Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/io.h>
13#include <linux/ioport.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include <linux/mmiotrace.h>
17#include <linux/cc_platform.h>
18#include <linux/efi.h>
19#include <linux/pgtable.h>
20#include <linux/kmsan.h>
21
22#include <asm/set_memory.h>
23#include <asm/e820/api.h>
24#include <asm/efi.h>
25#include <asm/fixmap.h>
26#include <asm/tlbflush.h>
27#include <asm/pgalloc.h>
28#include <asm/memtype.h>
29#include <asm/setup.h>
30
31#include "physaddr.h"
32
33/*
34 * Descriptor controlling ioremap() behavior.
35 */
36struct ioremap_desc {
37 unsigned int flags;
38};
39
40/*
41 * Fix up the linear direct mapping of the kernel to avoid cache attribute
42 * conflicts.
43 */
44int ioremap_change_attr(unsigned long vaddr, unsigned long size,
45 enum page_cache_mode pcm)
46{
47 unsigned long nrpages = size >> PAGE_SHIFT;
48 int err;
49
50 switch (pcm) {
51 case _PAGE_CACHE_MODE_UC:
52 default:
53 err = _set_memory_uc(vaddr, nrpages);
54 break;
55 case _PAGE_CACHE_MODE_WC:
56 err = _set_memory_wc(vaddr, nrpages);
57 break;
58 case _PAGE_CACHE_MODE_WT:
59 err = _set_memory_wt(vaddr, nrpages);
60 break;
61 case _PAGE_CACHE_MODE_WB:
62 err = _set_memory_wb(vaddr, nrpages);
63 break;
64 }
65
66 return err;
67}
68
69/* Does the range (or a subset of) contain normal RAM? */
70static unsigned int __ioremap_check_ram(struct resource *res)
71{
72 unsigned long start_pfn, stop_pfn;
73 unsigned long i;
74
75 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
76 return 0;
77
78 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
79 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
80 if (stop_pfn > start_pfn) {
81 for (i = 0; i < (stop_pfn - start_pfn); ++i)
82 if (pfn_valid(start_pfn + i) &&
83 !PageReserved(pfn_to_page(start_pfn + i)))
84 return IORES_MAP_SYSTEM_RAM;
85 }
86
87 return 0;
88}
89
90/*
91 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
92 * there the whole memory is already encrypted.
93 */
94static unsigned int __ioremap_check_encrypted(struct resource *res)
95{
96 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
97 return 0;
98
99 switch (res->desc) {
100 case IORES_DESC_NONE:
101 case IORES_DESC_RESERVED:
102 break;
103 default:
104 return IORES_MAP_ENCRYPTED;
105 }
106
107 return 0;
108}
109
110/*
111 * The EFI runtime services data area is not covered by walk_mem_res(), but must
112 * be mapped encrypted when SEV is active.
113 */
114static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115{
116 if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
117 return;
118
119 if (!IS_ENABLED(CONFIG_EFI))
120 return;
121
122 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
123 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
124 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
125 desc->flags |= IORES_MAP_ENCRYPTED;
126}
127
128static int __ioremap_collect_map_flags(struct resource *res, void *arg)
129{
130 struct ioremap_desc *desc = arg;
131
132 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
133 desc->flags |= __ioremap_check_ram(res);
134
135 if (!(desc->flags & IORES_MAP_ENCRYPTED))
136 desc->flags |= __ioremap_check_encrypted(res);
137
138 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
139 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
140}
141
142/*
143 * To avoid multiple resource walks, this function walks resources marked as
144 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
145 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
146 *
147 * After that, deal with misc other ranges in __ioremap_check_other() which do
148 * not fall into the above category.
149 */
150static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
151 struct ioremap_desc *desc)
152{
153 u64 start, end;
154
155 start = (u64)addr;
156 end = start + size - 1;
157 memset(desc, 0, sizeof(struct ioremap_desc));
158
159 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
160
161 __ioremap_check_other(addr, desc);
162}
163
164/*
165 * Remap an arbitrary physical address space into the kernel virtual
166 * address space. It transparently creates kernel huge I/O mapping when
167 * the physical address is aligned by a huge page size (1GB or 2MB) and
168 * the requested size is at least the huge page size.
169 *
170 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
171 * Therefore, the mapping code falls back to use a smaller page toward 4KB
172 * when a mapping range is covered by non-WB type of MTRRs.
173 *
174 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
175 * have to convert them into an offset in a page-aligned mapping, but the
176 * caller shouldn't need to know that small detail.
177 */
178static void __iomem *
179__ioremap_caller(resource_size_t phys_addr, unsigned long size,
180 enum page_cache_mode pcm, void *caller, bool encrypted)
181{
182 unsigned long offset, vaddr;
183 resource_size_t last_addr;
184 const resource_size_t unaligned_phys_addr = phys_addr;
185 const unsigned long unaligned_size = size;
186 struct ioremap_desc io_desc;
187 struct vm_struct *area;
188 enum page_cache_mode new_pcm;
189 pgprot_t prot;
190 int retval;
191 void __iomem *ret_addr;
192
193 /* Don't allow wraparound or zero size */
194 last_addr = phys_addr + size - 1;
195 if (!size || last_addr < phys_addr)
196 return NULL;
197
198 if (!phys_addr_valid(phys_addr)) {
199 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
200 (unsigned long long)phys_addr);
201 WARN_ON_ONCE(1);
202 return NULL;
203 }
204
205 __ioremap_check_mem(phys_addr, size, &io_desc);
206
207 /*
208 * Don't allow anybody to remap normal RAM that we're using..
209 */
210 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
211 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
212 &phys_addr, &last_addr);
213 return NULL;
214 }
215
216 /*
217 * Mappings have to be page-aligned
218 */
219 offset = phys_addr & ~PAGE_MASK;
220 phys_addr &= PAGE_MASK;
221 size = PAGE_ALIGN(last_addr+1) - phys_addr;
222
223 /*
224 * Mask out any bits not part of the actual physical
225 * address, like memory encryption bits.
