Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/cc_platform.h>
 18#include <linux/efi.h>
 19#include <linux/pgtable.h>
 20#include <linux/kmsan.h>
 21
 22#include <asm/set_memory.h>
 23#include <asm/e820/api.h>
 24#include <asm/efi.h>
 25#include <asm/fixmap.h>
 
 26#include <asm/tlbflush.h>
 27#include <asm/pgalloc.h>
 28#include <asm/memtype.h>
 29#include <asm/setup.h>
 30
 31#include "physaddr.h"
 32
 33/*
 34 * Descriptor controlling ioremap() behavior.
 35 */
 36struct ioremap_desc {
 37	unsigned int flags;
 38};
 39
 40/*
 41 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 42 * conflicts.
 43 */
 44int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 45			enum page_cache_mode pcm)
 46{
 47	unsigned long nrpages = size >> PAGE_SHIFT;
 48	int err;
 49
 50	switch (pcm) {
 51	case _PAGE_CACHE_MODE_UC:
 52	default:
 53		err = _set_memory_uc(vaddr, nrpages);
 54		break;
 55	case _PAGE_CACHE_MODE_WC:
 56		err = _set_memory_wc(vaddr, nrpages);
 57		break;
 58	case _PAGE_CACHE_MODE_WT:
 59		err = _set_memory_wt(vaddr, nrpages);
 60		break;
 61	case _PAGE_CACHE_MODE_WB:
 62		err = _set_memory_wb(vaddr, nrpages);
 63		break;
 64	}
 65
 66	return err;
 67}
 68
 69/* Does the range (or a subset of) contain normal RAM? */
 70static unsigned int __ioremap_check_ram(struct resource *res)
 71{
 72	unsigned long start_pfn, stop_pfn;
 73	unsigned long i;
 74
 75	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 76		return 0;
 77
 78	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 79	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 80	if (stop_pfn > start_pfn) {
 81		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 82			if (pfn_valid(start_pfn + i) &&
 83			    !PageReserved(pfn_to_page(start_pfn + i)))
 84				return IORES_MAP_SYSTEM_RAM;
 85	}
 86
 87	return 0;
 88}
 89
 90/*
 91 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 92 * there the whole memory is already encrypted.
 93 */
 94static unsigned int __ioremap_check_encrypted(struct resource *res)
 95{
 96	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
 97		return 0;
 98
 99	switch (res->desc) {
100	case IORES_DESC_NONE:
101	case IORES_DESC_RESERVED:
102		break;
103	default:
104		return IORES_MAP_ENCRYPTED;
105	}
106
107	return 0;
108}
109
110/*
111 * The EFI runtime services data area is not covered by walk_mem_res(), but must
112 * be mapped encrypted when SEV is active.
113 */
114static void __ioremap_check_other(resource_size_t addr, struct ioremap_desc *desc)
115{
116	if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
117		return;
118
119	if (!IS_ENABLED(CONFIG_EFI))
120		return;
121
122	if (efi_mem_type(addr) == EFI_RUNTIME_SERVICES_DATA ||
123	    (efi_mem_type(addr) == EFI_BOOT_SERVICES_DATA &&
124	     efi_mem_attributes(addr) & EFI_MEMORY_RUNTIME))
125		desc->flags |= IORES_MAP_ENCRYPTED;
126}
127
128static int __ioremap_collect_map_flags(struct resource *res, void *arg)
129{
130	struct ioremap_desc *desc = arg;
131
132	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
133		desc->flags |= __ioremap_check_ram(res);
134
135	if (!(desc->flags & IORES_MAP_ENCRYPTED))
136		desc->flags |= __ioremap_check_encrypted(res);
137
138	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
139			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
140}
141
142/*
143 * To avoid multiple resource walks, this function walks resources marked as
144 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
145 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
146 *
147 * After that, deal with misc other ranges in __ioremap_check_other() which do
148 * not fall into the above category.
149 */
150static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
151				struct ioremap_desc *desc)
152{
153	u64 start, end;
154
155	start = (u64)addr;
156	end = start + size - 1;
157	memset(desc, 0, sizeof(struct ioremap_desc));
158
159	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
160
161	__ioremap_check_other(addr, desc);
162}
163
164/*
165 * Remap an arbitrary physical address space into the kernel virtual
166 * address space. It transparently creates kernel huge I/O mapping when
167 * the physical address is aligned by a huge page size (1GB or 2MB) and
168 * the requested size is at least the huge page size.
169 *
170 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
171 * Therefore, the mapping code falls back to use a smaller page toward 4KB
172 * when a mapping range is covered by non-WB type of MTRRs.
173 *
174 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
175 * have to convert them into an offset in a page-aligned mapping, but the
176 * caller shouldn't need to know that small detail.
177 */
178static void __iomem *
179__ioremap_caller(resource_size_t phys_addr, unsigned long size,
180		 enum page_cache_mode pcm, void *caller, bool encrypted)
181{
182	unsigned long offset, vaddr;
183	resource_size_t last_addr;
184	const resource_size_t unaligned_phys_addr = phys_addr;
185	const unsigned long unaligned_size = size;
186	struct ioremap_desc io_desc;
187	struct vm_struct *area;
188	enum page_cache_mode new_pcm;
189	pgprot_t prot;
190	int retval;
191	void __iomem *ret_addr;
192
193	/* Don't allow wraparound or zero size */
194	last_addr = phys_addr + size - 1;
195	if (!size || last_addr < phys_addr)
196		return NULL;
197
198	if (!phys_addr_valid(phys_addr)) {
199		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
200		       (unsigned long long)phys_addr);
201		WARN_ON_ONCE(1);
202		return NULL;
203	}
204
205	__ioremap_check_mem(phys_addr, size, &io_desc);
206
207	/*
208	 * Don't allow anybody to remap normal RAM that we're using..
209	 */
210	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
211		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
212			  &phys_addr, &last_addr);
213		return NULL;
214	}
215
216	/*
217	 * Mappings have to be page-aligned
218	 */
219	offset = phys_addr & ~PAGE_MASK;
220	phys_addr &= PAGE_MASK;
221	size = PAGE_ALIGN(last_addr+1) - phys_addr;
222
223	/*
224	 * Mask out any bits not part of the actual physical
225	 * address, like memory encryption bits.
226	 */
227	phys_addr &= PHYSICAL_PAGE_MASK;
 
