Loading...
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Buffer/page management specific to NILFS
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi and Seiji Kihara.
8 */
9
10#include <linux/pagemap.h>
11#include <linux/writeback.h>
12#include <linux/swap.h>
13#include <linux/bitops.h>
14#include <linux/page-flags.h>
15#include <linux/list.h>
16#include <linux/highmem.h>
17#include <linux/pagevec.h>
18#include <linux/gfp.h>
19#include "nilfs.h"
20#include "page.h"
21#include "mdt.h"
22
23
24#define NILFS_BUFFER_INHERENT_BITS \
25 (BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) | \
26 BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked))
27
28static struct buffer_head *
29__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
30 int blkbits, unsigned long b_state)
31
32{
33 unsigned long first_block;
34 struct buffer_head *bh;
35
36 if (!page_has_buffers(page))
37 create_empty_buffers(page, 1 << blkbits, b_state);
38
39 first_block = (unsigned long)index << (PAGE_SHIFT - blkbits);
40 bh = nilfs_page_get_nth_block(page, block - first_block);
41
42 touch_buffer(bh);
43 wait_on_buffer(bh);
44 return bh;
45}
46
47struct buffer_head *nilfs_grab_buffer(struct inode *inode,
48 struct address_space *mapping,
49 unsigned long blkoff,
50 unsigned long b_state)
51{
52 int blkbits = inode->i_blkbits;
53 pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits);
54 struct page *page;
55 struct buffer_head *bh;
56
57 page = grab_cache_page(mapping, index);
58 if (unlikely(!page))
59 return NULL;
60
61 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
62 if (unlikely(!bh)) {
63 unlock_page(page);
64 put_page(page);
65 return NULL;
66 }
67 return bh;
68}
69
70/**
71 * nilfs_forget_buffer - discard dirty state
72 * @bh: buffer head of the buffer to be discarded
73 */
74void nilfs_forget_buffer(struct buffer_head *bh)
75{
76 struct page *page = bh->b_page;
77 const unsigned long clear_bits =
78 (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
79 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
80 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
81
82 lock_buffer(bh);
83 set_mask_bits(&bh->b_state, clear_bits, 0);
84 if (nilfs_page_buffers_clean(page))
85 __nilfs_clear_page_dirty(page);
86
87 bh->b_blocknr = -1;
88 ClearPageUptodate(page);
89 ClearPageMappedToDisk(page);
90 unlock_buffer(bh);
91 brelse(bh);
92}
93
94/**
95 * nilfs_copy_buffer -- copy buffer data and flags
96 * @dbh: destination buffer
97 * @sbh: source buffer
98 */
99void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
100{
101 void *kaddr0, *kaddr1;
102 unsigned long bits;
103 struct page *spage = sbh->b_page, *dpage = dbh->b_page;
104 struct buffer_head *bh;
105
106 kaddr0 = kmap_atomic(spage);
107 kaddr1 = kmap_atomic(dpage);
108 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
109 kunmap_atomic(kaddr1);
110 kunmap_atomic(kaddr0);
111
112 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
113 dbh->b_blocknr = sbh->b_blocknr;
114 dbh->b_bdev = sbh->b_bdev;
115
116 bh = dbh;
117 bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped));
118 while ((bh = bh->b_this_page) != dbh) {
119 lock_buffer(bh);
120 bits &= bh->b_state;
121 unlock_buffer(bh);
122 }
123 if (bits & BIT(BH_Uptodate))
124 SetPageUptodate(dpage);
125 else
126 ClearPageUptodate(dpage);
127 if (bits & BIT(BH_Mapped))
128 SetPageMappedToDisk(dpage);
129 else
130 ClearPageMappedToDisk(dpage);
131}
132
133/**
134 * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
135 * @page: page to be checked
136 *
137 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
138 * Otherwise, it returns non-zero value.