226 */
227 phys_addr &= PHYSICAL_PAGE_MASK;
228
229 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
230 pcm, &new_pcm);
231 if (retval) {
232 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
233 return NULL;
234 }
235
236 if (pcm != new_pcm) {
237 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
238 printk(KERN_ERR
239 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
240 (unsigned long long)phys_addr,
241 (unsigned long long)(phys_addr + size),
242 pcm, new_pcm);
243 goto err_free_memtype;
244 }
245 pcm = new_pcm;
246 }
247
248 /*
249 * If the page being mapped is in memory and SEV is active then
250 * make sure the memory encryption attribute is enabled in the
251 * resulting mapping.
252 * In TDX guests, memory is marked private by default. If encryption
253 * is not requested (using encrypted), explicitly set decrypt
254 * attribute in all IOREMAPPED memory.
255 */
256 prot = PAGE_KERNEL_IO;
257 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
258 prot = pgprot_encrypted(prot);
259 else
260 prot = pgprot_decrypted(prot);
261
262 switch (pcm) {
263 case _PAGE_CACHE_MODE_UC:
264 default:
265 prot = __pgprot(pgprot_val(prot) |
266 cachemode2protval(_PAGE_CACHE_MODE_UC));
267 break;
268 case _PAGE_CACHE_MODE_UC_MINUS:
269 prot = __pgprot(pgprot_val(prot) |
270 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
271 break;
272 case _PAGE_CACHE_MODE_WC:
273 prot = __pgprot(pgprot_val(prot) |
274 cachemode2protval(_PAGE_CACHE_MODE_WC));
275 break;
276 case _PAGE_CACHE_MODE_WT:
277 prot = __pgprot(pgprot_val(prot) |
278 cachemode2protval(_PAGE_CACHE_MODE_WT));
279 break;
280 case _PAGE_CACHE_MODE_WB:
281 break;
282 }
283
284 /*
285 * Ok, go for it..
286 */
287 area = get_vm_area_caller(size, VM_IOREMAP, caller);
288 if (!area)
289 goto err_free_memtype;
290 area->phys_addr = phys_addr;
291 vaddr = (unsigned long) area->addr;
292
293 if (memtype_kernel_map_sync(phys_addr, size, pcm))
294 goto err_free_area;
295
296 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
297 goto err_free_area;
298
299 ret_addr = (void __iomem *) (vaddr + offset);
300 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
301
302 /*
303 * Check if the request spans more than any BAR in the iomem resource
304 * tree.
305 */
306 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
307 pr_warn("caller %pS mapping multiple BARs\n", caller);
308
309 return ret_addr;
310err_free_area:
311 free_vm_area(area);
312err_free_memtype:
313 memtype_free(phys_addr, phys_addr + size);
314 return NULL;
315}
316
317/**
318 * ioremap - map bus memory into CPU space
319 * @phys_addr: bus address of the memory
320 * @size: size of the resource to map
321 *
322 * ioremap performs a platform specific sequence of operations to
323 * make bus memory CPU accessible via the readb/readw/readl/writeb/
324 * writew/writel functions and the other mmio helpers. The returned
325 * address is not guaranteed to be usable directly as a virtual
326 * address.
327 *
328 * This version of ioremap ensures that the memory is marked uncachable
329 * on the CPU as well as honouring existing caching rules from things like
330 * the PCI bus. Note that there are other caches and buffers on many
331 * busses. In particular driver authors should read up on PCI writes
332 *
333 * It's useful if some control registers are in such an area and
334 * write combining or read caching is not desirable:
335 *
336 * Must be freed with iounmap.
337 */
338void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
339{
340 /*
341 * Ideally, this should be:
342 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
343 *
344 * Till we fix all X drivers to use ioremap_wc(), we will use
345 * UC MINUS. Drivers that are certain they need or can already
346 * be converted over to strong UC can use ioremap_uc().
347 */
348 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
349
350 return __ioremap_caller(phys_addr, size, pcm,
351 __builtin_return_address(0), false);
352}
353EXPORT_SYMBOL(ioremap);
354
355/**
356 * ioremap_uc - map bus memory into CPU space as strongly uncachable
357 * @phys_addr: bus address of the memory
358 * @size: size of the resource to map
359 *
360 * ioremap_uc performs a platform specific sequence of operations to
361 * make bus memory CPU accessible via the readb/readw/readl/writeb/
362 * writew/writel functions and the other mmio helpers. The returned
363 * address is not guaranteed to be usable directly as a virtual
364 * address.
365 *
366 * This version of ioremap ensures that the memory is marked with a strong
367 * preference as completely uncachable on the CPU when possible. For non-PAT
368 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
369 * systems this will set the PAT entry for the pages as strong UC. This call
370 * will honor existing caching rules from things like the PCI bus. Note that
371 * there are other caches and buffers on many busses. In particular driver
372 * authors should read up on PCI writes.
373 *
374 * It's useful if some control registers are in such an area and
375 * write combining or read caching is not desirable:
376 *
377 * Must be freed with iounmap.
378 */
379void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
380{
381 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
382
383 return __ioremap_caller(phys_addr, size, pcm,
384 __builtin_return_address(0), false);
385}
386EXPORT_SYMBOL_GPL(ioremap_uc);
387
388/**
389 * ioremap_wc - map memory into CPU space write combined
390 * @phys_addr: bus address of the memory
391 * @size: size of the resource to map
392 *
393 * This version of ioremap ensures that the memory is marked write combining.
394 * Write combining allows faster writes to some hardware devices.
395 *
396 * Must be freed with iounmap.
397 */
398void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
399{
400 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
401 __builtin_return_address(0), false);
402}
403EXPORT_SYMBOL(ioremap_wc);
404
405/**
406 * ioremap_wt - map memory into CPU space write through
407 * @phys_addr: bus address of the memory
408 * @size: size of the resource to map
409 *
410 * This version of ioremap ensures that the memory is marked write through.
411 * Write through stores data into memory while keeping the cache up-to-date.
412 *
413 * Must be freed with iounmap.
414 */
415void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
416{
417 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
418 __builtin_return_address(0), false);
419}
420EXPORT_SYMBOL(ioremap_wt);
421
422void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
423{
424 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
425 __builtin_return_address(0), true);
426}
427EXPORT_SYMBOL(ioremap_encrypted);
428
429void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
430{
431 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
432 __builtin_return_address(0), false);
433}
434EXPORT_SYMBOL(ioremap_cache);
435
436void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
437 unsigned long prot_val)
438{
439 return __ioremap_caller(phys_addr, size,
440 pgprot2cachemode(__pgprot(prot_val)),
441 __builtin_return_address(0), false);
442}
443EXPORT_SYMBOL(ioremap_prot);
444
445/**
446 * iounmap - Free a IO remapping
447 * @addr: virtual address from ioremap_*
448 *
449 * Caller must ensure there is only one unmapping for the same pointer.
