __FIXADDR_TOP (-PAGE_SIZE)
893	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
894		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
895#undef __FIXADDR_TOP
896	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
897		WARN_ON(1);
898		printk(KERN_WARNING "pmd %p != %p\n",
899		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
900		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
901			fix_to_virt(FIX_BTMAP_BEGIN));
902		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
903			fix_to_virt(FIX_BTMAP_END));
904
905		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
906		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
907		       FIX_BTMAP_BEGIN);
908	}
909}
910
911void __init __early_set_fixmap(enum fixed_addresses idx,
912			       phys_addr_t phys, pgprot_t flags)
913{
914	unsigned long addr = __fix_to_virt(idx);
915	pte_t *pte;
916
917	if (idx >= __end_of_fixed_addresses) {
918		BUG();
919		return;
920	}
921	pte = early_ioremap_pte(addr);
922
923	/* Sanitize 'prot' against any unsupported bits: */
924	pgprot_val(flags) &= __supported_pte_mask;
925
926	if (pgprot_val(flags))
927		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
928	else
929		pte_clear(&init_mm, addr, pte);
930	flush_tlb_one_kernel(addr);
931}
v4.17
 
  1/*
  2 * Re-map IO memory to kernel address space so that we can access it.
  3 * This is needed for high PCI addresses that aren't mapped in the
  4 * 640k-1MB IO memory area on PC's
  5 *
  6 * (C) Copyright 1995 1996 Linus Torvalds
  7 */
  8
  9#include <linux/bootmem.h>
 10#include <linux/init.h>
 11#include <linux/io.h>
 12#include <linux/ioport.h>
 13#include <linux/slab.h>
 14#include <linux/vmalloc.h>
 15#include <linux/mmiotrace.h>
 16#include <linux/mem_encrypt.h>
 17#include <linux/efi.h>
 
 
 18
 19#include <asm/set_memory.h>
 20#include <asm/e820/api.h>
 
 21#include <asm/fixmap.h>
 22#include <asm/pgtable.h>
 23#include <asm/tlbflush.h>
 24#include <asm/pgalloc.h>
 25#include <asm/pat.h>
 26#include <asm/setup.h>
 27
 28#include "physaddr.h"
 29
 30struct ioremap_mem_flags {
 31	bool system_ram;
 32	bool desc_other;
 
 
 33};
 34
 35/*
 36 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 37 * conflicts.
 38 */
 39int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 40			enum page_cache_mode pcm)
 41{
 42	unsigned long nrpages = size >> PAGE_SHIFT;
 43	int err;
 44
 45	switch (pcm) {
 46	case _PAGE_CACHE_MODE_UC:
 47	default:
 48		err = _set_memory_uc(vaddr, nrpages);
 49		break;
 50	case _PAGE_CACHE_MODE_WC:
 51		err = _set_memory_wc(vaddr, nrpages);
 52		break;
 53	case _PAGE_CACHE_MODE_WT:
 54		err = _set_memory_wt(vaddr, nrpages);
 55		break;
 56	case _PAGE_CACHE_MODE_WB:
 57		err = _set_memory_wb(vaddr, nrpages);
 58		break;
 59	}
 60
 61	return err;
 62}
 63
 64static bool __ioremap_check_ram(struct resource *res)
 
 65{
 66	unsigned long start_pfn, stop_pfn;
 67	unsigned long i;
 68
 69	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 70		return false;
 71
 72	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 73	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 74	if (stop_pfn > start_pfn) {
 75		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 76			if (pfn_valid(start_pfn + i) &&
 77			    !PageReserved(pfn_to_page(start_pfn + i)))
 78				return true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 79	}
 80
 81	return false;
 82}
 83
 84static int __ioremap_check_desc_other(struct resource *res)
 
 
 
 
 85{
 86	return (res->desc != IORES_DESC_NONE);
 
 
 
 
 
 
 
 
 
 87}
 88
 89static int __ioremap_res_check(struct resource *res, void *arg)
 90{
 91	struct ioremap_mem_flags *flags = arg;
 92
 93	if (!flags->system_ram)
 94		flags->system_ram = __ioremap_check_ram(res);
 95
 96	if (!flags->desc_other)
 97		flags->desc_other = __ioremap_check_desc_other(res);
 98
 99	return flags->system_ram && flags->desc_other;
 
