Linux Audio

Check our new training course

Loading...
  1/*
  2 * page.c - buffer/page management specific to NILFS
  3 *
  4 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License as published by
  8 * the Free Software Foundation; either version 2 of the License, or
  9 * (at your option) any later version.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 14 * GNU General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program; if not, write to the Free Software
 18 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
 19 *
 20 * Written by Ryusuke Konishi <ryusuke@osrg.net>,
 21 *            Seiji Kihara <kihara@osrg.net>.
 22 */
 23
 24#include <linux/pagemap.h>
 25#include <linux/writeback.h>
 26#include <linux/swap.h>
 27#include <linux/bitops.h>
 28#include <linux/page-flags.h>
 29#include <linux/list.h>
 30#include <linux/highmem.h>
 31#include <linux/pagevec.h>
 32#include <linux/gfp.h>
 33#include "nilfs.h"
 34#include "page.h"
 35#include "mdt.h"
 36
 37
 38#define NILFS_BUFFER_INHERENT_BITS  \
 39	((1UL << BH_Uptodate) | (1UL << BH_Mapped) | (1UL << BH_NILFS_Node) | \
 40	 (1UL << BH_NILFS_Volatile) | (1UL << BH_NILFS_Checked))
 41
 42static struct buffer_head *
 43__nilfs_get_page_block(struct page *page, unsigned long block, pgoff_t index,
 44		       int blkbits, unsigned long b_state)
 45
 46{
 47	unsigned long first_block;
 48	struct buffer_head *bh;
 49
 50	if (!page_has_buffers(page))
 51		create_empty_buffers(page, 1 << blkbits, b_state);
 52
 53	first_block = (unsigned long)index << (PAGE_CACHE_SHIFT - blkbits);
 54	bh = nilfs_page_get_nth_block(page, block - first_block);
 55
 56	touch_buffer(bh);
 57	wait_on_buffer(bh);
 58	return bh;
 59}
 60
 61struct buffer_head *nilfs_grab_buffer(struct inode *inode,
 62				      struct address_space *mapping,
 63				      unsigned long blkoff,
 64				      unsigned long b_state)
 65{
 66	int blkbits = inode->i_blkbits;
 67	pgoff_t index = blkoff >> (PAGE_CACHE_SHIFT - blkbits);
 68	struct page *page;
 69	struct buffer_head *bh;
 70
 71	page = grab_cache_page(mapping, index);
 72	if (unlikely(!page))
 73		return NULL;
 74
 75	bh = __nilfs_get_page_block(page, blkoff, index, blkbits, b_state);
 76	if (unlikely(!bh)) {
 77		unlock_page(page);
 78		page_cache_release(page);
 79		return NULL;
 80	}
 81	return bh;
 82}
 83
 84/**
 85 * nilfs_forget_buffer - discard dirty state
 86 * @inode: owner inode of the buffer
 87 * @bh: buffer head of the buffer to be discarded
 88 */
 89void nilfs_forget_buffer(struct buffer_head *bh)
 90{
 91	struct page *page = bh->b_page;
 92
 93	lock_buffer(bh);
 94	clear_buffer_nilfs_volatile(bh);
 95	clear_buffer_nilfs_checked(bh);
 96	clear_buffer_nilfs_redirected(bh);
 97	clear_buffer_dirty(bh);
 98	if (nilfs_page_buffers_clean(page))
 99		__nilfs_clear_page_dirty(page);
100
101	clear_buffer_uptodate(bh);
102	clear_buffer_mapped(bh);
103	bh->b_blocknr = -1;
104	ClearPageUptodate(page);
105	ClearPageMappedToDisk(page);
106	unlock_buffer(bh);
107	brelse(bh);
108}
109
110/**
111 * nilfs_copy_buffer -- copy buffer data and flags
112 * @dbh: destination buffer
113 * @sbh: source buffer
114 */
115void nilfs_copy_buffer(struct buffer_head *dbh, struct buffer_head *sbh)
116{
117	void *kaddr0, *kaddr1;
118	unsigned long bits;
119	struct page *spage = sbh->b_page, *dpage = dbh->b_page;
120	struct buffer_head *bh;
121
122	kaddr0 = kmap_atomic(spage);
123	kaddr1 = kmap_atomic(dpage);
124	memcpy(kaddr1 + bh_offset(dbh), kaddr0 + bh_offset(sbh), sbh->b_size);
125	kunmap_atomic(kaddr1);
126	kunmap_atomic(kaddr0);
127
128	dbh->b_state = sbh->b_state & NILFS_BUFFER_INHERENT_BITS;
129	dbh->b_blocknr = sbh->b_blocknr;
130	dbh->b_bdev = sbh->b_bdev;
131
132	bh = dbh;
133	bits = sbh->b_state & ((1UL << BH_Uptodate) | (1UL << BH_Mapped));
134	while ((bh = bh->b_this_page) != dbh) {
135		lock_buffer(bh);
136		bits &= bh->b_state;
137		unlock_buffer(bh);
138	}
139	if (bits & (1UL << BH_Uptodate))
140		SetPageUptodate(dpage);
141	else
142		ClearPageUptodate(dpage);
143	if (bits & (1UL << BH_Mapped))
144		SetPageMappedToDisk(dpage);
145	else
146		ClearPageMappedToDisk(dpage);
147}
148
149/**
150 * nilfs_page_buffers_clean - check if a page has dirty buffers or not.