450 */
451void iounmap(volatile void __iomem *addr)
452{
453 struct vm_struct *p, *o;
454
455 if ((void __force *)addr <= high_memory)
456 return;
457
458 /*
459 * The PCI/ISA range special-casing was removed from __ioremap()
460 * so this check, in theory, can be removed. However, there are
461 * cases where iounmap() is called for addresses not obtained via
462 * ioremap() (vga16fb for example). Add a warning so that these
463 * cases can be caught and fixed.
464 */
465 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
466 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
467 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
468 return;
469 }
470
471 mmiotrace_iounmap(addr);
472
473 addr = (volatile void __iomem *)
474 (PAGE_MASK & (unsigned long __force)addr);
475
476 /* Use the vm area unlocked, assuming the caller
477 ensures there isn't another iounmap for the same address
478 in parallel. Reuse of the virtual address is prevented by
479 leaving it in the global lists until we're done with it.
480 cpa takes care of the direct mappings. */
481 p = find_vm_area((void __force *)addr);
482
483 if (!p) {
484 printk(KERN_ERR "iounmap: bad address %p\n", addr);
485 dump_stack();
486 return;
487 }
488
489 kmsan_iounmap_page_range((unsigned long)addr,
490 (unsigned long)addr + get_vm_area_size(p));
491 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
492
493 /* Finally remove it */
494 o = remove_vm_area((void __force *)addr);
495 BUG_ON(p != o || o == NULL);
496 kfree(p);
497}
498EXPORT_SYMBOL(iounmap);
499
500/*
501 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
502 * access
503 */
504void *xlate_dev_mem_ptr(phys_addr_t phys)
505{
506 unsigned long start = phys & PAGE_MASK;
507 unsigned long offset = phys & ~PAGE_MASK;
508 void *vaddr;
509
510 /* memremap() maps if RAM, otherwise falls back to ioremap() */
511 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
512
513 /* Only add the offset on success and return NULL if memremap() failed */
514 if (vaddr)
515 vaddr += offset;
516
517 return vaddr;
518}
519
520void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
521{
522 memunmap((void *)((unsigned long)addr & PAGE_MASK));
523}
524
525#ifdef CONFIG_AMD_MEM_ENCRYPT
526/*
527 * Examine the physical address to determine if it is an area of memory
528 * that should be mapped decrypted. If the memory is not part of the
529 * kernel usable area it was accessed and created decrypted, so these
530 * areas should be mapped decrypted. And since the encryption key can
531 * change across reboots, persistent memory should also be mapped
532 * decrypted.
533 *
534 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
535 * only persistent memory should be mapped decrypted.
536 */
537static bool memremap_should_map_decrypted(resource_size_t phys_addr,
538 unsigned long size)
539{
540 int is_pmem;
541
542 /*
543 * Check if the address is part of a persistent memory region.
544 * This check covers areas added by E820, EFI and ACPI.
545 */
546 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
547 IORES_DESC_PERSISTENT_MEMORY);
548 if (is_pmem != REGION_DISJOINT)
549 return true;
550
551 /*
552 * Check if the non-volatile attribute is set for an EFI
553 * reserved area.
554 */
555 if (efi_enabled(EFI_BOOT)) {
556 switch (efi_mem_type(phys_addr)) {
557 case EFI_RESERVED_TYPE:
558 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
559 return true;
560 break;
561 default:
562 break;
563 }
564 }
565
566 /* Check if the address is outside kernel usable area */
567 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
568 case E820_TYPE_RESERVED:
569 case E820_TYPE_ACPI:
570 case E820_TYPE_NVS:
571 case E820_TYPE_UNUSABLE:
572 /* For SEV, these areas are encrypted */
573 if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
574 break;
575 fallthrough;
576
577 case E820_TYPE_PRAM:
578 return true;
579 default:
580 break;
581 }
582
583 return false;
584}
585
586/*
587 * Examine the physical address to determine if it is EFI data. Check
588 * it against the boot params structure and EFI tables and memory types.
589 */
590static bool memremap_is_efi_data(resource_size_t phys_addr,
591 unsigned long size)
592{
593 u64 paddr;
594
595 /* Check if the address is part of EFI boot/runtime data */
596 if (!efi_enabled(EFI_BOOT))
597 return false;
598
599 paddr = boot_params.efi_info.efi_memmap_hi;
600 paddr <<= 32;
601 paddr |= boot_params.efi_info.efi_memmap;
602 if (phys_addr == paddr)
603 return true;
604
605 paddr = boot_params.efi_info.efi_systab_hi;
606 paddr <<= 32;
607 paddr |= boot_params.efi_info.efi_systab;
608 if (phys_addr == paddr)
609 return true;
610
611 if (efi_is_table_address(phys_addr))
612 return true;
613
614 switch (efi_mem_type(phys_addr)) {
615 case EFI_BOOT_SERVICES_DATA:
616 case EFI_RUNTIME_SERVICES_DATA:
617 return true;
618 default:
619 break;
620 }
621
622 return false;
623}
624
625/*
626 * Examine the physical address to determine if it is boot data by checking
627 * it against the boot params setup_data chain.
628 */
629static bool memremap_is_setup_data(resource_size_t phys_addr,
630 unsigned long size)
631{
632 struct setup_indirect *indirect;
633 struct setup_data *data;
634 u64 paddr, paddr_next;
635
636 paddr = boot_params.hdr.setup_data;
637 while (paddr) {
638 unsigned int len;
639
640 if (phys_addr == paddr)
641 return true;
642
643 data = memremap(paddr, sizeof(*data),
644 MEMREMAP_WB | MEMREMAP_DEC);
645 if (!data) {
646 pr_warn("failed to memremap setup_data entry\n");
647 return false;
648 }
649
650 paddr_next = data->next;
651 len = data->len;
652
653 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
654 memunmap(data);
655 return true;
656 }
657
658 if (data->type == SETUP_INDIRECT) {
659 memunmap(data);
660 data = memremap(paddr, sizeof(*data) + len,
661 MEMREMAP_WB | MEMREMAP_DEC);
662 if (!data) {
663 pr_warn("failed to memremap indirect setup_data\n");
664 return false;
665 }
666
667 indirect = (struct setup_indirect *)data->data;
668
669 if (indirect->type != SETUP_INDIRECT) {
670 paddr = indirect->addr;
671 len = indirect->len;
672 }
673 }
674
675 memunmap(data);
676
677 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
678 return true;
679
680 paddr = paddr_next;
681 }
682
683 return false;
684}
685
686/*
687 * Examine the physical address to determine if it is boot data by checking
688 * it against the boot params setup_data chain (early boot version).
