Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   4 *
   5 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   6 * Copyright (C) 2006 David Brownell (convert to new framework)
 
 
 
 
 
   7 */
   8
   9/*
  10 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  11 * That defined the register interface now provided by all PCs, some
  12 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  13 * integrate an MC146818 clone in their southbridge, and boards use
  14 * that instead of discrete clones like the DS12887 or M48T86.  There
  15 * are also clones that connect using the LPC bus.
  16 *
  17 * That register API is also used directly by various other drivers
  18 * (notably for integrated NVRAM), infrastructure (x86 has code to
  19 * bypass the RTC framework, directly reading the RTC during boot
  20 * and updating minutes/seconds for systems using NTP synch) and
  21 * utilities (like userspace 'hwclock', if no /dev node exists).
  22 *
  23 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  24 * interrupts disabled, holding the global rtc_lock, to exclude those
  25 * other drivers and utilities on correctly configured systems.
  26 */
  27
  28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  29
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/init.h>
  33#include <linux/interrupt.h>
  34#include <linux/spinlock.h>
  35#include <linux/platform_device.h>
  36#include <linux/log2.h>
  37#include <linux/pm.h>
  38#include <linux/of.h>
  39#include <linux/of_platform.h>
  40#ifdef CONFIG_X86
  41#include <asm/i8259.h>
  42#include <asm/processor.h>
  43#include <linux/dmi.h>
  44#endif
  45
  46/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  47#include <linux/mc146818rtc.h>
  48
  49#ifdef CONFIG_ACPI
  50/*
  51 * Use ACPI SCI to replace HPET interrupt for RTC Alarm event
  52 *
  53 * If cleared, ACPI SCI is only used to wake up the system from suspend
  54 *
  55 * If set, ACPI SCI is used to handle UIE/AIE and system wakeup
  56 */
  57
  58static bool use_acpi_alarm;
  59module_param(use_acpi_alarm, bool, 0444);
  60
  61static inline int cmos_use_acpi_alarm(void)
  62{
  63	return use_acpi_alarm;
  64}
  65#else /* !CONFIG_ACPI */
  66
  67static inline int cmos_use_acpi_alarm(void)
  68{
  69	return 0;
  70}
  71#endif
  72
  73struct cmos_rtc {
  74	struct rtc_device	*rtc;
  75	struct device		*dev;
  76	int			irq;
  77	struct resource		*iomem;
  78	time64_t		alarm_expires;
  79
  80	void			(*wake_on)(struct device *);
  81	void			(*wake_off)(struct device *);
  82
  83	u8			enabled_wake;
  84	u8			suspend_ctrl;
  85
  86	/* newer hardware extends the original register set */
  87	u8			day_alrm;
  88	u8			mon_alrm;
  89	u8			century;
  90
  91	struct rtc_wkalrm	saved_wkalrm;
  92};
  93
  94/* both platform and pnp busses use negative numbers for invalid irqs */
  95#define is_valid_irq(n)		((n) > 0)
  96
  97static const char driver_name[] = "rtc_cmos";
  98
  99/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
 100 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
 101 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
 102 */
 103#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
 104
 105static inline int is_intr(u8 rtc_intr)
 106{
 107	if (!(rtc_intr & RTC_IRQF))
 108		return 0;
 109	return rtc_intr & RTC_IRQMASK;
 110}
 111
 112/*----------------------------------------------------------------*/
 113
 114/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
 115 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
 116 * used in a broken "legacy replacement" mode.  The breakage includes
 117 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
 118 * other (better) use.
 119 *
 120 * When that broken mode is in use, platform glue provides a partial
 121 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 122 * want to use HPET for anything except those IRQs though...
 123 */
 124#ifdef CONFIG_HPET_EMULATE_RTC
 125#include <asm/hpet.h>
 126#else
 127
 128static inline int is_hpet_enabled(void)
 129{
 130	return 0;
 131}
 132
 133static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 134{
 135	return 0;
 136}
 137
 138static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 139{
 140	return 0;
 141}
 142
 143static inline int
 144hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 145{
 146	return 0;
 147}
 148
 149static inline int hpet_set_periodic_freq(unsigned long freq)
 150{
 151	return 0;
 152}
 153
 154static inline int hpet_rtc_dropped_irq(void)
 155{
 156	return 0;
 157}
 158
 159static inline int hpet_rtc_timer_init(void)
 160{
 161	return 0;
 162}
 163
 164extern irq_handler_t hpet_rtc_interrupt;
 165
 166static inline int hpet_register_irq_handler(irq_handler_t handler)
 167{
 168	return 0;
 169}
 170
 171static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 172{
 173	return 0;
 174}
 175
 176#endif
 177
 178/* Don't use HPET for RTC Alarm event if ACPI Fixed event is used */
 179static inline int use_hpet_alarm(void)
 180{
 181	return is_hpet_enabled() && !cmos_use_acpi_alarm();
 182}
 183
 184/*----------------------------------------------------------------*/
 185
 186#ifdef RTC_PORT
 187
 188/* Most newer x86 systems have two register banks, the first used
 189 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 190 * own rtc_lock ... and we won't worry about access during NMI.
 191 */
 192#define can_bank2	true
 193
 194static inline unsigned char cmos_read_bank2(unsigned char addr)
 195{
 196	outb(addr, RTC_PORT(2));
 197	return inb(RTC_PORT(3));
 198}
 199
 200static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 201{
 202	outb(addr, RTC_PORT(2));
 203	outb(val, RTC_PORT(3));
 204}
 205
 206#else
 207
 208#define can_bank2	false
 209
 210static inline unsigned char cmos_read_bank2(unsigned char addr)
 211{
 212	return 0;
 213}
 214
 215static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 216{
 217}
 218
 219#endif
 220
 221/*----------------------------------------------------------------*/
 222
 223static int cmos_read_time(struct device *dev, struct rtc_time *t)
 224{
 225	int ret;
 226
 227	/*
 228	 * If pm_trace abused the RTC for storage, set the timespec to 0,
 229	 * which tells the caller that this RTC value is unusable.
 230	 */
 231	if (!pm_trace_rtc_valid())
 232		return -EIO;
 233
 234	ret = mc146818_get_time(t);
 235	if (ret < 0) {
 236		dev_err_ratelimited(dev, "unable to read current time\n");
 237		return ret;
 238	}
 239
 240	return 0;
 241}
 242
 243static int cmos_set_time(struct device *dev, struct rtc_time *t)
 244{
 245	/* NOTE: this ignores the issue whereby updating the seconds
 
 
 246	 * takes effect exactly 500ms after we write the register.
 247	 * (Also queueing and other delays before we get this far.)
 248	 */
 249	return mc146818_set_time(t);
 250}
 251
 252struct cmos_read_alarm_callback_param {
 253	struct cmos_rtc *cmos;
 254	struct rtc_time *time;
 255	unsigned char	rtc_control;
 256};
 257
 258static void cmos_read_alarm_callback(unsigned char __always_unused seconds,
 259				     void *param_in)
 260{
 261	struct cmos_read_alarm_callback_param *p =
 262		(struct cmos_read_alarm_callback_param *)param_in;
 263	struct rtc_time *time = p->time;
 264
 265	time->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 266	time->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 267	time->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 268
 269	if (p->cmos->day_alrm) {
 270		/* ignore upper bits on readback per ACPI spec */
 271		time->tm_mday = CMOS_READ(p->cmos->day_alrm) & 0x3f;
 272		if (!time->tm_mday)
 273			time->tm_mday = -1;
 274
 275		if (p->cmos->mon_alrm) {
 276			time->tm_mon = CMOS_READ(p->cmos->mon_alrm);
 277			if (!time->tm_mon)
 278				time->tm_mon = -1;
 279		}
 280	}
 281
 282	p->rtc_control = CMOS_READ(RTC_CONTROL);
 283}
 284
 285static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 286{
 287	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 288	struct cmos_read_alarm_callback_param p = {
 289		.cmos = cmos,
 290		.time = &t->time,
 291	};
 292
 293	/* This not only a rtc_op, but also called directly */
 294	if (!is_valid_irq(cmos->irq))
 295		return -EIO;
 296
 297	/* Basic alarms only support hour, minute, and seconds fields.
 298	 * Some also support day and month, for alarms up to a year in
 299	 * the future.
 300	 */
 301
 302	/* Some Intel chipsets disconnect the alarm registers when the clock
 303	 * update is in progress - during this time reads return bogus values
 304	 * and writes may fail silently. See for example "7th Generation Intel®
 305	 * Processor Family I/O for U/Y Platforms [...] Datasheet", section
 306	 * 27.7.1
 307	 *
 308	 * Use the mc146818_avoid_UIP() function to avoid this.
 309	 */
 310	if (!mc146818_avoid_UIP(cmos_read_alarm_callback, &p))
 311		return -EIO;
 312
 313	if (!(p.rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 314		if (((unsigned)t->time.tm_sec) < 0x60)
 315			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 316		else
 317			t->time.tm_sec = -1;
 318		if (((unsigned)t->time.tm_min) < 0x60)
 319			t->time.tm_min = bcd2bin(t->time.tm_min);
 320		else
 321			t->time.tm_min = -1;
 322		if (((unsigned)t->time.tm_hour) < 0x24)
 323			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 324		else
 325			t->time.tm_hour = -1;
 326
 327		if (cmos->day_alrm) {
 328			if (((unsigned)t->time.tm_mday) <= 0x31)
 329				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 330			else
 331				t->time.tm_mday = -1;
 332
 333			if (cmos->mon_alrm) {
 334				if (((unsigned)t->time.tm_mon) <= 0x12)
 335					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 336				else
 337					t->time.tm_mon = -1;
 338			}
 339		}
 340	}
 341
 342	t->enabled = !!(p.rtc_control & RTC_AIE);
 343	t->pending = 0;
 344
 345	return 0;
 346}
 347
 348static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 349{
 350	unsigned char	rtc_intr;
 351
 352	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 353	 * allegedly some older rtcs need that to handle irqs properly
 354	 */
 355	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 356
 357	if (use_hpet_alarm())
 358		return;
 359
 360	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 361	if (is_intr(rtc_intr))
 362		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 363}
 364
 365static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 366{
 367	unsigned char	rtc_control;
 368
 369	/* flush any pending IRQ status, notably for update irqs,
 370	 * before we enable new IRQs
 371	 */
 372	rtc_control = CMOS_READ(RTC_CONTROL);
 373	cmos_checkintr(cmos, rtc_control);
 374
 375	rtc_control |= mask;
 376	CMOS_WRITE(rtc_control, RTC_CONTROL);
 377	if (use_hpet_alarm())
 378		hpet_set_rtc_irq_bit(mask);
 379
 380	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 381		if (cmos->wake_on)
 382			cmos->wake_on(cmos->dev);
 383	}
 384
 385	cmos_checkintr(cmos, rtc_control);
 386}
 387
 388static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 389{
 390	unsigned char	rtc_control;
 391
 392	rtc_control = CMOS_READ(RTC_CONTROL);
 393	rtc_control &= ~mask;
 394	CMOS_WRITE(rtc_control, RTC_CONTROL);
 395	if (use_hpet_alarm())
 396		hpet_mask_rtc_irq_bit(mask);
 397
 398	if ((mask & RTC_AIE) && cmos_use_acpi_alarm()) {
 399		if (cmos->wake_off)
 400			cmos->wake_off(cmos->dev);
 401	}
 402
 403	cmos_checkintr(cmos, rtc_control);
 404}
 405
 406static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 407{
 408	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 409	struct rtc_time now;
 410
 411	cmos_read_time(dev, &now);
 412
 413	if (!cmos->day_alrm) {
 414		time64_t t_max_date;
 415		time64_t t_alrm;
 416
 417		t_max_date = rtc_tm_to_time64(&now);
 418		t_max_date += 24 * 60 * 60 - 1;
 419		t_alrm = rtc_tm_to_time64(&t->time);
 420		if (t_alrm > t_max_date) {
 421			dev_err(dev,
 422				"Alarms can be up to one day in the future\n");
 423			return -EINVAL;
 424		}
 425	} else if (!cmos->mon_alrm) {
 426		struct rtc_time max_date = now;
 427		time64_t t_max_date;
 428		time64_t t_alrm;
 429		int max_mday;
 430
 431		if (max_date.tm_mon == 11) {
 432			max_date.tm_mon = 0;
 433			max_date.tm_year += 1;
 434		} else {
 435			max_date.tm_mon += 1;
 436		}
 437		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 438		if (max_date.tm_mday > max_mday)
 439			max_date.tm_mday = max_mday;
 440
 441		t_max_date = rtc_tm_to_time64(&max_date);
 442		t_max_date -= 1;
 443		t_alrm = rtc_tm_to_time64(&t->time);
 444		if (t_alrm > t_max_date) {
 445			dev_err(dev,
 446				"Alarms can be up to one month in the future\n");
 447			return -EINVAL;
 448		}
 449	} else {
 450		struct rtc_time max_date = now;
 451		time64_t t_max_date;
 452		time64_t t_alrm;
 453		int max_mday;
 454
 455		max_date.tm_year += 1;
 456		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 457		if (max_date.tm_mday > max_mday)
 458			max_date.tm_mday = max_mday;
 459
 460		t_max_date = rtc_tm_to_time64(&max_date);
 461		t_max_date -= 1;
 462		t_alrm = rtc_tm_to_time64(&t->time);
 463		if (t_alrm > t_max_date) {
 464			dev_err(dev,
 465				"Alarms can be up to one year in the future\n");
 466			return -EINVAL;
 467		}
 468	}
 469
 470	return 0;
 471}
 472
 473struct cmos_set_alarm_callback_param {
 474	struct cmos_rtc *cmos;
 475	unsigned char mon, mday, hrs, min, sec;
 476	struct rtc_wkalrm *t;
 477};
 478
 479/* Note: this function may be executed by mc146818_avoid_UIP() more then
 480 *	 once
 481 */
 482static void cmos_set_alarm_callback(unsigned char __always_unused seconds,
 483				    void *param_in)
 484{
 485	struct cmos_set_alarm_callback_param *p =
 486		(struct cmos_set_alarm_callback_param *)param_in;
 487
 488	/* next rtc irq must not be from previous alarm setting */
 489	cmos_irq_disable(p->cmos, RTC_AIE);
 490
 491	/* update alarm */
 492	CMOS_WRITE(p->hrs, RTC_HOURS_ALARM);
 493	CMOS_WRITE(p->min, RTC_MINUTES_ALARM);
 494	CMOS_WRITE(p->sec, RTC_SECONDS_ALARM);
 495
 496	/* the system may support an "enhanced" alarm */
 497	if (p->cmos->day_alrm) {
 498		CMOS_WRITE(p->mday, p->cmos->day_alrm);
 499		if (p->cmos->mon_alrm)
 500			CMOS_WRITE(p->mon, p->cmos->mon_alrm);
 501	}
 502
 503	if (use_hpet_alarm()) {
 504		/*
 505		 * FIXME the HPET alarm glue currently ignores day_alrm
 506		 * and mon_alrm ...
 507		 */
 508		hpet_set_alarm_time(p->t->time.tm_hour, p->t->time.tm_min,
 509				    p->t->time.tm_sec);
 510	}
 511
 512	if (p->t->enabled)
 513		cmos_irq_enable(p->cmos, RTC_AIE);
 514}
 515
 516static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 517{
 518	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 519	struct cmos_set_alarm_callback_param p = {
 520		.cmos = cmos,
 521		.t = t
 522	};
 523	unsigned char rtc_control;
 524	int ret;
 525
 526	/* This not only a rtc_op, but also called directly */
 527	if (!is_valid_irq(cmos->irq))
 528		return -EIO;
 529
 530	ret = cmos_validate_alarm(dev, t);
 531	if (ret < 0)
 532		return ret;
 533
 534	p.mon = t->time.tm_mon + 1;
 535	p.mday = t->time.tm_mday;
 536	p.hrs = t->time.tm_hour;
 537	p.min = t->time.tm_min;
 538	p.sec = t->time.tm_sec;
 539
 540	spin_lock_irq(&rtc_lock);
 541	rtc_control = CMOS_READ(RTC_CONTROL);
 542	spin_unlock_irq(&rtc_lock);
 543
 544	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 545		/* Writing 0xff means "don't care" or "match all".  */
 546		p.mon = (p.mon <= 12) ? bin2bcd(p.mon) : 0xff;
 547		p.mday = (p.mday >= 1 && p.mday <= 31) ? bin2bcd(p.mday) : 0xff;
 548		p.hrs = (p.hrs < 24) ? bin2bcd(p.hrs) : 0xff;
 549		p.min = (p.min < 60) ? bin2bcd(p.min) : 0xff;
 550		p.sec = (p.sec < 60) ? bin2bcd(p.sec) : 0xff;
 551	}
 552
 553	/*
 554	 * Some Intel chipsets disconnect the alarm registers when the clock
 555	 * update is in progress - during this time writes fail silently.
 556	 *
 557	 * Use mc146818_avoid_UIP() to avoid this.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 558	 */
 559	if (!mc146818_avoid_UIP(cmos_set_alarm_callback, &p))
 560		return -EIO;
 