139 */
140int nilfs_page_buffers_clean(struct page *page)
141{
142 struct buffer_head *bh, *head;
143
144 bh = head = page_buffers(page);
145 do {
146 if (buffer_dirty(bh))
147 return 0;
148 bh = bh->b_this_page;
149 } while (bh != head);
150 return 1;
151}
152
153void nilfs_page_bug(struct page *page)
154{
155 struct address_space *m;
156 unsigned long ino;
157
158 if (unlikely(!page)) {
159 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
160 return;
161 }
162
163 m = page->mapping;
164 ino = m ? m->host->i_ino : 0;
165
166 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
167 "mapping=%p ino=%lu\n",
168 page, page_ref_count(page),
169 (unsigned long long)page->index, page->flags, m, ino);
170
171 if (page_has_buffers(page)) {
172 struct buffer_head *bh, *head;
173 int i = 0;
174
175 bh = head = page_buffers(page);
176 do {
177 printk(KERN_CRIT
178 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
179 i++, bh, atomic_read(&bh->b_count),
180 (unsigned long long)bh->b_blocknr, bh->b_state);
181 bh = bh->b_this_page;
182 } while (bh != head);
183 }
184}
185
186/**
187 * nilfs_copy_page -- copy the page with buffers
188 * @dst: destination page
189 * @src: source page
190 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
191 *
192 * This function is for both data pages and btnode pages. The dirty flag
193 * should be treated by caller. The page must not be under i/o.
194 * Both src and dst page must be locked
195 */
196static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
197{
198 struct buffer_head *dbh, *dbufs, *sbh;
199 unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
200
201 BUG_ON(PageWriteback(dst));
202
203 sbh = page_buffers(src);
204 if (!page_has_buffers(dst))
205 create_empty_buffers(dst, sbh->b_size, 0);
206
207 if (copy_dirty)
208 mask |= BIT(BH_Dirty);
209
210 dbh = dbufs = page_buffers(dst);
211 do {
212 lock_buffer(sbh);
213 lock_buffer(dbh);
214 dbh->b_state = sbh->b_state & mask;
215 dbh->b_blocknr = sbh->b_blocknr;
216 dbh->b_bdev = sbh->b_bdev;
217 sbh = sbh->b_this_page;
218 dbh = dbh->b_this_page;
219 } while (dbh != dbufs);
220
221 copy_highpage(dst, src);
222
223 if (PageUptodate(src) && !PageUptodate(dst))
224 SetPageUptodate(dst);
225 else if (!PageUptodate(src) && PageUptodate(dst))
226 ClearPageUptodate(dst);
227 if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
228 SetPageMappedToDisk(dst);
229 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
230 ClearPageMappedToDisk(dst);
231
232 do {
233 unlock_buffer(sbh);
234 unlock_buffer(dbh);
235 sbh = sbh->b_this_page;
236 dbh = dbh->b_this_page;
237 } while (dbh != dbufs);
238}
239
240int nilfs_copy_dirty_pages(struct address_space *dmap,
241 struct address_space *smap)
242{
243 struct pagevec pvec;
244 unsigned int i;
245 pgoff_t index = 0;
246 int err = 0;
247
248 pagevec_init(&pvec);
249repeat:
250 if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY))
251 return 0;
252
253 for (i = 0; i < pagevec_count(&pvec); i++) {
254 struct page *page = pvec.pages[i], *dpage;
255
256 lock_page(page);
257 if (unlikely(!PageDirty(page)))
258 NILFS_PAGE_BUG(page, "inconsistent dirty state");
259
260 dpage = grab_cache_page(dmap, page->index);
261 if (unlikely(!dpage)) {
262 /* No empty page is added to the page cache */
263 err = -ENOMEM;
264 unlock_page(page);
265 break;
266 }
267 if (unlikely(!page_has_buffers(page)))
268 NILFS_PAGE_BUG(page,
269 "found empty page in dat page cache");
270
271 nilfs_copy_page(dpage, page, 1);
272 __set_page_dirty_nobuffers(dpage);
273
274 unlock_page(dpage);
275 put_page(dpage);
276 unlock_page(page);
277 }
278 pagevec_release(&pvec);
279 cond_resched();
280
281 if (likely(!err))
282 goto repeat;
283 return err;
284}
285
286/**
287 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
288 * @dmap: destination page cache
289 * @smap: source page cache
290 *
291 * No pages must be added to the cache during this process.
292 * This must be ensured by the caller.