689 */
690static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
691 unsigned long size)
692{
693 struct setup_indirect *indirect;
694 struct setup_data *data;
695 u64 paddr, paddr_next;
696
697 paddr = boot_params.hdr.setup_data;
698 while (paddr) {
699 unsigned int len, size;
700
701 if (phys_addr == paddr)
702 return true;
703
704 data = early_memremap_decrypted(paddr, sizeof(*data));
705 if (!data) {
706 pr_warn("failed to early memremap setup_data entry\n");
707 return false;
708 }
709
710 size = sizeof(*data);
711
712 paddr_next = data->next;
713 len = data->len;
714
715 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
716 early_memunmap(data, sizeof(*data));
717 return true;
718 }
719
720 if (data->type == SETUP_INDIRECT) {
721 size += len;
722 early_memunmap(data, sizeof(*data));
723 data = early_memremap_decrypted(paddr, size);
724 if (!data) {
725 pr_warn("failed to early memremap indirect setup_data\n");
726 return false;
727 }
728
729 indirect = (struct setup_indirect *)data->data;
730
731 if (indirect->type != SETUP_INDIRECT) {
732 paddr = indirect->addr;
733 len = indirect->len;
734 }
735 }
736
737 early_memunmap(data, size);
738
739 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
740 return true;
741
742 paddr = paddr_next;
743 }
744
745 return false;
746}
747
748/*
749 * Architecture function to determine if RAM remap is allowed. By default, a
750 * RAM remap will map the data as encrypted. Determine if a RAM remap should
751 * not be done so that the data will be mapped decrypted.
752 */
753bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
754 unsigned long flags)
755{
756 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
757 return true;
758
759 if (flags & MEMREMAP_ENC)
760 return true;
761
762 if (flags & MEMREMAP_DEC)
763 return false;
764
765 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
766 if (memremap_is_setup_data(phys_addr, size) ||
767 memremap_is_efi_data(phys_addr, size))
768 return false;
769 }
770
771 return !memremap_should_map_decrypted(phys_addr, size);
772}
773
774/*
775 * Architecture override of __weak function to adjust the protection attributes
776 * used when remapping memory. By default, early_memremap() will map the data
777 * as encrypted. Determine if an encrypted mapping should not be done and set
778 * the appropriate protection attributes.
779 */
780pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
781 unsigned long size,
782 pgprot_t prot)
783{
784 bool encrypted_prot;
785
786 if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
787 return prot;
788
789 encrypted_prot = true;
790
791 if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
792 if (early_memremap_is_setup_data(phys_addr, size) ||
793 memremap_is_efi_data(phys_addr, size))
794 encrypted_prot = false;
795 }
796
797 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
798 encrypted_prot = false;
799
800 return encrypted_prot ? pgprot_encrypted(prot)
801 : pgprot_decrypted(prot);
802}
803
804bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
805{
806 return arch_memremap_can_ram_remap(phys_addr, size, 0);
807}
808
809/* Remap memory with encryption */
810void __init *early_memremap_encrypted(resource_size_t phys_addr,
811 unsigned long size)
812{
813 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
814}
815
816/*
817 * Remap memory with encryption and write-protected - cannot be called
818 * before pat_init() is called
819 */
820void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
821 unsigned long size)
822{
823 if (!x86_has_pat_wp())
824 return NULL;
825 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
826}
827
828/* Remap memory without encryption */
829void __init *early_memremap_decrypted(resource_size_t phys_addr,
830 unsigned long size)
831{
832 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
833}
834
835/*
836 * Remap memory without encryption and write-protected - cannot be called
837 * before pat_init() is called
838 */
839void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
840 unsigned long size)
841{
842 if (!x86_has_pat_wp())
843 return NULL;
844 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
845}
846#endif /* CONFIG_AMD_MEM_ENCRYPT */
847
848static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
849
850static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
851{
852 /* Don't assume we're using swapper_pg_dir at this point */
853 pgd_t *base = __va(read_cr3_pa());
854 pgd_t *pgd = &base[pgd_index(addr)];
855 p4d_t *p4d = p4d_offset(pgd, addr);
856 pud_t *pud = pud_offset(p4d, addr);
857 pmd_t *pmd = pmd_offset(pud, addr);
858
859 return pmd;
860}
861
862static inline pte_t * __init early_ioremap_pte(unsigned long addr)
863{
864 return &bm_pte[pte_index(addr)];
865}
866
867bool __init is_early_ioremap_ptep(pte_t *ptep)
868{
869 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
870}
871
872void __init early_ioremap_init(void)
873{
874 pmd_t *pmd;
875
876#ifdef CONFIG_X86_64
877 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
878#else
879 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
880#endif
881
882 early_ioremap_setup();
883
884 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
885 memset(bm_pte, 0, sizeof(bm_pte));
886 pmd_populate_kernel(&init_mm, pmd, bm_pte);
887
888 /*
889 * The boot-ioremap range spans multiple pmds, for which
890 * we are not prepared:
891 */
892#define __FIXADDR_TOP (-PAGE_SIZE)
893 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
894 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
895#undef __FIXADDR_TOP
896 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
897 WARN_ON(1);
898 printk(KERN_WARNING "pmd %p != %p\n",
899 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
900 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
901 fix_to_virt(FIX_BTMAP_BEGIN));
902 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
903 fix_to_virt(FIX_BTMAP_END));
904
905 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
906 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
907 FIX_BTMAP_BEGIN);
908 }
909}
910
911void __init __early_set_fixmap(enum fixed_addresses idx,
912 phys_addr_t phys, pgprot_t flags)
913{
914 unsigned long addr = __fix_to_virt(idx);
915 pte_t *pte;
916
917 if (idx >= __end_of_fixed_addresses) {
918 BUG();
919 return;
920 }
921 pte = early_ioremap_pte(addr);
922
923 /* Sanitize 'prot' against any unsupported bits: */
924 pgprot_val(flags) &= __supported_pte_mask;
925
926 if (pgprot_val(flags))
927 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
928 else
929 pte_clear(&init_mm, addr, pte);
930 flush_tlb_one_kernel(addr);
931}
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Re-map IO memory to kernel address space so that we can access it.