151 * @page: page to be checked
152 *
153 * nilfs_page_buffers_clean() returns zero if the page has dirty buffers.
154 * Otherwise, it returns non-zero value.
155 */
156int nilfs_page_buffers_clean(struct page *page)
157{
158	struct buffer_head *bh, *head;
159
160	bh = head = page_buffers(page);
161	do {
162		if (buffer_dirty(bh))
163			return 0;
164		bh = bh->b_this_page;
165	} while (bh != head);
166	return 1;
167}
168
169void nilfs_page_bug(struct page *page)
170{
171	struct address_space *m;
172	unsigned long ino;
173
174	if (unlikely(!page)) {
175		printk(KERN_CRIT "NILFS_PAGE_BUG(NULL)\n");
176		return;
177	}
178
179	m = page->mapping;
180	ino = m ? m->host->i_ino : 0;
181
182	printk(KERN_CRIT "NILFS_PAGE_BUG(%p): cnt=%d index#=%llu flags=0x%lx "
183	       "mapping=%p ino=%lu\n",
184	       page, atomic_read(&page->_count),
185	       (unsigned long long)page->index, page->flags, m, ino);
186
187	if (page_has_buffers(page)) {
188		struct buffer_head *bh, *head;
189		int i = 0;
190
191		bh = head = page_buffers(page);
192		do {
193			printk(KERN_CRIT
194			       " BH[%d] %p: cnt=%d block#=%llu state=0x%lx\n",
195			       i++, bh, atomic_read(&bh->b_count),
196			       (unsigned long long)bh->b_blocknr, bh->b_state);
197			bh = bh->b_this_page;
198		} while (bh != head);
199	}
200}
201
202/**
203 * nilfs_copy_page -- copy the page with buffers
204 * @dst: destination page
205 * @src: source page
206 * @copy_dirty: flag whether to copy dirty states on the page's buffer heads.
207 *
208 * This function is for both data pages and btnode pages.  The dirty flag
209 * should be treated by caller.  The page must not be under i/o.
210 * Both src and dst page must be locked
211 */
212static void nilfs_copy_page(struct page *dst, struct page *src, int copy_dirty)
213{
214	struct buffer_head *dbh, *dbufs, *sbh, *sbufs;
215	unsigned long mask = NILFS_BUFFER_INHERENT_BITS;
216
217	BUG_ON(PageWriteback(dst));
218
219	sbh = sbufs = page_buffers(src);
220	if (!page_has_buffers(dst))
221		create_empty_buffers(dst, sbh->b_size, 0);
222
223	if (copy_dirty)
224		mask |= (1UL << BH_Dirty);
225
226	dbh = dbufs = page_buffers(dst);
227	do {
228		lock_buffer(sbh);
229		lock_buffer(dbh);
230		dbh->b_state = sbh->b_state & mask;
231		dbh->b_blocknr = sbh->b_blocknr;
232		dbh->b_bdev = sbh->b_bdev;
233		sbh = sbh->b_this_page;
234		dbh = dbh->b_this_page;
235	} while (dbh != dbufs);
236
237	copy_highpage(dst, src);
238
239	if (PageUptodate(src) && !PageUptodate(dst))
240		SetPageUptodate(dst);
241	else if (!PageUptodate(src) && PageUptodate(dst))
242		ClearPageUptodate(dst);
243	if (PageMappedToDisk(src) && !PageMappedToDisk(dst))
244		SetPageMappedToDisk(dst);
245	else if (!PageMappedToDisk(src) && PageMappedToDisk(dst))
246		ClearPageMappedToDisk(dst);
247
248	do {
249		unlock_buffer(sbh);
250		unlock_buffer(dbh);
251		sbh = sbh->b_this_page;
252		dbh = dbh->b_this_page;
253	} while (dbh != dbufs);
254}
255
256int nilfs_copy_dirty_pages(struct address_space *dmap,
257			   struct address_space *smap)
258{
259	struct pagevec pvec;
260	unsigned int i;
261	pgoff_t index = 0;
262	int err = 0;
263
264	pagevec_init(&pvec, 0);
265repeat:
266	if (!pagevec_lookup_tag(&pvec, smap, &index, PAGECACHE_TAG_DIRTY,
267				PAGEVEC_SIZE))
268		return 0;
269
270	for (i = 0; i < pagevec_count(&pvec); i++) {
271		struct page *page = pvec.pages[i], *dpage;
272
273		lock_page(page);
274		if (unlikely(!PageDirty(page)))
275			NILFS_PAGE_BUG(page, "inconsistent dirty state");
276
277		dpage = grab_cache_page(dmap, page->index);
278		if (unlikely(!dpage)) {
279			/* No empty page is added to the page cache */
280			err = -ENOMEM;
281			unlock_page(page);
282			break;
283		}
284		if (unlikely(!page_has_buffers(page)))
285			NILFS_PAGE_BUG(page,
286				       "found empty page in dat page cache");
287
288		nilfs_copy_page(dpage, page, 1);
289		__set_page_dirty_nobuffers(dpage);
290
291		unlock_page(dpage);
292		page_cache_release(dpage);
293		unlock_page(page);
294	}
295	pagevec_release(&pvec);
296	cond_resched();
297
298	if (likely(!err))
299		goto repeat;
300	return err;
301}
302
303/**
304 * nilfs_copy_back_pages -- copy back pages to original cache from shadow cache
305 * @dmap: destination page cache
306 * @smap: source page cache
307 *
308 * No pages must no be added to the cache during this process.