293 */
294void nilfs_copy_back_pages(struct address_space *dmap,
295 struct address_space *smap)
296{
297 struct folio_batch fbatch;
298 unsigned int i, n;
299 pgoff_t start = 0;
300
301 folio_batch_init(&fbatch);
302repeat:
303 n = filemap_get_folios(smap, &start, ~0UL, &fbatch);
304 if (!n)
305 return;
306
307 for (i = 0; i < folio_batch_count(&fbatch); i++) {
308 struct folio *folio = fbatch.folios[i], *dfolio;
309 pgoff_t index = folio->index;
310
311 folio_lock(folio);
312 dfolio = filemap_lock_folio(dmap, index);
313 if (dfolio) {
314 /* overwrite existing folio in the destination cache */
315 WARN_ON(folio_test_dirty(dfolio));
316 nilfs_copy_page(&dfolio->page, &folio->page, 0);
317 folio_unlock(dfolio);
318 folio_put(dfolio);
319 /* Do we not need to remove folio from smap here? */
320 } else {
321 struct folio *f;
322
323 /* move the folio to the destination cache */
324 xa_lock_irq(&smap->i_pages);
325 f = __xa_erase(&smap->i_pages, index);
326 WARN_ON(folio != f);
327 smap->nrpages--;
328 xa_unlock_irq(&smap->i_pages);
329
330 xa_lock_irq(&dmap->i_pages);
331 f = __xa_store(&dmap->i_pages, index, folio, GFP_NOFS);
332 if (unlikely(f)) {
333 /* Probably -ENOMEM */
334 folio->mapping = NULL;
335 folio_put(folio);
336 } else {
337 folio->mapping = dmap;
338 dmap->nrpages++;
339 if (folio_test_dirty(folio))
340 __xa_set_mark(&dmap->i_pages, index,
341 PAGECACHE_TAG_DIRTY);
342 }
343 xa_unlock_irq(&dmap->i_pages);
344 }
345 folio_unlock(folio);
346 }
347 folio_batch_release(&fbatch);
348 cond_resched();
349
350 goto repeat;
351}
352
353/**
354 * nilfs_clear_dirty_pages - discard dirty pages in address space
355 * @mapping: address space with dirty pages for discarding
356 * @silent: suppress [true] or print [false] warning messages
357 */
358void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
359{
360 struct pagevec pvec;
361 unsigned int i;
362 pgoff_t index = 0;
363
364 pagevec_init(&pvec);
365
366 while (pagevec_lookup_tag(&pvec, mapping, &index,
367 PAGECACHE_TAG_DIRTY)) {
368 for (i = 0; i < pagevec_count(&pvec); i++) {
369 struct page *page = pvec.pages[i];
370
371 lock_page(page);
372 nilfs_clear_dirty_page(page, silent);
373 unlock_page(page);
374 }
375 pagevec_release(&pvec);
376 cond_resched();
377 }
378}
379
380/**
381 * nilfs_clear_dirty_page - discard dirty page
382 * @page: dirty page that will be discarded
383 * @silent: suppress [true] or print [false] warning messages
384 */
385void nilfs_clear_dirty_page(struct page *page, bool silent)
386{
387 struct inode *inode = page->mapping->host;
388 struct super_block *sb = inode->i_sb;
389
390 BUG_ON(!PageLocked(page));
391
392 if (!silent)
393 nilfs_warn(sb, "discard dirty page: offset=%lld, ino=%lu",
394 page_offset(page), inode->i_ino);
395
396 ClearPageUptodate(page);
397 ClearPageMappedToDisk(page);
398
399 if (page_has_buffers(page)) {
400 struct buffer_head *bh, *head;
401 const unsigned long clear_bits =
402 (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
403 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
404 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
405
406 bh = head = page_buffers(page);
407 do {
408 lock_buffer(bh);
409 if (!silent)
410 nilfs_warn(sb,
411 "discard dirty block: blocknr=%llu, size=%zu",
412 (u64)bh->b_blocknr, bh->b_size);
413
414 set_mask_bits(&bh->b_state, clear_bits, 0);
415 unlock_buffer(bh);
416 } while (bh = bh->b_this_page, bh != head);
417 }
418
419 __nilfs_clear_page_dirty(page);
420}
421
422unsigned int nilfs_page_count_clean_buffers(struct page *page,
423 unsigned int from, unsigned int to)
424{
425 unsigned int block_start, block_end;
426 struct buffer_head *bh, *head;
427 unsigned int nc = 0;
428
429 for (bh = head = page_buffers(page), block_start = 0;
430 bh != head || !block_start;
431 block_start = block_end, bh = bh->b_this_page) {
432 block_end = block_start + bh->b_size;
433 if (block_end > from && block_start < to && !buffer_dirty(bh))
434 nc++;
435 }
436 return nc;
437}
438
439/*
440 * NILFS2 needs clear_page_dirty() in the following two cases:
441 *
442 * 1) For B-tree node pages and data pages of DAT file, NILFS2 clears dirty
443 * flag of pages when it copies back pages from shadow cache to the
444 * original cache.