4 * This is needed for high PCI addresses that aren't mapped in the
5 * 640k-1MB IO memory area on PC's
6 *
7 * (C) Copyright 1995 1996 Linus Torvalds
8 */
9
10#include <linux/memblock.h>
11#include <linux/init.h>
12#include <linux/io.h>
13#include <linux/ioport.h>
14#include <linux/slab.h>
15#include <linux/vmalloc.h>
16#include <linux/mmiotrace.h>
17#include <linux/mem_encrypt.h>
18#include <linux/efi.h>
19#include <linux/pgtable.h>
20
21#include <asm/set_memory.h>
22#include <asm/e820/api.h>
23#include <asm/efi.h>
24#include <asm/fixmap.h>
25#include <asm/tlbflush.h>
26#include <asm/pgalloc.h>
27#include <asm/memtype.h>
28#include <asm/setup.h>
29
30#include "physaddr.h"
31
32/*
33 * Descriptor controlling ioremap() behavior.
34 */
35struct ioremap_desc {
36 unsigned int flags;
37};
38
39/*
40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
41 * conflicts.
42 */
43int ioremap_change_attr(unsigned long vaddr, unsigned long size,
44 enum page_cache_mode pcm)
45{
46 unsigned long nrpages = size >> PAGE_SHIFT;
47 int err;
48
49 switch (pcm) {
50 case _PAGE_CACHE_MODE_UC:
51 default:
52 err = _set_memory_uc(vaddr, nrpages);
53 break;
54 case _PAGE_CACHE_MODE_WC:
55 err = _set_memory_wc(vaddr, nrpages);
56 break;
57 case _PAGE_CACHE_MODE_WT:
58 err = _set_memory_wt(vaddr, nrpages);
59 break;
60 case _PAGE_CACHE_MODE_WB:
61 err = _set_memory_wb(vaddr, nrpages);
62 break;
63 }
64
65 return err;
66}
67
68/* Does the range (or a subset of) contain normal RAM? */
69static unsigned int __ioremap_check_ram(struct resource *res)
70{
71 unsigned long start_pfn, stop_pfn;
72 unsigned long i;
73
74 if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
75 return 0;
76
77 start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
78 stop_pfn = (res->end + 1) >> PAGE_SHIFT;
79 if (stop_pfn > start_pfn) {
80 for (i = 0; i < (stop_pfn - start_pfn); ++i)
81 if (pfn_valid(start_pfn + i) &&
82 !PageReserved(pfn_to_page(start_pfn + i)))
83 return IORES_MAP_SYSTEM_RAM;
84 }
85
86 return 0;
87}
88
89/*
90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
91 * there the whole memory is already encrypted.
92 */
93static unsigned int __ioremap_check_encrypted(struct resource *res)
94{
95 if (!sev_active())
96 return 0;
97
98 switch (res->desc) {
99 case IORES_DESC_NONE:
100 case IORES_DESC_RESERVED:
101 break;
102 default:
103 return IORES_MAP_ENCRYPTED;
104 }
105
106 return 0;
107}
108
109/*
110 * The EFI runtime services data area is not covered by walk_mem_res(), but must
111 * be mapped encrypted when SEV is active.
112 */
113static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
114{
115 if (!sev_active())
116 return;
117
118 if (!IS_ENABLED(CONFIG_EFI))
119 return;
120
121 if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
122 (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
123 efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
124 desc->flags |= IORES_MAP_ENCRYPTED;
125}
126
127static int __ioremap_collect_map_flags(struct resource *res, void *arg)
128{
129 struct ioremap_desc *desc = arg;
130
131 if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
132 desc->flags |= __ioremap_check_ram(res);
133
134 if (!(desc->flags & IORES_MAP_ENCRYPTED))
135 desc->flags |= __ioremap_check_encrypted(res);
136
137 return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
138 (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
139}
140
141/*
142 * To avoid multiple resource walks, this function walks resources marked as
143 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
144 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
145 *
146 * After that, deal with misc other ranges in __ioremap_check_other() which do
147 * not fall into the above category.
148 */
149static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
150 struct ioremap_desc *desc)
151{
152 u64 start, end;
153
154 start = (u64)addr;
155 end = start + size - 1;
156 memset(desc, 0, sizeof(struct ioremap_desc));
157
158 walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
159
160 __ioremap_check_other(addr, desc);
161}
162
163/*
164 * Remap an arbitrary physical address space into the kernel virtual
165 * address space. It transparently creates kernel huge I/O mapping when
166 * the physical address is aligned by a huge page size (1GB or 2MB) and
167 * the requested size is at least the huge page size.
168 *
169 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
170 * Therefore, the mapping code falls back to use a smaller page toward 4KB
171 * when a mapping range is covered by non-WB type of MTRRs.
172 *
173 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
174 * have to convert them into an offset in a page-aligned mapping, but the
175 * caller shouldn't need to know that small detail.
176 */
177static void __iomem *
178__ioremap_caller(resource_size_t phys_addr, unsigned long size,
179 enum page_cache_mode pcm, void *caller, bool encrypted)
180{
181 unsigned long offset, vaddr;
182 resource_size_t last_addr;
183 const resource_size_t unaligned_phys_addr = phys_addr;
184 const unsigned long unaligned_size = size;
185 struct ioremap_desc io_desc;
186 struct vm_struct *area;
187 enum page_cache_mode new_pcm;
188 pgprot_t prot;
189 int retval;
190 void __iomem *ret_addr;
191
192 /* Don't allow wraparound or zero size */
193 last_addr = phys_addr + size - 1;
194 if (!size || last_addr < phys_addr)
195 return NULL;
196
197 if (!phys_addr_valid(phys_addr)) {
198 printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
199 (unsigned long long)phys_addr);
200 WARN_ON_ONCE(1);
201 return NULL;
202 }
203
204 __ioremap_check_mem(phys_addr, size, &io_desc);
205
206 /*
207 * Don't allow anybody to remap normal RAM that we're using..
