Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
 
 
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "bio.h"
  27#include "print-tree.h"
 
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
  32#include "check-integrity.h"
  33#include "rcu-string.h"
  34#include "dev-replace.h"
  35#include "raid56.h"
  36#include "sysfs.h"
  37#include "qgroup.h"
  38#include "compression.h"
  39#include "tree-checker.h"
  40#include "ref-verify.h"
  41#include "block-group.h"
  42#include "discard.h"
  43#include "space-info.h"
  44#include "zoned.h"
  45#include "subpage.h"
  46#include "fs.h"
  47#include "accessors.h"
  48#include "extent-tree.h"
  49#include "root-tree.h"
  50#include "defrag.h"
  51#include "uuid-tree.h"
  52#include "relocation.h"
  53#include "scrub.h"
  54#include "super.h"
  55
  56#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  57				 BTRFS_HEADER_FLAG_RELOC |\
  58				 BTRFS_SUPER_FLAG_ERROR |\
  59				 BTRFS_SUPER_FLAG_SEEDING |\
  60				 BTRFS_SUPER_FLAG_METADUMP |\
  61				 BTRFS_SUPER_FLAG_METADUMP_V2)
  62
 
 
 
 
 
 
  63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  65				      struct btrfs_fs_info *fs_info);
 
  66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  67static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  68					struct extent_io_tree *dirty_pages,
  69					int mark);
  70static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  71				       struct extent_io_tree *pinned_extents);
  72static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  73static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  74
  75static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
  76{
  77	if (fs_info->csum_shash)
  78		crypto_free_shash(fs_info->csum_shash);
  79}
 
 
 
 
 
 
 
 
 
 
  80
  81/*
  82 * async submit bios are used to offload expensive checksumming
  83 * onto the worker threads.  They checksum file and metadata bios
  84 * just before they are sent down the IO stack.
  85 */
  86struct async_submit_bio {
  87	struct btrfs_inode *inode;
  88	struct bio *bio;
  89	enum btrfs_wq_submit_cmd submit_cmd;
 
 
 
  90	int mirror_num;
  91
  92	/* Optional parameter for used by direct io */
  93	u64 dio_file_offset;
 
 
 
  94	struct btrfs_work work;
  95	blk_status_t status;
  96};
  97
  98/*
  99 * Compute the csum of a btree block and store the result to provided buffer.
 100 */
 101static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102{
 103	struct btrfs_fs_info *fs_info = buf->fs_info;
 104	const int num_pages = num_extent_pages(buf);
 105	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
 106	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 107	char *kaddr;
 108	int i;
 109
 110	shash->tfm = fs_info->csum_shash;
 111	crypto_shash_init(shash);
 112	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
 113	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 114			    first_page_part - BTRFS_CSUM_SIZE);
 115
 116	for (i = 1; i < num_pages; i++) {
 117		kaddr = page_address(buf->pages[i]);
 118		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 119	}
 120	memset(result, 0, BTRFS_CSUM_SIZE);
 121	crypto_shash_final(shash, result);
 122}
 123
 124/*
 125 * we can't consider a given block up to date unless the transid of the
 126 * block matches the transid in the parent node's pointer.  This is how we
 127 * detect blocks that either didn't get written at all or got written
 128 * in the wrong place.
 129 */
 130static int verify_parent_transid(struct extent_io_tree *io_tree,
 131				 struct extent_buffer *eb, u64 parent_transid,
 132				 int atomic)
 133{
 134	struct extent_state *cached_state = NULL;
 135	int ret;
 136
 137	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 138		return 0;
 139
 140	if (atomic)
 141		return -EAGAIN;
 
 
 142
 143	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
 144	if (extent_buffer_uptodate(eb) &&
 145	    btrfs_header_generation(eb) == parent_transid) {
 146		ret = 0;
 147		goto out;
 148	}
 149	btrfs_err_rl(eb->fs_info,
 150"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 151			eb->start, eb->read_mirror,
 152			parent_transid, btrfs_header_generation(eb));
 153	ret = 1;
 154	clear_extent_buffer_uptodate(eb);
 155out:
 156	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
 157		      &cached_state);
 158	return ret;
 159}
 160
 161static bool btrfs_supported_super_csum(u16 csum_type)
 162{
 163	switch (csum_type) {
 164	case BTRFS_CSUM_TYPE_CRC32:
 165	case BTRFS_CSUM_TYPE_XXHASH:
 166	case BTRFS_CSUM_TYPE_SHA256:
 167	case BTRFS_CSUM_TYPE_BLAKE2:
 168		return true;
 169	default:
 170		return false;
 171	}
 172}
 173
 174/*
 175 * Return 0 if the superblock checksum type matches the checksum value of that
 176 * algorithm. Pass the raw disk superblock data.
 177 */
 178int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 179			   const struct btrfs_super_block *disk_sb)
 
 180{
 181	char result[BTRFS_CSUM_SIZE];
 182	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 183
 184	shash->tfm = fs_info->csum_shash;
 
 
 
 
 
 
 
 
 185
 186	/*
 187	 * The super_block structure does not span the whole
 188	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 189	 * filled with zeros and is included in the checksum.
 190	 */
 191	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
 192			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 
 
 
 193
 194	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 195		return 1;
 
 
 
 196
 197	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 198}
 199
 200int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 201			   struct btrfs_key *first_key, u64 parent_transid)
 202{
 203	struct btrfs_fs_info *fs_info = eb->fs_info;
 204	int found_level;
 205	struct btrfs_key found_key;
 206	int ret;
 207
 208	found_level = btrfs_header_level(eb);
 209	if (found_level != level) {
 210		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 211		     KERN_ERR "BTRFS: tree level check failed\n");
 212		btrfs_err(fs_info,
 213"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 214			  eb->start, level, found_level);
 215		return -EIO;
 216	}
 217
 218	if (!first_key)
 219		return 0;
 220
 221	/*
 222	 * For live tree block (new tree blocks in current transaction),
 223	 * we need proper lock context to avoid race, which is impossible here.
 224	 * So we only checks tree blocks which is read from disk, whose
 225	 * generation <= fs_info->last_trans_committed.
 226	 */
 227	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 228		return 0;
 229
 230	/* We have @first_key, so this @eb must have at least one item */
 231	if (btrfs_header_nritems(eb) == 0) {
 232		btrfs_err(fs_info,
 233		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 234			  eb->start);
 235		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 236		return -EUCLEAN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 237	}
 238
 239	if (found_level)
 240		btrfs_node_key_to_cpu(eb, &found_key, 0);
 241	else
 242		btrfs_item_key_to_cpu(eb, &found_key, 0);
 243	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 244
 245	if (ret) {
 246		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 247		     KERN_ERR "BTRFS: tree first key check failed\n");
 248		btrfs_err(fs_info,
 249"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 250			  eb->start, parent_transid, first_key->objectid,
 251			  first_key->type, first_key->offset,
 252			  found_key.objectid, found_key.type,
 253			  found_key.offset);
 
 
 
 
 
 
 
 
 
 
 254	}
 255	return ret;
 
 
 256}
 257
 258static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
 259				      int mirror_num)
 
 
 
 
 
 
 
 260{
 261	struct btrfs_fs_info *fs_info = eb->fs_info;
 262	u64 start = eb->start;
 263	int i, num_pages = num_extent_pages(eb);
 264	int ret = 0;
 265
 266	if (sb_rdonly(fs_info->sb))
 267		return -EROFS;
 268
 269	for (i = 0; i < num_pages; i++) {
 270		struct page *p = eb->pages[i];
 271
 272		ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
 273				start, p, start - page_offset(p), mirror_num);
 274		if (ret)
 275			break;
 276		start += PAGE_SIZE;
 
 277	}
 278
 
 
 
 
 
 
 
 
 
 279	return ret;
 280}
 281
 282/*
 283 * helper to read a given tree block, doing retries as required when
 284 * the checksums don't match and we have alternate mirrors to try.
 285 *
 286 * @check:		expected tree parentness check, see the comments of the
 287 *			structure for details.
 288 */
 289int btrfs_read_extent_buffer(struct extent_buffer *eb,
 290			     struct btrfs_tree_parent_check *check)
 
 291{
 292	struct btrfs_fs_info *fs_info = eb->fs_info;
 293	int failed = 0;
 294	int ret;
 295	int num_copies = 0;
 296	int mirror_num = 0;
 297	int failed_mirror = 0;
 298
 299	ASSERT(check);
 300
 301	while (1) {
 302		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 303		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
 304		if (!ret)
 
 
 305			break;
 306
 307		num_copies = btrfs_num_copies(fs_info,
 
 
 
 
 
 
 
 
 308					      eb->start, eb->len);
 309		if (num_copies == 1)
 310			break;
 311
 312		if (!failed_mirror) {
 313			failed = 1;
 314			failed_mirror = eb->read_mirror;
 315		}
 316
 317		mirror_num++;
 318		if (mirror_num == failed_mirror)
 319			mirror_num++;
 320
 321		if (mirror_num > num_copies)
 322			break;
 323	}
 324
 325	if (failed && !ret && failed_mirror)
 326		btrfs_repair_eb_io_failure(eb, failed_mirror);
 327
 328	return ret;
 329}
 330
 331static int csum_one_extent_buffer(struct extent_buffer *eb)
 332{
 333	struct btrfs_fs_info *fs_info = eb->fs_info;
 334	u8 result[BTRFS_CSUM_SIZE];
 335	int ret;
 336
 337	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 338				    offsetof(struct btrfs_header, fsid),
 339				    BTRFS_FSID_SIZE) == 0);
 340	csum_tree_block(eb, result);
 341
 342	if (btrfs_header_level(eb))
 343		ret = btrfs_check_node(eb);
 344	else
 345		ret = btrfs_check_leaf_full(eb);
 
 
 346
 347	if (ret < 0)
 348		goto error;
 349
 350	/*
 351	 * Also check the generation, the eb reached here must be newer than
 352	 * last committed. Or something seriously wrong happened.
 353	 */
 354	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
 355		ret = -EUCLEAN;
 356		btrfs_err(fs_info,
 357			"block=%llu bad generation, have %llu expect > %llu",
 358			  eb->start, btrfs_header_generation(eb),
 359			  fs_info->last_trans_committed);
 360		goto error;
 361	}
 362	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 363
 
 
 
 
 
 
 
 364	return 0;
 365
 366error:
 367	btrfs_print_tree(eb, 0);
 368	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
 369		  eb->start);
 370	/*
 371	 * Be noisy if this is an extent buffer from a log tree. We don't abort
 372	 * a transaction in case there's a bad log tree extent buffer, we just
 373	 * fallback to a transaction commit. Still we want to know when there is
 374	 * a bad log tree extent buffer, as that may signal a bug somewhere.
 375	 */
 376	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
 377		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
 378	return ret;
 379}
 380
 381/* Checksum all dirty extent buffers in one bio_vec */
 382static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
 383				      struct bio_vec *bvec)
 384{
 385	struct page *page = bvec->bv_page;
 386	u64 bvec_start = page_offset(page) + bvec->bv_offset;
 387	u64 cur;
 388	int ret = 0;
 389
 390	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
 391	     cur += fs_info->nodesize) {
 392		struct extent_buffer *eb;
 393		bool uptodate;
 394
 395		eb = find_extent_buffer(fs_info, cur);
 396		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
 397						       fs_info->nodesize);
 398
 399		/* A dirty eb shouldn't disappear from buffer_radix */
 400		if (WARN_ON(!eb))
 401			return -EUCLEAN;
 402
 403		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
 404			free_extent_buffer(eb);
 405			return -EUCLEAN;
 406		}
 407		if (WARN_ON(!uptodate)) {
 408			free_extent_buffer(eb);
 409			return -EUCLEAN;
 410		}
 411
 412		ret = csum_one_extent_buffer(eb);
 413		free_extent_buffer(eb);
 414		if (ret < 0)
 415			return ret;
 416	}
 417	return ret;
 418}
 419
 420/*
 421 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 422 * we only fill in the checksum field in the first page of a multi-page block.
 423 * For subpage extent buffers we need bvec to also read the offset in the page.
 424 */
 425static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
 426{
 427	struct page *page = bvec->bv_page;
 428	u64 start = page_offset(page);
 429	u64 found_start;
 430	struct extent_buffer *eb;
 431
 432	if (fs_info->nodesize < PAGE_SIZE)
 433		return csum_dirty_subpage_buffers(fs_info, bvec);
 
 
 
 
 
 434
 435	eb = (struct extent_buffer *)page->private;
 436	if (page != eb->pages[0])
 437		return 0;
 438
 439	found_start = btrfs_header_bytenr(eb);
 440
 441	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
 442		WARN_ON(found_start != 0);
 443		return 0;
 444	}
 445
 446	/*
 447	 * Please do not consolidate these warnings into a single if.
 448	 * It is useful to know what went wrong.
 449	 */
 450	if (WARN_ON(found_start != start))
 451		return -EUCLEAN;
 452	if (WARN_ON(!PageUptodate(page)))
 453		return -EUCLEAN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454
 455	return csum_one_extent_buffer(eb);
 456}
 457
 458static int check_tree_block_fsid(struct extent_buffer *eb)
 
 459{
 460	struct btrfs_fs_info *fs_info = eb->fs_info;
 461	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 462	u8 fsid[BTRFS_FSID_SIZE];
 463	u8 *metadata_uuid;
 464
 465	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 466			   BTRFS_FSID_SIZE);
 467	/*
 468	 * Checking the incompat flag is only valid for the current fs. For
 469	 * seed devices it's forbidden to have their uuid changed so reading
 470	 * ->fsid in this case is fine
 471	 */
 472	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
 473		metadata_uuid = fs_devices->metadata_uuid;
 474	else
 475		metadata_uuid = fs_devices->fsid;
 476
 477	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
 478		return 0;
 479
 480	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 481		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 482			return 0;
 
 
 
 
 483
 484	return 1;
 
 
 
 
 
 
 
 
 485}
 486
 487/* Do basic extent buffer checks at read time */
 488static int validate_extent_buffer(struct extent_buffer *eb,
 489				  struct btrfs_tree_parent_check *check)
 490{
 491	struct btrfs_fs_info *fs_info = eb->fs_info;
 492	u64 found_start;
 493	const u32 csum_size = fs_info->csum_size;
 494	u8 found_level;
 495	u8 result[BTRFS_CSUM_SIZE];
 496	const u8 *header_csum;
 497	int ret = 0;
 
 498
 499	ASSERT(check);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 500
 501	found_start = btrfs_header_bytenr(eb);
 502	if (found_start != eb->start) {
 503		btrfs_err_rl(fs_info,
 504			"bad tree block start, mirror %u want %llu have %llu",
 505			     eb->read_mirror, eb->start, found_start);
 