228
229	retval = memtype_reserve(phys_addr, (u64)phys_addr + size,
230						pcm, &new_pcm);
231	if (retval) {
232		printk(KERN_ERR "ioremap memtype_reserve failed %d\n", retval);
233		return NULL;
234	}
235
236	if (pcm != new_pcm) {
237		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
238			printk(KERN_ERR
239		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
240				(unsigned long long)phys_addr,
241				(unsigned long long)(phys_addr + size),
242				pcm, new_pcm);
243			goto err_free_memtype;
244		}
245		pcm = new_pcm;
246	}
247
248	/*
249	 * If the page being mapped is in memory and SEV is active then
250	 * make sure the memory encryption attribute is enabled in the
251	 * resulting mapping.
252	 * In TDX guests, memory is marked private by default. If encryption
253	 * is not requested (using encrypted), explicitly set decrypt
254	 * attribute in all IOREMAPPED memory.
255	 */
256	prot = PAGE_KERNEL_IO;
257	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
258		prot = pgprot_encrypted(prot);
259	else
260		prot = pgprot_decrypted(prot);
261
262	switch (pcm) {
263	case _PAGE_CACHE_MODE_UC:
264	default:
265		prot = __pgprot(pgprot_val(prot) |
266				cachemode2protval(_PAGE_CACHE_MODE_UC));
267		break;
268	case _PAGE_CACHE_MODE_UC_MINUS:
269		prot = __pgprot(pgprot_val(prot) |
270				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
271		break;
272	case _PAGE_CACHE_MODE_WC:
273		prot = __pgprot(pgprot_val(prot) |
274				cachemode2protval(_PAGE_CACHE_MODE_WC));
275		break;
276	case _PAGE_CACHE_MODE_WT:
277		prot = __pgprot(pgprot_val(prot) |
278				cachemode2protval(_PAGE_CACHE_MODE_WT));
279		break;
280	case _PAGE_CACHE_MODE_WB:
281		break;
282	}
283
284	/*
285	 * Ok, go for it..
286	 */
287	area = get_vm_area_caller(size, VM_IOREMAP, caller);
288	if (!area)
289		goto err_free_memtype;
290	area->phys_addr = phys_addr;
291	vaddr = (unsigned long) area->addr;
292
293	if (memtype_kernel_map_sync(phys_addr, size, pcm))
294		goto err_free_area;
295
296	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
297		goto err_free_area;
298
299	ret_addr = (void __iomem *) (vaddr + offset);
300	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
301
302	/*
303	 * Check if the request spans more than any BAR in the iomem resource
304	 * tree.
305	 */
306	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
307		pr_warn("caller %pS mapping multiple BARs\n", caller);
308
309	return ret_addr;
310err_free_area:
311	free_vm_area(area);
312err_free_memtype:
313	memtype_free(phys_addr, phys_addr + size);
314	return NULL;
315}
316
317/**
318 * ioremap     -   map bus memory into CPU space
319 * @phys_addr:    bus address of the memory
320 * @size:      size of the resource to map
321 *
322 * ioremap performs a platform specific sequence of operations to
323 * make bus memory CPU accessible via the readb/readw/readl/writeb/
324 * writew/writel functions and the other mmio helpers. The returned
325 * address is not guaranteed to be usable directly as a virtual
326 * address.
327 *
328 * This version of ioremap ensures that the memory is marked uncachable
329 * on the CPU as well as honouring existing caching rules from things like
330 * the PCI bus. Note that there are other caches and buffers on many
331 * busses. In particular driver authors should read up on PCI writes
332 *
333 * It's useful if some control registers are in such an area and
334 * write combining or read caching is not desirable:
335 *
336 * Must be freed with iounmap.
337 */
338void __iomem *ioremap(resource_size_t phys_addr, unsigned long size)
339{
340	/*
341	 * Ideally, this should be:
342	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
343	 *
344	 * Till we fix all X drivers to use ioremap_wc(), we will use
345	 * UC MINUS. Drivers that are certain they need or can already
346	 * be converted over to strong UC can use ioremap_uc().
347	 */
348	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
349
350	return __ioremap_caller(phys_addr, size, pcm,
351				__builtin_return_address(0), false);
352}
353EXPORT_SYMBOL(ioremap);
354
355/**
356 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
357 * @phys_addr:    bus address of the memory
358 * @size:      size of the resource to map
359 *
360 * ioremap_uc performs a platform specific sequence of operations to
361 * make bus memory CPU accessible via the readb/readw/readl/writeb/
362 * writew/writel functions and the other mmio helpers. The returned
363 * address is not guaranteed to be usable directly as a virtual
364 * address.
365 *
366 * This version of ioremap ensures that the memory is marked with a strong
367 * preference as completely uncachable on the CPU when possible. For non-PAT
368 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
369 * systems this will set the PAT entry for the pages as strong UC.  This call
370 * will honor existing caching rules from things like the PCI bus. Note that
371 * there are other caches and buffers on many busses. In particular driver
372 * authors should read up on PCI writes.
373 *
374 * It's useful if some control registers are in such an area and
375 * write combining or read caching is not desirable:
376 *
377 * Must be freed with iounmap.
378 */
379void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
380{
381	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
382
383	return __ioremap_caller(phys_addr, size, pcm,
384				__builtin_return_address(0), false);
385}
386EXPORT_SYMBOL_GPL(ioremap_uc);
387
388/**
389 * ioremap_wc	-	map memory into CPU space write combined
390 * @phys_addr:	bus address of the memory
391 * @size:	size of the resource to map
392 *
393 * This version of ioremap ensures that the memory is marked write combining.
394 * Write combining allows faster writes to some hardware devices.
395 *
396 * Must be freed with iounmap.
397 */
398void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
399{
400	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
401					__builtin_return_address(0), false);
402}
403EXPORT_SYMBOL(ioremap_wc);
404
405/**
406 * ioremap_wt	-	map memory into CPU space write through
407 * @phys_addr:	bus address of the memory
408 * @size:	size of the resource to map
409 *
410 * This version of ioremap ensures that the memory is marked write through.
411 * Write through stores data into memory while keeping the cache up-to-date.
412 *
413 * Must be freed with iounmap.
414 */
415void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
416{
417	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
418					__builtin_return_address(0), false);
419}
420EXPORT_SYMBOL(ioremap_wt);
421
422void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
423{
424	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
425				__builtin_return_address(0), true);
426}
427EXPORT_SYMBOL(ioremap_encrypted);
428
429void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
430{
431	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
432				__builtin_return_address(0), false);
433}
434EXPORT_SYMBOL(ioremap_cache);
435
436void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
437				unsigned long prot_val)
438{
439	return __ioremap_caller(phys_addr, size,
440				pgprot2cachemode(__pgprot(prot_val)),
441				__builtin_return_address(0), false);
442}
443EXPORT_SYMBOL(ioremap_prot);
444
445/**
446 * iounmap - Free a IO remapping
447 * @addr: virtual address from ioremap_*
448 *
449 * Caller must ensure there is only one unmapping for the same pointer.
450 */
451void iounmap(volatile void __iomem *addr)
452{
453	struct vm_struct *p, *o;
454
455	if ((void __force *)addr <= high_memory)
456		return;
457
458	/*
459	 * The PCI/ISA range special-casing was removed from __ioremap()
460	 * so this check, in theory, can be removed. However, there are
461	 * cases where iounmap() is called for addresses not obtained via
462	 * ioremap() (vga16fb for example). Add a warning so that these
463	 * cases can be caught and fixed.
464	 */
465	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
466	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
467		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
468		return;
469	}
470
471	mmiotrace_iounmap(addr);
472
473	addr = (volatile void __iomem *)
474		(PAGE_MASK & (unsigned long __force)addr);
475
476	/* Use the vm area unlocked, assuming the caller
477	   ensures there isn't another iounmap for the same address
478	   in parallel. Reuse of the virtual address is prevented by
479	   leaving it in the global lists until we're done with it.
480	   cpa takes care of the direct mappings. */
481	p = find_vm_area((void __force *)addr);
482
483	if (!p) {
484		printk(KERN_ERR "iounmap: bad address %p\n", addr);