 
 
 
 561
 562	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 563
 564	return 0;
 565}
 566
 567static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 568{
 569	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 570	unsigned long	flags;
 571
 
 
 
 572	spin_lock_irqsave(&rtc_lock, flags);
 573
 574	if (enabled)
 575		cmos_irq_enable(cmos, RTC_AIE);
 576	else
 577		cmos_irq_disable(cmos, RTC_AIE);
 578
 579	spin_unlock_irqrestore(&rtc_lock, flags);
 580	return 0;
 581}
 582
 583#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 584
 585static int cmos_procfs(struct device *dev, struct seq_file *seq)
 586{
 587	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 588	unsigned char	rtc_control, valid;
 589
 590	spin_lock_irq(&rtc_lock);
 591	rtc_control = CMOS_READ(RTC_CONTROL);
 592	valid = CMOS_READ(RTC_VALID);
 593	spin_unlock_irq(&rtc_lock);
 594
 595	/* NOTE:  at least ICH6 reports battery status using a different
 596	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 597	 */
 598	seq_printf(seq,
 599		   "periodic_IRQ\t: %s\n"
 600		   "update_IRQ\t: %s\n"
 601		   "HPET_emulated\t: %s\n"
 602		   // "square_wave\t: %s\n"
 603		   "BCD\t\t: %s\n"
 604		   "DST_enable\t: %s\n"
 605		   "periodic_freq\t: %d\n"
 606		   "batt_status\t: %s\n",
 607		   (rtc_control & RTC_PIE) ? "yes" : "no",
 608		   (rtc_control & RTC_UIE) ? "yes" : "no",
 609		   use_hpet_alarm() ? "yes" : "no",
 610		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 611		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 612		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 613		   cmos->rtc->irq_freq,
 614		   (valid & RTC_VRT) ? "okay" : "dead");
 615
 616	return 0;
 617}
 618
 619#else
 620#define	cmos_procfs	NULL
 621#endif
 622
 623static const struct rtc_class_ops cmos_rtc_ops = {
 624	.read_time		= cmos_read_time,
 625	.set_time		= cmos_set_time,
 626	.read_alarm		= cmos_read_alarm,
 627	.set_alarm		= cmos_set_alarm,
 628	.proc			= cmos_procfs,
 629	.alarm_irq_enable	= cmos_alarm_irq_enable,
 630};
 631
 632/*----------------------------------------------------------------*/
 633
 634/*
 635 * All these chips have at least 64 bytes of address space, shared by
 636 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 637 * by boot firmware.  Modern chips have 128 or 256 bytes.
 638 */
 639
 640#define NVRAM_OFFSET	(RTC_REG_D + 1)
 641
 642static int cmos_nvram_read(void *priv, unsigned int off, void *val,
 643			   size_t count)
 644{
 645	unsigned char *buf = val;
 646	int	retval;
 647
 648	off += NVRAM_OFFSET;
 649	spin_lock_irq(&rtc_lock);
 650	for (retval = 0; count; count--, off++, retval++) {
 651		if (off < 128)
 652			*buf++ = CMOS_READ(off);
 653		else if (can_bank2)
 654			*buf++ = cmos_read_bank2(off);
 655		else
 656			break;
 657	}
 658	spin_unlock_irq(&rtc_lock);
 659
 660	return retval;
 661}
 662
 663static int cmos_nvram_write(void *priv, unsigned int off, void *val,
 664			    size_t count)
 665{
 666	struct cmos_rtc	*cmos = priv;
 667	unsigned char	*buf = val;
 668	int		retval;
 669
 670	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 671	 * checksum on part of the NVRAM data.  That's currently ignored
 672	 * here.  If userspace is smart enough to know what fields of
 673	 * NVRAM to update, updating checksums is also part of its job.
 674	 */
 675	off += NVRAM_OFFSET;
 676	spin_lock_irq(&rtc_lock);
 677	for (retval = 0; count; count--, off++, retval++) {
 678		/* don't trash RTC registers */
 679		if (off == cmos->day_alrm
 680				|| off == cmos->mon_alrm
 681				|| off == cmos->century)
 682			buf++;
 683		else if (off < 128)
 684			CMOS_WRITE(*buf++, off);
 685		else if (can_bank2)
 686			cmos_write_bank2(*buf++, off);
 687		else
 688			break;
 689	}
 690	spin_unlock_irq(&rtc_lock);
 691
 692	return retval;
 693}
 694
 695/*----------------------------------------------------------------*/
 696
 697static struct cmos_rtc	cmos_rtc;
 698
 699static irqreturn_t cmos_interrupt(int irq, void *p)
 700{
 701	u8		irqstat;
 702	u8		rtc_control;
 703
 704	spin_lock(&rtc_lock);
 705
 706	/* When the HPET interrupt handler calls us, the interrupt
 707	 * status is passed as arg1 instead of the irq number.  But
 708	 * always clear irq status, even when HPET is in the way.
 709	 *
 710	 * Note that HPET and RTC are almost certainly out of phase,
 711	 * giving different IRQ status ...
 712	 */
 713	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 714	rtc_control = CMOS_READ(RTC_CONTROL);
 715	if (use_hpet_alarm())
 716		irqstat = (unsigned long)irq & 0xF0;
 717
 718	/* If we were suspended, RTC_CONTROL may not be accurate since the
 719	 * bios may have cleared it.
 720	 */
 721	if (!cmos_rtc.suspend_ctrl)
 722		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 723	else
 724		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 725
 726	/* All Linux RTC alarms should be treated as if they were oneshot.
 727	 * Similar code may be needed in system wakeup paths, in case the
 728	 * alarm woke the system.
 729	 */
 730	if (irqstat & RTC_AIE) {
 731		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 732		rtc_control &= ~RTC_AIE;
 733		CMOS_WRITE(rtc_control, RTC_CONTROL);
 734		if (use_hpet_alarm())
 735			hpet_mask_rtc_irq_bit(RTC_AIE);
 736		CMOS_READ(RTC_INTR_FLAGS);
 737	}
 738	spin_unlock(&rtc_lock);
 739
 740	if (is_intr(irqstat)) {
 741		rtc_update_irq(p, 1, irqstat);
 742		return IRQ_HANDLED;
 743	} else
 744		return IRQ_NONE;
 745}
 746
 747#ifdef	CONFIG_ACPI
 748
 749#include <linux/acpi.h>
 750
 751static u32 rtc_handler(void *context)
 752{
 753	struct device *dev = context;
 754	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 755	unsigned char rtc_control = 0;
 756	unsigned char rtc_intr;
 757	unsigned long flags;
 758
 759
 760	/*
 761	 * Always update rtc irq when ACPI is used as RTC Alarm.
 762	 * Or else, ACPI SCI is enabled during suspend/resume only,
 763	 * update rtc irq in that case.
 764	 */
 765	if (cmos_use_acpi_alarm())
 766		cmos_interrupt(0, (void *)cmos->rtc);
 767	else {
 768		/* Fix me: can we use cmos_interrupt() here as well? */
 769		spin_lock_irqsave(&rtc_lock, flags);
 770		if (cmos_rtc.suspend_ctrl)
 771			rtc_control = CMOS_READ(RTC_CONTROL);
 772		if (rtc_control & RTC_AIE) {
 773			cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 774			CMOS_WRITE(rtc_control, RTC_CONTROL);
 775			rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 776			rtc_update_irq(cmos->rtc, 1, rtc_intr);
 777		}
 778		spin_unlock_irqrestore(&rtc_lock, flags);
 779	}
 780
 781	pm_wakeup_hard_event(dev);
 782	acpi_clear_event(ACPI_EVENT_RTC);
 783	acpi_disable_event(ACPI_EVENT_RTC, 0);
 784	return ACPI_INTERRUPT_HANDLED;
 785}
 786
 787static void acpi_rtc_event_setup(struct device *dev)
 788{
 789	if (acpi_disabled)
 790		return;
 791
 792	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
 793	/*
 794	 * After the RTC handler is installed, the Fixed_RTC event should
 795	 * be disabled. Only when the RTC alarm is set will it be enabled.
 796	 */
 797	acpi_clear_event(ACPI_EVENT_RTC);
 798	acpi_disable_event(ACPI_EVENT_RTC, 0);
 799}
 800
 801static void acpi_rtc_event_cleanup(void)
 802{
 803	if (acpi_disabled)
 804		return;
 805
 806	acpi_remove_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler);
 807}
 808
 809static void rtc_wake_on(struct device *dev)
 810{
 811	acpi_clear_event(ACPI_EVENT_RTC);
 812	acpi_enable_event(ACPI_EVENT_RTC, 0);
 813}
 814
 815static void rtc_wake_off(struct device *dev)
 816{
 817	acpi_disable_event(ACPI_EVENT_RTC, 0);
 818}
 819
 820#ifdef CONFIG_X86
 821/* Enable use_acpi_alarm mode for Intel platforms no earlier than 2015 */
 822static void use_acpi_alarm_quirks(void)
 823{
 824	if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
 825		return;
 826
 827	if (!is_hpet_enabled())
 828		return;
 829
 830	if (dmi_get_bios_year() < 2015)
 831		return;
 832
 833	use_acpi_alarm = true;
 834}
 835#else
 836static inline void use_acpi_alarm_quirks(void) { }
 837#endif
 838
 839static void acpi_cmos_wake_setup(struct device *dev)
 840{
 841	if (acpi_disabled)
 842		return;
 843
 844	use_acpi_alarm_quirks();
 845
 846	cmos_rtc.wake_on = rtc_wake_on;
 847	cmos_rtc.wake_off = rtc_wake_off;
 848
 849	/* ACPI tables bug workaround. */
 850	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
 851		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
 852			acpi_gbl_FADT.month_alarm);
 853		acpi_gbl_FADT.month_alarm = 0;
 854	}
 855
 856	cmos_rtc.day_alrm = acpi_gbl_FADT.day_alarm;
 857	cmos_rtc.mon_alrm = acpi_gbl_FADT.month_alarm;
 858	cmos_rtc.century = acpi_gbl_FADT.century;
 859
 860	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
 861		dev_info(dev, "RTC can wake from S4\n");
 862
 863	/* RTC always wakes from S1/S2/S3, and often S4/STD */
 864	device_init_wakeup(dev, 1);
 865}
 866
 867static void cmos_check_acpi_rtc_status(struct device *dev,
 868					      unsigned char *rtc_control)
 869{
 870	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 871	acpi_event_status rtc_status;
 872	acpi_status status;
 873
 874	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
 875		return;
 876
 877	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
 878	if (ACPI_FAILURE(status)) {
 879		dev_err(dev, "Could not get RTC status\n");
 880	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
 881		unsigned char mask;
 882		*rtc_control &= ~RTC_AIE;
 883		CMOS_WRITE(*rtc_control, RTC_CONTROL);
 884		mask = CMOS_READ(RTC_INTR_FLAGS);
 885		rtc_update_irq(cmos->rtc, 1, mask);
 886	}
 887}
 888
 889#else /* !CONFIG_ACPI */
 890
 891static inline void acpi_rtc_event_setup(struct device *dev)
 892{
 893}
 894
 895static inline void acpi_rtc_event_cleanup(void)
 896{
 897}
 898
 899static inline void acpi_cmos_wake_setup(struct device *dev)
 900{
 901}
 902
 903static inline void cmos_check_acpi_rtc_status(struct device *dev,
 904					      unsigned char *rtc_control)
 905{
 906}
 907#endif /* CONFIG_ACPI */
 908
 909#ifdef	CONFIG_PNP
 910#define	INITSECTION
 911
 912#else
 913#define	INITSECTION	__init
 914#endif
 915
 916static int INITSECTION
 917cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 918{
 919	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 920	int				retval = 0;
 921	unsigned char			rtc_control;
 922	unsigned			address_space;
 923	u32				flags = 0;
 924	struct nvmem_config nvmem_cfg = {
 925		.name = "cmos_nvram",
 926		.word_size = 1,
 927		.stride = 1,
 928		.reg_read = cmos_nvram_read,
 929		.reg_write = cmos_nvram_write,
 930		.priv = &cmos_rtc,
 931	};
 932
 933	/* there can be only one ... */
 934	if (cmos_rtc.dev)
 935		return -EBUSY;
 936
 937	if (!ports)
 938		return -ENODEV;
 939
 940	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 941	 *
 942	 * REVISIT non-x86 systems may instead use memory space resources
 943	 * (needing ioremap etc), not i/o space resources like this ...
 944	 */
 945	if (RTC_IOMAPPED)
 946		ports = request_region(ports->start, resource_size(ports),
 947				       driver_name);
 948	else
 949		ports = request_mem_region(ports->start, resource_size(ports),
 950					   driver_name);
 951	if (!ports) {
 952		dev_dbg(dev, "i/o registers already in use\n");
 953		return -EBUSY;
 954	}
 955
 956	cmos_rtc.irq = rtc_irq;
 957	cmos_rtc.iomem = ports;
 958
 959	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 960	 * driver did, but don't reject unknown configs.   Old hardware
 961	 * won't address 128 bytes.  Newer chips have multiple banks,
 962	 * though they may not be listed in one I/O resource.
 963	 */
 964#if	defined(CONFIG_ATARI)
 965	address_space = 64;
 966#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 967			|| defined(__sparc__) || defined(__mips__) \
 968			|| defined(__powerpc__)
 969	address_space = 128;
 970#else
 971#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 972	address_space = 128;
 973#endif
 974	if (can_bank2 && ports->end > (ports->start + 1))
 975		address_space = 256;
 976
 977	/* For ACPI systems extension info comes from the FADT.  On others,
 978	 * board specific setup provides it as appropriate.  Systems where
 979	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 980	 * some almost-clones) can provide hooks to make that behave.
 981	 *
 982	 * Note that ACPI doesn't preclude putting these registers into
 983	 * "extended" areas of the chip, including some that we won't yet
 984	 * expect CMOS_READ and friends to handle.
 985	 */
 986	if (info) {
 987		if (info->flags)
 988			flags = info->flags;
 989		if (info->address_space)
 990			address_space = info->address_space;
 991
 992		cmos_rtc.day_alrm = info->rtc_day_alarm;
 993		cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 994		cmos_rtc.century = info->rtc_century;
 