208 */
209 if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
210 WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
211 &phys_addr, &last_addr);
212 return NULL;
213 }
214
215 /*
216 * Mappings have to be page-aligned
217 */
218 offset = phys_addr & ~PAGE_MASK;
219 phys_addr &= PHYSICAL_PAGE_MASK;
220 size = PAGE_ALIGN(last_addr+1) - phys_addr;
221
222 retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
223 pcm, &new_pcm);
224 if (retval) {
225 printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
226 return NULL;
227 }
228
229 if (pcm != new_pcm) {
230 if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
231 printk(KERN_ERR
232 "ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
233 (unsigned long long)phys_addr,
234 (unsigned long long)(phys_addr + size),
235 pcm, new_pcm);
236 goto err_free_memtype;
237 }
238 pcm = new_pcm;
239 }
240
241 /*
242 * If the page being mapped is in memory and SEV is active then
243 * make sure the memory encryption attribute is enabled in the
244 * resulting mapping.
245 */
246 prot = PAGE_KERNEL_IO;
247 if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
248 prot = pgprot_encrypted(prot);
249
250 switch (pcm) {
251 case _PAGE_CACHE_MODE_UC:
252 default:
253 prot = __pgprot(pgprot_val(prot) |
254 cachemode2protval(_PAGE_CACHE_MODE_UC));
255 break;
256 case _PAGE_CACHE_MODE_UC_MINUS:
257 prot = __pgprot(pgprot_val(prot) |
258 cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
259 break;
260 case _PAGE_CACHE_MODE_WC:
261 prot = __pgprot(pgprot_val(prot) |
262 cachemode2protval(_PAGE_CACHE_MODE_WC));
263 break;
264 case _PAGE_CACHE_MODE_WT:
265 prot = __pgprot(pgprot_val(prot) |
266 cachemode2protval(_PAGE_CACHE_MODE_WT));
267 break;
268 case _PAGE_CACHE_MODE_WB:
269 break;
270 }
271
272 /*
273 * Ok, go for it..
274 */
275 area = get_vm_area_caller(size, VM_IOREMAP, caller);
276 if (!area)
277 goto err_free_memtype;
278 area->phys_addr = phys_addr;
279 vaddr = (unsigned long) area->addr;
280
281 if (memtype_kernel_map_sync(phys_addr, size, pcm))
282 goto err_free_area;
283
284 if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
285 goto err_free_area;
286
287 ret_addr = (void __iomem *) (vaddr + offset);
288 mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
289
290 /*
291 * Check if the request spans more than any BAR in the iomem resource
292 * tree.
293 */
294 if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
295 pr_warn("caller %pS mapping multiple BARs\n", caller);
296
297 return ret_addr;
298err_free_area:
299 free_vm_area(area);
300err_free_memtype:
301 memtype_free(phys_addr, phys_addr + size);
302 return NULL;
303}
304
305/**
306 * ioremap - map bus memory into CPU space
307 * @phys_addr: bus address of the memory
308 * @size: size of the resource to map
309 *
310 * ioremap performs a platform specific sequence of operations to
311 * make bus memory CPU accessible via the readb/readw/readl/writeb/
312 * writew/writel functions and the other mmio helpers. The returned
313 * address is not guaranteed to be usable directly as a virtual
314 * address.
315 *
316 * This version of ioremap ensures that the memory is marked uncachable
317 * on the CPU as well as honouring existing caching rules from things like
318 * the PCI bus. Note that there are other caches and buffers on many
319 * busses. In particular driver authors should read up on PCI writes
320 *
321 * It's useful if some control registers are in such an area and
322 * write combining or read caching is not desirable:
323 *
324 * Must be freed with iounmap.
325 */
326void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
327{
328 /*
329 * Ideally, this should be:
330 * pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
331 *
332 * Till we fix all X drivers to use ioremap_wc(), we will use
333 * UC MINUS. Drivers that are certain they need or can already
334 * be converted over to strong UC can use ioremap_uc().
335 */
336 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
337
338 return __ioremap_caller(phys_addr, size, pcm,
339 __builtin_return_address(0), false);
340}
341EXPORT_SYMBOL(ioremap);
342
343/**
344 * ioremap_uc - map bus memory into CPU space as strongly uncachable
345 * @phys_addr: bus address of the memory
346 * @size: size of the resource to map
347 *
348 * ioremap_uc performs a platform specific sequence of operations to
349 * make bus memory CPU accessible via the readb/readw/readl/writeb/
350 * writew/writel functions and the other mmio helpers. The returned
351 * address is not guaranteed to be usable directly as a virtual
352 * address.
353 *
354 * This version of ioremap ensures that the memory is marked with a strong
355 * preference as completely uncachable on the CPU when possible. For non-PAT
356 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
357 * systems this will set the PAT entry for the pages as strong UC. This call
358 * will honor existing caching rules from things like the PCI bus. Note that
359 * there are other caches and buffers on many busses. In particular driver
360 * authors should read up on PCI writes.
361 *
362 * It's useful if some control registers are in such an area and
363 * write combining or read caching is not desirable:
364 *
365 * Must be freed with iounmap.
366 */
367void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
368{
369 enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
370
371 return __ioremap_caller(phys_addr, size, pcm,
372 __builtin_return_address(0), false);
373}
374EXPORT_SYMBOL_GPL(ioremap_uc);
375
376/**
377 * ioremap_wc - map memory into CPU space write combined
378 * @phys_addr: bus address of the memory
379 * @size: size of the resource to map
380 *
381 * This version of ioremap ensures that the memory is marked write combining.
382 * Write combining allows faster writes to some hardware devices.
383 *
384 * Must be freed with iounmap.
385 */
386void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
387{
388 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
389 __builtin_return_address(0), false);
390}
391EXPORT_SYMBOL(ioremap_wc);
392
393/**
394 * ioremap_wt - map memory into CPU space write through
395 * @phys_addr: bus address of the memory
396 * @size: size of the resource to map
397 *
398 * This version of ioremap ensures that the memory is marked write through.
399 * Write through stores data into memory while keeping the cache up-to-date.
400 *
401 * Must be freed with iounmap.