 506		ret = -EIO;
 507		goto out;
 508	}
 509	if (check_tree_block_fsid(eb)) {
 510		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
 511			     eb->start, eb->read_mirror);
 512		ret = -EIO;
 513		goto out;
 514	}
 515	found_level = btrfs_header_level(eb);
 516	if (found_level >= BTRFS_MAX_LEVEL) {
 517		btrfs_err(fs_info,
 518			"bad tree block level, mirror %u level %d on logical %llu",
 519			eb->read_mirror, btrfs_header_level(eb), eb->start);
 520		ret = -EIO;
 521		goto out;
 522	}
 523
 524	csum_tree_block(eb, result);
 525	header_csum = page_address(eb->pages[0]) +
 526		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
 527
 528	if (memcmp(result, header_csum, csum_size) != 0) {
 529		btrfs_warn_rl(fs_info,
 530"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 531			      eb->start, eb->read_mirror,
 532			      CSUM_FMT_VALUE(csum_size, header_csum),
 533			      CSUM_FMT_VALUE(csum_size, result),
 534			      btrfs_header_level(eb));
 535		ret = -EUCLEAN;
 536		goto out;
 537	}
 538
 539	if (found_level != check->level) {
 540		btrfs_err(fs_info,
 541		"level verify failed on logical %llu mirror %u wanted %u found %u",
 542			  eb->start, eb->read_mirror, check->level, found_level);
 543		ret = -EIO;
 544		goto out;
 545	}
 546	if (unlikely(check->transid &&
 547		     btrfs_header_generation(eb) != check->transid)) {
 548		btrfs_err_rl(eb->fs_info,
 549"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 550				eb->start, eb->read_mirror, check->transid,
 551				btrfs_header_generation(eb));
 552		ret = -EIO;
 553		goto out;
 554	}
 555	if (check->has_first_key) {
 556		struct btrfs_key *expect_key = &check->first_key;
 557		struct btrfs_key found_key;
 558
 559		if (found_level)
 560			btrfs_node_key_to_cpu(eb, &found_key, 0);
 561		else
 562			btrfs_item_key_to_cpu(eb, &found_key, 0);
 563		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
 564			btrfs_err(fs_info,
 565"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 566				  eb->start, check->transid,
 567				  expect_key->objectid,
 568				  expect_key->type, expect_key->offset,
 569				  found_key.objectid, found_key.type,
 570				  found_key.offset);
 571			ret = -EUCLEAN;
 572			goto out;
 573		}
 574	}
 575	if (check->owner_root) {
 576		ret = btrfs_check_eb_owner(eb, check->owner_root);
 577		if (ret < 0)
 578			goto out;
 579	}
 580
 581	/*
 582	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 583	 * that we don't try and read the other copies of this block, just
 584	 * return -EIO.
 585	 */
 586	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 587		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 588		ret = -EIO;
 589	}
 590
 591	if (found_level > 0 && btrfs_check_node(eb))
 592		ret = -EIO;
 593
 594	if (!ret)
 595		set_extent_buffer_uptodate(eb);
 596	else
 597		btrfs_err(fs_info,
 598		"read time tree block corruption detected on logical %llu mirror %u",
 599			  eb->start, eb->read_mirror);
 
 
 
 
 
 600out:
 601	return ret;
 602}
 603
 604static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
 605				   int mirror, struct btrfs_tree_parent_check *check)
 606{
 607	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 608	struct extent_buffer *eb;
 609	bool reads_done;
 610	int ret = 0;
 611
 612	ASSERT(check);
 613
 614	/*
 615	 * We don't allow bio merge for subpage metadata read, so we should
 616	 * only get one eb for each endio hook.
 617	 */
 618	ASSERT(end == start + fs_info->nodesize - 1);
 619	ASSERT(PagePrivate(page));
 620
 621	eb = find_extent_buffer(fs_info, start);
 622	/*
 623	 * When we are reading one tree block, eb must have been inserted into
 624	 * the radix tree. If not, something is wrong.
 625	 */
 626	ASSERT(eb);
 
 627
 628	reads_done = atomic_dec_and_test(&eb->io_pages);
 629	/* Subpage read must finish in page read */
 630	ASSERT(reads_done);
 
 631
 632	eb->read_mirror = mirror;
 633	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 634		ret = -EIO;
 635		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637	ret = validate_extent_buffer(eb, check);
 638	if (ret < 0)
 639		goto err;
 640
 641	set_extent_buffer_uptodate(eb);
 642
 643	free_extent_buffer(eb);
 644	return ret;
 645err:
 646	/*
 647	 * end_bio_extent_readpage decrements io_pages in case of error,
 648	 * make sure it has something to decrement.
 649	 */
 650	atomic_inc(&eb->io_pages);
 651	clear_extent_buffer_uptodate(eb);
 652	free_extent_buffer(eb);
 653	return ret;
 654}
 655
 656int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
 657				   struct page *page, u64 start, u64 end,
 658				   int mirror)
 
 
 
 
 
 
 659{
 660	struct extent_buffer *eb;
 661	int ret = 0;
 662	int reads_done;
 663
 664	ASSERT(page->private);
 665
 666	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
 667		return validate_subpage_buffer(page, start, end, mirror,
 668					       &bbio->parent_check);
 669
 670	eb = (struct extent_buffer *)page->private;
 671
 672	/*
 673	 * The pending IO might have been the only thing that kept this buffer
 674	 * in memory.  Make sure we have a ref for all this other checks
 675	 */
 676	atomic_inc(&eb->refs);
 677
 678	reads_done = atomic_dec_and_test(&eb->io_pages);
 679	if (!reads_done)
 680		goto err;
 
 
 
 681
 682	eb->read_mirror = mirror;
 683	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 684		ret = -EIO;
 685		goto err;
 686	}
 687	ret = validate_extent_buffer(eb, &bbio->parent_check);
 688err:
 689	if (ret) {
 690		/*
 691		 * our io error hook is going to dec the io pages
 692		 * again, we have to make sure it has something
 693		 * to decrement
 694		 */
 695		atomic_inc(&eb->io_pages);
 696		clear_extent_buffer_uptodate(eb);
 697	}
 698	free_extent_buffer(eb);
 699
 700	return ret;
 
 
 
 
 
 701}
 702
 703static void run_one_async_start(struct btrfs_work *work)
 704{
 705	struct async_submit_bio *async;
 706	blk_status_t ret;
 707
 708	async = container_of(work, struct  async_submit_bio, work);
 709	switch (async->submit_cmd) {
 710	case WQ_SUBMIT_METADATA:
 711		ret = btree_submit_bio_start(async->bio);
 712		break;
 713	case WQ_SUBMIT_DATA:
 714		ret = btrfs_submit_bio_start(async->inode, async->bio);
 715		break;
 716	case WQ_SUBMIT_DATA_DIO:
 717		ret = btrfs_submit_bio_start_direct_io(async->inode,
 718				async->bio, async->dio_file_offset);
 719		break;
 720	}
 721	if (ret)
 722		async->status = ret;
 723}
 724
 725/*
 726 * In order to insert checksums into the metadata in large chunks, we wait
 727 * until bio submission time.   All the pages in the bio are checksummed and
 728 * sums are attached onto the ordered extent record.
 729 *
 730 * At IO completion time the csums attached on the ordered extent record are
 731 * inserted into the tree.
 732 */
 733static void run_one_async_done(struct btrfs_work *work)
 734{
 735	struct async_submit_bio *async =
 736		container_of(work, struct  async_submit_bio, work);
 737	struct btrfs_inode *inode = async->inode;
 738	struct btrfs_bio *bbio = btrfs_bio(async->bio);
 739
 740	/* If an error occurred we just want to clean up the bio and move on */
 741	if (async->status) {
 742		btrfs_bio_end_io(bbio, async->status);
 
 
 
 
 
 
 
 
 
 
 
 743		return;
 744	}
 745
 746	/*
 747	 * All of the bios that pass through here are from async helpers.
 748	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 749	 * This changes nothing when cgroups aren't in use.
 750	 */
 751	async->bio->bi_opf |= REQ_CGROUP_PUNT;
 752	btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num);
 753}
 754
 755static void run_one_async_free(struct btrfs_work *work)
 756{
 757	struct async_submit_bio *async;
 758
 759	async = container_of(work, struct  async_submit_bio, work);
 760	kfree(async);
 761}
 762
 763/*
 764 * Submit bio to an async queue.
 765 *
 766 * Retrun:
 767 * - true if the work has been succesfuly submitted
 768 * - false in case of error
 769 */
 770bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num,
 771			 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd)
 772{
 773	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 774	struct async_submit_bio *async;
 775
 776	async = kmalloc(sizeof(*async), GFP_NOFS);
 777	if (!async)
 778		return false;
 779
 780	async->inode = inode;
 
 781	async->bio = bio;
 782	async->mirror_num = mirror_num;
 783	async->submit_cmd = cmd;
 
 784
 785	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 786			run_one_async_free);
 
 787
 788	async->dio_file_offset = dio_file_offset;
 
 
 789
 790	async->status = 0;
 791
 792	if (op_is_sync(bio->bi_opf))
 793		btrfs_queue_work(fs_info->hipri_workers, &async->work);
 794	else
 795		btrfs_queue_work(fs_info->workers, &async->work);
 796	return true;
 
 
 
 
 
 
 
 
 
 797}
 798
 799static blk_status_t btree_csum_one_bio(struct bio *bio)
 800{
 801	struct bio_vec *bvec;
 
 802	struct btrfs_root *root;
 803	int ret = 0;
 804	struct bvec_iter_all iter_all;
 805
 806	ASSERT(!bio_flagged(bio, BIO_CLONED));
 807	bio_for_each_segment_all(bvec, bio, iter_all) {
 808		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 809		ret = csum_dirty_buffer(root->fs_info, bvec);
 810		if (ret)
 811			break;
 
 
 812	}
 813
 814	return errno_to_blk_status(ret);
 815}
 816
 817blk_status_t btree_submit_bio_start(struct bio *bio)
 
 
 
 818{
 819	/*
 820	 * when we're called for a write, we're already in the async
 821	 * submission context.  Just jump into btrfs_submit_bio.
 822	 */
 823	return btree_csum_one_bio(bio);
 824}
 825
 826static bool should_async_write(struct btrfs_fs_info *fs_info,
 827			     struct btrfs_inode *bi)
 
 828{
 829	if (btrfs_is_zoned(fs_info))
 830		return false;
 831	if (atomic_read(&bi->sync_writers))
 832		return false;
 833	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 834		return false;
 835	return true;
 836}
 837
 838void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
 
 
 839{
 840	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 841	struct btrfs_bio *bbio = btrfs_bio(bio);
 842	blk_status_t ret;
 843
 844	bio->bi_opf |= REQ_META;
 845	bbio->is_metadata = 1;
 846
 847	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
 848		btrfs_submit_bio(fs_info, bio, mirror_num);
 849		return;
 
 
 
 
 
 
 
 850	}
 851
 852	/*
 853	 * Kthread helpers are used to submit writes so that checksumming can
 854	 * happen in parallel across all CPUs.
 855	 */
 856	if (should_async_write(fs_info, inode) &&
 857	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA))
 858		return;
 859
 860	ret = btree_csum_one_bio(bio);
 861	if (ret) {
 862		btrfs_bio_end_io(bbio, ret);
 863		return;
 864	}
 865
 866	btrfs_submit_bio(fs_info, bio, mirror_num);
 867}
 868
 869#ifdef CONFIG_MIGRATION
 870static int btree_migrate_folio(struct address_space *mapping,
 871		struct folio *dst, struct folio *src, enum migrate_mode mode)
 
 872{
 873	/*
 874	 * we can't safely write a btree page from here,
 875	 * we haven't done the locking hook
 876	 */
 877	if (folio_test_dirty(src))
 878		return -EAGAIN;
 879	/*
 880	 * Buffers may be managed in a filesystem specific way.
 881	 * We must have no buffers or drop them.
 882	 */
 883	if (folio_get_private(src) &&
 884	    !filemap_release_folio(src, GFP_KERNEL))
 885		return -EAGAIN;
 886	return migrate_folio(mapping, dst, src, mode);
 887}
 888#else
 889#define btree_migrate_folio NULL
 890#endif
 891
 
 892static int btree_writepages(struct address_space *mapping,
 893			    struct writeback_control *wbc)
 894{
 895	struct btrfs_fs_info *fs_info;
 896	int ret;
 897
 898	if (wbc->sync_mode == WB_SYNC_NONE) {
 
 
 
 899
 900		if (wbc->for_kupdate)
 901			return 0;
 902
 903		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 904		/* this is a bit racy, but that's ok */
 905		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 906					     BTRFS_DIRTY_METADATA_THRESH,
 907					     fs_info->dirty_metadata_batch);
 908		if (ret < 0)
 909			return 0;
 910	}
 911	return btree_write_cache_pages(mapping, wbc);
 912}
 913
 914static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
 915{
 916	if (folio_test_writeback(folio) || folio_test_dirty(folio))
 917		return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 918
 919	return try_release_extent_buffer(&folio->page);
 920}
 921
 922static void btree_invalidate_folio(struct folio *folio, size_t offset,
 923				 size_t length)
 924{
 925	struct extent_io_tree *tree;
 926	tree = &BTRFS_I(folio->mapping->host)->io_tree;
 927	extent_invalidate_folio(tree, folio, offset);
 928	btree_release_folio(folio, GFP_NOFS);
 929	if (folio_get_private(folio)) {
 930		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
 931			   "folio private not zero on folio %llu",
 932			   (unsigned long long)folio_pos(folio));
 933		folio_detach_private(folio);
 
 934	}
 935}
 936
 937#ifdef DEBUG
 938static bool btree_dirty_folio(struct address_space *mapping,
 939		struct folio *folio)
 940{
 941	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
 942	struct btrfs_subpage *subpage;
 943	struct extent_buffer *eb;
 944	int cur_bit = 0;
 945	u64 page_start = folio_pos(folio);
 946
 947	if (fs_info->sectorsize == PAGE_SIZE) {
 948		eb = folio_get_private(folio);
 949		BUG_ON(!eb);
 950		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 951		BUG_ON(!atomic_read(&eb->refs));
 952		btrfs_assert_tree_write_locked(eb);
 953		return filemap_dirty_folio(mapping, folio);
 954	}
 955	subpage = folio_get_private(folio);
 956
 957	ASSERT(subpage->dirty_bitmap);
 958	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
 959		unsigned long flags;
 960		u64 cur;
 961		u16 tmp = (1 << cur_bit);
 962
 963		spin_lock_irqsave(&subpage->lock, flags);
 964		if (!(tmp & subpage->dirty_bitmap)) {
 965			spin_unlock_irqrestore(&subpage->lock, flags);
 966			cur_bit++;
 967			continue;
 968		}
 969		spin_unlock_irqrestore(&subpage->lock, flags);
 970		cur = page_start + cur_bit * fs_info->sectorsize;
 971
 972		eb = find_extent_buffer(fs_info, cur);
 973		ASSERT(eb);
 974		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 975		ASSERT(atomic_read(&eb->refs));
 976		btrfs_assert_tree_write_locked(eb);
 977		free_extent_buffer(eb);
 978
 979		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
 980	}
 981	return filemap_dirty_folio(mapping, folio);
 982}
 983#else
 984#define btree_dirty_folio filemap_dirty_folio
 985#endif
 986
 987static const struct address_space_operations btree_aops = {
 
 988	.writepages	= btree_writepages,
 989	.release_folio	= btree_release_folio,
 990	.invalidate_folio = btree_invalidate_folio,
 991	.migrate_folio	= btree_migrate_folio,
 992	.dirty_folio	= btree_dirty_folio,
 
 
 993};
 994
 995struct extent_buffer *btrfs_find_create_tree_block(
 996						struct btrfs_fs_info *fs_info,
 997						u64 bytenr, u64 owner_root,
 998						int level)
 999{
1000	if (btrfs_is_testing(fs_info))
1001		return alloc_test_extent_buffer(fs_info, bytenr);
1002	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 
 
 
 