100}
101
102/*
103 * To avoid multiple resource walks, this function walks resources marked as
104 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
105 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
 
 
 
106 */
107static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
108				struct ioremap_mem_flags *flags)
109{
110	u64 start, end;
111
112	start = (u64)addr;
113	end = start + size - 1;
114	memset(flags, 0, sizeof(*flags));
115
116	walk_mem_res(start, end, flags, __ioremap_res_check);
 
 
117}
118
119/*
120 * Remap an arbitrary physical address space into the kernel virtual
121 * address space. It transparently creates kernel huge I/O mapping when
122 * the physical address is aligned by a huge page size (1GB or 2MB) and
123 * the requested size is at least the huge page size.
124 *
125 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
126 * Therefore, the mapping code falls back to use a smaller page toward 4KB
127 * when a mapping range is covered by non-WB type of MTRRs.
128 *
129 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
130 * have to convert them into an offset in a page-aligned mapping, but the
131 * caller shouldn't need to know that small detail.
132 */
133static void __iomem *__ioremap_caller(resource_size_t phys_addr,
134		unsigned long size, enum page_cache_mode pcm, void *caller)
 
135{
136	unsigned long offset, vaddr;
137	resource_size_t last_addr;
138	const resource_size_t unaligned_phys_addr = phys_addr;
139	const unsigned long unaligned_size = size;
140	struct ioremap_mem_flags mem_flags;
141	struct vm_struct *area;
142	enum page_cache_mode new_pcm;
143	pgprot_t prot;
144	int retval;
145	void __iomem *ret_addr;
146
147	/* Don't allow wraparound or zero size */
148	last_addr = phys_addr + size - 1;
149	if (!size || last_addr < phys_addr)
150		return NULL;
151
152	if (!phys_addr_valid(phys_addr)) {
153		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
154		       (unsigned long long)phys_addr);
155		WARN_ON_ONCE(1);
156		return NULL;
157	}
158
159	__ioremap_check_mem(phys_addr, size, &mem_flags);
160
161	/*
162	 * Don't allow anybody to remap normal RAM that we're using..
163	 */
164	if (mem_flags.system_ram) {
165		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
166			  &phys_addr, &last_addr);
167		return NULL;
168	}
169
170	/*
171	 * Mappings have to be page-aligned
172	 */
173	offset = phys_addr & ~PAGE_MASK;
 
 
 
 
 
 
 
174	phys_addr &= PHYSICAL_PAGE_MASK;
175	size = PAGE_ALIGN(last_addr+1) - phys_addr;
176
177	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
178						pcm, &new_pcm);
179	if (retval) {
180		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
181		return NULL;
182	}
183
184	if (pcm != new_pcm) {
185		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
186			printk(KERN_ERR
187		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
188				(unsigned long long)phys_addr,
189				(unsigned long long)(phys_addr + size),
190				pcm, new_pcm);
191			goto err_free_memtype;
192		}
193		pcm = new_pcm;
194	}
195
196	/*
197	 * If the page being mapped is in memory and SEV is active then
198	 * make sure the memory encryption attribute is enabled in the
199	 * resulting mapping.
 
 
 
200	 */
201	prot = PAGE_KERNEL_IO;
202	if (sev_active() && mem_flags.desc_other)
203		prot = pgprot_encrypted(prot);
 