485		dump_stack();
486		return;
487	}
488
489	kmsan_iounmap_page_range((unsigned long)addr,
490		(unsigned long)addr + get_vm_area_size(p));
491	memtype_free(p->phys_addr, p->phys_addr + get_vm_area_size(p));
492
493	/* Finally remove it */
494	o = remove_vm_area((void __force *)addr);
495	BUG_ON(p != o || o == NULL);
496	kfree(p);
497}
498EXPORT_SYMBOL(iounmap);
499
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
500/*
501 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
502 * access
503 */
504void *xlate_dev_mem_ptr(phys_addr_t phys)
505{
506	unsigned long start  = phys &  PAGE_MASK;
507	unsigned long offset = phys & ~PAGE_MASK;
508	void *vaddr;
509
510	/* memremap() maps if RAM, otherwise falls back to ioremap() */
511	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
512
513	/* Only add the offset on success and return NULL if memremap() failed */
514	if (vaddr)
515		vaddr += offset;
516
517	return vaddr;
518}
519
520void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
521{
522	memunmap((void *)((unsigned long)addr & PAGE_MASK));
523}
524
525#ifdef CONFIG_AMD_MEM_ENCRYPT
526/*
527 * Examine the physical address to determine if it is an area of memory
528 * that should be mapped decrypted.  If the memory is not part of the
529 * kernel usable area it was accessed and created decrypted, so these
530 * areas should be mapped decrypted. And since the encryption key can
531 * change across reboots, persistent memory should also be mapped
532 * decrypted.
533 *
534 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
535 * only persistent memory should be mapped decrypted.
536 */
537static bool memremap_should_map_decrypted(resource_size_t phys_addr,
538					  unsigned long size)
539{
540	int is_pmem;
541
542	/*
543	 * Check if the address is part of a persistent memory region.
544	 * This check covers areas added by E820, EFI and ACPI.
545	 */
546	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
547				    IORES_DESC_PERSISTENT_MEMORY);
548	if (is_pmem != REGION_DISJOINT)
549		return true;
550
551	/*
552	 * Check if the non-volatile attribute is set for an EFI
553	 * reserved area.
554	 */
555	if (efi_enabled(EFI_BOOT)) {
556		switch (efi_mem_type(phys_addr)) {
557		case EFI_RESERVED_TYPE:
558			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
559				return true;
560			break;
561		default:
562			break;
563		}
564	}
565
566	/* Check if the address is outside kernel usable area */
567	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
568	case E820_TYPE_RESERVED:
569	case E820_TYPE_ACPI:
570	case E820_TYPE_NVS:
571	case E820_TYPE_UNUSABLE:
572		/* For SEV, these areas are encrypted */
573		if (cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
574			break;
575		fallthrough;
576
577	case E820_TYPE_PRAM:
578		return true;
579	default:
580		break;
581	}
582
583	return false;
584}
585
586/*
587 * Examine the physical address to determine if it is EFI data. Check
588 * it against the boot params structure and EFI tables and memory types.
589 */
590static bool memremap_is_efi_data(resource_size_t phys_addr,
591				 unsigned long size)
592{
593	u64 paddr;
594
595	/* Check if the address is part of EFI boot/runtime data */
596	if (!efi_enabled(EFI_BOOT))
597		return false;
598
599	paddr = boot_params.efi_info.efi_memmap_hi;
600	paddr <<= 32;
601	paddr |= boot_params.efi_info.efi_memmap;
602	if (phys_addr == paddr)
603		return true;
604
605	paddr = boot_params.efi_info.efi_systab_hi;
606	paddr <<= 32;
607	paddr |= boot_params.efi_info.efi_systab;
608	if (phys_addr == paddr)
609		return true;
610
611	if (efi_is_table_address(phys_addr))
612		return true;
613
614	switch (efi_mem_type(phys_addr)) {
615	case EFI_BOOT_SERVICES_DATA:
616	case EFI_RUNTIME_SERVICES_DATA:
617		return true;
618	default:
619		break;
620	}
621
622	return false;
623}
624
625/*
626 * Examine the physical address to determine if it is boot data by checking
627 * it against the boot params setup_data chain.
628 */
629static bool memremap_is_setup_data(resource_size_t phys_addr,
630				   unsigned long size)
631{
632	struct setup_indirect *indirect;
633	struct setup_data *data;
634	u64 paddr, paddr_next;
635
636	paddr = boot_params.hdr.setup_data;
637	while (paddr) {
638		unsigned int len;
639
640		if (phys_addr == paddr)
641			return true;
642
643		data = memremap(paddr, sizeof(*data),
644				MEMREMAP_WB | MEMREMAP_DEC);
645		if (!data) {
646			pr_warn("failed to memremap setup_data entry\n");
647			return false;
648		}
649
650		paddr_next = data->next;
651		len = data->len;
652
653		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
654			memunmap(data);
655			return true;
656		}
657
658		if (data->type == SETUP_INDIRECT) {
659			memunmap(data);
660			data = memremap(paddr, sizeof(*data) + len,
661					MEMREMAP_WB | MEMREMAP_DEC);
662			if (!data) {
663				pr_warn("failed to memremap indirect setup_data\n");
664				return false;
665			}
666
667			indirect = (struct setup_indirect *)data->data;
668
669			if (indirect->type != SETUP_INDIRECT) {
670				paddr = indirect->addr;
671				len = indirect->len;
672			}
673		}
674
675		memunmap(data);
676
677		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
678			return true;
679
680		paddr = paddr_next;
681	}
682
683	return false;
684}
685
686/*
687 * Examine the physical address to determine if it is boot data by checking
688 * it against the boot params setup_data chain (early boot version).
689 */
690static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
691						unsigned long size)
692{
693	struct setup_indirect *indirect;
694	struct setup_data *data;
695	u64 paddr, paddr_next;
696
697	paddr = boot_params.hdr.setup_data;
698	while (paddr) {
699		unsigned int len, size;
700
701		if (phys_addr == paddr)
702			return true;
703
704		data = early_memremap_decrypted(paddr, sizeof(*data));
705		if (!data) {
706			pr_warn("failed to early memremap setup_data entry\n");
707			return false;
708		}
709
710		size = sizeof(*data);
711
712		paddr_next = data->next;
713		len = data->len;
714
715		if ((phys_addr > paddr) && (phys_addr < (paddr + len))) {
716			early_memunmap(data, sizeof(*data));
717			return true;
718		}
719
720		if (data->type == SETUP_INDIRECT) {
721			size += len;
722			early_memunmap(data, sizeof(*data));
723			data = early_memremap_decrypted(paddr, size);
724			if (!data) {
725				pr_warn("failed to early memremap indirect setup_data\n");
726				return false;
727			}
728
729			indirect = (struct setup_indirect *)data->data;
730
731			if (indirect->type != SETUP_INDIRECT) {
732				paddr = indirect->addr;
733				len = indirect->len;
734			}
735		}
736
737		early_memunmap(data, size);
738
739		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
740			return true;
741
742		paddr = paddr_next;
743	}
744
745	return false;
746}
747
748/*
749 * Architecture function to determine if RAM remap is allowed. By default, a
750 * RAM remap will map the data as encrypted. Determine if a RAM remap should
751 * not be done so that the data will be mapped decrypted.
752 */
753bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
754				 unsigned long flags)
755{
756	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
757		return true;
758
759	if (flags & MEMREMAP_ENC)
760		return true;
761
762	if (flags & MEMREMAP_DEC)
763		return false;
764
765	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
766		if (memremap_is_setup_data(phys_addr, size) ||
767		    memremap_is_efi_data(phys_addr, size))
768			return false;
769	}
770
771	return !memremap_should_map_decrypted(phys_addr, size);
772}
773
774/*
775 * Architecture override of __weak function to adjust the protection attributes
776 * used when remapping memory. By default, early_memremap() will map the data
777 * as encrypted. Determine if an encrypted mapping should not be done and set
778 * the appropriate protection attributes.
779 */
780pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
781					     unsigned long size,
782					     pgprot_t prot)
783{
784	bool encrypted_prot;
785
786	if (!cc_platform_has(CC_ATTR_MEM_ENCRYPT))
787		return prot;
788
789	encrypted_prot = true;
790
791	if (cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT)) {
792		if (early_memremap_is_setup_data(phys_addr, size) ||
793		    memremap_is_efi_data(phys_addr, size))
794			encrypted_prot = false;
795	}
796
797	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
798		encrypted_prot = false;
799
800	return encrypted_prot ? pgprot_encrypted(prot)
801			      : pgprot_decrypted(prot);
802}
803
804bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
805{
806	return arch_memremap_can_ram_remap(phys_addr, size, 0);
807}
808
 