 
 
1003}
1004
1005/*
1006 * Read tree block at logical address @bytenr and do variant basic but critical
1007 * verification.
1008 *
1009 * @check:		expected tree parentness check, see comments of the
1010 *			structure for details.
1011 */
1012struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1013				      struct btrfs_tree_parent_check *check)
1014{
1015	struct extent_buffer *buf = NULL;
 
 
1016	int ret;
1017
1018	ASSERT(check);
 
 
1019
1020	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
1021					   check->level);
1022	if (IS_ERR(buf))
1023		return buf;
1024
1025	ret = btrfs_read_extent_buffer(buf, check);
 
1026	if (ret) {
1027		free_extent_buffer_stale(buf);
1028		return ERR_PTR(ret);
1029	}
1030	if (btrfs_check_eb_owner(buf, check->owner_root)) {
1031		free_extent_buffer_stale(buf);
1032		return ERR_PTR(-EUCLEAN);
 
 
 
 
 
1033	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1034	return buf;
1035
1036}
1037
1038void btrfs_clean_tree_block(struct extent_buffer *buf)
 
1039{
1040	struct btrfs_fs_info *fs_info = buf->fs_info;
1041	if (btrfs_header_generation(buf) ==
1042	    fs_info->running_transaction->transid) {
1043		btrfs_assert_tree_write_locked(buf);
1044
1045		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1046			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1047						 -buf->len,
1048						 fs_info->dirty_metadata_batch);
1049			clear_extent_buffer_dirty(buf);
 
 
 
 
 
 
 
 
1050		}
 
 
 
 
1051	}
1052}
1053
1054static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
 
 
1055			 u64 objectid)
1056{
1057	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1058
1059	memset(&root->root_key, 0, sizeof(root->root_key));
1060	memset(&root->root_item, 0, sizeof(root->root_item));
1061	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1062	root->fs_info = fs_info;
1063	root->root_key.objectid = objectid;
1064	root->node = NULL;
1065	root->commit_root = NULL;
1066	root->state = 0;
1067	RB_CLEAR_NODE(&root->rb_node);
 
 
 
 
 
 
 
1068
 
1069	root->last_trans = 0;
1070	root->free_objectid = 0;
1071	root->nr_delalloc_inodes = 0;
1072	root->nr_ordered_extents = 0;
1073	root->inode_tree = RB_ROOT;
1074	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1075
1076	btrfs_init_root_block_rsv(root);
1077
1078	INIT_LIST_HEAD(&root->dirty_list);
1079	INIT_LIST_HEAD(&root->root_list);
1080	INIT_LIST_HEAD(&root->delalloc_inodes);
1081	INIT_LIST_HEAD(&root->delalloc_root);
1082	INIT_LIST_HEAD(&root->ordered_extents);
1083	INIT_LIST_HEAD(&root->ordered_root);
1084	INIT_LIST_HEAD(&root->reloc_dirty_list);
1085	INIT_LIST_HEAD(&root->logged_list[0]);
1086	INIT_LIST_HEAD(&root->logged_list[1]);
1087	spin_lock_init(&root->inode_lock);
1088	spin_lock_init(&root->delalloc_lock);
1089	spin_lock_init(&root->ordered_extent_lock);
1090	spin_lock_init(&root->accounting_lock);
1091	spin_lock_init(&root->log_extents_lock[0]);
1092	spin_lock_init(&root->log_extents_lock[1]);
1093	spin_lock_init(&root->qgroup_meta_rsv_lock);
1094	mutex_init(&root->objectid_mutex);
1095	mutex_init(&root->log_mutex);
1096	mutex_init(&root->ordered_extent_mutex);
1097	mutex_init(&root->delalloc_mutex);
1098	init_waitqueue_head(&root->qgroup_flush_wait);
1099	init_waitqueue_head(&root->log_writer_wait);
1100	init_waitqueue_head(&root->log_commit_wait[0]);
1101	init_waitqueue_head(&root->log_commit_wait[1]);
1102	INIT_LIST_HEAD(&root->log_ctxs[0]);
1103	INIT_LIST_HEAD(&root->log_ctxs[1]);
1104	atomic_set(&root->log_commit[0], 0);
1105	atomic_set(&root->log_commit[1], 0);
1106	atomic_set(&root->log_writers, 0);
1107	atomic_set(&root->log_batch, 0);
1108	refcount_set(&root->refs, 1);
1109	atomic_set(&root->snapshot_force_cow, 0);
1110	atomic_set(&root->nr_swapfiles, 0);
1111	root->log_transid = 0;
1112	root->log_transid_committed = -1;
1113	root->last_log_commit = 0;
1114	root->anon_dev = 0;
1115	if (!dummy) {
1116		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1117				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
1118		extent_io_tree_init(fs_info, &root->log_csum_range,
1119				    IO_TREE_LOG_CSUM_RANGE);
1120	}
1121
1122	spin_lock_init(&root->root_item_lock);
1123	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1124#ifdef CONFIG_BTRFS_DEBUG
1125	INIT_LIST_HEAD(&root->leak_list);
1126	spin_lock(&fs_info->fs_roots_radix_lock);
1127	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1128	spin_unlock(&fs_info->fs_roots_radix_lock);
1129#endif
1130}
1131
1132static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1133					   u64 objectid, gfp_t flags)
1134{
1135	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1136	if (root)
1137		__setup_root(root, fs_info, objectid);
1138	return root;
1139}
1140
1141#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1142/* Should only be used by the testing infrastructure */
1143struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1144{
1145	struct btrfs_root *root;
1146
1147	if (!fs_info)
1148		return ERR_PTR(-EINVAL);
1149
1150	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1151	if (!root)
1152		return ERR_PTR(-ENOMEM);
1153
1154	/* We don't use the stripesize in selftest, set it as sectorsize */
1155	root->alloc_bytenr = 0;
1156
1157	return root;
1158}
1159#endif
1160
1161static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1162{
1163	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1164	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1165
1166	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1167}
1168
1169static int global_root_key_cmp(const void *k, const struct rb_node *node)
1170{
1171	const struct btrfs_key *key = k;
1172	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1173
1174	return btrfs_comp_cpu_keys(key, &root->root_key);
1175}
1176
1177int btrfs_global_root_insert(struct btrfs_root *root)
1178{
1179	struct btrfs_fs_info *fs_info = root->fs_info;
1180	struct rb_node *tmp;
1181
1182	write_lock(&fs_info->global_root_lock);
1183	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1184	write_unlock(&fs_info->global_root_lock);
1185	ASSERT(!tmp);
1186
1187	return tmp ? -EEXIST : 0;
1188}
1189
1190void btrfs_global_root_delete(struct btrfs_root *root)
1191{
1192	struct btrfs_fs_info *fs_info = root->fs_info;
1193
1194	write_lock(&fs_info->global_root_lock);
1195	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1196	write_unlock(&fs_info->global_root_lock);
1197}
1198
1199struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1200				     struct btrfs_key *key)
1201{
1202	struct rb_node *node;
1203	struct btrfs_root *root = NULL;
1204
1205	read_lock(&fs_info->global_root_lock);
1206	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1207	if (node)
1208		root = container_of(node, struct btrfs_root, rb_node);
1209	read_unlock(&fs_info->global_root_lock);
1210
1211	return root;
1212}
1213
1214static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1215{
1216	struct btrfs_block_group *block_group;
1217	u64 ret;
1218
1219	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1220		return 0;
1221
1222	if (bytenr)
1223		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1224	else
1225		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1226	ASSERT(block_group);
1227	if (!block_group)
1228		return 0;
1229	ret = block_group->global_root_id;
1230	btrfs_put_block_group(block_group);
1231
1232	return ret;
1233}
1234
1235struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1236{
1237	struct btrfs_key key = {
1238		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1239		.type = BTRFS_ROOT_ITEM_KEY,
1240		.offset = btrfs_global_root_id(fs_info, bytenr),
1241	};
1242
1243	return btrfs_global_root(fs_info, &key);
1244}
1245
1246struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1247{
1248	struct btrfs_key key = {
1249		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1250		.type = BTRFS_ROOT_ITEM_KEY,
1251		.offset = btrfs_global_root_id(fs_info, bytenr),
1252	};
1253
1254	return btrfs_global_root(fs_info, &key);
1255}
1256
1257struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1258{
1259	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1260		return fs_info->block_group_root;
1261	return btrfs_extent_root(fs_info, 0);
1262}
1263
1264struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1265				     u64 objectid)
 
 
1266{
1267	struct btrfs_fs_info *fs_info = trans->fs_info;
1268	struct extent_buffer *leaf;
1269	struct btrfs_root *tree_root = fs_info->tree_root;
1270	struct btrfs_root *root;
1271	struct btrfs_key key;
1272	unsigned int nofs_flag;
1273	int ret = 0;
1274
1275	/*
1276	 * We're holding a transaction handle, so use a NOFS memory allocation
1277	 * context to avoid deadlock if reclaim happens.
1278	 */
1279	nofs_flag = memalloc_nofs_save();
1280	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1281	memalloc_nofs_restore(nofs_flag);
1282	if (!root)
1283		return ERR_PTR(-ENOMEM);
1284
1285	root->root_key.objectid = objectid;
1286	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1287	root->root_key.offset = 0;
 
 
 
 
 
 
1288
1289	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1290				      BTRFS_NESTING_NORMAL);
1291	if (IS_ERR(leaf)) {
1292		ret = PTR_ERR(leaf);
1293		leaf = NULL;
1294		goto fail;
 
 
 
1295	}
1296
1297	root->node = leaf;
1298	btrfs_mark_buffer_dirty(leaf);
1299
1300	root->commit_root = btrfs_root_node(root);
1301	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1302
1303	btrfs_set_root_flags(&root->root_item, 0);
1304	btrfs_set_root_limit(&root->root_item, 0);
1305	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1306	btrfs_set_root_generation(&root->root_item, trans->transid);
1307	btrfs_set_root_level(&root->root_item, 0);
1308	btrfs_set_root_refs(&root->root_item, 1);
1309	btrfs_set_root_used(&root->root_item, leaf->len);
1310	btrfs_set_root_last_snapshot(&root->root_item, 0);
1311	btrfs_set_root_dirid(&root->root_item, 0);
1312	if (is_fstree(objectid))
1313		generate_random_guid(root->root_item.uuid);
1314	else
1315		export_guid(root->root_item.uuid, &guid_null);
1316	btrfs_set_root_drop_level(&root->root_item, 0);
1317
1318	btrfs_tree_unlock(leaf);
1319
1320	key.objectid = objectid;
1321	key.type = BTRFS_ROOT_ITEM_KEY;
1322	key.offset = 0;
1323	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1324	if (ret)
1325		goto fail;
1326
 
 
 
 
 
1327	return root;
1328
1329fail:
1330	btrfs_put_root(root);
1331
1332	return ERR_PTR(ret);
1333}
1334
1335static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1336					 struct btrfs_fs_info *fs_info)
1337{
1338	struct btrfs_root *root;
 
 
1339
1340	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1341	if (!root)
1342		return ERR_PTR(-ENOMEM);
1343
 
 
 
 
1344	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1345	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1346	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1347
1348	return root;
1349}
1350
1351int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1352			      struct btrfs_root *root)
1353{
1354	struct extent_buffer *leaf;
1355
1356	/*
1357	 * DON'T set SHAREABLE bit for log trees.
1358	 *
1359	 * Log trees are not exposed to user space thus can't be snapshotted,
1360	 * and they go away before a real commit is actually done.
1361	 *
1362	 * They do store pointers to file data extents, and those reference
1363	 * counts still get updated (along with back refs to the log tree).
1364	 */
1365
1366	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1367			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1368	if (IS_ERR(leaf))
1369		return PTR_ERR(leaf);
 
1370
 
 
 
 
 
1371	root->node = leaf;
1372
 
 
 
1373	btrfs_mark_buffer_dirty(root->node);
1374	btrfs_tree_unlock(root->node);
1375
1376	return 0;
1377}
1378
1379int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1380			     struct btrfs_fs_info *fs_info)
1381{
1382	struct btrfs_root *log_root;
1383
1384	log_root = alloc_log_tree(trans, fs_info);
1385	if (IS_ERR(log_root))
1386		return PTR_ERR(log_root);
1387
1388	if (!btrfs_is_zoned(fs_info)) {
1389		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1390
1391		if (ret) {
1392			btrfs_put_root(log_root);
1393			return ret;
1394		}
1395	}
1396
1397	WARN_ON(fs_info->log_root_tree);
1398	fs_info->log_root_tree = log_root;
1399	return 0;
1400}
1401
1402int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1403		       struct btrfs_root *root)
1404{
1405	struct btrfs_fs_info *fs_info = root->fs_info;
1406	struct btrfs_root *log_root;
1407	struct btrfs_inode_item *inode_item;
1408	int ret;
1409
1410	log_root = alloc_log_tree(trans, fs_info);
1411	if (IS_ERR(log_root))
1412		return PTR_ERR(log_root);
1413
1414	ret = btrfs_alloc_log_tree_node(trans, log_root);
1415	if (ret) {
1416		btrfs_put_root(log_root);
1417		return ret;
1418	}
1419
1420	log_root->last_trans = trans->transid;
1421	log_root->root_key.offset = root->root_key.objectid;
1422
1423	inode_item = &log_root->root_item.inode;
1424	btrfs_set_stack_inode_generation(inode_item, 1);
1425	btrfs_set_stack_inode_size(inode_item, 3);
1426	btrfs_set_stack_inode_nlink(inode_item, 1);
1427	btrfs_set_stack_inode_nbytes(inode_item,
1428				     fs_info->nodesize);
1429	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1430
1431	btrfs_set_root_node(&log_root->root_item, log_root->node);
1432
1433	WARN_ON(root->log_root);
1434	root->log_root = log_root;
1435	root->log_transid = 0;
1436	root->log_transid_committed = -1;
1437	root->last_log_commit = 0;
1438	return 0;
1439}
1440
1441static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1442					      struct btrfs_path *path,
1443					      struct btrfs_key *key)
1444{
1445	struct btrfs_root *root;
1446	struct btrfs_tree_parent_check check = { 0 };
1447	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 
 
1448	u64 generation;
1449	int ret;
1450	int level;
1451
1452	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1453	if (!root)
1454		return ERR_PTR(-ENOMEM);
1455
1456	ret = btrfs_find_root(tree_root, key, path,
1457			      &root->root_item, &root->root_key);
1458	if (ret) {
1459		if (ret > 0)
1460			ret = -ENOENT;
1461		goto fail;
1462	}
1463
1464	generation = btrfs_root_generation(&root->root_item);
1465	level = btrfs_root_level(&root->root_item);
1466	check.level = level;
1467	check.transid = generation;
1468	check.owner_root = key->objectid;
1469	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1470				     &check);
1471	if (IS_ERR(root->node)) {
1472		ret = PTR_ERR(root->node);
1473		root->node = NULL;
1474		goto fail;
1475	}
1476	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1477		ret = -EIO;
1478		goto fail;
1479	}
1480
1481	/*
1482	 * For real fs, and not log/reloc trees, root owner must
1483	 * match its root node owner
1484	 */
1485	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1486	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1487	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1488	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1489		btrfs_crit(fs_info,
1490"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1491			   root->root_key.objectid, root->node->start,
1492			   btrfs_header_owner(root->node),
1493			   root->root_key.objectid);
1494		ret = -EUCLEAN;
1495		goto fail;
1496	}
1497	root->commit_root = btrfs_root_node(root);
1498	return root;
1499fail:
1500	btrfs_put_root(root);
1501	return ERR_PTR(ret);
1502}
1503
1504struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505					struct btrfs_key *key)
1506{
1507	struct btrfs_root *root;
1508	struct btrfs_path *path;
1509
1510	path = btrfs_alloc_path();
1511	if (!path)
 