 
204
205	switch (pcm) {
206	case _PAGE_CACHE_MODE_UC:
207	default:
208		prot = __pgprot(pgprot_val(prot) |
209				cachemode2protval(_PAGE_CACHE_MODE_UC));
210		break;
211	case _PAGE_CACHE_MODE_UC_MINUS:
212		prot = __pgprot(pgprot_val(prot) |
213				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
214		break;
215	case _PAGE_CACHE_MODE_WC:
216		prot = __pgprot(pgprot_val(prot) |
217				cachemode2protval(_PAGE_CACHE_MODE_WC));
218		break;
219	case _PAGE_CACHE_MODE_WT:
220		prot = __pgprot(pgprot_val(prot) |
221				cachemode2protval(_PAGE_CACHE_MODE_WT));
222		break;
223	case _PAGE_CACHE_MODE_WB:
224		break;
225	}
226
227	/*
228	 * Ok, go for it..
229	 */
230	area = get_vm_area_caller(size, VM_IOREMAP, caller);
231	if (!area)
232		goto err_free_memtype;
233	area->phys_addr = phys_addr;
234	vaddr = (unsigned long) area->addr;
235
236	if (kernel_map_sync_memtype(phys_addr, size, pcm))
237		goto err_free_area;
238
239	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
240		goto err_free_area;
241
242	ret_addr = (void __iomem *) (vaddr + offset);
243	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
244
245	/*
246	 * Check if the request spans more than any BAR in the iomem resource
247	 * tree.
248	 */
249	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
250		pr_warn("caller %pS mapping multiple BARs\n", caller);
251
252	return ret_addr;
253err_free_area:
254	free_vm_area(area);
255err_free_memtype:
256	free_memtype(phys_addr, phys_addr + size);
257	return NULL;
258}
259
260/**
261 * ioremap_nocache     -   map bus memory into CPU space
262 * @phys_addr:    bus address of the memory
263 * @size:      size of the resource to map
264 *
265 * ioremap_nocache performs a platform specific sequence of operations to
266 * make bus memory CPU accessible via the readb/readw/readl/writeb/
267 * writew/writel functions and the other mmio helpers. The returned
268 * address is not guaranteed to be usable directly as a virtual
269 * address.
270 *
271 * This version of ioremap ensures that the memory is marked uncachable
272 * on the CPU as well as honouring existing caching rules from things like
273 * the PCI bus. Note that there are other caches and buffers on many
274 * busses. In particular driver authors should read up on PCI writes
275 *
276 * It's useful if some control registers are in such an area and
277 * write combining or read caching is not desirable:
278 *
279 * Must be freed with iounmap.
280 */
281void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
282{
283	/*
284	 * Ideally, this should be:
285	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
286	 *
287	 * Till we fix all X drivers to use ioremap_wc(), we will use
288	 * UC MINUS. Drivers that are certain they need or can already
289	 * be converted over to strong UC can use ioremap_uc().
290	 */
291	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
292
293	return __ioremap_caller(phys_addr, size, pcm,
294				__builtin_return_address(0));
295}
296EXPORT_SYMBOL(ioremap_nocache);
297
298/**
299 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
300 * @phys_addr:    bus address of the memory
301 * @size:      size of the resource to map
302 *
303 * ioremap_uc performs a platform specific sequence of operations to
304 * make bus memory CPU accessible via the readb/readw/readl/writeb/
305 * writew/writel functions and the other mmio helpers. The returned
306 * address is not guaranteed to be usable directly as a virtual
307 * address.
308 *
309 * This version of ioremap ensures that the memory is marked with a strong
310 * preference as completely uncachable on the CPU when possible. For non-PAT
311 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
312 * systems this will set the PAT entry for the pages as strong UC.  This call
313 * will honor existing caching rules from things like the PCI bus. Note that
314 * there are other caches and buffers on many busses. In particular driver
315 * authors should read up on PCI writes.
316 *
317 * It's useful if some control registers are in such an area and
318 * write combining or read caching is not desirable:
319 *
320 * Must be freed with iounmap.
321 */
322void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
323{
324	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
325
326	return __ioremap_caller(phys_addr, size, pcm,
327				__builtin_return_address(0));
328}
329EXPORT_SYMBOL_GPL(ioremap_uc);
330
331/**
332 * ioremap_wc	-	map memory into CPU space write combined
333 * @phys_addr:	bus address of the memory
334 * @size:	size of the resource to map
335 *
336 * This version of ioremap ensures that the memory is marked write combining.
337 * Write combining allows faster writes to some hardware devices.
338 *
339 * Must be freed with iounmap.
340 */
341void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
342{
343	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
344					__builtin_return_address(0));
345}
346EXPORT_SYMBOL(ioremap_wc);
347
348/**
349 * ioremap_wt	-	map memory into CPU space write through
350 * @phys_addr:	bus address of the memory
351 * @size:	size of the resource to map
352 *
353 * This version of ioremap ensures that the memory is marked write through.
354 * Write through stores data into memory while keeping the cache up-to-date.
355 *
356 * Must be freed with iounmap.
357 */
358void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
359{
360	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
361					__builtin_return_address(0));
362}
363EXPORT_SYMBOL(ioremap_wt);
364
 