309 * This must be ensured by the caller.
310 */
311void nilfs_copy_back_pages(struct address_space *dmap,
312			   struct address_space *smap)
313{
314	struct pagevec pvec;
315	unsigned int i, n;
316	pgoff_t index = 0;
317	int err;
318
319	pagevec_init(&pvec, 0);
320repeat:
321	n = pagevec_lookup(&pvec, smap, index, PAGEVEC_SIZE);
322	if (!n)
323		return;
324	index = pvec.pages[n - 1]->index + 1;
325
326	for (i = 0; i < pagevec_count(&pvec); i++) {
327		struct page *page = pvec.pages[i], *dpage;
328		pgoff_t offset = page->index;
329
330		lock_page(page);
331		dpage = find_lock_page(dmap, offset);
332		if (dpage) {
333			/* override existing page on the destination cache */
334			WARN_ON(PageDirty(dpage));
335			nilfs_copy_page(dpage, page, 0);
336			unlock_page(dpage);
337			page_cache_release(dpage);
338		} else {
339			struct page *page2;
340
341			/* move the page to the destination cache */
342			spin_lock_irq(&smap->tree_lock);
343			page2 = radix_tree_delete(&smap->page_tree, offset);
344			WARN_ON(page2 != page);
345
346			smap->nrpages--;
347			spin_unlock_irq(&smap->tree_lock);
348
349			spin_lock_irq(&dmap->tree_lock);
350			err = radix_tree_insert(&dmap->page_tree, offset, page);
351			if (unlikely(err < 0)) {
352				WARN_ON(err == -EEXIST);
353				page->mapping = NULL;
354				page_cache_release(page); /* for cache */
355			} else {
356				page->mapping = dmap;
357				dmap->nrpages++;
358				if (PageDirty(page))
359					radix_tree_tag_set(&dmap->page_tree,
360							   offset,
361							   PAGECACHE_TAG_DIRTY);
362			}
363			spin_unlock_irq(&dmap->tree_lock);
364		}
365		unlock_page(page);
366	}
367	pagevec_release(&pvec);
368	cond_resched();
369
370	goto repeat;
371}
372
373void nilfs_clear_dirty_pages(struct address_space *mapping)
374{
375	struct pagevec pvec;
376	unsigned int i;
377	pgoff_t index = 0;
378
379	pagevec_init(&pvec, 0);
380
381	while (pagevec_lookup_tag(&pvec, mapping, &index, PAGECACHE_TAG_DIRTY,
382				  PAGEVEC_SIZE)) {
383		for (i = 0; i < pagevec_count(&pvec); i++) {
384			struct page *page = pvec.pages[i];
385			struct buffer_head *bh, *head;
386
387			lock_page(page);
388			ClearPageUptodate(page);
389			ClearPageMappedToDisk(page);
390			bh = head = page_buffers(page);
391			do {
392				lock_buffer(bh);
393				clear_buffer_dirty(bh);
394				clear_buffer_nilfs_volatile(bh);
395				clear_buffer_nilfs_checked(bh);
396				clear_buffer_nilfs_redirected(bh);
397				clear_buffer_uptodate(bh);
398				clear_buffer_mapped(bh);
399				unlock_buffer(bh);
400				bh = bh->b_this_page;
401			} while (bh != head);
402
403			__nilfs_clear_page_dirty(page);
404			unlock_page(page);
405		}
406		pagevec_release(&pvec);
407		cond_resched();
408	}
409}
410
411unsigned nilfs_page_count_clean_buffers(struct page *page,
412					unsigned from, unsigned to)
413{
414	unsigned block_start, block_end;
415	struct buffer_head *bh, *head;
416	unsigned nc = 0;
417
418	for (bh = head = page_buffers(page), block_start = 0;
419	     bh != head || !block_start;
420	     block_start = block_end, bh = bh->b_this_page) {
421		block_end = block_start + bh->b_size;
422		if (block_end > from && block_start < to && !buffer_dirty(bh))
423			nc++;
424	}
425	return nc;
426}
427
428void nilfs_mapping_init(struct address_space *mapping, struct inode *inode,
429			struct backing_dev_info *bdi)
430{
431	mapping->host = inode;
432	mapping->flags = 0;