 
 
 995
 996		if (info->wake_on && info->wake_off) {
 997			cmos_rtc.wake_on = info->wake_on;
 998			cmos_rtc.wake_off = info->wake_off;
 999		}
1000	} else {
1001		acpi_cmos_wake_setup(dev);
1002	}
1003
1004	if (cmos_rtc.day_alrm >= 128)
1005		cmos_rtc.day_alrm = 0;
1006
1007	if (cmos_rtc.mon_alrm >= 128)
1008		cmos_rtc.mon_alrm = 0;
1009
1010	if (cmos_rtc.century >= 128)
1011		cmos_rtc.century = 0;
1012
1013	cmos_rtc.dev = dev;
1014	dev_set_drvdata(dev, &cmos_rtc);
1015
1016	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
1017	if (IS_ERR(cmos_rtc.rtc)) {
1018		retval = PTR_ERR(cmos_rtc.rtc);
1019		goto cleanup0;
1020	}
1021
1022	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
1023
1024	if (!mc146818_does_rtc_work()) {
1025		dev_warn(dev, "broken or not accessible\n");
1026		retval = -ENXIO;
1027		goto cleanup1;
1028	}
1029
1030	spin_lock_irq(&rtc_lock);
1031
1032	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
1033		/* force periodic irq to CMOS reset default of 1024Hz;
1034		 *
1035		 * REVISIT it's been reported that at least one x86_64 ALI
1036		 * mobo doesn't use 32KHz here ... for portability we might
1037		 * need to do something about other clock frequencies.
1038		 */
1039		cmos_rtc.rtc->irq_freq = 1024;
1040		if (use_hpet_alarm())
1041			hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
1042		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
1043	}
1044
1045	/* disable irqs */
1046	if (is_valid_irq(rtc_irq))
1047		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
1048
1049	rtc_control = CMOS_READ(RTC_CONTROL);
1050
1051	spin_unlock_irq(&rtc_lock);
1052
1053	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
1054		dev_warn(dev, "only 24-hr supported\n");
1055		retval = -ENXIO;
1056		goto cleanup1;
1057	}
1058
1059	if (use_hpet_alarm())
1060		hpet_rtc_timer_init();
1061
1062	if (is_valid_irq(rtc_irq)) {
1063		irq_handler_t rtc_cmos_int_handler;
1064
1065		if (use_hpet_alarm()) {
1066			rtc_cmos_int_handler = hpet_rtc_interrupt;
1067			retval = hpet_register_irq_handler(cmos_interrupt);
1068			if (retval) {
1069				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
1070				dev_warn(dev, "hpet_register_irq_handler "
1071						" failed in rtc_init().");
1072				goto cleanup1;
1073			}
1074		} else
1075			rtc_cmos_int_handler = cmos_interrupt;
1076
1077		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
1078				0, dev_name(&cmos_rtc.rtc->dev),
1079				cmos_rtc.rtc);
1080		if (retval < 0) {
1081			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
1082			goto cleanup1;
1083		}
1084	} else {
1085		clear_bit(RTC_FEATURE_ALARM, cmos_rtc.rtc->features);
1086	}
1087
1088	cmos_rtc.rtc->ops = &cmos_rtc_ops;
1089
1090	retval = devm_rtc_register_device(cmos_rtc.rtc);
1091	if (retval)
1092		goto cleanup2;
1093
1094	/* Set the sync offset for the periodic 11min update correct */
1095	cmos_rtc.rtc->set_offset_nsec = NSEC_PER_SEC / 2;
1096
1097	/* export at least the first block of NVRAM */
1098	nvmem_cfg.size = address_space - NVRAM_OFFSET;
1099	devm_rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg);
1100
1101	/*
1102	 * Everything has gone well so far, so by default register a handler for
1103	 * the ACPI RTC fixed event.
1104	 */
1105	if (!info)
1106		acpi_rtc_event_setup(dev);
1107
1108	dev_info(dev, "%s%s, %d bytes nvram%s\n",
1109		 !is_valid_irq(rtc_irq) ? "no alarms" :
1110		 cmos_rtc.mon_alrm ? "alarms up to one year" :
1111		 cmos_rtc.day_alrm ? "alarms up to one month" :
1112		 "alarms up to one day",
1113		 cmos_rtc.century ? ", y3k" : "",
1114		 nvmem_cfg.size,
1115		 use_hpet_alarm() ? ", hpet irqs" : "");
1116
1117	return 0;
1118
1119cleanup2:
1120	if (is_valid_irq(rtc_irq))
1121		free_irq(rtc_irq, cmos_rtc.rtc);
1122cleanup1:
1123	cmos_rtc.dev = NULL;
1124cleanup0:
1125	if (RTC_IOMAPPED)
1126		release_region(ports->start, resource_size(ports));
1127	else
1128		release_mem_region(ports->start, resource_size(ports));
1129	return retval;
1130}
1131
1132static void cmos_do_shutdown(int rtc_irq)
1133{
1134	spin_lock_irq(&rtc_lock);
1135	if (is_valid_irq(rtc_irq))
1136		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
1137	spin_unlock_irq(&rtc_lock);
1138}
1139
1140static void cmos_do_remove(struct device *dev)
1141{
1142	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1143	struct resource *ports;
1144
1145	cmos_do_shutdown(cmos->irq);
1146
1147	if (is_valid_irq(cmos->irq)) {
1148		free_irq(cmos->irq, cmos->rtc);
1149		if (use_hpet_alarm())
1150			hpet_unregister_irq_handler(cmos_interrupt);
1151	}
1152
1153	if (!dev_get_platdata(dev))
1154		acpi_rtc_event_cleanup();
1155
1156	cmos->rtc = NULL;
1157
1158	ports = cmos->iomem;
1159	if (RTC_IOMAPPED)
1160		release_region(ports->start, resource_size(ports));
1161	else
1162		release_mem_region(ports->start, resource_size(ports));
1163	cmos->iomem = NULL;
1164
1165	cmos->dev = NULL;
1166}
1167
1168static int cmos_aie_poweroff(struct device *dev)
1169{
1170	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1171	struct rtc_time now;
1172	time64_t t_now;
1173	int retval = 0;
1174	unsigned char rtc_control;
1175
1176	if (!cmos->alarm_expires)
1177		return -EINVAL;
1178
1179	spin_lock_irq(&rtc_lock);
1180	rtc_control = CMOS_READ(RTC_CONTROL);
1181	spin_unlock_irq(&rtc_lock);
1182
1183	/* We only care about the situation where AIE is disabled. */
1184	if (rtc_control & RTC_AIE)
1185		return -EBUSY;
1186
1187	cmos_read_time(dev, &now);
1188	t_now = rtc_tm_to_time64(&now);
1189
1190	/*
1191	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
1192	 * automatically right after shutdown on some buggy boxes.
1193	 * This automatic rebooting issue won't happen when the alarm
1194	 * time is larger than now+1 seconds.
1195	 *
1196	 * If the alarm time is equal to now+1 seconds, the issue can be
1197	 * prevented by cancelling the alarm.
1198	 */
1199	if (cmos->alarm_expires == t_now + 1) {
1200		struct rtc_wkalrm alarm;
1201
1202		/* Cancel the AIE timer by configuring the past time. */
1203		rtc_time64_to_tm(t_now - 1, &alarm.time);
1204		alarm.enabled = 0;
1205		retval = cmos_set_alarm(dev, &alarm);
1206	} else if (cmos->alarm_expires > t_now + 1) {
1207		retval = -EBUSY;
1208	}
1209
1210	return retval;
1211}
1212
1213static int cmos_suspend(struct device *dev)
1214{
1215	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1216	unsigned char	tmp;
1217
1218	/* only the alarm might be a wakeup event source */
1219	spin_lock_irq(&rtc_lock);
1220	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
1221	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
1222		unsigned char	mask;
1223
1224		if (device_may_wakeup(dev))
1225			mask = RTC_IRQMASK & ~RTC_AIE;
1226		else
1227			mask = RTC_IRQMASK;
1228		tmp &= ~mask;
1229		CMOS_WRITE(tmp, RTC_CONTROL);
1230		if (use_hpet_alarm())
1231			hpet_mask_rtc_irq_bit(mask);
1232		cmos_checkintr(cmos, tmp);
1233	}
1234	spin_unlock_irq(&rtc_lock);
1235
1236	if ((tmp & RTC_AIE) && !cmos_use_acpi_alarm()) {
1237		cmos->enabled_wake = 1;
1238		if (cmos->wake_on)
1239			cmos->wake_on(dev);
1240		else
1241			enable_irq_wake(cmos->irq);
1242	}
1243
1244	memset(&cmos->saved_wkalrm, 0, sizeof(struct rtc_wkalrm));
1245	cmos_read_alarm(dev, &cmos->saved_wkalrm);
1246
1247	dev_dbg(dev, "suspend%s, ctrl %02x\n",
1248			(tmp & RTC_AIE) ? ", alarm may wake" : "",
1249			tmp);
1250
1251	return 0;
1252}
1253
1254/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
1255 * after a detour through G3 "mechanical off", although the ACPI spec
1256 * says wakeup should only work from G1/S4 "hibernate".  To most users,
1257 * distinctions between S4 and S5 are pointless.  So when the hardware
1258 * allows, don't draw that distinction.
1259 */
1260static inline int cmos_poweroff(struct device *dev)
1261{
1262	if (!IS_ENABLED(CONFIG_PM))
1263		return -ENOSYS;
1264
1265	return cmos_suspend(dev);
1266}
1267
1268static void cmos_check_wkalrm(struct device *dev)
1269{
1270	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1271	struct rtc_wkalrm current_alarm;
1272	time64_t t_now;
1273	time64_t t_current_expires;
1274	time64_t t_saved_expires;
1275	struct rtc_time now;
1276
1277	/* Check if we have RTC Alarm armed */
1278	if (!(cmos->suspend_ctrl & RTC_AIE))
1279		return;
1280
1281	cmos_read_time(dev, &now);
1282	t_now = rtc_tm_to_time64(&now);
1283
1284	/*
1285	 * ACPI RTC wake event is cleared after resume from STR,
1286	 * ACK the rtc irq here
1287	 */
1288	if (t_now >= cmos->alarm_expires && cmos_use_acpi_alarm()) {
1289		local_irq_disable();
1290		cmos_interrupt(0, (void *)cmos->rtc);
1291		local_irq_enable();
1292		return;
1293	}
1294
1295	memset(&current_alarm, 0, sizeof(struct rtc_wkalrm));
1296	cmos_read_alarm(dev, &current_alarm);
1297	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
1298	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
1299	if (t_current_expires != t_saved_expires ||
1300	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
1301		cmos_set_alarm(dev, &cmos->saved_wkalrm);
1302	}
1303}
1304
 