 
 
 
 
 
 
365void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
366{
367	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
368				__builtin_return_address(0));
369}
370EXPORT_SYMBOL(ioremap_cache);
371
372void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
373				unsigned long prot_val)
374{
375	return __ioremap_caller(phys_addr, size,
376				pgprot2cachemode(__pgprot(prot_val)),
377				__builtin_return_address(0));
378}
379EXPORT_SYMBOL(ioremap_prot);
380
381/**
382 * iounmap - Free a IO remapping
383 * @addr: virtual address from ioremap_*
384 *
385 * Caller must ensure there is only one unmapping for the same pointer.
386 */
387void iounmap(volatile void __iomem *addr)
388{
389	struct vm_struct *p, *o;
390
391	if ((void __force *)addr <= high_memory)
392		return;
393
394	/*
395	 * The PCI/ISA range special-casing was removed from __ioremap()
396	 * so this check, in theory, can be removed. However, there are
397	 * cases where iounmap() is called for addresses not obtained via
398	 * ioremap() (vga16fb for example). Add a warning so that these
399	 * cases can be caught and fixed.
400	 */
401	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
402	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
403		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
404		return;
405	}
406
407	mmiotrace_iounmap(addr);
408
409	addr = (volatile void __iomem *)
410		(PAGE_MASK & (unsigned long __force)addr);
411
412	/* Use the vm area unlocked, assuming the caller
413	   ensures there isn't another iounmap for the same address
414	   in parallel. Reuse of the virtual address is prevented by
415	   leaving it in the global lists until we're done with it.
416	   cpa takes care of the direct mappings. */
417	p = find_vm_area((void __force *)addr);
418
419	if (!p) {
420		printk(KERN_ERR "iounmap: bad address %p\n", addr);
421		dump_stack();
422		return;
423	}
424
425	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
 
 
426
427	/* Finally remove it */
428	o = remove_vm_area((void __force *)addr);
429	BUG_ON(p != o || o == NULL);
430	kfree(p);
431}
432EXPORT_SYMBOL(iounmap);
433
434int __init arch_ioremap_pud_supported(void)
435{
436#ifdef CONFIG_X86_64
437	return boot_cpu_has(X86_FEATURE_GBPAGES);
438#else
439	return 0;
440#endif
441}
442
443int __init arch_ioremap_pmd_supported(void)
444{
445	return boot_cpu_has(X86_FEATURE_PSE);
446}
447
448/*
449 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
450 * access
451 */
452void *xlate_dev_mem_ptr(phys_addr_t phys)
453{
454	unsigned long start  = phys &  PAGE_MASK;
455	unsigned long offset = phys & ~PAGE_MASK;
456	void *vaddr;
457
458	/* memremap() maps if RAM, otherwise falls back to ioremap() */
459	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
460
461	/* Only add the offset on success and return NULL if memremap() failed */
462	if (vaddr)
463		vaddr += offset;
464
465	return vaddr;
466}
467
468void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
469{
470	memunmap((void *)((unsigned long)addr & PAGE_MASK));
471}
472
 