1512		return ERR_PTR(-ENOMEM);
1513	root = read_tree_root_path(tree_root, path, key);
1514	btrfs_free_path(path);
1515
1516	return root;
1517}
1518
1519/*
1520 * Initialize subvolume root in-memory structure
1521 *
1522 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1523 */
1524static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1525{
1526	int ret;
1527	unsigned int nofs_flag;
1528
1529	/*
1530	 * We might be called under a transaction (e.g. indirect backref
1531	 * resolution) which could deadlock if it triggers memory reclaim
1532	 */
1533	nofs_flag = memalloc_nofs_save();
1534	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1535	memalloc_nofs_restore(nofs_flag);
1536	if (ret)
1537		goto fail;
1538
1539	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1540	    !btrfs_is_data_reloc_root(root)) {
1541		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1542		btrfs_check_and_init_root_item(&root->root_item);
1543	}
1544
1545	/*
1546	 * Don't assign anonymous block device to roots that are not exposed to
1547	 * userspace, the id pool is limited to 1M
1548	 */
1549	if (is_fstree(root->root_key.objectid) &&
1550	    btrfs_root_refs(&root->root_item) > 0) {
1551		if (!anon_dev) {
1552			ret = get_anon_bdev(&root->anon_dev);
1553			if (ret)
1554				goto fail;
1555		} else {
1556			root->anon_dev = anon_dev;
1557		}
1558	}
1559
1560	mutex_lock(&root->objectid_mutex);
1561	ret = btrfs_init_root_free_objectid(root);
1562	if (ret) {
1563		mutex_unlock(&root->objectid_mutex);
1564		goto fail;
 
 
1565	}
1566
1567	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1568
1569	mutex_unlock(&root->objectid_mutex);
1570
1571	return 0;
1572fail:
1573	/* The caller is responsible to call btrfs_free_fs_root */
1574	return ret;
1575}
1576
1577static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1578					       u64 root_id)
1579{
1580	struct btrfs_root *root;
1581
1582	spin_lock(&fs_info->fs_roots_radix_lock);
1583	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1584				 (unsigned long)root_id);
1585	if (root)
1586		root = btrfs_grab_root(root);
1587	spin_unlock(&fs_info->fs_roots_radix_lock);
1588	return root;
1589}
1590
1591static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1592						u64 objectid)
1593{
1594	struct btrfs_key key = {
1595		.objectid = objectid,
1596		.type = BTRFS_ROOT_ITEM_KEY,
1597		.offset = 0,
1598	};
1599
1600	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1601		return btrfs_grab_root(fs_info->tree_root);
1602	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1603		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1604	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1605		return btrfs_grab_root(fs_info->chunk_root);
1606	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1607		return btrfs_grab_root(fs_info->dev_root);
1608	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1609		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1610	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1611		return btrfs_grab_root(fs_info->quota_root) ?
1612			fs_info->quota_root : ERR_PTR(-ENOENT);
1613	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1614		return btrfs_grab_root(fs_info->uuid_root) ?
1615			fs_info->uuid_root : ERR_PTR(-ENOENT);
1616	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1617		return btrfs_grab_root(fs_info->block_group_root) ?
1618			fs_info->block_group_root : ERR_PTR(-ENOENT);
1619	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1620		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1621
1622		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1623	}
1624	return NULL;
1625}
1626
1627int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1628			 struct btrfs_root *root)
1629{
 
1630	int ret;
1631
1632	ret = radix_tree_preload(GFP_NOFS);
1633	if (ret)
1634		return ret;
1635
 
 
 
 
 
 
 
1636	spin_lock(&fs_info->fs_roots_radix_lock);
1637	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1638				(unsigned long)root->root_key.objectid,
1639				root);
1640	if (ret == 0) {
1641		btrfs_grab_root(root);
1642		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1643	}
1644	spin_unlock(&fs_info->fs_roots_radix_lock);
1645	radix_tree_preload_end();
1646
1647	return ret;
1648}
1649
1650void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1651{
1652#ifdef CONFIG_BTRFS_DEBUG
1653	struct btrfs_root *root;
1654
1655	while (!list_empty(&fs_info->allocated_roots)) {
1656		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1657
1658		root = list_first_entry(&fs_info->allocated_roots,
1659					struct btrfs_root, leak_list);
1660		btrfs_err(fs_info, "leaked root %s refcount %d",
1661			  btrfs_root_name(&root->root_key, buf),
1662			  refcount_read(&root->refs));
1663		while (refcount_read(&root->refs) > 1)
1664			btrfs_put_root(root);
1665		btrfs_put_root(root);
1666	}
1667#endif
1668}
1669
1670static void free_global_roots(struct btrfs_fs_info *fs_info)
1671{
1672	struct btrfs_root *root;
1673	struct rb_node *node;
1674
1675	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1676		root = rb_entry(node, struct btrfs_root, rb_node);
1677		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1678		btrfs_put_root(root);
1679	}
1680}
1681
1682void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1683{
1684	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1685	percpu_counter_destroy(&fs_info->delalloc_bytes);
1686	percpu_counter_destroy(&fs_info->ordered_bytes);
1687	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1688	btrfs_free_csum_hash(fs_info);
1689	btrfs_free_stripe_hash_table(fs_info);
1690	btrfs_free_ref_cache(fs_info);
1691	kfree(fs_info->balance_ctl);
1692	kfree(fs_info->delayed_root);
1693	free_global_roots(fs_info);
1694	btrfs_put_root(fs_info->tree_root);
1695	btrfs_put_root(fs_info->chunk_root);
1696	btrfs_put_root(fs_info->dev_root);
1697	btrfs_put_root(fs_info->quota_root);
1698	btrfs_put_root(fs_info->uuid_root);
1699	btrfs_put_root(fs_info->fs_root);
1700	btrfs_put_root(fs_info->data_reloc_root);
1701	btrfs_put_root(fs_info->block_group_root);
1702	btrfs_check_leaked_roots(fs_info);
1703	btrfs_extent_buffer_leak_debug_check(fs_info);
1704	kfree(fs_info->super_copy);
1705	kfree(fs_info->super_for_commit);
1706	kfree(fs_info->subpage_info);
1707	kvfree(fs_info);
1708}
1709
1710
1711/*
1712 * Get an in-memory reference of a root structure.
1713 *
1714 * For essential trees like root/extent tree, we grab it from fs_info directly.
1715 * For subvolume trees, we check the cached filesystem roots first. If not
1716 * found, then read it from disk and add it to cached fs roots.
1717 *
1718 * Caller should release the root by calling btrfs_put_root() after the usage.
1719 *
1720 * NOTE: Reloc and log trees can't be read by this function as they share the
1721 *	 same root objectid.
1722 *
1723 * @objectid:	root id
1724 * @anon_dev:	preallocated anonymous block device number for new roots,
1725 * 		pass 0 for new allocation.
1726 * @check_ref:	whether to check root item references, If true, return -ENOENT
1727 *		for orphan roots
1728 */
1729static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1730					     u64 objectid, dev_t anon_dev,
1731					     bool check_ref)
1732{
1733	struct btrfs_root *root;
1734	struct btrfs_path *path;
1735	struct btrfs_key key;
1736	int ret;
1737
1738	root = btrfs_get_global_root(fs_info, objectid);
1739	if (root)
1740		return root;
1741again:
1742	root = btrfs_lookup_fs_root(fs_info, objectid);
1743	if (root) {
1744		/* Shouldn't get preallocated anon_dev for cached roots */
1745		ASSERT(!anon_dev);
1746		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1747			btrfs_put_root(root);
1748			return ERR_PTR(-ENOENT);
1749		}
1750		return root;
1751	}
1752
1753	key.objectid = objectid;
1754	key.type = BTRFS_ROOT_ITEM_KEY;
1755	key.offset = (u64)-1;
1756	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1757	if (IS_ERR(root))
1758		return root;
1759
1760	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1761		ret = -ENOENT;
 
 
 
1762		goto fail;
1763	}
1764
1765	ret = btrfs_init_fs_root(root, anon_dev);
 
 
 
 
 
1766	if (ret)
1767		goto fail;
1768
1769	path = btrfs_alloc_path();
1770	if (!path) {
1771		ret = -ENOMEM;
1772		goto fail;
1773	}
1774	key.objectid = BTRFS_ORPHAN_OBJECTID;
1775	key.type = BTRFS_ORPHAN_ITEM_KEY;
1776	key.offset = objectid;
1777
1778	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1779	btrfs_free_path(path);
1780	if (ret < 0)
1781		goto fail;
1782	if (ret == 0)
1783		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
 
 
 
 
1784
1785	ret = btrfs_insert_fs_root(fs_info, root);
 
 
 
 
 
 
 
 
1786	if (ret) {
1787		if (ret == -EEXIST) {
1788			btrfs_put_root(root);
1789			goto again;
1790		}
1791		goto fail;
1792	}
 
 
 
 
1793	return root;
1794fail:
1795	/*
1796	 * If our caller provided us an anonymous device, then it's his
1797	 * responsibility to free it in case we fail. So we have to set our
1798	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1799	 * and once again by our caller.
1800	 */
1801	if (anon_dev)
1802		root->anon_dev = 0;
1803	btrfs_put_root(root);
1804	return ERR_PTR(ret);
1805}
1806
1807/*
1808 * Get in-memory reference of a root structure
1809 *
1810 * @objectid:	tree objectid
1811 * @check_ref:	if set, verify that the tree exists and the item has at least
1812 *		one reference
1813 */
1814struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1815				     u64 objectid, bool check_ref)
1816{
1817	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818}
1819
1820/*
1821 * Get in-memory reference of a root structure, created as new, optionally pass
1822 * the anonymous block device id
1823 *
1824 * @objectid:	tree objectid
1825 * @anon_dev:	if zero, allocate a new anonymous block device or use the
1826 *		parameter value
1827 */
1828struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1829					 u64 objectid, dev_t anon_dev)
1830{
1831	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
 
 
 
 
 
 
 
 
 
 
1832}
1833
1834/*
1835 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1836 * @fs_info:	the fs_info
1837 * @objectid:	the objectid we need to lookup
1838 *
1839 * This is exclusively used for backref walking, and exists specifically because
1840 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1841 * creation time, which means we may have to read the tree_root in order to look
1842 * up a fs root that is not in memory.  If the root is not in memory we will
1843 * read the tree root commit root and look up the fs root from there.  This is a
1844 * temporary root, it will not be inserted into the radix tree as it doesn't
1845 * have the most uptodate information, it'll simply be discarded once the
1846 * backref code is finished using the root.
1847 */
1848struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1849						 struct btrfs_path *path,
1850						 u64 objectid)
1851{
1852	struct btrfs_root *root;
1853	struct btrfs_key key;
1854
1855	ASSERT(path->search_commit_root && path->skip_locking);
1856
1857	/*
1858	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1859	 * since this is called via the backref walking code we won't be looking
1860	 * up a root that doesn't exist, unless there's corruption.  So if root
1861	 * != NULL just return it.
1862	 */
1863	root = btrfs_get_global_root(fs_info, objectid);
1864	if (root)
1865		return root;
1866
1867	root = btrfs_lookup_fs_root(fs_info, objectid);
1868	if (root)
1869		return root;
1870
1871	key.objectid = objectid;
1872	key.type = BTRFS_ROOT_ITEM_KEY;
1873	key.offset = (u64)-1;
1874	root = read_tree_root_path(fs_info->tree_root, path, &key);
1875	btrfs_release_path(path);
1876
1877	return root;
 
 
 
 
 
 
 
 
1878}
1879
1880static int cleaner_kthread(void *arg)
1881{
1882	struct btrfs_fs_info *fs_info = arg;
1883	int again;
1884
1885	while (1) {
1886		again = 0;
1887
1888		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1889
1890		/* Make the cleaner go to sleep early. */
1891		if (btrfs_need_cleaner_sleep(fs_info))
1892			goto sleep;
1893
1894		/*
1895		 * Do not do anything if we might cause open_ctree() to block
1896		 * before we have finished mounting the filesystem.
1897		 */
1898		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1899			goto sleep;
1900
1901		if (!mutex_trylock(&fs_info->cleaner_mutex))
1902			goto sleep;
1903
1904		/*
1905		 * Avoid the problem that we change the status of the fs
1906		 * during the above check and trylock.
1907		 */
1908		if (btrfs_need_cleaner_sleep(fs_info)) {
1909			mutex_unlock(&fs_info->cleaner_mutex);
1910			goto sleep;
1911		}
1912
1913		btrfs_run_delayed_iputs(fs_info);
1914
1915		again = btrfs_clean_one_deleted_snapshot(fs_info);
1916		mutex_unlock(&fs_info->cleaner_mutex);
1917
1918		/*
1919		 * The defragger has dealt with the R/O remount and umount,
1920		 * needn't do anything special here.
1921		 */
1922		btrfs_run_defrag_inodes(fs_info);
1923
1924		/*
1925		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1926		 * with relocation (btrfs_relocate_chunk) and relocation
1927		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1928		 * after acquiring fs_info->reclaim_bgs_lock. So we
1929		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1930		 * unused block groups.
1931		 */
1932		btrfs_delete_unused_bgs(fs_info);
1933
1934		/*
1935		 * Reclaim block groups in the reclaim_bgs list after we deleted
1936		 * all unused block_groups. This possibly gives us some more free
1937		 * space.
1938		 */
1939		btrfs_reclaim_bgs(fs_info);
1940sleep:
1941		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1942		if (kthread_should_park())
1943			kthread_parkme();
1944		if (kthread_should_stop())
1945			return 0;
1946		if (!again) {
1947			set_current_state(TASK_INTERRUPTIBLE);
1948			schedule();
 
1949			__set_current_state(TASK_RUNNING);
1950		}
1951	}
 
1952}
1953
1954static int transaction_kthread(void *arg)
1955{
1956	struct btrfs_root *root = arg;
1957	struct btrfs_fs_info *fs_info = root->fs_info;
1958	struct btrfs_trans_handle *trans;
1959	struct btrfs_transaction *cur;
1960	u64 transid;
1961	time64_t delta;
1962	unsigned long delay;
1963	bool cannot_commit;
1964
1965	do {
1966		cannot_commit = false;
1967		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1968		mutex_lock(&fs_info->transaction_kthread_mutex);
 