445 *
446 * 2) Some B-tree operations like insertion or deletion may dispose buffers
447 * in dirty state, and this needs to cancel the dirty state of their pages.
448 */
449int __nilfs_clear_page_dirty(struct page *page)
450{
451 struct address_space *mapping = page->mapping;
452
453 if (mapping) {
454 xa_lock_irq(&mapping->i_pages);
455 if (test_bit(PG_dirty, &page->flags)) {
456 __xa_clear_mark(&mapping->i_pages, page_index(page),
457 PAGECACHE_TAG_DIRTY);
458 xa_unlock_irq(&mapping->i_pages);
459 return clear_page_dirty_for_io(page);
460 }
461 xa_unlock_irq(&mapping->i_pages);
462 return 0;
463 }
464 return TestClearPageDirty(page);
465}
466
467/**
468 * nilfs_find_uncommitted_extent - find extent of uncommitted data
469 * @inode: inode
470 * @start_blk: start block offset (in)
471 * @blkoff: start offset of the found extent (out)
472 *
473 * This function searches an extent of buffers marked "delayed" which
474 * starts from a block offset equal to or larger than @start_blk. If
475 * such an extent was found, this will store the start offset in
476 * @blkoff and return its length in blocks. Otherwise, zero is
477 * returned.
478 */
479unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
480 sector_t start_blk,
481 sector_t *blkoff)
482{
483 unsigned int i, nr_folios;
484 pgoff_t index;
485 unsigned long length = 0;
486 struct folio_batch fbatch;
487 struct folio *folio;
488
489 if (inode->i_mapping->nrpages == 0)
490 return 0;
491
492 index = start_blk >> (PAGE_SHIFT - inode->i_blkbits);
493
494 folio_batch_init(&fbatch);
495
496repeat:
497 nr_folios = filemap_get_folios_contig(inode->i_mapping, &index, ULONG_MAX,
498 &fbatch);
499 if (nr_folios == 0)
500 return length;
501
502 i = 0;
503 do {
504 folio = fbatch.folios[i];
505
506 folio_lock(folio);
507 if (folio_buffers(folio)) {
508 struct buffer_head *bh, *head;
509 sector_t b;
510
511 b = folio->index << (PAGE_SHIFT - inode->i_blkbits);
512 bh = head = folio_buffers(folio);
513 do {
514 if (b < start_blk)
515 continue;
516 if (buffer_delay(bh)) {
517 if (length == 0)
518 *blkoff = b;
519 length++;
520 } else if (length > 0) {
521 goto out_locked;
522 }
523 } while (++b, bh = bh->b_this_page, bh != head);
524 } else {
525 if (length > 0)
526 goto out_locked;
527 }
528 folio_unlock(folio);
529
530 } while (++i < nr_folios);
531
532 folio_batch_release(&fbatch);
533 cond_resched();
534 goto repeat;
535
536out_locked:
537 folio_unlock(folio);
538 folio_batch_release(&fbatch);
539 return length;
540}
1/*
2 * page.c - buffer/page management specific to NILFS
3 *
4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * Written by Ryusuke Konishi and Seiji Kihara.