433	mapping_set_gfp_mask(mapping, GFP_NOFS);
434	mapping->assoc_mapping = NULL;
435	mapping->backing_dev_info = bdi;
436	mapping->a_ops = &empty_aops;
437}
438
439/*
440 * NILFS2 needs clear_page_dirty() in the following two cases:
441 *
442 * 1) For B-tree node pages and data pages of the dat/gcdat, NILFS2 clears
443 *    page dirty flags when it copies back pages from the shadow cache
444 *    (gcdat->{i_mapping,i_btnode_cache}) to its original cache
445 *    (dat->{i_mapping,i_btnode_cache}).
446 *
447 * 2) Some B-tree operations like insertion or deletion may dispose buffers
448 *    in dirty state, and this needs to cancel the dirty state of their pages.
449 */
450int __nilfs_clear_page_dirty(struct page *page)
451{
452	struct address_space *mapping = page->mapping;
453
454	if (mapping) {
455		spin_lock_irq(&mapping->tree_lock);
456		if (test_bit(PG_dirty, &page->flags)) {
457			radix_tree_tag_clear(&mapping->page_tree,
458					     page_index(page),
459					     PAGECACHE_TAG_DIRTY);
460			spin_unlock_irq(&mapping->tree_lock);
461			return clear_page_dirty_for_io(page);
462		}
463		spin_unlock_irq(&mapping->tree_lock);
464		return 0;
465	}
466	return TestClearPageDirty(page);
467}
468
469/**
470 * nilfs_find_uncommitted_extent - find extent of uncommitted data
471 * @inode: inode
472 * @start_blk: start block offset (in)
473 * @blkoff: start offset of the found extent (out)
474 *
475 * This function searches an extent of buffers marked "delayed" which
476 * starts from a block offset equal to or larger than @start_blk.  If
477 * such an extent was found, this will store the start offset in
478 * @blkoff and return its length in blocks.  Otherwise, zero is
479 * returned.
480 */
481unsigned long nilfs_find_uncommitted_extent(struct inode *inode,
482					    sector_t start_blk,
483					    sector_t *blkoff)
484{
485	unsigned int i;
486	pgoff_t index;
487	unsigned int nblocks_in_page;
488	unsigned long length = 0;
489	sector_t b;
490	struct pagevec pvec;
491	struct page *page;
492
493	if (inode->i_mapping->nrpages == 0)
494		return 0;
495
496	index = start_blk >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
497	nblocks_in_page = 1U << (PAGE_CACHE_SHIFT - inode->i_blkbits);
498
499	pagevec_init(&pvec, 0);
500
501repeat:
502	pvec.nr = find_get_pages_contig(inode->i_mapping, index, PAGEVEC_SIZE,
503					pvec.pages);
504	if (pvec.nr == 0)
505		return length;
506
507	if (length > 0 && pvec.pages[0]->index > index)
508		goto out;
509
510	b = pvec.pages[0]->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
511	i = 0;
512	do {
513		page = pvec.pages[i];
514
515		lock_page(page);
516		if (page_has_buffers(page)) {
517			struct buffer_head *bh, *head;
518
519			bh = head = page_buffers(page);
520			do {
521				if (b < start_blk)
522					continue;
523				if (buffer_delay(bh)) {
524					if (length == 0)
525						*blkoff = b;
526					length++;
527				} else if (length > 0) {
528					goto out_locked;
529				}
530			} while (++b, bh = bh->b_this_page, bh != head);
531		} else {
532			if (length > 0)
533				goto out_locked;
534
535			b += nblocks_in_page;
536		}
537		unlock_page(page);
538
539	} while (++i < pagevec_count(&pvec));
540
541	index = page->index + 1;
542	pagevec_release(&pvec);
543	cond_resched();
544	goto repeat;
545
546out_locked:
547	unlock_page(page);
548out:
549	pagevec_release(&pvec);
550	return length;
551}