809/* Remap memory with encryption */
810void __init *early_memremap_encrypted(resource_size_t phys_addr,
811				      unsigned long size)
812{
813	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
814}
815
816/*
817 * Remap memory with encryption and write-protected - cannot be called
818 * before pat_init() is called
819 */
820void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
821					 unsigned long size)
822{
823	if (!x86_has_pat_wp())
 
824		return NULL;
 
825	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
826}
827
828/* Remap memory without encryption */
829void __init *early_memremap_decrypted(resource_size_t phys_addr,
830				      unsigned long size)
831{
832	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
833}
834
835/*
836 * Remap memory without encryption and write-protected - cannot be called
837 * before pat_init() is called
838 */
839void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
840					 unsigned long size)
841{
842	if (!x86_has_pat_wp())
 
843		return NULL;
 
844	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
845}
846#endif	/* CONFIG_AMD_MEM_ENCRYPT */
847
848static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
849
850static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
851{
852	/* Don't assume we're using swapper_pg_dir at this point */
853	pgd_t *base = __va(read_cr3_pa());
854	pgd_t *pgd = &base[pgd_index(addr)];
855	p4d_t *p4d = p4d_offset(pgd, addr);
856	pud_t *pud = pud_offset(p4d, addr);
857	pmd_t *pmd = pmd_offset(pud, addr);
858
859	return pmd;
860}
861
862static inline pte_t * __init early_ioremap_pte(unsigned long addr)
863{
864	return &bm_pte[pte_index(addr)];
865}
866
867bool __init is_early_ioremap_ptep(pte_t *ptep)
868{
869	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
870}
871
872void __init early_ioremap_init(void)
873{
874	pmd_t *pmd;
875
876#ifdef CONFIG_X86_64
877	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
878#else
879	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
880#endif
881
882	early_ioremap_setup();
883
884	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
885	memset(bm_pte, 0, sizeof(bm_pte));
886	pmd_populate_kernel(&init_mm, pmd, bm_pte);
887
888	/*
889	 * The boot-ioremap range spans multiple pmds, for which
890	 * we are not prepared:
891	 */
892#define __FIXADDR_TOP (-PAGE_SIZE)
893	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
894		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
895#undef __FIXADDR_TOP
896	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
897		WARN_ON(1);
898		printk(KERN_WARNING "pmd %p != %p\n",
899		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
900		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
901			fix_to_virt(FIX_BTMAP_BEGIN));
902		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
903			fix_to_virt(FIX_BTMAP_END));
904
905		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
906		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
907		       FIX_BTMAP_BEGIN);
908	}
909}
910
911void __init __early_set_fixmap(enum fixed_addresses idx,
912			       phys_addr_t phys, pgprot_t flags)
913{
914	unsigned long addr = __fix_to_virt(idx);
915	pte_t *pte;
916
917	if (idx >= __end_of_fixed_addresses) {
918		BUG();
919		return;
920	}
921	pte = early_ioremap_pte(addr);
922
923	/* Sanitize 'prot' against any unsupported bits: */
924	pgprot_val(flags) &= __supported_pte_mask;
925
926	if (pgprot_val(flags))
927		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
928	else
929		pte_clear(&init_mm, addr, pte);
930	flush_tlb_one_kernel(addr);
931}
v5.4
  1// SPDX-License-Identifier: GPL-2.0-only
  2/*
  3 * Re-map IO memory to kernel address space so that we can access it.
  4 * This is needed for high PCI addresses that aren't mapped in the
  5 * 640k-1MB IO memory area on PC's
  6 *
  7 * (C) Copyright 1995 1996 Linus Torvalds
  8 */
  9
 10#include <linux/memblock.h>
 11#include <linux/init.h>
 12#include <linux/io.h>
 13#include <linux/ioport.h>
 14#include <linux/slab.h>
 15#include <linux/vmalloc.h>
 16#include <linux/mmiotrace.h>
 17#include <linux/mem_encrypt.h>
 18#include <linux/efi.h>
 