 
 
1305static int __maybe_unused cmos_resume(struct device *dev)
1306{
1307	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1308	unsigned char tmp;
1309
1310	if (cmos->enabled_wake && !cmos_use_acpi_alarm()) {
1311		if (cmos->wake_off)
1312			cmos->wake_off(dev);
1313		else
1314			disable_irq_wake(cmos->irq);
1315		cmos->enabled_wake = 0;
1316	}
1317
1318	/* The BIOS might have changed the alarm, restore it */
1319	cmos_check_wkalrm(dev);
1320
1321	spin_lock_irq(&rtc_lock);
1322	tmp = cmos->suspend_ctrl;
1323	cmos->suspend_ctrl = 0;
1324	/* re-enable any irqs previously active */
1325	if (tmp & RTC_IRQMASK) {
1326		unsigned char	mask;
1327
1328		if (device_may_wakeup(dev) && use_hpet_alarm())
1329			hpet_rtc_timer_init();
1330
1331		do {
1332			CMOS_WRITE(tmp, RTC_CONTROL);
1333			if (use_hpet_alarm())
1334				hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
1335
1336			mask = CMOS_READ(RTC_INTR_FLAGS);
1337			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1338			if (!use_hpet_alarm() || !is_intr(mask))
1339				break;
1340
1341			/* force one-shot behavior if HPET blocked
1342			 * the wake alarm's irq
1343			 */
1344			rtc_update_irq(cmos->rtc, 1, mask);
1345			tmp &= ~RTC_AIE;
1346			hpet_mask_rtc_irq_bit(RTC_AIE);
1347		} while (mask & RTC_AIE);
1348
1349		if (tmp & RTC_AIE)
1350			cmos_check_acpi_rtc_status(dev, &tmp);
1351	}
1352	spin_unlock_irq(&rtc_lock);
1353
1354	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1355
1356	return 0;
1357}
1358
1359static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1360
1361/*----------------------------------------------------------------*/
1362
1363/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1364 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1365 * probably list them in similar PNPBIOS tables; so PNP is more common.
1366 *
1367 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1368 * predate even PNPBIOS should set up platform_bus devices.
1369 */
1370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371#ifdef	CONFIG_PNP
1372
1373#include <linux/pnp.h>
1374
1375static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1376{
1377	int irq;
1378
1379	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1380		irq = 0;
1381#ifdef CONFIG_X86
1382		/* Some machines contain a PNP entry for the RTC, but
1383		 * don't define the IRQ. It should always be safe to
1384		 * hardcode it on systems with a legacy PIC.
1385		 */
1386		if (nr_legacy_irqs())
1387			irq = RTC_IRQ;
1388#endif
 
 
1389	} else {
1390		irq = pnp_irq(pnp, 0);
 
 
1391	}
1392
1393	return cmos_do_probe(&pnp->dev, pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1394}
1395
1396static void cmos_pnp_remove(struct pnp_dev *pnp)
1397{
1398	cmos_do_remove(&pnp->dev);
1399}
1400
1401static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1402{
1403	struct device *dev = &pnp->dev;
1404	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1405
1406	if (system_state == SYSTEM_POWER_OFF) {
1407		int retval = cmos_poweroff(dev);
1408
1409		if (cmos_aie_poweroff(dev) < 0 && !retval)
1410			return;
1411	}
1412
1413	cmos_do_shutdown(cmos->irq);
1414}
1415
1416static const struct pnp_device_id rtc_ids[] = {
1417	{ .id = "PNP0b00", },
1418	{ .id = "PNP0b01", },
1419	{ .id = "PNP0b02", },
1420	{ },
1421};
1422MODULE_DEVICE_TABLE(pnp, rtc_ids);
1423
1424static struct pnp_driver cmos_pnp_driver = {
1425	.name		= driver_name,
1426	.id_table	= rtc_ids,
1427	.probe		= cmos_pnp_probe,
1428	.remove		= cmos_pnp_remove,
1429	.shutdown	= cmos_pnp_shutdown,
1430
1431	/* flag ensures resume() gets called, and stops syslog spam */
1432	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1433	.driver		= {
1434			.pm = &cmos_pm_ops,
1435	},
1436};
1437
1438#endif	/* CONFIG_PNP */
1439
1440#ifdef CONFIG_OF
1441static const struct of_device_id of_cmos_match[] = {
1442	{
1443		.compatible = "motorola,mc146818",
1444	},
1445	{ },
1446};
1447MODULE_DEVICE_TABLE(of, of_cmos_match);
1448
1449static __init void cmos_of_init(struct platform_device *pdev)
1450{
1451	struct device_node *node = pdev->dev.of_node;
1452	const __be32 *val;
1453
1454	if (!node)
1455		return;
1456
1457	val = of_get_property(node, "ctrl-reg", NULL);
1458	if (val)
1459		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1460
1461	val = of_get_property(node, "freq-reg", NULL);
1462	if (val)
1463		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1464}
1465#else
1466static inline void cmos_of_init(struct platform_device *pdev) {}
1467#endif
1468/*----------------------------------------------------------------*/
1469
1470/* Platform setup should have set up an RTC device, when PNP is
1471 * unavailable ... this could happen even on (older) PCs.
1472 */
1473
1474static int __init cmos_platform_probe(struct platform_device *pdev)
1475{
1476	struct resource *resource;
1477	int irq;
1478
1479	cmos_of_init(pdev);
 
1480
1481	if (RTC_IOMAPPED)
1482		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1483	else
1484		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1485	irq = platform_get_irq(pdev, 0);
1486	if (irq < 0)
1487		irq = -1;
1488
1489	return cmos_do_probe(&pdev->dev, resource, irq);
1490}
1491
1492static int cmos_platform_remove(struct platform_device *pdev)
1493{
1494	cmos_do_remove(&pdev->dev);
1495	return 0;
1496}
1497
1498static void cmos_platform_shutdown(struct platform_device *pdev)
1499{
1500	struct device *dev = &pdev->dev;
1501	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1502
1503	if (system_state == SYSTEM_POWER_OFF) {
1504		int retval = cmos_poweroff(dev);
1505
1506		if (cmos_aie_poweroff(dev) < 0 && !retval)
1507			return;
1508	}
1509
1510	cmos_do_shutdown(cmos->irq);
1511}
1512
1513/* work with hotplug and coldplug */
1514MODULE_ALIAS("platform:rtc_cmos");
1515
1516static struct platform_driver cmos_platform_driver = {
1517	.remove		= cmos_platform_remove,
1518	.shutdown	= cmos_platform_shutdown,
1519	.driver = {
1520		.name		= driver_name,
1521		.pm		= &cmos_pm_ops,
1522		.of_match_table = of_match_ptr(of_cmos_match),
1523	}
1524};
1525
1526#ifdef CONFIG_PNP
1527static bool pnp_driver_registered;
1528#endif
1529static bool platform_driver_registered;
1530
1531static int __init cmos_init(void)
1532{
1533	int retval = 0;
1534
1535#ifdef	CONFIG_PNP
1536	retval = pnp_register_driver(&cmos_pnp_driver);
1537	if (retval == 0)
1538		pnp_driver_registered = true;
1539#endif
1540
1541	if (!cmos_rtc.dev) {
1542		retval = platform_driver_probe(&cmos_platform_driver,
1543					       cmos_platform_probe);
1544		if (retval == 0)
1545			platform_driver_registered = true;
1546	}
1547
1548	if (retval == 0)
1549		return 0;
1550
1551#ifdef	CONFIG_PNP
1552	if (pnp_driver_registered)
1553		pnp_unregister_driver(&cmos_pnp_driver);
1554#endif
1555	return retval;
1556}
1557module_init(cmos_init);
1558
1559static void __exit cmos_exit(void)
1560{
1561#ifdef	CONFIG_PNP
1562	if (pnp_driver_registered)
1563		pnp_unregister_driver(&cmos_pnp_driver);
1564#endif
1565	if (platform_driver_registered)
1566		platform_driver_unregister(&cmos_platform_driver);
1567}
1568module_exit(cmos_exit);
1569
1570
1571MODULE_AUTHOR("David Brownell");
1572MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1573MODULE_LICENSE("GPL");
v4.17
 
   1/*
   2 * RTC class driver for "CMOS RTC":  PCs, ACPI, etc
   3 *
   4 * Copyright (C) 1996 Paul Gortmaker (drivers/char/rtc.c)
   5 * Copyright (C) 2006 David Brownell (convert to new framework)
   6 *
   7 * This program is free software; you can redistribute it and/or
   8 * modify it under the terms of the GNU General Public License
   9 * as published by the Free Software Foundation; either version
  10 * 2 of the License, or (at your option) any later version.
  11 */
  12
  13/*
  14 * The original "cmos clock" chip was an MC146818 chip, now obsolete.
  15 * That defined the register interface now provided by all PCs, some
  16 * non-PC systems, and incorporated into ACPI.  Modern PC chipsets
  17 * integrate an MC146818 clone in their southbridge, and boards use
  18 * that instead of discrete clones like the DS12887 or M48T86.  There
  19 * are also clones that connect using the LPC bus.
  20 *
  21 * That register API is also used directly by various other drivers
  22 * (notably for integrated NVRAM), infrastructure (x86 has code to
  23 * bypass the RTC framework, directly reading the RTC during boot
  24 * and updating minutes/seconds for systems using NTP synch) and
  25 * utilities (like userspace 'hwclock', if no /dev node exists).
  26 *
  27 * So **ALL** calls to CMOS_READ and CMOS_WRITE must be done with
  28 * interrupts disabled, holding the global rtc_lock, to exclude those
  29 * other drivers and utilities on correctly configured systems.
  30 */
  31
  32#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  33
  34#include <linux/kernel.h>
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/interrupt.h>
  38#include <linux/spinlock.h>
  39#include <linux/platform_device.h>
  40#include <linux/log2.h>
  41#include <linux/pm.h>
  42#include <linux/of.h>
  43#include <linux/of_platform.h>
  44#ifdef CONFIG_X86
  45#include <asm/i8259.h>
 