17 */
18
19#include <linux/pagemap.h>
20#include <linux/writeback.h>
21#include <linux/swap.h>
22#include <linux/bitops.h>
23#include <linux/page-flags.h>
24#include <linux/list.h>
25#include <linux/highmem.h>
26#include <linux/pagevec.h>
27#include <linux/gfp.h>
28#include "nilfs.h"
29#include "page.h"
30#include "mdt.h"
31
32
33#define NILFS_BUFFER_INHERENT_BITS \
34 (BIT(BH_Uptodate) | BIT(BH_Mapped) | BIT(BH_NILFS_Node) | \
35 BIT(BH_NILFS_Volatile) | BIT(BH_NILFS_Checked))
36
37static struct buffer_head *
38__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
39 int blkbits, unsigned long b_state)
40
41{
42 unsigned long first_block;
43 struct buffer_head *bh;
44
45 if (!page_has_buffers(page))
46 create_empty_buffers(page, 1 << blkbits, b_state);
47
48 first_block = (unsigned long)index << (PAGE_SHIFT - blkbits);
49 bh = nilfs_page_get_nth_block(page, block - first_block);
50
51 touch_buffer(bh);
52 wait_on_buffer(bh);
53 return bh;
54}
55
56struct buffer_head *nilfs_grab_buffer(struct inode *inode,
57 struct address_space *mapping,
58 unsigned long blkoff,
59 unsigned long b_state)
60{
61 int blkbits = inode->i_blkbits;
62 pgoff_t index = blkoff >> (PAGE_SHIFT - blkbits);
63 struct page *page;
64 struct buffer_head *bh;
65
66 page = grab_cache_page(mapping, index);
67 if (unlikely(!page))
68 return NULL;
69
70 bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
71 if (unlikely(!bh)) {
72 unlock_page(page);
73 put_page(page);
74 return NULL;
75 }
76 return bh;
77}
78
79/**
80 * nilfs_forget_buffer - discard dirty state
81 * @inode: owner inode of the buffer
82 * @bh: buffer head of the buffer to be discarded
83 */
84void nilfs_forget_buffer(struct buffer_head *bh)
85{
86 struct page *page = bh->b_page;
87 const unsigned long clear_bits =
88 (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
89 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
90 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
91
92 lock_buffer(bh);
93 set_mask_bits(&bh->b_state, clear_bits, 0);
94 if (nilfs_page_buffers_clean(page))
95 __nilfs_clear_page_dirty(page);
96
97 bh->b_blocknr = -1;
98 ClearPageUptodate(page);
99 ClearPageMappedToDisk(page);
100 unlock_buffer(bh);
101 brelse(bh);
102}
103
104/**
105 * nilfs_copy_buffer -- copy buffer data and flags
106 * @dbh: destination buffer
107 * @sbh: source buffer
108 */
109void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
110{
111 void *kaddr0, *kaddr1;
112 unsigned long bits;
113 struct page *spage = sbh->b_page, *dpage = dbh->b_page;
114 struct buffer_head *bh;
115
116 kaddr0 = kmap_atomic(spage);
117 kaddr1 = kmap_atomic(dpage);
118 memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
119 kunmap_atomic(kaddr1);
120 kunmap_atomic(kaddr0);
121
122 dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
123 dbh->b_blocknr = sbh->b_blocknr;
124 dbh->b_bdev = sbh->b_bdev;
125
126 bh = dbh;
127 bits = sbh->b_state & (BIT(BH_Uptodate) | BIT(BH_Mapped));
128 while ((bh = bh->b_this_page) != dbh) {
129 lock_buffer(bh);
130 bits &= bh->b_state;
131 unlock_buffer(bh);
132 }
133 if (bits & BIT(BH_Uptodate))
134 SetPageUptodate(dpage);
135 else
136 ClearPageUptodate(dpage);
137 if (bits & BIT(BH_Mapped))
138 SetPageMappedToDisk(dpage);
139 else
140 ClearPageMappedToDisk(dpage);
141}
142
143/**
144 * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
145 * @page: page to be checked
146 *
147 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
148 * Otherwise, it returns non-zero value.