 
 19
 20#include <asm/set_memory.h>
 21#include <asm/e820/api.h>
 22#include <asm/efi.h>
 23#include <asm/fixmap.h>
 24#include <asm/pgtable.h>
 25#include <asm/tlbflush.h>
 26#include <asm/pgalloc.h>
 27#include <asm/pat.h>
 28#include <asm/setup.h>
 29
 30#include "physaddr.h"
 31
 32/*
 33 * Descriptor controlling ioremap() behavior.
 34 */
 35struct ioremap_desc {
 36	unsigned int flags;
 37};
 38
 39/*
 40 * Fix up the linear direct mapping of the kernel to avoid cache attribute
 41 * conflicts.
 42 */
 43int ioremap_change_attr(unsigned long vaddr, unsigned long size,
 44			enum page_cache_mode pcm)
 45{
 46	unsigned long nrpages = size >> PAGE_SHIFT;
 47	int err;
 48
 49	switch (pcm) {
 50	case _PAGE_CACHE_MODE_UC:
 51	default:
 52		err = _set_memory_uc(vaddr, nrpages);
 53		break;
 54	case _PAGE_CACHE_MODE_WC:
 55		err = _set_memory_wc(vaddr, nrpages);
 56		break;
 57	case _PAGE_CACHE_MODE_WT:
 58		err = _set_memory_wt(vaddr, nrpages);
 59		break;
 60	case _PAGE_CACHE_MODE_WB:
 61		err = _set_memory_wb(vaddr, nrpages);
 62		break;
 63	}
 64
 65	return err;
 66}
 67
 68/* Does the range (or a subset of) contain normal RAM? */
 69static unsigned int __ioremap_check_ram(struct resource *res)
 70{
 71	unsigned long start_pfn, stop_pfn;
 72	unsigned long i;
 73
 74	if ((res->flags & IORESOURCE_SYSTEM_RAM) != IORESOURCE_SYSTEM_RAM)
 75		return 0;
 76
 77	start_pfn = (res->start + PAGE_SIZE - 1) >> PAGE_SHIFT;
 78	stop_pfn = (res->end + 1) >> PAGE_SHIFT;
 79	if (stop_pfn > start_pfn) {
 80		for (i = 0; i < (stop_pfn - start_pfn); ++i)
 81			if (pfn_valid(start_pfn + i) &&
 82			    !PageReserved(pfn_to_page(start_pfn + i)))
 83				return IORES_MAP_SYSTEM_RAM;
 84	}
 85
 86	return 0;
 87}
 88
 89/*
 90 * In a SEV guest, NONE and RESERVED should not be mapped encrypted because
 91 * there the whole memory is already encrypted.
 92 */
 93static unsigned int __ioremap_check_encrypted(struct resource *res)
 94{
 95	if (!sev_active())
 96		return 0;
 97
 98	switch (res->desc) {
 99	case IORES_DESC_NONE:
100	case IORES_DESC_RESERVED:
101		break;
102	default:
103		return IORES_MAP_ENCRYPTED;
104	}
105
106	return 0;
107}
108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
109static int __ioremap_collect_map_flags(struct resource *res, void *arg)
110{
111	struct ioremap_desc *desc = arg;
112
113	if (!(desc->flags & IORES_MAP_SYSTEM_RAM))
114		desc->flags |= __ioremap_check_ram(res);
115
116	if (!(desc->flags & IORES_MAP_ENCRYPTED))
117		desc->flags |= __ioremap_check_encrypted(res);
118
119	return ((desc->flags & (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED)) ==
120			       (IORES_MAP_SYSTEM_RAM | IORES_MAP_ENCRYPTED));
121}
122
123/*
124 * To avoid multiple resource walks, this function walks resources marked as
125 * IORESOURCE_MEM and IORESOURCE_BUSY and looking for system RAM and/or a
126 * resource described not as IORES_DESC_NONE (e.g. IORES_DESC_ACPI_TABLES).
 
 
 
127 */
128static void __ioremap_check_mem(resource_size_t addr, unsigned long size,
129				struct ioremap_desc *desc)
130{
131	u64 start, end;
132
133	start = (u64)addr;
134	end = start + size - 1;
135	memset(desc, 0, sizeof(struct ioremap_desc));
136
137	walk_mem_res(start, end, desc, __ioremap_collect_map_flags);
 
 
138}
139
140/*
141 * Remap an arbitrary physical address space into the kernel virtual
142 * address space. It transparently creates kernel huge I/O mapping when
143 * the physical address is aligned by a huge page size (1GB or 2MB) and
144 * the requested size is at least the huge page size.
145 *
146 * NOTE: MTRRs can override PAT memory types with a 4KB granularity.
147 * Therefore, the mapping code falls back to use a smaller page toward 4KB
148 * when a mapping range is covered by non-WB type of MTRRs.
149 *
150 * NOTE! We need to allow non-page-aligned mappings too: we will obviously
151 * have to convert them into an offset in a page-aligned mapping, but the
152 * caller shouldn't need to know that small detail.
153 */
154static void __iomem *
155__ioremap_caller(resource_size_t phys_addr, unsigned long size,
156		 enum page_cache_mode pcm, void *caller, bool encrypted)
157{
158	unsigned long offset, vaddr;
159	resource_size_t last_addr;
160	const resource_size_t unaligned_phys_addr = phys_addr;
161	const unsigned long unaligned_size = size;
162	struct ioremap_desc io_desc;
163	struct vm_struct *area;
164	enum page_cache_mode new_pcm;
165	pgprot_t prot;
166	int retval;
167	void __iomem *ret_addr;
168
169	/* Don't allow wraparound or zero size */
170	last_addr = phys_addr + size - 1;
171	if (!size || last_addr < phys_addr)
172		return NULL;
173
174	if (!phys_addr_valid(phys_addr)) {
175		printk(KERN_WARNING "ioremap: invalid physical address %llx\n",
176		       (unsigned long long)phys_addr);
177		WARN_ON_ONCE(1);
178		return NULL;
179	}
180
181	__ioremap_check_mem(phys_addr, size, &io_desc);
182
183	/*
184	 * Don't allow anybody to remap normal RAM that we're using..
185	 */
186	if (io_desc.flags & IORES_MAP_SYSTEM_RAM) {
187		WARN_ONCE(1, "ioremap on RAM at %pa - %pa\n",
188			  &phys_addr, &last_addr);
189		return NULL;
190	}
191
192	/*
193	 * Mappings have to be page-aligned
194	 */
195	offset = phys_addr & ~PAGE_MASK;
 
 
 
 
 
 
 
196	phys_addr &= PHYSICAL_PAGE_MASK;
197	size = PAGE_ALIGN(last_addr+1) - phys_addr;
198
199	retval = reserve_memtype(phys_addr, (u64)phys_addr + size,
200						pcm, &new_pcm);
201	if (retval) {
202		printk(KERN_ERR "ioremap reserve_memtype failed %d\n", retval);
203		return NULL;
204	}
205
206	if (pcm != new_pcm) {
207		if (!is_new_memtype_allowed(phys_addr, size, pcm, new_pcm)) {
208			printk(KERN_ERR
209		"ioremap error for 0x%llx-0x%llx, requested 0x%x, got 0x%x\n",
210				(unsigned long long)phys_addr,
211				(unsigned long long)(phys_addr + size),
212				pcm, new_pcm);
213			goto err_free_memtype;
214		}
215		pcm = new_pcm;
216	}
217
218	/*
219	 * If the page being mapped is in memory and SEV is active then
220	 * make sure the memory encryption attribute is enabled in the
221	 * resulting mapping.
 