 
  46#endif
  47
  48/* this is for "generic access to PC-style RTC" using CMOS_READ/CMOS_WRITE */
  49#include <linux/mc146818rtc.h>
  50
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  51struct cmos_rtc {
  52	struct rtc_device	*rtc;
  53	struct device		*dev;
  54	int			irq;
  55	struct resource		*iomem;
  56	time64_t		alarm_expires;
  57
  58	void			(*wake_on)(struct device *);
  59	void			(*wake_off)(struct device *);
  60
  61	u8			enabled_wake;
  62	u8			suspend_ctrl;
  63
  64	/* newer hardware extends the original register set */
  65	u8			day_alrm;
  66	u8			mon_alrm;
  67	u8			century;
  68
  69	struct rtc_wkalrm	saved_wkalrm;
  70};
  71
  72/* both platform and pnp busses use negative numbers for invalid irqs */
  73#define is_valid_irq(n)		((n) > 0)
  74
  75static const char driver_name[] = "rtc_cmos";
  76
  77/* The RTC_INTR register may have e.g. RTC_PF set even if RTC_PIE is clear;
  78 * always mask it against the irq enable bits in RTC_CONTROL.  Bit values
  79 * are the same: PF==PIE, AF=AIE, UF=UIE; so RTC_IRQMASK works with both.
  80 */
  81#define	RTC_IRQMASK	(RTC_PF | RTC_AF | RTC_UF)
  82
  83static inline int is_intr(u8 rtc_intr)
  84{
  85	if (!(rtc_intr & RTC_IRQF))
  86		return 0;
  87	return rtc_intr & RTC_IRQMASK;
  88}
  89
  90/*----------------------------------------------------------------*/
  91
  92/* Much modern x86 hardware has HPETs (10+ MHz timers) which, because
  93 * many BIOS programmers don't set up "sane mode" IRQ routing, are mostly
  94 * used in a broken "legacy replacement" mode.  The breakage includes
  95 * HPET #1 hijacking the IRQ for this RTC, and being unavailable for
  96 * other (better) use.
  97 *
  98 * When that broken mode is in use, platform glue provides a partial
  99 * emulation of hardware RTC IRQ facilities using HPET #1.  We don't
 100 * want to use HPET for anything except those IRQs though...
 101 */
 102#ifdef CONFIG_HPET_EMULATE_RTC
 103#include <asm/hpet.h>
 104#else
 105
 106static inline int is_hpet_enabled(void)
 107{
 108	return 0;
 109}
 110
 111static inline int hpet_mask_rtc_irq_bit(unsigned long mask)
 112{
 113	return 0;
 114}
 115
 116static inline int hpet_set_rtc_irq_bit(unsigned long mask)
 117{
 118	return 0;
 119}
 120
 121static inline int
 122hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
 123{
 124	return 0;
 125}
 126
 127static inline int hpet_set_periodic_freq(unsigned long freq)
 128{
 129	return 0;
 130}
 131
 132static inline int hpet_rtc_dropped_irq(void)
 133{
 134	return 0;
 135}
 136
 137static inline int hpet_rtc_timer_init(void)
 138{
 139	return 0;
 140}
 141
 142extern irq_handler_t hpet_rtc_interrupt;
 143
 144static inline int hpet_register_irq_handler(irq_handler_t handler)
 145{
 146	return 0;
 147}
 148
 149static inline int hpet_unregister_irq_handler(irq_handler_t handler)
 150{
 151	return 0;
 152}
 153
 154#endif
 155
 
 
 
 
 
 
 156/*----------------------------------------------------------------*/
 157
 158#ifdef RTC_PORT
 159
 160/* Most newer x86 systems have two register banks, the first used
 161 * for RTC and NVRAM and the second only for NVRAM.  Caller must
 162 * own rtc_lock ... and we won't worry about access during NMI.
 163 */
 164#define can_bank2	true
 165
 166static inline unsigned char cmos_read_bank2(unsigned char addr)
 167{
 168	outb(addr, RTC_PORT(2));
 169	return inb(RTC_PORT(3));
 170}
 171
 172static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 173{
 174	outb(addr, RTC_PORT(2));
 175	outb(val, RTC_PORT(3));
 176}
 177
 178#else
 179
 180#define can_bank2	false
 181
 182static inline unsigned char cmos_read_bank2(unsigned char addr)
 183{
 184	return 0;
 185}
 186
 187static inline void cmos_write_bank2(unsigned char val, unsigned char addr)
 188{
 189}
 190
 191#endif
 192
 193/*----------------------------------------------------------------*/
 194
 195static int cmos_read_time(struct device *dev, struct rtc_time *t)
 196{
 
 
 197	/*
 198	 * If pm_trace abused the RTC for storage, set the timespec to 0,
 199	 * which tells the caller that this RTC value is unusable.
 200	 */
 201	if (!pm_trace_rtc_valid())
 202		return -EIO;
 203
 204	/* REVISIT:  if the clock has a "century" register, use
 205	 * that instead of the heuristic in mc146818_get_time().
 206	 * That'll make Y3K compatility (year > 2070) easy!
 207	 */
 208	mc146818_get_time(t);
 
 209	return 0;
 210}
 211
 212static int cmos_set_time(struct device *dev, struct rtc_time *t)
 213{
 214	/* REVISIT:  set the "century" register if available
 215	 *
 216	 * NOTE: this ignores the issue whereby updating the seconds
 217	 * takes effect exactly 500ms after we write the register.
 218	 * (Also queueing and other delays before we get this far.)
 219	 */
 220	return mc146818_set_time(t);
 221}
 222
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 223static int cmos_read_alarm(struct device *dev, struct rtc_wkalrm *t)
 224{
 225	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 226	unsigned char	rtc_control;
 
 
 
 227
 
 228	if (!is_valid_irq(cmos->irq))
 229		return -EIO;
 230
 231	/* Basic alarms only support hour, minute, and seconds fields.
 232	 * Some also support day and month, for alarms up to a year in
 233	 * the future.
 234	 */
 235
 236	spin_lock_irq(&rtc_lock);
 237	t->time.tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
 238	t->time.tm_min = CMOS_READ(RTC_MINUTES_ALARM);
 239	t->time.tm_hour = CMOS_READ(RTC_HOURS_ALARM);
 
 
 
 
 
 
 240
 241	if (cmos->day_alrm) {
 242		/* ignore upper bits on readback per ACPI spec */
 243		t->time.tm_mday = CMOS_READ(cmos->day_alrm) & 0x3f;
 244		if (!t->time.tm_mday)
 245			t->time.tm_mday = -1;
 246
 247		if (cmos->mon_alrm) {
 248			t->time.tm_mon = CMOS_READ(cmos->mon_alrm);
 249			if (!t->time.tm_mon)
 250				t->time.tm_mon = -1;
 251		}
 252	}
 253
 254	rtc_control = CMOS_READ(RTC_CONTROL);
 255	spin_unlock_irq(&rtc_lock);
 256
 257	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 258		if (((unsigned)t->time.tm_sec) < 0x60)
 259			t->time.tm_sec = bcd2bin(t->time.tm_sec);
 260		else
 261			t->time.tm_sec = -1;
 262		if (((unsigned)t->time.tm_min) < 0x60)
 263			t->time.tm_min = bcd2bin(t->time.tm_min);
 264		else
 265			t->time.tm_min = -1;
 266		if (((unsigned)t->time.tm_hour) < 0x24)
 267			t->time.tm_hour = bcd2bin(t->time.tm_hour);
 268		else
 269			t->time.tm_hour = -1;
 270
 271		if (cmos->day_alrm) {
 272			if (((unsigned)t->time.tm_mday) <= 0x31)
 273				t->time.tm_mday = bcd2bin(t->time.tm_mday);
 274			else
 275				t->time.tm_mday = -1;
 276
 277			if (cmos->mon_alrm) {
 278				if (((unsigned)t->time.tm_mon) <= 0x12)
 279					t->time.tm_mon = bcd2bin(t->time.tm_mon)-1;
 280				else
 281					t->time.tm_mon = -1;
 282			}
 283		}
 284	}
 285
 286	t->enabled = !!(rtc_control & RTC_AIE);
 287	t->pending = 0;
 288
 289	return 0;
 290}
 291
 292static void cmos_checkintr(struct cmos_rtc *cmos, unsigned char rtc_control)
 293{
 294	unsigned char	rtc_intr;
 295
 296	/* NOTE after changing RTC_xIE bits we always read INTR_FLAGS;
 297	 * allegedly some older rtcs need that to handle irqs properly
 298	 */
 299	rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
 300
 301	if (is_hpet_enabled())
 302		return;
 303
 304	rtc_intr &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 305	if (is_intr(rtc_intr))
 306		rtc_update_irq(cmos->rtc, 1, rtc_intr);
 307}
 308
 309static void cmos_irq_enable(struct cmos_rtc *cmos, unsigned char mask)
 310{
 311	unsigned char	rtc_control;
 312
 313	/* flush any pending IRQ status, notably for update irqs,
 314	 * before we enable new IRQs
 315	 */
 316	rtc_control = CMOS_READ(RTC_CONTROL);
 317	cmos_checkintr(cmos, rtc_control);
 318
 319	rtc_control |= mask;
 320	CMOS_WRITE(rtc_control, RTC_CONTROL);
 321	hpet_set_rtc_irq_bit(mask);
 
 
 
 
 
 
 322
 323	cmos_checkintr(cmos, rtc_control);
 324}
 325
 326static void cmos_irq_disable(struct cmos_rtc *cmos, unsigned char mask)
 327{
 328	unsigned char	rtc_control;
 329
 330	rtc_control = CMOS_READ(RTC_CONTROL);
 331	rtc_control &= ~mask;
 332	CMOS_WRITE(rtc_control, RTC_CONTROL);
 333	hpet_mask_rtc_irq_bit(mask);
 
 
 
 
 
 
 334
 335	cmos_checkintr(cmos, rtc_control);
 336}
 337
 338static int cmos_validate_alarm(struct device *dev, struct rtc_wkalrm *t)
 339{
 340	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 341	struct rtc_time now;
 342
 343	cmos_read_time(dev, &now);
 344
 345	if (!cmos->day_alrm) {
 346		time64_t t_max_date;
 347		time64_t t_alrm;
 348
 349		t_max_date = rtc_tm_to_time64(&now);
 350		t_max_date += 24 * 60 * 60 - 1;
 351		t_alrm = rtc_tm_to_time64(&t->time);
 352		if (t_alrm > t_max_date) {
 353			dev_err(dev,
 354				"Alarms can be up to one day in the future\n");
 355			return -EINVAL;
 356		}
 357	} else if (!cmos->mon_alrm) {
 358		struct rtc_time max_date = now;
 359		time64_t t_max_date;
 360		time64_t t_alrm;
 361		int max_mday;
 362
 363		if (max_date.tm_mon == 11) {
 364			max_date.tm_mon = 0;
 365			max_date.tm_year += 1;
 366		} else {
 367			max_date.tm_mon += 1;
 368		}
 369		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 370		if (max_date.tm_mday > max_mday)
 371			max_date.tm_mday = max_mday;
 372
 373		t_max_date = rtc_tm_to_time64(&max_date);
 374		t_max_date -= 1;
 375		t_alrm = rtc_tm_to_time64(&t->time);
 376		if (t_alrm > t_max_date) {
 377			dev_err(dev,
 378				"Alarms can be up to one month in the future\n");
 379			return -EINVAL;
 380		}
 381	} else {
 382		struct rtc_time max_date = now;
 383		time64_t t_max_date;
 384		time64_t t_alrm;
 385		int max_mday;
 386
 387		max_date.tm_year += 1;
 388		max_mday = rtc_month_days(max_date.tm_mon, max_date.tm_year);
 389		if (max_date.tm_mday > max_mday)
 390			max_date.tm_mday = max_mday;
 391
 392		t_max_date = rtc_tm_to_time64(&max_date);
 393		t_max_date -= 1;
 394		t_alrm = rtc_tm_to_time64(&t->time);
 395		if (t_alrm > t_max_date) {
 396			dev_err(dev,
 397				"Alarms can be up to one year in the future\n");
 398			return -EINVAL;
 399		}
 400	}
 401
 402	return 0;
 403}
 404
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 405static int cmos_set_alarm(struct device *dev, struct rtc_wkalrm *t)
 406{
 407	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 408	unsigned char mon, mday, hrs, min, sec, rtc_control;
 