473/*
474 * Examine the physical address to determine if it is an area of memory
475 * that should be mapped decrypted.  If the memory is not part of the
476 * kernel usable area it was accessed and created decrypted, so these
477 * areas should be mapped decrypted. And since the encryption key can
478 * change across reboots, persistent memory should also be mapped
479 * decrypted.
480 *
481 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
482 * only persistent memory should be mapped decrypted.
483 */
484static bool memremap_should_map_decrypted(resource_size_t phys_addr,
485					  unsigned long size)
486{
487	int is_pmem;
488
489	/*
490	 * Check if the address is part of a persistent memory region.
491	 * This check covers areas added by E820, EFI and ACPI.
492	 */
493	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
494				    IORES_DESC_PERSISTENT_MEMORY);
495	if (is_pmem != REGION_DISJOINT)
496		return true;
497
498	/*
499	 * Check if the non-volatile attribute is set for an EFI
500	 * reserved area.
501	 */
502	if (efi_enabled(EFI_BOOT)) {
503		switch (efi_mem_type(phys_addr)) {
504		case EFI_RESERVED_TYPE:
505			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
506				return true;
507			break;
508		default:
509			break;
510		}
511	}
512
513	/* Check if the address is outside kernel usable area */
514	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
515	case E820_TYPE_RESERVED:
516	case E820_TYPE_ACPI:
517	case E820_TYPE_NVS:
518	case E820_TYPE_UNUSABLE:
519		/* For SEV, these areas are encrypted */
520		if (sev_active())
521			break;
522		/* Fallthrough */
523
524	case E820_TYPE_PRAM:
525		return true;
526	default:
527		break;
528	}
529
530	return false;
531}
532
533/*
534 * Examine the physical address to determine if it is EFI data. Check
535 * it against the boot params structure and EFI tables and memory types.
536 */
537static bool memremap_is_efi_data(resource_size_t phys_addr,
538				 unsigned long size)
539{
540	u64 paddr;
541
542	/* Check if the address is part of EFI boot/runtime data */
543	if (!efi_enabled(EFI_BOOT))
544		return false;
545
546	paddr = boot_params.efi_info.efi_memmap_hi;
547	paddr <<= 32;
548	paddr |= boot_params.efi_info.efi_memmap;
549	if (phys_addr == paddr)
550		return true;
551
552	paddr = boot_params.efi_info.efi_systab_hi;
553	paddr <<= 32;
554	paddr |= boot_params.efi_info.efi_systab;
555	if (phys_addr == paddr)
556		return true;
557
558	if (efi_is_table_address(phys_addr))
559		return true;
560
561	switch (efi_mem_type(phys_addr)) {
562	case EFI_BOOT_SERVICES_DATA:
563	case EFI_RUNTIME_SERVICES_DATA:
564		return true;
565	default:
566		break;
567	}
568
569	return false;
570}
571
572/*
573 * Examine the physical address to determine if it is boot data by checking
574 * it against the boot params setup_data chain.
575 */
576static bool memremap_is_setup_data(resource_size_t phys_addr,
577				   unsigned long size)
578{
 
579	struct setup_data *data;
580	u64 paddr, paddr_next;
581
582	paddr = boot_params.hdr.setup_data;
583	while (paddr) {
584		unsigned int len;
585
586		if (phys_addr == paddr)
587			return true;
588
589		data = memremap(paddr, sizeof(*data),
590				MEMREMAP_WB | MEMREMAP_DEC);
 
 
 
 
591
592		paddr_next = data->next;
593		len = data->len;
594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
595		memunmap(data);
596
597		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
598			return true;
599
600		paddr = paddr_next;
601	}
602
603	return false;
604}
605
606/*
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain (early boot version).
609 */
610static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
611						unsigned long size)
612{
 
613	struct setup_data *data;
614	u64 paddr, paddr_next;
615
616	paddr = boot_params.hdr.setup_data;
617	while (paddr) {
618		unsigned int len;
619
620		if (phys_addr == paddr)
621			return true;
622
623		data = early_memremap_decrypted(paddr, sizeof(*data));
 
 
 
 
 