1969
1970		spin_lock(&fs_info->trans_lock);
1971		cur = fs_info->running_transaction;
1972		if (!cur) {
1973			spin_unlock(&fs_info->trans_lock);
1974			goto sleep;
1975		}
1976
1977		delta = ktime_get_seconds() - cur->start_time;
1978		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1979		    cur->state < TRANS_STATE_COMMIT_START &&
1980		    delta < fs_info->commit_interval) {
1981			spin_unlock(&fs_info->trans_lock);
1982			delay -= msecs_to_jiffies((delta - 1) * 1000);
1983			delay = min(delay,
1984				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1985			goto sleep;
1986		}
1987		transid = cur->transid;
1988		spin_unlock(&fs_info->trans_lock);
1989
1990		/* If the file system is aborted, this will always fail. */
1991		trans = btrfs_attach_transaction(root);
1992		if (IS_ERR(trans)) {
1993			if (PTR_ERR(trans) != -ENOENT)
1994				cannot_commit = true;
1995			goto sleep;
1996		}
1997		if (transid == trans->transid) {
1998			btrfs_commit_transaction(trans);
1999		} else {
2000			btrfs_end_transaction(trans);
2001		}
2002sleep:
2003		wake_up_process(fs_info->cleaner_kthread);
2004		mutex_unlock(&fs_info->transaction_kthread_mutex);
2005
2006		if (BTRFS_FS_ERROR(fs_info))
2007			btrfs_cleanup_transaction(fs_info);
2008		if (!kthread_should_stop() &&
2009				(!btrfs_transaction_blocked(fs_info) ||
2010				 cannot_commit))
2011			schedule_timeout_interruptible(delay);
 
 
2012	} while (!kthread_should_stop());
2013	return 0;
2014}
2015
2016/*
2017 * This will find the highest generation in the array of root backups.  The
2018 * index of the highest array is returned, or -EINVAL if we can't find
2019 * anything.
2020 *
2021 * We check to make sure the array is valid by comparing the
2022 * generation of the latest  root in the array with the generation
2023 * in the super block.  If they don't match we pitch it.
2024 */
2025static int find_newest_super_backup(struct btrfs_fs_info *info)
2026{
2027	const u64 newest_gen = btrfs_super_generation(info->super_copy);
2028	u64 cur;
 
2029	struct btrfs_root_backup *root_backup;
2030	int i;
2031
2032	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2033		root_backup = info->super_copy->super_roots + i;
2034		cur = btrfs_backup_tree_root_gen(root_backup);
2035		if (cur == newest_gen)
2036			return i;
 
 
 
 
 
 
 
 
2037	}
 
 
2038
2039	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040}
2041
2042/*
2043 * copy all the root pointers into the super backup array.
2044 * this will bump the backup pointer by one when it is
2045 * done
2046 */
2047static void backup_super_roots(struct btrfs_fs_info *info)
2048{
2049	const int next_backup = info->backup_root_index;
2050	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051
2052	root_backup = info->super_for_commit->super_roots + next_backup;
2053
2054	/*
2055	 * make sure all of our padding and empty slots get zero filled
2056	 * regardless of which ones we use today
2057	 */
2058	memset(root_backup, 0, sizeof(*root_backup));
2059
2060	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2061
2062	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2063	btrfs_set_backup_tree_root_gen(root_backup,
2064			       btrfs_header_generation(info->tree_root->node));
2065
2066	btrfs_set_backup_tree_root_level(root_backup,
2067			       btrfs_header_level(info->tree_root->node));
2068
2069	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2070	btrfs_set_backup_chunk_root_gen(root_backup,
2071			       btrfs_header_generation(info->chunk_root->node));
2072	btrfs_set_backup_chunk_root_level(root_backup,
2073			       btrfs_header_level(info->chunk_root->node));
2074
2075	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
2076		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2077		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2078
2079		btrfs_set_backup_extent_root(root_backup,
2080					     extent_root->node->start);
2081		btrfs_set_backup_extent_root_gen(root_backup,
2082				btrfs_header_generation(extent_root->node));
2083		btrfs_set_backup_extent_root_level(root_backup,
2084					btrfs_header_level(extent_root->node));
2085
2086		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2087		btrfs_set_backup_csum_root_gen(root_backup,
2088					       btrfs_header_generation(csum_root->node));
2089		btrfs_set_backup_csum_root_level(root_backup,
2090						 btrfs_header_level(csum_root->node));
2091	}
2092
2093	/*
2094	 * we might commit during log recovery, which happens before we set
2095	 * the fs_root.  Make sure it is valid before we fill it in.
2096	 */
2097	if (info->fs_root && info->fs_root->node) {
2098		btrfs_set_backup_fs_root(root_backup,
2099					 info->fs_root->node->start);
2100		btrfs_set_backup_fs_root_gen(root_backup,
2101			       btrfs_header_generation(info->fs_root->node));
2102		btrfs_set_backup_fs_root_level(root_backup,
2103			       btrfs_header_level(info->fs_root->node));
2104	}
2105
2106	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2107	btrfs_set_backup_dev_root_gen(root_backup,
2108			       btrfs_header_generation(info->dev_root->node));
2109	btrfs_set_backup_dev_root_level(root_backup,
2110				       btrfs_header_level(info->dev_root->node));
2111
 
 
 
 
 
 
2112	btrfs_set_backup_total_bytes(root_backup,
2113			     btrfs_super_total_bytes(info->super_copy));
2114	btrfs_set_backup_bytes_used(root_backup,
2115			     btrfs_super_bytes_used(info->super_copy));
2116	btrfs_set_backup_num_devices(root_backup,
2117			     btrfs_super_num_devices(info->super_copy));
2118
2119	/*
2120	 * if we don't copy this out to the super_copy, it won't get remembered
2121	 * for the next commit
2122	 */
2123	memcpy(&info->super_copy->super_roots,
2124	       &info->super_for_commit->super_roots,
2125	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2126}
2127
2128/*
2129 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2130 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2131 *
2132 * fs_info - filesystem whose backup roots need to be read
2133 * priority - priority of backup root required
2134 *
2135 * Returns backup root index on success and -EINVAL otherwise.
2136 */
2137static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
2138{
2139	int backup_index = find_newest_super_backup(fs_info);
2140	struct btrfs_super_block *super = fs_info->super_copy;
2141	struct btrfs_root_backup *root_backup;
 
2142
2143	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2144		if (priority == 0)
2145			return backup_index;
2146
2147		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2148		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
2149	} else {
2150		return -EINVAL;
 
 
 
 
2151	}
2152
2153	root_backup = super->super_roots + backup_index;
2154
2155	btrfs_set_super_generation(super,
2156				   btrfs_backup_tree_root_gen(root_backup));
2157	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2158	btrfs_set_super_root_level(super,
2159				   btrfs_backup_tree_root_level(root_backup));
2160	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2161
2162	/*
2163	 * Fixme: the total bytes and num_devices need to match or we should
2164	 * need a fsck
2165	 */
2166	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2167	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2168
2169	return backup_index;
2170}
2171
2172/* helper to cleanup workers */
2173static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2174{
2175	btrfs_destroy_workqueue(fs_info->fixup_workers);
2176	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2177	btrfs_destroy_workqueue(fs_info->hipri_workers);
2178	btrfs_destroy_workqueue(fs_info->workers);
2179	if (fs_info->endio_workers)
2180		destroy_workqueue(fs_info->endio_workers);
2181	if (fs_info->rmw_workers)
2182		destroy_workqueue(fs_info->rmw_workers);
2183	if (fs_info->compressed_write_workers)
2184		destroy_workqueue(fs_info->compressed_write_workers);
2185	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2186	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2187	btrfs_destroy_workqueue(fs_info->delayed_workers);
2188	btrfs_destroy_workqueue(fs_info->caching_workers);
2189	btrfs_destroy_workqueue(fs_info->flush_workers);
2190	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2191	if (fs_info->discard_ctl.discard_workers)
2192		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2193	/*
2194	 * Now that all other work queues are destroyed, we can safely destroy
2195	 * the queues used for metadata I/O, since tasks from those other work
2196	 * queues can do metadata I/O operations.
2197	 */
2198	if (fs_info->endio_meta_workers)
2199		destroy_workqueue(fs_info->endio_meta_workers);
2200}
2201
2202static void free_root_extent_buffers(struct btrfs_root *root)
2203{
2204	if (root) {
2205		free_extent_buffer(root->node);
2206		free_extent_buffer(root->commit_root);
2207		root->node = NULL;
2208		root->commit_root = NULL;
2209	}
2210}
2211
2212static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2213{
2214	struct btrfs_root *root, *tmp;
2215
2216	rbtree_postorder_for_each_entry_safe(root, tmp,
2217					     &fs_info->global_root_tree,
2218					     rb_node)
2219		free_root_extent_buffers(root);
2220}
2221
2222/* helper to cleanup tree roots */
2223static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2224{
2225	free_root_extent_buffers(info->tree_root);
2226
2227	free_global_root_pointers(info);
2228	free_root_extent_buffers(info->dev_root);
2229	free_root_extent_buffers(info->quota_root);
2230	free_root_extent_buffers(info->uuid_root);
2231	free_root_extent_buffers(info->fs_root);
2232	free_root_extent_buffers(info->data_reloc_root);
2233	free_root_extent_buffers(info->block_group_root);
2234	if (free_chunk_root)
2235		free_root_extent_buffers(info->chunk_root);
2236}
2237
2238void btrfs_put_root(struct btrfs_root *root)
2239{
2240	if (!root)
2241		return;
2242
2243	if (refcount_dec_and_test(&root->refs)) {
2244		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2245		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2246		if (root->anon_dev)
2247			free_anon_bdev(root->anon_dev);
2248		btrfs_drew_lock_destroy(&root->snapshot_lock);
2249		free_root_extent_buffers(root);
2250#ifdef CONFIG_BTRFS_DEBUG
2251		spin_lock(&root->fs_info->fs_roots_radix_lock);
2252		list_del_init(&root->leak_list);
2253		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2254#endif
2255		kfree(root);
2256	}
2257}
2258
2259void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2260{
2261	int ret;
2262	struct btrfs_root *gang[8];
2263	int i;
2264
2265	while (!list_empty(&fs_info->dead_roots)) {
2266		gang[0] = list_entry(fs_info->dead_roots.next,
2267				     struct btrfs_root, root_list);
2268		list_del(&gang[0]->root_list);
2269
2270		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2271			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2272		btrfs_put_root(gang[0]);
2273	}
2274
2275	while (1) {
2276		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2277					     (void **)gang, 0,
2278					     ARRAY_SIZE(gang));
2279		if (!ret)
2280			break;
2281		for (i = 0; i < ret; i++)
2282			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2283	}
2284}
2285
2286static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2287{
2288	mutex_init(&fs_info->scrub_lock);
2289	atomic_set(&fs_info->scrubs_running, 0);
2290	atomic_set(&fs_info->scrub_pause_req, 0);
2291	atomic_set(&fs_info->scrubs_paused, 0);
2292	atomic_set(&fs_info->scrub_cancel_req, 0);
2293	init_waitqueue_head(&fs_info->scrub_pause_wait);
2294	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2295}
2296
2297static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2298{
2299	spin_lock_init(&fs_info->balance_lock);
2300	mutex_init(&fs_info->balance_mutex);
2301	atomic_set(&fs_info->balance_pause_req, 0);
2302	atomic_set(&fs_info->balance_cancel_req, 0);
2303	fs_info->balance_ctl = NULL;
2304	init_waitqueue_head(&fs_info->balance_wait_q);
2305	atomic_set(&fs_info->reloc_cancel_req, 0);
2306}
2307
2308static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2309{
2310	struct inode *inode = fs_info->btree_inode;
2311	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2312					      fs_info->tree_root);
2313
2314	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2315	set_nlink(inode, 1);
2316	/*
2317	 * we set the i_size on the btree inode to the max possible int.
2318	 * the real end of the address space is determined by all of
2319	 * the devices in the system
2320	 */
2321	inode->i_size = OFFSET_MAX;
2322	inode->i_mapping->a_ops = &btree_aops;
2323
2324	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2325	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2326			    IO_TREE_BTREE_INODE_IO);
2327	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2328
2329	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2330	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2331	BTRFS_I(inode)->location.type = 0;
2332	BTRFS_I(inode)->location.offset = 0;
2333	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2334	__insert_inode_hash(inode, hash);
2335}
2336
2337static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2338{
2339	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2340	init_rwsem(&fs_info->dev_replace.rwsem);
2341	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
2342}
2343
2344static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2345{
2346	spin_lock_init(&fs_info->qgroup_lock);
2347	mutex_init(&fs_info->qgroup_ioctl_lock);
2348	fs_info->qgroup_tree = RB_ROOT;
2349	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2350	fs_info->qgroup_seq = 1;
2351	fs_info->qgroup_ulist = NULL;
2352	fs_info->qgroup_rescan_running = false;
2353	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2354	mutex_init(&fs_info->qgroup_rescan_lock);
2355}
2356
2357static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
2358{
2359	u32 max_active = fs_info->thread_pool_size;
2360	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2361
2362	fs_info->workers =
2363		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2364	fs_info->hipri_workers =
2365		btrfs_alloc_workqueue(fs_info, "worker-high",
2366				      flags | WQ_HIGHPRI, max_active, 16);
2367
2368	fs_info->delalloc_workers =
2369		btrfs_alloc_workqueue(fs_info, "delalloc",
2370				      flags, max_active, 2);
2371
2372	fs_info->flush_workers =
2373		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2374				      flags, max_active, 0);
2375
2376	fs_info->caching_workers =
2377		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2378
2379	fs_info->fixup_workers =
2380		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2381
2382	fs_info->endio_workers =
2383		alloc_workqueue("btrfs-endio", flags, max_active);
2384	fs_info->endio_meta_workers =
2385		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2386	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
2387	fs_info->endio_write_workers =
2388		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2389				      max_active, 2);
2390	fs_info->compressed_write_workers =
2391		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2392	fs_info->endio_freespace_worker =
2393		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2394				      max_active, 0);
2395	fs_info->delayed_workers =
2396		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2397				      max_active, 0);
2398	fs_info->qgroup_rescan_workers =
2399		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2400	fs_info->discard_ctl.discard_workers =
2401		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
2402
2403	if (!(fs_info->workers && fs_info->hipri_workers &&
2404	      fs_info->delalloc_workers && fs_info->flush_workers &&
2405	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2406	      fs_info->compressed_write_workers &&
2407	      fs_info->endio_write_workers &&
2408	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2409	      fs_info->caching_workers && fs_info->fixup_workers &&
2410	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2411	      fs_info->discard_ctl.discard_workers)) {
2412		return -ENOMEM;
2413	}
2414
2415	return 0;
2416}
2417
2418static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
 