 
 
 
 409	int ret;
 410
 
 411	if (!is_valid_irq(cmos->irq))
 412		return -EIO;
 413
 414	ret = cmos_validate_alarm(dev, t);
 415	if (ret < 0)
 416		return ret;
 417
 418	mon = t->time.tm_mon + 1;
 419	mday = t->time.tm_mday;
 420	hrs = t->time.tm_hour;
 421	min = t->time.tm_min;
 422	sec = t->time.tm_sec;
 423
 
 424	rtc_control = CMOS_READ(RTC_CONTROL);
 
 
 425	if (!(rtc_control & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
 426		/* Writing 0xff means "don't care" or "match all".  */
 427		mon = (mon <= 12) ? bin2bcd(mon) : 0xff;
 428		mday = (mday >= 1 && mday <= 31) ? bin2bcd(mday) : 0xff;
 429		hrs = (hrs < 24) ? bin2bcd(hrs) : 0xff;
 430		min = (min < 60) ? bin2bcd(min) : 0xff;
 431		sec = (sec < 60) ? bin2bcd(sec) : 0xff;
 432	}
 433
 434	spin_lock_irq(&rtc_lock);
 435
 436	/* next rtc irq must not be from previous alarm setting */
 437	cmos_irq_disable(cmos, RTC_AIE);
 438
 439	/* update alarm */
 440	CMOS_WRITE(hrs, RTC_HOURS_ALARM);
 441	CMOS_WRITE(min, RTC_MINUTES_ALARM);
 442	CMOS_WRITE(sec, RTC_SECONDS_ALARM);
 443
 444	/* the system may support an "enhanced" alarm */
 445	if (cmos->day_alrm) {
 446		CMOS_WRITE(mday, cmos->day_alrm);
 447		if (cmos->mon_alrm)
 448			CMOS_WRITE(mon, cmos->mon_alrm);
 449	}
 450
 451	/* FIXME the HPET alarm glue currently ignores day_alrm
 452	 * and mon_alrm ...
 453	 */
 454	hpet_set_alarm_time(t->time.tm_hour, t->time.tm_min, t->time.tm_sec);
 455
 456	if (t->enabled)
 457		cmos_irq_enable(cmos, RTC_AIE);
 458
 459	spin_unlock_irq(&rtc_lock);
 460
 461	cmos->alarm_expires = rtc_tm_to_time64(&t->time);
 462
 463	return 0;
 464}
 465
 466static int cmos_alarm_irq_enable(struct device *dev, unsigned int enabled)
 467{
 468	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 469	unsigned long	flags;
 470
 471	if (!is_valid_irq(cmos->irq))
 472		return -EINVAL;
 473
 474	spin_lock_irqsave(&rtc_lock, flags);
 475
 476	if (enabled)
 477		cmos_irq_enable(cmos, RTC_AIE);
 478	else
 479		cmos_irq_disable(cmos, RTC_AIE);
 480
 481	spin_unlock_irqrestore(&rtc_lock, flags);
 482	return 0;
 483}
 484
 485#if IS_ENABLED(CONFIG_RTC_INTF_PROC)
 486
 487static int cmos_procfs(struct device *dev, struct seq_file *seq)
 488{
 489	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 490	unsigned char	rtc_control, valid;
 491
 492	spin_lock_irq(&rtc_lock);
 493	rtc_control = CMOS_READ(RTC_CONTROL);
 494	valid = CMOS_READ(RTC_VALID);
 495	spin_unlock_irq(&rtc_lock);
 496
 497	/* NOTE:  at least ICH6 reports battery status using a different
 498	 * (non-RTC) bit; and SQWE is ignored on many current systems.
 499	 */
 500	seq_printf(seq,
 501		   "periodic_IRQ\t: %s\n"
 502		   "update_IRQ\t: %s\n"
 503		   "HPET_emulated\t: %s\n"
 504		   // "square_wave\t: %s\n"
 505		   "BCD\t\t: %s\n"
 506		   "DST_enable\t: %s\n"
 507		   "periodic_freq\t: %d\n"
 508		   "batt_status\t: %s\n",
 509		   (rtc_control & RTC_PIE) ? "yes" : "no",
 510		   (rtc_control & RTC_UIE) ? "yes" : "no",
 511		   is_hpet_enabled() ? "yes" : "no",
 512		   // (rtc_control & RTC_SQWE) ? "yes" : "no",
 513		   (rtc_control & RTC_DM_BINARY) ? "no" : "yes",
 514		   (rtc_control & RTC_DST_EN) ? "yes" : "no",
 515		   cmos->rtc->irq_freq,
 516		   (valid & RTC_VRT) ? "okay" : "dead");
 517
 518	return 0;
 519}
 520
 521#else
 522#define	cmos_procfs	NULL
 523#endif
 524
 525static const struct rtc_class_ops cmos_rtc_ops = {
 526	.read_time		= cmos_read_time,
 527	.set_time		= cmos_set_time,
 528	.read_alarm		= cmos_read_alarm,
 529	.set_alarm		= cmos_set_alarm,
 530	.proc			= cmos_procfs,
 531	.alarm_irq_enable	= cmos_alarm_irq_enable,
 532};
 533
 534/*----------------------------------------------------------------*/
 535
 536/*
 537 * All these chips have at least 64 bytes of address space, shared by
 538 * RTC registers and NVRAM.  Most of those bytes of NVRAM are used
 539 * by boot firmware.  Modern chips have 128 or 256 bytes.
 540 */
 541
 542#define NVRAM_OFFSET	(RTC_REG_D + 1)
 543
 544static int cmos_nvram_read(void *priv, unsigned int off, void *val,
 545			   size_t count)
 546{
 547	unsigned char *buf = val;
 548	int	retval;
 549
 550	off += NVRAM_OFFSET;
 551	spin_lock_irq(&rtc_lock);
 552	for (retval = 0; count; count--, off++, retval++) {
 553		if (off < 128)
 554			*buf++ = CMOS_READ(off);
 555		else if (can_bank2)
 556			*buf++ = cmos_read_bank2(off);
 557		else
 558			break;
 559	}
 560	spin_unlock_irq(&rtc_lock);
 561
 562	return retval;
 563}
 564
 565static int cmos_nvram_write(void *priv, unsigned int off, void *val,
 566			    size_t count)
 567{
 568	struct cmos_rtc	*cmos = priv;
 569	unsigned char	*buf = val;
 570	int		retval;
 571
 572	/* NOTE:  on at least PCs and Ataris, the boot firmware uses a
 573	 * checksum on part of the NVRAM data.  That's currently ignored
 574	 * here.  If userspace is smart enough to know what fields of
 575	 * NVRAM to update, updating checksums is also part of its job.
 576	 */
 577	off += NVRAM_OFFSET;
 578	spin_lock_irq(&rtc_lock);
 579	for (retval = 0; count; count--, off++, retval++) {
 580		/* don't trash RTC registers */
 581		if (off == cmos->day_alrm
 582				|| off == cmos->mon_alrm
 583				|| off == cmos->century)
 584			buf++;
 585		else if (off < 128)
 586			CMOS_WRITE(*buf++, off);
 587		else if (can_bank2)
 588			cmos_write_bank2(*buf++, off);
 589		else
 590			break;
 591	}
 592	spin_unlock_irq(&rtc_lock);
 593
 594	return retval;
 595}
 596
 597/*----------------------------------------------------------------*/
 598
 599static struct cmos_rtc	cmos_rtc;
 600
 601static irqreturn_t cmos_interrupt(int irq, void *p)
 602{
 603	u8		irqstat;
 604	u8		rtc_control;
 605
 606	spin_lock(&rtc_lock);
 607
 608	/* When the HPET interrupt handler calls us, the interrupt
 609	 * status is passed as arg1 instead of the irq number.  But
 610	 * always clear irq status, even when HPET is in the way.
 611	 *
 612	 * Note that HPET and RTC are almost certainly out of phase,
 613	 * giving different IRQ status ...
 614	 */
 615	irqstat = CMOS_READ(RTC_INTR_FLAGS);
 616	rtc_control = CMOS_READ(RTC_CONTROL);
 617	if (is_hpet_enabled())
 618		irqstat = (unsigned long)irq & 0xF0;
 619
 620	/* If we were suspended, RTC_CONTROL may not be accurate since the
 621	 * bios may have cleared it.
 622	 */
 623	if (!cmos_rtc.suspend_ctrl)
 624		irqstat &= (rtc_control & RTC_IRQMASK) | RTC_IRQF;
 625	else
 626		irqstat &= (cmos_rtc.suspend_ctrl & RTC_IRQMASK) | RTC_IRQF;
 627
 628	/* All Linux RTC alarms should be treated as if they were oneshot.
 629	 * Similar code may be needed in system wakeup paths, in case the
 630	 * alarm woke the system.
 631	 */
 632	if (irqstat & RTC_AIE) {
 633		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
 634		rtc_control &= ~RTC_AIE;
 635		CMOS_WRITE(rtc_control, RTC_CONTROL);
 636		hpet_mask_rtc_irq_bit(RTC_AIE);
 
 637		CMOS_READ(RTC_INTR_FLAGS);
 638	}
 639	spin_unlock(&rtc_lock);
 640
 641	if (is_intr(irqstat)) {
 642		rtc_update_irq(p, 1, irqstat);
 643		return IRQ_HANDLED;
 644	} else
 645		return IRQ_NONE;
 646}
 647
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 648#ifdef	CONFIG_PNP
 649#define	INITSECTION
 650
 651#else
 652#define	INITSECTION	__init
 653#endif
 654
 655static int INITSECTION
 656cmos_do_probe(struct device *dev, struct resource *ports, int rtc_irq)
 657{
 658	struct cmos_rtc_board_info	*info = dev_get_platdata(dev);
 659	int				retval = 0;
 660	unsigned char			rtc_control;
 661	unsigned			address_space;
 662	u32				flags = 0;
 663	struct nvmem_config nvmem_cfg = {
 664		.name = "cmos_nvram",
 665		.word_size = 1,
 666		.stride = 1,
 667		.reg_read = cmos_nvram_read,
 668		.reg_write = cmos_nvram_write,
 669		.priv = &cmos_rtc,
 670	};
 671
 672	/* there can be only one ... */
 673	if (cmos_rtc.dev)
 674		return -EBUSY;
 675
 676	if (!ports)
 677		return -ENODEV;
 678
 679	/* Claim I/O ports ASAP, minimizing conflict with legacy driver.
 680	 *
 681	 * REVISIT non-x86 systems may instead use memory space resources
 682	 * (needing ioremap etc), not i/o space resources like this ...
 683	 */
 684	if (RTC_IOMAPPED)
 685		ports = request_region(ports->start, resource_size(ports),
 686				       driver_name);
 687	else
 688		ports = request_mem_region(ports->start, resource_size(ports),
 689					   driver_name);
 690	if (!ports) {
 691		dev_dbg(dev, "i/o registers already in use\n");
 692		return -EBUSY;
 693	}
 694
 695	cmos_rtc.irq = rtc_irq;
 696	cmos_rtc.iomem = ports;
 697
 698	/* Heuristic to deduce NVRAM size ... do what the legacy NVRAM
 699	 * driver did, but don't reject unknown configs.   Old hardware
 700	 * won't address 128 bytes.  Newer chips have multiple banks,
 701	 * though they may not be listed in one I/O resource.
 702	 */
 703#if	defined(CONFIG_ATARI)
 704	address_space = 64;
 705#elif defined(__i386__) || defined(__x86_64__) || defined(__arm__) \
 706			|| defined(__sparc__) || defined(__mips__) \
 707			|| defined(__powerpc__)
 708	address_space = 128;
 709#else
 710#warning Assuming 128 bytes of RTC+NVRAM address space, not 64 bytes.
 711	address_space = 128;
 712#endif
 713	if (can_bank2 && ports->end > (ports->start + 1))
 714		address_space = 256;
 715
 716	/* For ACPI systems extension info comes from the FADT.  On others,
 717	 * board specific setup provides it as appropriate.  Systems where
 718	 * the alarm IRQ isn't automatically a wakeup IRQ (like ACPI, and
 719	 * some almost-clones) can provide hooks to make that behave.
 720	 *
 721	 * Note that ACPI doesn't preclude putting these registers into
 722	 * "extended" areas of the chip, including some that we won't yet
 723	 * expect CMOS_READ and friends to handle.
 724	 */
 725	if (info) {
 726		if (info->flags)
 727			flags = info->flags;
 728		if (info->address_space)
 729			address_space = info->address_space;
 730
 731		if (info->rtc_day_alarm && info->rtc_day_alarm < 128)
 732			cmos_rtc.day_alrm = info->rtc_day_alarm;
 733		if (info->rtc_mon_alarm && info->rtc_mon_alarm < 128)
 734			cmos_rtc.mon_alrm = info->rtc_mon_alarm;
 735		if (info->rtc_century && info->rtc_century < 128)
 736			cmos_rtc.century = info->rtc_century;
 737
 738		if (info->wake_on && info->wake_off) {
 739			cmos_rtc.wake_on = info->wake_on;
 740			cmos_rtc.wake_off = info->wake_off;
 741		}
 