 
 
222	 */
223	prot = PAGE_KERNEL_IO;
224	if ((io_desc.flags & IORES_MAP_ENCRYPTED) || encrypted)
225		prot = pgprot_encrypted(prot);
 
 
226
227	switch (pcm) {
228	case _PAGE_CACHE_MODE_UC:
229	default:
230		prot = __pgprot(pgprot_val(prot) |
231				cachemode2protval(_PAGE_CACHE_MODE_UC));
232		break;
233	case _PAGE_CACHE_MODE_UC_MINUS:
234		prot = __pgprot(pgprot_val(prot) |
235				cachemode2protval(_PAGE_CACHE_MODE_UC_MINUS));
236		break;
237	case _PAGE_CACHE_MODE_WC:
238		prot = __pgprot(pgprot_val(prot) |
239				cachemode2protval(_PAGE_CACHE_MODE_WC));
240		break;
241	case _PAGE_CACHE_MODE_WT:
242		prot = __pgprot(pgprot_val(prot) |
243				cachemode2protval(_PAGE_CACHE_MODE_WT));
244		break;
245	case _PAGE_CACHE_MODE_WB:
246		break;
247	}
248
249	/*
250	 * Ok, go for it..
251	 */
252	area = get_vm_area_caller(size, VM_IOREMAP, caller);
253	if (!area)
254		goto err_free_memtype;
255	area->phys_addr = phys_addr;
256	vaddr = (unsigned long) area->addr;
257
258	if (kernel_map_sync_memtype(phys_addr, size, pcm))
259		goto err_free_area;
260
261	if (ioremap_page_range(vaddr, vaddr + size, phys_addr, prot))
262		goto err_free_area;
263
264	ret_addr = (void __iomem *) (vaddr + offset);
265	mmiotrace_ioremap(unaligned_phys_addr, unaligned_size, ret_addr);
266
267	/*
268	 * Check if the request spans more than any BAR in the iomem resource
269	 * tree.
270	 */
271	if (iomem_map_sanity_check(unaligned_phys_addr, unaligned_size))
272		pr_warn("caller %pS mapping multiple BARs\n", caller);
273
274	return ret_addr;
275err_free_area:
276	free_vm_area(area);
277err_free_memtype:
278	free_memtype(phys_addr, phys_addr + size);
279	return NULL;
280}
281
282/**
283 * ioremap_nocache     -   map bus memory into CPU space
284 * @phys_addr:    bus address of the memory
285 * @size:      size of the resource to map
286 *
287 * ioremap_nocache performs a platform specific sequence of operations to
288 * make bus memory CPU accessible via the readb/readw/readl/writeb/
289 * writew/writel functions and the other mmio helpers. The returned
290 * address is not guaranteed to be usable directly as a virtual
291 * address.
292 *
293 * This version of ioremap ensures that the memory is marked uncachable
294 * on the CPU as well as honouring existing caching rules from things like
295 * the PCI bus. Note that there are other caches and buffers on many
296 * busses. In particular driver authors should read up on PCI writes
297 *
298 * It's useful if some control registers are in such an area and
299 * write combining or read caching is not desirable:
300 *
301 * Must be freed with iounmap.
302 */
303void __iomem *ioremap_nocache(resource_size_t phys_addr, unsigned long size)
304{
305	/*
306	 * Ideally, this should be:
307	 *	pat_enabled() ? _PAGE_CACHE_MODE_UC : _PAGE_CACHE_MODE_UC_MINUS;
308	 *
309	 * Till we fix all X drivers to use ioremap_wc(), we will use
310	 * UC MINUS. Drivers that are certain they need or can already
311	 * be converted over to strong UC can use ioremap_uc().
312	 */
313	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC_MINUS;
314
315	return __ioremap_caller(phys_addr, size, pcm,
316				__builtin_return_address(0), false);
317}
318EXPORT_SYMBOL(ioremap_nocache);
319
320/**
321 * ioremap_uc     -   map bus memory into CPU space as strongly uncachable
322 * @phys_addr:    bus address of the memory
323 * @size:      size of the resource to map
324 *
325 * ioremap_uc performs a platform specific sequence of operations to
326 * make bus memory CPU accessible via the readb/readw/readl/writeb/
327 * writew/writel functions and the other mmio helpers. The returned
328 * address is not guaranteed to be usable directly as a virtual
329 * address.
330 *
331 * This version of ioremap ensures that the memory is marked with a strong
332 * preference as completely uncachable on the CPU when possible. For non-PAT
333 * systems this ends up setting page-attribute flags PCD=1, PWT=1. For PAT
334 * systems this will set the PAT entry for the pages as strong UC.  This call
335 * will honor existing caching rules from things like the PCI bus. Note that
336 * there are other caches and buffers on many busses. In particular driver
337 * authors should read up on PCI writes.
338 *
339 * It's useful if some control registers are in such an area and
340 * write combining or read caching is not desirable:
341 *
342 * Must be freed with iounmap.
343 */
344void __iomem *ioremap_uc(resource_size_t phys_addr, unsigned long size)
345{
346	enum page_cache_mode pcm = _PAGE_CACHE_MODE_UC;
347
348	return __ioremap_caller(phys_addr, size, pcm,
349				__builtin_return_address(0), false);
350}
351EXPORT_SYMBOL_GPL(ioremap_uc);
352
353/**
354 * ioremap_wc	-	map memory into CPU space write combined
355 * @phys_addr:	bus address of the memory
356 * @size:	size of the resource to map
357 *
358 * This version of ioremap ensures that the memory is marked write combining.
359 * Write combining allows faster writes to some hardware devices.
360 *
361 * Must be freed with iounmap.
362 */
363void __iomem *ioremap_wc(resource_size_t phys_addr, unsigned long size)
364{
365	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WC,
366					__builtin_return_address(0), false);
367}
368EXPORT_SYMBOL(ioremap_wc);
369
370/**
371 * ioremap_wt	-	map memory into CPU space write through
372 * @phys_addr:	bus address of the memory
373 * @size:	size of the resource to map
374 *
375 * This version of ioremap ensures that the memory is marked write through.
376 * Write through stores data into memory while keeping the cache up-to-date.
377 *
378 * Must be freed with iounmap.
379 */
380void __iomem *ioremap_wt(resource_size_t phys_addr, unsigned long size)
381{
382	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WT,
383					__builtin_return_address(0), false);
384}
385EXPORT_SYMBOL(ioremap_wt);
386
387void __iomem *ioremap_encrypted(resource_size_t phys_addr, unsigned long size)
388{
389	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
390				__builtin_return_address(0), true);
391}
392EXPORT_SYMBOL(ioremap_encrypted);
393
394void __iomem *ioremap_cache(resource_size_t phys_addr, unsigned long size)
395{
396	return __ioremap_caller(phys_addr, size, _PAGE_CACHE_MODE_WB,
397				__builtin_return_address(0), false);
398}
399EXPORT_SYMBOL(ioremap_cache);
400
401void __iomem *ioremap_prot(resource_size_t phys_addr, unsigned long size,
402				unsigned long prot_val)
403{
404	return __ioremap_caller(phys_addr, size,
405				pgprot2cachemode(__pgprot(prot_val)),
406				__builtin_return_address(0), false);
407}
408EXPORT_SYMBOL(ioremap_prot);
409
410/**
411 * iounmap - Free a IO remapping
412 * @addr: virtual address from ioremap_*
413 *
414 * Caller must ensure there is only one unmapping for the same pointer.
415 */
416void iounmap(volatile void __iomem *addr)
417{
418	struct vm_struct *p, *o;
419
420	if ((void __force *)addr <= high_memory)
421		return;
422
423	/*
424	 * The PCI/ISA range special-casing was removed from __ioremap()
425	 * so this check, in theory, can be removed. However, there are
426	 * cases where iounmap() is called for addresses not obtained via
427	 * ioremap() (vga16fb for example). Add a warning so that these
428	 * cases can be caught and fixed.
429	 */
430	if ((void __force *)addr >= phys_to_virt(ISA_START_ADDRESS) &&
431	    (void __force *)addr < phys_to_virt(ISA_END_ADDRESS)) {
432		WARN(1, "iounmap() called for ISA range not obtained using ioremap()\n");
433		return;
434	}
435
436	mmiotrace_iounmap(addr);
437
438	addr = (volatile void __iomem *)
439		(PAGE_MASK & (unsigned long __force)addr);
440
441	/* Use the vm area unlocked, assuming the caller
442	   ensures there isn't another iounmap for the same address
443	   in parallel. Reuse of the virtual address is prevented by
444	   leaving it in the global lists until we're done with it.
445	   cpa takes care of the direct mappings. */
446	p = find_vm_area((void __force *)addr);
447
448	if (!p) {
449		printk(KERN_ERR "iounmap: bad address %p\n", addr);
450		dump_stack();
451		return;
452	}
453
454	free_memtype(p->phys_addr, p->phys_addr + get_vm_area_size(p));
 