2419{
2420	struct crypto_shash *csum_shash;
2421	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2422
2423	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2424
2425	if (IS_ERR(csum_shash)) {
2426		btrfs_err(fs_info, "error allocating %s hash for checksum",
2427			  csum_driver);
2428		return PTR_ERR(csum_shash);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2429	}
2430
2431	fs_info->csum_shash = csum_shash;
2432
2433	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2434			btrfs_super_csum_name(csum_type),
2435			crypto_shash_driver_name(csum_shash));
2436	return 0;
2437}
2438
2439static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2440			    struct btrfs_fs_devices *fs_devices)
2441{
2442	int ret;
2443	struct btrfs_tree_parent_check check = { 0 };
2444	struct btrfs_root *log_tree_root;
2445	struct btrfs_super_block *disk_super = fs_info->super_copy;
2446	u64 bytenr = btrfs_super_log_root(disk_super);
2447	int level = btrfs_super_log_root_level(disk_super);
2448
2449	if (fs_devices->rw_devices == 0) {
2450		btrfs_warn(fs_info, "log replay required on RO media");
2451		return -EIO;
2452	}
2453
2454	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2455					 GFP_KERNEL);
2456	if (!log_tree_root)
2457		return -ENOMEM;
2458
2459	check.level = level;
2460	check.transid = fs_info->generation + 1;
2461	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2462	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2463	if (IS_ERR(log_tree_root->node)) {
2464		btrfs_warn(fs_info, "failed to read log tree");
2465		ret = PTR_ERR(log_tree_root->node);
2466		log_tree_root->node = NULL;
2467		btrfs_put_root(log_tree_root);
2468		return ret;
2469	}
2470	if (!extent_buffer_uptodate(log_tree_root->node)) {
2471		btrfs_err(fs_info, "failed to read log tree");
2472		btrfs_put_root(log_tree_root);
2473		return -EIO;
2474	}
2475
2476	/* returns with log_tree_root freed on success */
2477	ret = btrfs_recover_log_trees(log_tree_root);
2478	if (ret) {
2479		btrfs_handle_fs_error(fs_info, ret,
2480				      "Failed to recover log tree");
2481		btrfs_put_root(log_tree_root);
2482		return ret;
2483	}
2484
2485	if (sb_rdonly(fs_info->sb)) {
2486		ret = btrfs_commit_super(fs_info);
2487		if (ret)
2488			return ret;
2489	}
2490
2491	return 0;
2492}
2493
2494static int load_global_roots_objectid(struct btrfs_root *tree_root,
2495				      struct btrfs_path *path, u64 objectid,
2496				      const char *name)
2497{
2498	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2499	struct btrfs_root *root;
2500	u64 max_global_id = 0;
2501	int ret;
2502	struct btrfs_key key = {
2503		.objectid = objectid,
2504		.type = BTRFS_ROOT_ITEM_KEY,
2505		.offset = 0,
2506	};
2507	bool found = false;
2508
2509	/* If we have IGNOREDATACSUMS skip loading these roots. */
2510	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2511	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2512		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2513		return 0;
2514	}
2515
2516	while (1) {
2517		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2518		if (ret < 0)
2519			break;
2520
2521		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2522			ret = btrfs_next_leaf(tree_root, path);
2523			if (ret) {
2524				if (ret > 0)
2525					ret = 0;
2526				break;
2527			}
2528		}
2529		ret = 0;
2530
2531		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2532		if (key.objectid != objectid)
2533			break;
2534		btrfs_release_path(path);
2535
2536		/*
2537		 * Just worry about this for extent tree, it'll be the same for
2538		 * everybody.
2539		 */
2540		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2541			max_global_id = max(max_global_id, key.offset);
2542
2543		found = true;
2544		root = read_tree_root_path(tree_root, path, &key);
2545		if (IS_ERR(root)) {
2546			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2547				ret = PTR_ERR(root);
2548			break;
2549		}
2550		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551		ret = btrfs_global_root_insert(root);
2552		if (ret) {
2553			btrfs_put_root(root);
2554			break;
2555		}
2556		key.offset++;
2557	}
2558	btrfs_release_path(path);
2559
2560	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2561		fs_info->nr_global_roots = max_global_id + 1;
2562
2563	if (!found || ret) {
2564		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2565			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2566
2567		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2568			ret = ret ? ret : -ENOENT;
2569		else
2570			ret = 0;
2571		btrfs_err(fs_info, "failed to load root %s", name);
2572	}
2573	return ret;
2574}
2575
2576static int load_global_roots(struct btrfs_root *tree_root)
2577{
2578	struct btrfs_path *path;
2579	int ret = 0;
2580
2581	path = btrfs_alloc_path();
2582	if (!path)
2583		return -ENOMEM;
2584
2585	ret = load_global_roots_objectid(tree_root, path,
2586					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2587	if (ret)
2588		goto out;
2589	ret = load_global_roots_objectid(tree_root, path,
2590					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2591	if (ret)
2592		goto out;
2593	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2594		goto out;
2595	ret = load_global_roots_objectid(tree_root, path,
2596					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2597					 "free space");
2598out:
2599	btrfs_free_path(path);
2600	return ret;
2601}
2602
2603static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2604{
2605	struct btrfs_root *tree_root = fs_info->tree_root;
2606	struct btrfs_root *root;
2607	struct btrfs_key location;
 
 
 
 
 
 
 
 
 
2608	int ret;
 
 
 
2609
2610	BUG_ON(!fs_info->tree_root);
2611
2612	ret = load_global_roots(tree_root);
2613	if (ret)
2614		return ret;
2615
2616	location.type = BTRFS_ROOT_ITEM_KEY;
2617	location.offset = 0;
2618
2619	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2620		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2621		root = btrfs_read_tree_root(tree_root, &location);
2622		if (IS_ERR(root)) {
2623			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2624				ret = PTR_ERR(root);
2625				goto out;
2626			}
2627		} else {
2628			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2629			fs_info->block_group_root = root;
2630		}
2631	}
2632
2633	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2634	root = btrfs_read_tree_root(tree_root, &location);
2635	if (IS_ERR(root)) {
2636		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2637			ret = PTR_ERR(root);
2638			goto out;
2639		}
2640	} else {
2641		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2642		fs_info->dev_root = root;
2643	}
2644	/* Initialize fs_info for all devices in any case */
2645	ret = btrfs_init_devices_late(fs_info);
2646	if (ret)
2647		goto out;
2648
2649	/*
2650	 * This tree can share blocks with some other fs tree during relocation
2651	 * and we need a proper setup by btrfs_get_fs_root
2652	 */
2653	root = btrfs_get_fs_root(tree_root->fs_info,
2654				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2655	if (IS_ERR(root)) {
2656		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2657			ret = PTR_ERR(root);
2658			goto out;
2659		}
2660	} else {
2661		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2662		fs_info->data_reloc_root = root;
2663	}
2664
2665	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2666	root = btrfs_read_tree_root(tree_root, &location);
2667	if (!IS_ERR(root)) {
2668		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2669		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2670		fs_info->quota_root = root;
2671	}
2672
2673	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2674	root = btrfs_read_tree_root(tree_root, &location);
2675	if (IS_ERR(root)) {
2676		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2677			ret = PTR_ERR(root);
2678			if (ret != -ENOENT)
2679				goto out;
2680		}
2681	} else {
2682		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2683		fs_info->uuid_root = root;
2684	}
2685
2686	return 0;
2687out:
2688	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2689		   location.objectid, ret);
2690	return ret;
2691}
2692
2693/*
2694 * Real super block validation
2695 * NOTE: super csum type and incompat features will not be checked here.
2696 *
2697 * @sb:		super block to check
2698 * @mirror_num:	the super block number to check its bytenr:
2699 * 		0	the primary (1st) sb
2700 * 		1, 2	2nd and 3rd backup copy
2701 * 	       -1	skip bytenr check
2702 */
2703int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2704			 struct btrfs_super_block *sb, int mirror_num)
2705{
2706	u64 nodesize = btrfs_super_nodesize(sb);
2707	u64 sectorsize = btrfs_super_sectorsize(sb);
2708	int ret = 0;
2709
2710	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2711		btrfs_err(fs_info, "no valid FS found");
2712		ret = -EINVAL;
2713	}
2714	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2715		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2716				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2717		ret = -EINVAL;
2718	}
2719	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2720		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2721				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2722		ret = -EINVAL;
2723	}
2724	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2725		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2726				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2727		ret = -EINVAL;
2728	}
2729	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2730		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2731				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2732		ret = -EINVAL;
2733	}
2734
2735	/*
2736	 * Check sectorsize and nodesize first, other check will need it.
2737	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2738	 */
2739	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2740	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2741		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2742		ret = -EINVAL;
2743	}
2744
2745	/*
2746	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2747	 *
2748	 * We can support 16K sectorsize with 64K page size without problem,
2749	 * but such sectorsize/pagesize combination doesn't make much sense.
2750	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2751	 * beginning.
2752	 */
2753	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2754		btrfs_err(fs_info,
2755			"sectorsize %llu not yet supported for page size %lu",
2756			sectorsize, PAGE_SIZE);
2757		ret = -EINVAL;
2758	}
2759
2760	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2761	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2762		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2763		ret = -EINVAL;
2764	}
2765	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2766		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2767			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2768		ret = -EINVAL;
2769	}
2770
2771	/* Root alignment check */
2772	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2773		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2774			   btrfs_super_root(sb));
2775		ret = -EINVAL;
2776	}
2777	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2778		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2779			   btrfs_super_chunk_root(sb));
2780		ret = -EINVAL;
2781	}
2782	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2783		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2784			   btrfs_super_log_root(sb));
2785		ret = -EINVAL;
2786	}
2787
2788	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2789		   BTRFS_FSID_SIZE)) {
2790		btrfs_err(fs_info,
2791		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2792			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2793		ret = -EINVAL;
2794	}
2795
2796	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2797	    memcmp(fs_info->fs_devices->metadata_uuid,
2798		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2799		btrfs_err(fs_info,
2800"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2801			fs_info->super_copy->metadata_uuid,
2802			fs_info->fs_devices->metadata_uuid);
2803		ret = -EINVAL;
2804	}
2805
2806	/*
2807	 * Artificial requirement for block-group-tree to force newer features
2808	 * (free-space-tree, no-holes) so the test matrix is smaller.
2809	 */
2810	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2811	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2812	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2813		btrfs_err(fs_info,
2814		"block-group-tree feature requires fres-space-tree and no-holes");
2815		ret = -EINVAL;
2816	}
2817
2818	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2819		   BTRFS_FSID_SIZE) != 0) {
2820		btrfs_err(fs_info,
2821			"dev_item UUID does not match metadata fsid: %pU != %pU",
2822			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2823		ret = -EINVAL;
2824	}
2825
2826	/*
2827	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2828	 * done later
2829	 */
2830	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2831		btrfs_err(fs_info, "bytes_used is too small %llu",
2832			  btrfs_super_bytes_used(sb));
2833		ret = -EINVAL;
2834	}
2835	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2836		btrfs_err(fs_info, "invalid stripesize %u",
2837			  btrfs_super_stripesize(sb));
2838		ret = -EINVAL;
2839	}
2840	if (btrfs_super_num_devices(sb) > (1UL << 31))
2841		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2842			   btrfs_super_num_devices(sb));
2843	if (btrfs_super_num_devices(sb) == 0) {
2844		btrfs_err(fs_info, "number of devices is 0");
2845		ret = -EINVAL;
2846	}
2847
2848	if (mirror_num >= 0 &&
2849	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2850		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2851			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2852		ret = -EINVAL;
2853	}
2854
2855	/*
2856	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2857	 * and one chunk
2858	 */
2859	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2860		btrfs_err(fs_info, "system chunk array too big %u > %u",
2861			  btrfs_super_sys_array_size(sb),
2862			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2863		ret = -EINVAL;
2864	}
2865	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2866			+ sizeof(struct btrfs_chunk)) {
2867		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2868			  btrfs_super_sys_array_size(sb),
2869			  sizeof(struct btrfs_disk_key)
2870			  + sizeof(struct btrfs_chunk));
2871		ret = -EINVAL;
2872	}
2873
2874	/*
2875	 * The generation is a global counter, we'll trust it more than the others
2876	 * but it's still possible that it's the one that's wrong.
2877	 */
2878	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2879		btrfs_warn(fs_info,
2880			"suspicious: generation < chunk_root_generation: %llu < %llu",
2881			btrfs_super_generation(sb),
2882			btrfs_super_chunk_root_generation(sb));
2883	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2884	    && btrfs_super_cache_generation(sb) != (u64)-1)
2885		btrfs_warn(fs_info,
2886			"suspicious: generation < cache_generation: %llu < %llu",
2887			btrfs_super_generation(sb),
2888			btrfs_super_cache_generation(sb));
2889
2890	return ret;
2891}
2892
2893/*
2894 * Validation of super block at mount time.
2895 * Some checks already done early at mount time, like csum type and incompat
2896 * flags will be skipped.
2897 */
2898static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2899{
2900	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2901}
2902
2903/*
2904 * Validation of super block at write time.
2905 * Some checks like bytenr check will be skipped as their values will be
2906 * overwritten soon.
2907 * Extra checks like csum type and incompat flags will be done here.
2908 */
2909static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2910				      struct btrfs_super_block *sb)
2911{
2912	int ret;
2913
2914	ret = btrfs_validate_super(fs_info, sb, -1);
2915	if (ret < 0)
2916		goto out;
2917	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2918		ret = -EUCLEAN;
2919		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2920			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2921		goto out;
2922	}
2923	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2924		ret = -EUCLEAN;
2925		btrfs_err(fs_info,
2926		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2927			  btrfs_super_incompat_flags(sb),
2928			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2929		goto out;
2930	}
2931out:
2932	if (ret < 0)
2933		btrfs_err(fs_info,
2934		"super block corruption detected before writing it to disk");
2935	return ret;
2936}
2937
2938static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2939{
2940	struct btrfs_tree_parent_check check = {
2941		.level = level,
2942		.transid = gen,
2943		.owner_root = root->root_key.objectid
2944	};
2945	int ret = 0;
2946
2947	root->node = read_tree_block(root->fs_info, bytenr, &check);
2948	if (IS_ERR(root->node)) {
2949		ret = PTR_ERR(root->node);
2950		root->node = NULL;
2951		return ret;
2952	}
2953	if (!extent_buffer_uptodate(root->node)) {
2954		free_extent_buffer(root->node);
2955		root->node = NULL;
2956		return -EIO;
2957	}
2958
2959	btrfs_set_root_node(&root->root_item, root->node);
2960	root->commit_root = btrfs_root_node(root);
2961	btrfs_set_root_refs(&root->root_item, 1);
2962	return ret;
2963}
2964
2965static int load_important_roots(struct btrfs_fs_info *fs_info)
2966{
2967	struct btrfs_super_block *sb = fs_info->super_copy;
2968	u64 gen, bytenr;
2969	int level, ret;
2970
2971	bytenr = btrfs_super_root(sb);
2972	gen = btrfs_super_generation(sb);
2973	level = btrfs_super_root_level(sb);
2974	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2975	if (ret) {
2976		btrfs_warn(fs_info, "couldn't read tree root");
2977		return ret;
2978	}
2979	return 0;
2980}
2981
2982static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2983{
2984	int backup_index = find_newest_super_backup(fs_info);
2985	struct btrfs_super_block *sb = fs_info->super_copy;
2986	struct btrfs_root *tree_root = fs_info->tree_root;
2987	bool handle_error = false;
2988	int ret = 0;
2989	int i;
2990
2991	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2992		if (handle_error) {
2993			if (!IS_ERR(tree_root->node))
2994				free_extent_buffer(tree_root->node);
2995			tree_root->node = NULL;
2996
2997			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2998				break;
2999
3000			free_root_pointers(fs_info, 0);
3001
3002			/*
3003			 * Don't use the log in recovery mode, it won't be
3004			 * valid
3005			 */
3006			btrfs_set_super_log_root(sb, 0);
3007
3008			/* We can't trust the free space cache either */
3009			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3010
3011			ret = read_backup_root(fs_info, i);
3012			backup_index = ret;
3013			if (ret < 0)
3014				return ret;
3015		}
3016
3017		ret = load_important_roots(fs_info);
3018		if (ret) {
3019			handle_error = true;
3020			continue;
3021		}
3022
3023		/*
3024		 * No need to hold btrfs_root::objectid_mutex since the fs
3025		 * hasn't been fully initialised and we are the only user
3026		 */
3027		ret = btrfs_init_root_free_objectid(tree_root);
3028		if (ret < 0) {
3029			handle_error = true;
3030			continue;
3031		}
3032
3033		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3034
3035		ret = btrfs_read_roots(fs_info);
3036		if (ret < 0) {
3037			handle_error = true;
3038			continue;
3039		}
3040
3041		/* All successful */
3042		fs_info->generation = btrfs_header_generation(tree_root->node);
3043		fs_info->last_trans_committed = fs_info->generation;
3044		fs_info->last_reloc_trans = 0;
3045
3046		/* Always begin writing backup roots after the one being used */
3047		if (backup_index < 0) {
3048			fs_info->backup_root_index = 0;
3049		} else {
3050			fs_info->backup_root_index = backup_index + 1;
3051			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3052		}
3053		break;
3054	}
3055
3056	return ret;
3057}
3058
3059void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3060{
3061	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3062	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3063	INIT_LIST_HEAD(&fs_info->trans_list);
3064	INIT_LIST_HEAD(&fs_info->dead_roots);
3065	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3066	INIT_LIST_HEAD(&fs_info->delalloc_roots);
 