 
 742	}
 743
 
 
 
 
 
 
 
 
 
 744	cmos_rtc.dev = dev;
 745	dev_set_drvdata(dev, &cmos_rtc);
 746
 747	cmos_rtc.rtc = devm_rtc_allocate_device(dev);
 748	if (IS_ERR(cmos_rtc.rtc)) {
 749		retval = PTR_ERR(cmos_rtc.rtc);
 750		goto cleanup0;
 751	}
 752
 753	rename_region(ports, dev_name(&cmos_rtc.rtc->dev));
 754
 
 
 
 
 
 
 755	spin_lock_irq(&rtc_lock);
 756
 757	if (!(flags & CMOS_RTC_FLAGS_NOFREQ)) {
 758		/* force periodic irq to CMOS reset default of 1024Hz;
 759		 *
 760		 * REVISIT it's been reported that at least one x86_64 ALI
 761		 * mobo doesn't use 32KHz here ... for portability we might
 762		 * need to do something about other clock frequencies.
 763		 */
 764		cmos_rtc.rtc->irq_freq = 1024;
 765		hpet_set_periodic_freq(cmos_rtc.rtc->irq_freq);
 
 766		CMOS_WRITE(RTC_REF_CLCK_32KHZ | 0x06, RTC_FREQ_SELECT);
 767	}
 768
 769	/* disable irqs */
 770	if (is_valid_irq(rtc_irq))
 771		cmos_irq_disable(&cmos_rtc, RTC_PIE | RTC_AIE | RTC_UIE);
 772
 773	rtc_control = CMOS_READ(RTC_CONTROL);
 774
 775	spin_unlock_irq(&rtc_lock);
 776
 777	if (is_valid_irq(rtc_irq) && !(rtc_control & RTC_24H)) {
 778		dev_warn(dev, "only 24-hr supported\n");
 779		retval = -ENXIO;
 780		goto cleanup1;
 781	}
 782
 783	hpet_rtc_timer_init();
 
 784
 785	if (is_valid_irq(rtc_irq)) {
 786		irq_handler_t rtc_cmos_int_handler;
 787
 788		if (is_hpet_enabled()) {
 789			rtc_cmos_int_handler = hpet_rtc_interrupt;
 790			retval = hpet_register_irq_handler(cmos_interrupt);
 791			if (retval) {
 792				hpet_mask_rtc_irq_bit(RTC_IRQMASK);
 793				dev_warn(dev, "hpet_register_irq_handler "
 794						" failed in rtc_init().");
 795				goto cleanup1;
 796			}
 797		} else
 798			rtc_cmos_int_handler = cmos_interrupt;
 799
 800		retval = request_irq(rtc_irq, rtc_cmos_int_handler,
 801				IRQF_SHARED, dev_name(&cmos_rtc.rtc->dev),
 802				cmos_rtc.rtc);
 803		if (retval < 0) {
 804			dev_dbg(dev, "IRQ %d is already in use\n", rtc_irq);
 805			goto cleanup1;
 806		}
 
 
 807	}
 808
 809	cmos_rtc.rtc->ops = &cmos_rtc_ops;
 810	cmos_rtc.rtc->nvram_old_abi = true;
 811	retval = rtc_register_device(cmos_rtc.rtc);
 812	if (retval)
 813		goto cleanup2;
 814
 
 
 
 815	/* export at least the first block of NVRAM */
 816	nvmem_cfg.size = address_space - NVRAM_OFFSET;
 817	if (rtc_nvmem_register(cmos_rtc.rtc, &nvmem_cfg))
 818		dev_err(dev, "nvmem registration failed\n");
 
 
 
 
 
 
 819
 820	dev_info(dev, "%s%s, %d bytes nvram%s\n",
 821		 !is_valid_irq(rtc_irq) ? "no alarms" :
 822		 cmos_rtc.mon_alrm ? "alarms up to one year" :
 823		 cmos_rtc.day_alrm ? "alarms up to one month" :
 824		 "alarms up to one day",
 825		 cmos_rtc.century ? ", y3k" : "",
 826		 nvmem_cfg.size,
 827		 is_hpet_enabled() ? ", hpet irqs" : "");
 828
 829	return 0;
 830
 831cleanup2:
 832	if (is_valid_irq(rtc_irq))
 833		free_irq(rtc_irq, cmos_rtc.rtc);
 834cleanup1:
 835	cmos_rtc.dev = NULL;
 836cleanup0:
 837	if (RTC_IOMAPPED)
 838		release_region(ports->start, resource_size(ports));
 839	else
 840		release_mem_region(ports->start, resource_size(ports));
 841	return retval;
 842}
 843
 844static void cmos_do_shutdown(int rtc_irq)
 845{
 846	spin_lock_irq(&rtc_lock);
 847	if (is_valid_irq(rtc_irq))
 848		cmos_irq_disable(&cmos_rtc, RTC_IRQMASK);
 849	spin_unlock_irq(&rtc_lock);
 850}
 851
 852static void cmos_do_remove(struct device *dev)
 853{
 854	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 855	struct resource *ports;
 856
 857	cmos_do_shutdown(cmos->irq);
 858
 859	if (is_valid_irq(cmos->irq)) {
 860		free_irq(cmos->irq, cmos->rtc);
 861		hpet_unregister_irq_handler(cmos_interrupt);
 
 862	}
 863
 
 
 
 864	cmos->rtc = NULL;
 865
 866	ports = cmos->iomem;
 867	if (RTC_IOMAPPED)
 868		release_region(ports->start, resource_size(ports));
 869	else
 870		release_mem_region(ports->start, resource_size(ports));
 871	cmos->iomem = NULL;
 872
 873	cmos->dev = NULL;
 874}
 875
 876static int cmos_aie_poweroff(struct device *dev)
 877{
 878	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 879	struct rtc_time now;
 880	time64_t t_now;
 881	int retval = 0;
 882	unsigned char rtc_control;
 883
 884	if (!cmos->alarm_expires)
 885		return -EINVAL;
 886
 887	spin_lock_irq(&rtc_lock);
 888	rtc_control = CMOS_READ(RTC_CONTROL);
 889	spin_unlock_irq(&rtc_lock);
 890
 891	/* We only care about the situation where AIE is disabled. */
 892	if (rtc_control & RTC_AIE)
 893		return -EBUSY;
 894
 895	cmos_read_time(dev, &now);
 896	t_now = rtc_tm_to_time64(&now);
 897
 898	/*
 899	 * When enabling "RTC wake-up" in BIOS setup, the machine reboots
 900	 * automatically right after shutdown on some buggy boxes.
 901	 * This automatic rebooting issue won't happen when the alarm
 902	 * time is larger than now+1 seconds.
 903	 *
 904	 * If the alarm time is equal to now+1 seconds, the issue can be
 905	 * prevented by cancelling the alarm.
 906	 */
 907	if (cmos->alarm_expires == t_now + 1) {
 908		struct rtc_wkalrm alarm;
 909
 910		/* Cancel the AIE timer by configuring the past time. */
 911		rtc_time64_to_tm(t_now - 1, &alarm.time);
 912		alarm.enabled = 0;
 913		retval = cmos_set_alarm(dev, &alarm);
 914	} else if (cmos->alarm_expires > t_now + 1) {
 915		retval = -EBUSY;
 916	}
 917
 918	return retval;
 919}
 920
 921static int cmos_suspend(struct device *dev)
 922{
 923	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 924	unsigned char	tmp;
 925
 926	/* only the alarm might be a wakeup event source */
 927	spin_lock_irq(&rtc_lock);
 928	cmos->suspend_ctrl = tmp = CMOS_READ(RTC_CONTROL);
 929	if (tmp & (RTC_PIE|RTC_AIE|RTC_UIE)) {
 930		unsigned char	mask;
 931
 932		if (device_may_wakeup(dev))
 933			mask = RTC_IRQMASK & ~RTC_AIE;
 934		else
 935			mask = RTC_IRQMASK;
 936		tmp &= ~mask;
 937		CMOS_WRITE(tmp, RTC_CONTROL);
 938		hpet_mask_rtc_irq_bit(mask);
 939
 940		cmos_checkintr(cmos, tmp);
 941	}
 942	spin_unlock_irq(&rtc_lock);
 943
 944	if (tmp & RTC_AIE) {
 945		cmos->enabled_wake = 1;
 946		if (cmos->wake_on)
 947			cmos->wake_on(dev);
 948		else
 949			enable_irq_wake(cmos->irq);
 950	}
 951
 
 952	cmos_read_alarm(dev, &cmos->saved_wkalrm);
 953
 954	dev_dbg(dev, "suspend%s, ctrl %02x\n",
 955			(tmp & RTC_AIE) ? ", alarm may wake" : "",
 956			tmp);
 957
 958	return 0;
 959}
 960
 961/* We want RTC alarms to wake us from e.g. ACPI G2/S5 "soft off", even
 962 * after a detour through G3 "mechanical off", although the ACPI spec
 963 * says wakeup should only work from G1/S4 "hibernate".  To most users,
 964 * distinctions between S4 and S5 are pointless.  So when the hardware
 965 * allows, don't draw that distinction.
 966 */
 967static inline int cmos_poweroff(struct device *dev)
 968{
 969	if (!IS_ENABLED(CONFIG_PM))
 970		return -ENOSYS;
 971
 972	return cmos_suspend(dev);
 973}
 974
 975static void cmos_check_wkalrm(struct device *dev)
 976{
 977	struct cmos_rtc *cmos = dev_get_drvdata(dev);
 978	struct rtc_wkalrm current_alarm;
 
 979	time64_t t_current_expires;
 980	time64_t t_saved_expires;
 
 
 
 
 
 
 
 
 981
 
 
 
 
 
 
 
 
 
 
 
 
 982	cmos_read_alarm(dev, &current_alarm);
 983	t_current_expires = rtc_tm_to_time64(&current_alarm.time);
 984	t_saved_expires = rtc_tm_to_time64(&cmos->saved_wkalrm.time);
 985	if (t_current_expires != t_saved_expires ||
 986	    cmos->saved_wkalrm.enabled != current_alarm.enabled) {
 987		cmos_set_alarm(dev, &cmos->saved_wkalrm);
 988	}
 989}
 990
 991static void cmos_check_acpi_rtc_status(struct device *dev,
 992				       unsigned char *rtc_control);
 993
 994static int __maybe_unused cmos_resume(struct device *dev)
 995{
 996	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
 997	unsigned char tmp;
 998
 999	if (cmos->enabled_wake) {
1000		if (cmos->wake_off)
1001			cmos->wake_off(dev);
1002		else
1003			disable_irq_wake(cmos->irq);
1004		cmos->enabled_wake = 0;
1005	}
1006
1007	/* The BIOS might have changed the alarm, restore it */
1008	cmos_check_wkalrm(dev);
1009
1010	spin_lock_irq(&rtc_lock);
1011	tmp = cmos->suspend_ctrl;
1012	cmos->suspend_ctrl = 0;
1013	/* re-enable any irqs previously active */
1014	if (tmp & RTC_IRQMASK) {
1015		unsigned char	mask;
1016
1017		if (device_may_wakeup(dev))
1018			hpet_rtc_timer_init();
1019
1020		do {
1021			CMOS_WRITE(tmp, RTC_CONTROL);
1022			hpet_set_rtc_irq_bit(tmp & RTC_IRQMASK);
 