149 */
150int nilfs_page_buffers_clean(struct page *page)
151{
152 struct buffer_head *bh, *head;
153
154 bh = head = page_buffers(page);
155 do {
156 if (buffer_dirty(bh))
157 return 0;
158 bh = bh->b_this_page;
159 } while (bh != head);
160 return 1;
161}
162
163void nilfs_page_bug(struct page *page)
164{
165 struct address_space *m;
166 unsigned long ino;
167
168 if (unlikely(!page)) {
169 printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
170 return;
171 }
172
173 m = page->mapping;
174 ino = m ? m->host->i_ino : 0;
175
176 printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
177 "mapping=%p ino=%lu\n",
178 page, page_ref_count(page),
179 (unsigned long long)page->index, page->flags, m, ino);
180
181 if (page_has_buffers(page)) {
182 struct buffer_head *bh, *head;
183 int i = 0;
184
185 bh = head = page_buffers(page);
186 do {
187 printk(KERN_CRIT
188 " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
189 i++, bh, atomic_read(&bh->b_count),
190 (unsigned long long)bh->b_blocknr, bh->b_state);
191 bh = bh->b_this_page;
192 } while (bh != head);
193 }
194}
195
196/**
197 * nilfs_copy_page -- copy the page with buffers
198 * @dst: destination page
199 * @src: source page
200 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
201 *
202 * This function is for both data pages and btnode pages. The dirty flag
203 * should be treated by caller. The page must not be under i/o.
204 * Both src and dst page must be locked
205 */
206static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
207{
208 struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
209 unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
210
211 BUG_ON(PageWriteback(dst));
212
213 sbh = sbufs = page_buffers(src);
214 if (!page_has_buffers(dst))
215 create_empty_buffers(dst, sbh->b_size, 0);
216
217 if (copy_dirty)
218 mask |= BIT(BH_Dirty);
219
220 dbh = dbufs = page_buffers(dst);
221 do {
222 lock_buffer(sbh);
223 lock_buffer(dbh);
224 dbh->b_state = sbh->b_state & mask;
225 dbh->b_blocknr = sbh->b_blocknr;
226 dbh->b_bdev = sbh->b_bdev;
227 sbh = sbh->b_this_page;
228 dbh = dbh->b_this_page;
229 } while (dbh != dbufs);
230
231 copy_highpage(dst, src);
232
233 if (PageUptodate(src) && !PageUptodate(dst))
234 SetPageUptodate(dst);
235 else if (!PageUptodate(src) && PageUptodate(dst))
236 ClearPageUptodate(dst);
237 if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
238 SetPageMappedToDisk(dst);
239 else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
240 ClearPageMappedToDisk(dst);
241
242 do {
243 unlock_buffer(sbh);
244 unlock_buffer(dbh);
245 sbh = sbh->b_this_page;
246 dbh = dbh->b_this_page;
247 } while (dbh != dbufs);
248}
249
250int nilfs_copy_dirty_pages(struct address_space *dmap,
251 struct address_space *smap)
252{
253 struct pagevec pvec;
254 unsigned int i;
255 pgoff_t index = 0;
256 int err = 0;
257
258 pagevec_init(&pvec);
259repeat:
260 if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY))
261 return 0;
262
263 for (i = 0; i < pagevec_count(&pvec); i++) {
264 struct page *page = pvec.pages[i], *dpage;
265
266 lock_page(page);
267 if (unlikely(!PageDirty(page)))
268 NILFS_PAGE_BUG(page, "inconsistent dirty state");
269
270 dpage = grab_cache_page(dmap, page->index);
271 if (unlikely(!dpage)) {
272 /* No empty page is added to the page cache */
273 err = -ENOMEM;
274 unlock_page(page);
275 break;
276 }
277 if (unlikely(!page_has_buffers(page)))
278 NILFS_PAGE_BUG(page,
279 "found empty page in dat page cache");
280
281 nilfs_copy_page(dpage, page, 1);
282 __set_page_dirty_nobuffers(dpage);
283
284 unlock_page(dpage);
285 put_page(dpage);
286 unlock_page(page);
287 }
288 pagevec_release(&pvec);
289 cond_resched();
290
291 if (likely(!err))
292 goto repeat;
293 return err;
294}
295
296/**
297 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
298 * @dmap: destination page cache
299 * @smap: source page cache
300 *
301 * No pages must no be added to the cache during this process.
302 * This must be ensured by the caller.