402 */
403void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
404{
405 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
406 __builtin_return_address(0), false);
407}
408EXPORT_SYMBOL(ioremap_wt);
409
410void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
411{
412 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
413 __builtin_return_address(0), true);
414}
415EXPORT_SYMBOL(ioremap_encrypted);
416
417void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
418{
419 return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
420 __builtin_return_address(0), false);
421}
422EXPORT_SYMBOL(ioremap_cache);
423
424void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
425 unsigned long prot_val)
426{
427 return __ioremap_caller(phys_addr, size,
428 pgprot2cachemode(__pgprot(prot_val)),
429 __builtin_return_address(0), false);
430}
431EXPORT_SYMBOL(ioremap_prot);
432
433/**
434 * iounmap - Free a IO remapping
435 * @addr: virtual address from ioremap_*
436 *
437 * Caller must ensure there is only one unmapping for the same pointer.
438 */
439void iounmap(volatile void __iomem *addr)
440{
441 struct vm_struct *p, *o;
442
443 if ((void __force *)addr <= high_memory)
444 return;
445
446 /*
447 * The PCI/ISA range special-casing was removed from __ioremap()
448 * so this check, in theory, can be removed. However, there are
449 * cases where iounmap() is called for addresses not obtained via
450 * ioremap() (vga16fb for example). Add a warning so that these
451 * cases can be caught and fixed.
452 */
453 if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
454 (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
455 WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
456 return;
457 }
458
459 mmiotrace_iounmap(addr);
460
461 addr = (volatile void __iomem *)
462 (PAGE_MASK & (unsigned long __force)addr);
463
464 /* Use the vm area unlocked, assuming the caller
465 ensures there isn't another iounmap for the same address
466 in parallel. Reuse of the virtual address is prevented by
467 leaving it in the global lists until we're done with it.
468 cpa takes care of the direct mappings. */
469 p = find_vm_area((void __force *)addr);
470
471 if (!p) {
472 printk(KERN_ERR "iounmap: bad address %p\n", addr);
473 dump_stack();
474 return;
475 }
476
477 memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
478
479 /* Finally remove it */
480 o = remove_vm_area((void __force *)addr);
481 BUG_ON(p != o || o == NULL);
482 kfree(p);
483}
484EXPORT_SYMBOL(iounmap);
485
486/*
487 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
488 * access
489 */
490void *xlate_dev_mem_ptr(phys_addr_t phys)
491{
492 unsigned long start = phys & PAGE_MASK;
493 unsigned long offset = phys & ~PAGE_MASK;
494 void *vaddr;
495
496 /* memremap() maps if RAM, otherwise falls back to ioremap() */
497 vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
498
499 /* Only add the offset on success and return NULL if memremap() failed */
500 if (vaddr)
501 vaddr += offset;
502
503 return vaddr;
504}
505
506void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
507{
508 memunmap((void *)((unsigned long)addr & PAGE_MASK));
509}
510
511/*
512 * Examine the physical address to determine if it is an area of memory
513 * that should be mapped decrypted. If the memory is not part of the
514 * kernel usable area it was accessed and created decrypted, so these
515 * areas should be mapped decrypted. And since the encryption key can
516 * change across reboots, persistent memory should also be mapped
517 * decrypted.
518 *
519 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
520 * only persistent memory should be mapped decrypted.
521 */
522static bool memremap_should_map_decrypted(resource_size_t phys_addr,
523 unsigned long size)
524{
525 int is_pmem;
526
527 /*
528 * Check if the address is part of a persistent memory region.
529 * This check covers areas added by E820, EFI and ACPI.
530 */
531 is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
532 IORES_DESC_PERSISTENT_MEMORY);
533 if (is_pmem != REGION_DISJOINT)
534 return true;
535
536 /*
537 * Check if the non-volatile attribute is set for an EFI
538 * reserved area.
539 */
540 if (efi_enabled(EFI_BOOT)) {
541 switch (efi_mem_type(phys_addr)) {
542 case EFI_RESERVED_TYPE:
543 if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
544 return true;
545 break;
546 default:
547 break;
548 }
549 }
550
551 /* Check if the address is outside kernel usable area */
552 switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
553 case E820_TYPE_RESERVED:
554 case E820_TYPE_ACPI:
555 case E820_TYPE_NVS:
556 case E820_TYPE_UNUSABLE:
557 /* For SEV, these areas are encrypted */
558 if (sev_active())
559 break;
560 fallthrough;
561
562 case E820_TYPE_PRAM:
563 return true;
564 default:
565 break;
566 }
567
568 return false;
569}
570
571/*
572 * Examine the physical address to determine if it is EFI data. Check
573 * it against the boot params structure and EFI tables and memory types.
574 */
575static bool memremap_is_efi_data(resource_size_t phys_addr,
576 unsigned long size)
577{
578 u64 paddr;
579
580 /* Check if the address is part of EFI boot/runtime data */
581 if (!efi_enabled(EFI_BOOT))
582 return false;
583
584 paddr = boot_params.efi_info.efi_memmap_hi;
585 paddr <<= 32;
586 paddr |= boot_params.efi_info.efi_memmap;
587 if (phys_addr == paddr)
588 return true;
589
590 paddr = boot_params.efi_info.efi_systab_hi;
591 paddr <<= 32;
592 paddr |= boot_params.efi_info.efi_systab;
593 if (phys_addr == paddr)
594 return true;
595
596 if (efi_is_table_address(phys_addr))
597 return true;
598
599 switch (efi_mem_type(phys_addr)) {
600 case EFI_BOOT_SERVICES_DATA:
601 case EFI_RUNTIME_SERVICES_DATA:
602 return true;
603 default:
604 break;
605 }
606
607 return false;
608}
609
610/*
611 * Examine the physical address to determine if it is boot data by checking
612 * it against the boot params setup_data chain.