1023
1024			mask = CMOS_READ(RTC_INTR_FLAGS);
1025			mask &= (tmp & RTC_IRQMASK) | RTC_IRQF;
1026			if (!is_hpet_enabled() || !is_intr(mask))
1027				break;
1028
1029			/* force one-shot behavior if HPET blocked
1030			 * the wake alarm's irq
1031			 */
1032			rtc_update_irq(cmos->rtc, 1, mask);
1033			tmp &= ~RTC_AIE;
1034			hpet_mask_rtc_irq_bit(RTC_AIE);
1035		} while (mask & RTC_AIE);
1036
1037		if (tmp & RTC_AIE)
1038			cmos_check_acpi_rtc_status(dev, &tmp);
1039	}
1040	spin_unlock_irq(&rtc_lock);
1041
1042	dev_dbg(dev, "resume, ctrl %02x\n", tmp);
1043
1044	return 0;
1045}
1046
1047static SIMPLE_DEV_PM_OPS(cmos_pm_ops, cmos_suspend, cmos_resume);
1048
1049/*----------------------------------------------------------------*/
1050
1051/* On non-x86 systems, a "CMOS" RTC lives most naturally on platform_bus.
1052 * ACPI systems always list these as PNPACPI devices, and pre-ACPI PCs
1053 * probably list them in similar PNPBIOS tables; so PNP is more common.
1054 *
1055 * We don't use legacy "poke at the hardware" probing.  Ancient PCs that
1056 * predate even PNPBIOS should set up platform_bus devices.
1057 */
1058
1059#ifdef	CONFIG_ACPI
1060
1061#include <linux/acpi.h>
1062
1063static u32 rtc_handler(void *context)
1064{
1065	struct device *dev = context;
1066	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1067	unsigned char rtc_control = 0;
1068	unsigned char rtc_intr;
1069	unsigned long flags;
1070
1071	spin_lock_irqsave(&rtc_lock, flags);
1072	if (cmos_rtc.suspend_ctrl)
1073		rtc_control = CMOS_READ(RTC_CONTROL);
1074	if (rtc_control & RTC_AIE) {
1075		cmos_rtc.suspend_ctrl &= ~RTC_AIE;
1076		CMOS_WRITE(rtc_control, RTC_CONTROL);
1077		rtc_intr = CMOS_READ(RTC_INTR_FLAGS);
1078		rtc_update_irq(cmos->rtc, 1, rtc_intr);
1079	}
1080	spin_unlock_irqrestore(&rtc_lock, flags);
1081
1082	pm_wakeup_hard_event(dev);
1083	acpi_clear_event(ACPI_EVENT_RTC);
1084	acpi_disable_event(ACPI_EVENT_RTC, 0);
1085	return ACPI_INTERRUPT_HANDLED;
1086}
1087
1088static inline void rtc_wake_setup(struct device *dev)
1089{
1090	acpi_install_fixed_event_handler(ACPI_EVENT_RTC, rtc_handler, dev);
1091	/*
1092	 * After the RTC handler is installed, the Fixed_RTC event should
1093	 * be disabled. Only when the RTC alarm is set will it be enabled.
1094	 */
1095	acpi_clear_event(ACPI_EVENT_RTC);
1096	acpi_disable_event(ACPI_EVENT_RTC, 0);
1097}
1098
1099static void rtc_wake_on(struct device *dev)
1100{
1101	acpi_clear_event(ACPI_EVENT_RTC);
1102	acpi_enable_event(ACPI_EVENT_RTC, 0);
1103}
1104
1105static void rtc_wake_off(struct device *dev)
1106{
1107	acpi_disable_event(ACPI_EVENT_RTC, 0);
1108}
1109
1110/* Every ACPI platform has a mc146818 compatible "cmos rtc".  Here we find
1111 * its device node and pass extra config data.  This helps its driver use
1112 * capabilities that the now-obsolete mc146818 didn't have, and informs it
1113 * that this board's RTC is wakeup-capable (per ACPI spec).
1114 */
1115static struct cmos_rtc_board_info acpi_rtc_info;
1116
1117static void cmos_wake_setup(struct device *dev)
1118{
1119	if (acpi_disabled)
1120		return;
1121
1122	rtc_wake_setup(dev);
1123	acpi_rtc_info.wake_on = rtc_wake_on;
1124	acpi_rtc_info.wake_off = rtc_wake_off;
1125
1126	/* workaround bug in some ACPI tables */
1127	if (acpi_gbl_FADT.month_alarm && !acpi_gbl_FADT.day_alarm) {
1128		dev_dbg(dev, "bogus FADT month_alarm (%d)\n",
1129			acpi_gbl_FADT.month_alarm);
1130		acpi_gbl_FADT.month_alarm = 0;
1131	}
1132
1133	acpi_rtc_info.rtc_day_alarm = acpi_gbl_FADT.day_alarm;
1134	acpi_rtc_info.rtc_mon_alarm = acpi_gbl_FADT.month_alarm;
1135	acpi_rtc_info.rtc_century = acpi_gbl_FADT.century;
1136
1137	/* NOTE:  S4_RTC_WAKE is NOT currently useful to Linux */
1138	if (acpi_gbl_FADT.flags & ACPI_FADT_S4_RTC_WAKE)
1139		dev_info(dev, "RTC can wake from S4\n");
1140
1141	dev->platform_data = &acpi_rtc_info;
1142
1143	/* RTC always wakes from S1/S2/S3, and often S4/STD */
1144	device_init_wakeup(dev, 1);
1145}
1146
1147static void cmos_check_acpi_rtc_status(struct device *dev,
1148				       unsigned char *rtc_control)
1149{
1150	struct cmos_rtc *cmos = dev_get_drvdata(dev);
1151	acpi_event_status rtc_status;
1152	acpi_status status;
1153
1154	if (acpi_gbl_FADT.flags & ACPI_FADT_FIXED_RTC)
1155		return;
1156
1157	status = acpi_get_event_status(ACPI_EVENT_RTC, &rtc_status);
1158	if (ACPI_FAILURE(status)) {
1159		dev_err(dev, "Could not get RTC status\n");
1160	} else if (rtc_status & ACPI_EVENT_FLAG_SET) {
1161		unsigned char mask;
1162		*rtc_control &= ~RTC_AIE;
1163		CMOS_WRITE(*rtc_control, RTC_CONTROL);
1164		mask = CMOS_READ(RTC_INTR_FLAGS);
1165		rtc_update_irq(cmos->rtc, 1, mask);
1166	}
1167}
1168
1169#else
1170
1171static void cmos_wake_setup(struct device *dev)
1172{
1173}
1174
1175static void cmos_check_acpi_rtc_status(struct device *dev,
1176				       unsigned char *rtc_control)
1177{
1178}
1179
1180#endif
1181
1182#ifdef	CONFIG_PNP
1183
1184#include <linux/pnp.h>
1185
1186static int cmos_pnp_probe(struct pnp_dev *pnp, const struct pnp_device_id *id)
1187{
1188	cmos_wake_setup(&pnp->dev);
1189
1190	if (pnp_port_start(pnp, 0) == 0x70 && !pnp_irq_valid(pnp, 0)) {
1191		unsigned int irq = 0;
1192#ifdef CONFIG_X86
1193		/* Some machines contain a PNP entry for the RTC, but
1194		 * don't define the IRQ. It should always be safe to
1195		 * hardcode it on systems with a legacy PIC.
1196		 */
1197		if (nr_legacy_irqs())
1198			irq = 8;
1199#endif
1200		return cmos_do_probe(&pnp->dev,
1201				pnp_get_resource(pnp, IORESOURCE_IO, 0), irq);
1202	} else {
1203		return cmos_do_probe(&pnp->dev,
1204				pnp_get_resource(pnp, IORESOURCE_IO, 0),
1205				pnp_irq(pnp, 0));
1206	}
 
 
1207}
1208
1209static void cmos_pnp_remove(struct pnp_dev *pnp)
1210{
1211	cmos_do_remove(&pnp->dev);
1212}
1213
1214static void cmos_pnp_shutdown(struct pnp_dev *pnp)
1215{
1216	struct device *dev = &pnp->dev;
1217	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1218
1219	if (system_state == SYSTEM_POWER_OFF) {
1220		int retval = cmos_poweroff(dev);
1221
1222		if (cmos_aie_poweroff(dev) < 0 && !retval)
1223			return;
1224	}
1225
1226	cmos_do_shutdown(cmos->irq);
1227}
1228
1229static const struct pnp_device_id rtc_ids[] = {
1230	{ .id = "PNP0b00", },
1231	{ .id = "PNP0b01", },
1232	{ .id = "PNP0b02", },
1233	{ },
1234};
1235MODULE_DEVICE_TABLE(pnp, rtc_ids);
1236
1237static struct pnp_driver cmos_pnp_driver = {
1238	.name		= (char *) driver_name,
1239	.id_table	= rtc_ids,
1240	.probe		= cmos_pnp_probe,
1241	.remove		= cmos_pnp_remove,
1242	.shutdown	= cmos_pnp_shutdown,
1243
1244	/* flag ensures resume() gets called, and stops syslog spam */
1245	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1246	.driver		= {
1247			.pm = &cmos_pm_ops,
1248	},
1249};
1250
1251#endif	/* CONFIG_PNP */
1252
1253#ifdef CONFIG_OF
1254static const struct of_device_id of_cmos_match[] = {
1255	{
1256		.compatible = "motorola,mc146818",
1257	},
1258	{ },
1259};
1260MODULE_DEVICE_TABLE(of, of_cmos_match);
1261
1262static __init void cmos_of_init(struct platform_device *pdev)
1263{
1264	struct device_node *node = pdev->dev.of_node;
1265	const __be32 *val;
1266
1267	if (!node)
1268		return;
1269
1270	val = of_get_property(node, "ctrl-reg", NULL);
1271	if (val)
1272		CMOS_WRITE(be32_to_cpup(val), RTC_CONTROL);
1273
1274	val = of_get_property(node, "freq-reg", NULL);
1275	if (val)
1276		CMOS_WRITE(be32_to_cpup(val), RTC_FREQ_SELECT);
1277}
1278#else
1279static inline void cmos_of_init(struct platform_device *pdev) {}
1280#endif
1281/*----------------------------------------------------------------*/
1282
1283/* Platform setup should have set up an RTC device, when PNP is
1284 * unavailable ... this could happen even on (older) PCs.
1285 */
1286
1287static int __init cmos_platform_probe(struct platform_device *pdev)
1288{
1289	struct resource *resource;
1290	int irq;
1291
1292	cmos_of_init(pdev);
1293	cmos_wake_setup(&pdev->dev);
1294
1295	if (RTC_IOMAPPED)
1296		resource = platform_get_resource(pdev, IORESOURCE_IO, 0);
1297	else
1298		resource = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1299	irq = platform_get_irq(pdev, 0);
1300	if (irq < 0)
1301		irq = -1;
1302
1303	return cmos_do_probe(&pdev->dev, resource, irq);
1304}
1305
1306static int cmos_platform_remove(struct platform_device *pdev)
1307{
1308	cmos_do_remove(&pdev->dev);
1309	return 0;
1310}
1311
1312static void cmos_platform_shutdown(struct platform_device *pdev)
1313{
1314	struct device *dev = &pdev->dev;
1315	struct cmos_rtc	*cmos = dev_get_drvdata(dev);
1316
1317	if (system_state == SYSTEM_POWER_OFF) {
1318		int retval = cmos_poweroff(dev);
1319
1320		if (cmos_aie_poweroff(dev) < 0 && !retval)
1321			return;
1322	}
1323
1324	cmos_do_shutdown(cmos->irq);
1325}
1326
1327/* work with hotplug and coldplug */
1328MODULE_ALIAS("platform:rtc_cmos");
1329
1330static struct platform_driver cmos_platform_driver = {
1331	.remove		= cmos_platform_remove,
1332	.shutdown	= cmos_platform_shutdown,
1333	.driver = {
1334		.name		= driver_name,
1335		.pm		= &cmos_pm_ops,
1336		.of_match_table = of_match_ptr(of_cmos_match),
1337	}
1338};
1339
1340#ifdef CONFIG_PNP
1341static bool pnp_driver_registered;
1342#endif
1343static bool platform_driver_registered;
1344
1345static int __init cmos_init(void)
1346{
1347	int retval = 0;
1348
1349#ifdef	CONFIG_PNP
1350	retval = pnp_register_driver(&cmos_pnp_driver);
1351	if (retval == 0)
1352		pnp_driver_registered = true;
1353#endif
1354
1355	if (!cmos_rtc.dev) {
1356		retval = platform_driver_probe(&cmos_platform_driver,
1357					       cmos_platform_probe);
1358		if (retval == 0)
1359			platform_driver_registered = true;
1360	}
1361
1362	if (retval == 0)
1363		return 0;
1364
1365#ifdef	CONFIG_PNP
1366	if (pnp_driver_registered)
1367		pnp_unregister_driver(&cmos_pnp_driver);
1368#endif
1369	return retval;
1370}
1371module_init(cmos_init);
1372
1373static void __exit cmos_exit(void)
1374{
1375#ifdef	CONFIG_PNP
1376	if (pnp_driver_registered)
1377		pnp_unregister_driver(&cmos_pnp_driver);
1378#endif
1379	if (platform_driver_registered)
1380		platform_driver_unregister(&cmos_platform_driver);
1381}
1382module_exit(cmos_exit);
1383
1384
1385MODULE_AUTHOR("David Brownell");
1386MODULE_DESCRIPTION("Driver for PC-style 'CMOS' RTCs");
1387MODULE_LICENSE("GPL");