303 */
304void nilfs_copy_back_pages(struct address_space *dmap,
305 struct address_space *smap)
306{
307 struct pagevec pvec;
308 unsigned int i, n;
309 pgoff_t index = 0;
310 int err;
311
312 pagevec_init(&pvec);
313repeat:
314 n = pagevec_lookup(&pvec, smap, &index);
315 if (!n)
316 return;
317
318 for (i = 0; i < pagevec_count(&pvec); i++) {
319 struct page *page = pvec.pages[i], *dpage;
320 pgoff_t offset = page->index;
321
322 lock_page(page);
323 dpage = find_lock_page(dmap, offset);
324 if (dpage) {
325 /* override existing page on the destination cache */
326 WARN_ON(PageDirty(dpage));
327 nilfs_copy_page(dpage, page, 0);
328 unlock_page(dpage);
329 put_page(dpage);
330 } else {
331 struct page *page2;
332
333 /* move the page to the destination cache */
334 xa_lock_irq(&smap->i_pages);
335 page2 = radix_tree_delete(&smap->i_pages, offset);
336 WARN_ON(page2 != page);
337
338 smap->nrpages--;
339 xa_unlock_irq(&smap->i_pages);
340
341 xa_lock_irq(&dmap->i_pages);
342 err = radix_tree_insert(&dmap->i_pages, offset, page);
343 if (unlikely(err < 0)) {
344 WARN_ON(err == -EEXIST);
345 page->mapping = NULL;
346 put_page(page); /* for cache */
347 } else {
348 page->mapping = dmap;
349 dmap->nrpages++;
350 if (PageDirty(page))
351 radix_tree_tag_set(&dmap->i_pages,
352 offset,
353 PAGECACHE_TAG_DIRTY);
354 }
355 xa_unlock_irq(&dmap->i_pages);
356 }
357 unlock_page(page);
358 }
359 pagevec_release(&pvec);
360 cond_resched();
361
362 goto repeat;
363}
364
365/**
366 * nilfs_clear_dirty_pages - discard dirty pages in address space
367 * @mapping: address space with dirty pages for discarding
368 * @silent: suppress [true] or print [false] warning messages
369 */
370void nilfs_clear_dirty_pages(struct address_space *mapping, bool silent)
371{
372 struct pagevec pvec;
373 unsigned int i;
374 pgoff_t index = 0;
375
376 pagevec_init(&pvec);
377
378 while (pagevec_lookup_tag(&pvec, mapping, &index,
379 PAGECACHE_TAG_DIRTY)) {
380 for (i = 0; i < pagevec_count(&pvec); i++) {
381 struct page *page = pvec.pages[i];
382
383 lock_page(page);
384 nilfs_clear_dirty_page(page, silent);
385 unlock_page(page);
386 }
387 pagevec_release(&pvec);
388 cond_resched();
389 }
390}
391
392/**
393 * nilfs_clear_dirty_page - discard dirty page
394 * @page: dirty page that will be discarded
395 * @silent: suppress [true] or print [false] warning messages
396 */
397void nilfs_clear_dirty_page(struct page *page, bool silent)
398{
399 struct inode *inode = page->mapping->host;
400 struct super_block *sb = inode->i_sb;
401
402 BUG_ON(!PageLocked(page));
403
404 if (!silent)
405 nilfs_msg(sb, KERN_WARNING,
406 "discard dirty page: offset=%lld, ino=%lu",
407 page_offset(page), inode->i_ino);
408
409 ClearPageUptodate(page);
410 ClearPageMappedToDisk(page);
411
412 if (page_has_buffers(page)) {
413 struct buffer_head *bh, *head;
414 const unsigned long clear_bits =
415 (BIT(BH_Uptodate) | BIT(BH_Dirty) | BIT(BH_Mapped) |
416 BIT(BH_Async_Write) | BIT(BH_NILFS_Volatile) |
417 BIT(BH_NILFS_Checked) | BIT(BH_NILFS_Redirected));
418
419 bh = head = page_buffers(page);
420 do {
421 lock_buffer(bh);
422 if (!silent)
423 nilfs_msg(sb, KERN_WARNING,
424 "discard dirty block: blocknr=%llu, size=%zu",
425 (u64)bh->b_blocknr, bh->b_size);
426
427 set_mask_bits(&bh->b_state, clear_bits, 0);
428 unlock_buffer(bh);
429 } while (bh = bh->b_this_page, bh != head);
430 }
431
432 __nilfs_clear_page_dirty(page);
433}
434
435unsigned int nilfs_page_count_clean_buffers(struct page *page,
436 unsigned int from, unsigned int to)
437{
438 unsigned int block_start, block_end;
439 struct buffer_head *bh, *head;
440 unsigned int nc = 0;
441
442 for (bh = head = page_buffers(page), block_start = 0;
443 bh != head || !block_start;
444 block_start = block_end, bh = bh->b_this_page) {
445 block_end = block_start + bh->b_size;
446 if (block_end > from && block_start < to && !buffer_dirty(bh))
447 nc++;
448 }
449 return nc;
450}
451
452void nilfs_mapping_init(struct address_space *mapping, struct inode *inode)
453{
454 mapping->host = inode;
455 mapping->flags = 0;
456 mapping_set_gfp_mask(mapping, GFP_NOFS);
457 mapping->private_data = NULL;
458 mapping->a_ops = &empty_aops;
459}
460
461/*
462 * NILFS2 needs clear_page_dirty() in the following two cases:
463 *
464 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
465 * page dirty flags when it copies back pages from the shadow cache
466 * (gcdat->{i_mapping,i_btnode_cache}) to its original cache
467 * (dat->{i_mapping,i_btnode_cache}).