 
455
456	/* Finally remove it */
457	o = remove_vm_area((void __force *)addr);
458	BUG_ON(p != o || o == NULL);
459	kfree(p);
460}
461EXPORT_SYMBOL(iounmap);
462
463int __init arch_ioremap_p4d_supported(void)
464{
465	return 0;
466}
467
468int __init arch_ioremap_pud_supported(void)
469{
470#ifdef CONFIG_X86_64
471	return boot_cpu_has(X86_FEATURE_GBPAGES);
472#else
473	return 0;
474#endif
475}
476
477int __init arch_ioremap_pmd_supported(void)
478{
479	return boot_cpu_has(X86_FEATURE_PSE);
480}
481
482/*
483 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
484 * access
485 */
486void *xlate_dev_mem_ptr(phys_addr_t phys)
487{
488	unsigned long start  = phys &  PAGE_MASK;
489	unsigned long offset = phys & ~PAGE_MASK;
490	void *vaddr;
491
492	/* memremap() maps if RAM, otherwise falls back to ioremap() */
493	vaddr = memremap(start, PAGE_SIZE, MEMREMAP_WB);
494
495	/* Only add the offset on success and return NULL if memremap() failed */
496	if (vaddr)
497		vaddr += offset;
498
499	return vaddr;
500}
501
502void unxlate_dev_mem_ptr(phys_addr_t phys, void *addr)
503{
504	memunmap((void *)((unsigned long)addr & PAGE_MASK));
505}
506
 
507/*
508 * Examine the physical address to determine if it is an area of memory
509 * that should be mapped decrypted.  If the memory is not part of the
510 * kernel usable area it was accessed and created decrypted, so these
511 * areas should be mapped decrypted. And since the encryption key can
512 * change across reboots, persistent memory should also be mapped
513 * decrypted.
514 *
515 * If SEV is active, that implies that BIOS/UEFI also ran encrypted so
516 * only persistent memory should be mapped decrypted.
517 */
518static bool memremap_should_map_decrypted(resource_size_t phys_addr,
519					  unsigned long size)
520{
521	int is_pmem;
522
523	/*
524	 * Check if the address is part of a persistent memory region.
525	 * This check covers areas added by E820, EFI and ACPI.
526	 */
527	is_pmem = region_intersects(phys_addr, size, IORESOURCE_MEM,
528				    IORES_DESC_PERSISTENT_MEMORY);
529	if (is_pmem != REGION_DISJOINT)
530		return true;
531
532	/*
533	 * Check if the non-volatile attribute is set for an EFI
534	 * reserved area.
535	 */
536	if (efi_enabled(EFI_BOOT)) {
537		switch (efi_mem_type(phys_addr)) {
538		case EFI_RESERVED_TYPE:
539			if (efi_mem_attributes(phys_addr) & EFI_MEMORY_NV)
540				return true;
541			break;
542		default:
543			break;
544		}
545	}
546
547	/* Check if the address is outside kernel usable area */
548	switch (e820__get_entry_type(phys_addr, phys_addr + size - 1)) {
549	case E820_TYPE_RESERVED:
550	case E820_TYPE_ACPI:
551	case E820_TYPE_NVS:
552	case E820_TYPE_UNUSABLE:
553		/* For SEV, these areas are encrypted */
554		if (sev_active())
555			break;
556		/* Fallthrough */
557
558	case E820_TYPE_PRAM:
559		return true;
560	default:
561		break;
562	}
563
564	return false;
565}
566
567/*
568 * Examine the physical address to determine if it is EFI data. Check
569 * it against the boot params structure and EFI tables and memory types.
570 */
571static bool memremap_is_efi_data(resource_size_t phys_addr,
572				 unsigned long size)
573{
574	u64 paddr;
575
576	/* Check if the address is part of EFI boot/runtime data */
577	if (!efi_enabled(EFI_BOOT))
578		return false;
579
580	paddr = boot_params.efi_info.efi_memmap_hi;
581	paddr <<= 32;
582	paddr |= boot_params.efi_info.efi_memmap;
583	if (phys_addr == paddr)
584		return true;
585
586	paddr = boot_params.efi_info.efi_systab_hi;
587	paddr <<= 32;
588	paddr |= boot_params.efi_info.efi_systab;
589	if (phys_addr == paddr)
590		return true;
591
592	if (efi_is_table_address(phys_addr))
593		return true;
594
595	switch (efi_mem_type(phys_addr)) {
596	case EFI_BOOT_SERVICES_DATA:
597	case EFI_RUNTIME_SERVICES_DATA:
598		return true;
599	default:
600		break;
601	}
602
603	return false;
604}
605
606/*
607 * Examine the physical address to determine if it is boot data by checking
608 * it against the boot params setup_data chain.
609 */
610static bool memremap_is_setup_data(resource_size_t phys_addr,
611				   unsigned long size)
612{
 
613	struct setup_data *data;
614	u64 paddr, paddr_next;
615
616	paddr = boot_params.hdr.setup_data;
617	while (paddr) {
618		unsigned int len;
619
620		if (phys_addr == paddr)
621			return true;
622
623		data = memremap(paddr, sizeof(*data),
624				MEMREMAP_WB | MEMREMAP_DEC);
 
 
 
 
625
626		paddr_next = data->next;
627		len = data->len;
628
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
629		memunmap(data);
630
631		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
632			return true;
633
634		paddr = paddr_next;
635	}
636
637	return false;
638}
639
640/*
641 * Examine the physical address to determine if it is boot data by checking
642 * it against the boot params setup_data chain (early boot version).
643 */
644static bool __init early_memremap_is_setup_data(resource_size_t phys_addr,
645						unsigned long size)
646{
 
647	struct setup_data *data;
648	u64 paddr, paddr_next;
649
650	paddr = boot_params.hdr.setup_data;
651	while (paddr) {
652		unsigned int len;
653
654		if (phys_addr == paddr)
655			return true;
656
657		data = early_memremap_decrypted(paddr, sizeof(*data));
 
 
 
 
 