 
3067	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3068	spin_lock_init(&fs_info->delalloc_root_lock);
3069	spin_lock_init(&fs_info->trans_lock);
 
3070	spin_lock_init(&fs_info->fs_roots_radix_lock);
3071	spin_lock_init(&fs_info->delayed_iput_lock);
3072	spin_lock_init(&fs_info->defrag_inodes_lock);
3073	spin_lock_init(&fs_info->super_lock);
3074	spin_lock_init(&fs_info->buffer_lock);
3075	spin_lock_init(&fs_info->unused_bgs_lock);
3076	spin_lock_init(&fs_info->treelog_bg_lock);
3077	spin_lock_init(&fs_info->zone_active_bgs_lock);
3078	spin_lock_init(&fs_info->relocation_bg_lock);
3079	rwlock_init(&fs_info->tree_mod_log_lock);
3080	rwlock_init(&fs_info->global_root_lock);
3081	mutex_init(&fs_info->unused_bg_unpin_mutex);
3082	mutex_init(&fs_info->reclaim_bgs_lock);
3083	mutex_init(&fs_info->reloc_mutex);
3084	mutex_init(&fs_info->delalloc_root_mutex);
3085	mutex_init(&fs_info->zoned_meta_io_lock);
3086	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3087	seqlock_init(&fs_info->profiles_lock);
3088
3089	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
3090	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
3091	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
3092	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3093	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3094				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
3095	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3096				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3097	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3098				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3099	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3100				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3101
 
3102	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3103	INIT_LIST_HEAD(&fs_info->space_info);
3104	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3105	INIT_LIST_HEAD(&fs_info->unused_bgs);
3106	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3107	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3108#ifdef CONFIG_BTRFS_DEBUG
3109	INIT_LIST_HEAD(&fs_info->allocated_roots);
3110	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3111	spin_lock_init(&fs_info->eb_leak_lock);
3112#endif
3113	extent_map_tree_init(&fs_info->mapping_tree);
3114	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3115			     BTRFS_BLOCK_RSV_GLOBAL);
3116	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3117	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3118	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3119	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3120			     BTRFS_BLOCK_RSV_DELOPS);
3121	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3122			     BTRFS_BLOCK_RSV_DELREFS);
3123
3124	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
3125	atomic_set(&fs_info->defrag_running, 0);
3126	atomic_set(&fs_info->nr_delayed_iputs, 0);
3127	atomic64_set(&fs_info->tree_mod_seq, 0);
3128	fs_info->global_root_tree = RB_ROOT;
3129	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3130	fs_info->metadata_ratio = 0;
3131	fs_info->defrag_inodes = RB_ROOT;
3132	atomic64_set(&fs_info->free_chunk_space, 0);
 
3133	fs_info->tree_mod_log = RB_ROOT;
3134	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3135	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3136	btrfs_init_ref_verify(fs_info);
 
3137
3138	fs_info->thread_pool_size = min_t(unsigned long,
3139					  num_online_cpus() + 2, 8);
3140
3141	INIT_LIST_HEAD(&fs_info->ordered_roots);
3142	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
3143
3144	btrfs_init_scrub(fs_info);
 
 
 
 
 
 
 
3145#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3146	fs_info->check_integrity_print_mask = 0;
3147#endif
3148	btrfs_init_balance(fs_info);
3149	btrfs_init_async_reclaim_work(fs_info);
3150
3151	rwlock_init(&fs_info->block_group_cache_lock);
3152	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153
3154	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3155			    IO_TREE_FS_EXCLUDED_EXTENTS);
3156
3157	mutex_init(&fs_info->ordered_operations_mutex);
3158	mutex_init(&fs_info->tree_log_mutex);
3159	mutex_init(&fs_info->chunk_mutex);
3160	mutex_init(&fs_info->transaction_kthread_mutex);
3161	mutex_init(&fs_info->cleaner_mutex);
3162	mutex_init(&fs_info->ro_block_group_mutex);
3163	init_rwsem(&fs_info->commit_root_sem);
3164	init_rwsem(&fs_info->cleanup_work_sem);
3165	init_rwsem(&fs_info->subvol_sem);
3166	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3167
3168	btrfs_init_dev_replace_locks(fs_info);
3169	btrfs_init_qgroup(fs_info);
3170	btrfs_discard_init(fs_info);
3171
3172	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3173	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3174
3175	init_waitqueue_head(&fs_info->transaction_throttle);
3176	init_waitqueue_head(&fs_info->transaction_wait);
3177	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3178	init_waitqueue_head(&fs_info->async_submit_wait);
3179	init_waitqueue_head(&fs_info->delayed_iputs_wait);
3180
3181	/* Usable values until the real ones are cached from the superblock */
3182	fs_info->nodesize = 4096;
3183	fs_info->sectorsize = 4096;
3184	fs_info->sectorsize_bits = ilog2(4096);
3185	fs_info->stripesize = 4096;
3186
3187	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3188
3189	spin_lock_init(&fs_info->swapfile_pins_lock);
3190	fs_info->swapfile_pins = RB_ROOT;
3191
3192	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3193	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3194}
3195
3196static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3197{
3198	int ret;
3199
3200	fs_info->sb = sb;
3201	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3202	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3203
3204	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3205	if (ret)
3206		return ret;
3207
3208	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3209	if (ret)
3210		return ret;
3211
3212	fs_info->dirty_metadata_batch = PAGE_SIZE *
3213					(1 + ilog2(nr_cpu_ids));
3214
3215	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3216	if (ret)
3217		return ret;
3218
3219	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3220			GFP_KERNEL);
3221	if (ret)
3222		return ret;
3223
3224	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3225					GFP_KERNEL);
3226	if (!fs_info->delayed_root)
3227		return -ENOMEM;
3228	btrfs_init_delayed_root(fs_info->delayed_root);
3229
3230	if (sb_rdonly(sb))
3231		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3232
3233	return btrfs_alloc_stripe_hash_table(fs_info);
3234}
3235
3236static int btrfs_uuid_rescan_kthread(void *data)
3237{
3238	struct btrfs_fs_info *fs_info = data;
3239	int ret;
3240
3241	/*
3242	 * 1st step is to iterate through the existing UUID tree and
3243	 * to delete all entries that contain outdated data.
3244	 * 2nd step is to add all missing entries to the UUID tree.
3245	 */
3246	ret = btrfs_uuid_tree_iterate(fs_info);
3247	if (ret < 0) {
3248		if (ret != -EINTR)
3249			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3250				   ret);
3251		up(&fs_info->uuid_tree_rescan_sem);
3252		return ret;
3253	}
3254	return btrfs_uuid_scan_kthread(data);
3255}
3256
3257static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3258{
3259	struct task_struct *task;
3260
3261	down(&fs_info->uuid_tree_rescan_sem);
3262	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3263	if (IS_ERR(task)) {
3264		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3265		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3266		up(&fs_info->uuid_tree_rescan_sem);
3267		return PTR_ERR(task);
3268	}
3269
3270	return 0;
3271}
3272
3273/*
3274 * Some options only have meaning at mount time and shouldn't persist across
3275 * remounts, or be displayed. Clear these at the end of mount and remount
3276 * code paths.
3277 */
3278void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3279{
3280	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3281	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3282}
3283
3284/*
3285 * Mounting logic specific to read-write file systems. Shared by open_ctree
3286 * and btrfs_remount when remounting from read-only to read-write.
3287 */
3288int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3289{
3290	int ret;
3291	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3292	bool clear_free_space_tree = false;
3293
3294	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3295	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3296		clear_free_space_tree = true;
3297	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3298		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3299		btrfs_warn(fs_info, "free space tree is invalid");
3300		clear_free_space_tree = true;
3301	}
3302
3303	if (clear_free_space_tree) {
3304		btrfs_info(fs_info, "clearing free space tree");
3305		ret = btrfs_clear_free_space_tree(fs_info);
3306		if (ret) {
3307			btrfs_warn(fs_info,
3308				   "failed to clear free space tree: %d", ret);
3309			goto out;
3310		}
3311	}
3312
3313	/*
3314	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3315	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3316	 * them into the fs_info->fs_roots_radix tree. This must be done before
3317	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3318	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3319	 * item before the root's tree is deleted - this means that if we unmount
3320	 * or crash before the deletion completes, on the next mount we will not
3321	 * delete what remains of the tree because the orphan item does not
3322	 * exists anymore, which is what tells us we have a pending deletion.
3323	 */
3324	ret = btrfs_find_orphan_roots(fs_info);
3325	if (ret)
3326		goto out;
3327
3328	ret = btrfs_cleanup_fs_roots(fs_info);
3329	if (ret)
3330		goto out;
3331
3332	down_read(&fs_info->cleanup_work_sem);
3333	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3334	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3335		up_read(&fs_info->cleanup_work_sem);
3336		goto out;
3337	}
3338	up_read(&fs_info->cleanup_work_sem);
3339
3340	mutex_lock(&fs_info->cleaner_mutex);
3341	ret = btrfs_recover_relocation(fs_info);
3342	mutex_unlock(&fs_info->cleaner_mutex);
3343	if (ret < 0) {
3344		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3345		goto out;
3346	}
3347
3348	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3349	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3350		btrfs_info(fs_info, "creating free space tree");
3351		ret = btrfs_create_free_space_tree(fs_info);
3352		if (ret) {
3353			btrfs_warn(fs_info,
3354				"failed to create free space tree: %d", ret);
3355			goto out;
3356		}
3357	}
3358
3359	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3360		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3361		if (ret)
3362			goto out;
3363	}
3364
3365	ret = btrfs_resume_balance_async(fs_info);
3366	if (ret)
3367		goto out;
3368
3369	ret = btrfs_resume_dev_replace_async(fs_info);
3370	if (ret) {
3371		btrfs_warn(fs_info, "failed to resume dev_replace");
3372		goto out;
3373	}
3374
3375	btrfs_qgroup_rescan_resume(fs_info);
3376
3377	if (!fs_info->uuid_root) {
3378		btrfs_info(fs_info, "creating UUID tree");
3379		ret = btrfs_create_uuid_tree(fs_info);
3380		if (ret) {
3381			btrfs_warn(fs_info,
3382				   "failed to create the UUID tree %d", ret);
3383			goto out;
3384		}
3385	}
3386
3387out:
3388	return ret;
3389}
3390
3391/*
3392 * Do various sanity and dependency checks of different features.
3393 *
3394 * @is_rw_mount:	If the mount is read-write.
3395 *
3396 * This is the place for less strict checks (like for subpage or artificial
3397 * feature dependencies).
3398 *
3399 * For strict checks or possible corruption detection, see
3400 * btrfs_validate_super().
3401 *
3402 * This should be called after btrfs_parse_options(), as some mount options
3403 * (space cache related) can modify on-disk format like free space tree and
3404 * screw up certain feature dependencies.
3405 */
3406int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3407{
3408	struct btrfs_super_block *disk_super = fs_info->super_copy;
3409	u64 incompat = btrfs_super_incompat_flags(disk_super);
3410	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3411	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3412
3413	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3414		btrfs_err(fs_info,
3415		"cannot mount because of unknown incompat features (0x%llx)",
3416		    incompat);
3417		return -EINVAL;
3418	}
3419
3420	/* Runtime limitation for mixed block groups. */
3421	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3422	    (fs_info->sectorsize != fs_info->nodesize)) {
3423		btrfs_err(fs_info,
3424"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3425			fs_info->nodesize, fs_info->sectorsize);
3426		return -EINVAL;
3427	}
3428
3429	/* Mixed backref is an always-enabled feature. */
3430	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3431
3432	/* Set compression related flags just in case. */
3433	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3434		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3435	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3436		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3437
3438	/*
3439	 * An ancient flag, which should really be marked deprecated.
3440	 * Such runtime limitation doesn't really need a incompat flag.
3441	 */
3442	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3443		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3444
3445	if (compat_ro_unsupp && is_rw_mount) {
3446		btrfs_err(fs_info,
3447	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3448		       compat_ro);
3449		return -EINVAL;
3450	}
3451
3452	/*
3453	 * We have unsupported RO compat features, although RO mounted, we
3454	 * should not cause any metadata writes, including log replay.
3455	 * Or we could screw up whatever the new feature requires.
3456	 */
3457	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3458	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3459		btrfs_err(fs_info,
3460"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3461			  compat_ro);
3462		return -EINVAL;
3463	}
3464
3465	/*
3466	 * Artificial limitations for block group tree, to force
3467	 * block-group-tree to rely on no-holes and free-space-tree.
3468	 */
3469	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3470	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3471	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3472		btrfs_err(fs_info,
3473"block-group-tree feature requires no-holes and free-space-tree features");
3474		return -EINVAL;
3475	}
3476
3477	/*
3478	 * Subpage runtime limitation on v1 cache.
3479	 *
3480	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3481	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3482	 * going to be deprecated anyway.
3483	 */
3484	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3485		btrfs_warn(fs_info,
3486	"v1 space cache is not supported for page size %lu with sectorsize %u",
3487			   PAGE_SIZE, fs_info->sectorsize);
3488		return -EINVAL;
3489	}
3490
3491	/* This can be called by remount, we need to protect the super block. */
3492	spin_lock(&fs_info->super_lock);
3493	btrfs_set_super_incompat_flags(disk_super, incompat);
3494	spin_unlock(&fs_info->super_lock);
3495
3496	return 0;
3497}
3498
3499int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3500		      char *options)
3501{
3502	u32 sectorsize;
3503	u32 nodesize;
3504	u32 stripesize;
3505	u64 generation;
3506	u64 features;
3507	u16 csum_type;
3508	struct btrfs_super_block *disk_super;
3509	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3510	struct btrfs_root *tree_root;
3511	struct btrfs_root *chunk_root;
3512	int ret;
3513	int err = -EINVAL;
3514	int level;
3515
3516	ret = init_mount_fs_info(fs_info, sb);
3517	if (ret) {
3518		err = ret;
3519		goto fail;
3520	}
3521
3522	/* These need to be init'ed before we start creating inodes and such. */
3523	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3524				     GFP_KERNEL);
3525	fs_info->tree_root = tree_root;
3526	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3527				      GFP_KERNEL);
3528	fs_info->chunk_root = chunk_root;
3529	if (!tree_root || !chunk_root) {
3530		err = -ENOMEM;
3531		goto fail;
3532	}
3533
3534	fs_info->btree_inode = new_inode(sb);
3535	if (!fs_info->btree_inode) {
3536		err = -ENOMEM;
3537		goto fail;
3538	}
3539	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3540	btrfs_init_btree_inode(fs_info);
3541
3542	invalidate_bdev(fs_devices->latest_dev->bdev);
3543
3544	/*
3545	 * Read super block and check the signature bytes only
3546	 */
3547	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3548	if (IS_ERR(disk_super)) {
3549		err = PTR_ERR(disk_super);
3550		goto fail_alloc;
3551	}
3552
3553	/*
3554	 * Verify the type first, if that or the checksum value are
3555	 * corrupted, we'll find out
3556	 */
3557	csum_type = btrfs_super_csum_type(disk_super);
3558	if (!btrfs_supported_super_csum(csum_type)) {
3559		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3560			  csum_type);
3561		err = -EINVAL;
3562		btrfs_release_disk_super(disk_super);
3563		goto fail_alloc;
3564	}
3565
3566	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3567
3568	ret = btrfs_init_csum_hash(fs_info, csum_type);
3569	if (ret) {
3570		err = ret;
3571		btrfs_release_disk_super(disk_super);
3572		goto fail_alloc;
3573	}
3574
3575	/*
3576	 * We want to check superblock checksum, the type is stored inside.
3577	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3578	 */
3579	if (btrfs_check_super_csum(fs_info, disk_super)) {
3580		btrfs_err(fs_info, "superblock checksum mismatch");
3581		err = -EINVAL;
3582		btrfs_release_disk_super(disk_super);
3583		goto fail_alloc;
3584	}
3585
3586	/*
3587	 * super_copy is zeroed at allocation time and we never touch the
3588	 * following bytes up to INFO_SIZE, the checksum is calculated from
3589	 * the whole block of INFO_SIZE
3590	 */
3591	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3592	btrfs_release_disk_super(disk_super);
3593
3594	disk_super = fs_info->super_copy;
3595
3596
3597	features = btrfs_super_flags(disk_super);
3598	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3599		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3600		btrfs_set_super_flags(disk_super, features);
3601		btrfs_info(fs_info,
3602			"found metadata UUID change in progress flag, clearing");
3603	}
3604
3605	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3606	       sizeof(*fs_info->super_for_commit));
3607
3608	ret = btrfs_validate_mount_super(fs_info);
3609	if (ret) {
3610		btrfs_err(fs_info, "superblock contains fatal errors");
3611		err = -EINVAL;
3612		goto fail_alloc;
3613	}
3614
3615	if (!btrfs_super_root(disk_super))
3616		goto fail_alloc;
3617
3618	/* check FS state, whether FS is broken. */
3619	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3620		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3621
3622	/*
3623	 * In the long term, we'll store the compression type in the super
3624	 * block, and it'll be used for per file compression control.
3625	 */
3626	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3627
 