468 *
469 * 2) Some B-tree operations like insertion or deletion may dispose buffers
470 * in dirty state, and this needs to cancel the dirty state of their pages.
471 */
472int __nilfs_clear_page_dirty(struct page *page)
473{
474 struct address_space *mapping = page->mapping;
475
476 if (mapping) {
477 xa_lock_irq(&mapping->i_pages);
478 if (test_bit(PG_dirty, &page->flags)) {
479 radix_tree_tag_clear(&mapping->i_pages,
480 page_index(page),
481 PAGECACHE_TAG_DIRTY);
482 xa_unlock_irq(&mapping->i_pages);
483 return clear_page_dirty_for_io(page);
484 }
485 xa_unlock_irq(&mapping->i_pages);
486 return 0;
487 }
488 return TestClearPageDirty(page);
489}
490
491/**
492 * nilfs_find_uncommitted_extent - find extent of uncommitted data
493 * @inode: inode
494 * @start_blk: start block offset (in)
495 * @blkoff: start offset of the found extent (out)
496 *
497 * This function searches an extent of buffers marked "delayed" which
498 * starts from a block offset equal to or larger than @start_blk. If
499 * such an extent was found, this will store the start offset in
500 * @blkoff and return its length in blocks. Otherwise, zero is
501 * returned.
502 */
503unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
504 sector_t start_blk,
505 sector_t *blkoff)
506{
507 unsigned int i;
508 pgoff_t index;
509 unsigned int nblocks_in_page;
510 unsigned long length = 0;
511 sector_t b;
512 struct pagevec pvec;
513 struct page *page;
514
515 if (inode->i_mapping->nrpages == 0)
516 return 0;
517
518 index = start_blk >> (PAGE_SHIFT - inode->i_blkbits);
519 nblocks_in_page = 1U << (PAGE_SHIFT - inode->i_blkbits);
520
521 pagevec_init(&pvec);
522
523repeat:
524 pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
525 pvec.pages);
526 if (pvec.nr == 0)
527 return length;
528
529 if (length > 0 && pvec.pages[0]->index > index)
530 goto out;
531
532 b = pvec.pages[0]->index << (PAGE_SHIFT - inode->i_blkbits);
533 i = 0;
534 do {
535 page = pvec.pages[i];
536
537 lock_page(page);
538 if (page_has_buffers(page)) {
539 struct buffer_head *bh, *head;
540
541 bh = head = page_buffers(page);
542 do {
543 if (b < start_blk)
544 continue;
545 if (buffer_delay(bh)) {
546 if (length == 0)
547 *blkoff = b;
548 length++;
549 } else if (length > 0) {
550 goto out_locked;
551 }
552 } while (++b, bh = bh->b_this_page, bh != head);
553 } else {
554 if (length > 0)
555 goto out_locked;
556
557 b += nblocks_in_page;
558 }
559 unlock_page(page);
560
561 } while (++i < pagevec_count(&pvec));
562
563 index = page->index + 1;
564 pagevec_release(&pvec);
565 cond_resched();
566 goto repeat;
567
568out_locked:
569 unlock_page(page);
570out:
571 pagevec_release(&pvec);
572 return length;
573}