 
658
659		paddr_next = data->next;
660		len = data->len;
661
662		early_memunmap(data, sizeof(*data));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
663
664		if ((phys_addr > paddr) && (phys_addr < (paddr + len)))
665			return true;
666
667		paddr = paddr_next;
668	}
669
670	return false;
671}
672
673/*
674 * Architecture function to determine if RAM remap is allowed. By default, a
675 * RAM remap will map the data as encrypted. Determine if a RAM remap should
676 * not be done so that the data will be mapped decrypted.
677 */
678bool arch_memremap_can_ram_remap(resource_size_t phys_addr, unsigned long size,
679				 unsigned long flags)
680{
681	if (!mem_encrypt_active())
682		return true;
683
684	if (flags & MEMREMAP_ENC)
685		return true;
686
687	if (flags & MEMREMAP_DEC)
688		return false;
689
690	if (sme_active()) {
691		if (memremap_is_setup_data(phys_addr, size) ||
692		    memremap_is_efi_data(phys_addr, size))
693			return false;
694	}
695
696	return !memremap_should_map_decrypted(phys_addr, size);
697}
698
699/*
700 * Architecture override of __weak function to adjust the protection attributes
701 * used when remapping memory. By default, early_memremap() will map the data
702 * as encrypted. Determine if an encrypted mapping should not be done and set
703 * the appropriate protection attributes.
704 */
705pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
706					     unsigned long size,
707					     pgprot_t prot)
708{
709	bool encrypted_prot;
710
711	if (!mem_encrypt_active())
712		return prot;
713
714	encrypted_prot = true;
715
716	if (sme_active()) {
717		if (early_memremap_is_setup_data(phys_addr, size) ||
718		    memremap_is_efi_data(phys_addr, size))
719			encrypted_prot = false;
720	}
721
722	if (encrypted_prot && memremap_should_map_decrypted(phys_addr, size))
723		encrypted_prot = false;
724
725	return encrypted_prot ? pgprot_encrypted(prot)
726			      : pgprot_decrypted(prot);
727}
728
729bool phys_mem_access_encrypted(unsigned long phys_addr, unsigned long size)
730{
731	return arch_memremap_can_ram_remap(phys_addr, size, 0);
732}
733
734#ifdef CONFIG_AMD_MEM_ENCRYPT
735/* Remap memory with encryption */
736void __init *early_memremap_encrypted(resource_size_t phys_addr,
737				      unsigned long size)
738{
739	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC);
740}
741
742/*
743 * Remap memory with encryption and write-protected - cannot be called
744 * before pat_init() is called
745 */
746void __init *early_memremap_encrypted_wp(resource_size_t phys_addr,
747					 unsigned long size)
748{
749	/* Be sure the write-protect PAT entry is set for write-protect */
750	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
751		return NULL;
752
753	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_ENC_WP);
754}
755
756/* Remap memory without encryption */
757void __init *early_memremap_decrypted(resource_size_t phys_addr,
758				      unsigned long size)
759{
760	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC);
761}
762
763/*
764 * Remap memory without encryption and write-protected - cannot be called
765 * before pat_init() is called
766 */
767void __init *early_memremap_decrypted_wp(resource_size_t phys_addr,
768					 unsigned long size)
769{
770	/* Be sure the write-protect PAT entry is set for write-protect */
771	if (__pte2cachemode_tbl[_PAGE_CACHE_MODE_WP] != _PAGE_CACHE_MODE_WP)
772		return NULL;
773
774	return early_memremap_prot(phys_addr, size, __PAGE_KERNEL_NOENC_WP);
775}
776#endif	/* CONFIG_AMD_MEM_ENCRYPT */
777
778static pte_t bm_pte[PAGE_SIZE/sizeof(pte_t)] __page_aligned_bss;
779
780static inline pmd_t * __init early_ioremap_pmd(unsigned long addr)
781{
782	/* Don't assume we're using swapper_pg_dir at this point */
783	pgd_t *base = __va(read_cr3_pa());
784	pgd_t *pgd = &base[pgd_index(addr)];
785	p4d_t *p4d = p4d_offset(pgd, addr);
786	pud_t *pud = pud_offset(p4d, addr);
787	pmd_t *pmd = pmd_offset(pud, addr);
788
789	return pmd;
790}
791
792static inline pte_t * __init early_ioremap_pte(unsigned long addr)
793{
794	return &bm_pte[pte_index(addr)];
795}
796
797bool __init is_early_ioremap_ptep(pte_t *ptep)
798{
799	return ptep >= &bm_pte[0] && ptep < &bm_pte[PAGE_SIZE/sizeof(pte_t)];
800}
801
802void __init early_ioremap_init(void)
803{
804	pmd_t *pmd;
805
806#ifdef CONFIG_X86_64
807	BUILD_BUG_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
808#else
809	WARN_ON((fix_to_virt(0) + PAGE_SIZE) & ((1 << PMD_SHIFT) - 1));
810#endif
811
812	early_ioremap_setup();
813
814	pmd = early_ioremap_pmd(fix_to_virt(FIX_BTMAP_BEGIN));
815	memset(bm_pte, 0, sizeof(bm_pte));
816	pmd_populate_kernel(&init_mm, pmd, bm_pte);
817
818	/*
819	 * The boot-ioremap range spans multiple pmds, for which
820	 * we are not prepared:
821	 */
822#define __FIXADDR_TOP (-PAGE_SIZE)
823	BUILD_BUG_ON((__fix_to_virt(FIX_BTMAP_BEGIN) >> PMD_SHIFT)
824		     != (__fix_to_virt(FIX_BTMAP_END) >> PMD_SHIFT));
825#undef __FIXADDR_TOP
826	if (pmd != early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END))) {
827		WARN_ON(1);
828		printk(KERN_WARNING "pmd %p != %p\n",
829		       pmd, early_ioremap_pmd(fix_to_virt(FIX_BTMAP_END)));
830		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_BEGIN): %08lx\n",
831			fix_to_virt(FIX_BTMAP_BEGIN));
832		printk(KERN_WARNING "fix_to_virt(FIX_BTMAP_END):   %08lx\n",
833			fix_to_virt(FIX_BTMAP_END));
834
835		printk(KERN_WARNING "FIX_BTMAP_END:       %d\n", FIX_BTMAP_END);
836		printk(KERN_WARNING "FIX_BTMAP_BEGIN:     %d\n",
837		       FIX_BTMAP_BEGIN);
838	}
839}
840
841void __init __early_set_fixmap(enum fixed_addresses idx,
842			       phys_addr_t phys, pgprot_t flags)
843{
844	unsigned long addr = __fix_to_virt(idx);
845	pte_t *pte;
846
847	if (idx >= __end_of_fixed_addresses) {
848		BUG();
849		return;
850	}
851	pte = early_ioremap_pte(addr);
852
853	/* Sanitize 'prot' against any unsupported bits: */
854	pgprot_val(flags) &= __supported_pte_mask;
855
856	if (pgprot_val(flags))
857		set_pte(pte, pfn_pte(phys >> PAGE_SHIFT, flags));
858	else
859		pte_clear(&init_mm, addr, pte);
860	__flush_tlb_one_kernel(addr);
861}