 
624
625		paddr_next = data->next;
626		len = data->len;
627
628		early_memunmap(data, sizeof(*data));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629
630		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
631			return true;
632
633		paddr = paddr_next;
634	}
635
636	return false;
637}
638
639/*
640 * Architecture function to determine if RAM remap is allowed. By default, a
641 * RAM remap will map the data as encrypted. Determine if a RAM remap should
642 * not be done so that the data will be mapped decrypted.
643 */
644bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
645				 unsigned long flags)
646{
647	if (!mem_encrypt_active())
648		return true;
649
650	if (flags & MEMREMAP_ENC)
651		return true;
652
653	if (flags & MEMREMAP_DEC)
654		return false;
655
656	if (sme_active()) {
657		if (memremap_is_setup_data(phys_addr, size) ||
658		    memremap_is_efi_data(phys_addr, size))
659			return false;
660	}
661
662	return !memremap_should_map_decrypted(phys_addr, size);
663}
664
665/*
666 * Architecture override of __weak function to adjust the protection attributes
667 * used when remapping memory. By default, early_memremap() will map the data
668 * as encrypted. Determine if an encrypted mapping should not be done and set
669 * the appropriate protection attributes.
670 */
671pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
672					     unsigned long size,
673					     pgprot_t prot)
674{
675	bool encrypted_prot;
676
677	if (!mem_encrypt_active())
678		return prot;
679
680	encrypted_prot = true;
681
682	if (sme_active()) {
683		if (early_memremap_is_setup_data(phys_addr, size) ||
684		    memremap_is_efi_data(phys_addr, size))
685			encrypted_prot = false;
686	}
687
688	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
689		encrypted_prot = false;
690
691	return encrypted_prot ? pgprot_encrypted(prot)
692			      : pgprot_decrypted(prot);
693}
694
695bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
696{
697	return arch_memremap_can_ram_remap(phys_addr, size, 0);
698}
699
700#ifdef CONFIG_ARCH_USE_MEMREMAP_PROT
701/* Remap memory with encryption */
702void __init *early_memremap_encrypted(resource_size_t phys_addr,
703				      unsigned long size)
704{
705	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
706}
707
708/*
709 * Remap memory with encryption and write-protected - cannot be called
710 * before pat_init() is called
711 */
712void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
713					 unsigned long size)
714{
715	/* Be sure the write-protect PAT entry is set for write-protect */
716	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
717		return NULL;
718
719	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
720}
721
722/* Remap memory without encryption */
723void __init *early_memremap_decrypted(resource_size_t phys_addr,
724				      unsigned long size)
725{
726	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
727}
728
729/*
730 * Remap memory without encryption and write-protected - cannot be called
731 * before pat_init() is called
732 */
733void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
734					 unsigned long size)
735{
736	/* Be sure the write-protect PAT entry is set for write-protect */
737	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
738		return NULL;
739
740	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
741}
742#endif	/* CONFIG_ARCH_USE_MEMREMAP_PROT */
743
744static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
745
746static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
747{
748	/* Don't assume we're using swapper_pg_dir at this point */
749	pgd_t *base = __va(read_cr3_pa());
750	pgd_t *pgd = &base[pgd_index(addr)];
751	p4d_t *p4d = p4d_offset(pgd, addr);
752	pud_t *pud = pud_offset(p4d, addr);
753	pmd_t *pmd = pmd_offset(pud, addr);
754
755	return pmd;
756}
757
758static inline pte_t * __init early_ioremap_pte(unsigned long addr)
759{
760	return &bm_pte[pte_index(addr)];
761}
762
763bool __init is_early_ioremap_ptep(pte_t *ptep)
764{
765	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
766}
767
768void __init early_ioremap_init(void)
769{
770	pmd_t *pmd;
771
772#ifdef CONFIG_X86_64
773	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
774#else
775	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
776#endif
777
778	early_ioremap_setup();
779
780	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
781	memset(bm_pte, 0, sizeof(bm_pte));
782	pmd_populate_kernel(&init_mm, pmd, bm_pte);
783
784	/*
785	 * The boot-ioremap range spans multiple pmds, for which
786	 * we are not prepared:
787	 */
788#define __FIXADDR_TOP (-PAGE_SIZE)
789	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
790		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
791#undef __FIXADDR_TOP
792	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
793		WARN_ON(1);
794		printk(KERN_WARNING "pmd %p != %p\n",
795		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
796		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
797			fix_to_virt(FIX_BTMAP_BEGIN));
798		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
799			fix_to_virt(FIX_BTMAP_END));
800
801		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
802		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
803		       FIX_BTMAP_BEGIN);
804	}
805}
806
807void __init __early_set_fixmap(enum fixed_addresses idx,
808			       phys_addr_t phys, pgprot_t flags)
809{
810	unsigned long addr = __fix_to_virt(idx);
811	pte_t *pte;
812
813	if (idx >= __end_of_fixed_addresses) {
814		BUG();
815		return;
816	}
817	pte = early_ioremap_pte(addr);
818
819	/* Sanitize 'prot' against any unsupported bits: */
820	pgprot_val(flags) &= __default_kernel_pte_mask;
821
822	if (pgprot_val(flags))
823		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
824	else
825		pte_clear(&init_mm, addr, pte);
826	__flush_tlb_one_kernel(addr);
827}