613 */
614static bool memremap_is_setup_data(resource_size_t phys_addr,
615 unsigned long size)
616{
617 struct setup_data *data;
618 u64 paddr, paddr_next;
619
620 paddr = boot_params.hdr.setup_data;
621 while (paddr) {
622 unsigned int len;
623
624 if (phys_addr == paddr)
625 return true;
626
627 data = memremap(paddr, sizeof(*data),
628 MEMREMAP_WB | MEMREMAP_DEC);
629
630 paddr_next = data->next;
631 len = data->len;
632
633 if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
634 memunmap(data);
635 return true;
636 }
637
638 if (data->type == SETUP_INDIRECT &&
639 ((struct setup_indirect *)data->data)->type != SETUP_INDIRECT) {
640 paddr = ((struct setup_indirect *)data->data)->addr;
641 len = ((struct setup_indirect *)data->data)->len;
642 }
643
644 memunmap(data);
645
646 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
647 return true;
648
649 paddr = paddr_next;
650 }
651
652 return false;
653}
654
655/*
656 * Examine the physical address to determine if it is boot data by checking
657 * it against the boot params setup_data chain (early boot version).
658 */
659static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
660 unsigned long size)
661{
662 struct setup_data *data;
663 u64 paddr, paddr_next;
664
665 paddr = boot_params.hdr.setup_data;
666 while (paddr) {
667 unsigned int len;
668
669 if (phys_addr == paddr)
670 return true;
671
672 data = early_memremap_decrypted(paddr, sizeof(*data));
673
674 paddr_next = data->next;
675 len = data->len;
676
677 early_memunmap(data, sizeof(*data));
678
679 if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
680 return true;
681
682 paddr = paddr_next;
683 }
684
685 return false;
686}
687
688/*
689 * Architecture function to determine if RAM remap is allowed. By default, a
690 * RAM remap will map the data as encrypted. Determine if a RAM remap should
691 * not be done so that the data will be mapped decrypted.
692 */
693bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
694 unsigned long flags)
695{
696 if (!mem_encrypt_active())
697 return true;
698
699 if (flags & MEMREMAP_ENC)
700 return true;
701
702 if (flags & MEMREMAP_DEC)
703 return false;
704
705 if (sme_active()) {
706 if (memremap_is_setup_data(phys_addr, size) ||
707 memremap_is_efi_data(phys_addr, size))
708 return false;
709 }
710
711 return !memremap_should_map_decrypted(phys_addr, size);
712}
713
714/*
715 * Architecture override of __weak function to adjust the protection attributes
716 * used when remapping memory. By default, early_memremap() will map the data
717 * as encrypted. Determine if an encrypted mapping should not be done and set
718 * the appropriate protection attributes.
719 */
720pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
721 unsigned long size,
722 pgprot_t prot)
723{
724 bool encrypted_prot;
725
726 if (!mem_encrypt_active())
727 return prot;
728
729 encrypted_prot = true;
730
731 if (sme_active()) {
732 if (early_memremap_is_setup_data(phys_addr, size) ||
733 memremap_is_efi_data(phys_addr, size))
734 encrypted_prot = false;
735 }
736
737 if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
738 encrypted_prot = false;
739
740 return encrypted_prot ? pgprot_encrypted(prot)
741 : pgprot_decrypted(prot);
742}
743
744bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
745{
746 return arch_memremap_can_ram_remap(phys_addr, size, 0);
747}
748
749#ifdef CONFIG_AMD_MEM_ENCRYPT
750/* Remap memory with encryption */
751void __init *early_memremap_encrypted(resource_size_t phys_addr,
752 unsigned long size)
753{
754 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
755}
756
757/*
758 * Remap memory with encryption and write-protected - cannot be called
759 * before pat_init() is called
760 */
761void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
762 unsigned long size)
763{
764 if (!x86_has_pat_wp())
765 return NULL;
766 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
767}
768
769/* Remap memory without encryption */
770void __init *early_memremap_decrypted(resource_size_t phys_addr,
771 unsigned long size)
772{
773 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
774}
775
776/*
777 * Remap memory without encryption and write-protected - cannot be called
778 * before pat_init() is called
779 */
780void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
781 unsigned long size)
782{
783 if (!x86_has_pat_wp())
784 return NULL;
785 return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
786}
787#endif /* CONFIG_AMD_MEM_ENCRYPT */
788
789static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
790
791static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
792{
793 /* Don't assume we're using swapper_pg_dir at this point */
794 pgd_t *base = __va(read_cr3_pa());
795 pgd_t *pgd = &base[pgd_index(addr)];
796 p4d_t *p4d = p4d_offset(pgd, addr);
797 pud_t *pud = pud_offset(p4d, addr);
798 pmd_t *pmd = pmd_offset(pud, addr);
799
800 return pmd;
801}
802
803static inline pte_t * __init early_ioremap_pte(unsigned long addr)
804{
805 return &bm_pte[pte_index(addr)];
806}
807
808bool __init is_early_ioremap_ptep(pte_t *ptep)
809{
810 return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
811}
812
813void __init early_ioremap_init(void)
814{
815 pmd_t *pmd;
816
817#ifdef CONFIG_X86_64
818 BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
819#else
820 WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
821#endif
822
823 early_ioremap_setup();
824
825 pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
826 memset(bm_pte, 0, sizeof(bm_pte));
827 pmd_populate_kernel(&init_mm, pmd, bm_pte);
828
829 /*
830 * The boot-ioremap range spans multiple pmds, for which
831 * we are not prepared:
832 */
833#define __FIXADDR_TOP (-PAGE_SIZE)
834 BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
835 != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
836#undef __FIXADDR_TOP
837 if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
838 WARN_ON(1);
839 printk(KERN_WARNING "pmd %p != %p\n",
840 pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
841 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
842 fix_to_virt(FIX_BTMAP_BEGIN));
843 printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END): %08lx\n",
844 fix_to_virt(FIX_BTMAP_END));
845
846 printk(KERN_WARNING "FIX_BTMAP_END: %d\n", FIX_BTMAP_END);
847 printk(KERN_WARNING "FIX_BTMAP_BEGIN: %d\n",
848 FIX_BTMAP_BEGIN);
849 }
850}
851
852void __init __early_set_fixmap(enum fixed_addresses idx,
853 phys_addr_t phys, pgprot_t flags)
854{
855 unsigned long addr = __fix_to_virt(idx);
856 pte_t *pte;
857
858 if (idx >= __end_of_fixed_addresses) {
859 BUG();
860 return;
861 }
862 pte = early_ioremap_pte(addr);
863
864 /* Sanitize 'prot' against any unsupported bits: */
865 pgprot_val(flags) &= __supported_pte_mask;
866
867 if (pgprot_val(flags))
868 set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
869 else
870 pte_clear(&init_mm, addr, pte);
871 flush_tlb_one_kernel(addr);
872}