 
 
3628
3629	/* Set up fs_info before parsing mount options */
3630	nodesize = btrfs_super_nodesize(disk_super);
 
3631	sectorsize = btrfs_super_sectorsize(disk_super);
3632	stripesize = sectorsize;
3633	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3634	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3635
3636	fs_info->nodesize = nodesize;
3637	fs_info->sectorsize = sectorsize;
3638	fs_info->sectorsize_bits = ilog2(sectorsize);
3639	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3640	fs_info->stripesize = stripesize;
3641
3642	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3643	if (ret) {
3644		err = ret;
 
 
 
 
 
 
3645		goto fail_alloc;
3646	}
3647
3648	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3649	if (ret < 0) {
3650		err = ret;
 
 
 
 
 
 
3651		goto fail_alloc;
3652	}
3653
3654	if (sectorsize < PAGE_SIZE) {
3655		struct btrfs_subpage_info *subpage_info;
3656
3657		/*
3658		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3659		 * going to be deprecated.
3660		 *
3661		 * Force to use v2 cache for subpage case.
3662		 */
3663		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3664		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3665			"forcing free space tree for sector size %u with page size %lu",
3666			sectorsize, PAGE_SIZE);
3667
3668		btrfs_warn(fs_info,
3669		"read-write for sector size %u with page size %lu is experimental",
3670			   sectorsize, PAGE_SIZE);
3671		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3672		if (!subpage_info)
3673			goto fail_alloc;
3674		btrfs_init_subpage_info(subpage_info, sectorsize);
3675		fs_info->subpage_info = subpage_info;
3676	}
3677
3678	ret = btrfs_init_workqueues(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3679	if (ret) {
3680		err = ret;
3681		goto fail_sb_buffer;
3682	}
3683
3684	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3685	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 
 
 
 
 
 
3686
3687	sb->s_blocksize = sectorsize;
3688	sb->s_blocksize_bits = blksize_bits(sectorsize);
3689	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 
 
 
3690
3691	mutex_lock(&fs_info->chunk_mutex);
3692	ret = btrfs_read_sys_array(fs_info);
3693	mutex_unlock(&fs_info->chunk_mutex);
3694	if (ret) {
3695		btrfs_err(fs_info, "failed to read the system array: %d", ret);
 
3696		goto fail_sb_buffer;
3697	}
3698
 
 
3699	generation = btrfs_super_chunk_root_generation(disk_super);
3700	level = btrfs_super_chunk_root_level(disk_super);
3701	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3702			      generation, level);
3703	if (ret) {
3704		btrfs_err(fs_info, "failed to read chunk root");
 
 
 
 
 
 
3705		goto fail_tree_roots;
3706	}
 
 
3707
3708	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3709			   offsetof(struct btrfs_header, chunk_tree_uuid),
3710			   BTRFS_UUID_SIZE);
3711
3712	ret = btrfs_read_chunk_tree(fs_info);
3713	if (ret) {
3714		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
 
3715		goto fail_tree_roots;
3716	}
3717
3718	/*
3719	 * At this point we know all the devices that make this filesystem,
3720	 * including the seed devices but we don't know yet if the replace
3721	 * target is required. So free devices that are not part of this
3722	 * filesystem but skip the replace target device which is checked
3723	 * below in btrfs_init_dev_replace().
3724	 */
3725	btrfs_free_extra_devids(fs_devices);
3726	if (!fs_devices->latest_dev->bdev) {
3727		btrfs_err(fs_info, "failed to read devices");
3728		goto fail_tree_roots;
3729	}
3730
3731	ret = init_tree_roots(fs_info);
3732	if (ret)
3733		goto fail_tree_roots;
 
 
 
 
 
 
 
 
 
3734
3735	/*
3736	 * Get zone type information of zoned block devices. This will also
3737	 * handle emulation of a zoned filesystem if a regular device has the
3738	 * zoned incompat feature flag set.
3739	 */
3740	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
3741	if (ret) {
3742		btrfs_err(fs_info,
3743			  "zoned: failed to read device zone info: %d",
3744			  ret);
3745		goto fail_block_groups;
3746	}
3747
3748	/*
3749	 * If we have a uuid root and we're not being told to rescan we need to
3750	 * check the generation here so we can set the
3751	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3752	 * transaction during a balance or the log replay without updating the
3753	 * uuid generation, and then if we crash we would rescan the uuid tree,
3754	 * even though it was perfectly fine.
3755	 */
3756	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3757	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3758		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3759
3760	ret = btrfs_verify_dev_extents(fs_info);
3761	if (ret) {
3762		btrfs_err(fs_info,
3763			  "failed to verify dev extents against chunks: %d",
3764			  ret);
3765		goto fail_block_groups;
3766	}
3767	ret = btrfs_recover_balance(fs_info);
3768	if (ret) {
3769		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3770		goto fail_block_groups;
3771	}
3772
3773	ret = btrfs_init_dev_stats(fs_info);
3774	if (ret) {
3775		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3776		goto fail_block_groups;
3777	}
3778
3779	ret = btrfs_init_dev_replace(fs_info);
3780	if (ret) {
3781		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3782		goto fail_block_groups;
3783	}
3784
3785	ret = btrfs_check_zoned_mode(fs_info);
3786	if (ret) {
3787		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3788			  ret);
3789		goto fail_block_groups;
3790	}
3791
3792	ret = btrfs_sysfs_add_fsid(fs_devices);
3793	if (ret) {
3794		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3795				ret);
3796		goto fail_block_groups;
3797	}
3798
3799	ret = btrfs_sysfs_add_mounted(fs_info);
3800	if (ret) {
3801		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3802		goto fail_fsdev_sysfs;
 
3803	}
3804
3805	ret = btrfs_init_space_info(fs_info);
3806	if (ret) {
3807		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3808		goto fail_sysfs;
3809	}
3810
3811	ret = btrfs_read_block_groups(fs_info);
3812	if (ret) {
3813		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3814		goto fail_sysfs;
3815	}
3816
3817	btrfs_free_zone_cache(fs_info);
3818
3819	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3820	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3821		btrfs_warn(fs_info,
3822		"writable mount is not allowed due to too many missing devices");
3823		goto fail_sysfs;
3824	}
3825
3826	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3827					       "btrfs-cleaner");
3828	if (IS_ERR(fs_info->cleaner_kthread))
3829		goto fail_sysfs;
3830
3831	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3832						   tree_root,
3833						   "btrfs-transaction");
3834	if (IS_ERR(fs_info->transaction_kthread))
3835		goto fail_cleaner;
3836
3837	if (!btrfs_test_opt(fs_info, NOSSD) &&
 
3838	    !fs_info->fs_devices->rotating) {
3839		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
3840	}
3841
3842	/*
3843	 * For devices supporting discard turn on discard=async automatically,
3844	 * unless it's already set or disabled. This could be turned off by
3845	 * nodiscard for the same mount.
3846	 */
3847	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3848	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3849	      btrfs_test_opt(fs_info, NODISCARD)) &&
3850	    fs_info->fs_devices->discardable) {
3851		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3852				   "auto enabling async discard");
3853		btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3854	}
3855
3856#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3857	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3858		ret = btrfsic_mount(fs_info, fs_devices,
3859				    btrfs_test_opt(fs_info,
3860					CHECK_INTEGRITY_DATA) ? 1 : 0,
 
3861				    fs_info->check_integrity_print_mask);
3862		if (ret)
3863			btrfs_warn(fs_info,
3864				"failed to initialize integrity check module: %d",
3865				ret);
3866	}
3867#endif
3868	ret = btrfs_read_qgroup_config(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3869	if (ret)
3870		goto fail_trans_kthread;
3871
3872	if (btrfs_build_ref_tree(fs_info))
3873		btrfs_err(fs_info, "couldn't build ref tree");
3874
3875	/* do not make disk changes in broken FS or nologreplay is given */
3876	if (btrfs_super_log_root(disk_super) != 0 &&
3877	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3878		btrfs_info(fs_info, "start tree-log replay");
3879		ret = btrfs_replay_log(fs_info, fs_devices);
3880		if (ret) {
3881			err = ret;
3882			goto fail_qgroup;
 
 
 
 
 
 
3883		}
3884	}
3885
3886	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
 
 
3887	if (IS_ERR(fs_info->fs_root)) {
3888		err = PTR_ERR(fs_info->fs_root);
3889		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3890		fs_info->fs_root = NULL;
3891		goto fail_qgroup;
3892	}
3893
3894	if (sb_rdonly(sb))
3895		goto clear_oneshot;
3896
3897	ret = btrfs_start_pre_rw_mount(fs_info);
3898	if (ret) {
3899		close_ctree(fs_info);
 
 
3900		return ret;
3901	}
3902	btrfs_discard_resume(fs_info);
3903
3904	if (fs_info->uuid_root &&
3905	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3906	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
3907		btrfs_info(fs_info, "checking UUID tree");
3908		ret = btrfs_check_uuid_tree(fs_info);
3909		if (ret) {
3910			btrfs_warn(fs_info,
3911				"failed to check the UUID tree: %d", ret);
3912			close_ctree(fs_info);
3913			return ret;
3914		}
3915	}
3916
3917	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3918
3919	/* Kick the cleaner thread so it'll start deleting snapshots. */
3920	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3921		wake_up_process(fs_info->cleaner_kthread);
3922
3923clear_oneshot:
3924	btrfs_clear_oneshot_options(fs_info);
3925	return 0;
3926
3927fail_qgroup:
3928	btrfs_free_qgroup_config(fs_info);
3929fail_trans_kthread:
3930	kthread_stop(fs_info->transaction_kthread);
3931	btrfs_cleanup_transaction(fs_info);
3932	btrfs_free_fs_roots(fs_info);
3933fail_cleaner:
3934	kthread_stop(fs_info->cleaner_kthread);
3935
3936	/*
3937	 * make sure we're done with the btree inode before we stop our
3938	 * kthreads
3939	 */
3940	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3941
3942fail_sysfs:
3943	btrfs_sysfs_remove_mounted(fs_info);
3944
3945fail_fsdev_sysfs:
3946	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3947
3948fail_block_groups:
3949	btrfs_put_block_group_cache(fs_info);
3950
3951fail_tree_roots:
3952	if (fs_info->data_reloc_root)
3953		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3954	free_root_pointers(fs_info, true);
3955	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3956
3957fail_sb_buffer:
3958	btrfs_stop_all_workers(fs_info);
3959	btrfs_free_block_groups(fs_info);
 
 
 
 
 
 
 
 
 
 
 
3960fail_alloc:
 
3961	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3962
 
3963	iput(fs_info->btree_inode);
 
 
 
 
3964fail:
3965	btrfs_close_devices(fs_info->fs_devices);
3966	return err;
3967}
3968ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3969
3970static void btrfs_end_super_write(struct bio *bio)
3971{
3972	struct btrfs_device *device = bio->bi_private;
3973	struct bio_vec *bvec;
3974	struct bvec_iter_all iter_all;
3975	struct page *page;
3976
3977	bio_for_each_segment_all(bvec, bio, iter_all) {
3978		page = bvec->bv_page;
3979
3980		if (bio->bi_status) {
3981			btrfs_warn_rl_in_rcu(device->fs_info,
3982				"lost page write due to IO error on %s (%d)",
3983				btrfs_dev_name(device),
3984				blk_status_to_errno(bio->bi_status));
3985			ClearPageUptodate(page);
3986			SetPageError(page);
3987			btrfs_dev_stat_inc_and_print(device,
3988						     BTRFS_DEV_STAT_WRITE_ERRS);
3989		} else {
3990			SetPageUptodate(page);
3991		}
3992
3993		put_page(page);
3994		unlock_page(page);
3995	}
3996
3997	bio_put(bio);
 
 
 
 
3998}
3999
4000struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
4001						   int copy_num, bool drop_cache)
4002{
4003	struct btrfs_super_block *super;
4004	struct page *page;
4005	u64 bytenr, bytenr_orig;
4006	struct address_space *mapping = bdev->bd_inode->i_mapping;
4007	int ret;
4008
4009	bytenr_orig = btrfs_sb_offset(copy_num);
4010	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4011	if (ret == -ENOENT)
4012		return ERR_PTR(-EINVAL);
4013	else if (ret)
4014		return ERR_PTR(ret);
4015
4016	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4017		return ERR_PTR(-EINVAL);
4018
4019	if (drop_cache) {
4020		/* This should only be called with the primary sb. */
4021		ASSERT(copy_num == 0);
4022
4023		/*
4024		 * Drop the page of the primary superblock, so later read will
4025		 * always read from the device.
 
 
4026		 */
4027		invalidate_inode_pages2_range(mapping,
4028				bytenr >> PAGE_SHIFT,
4029				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
4030	}
4031
4032	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4033	if (IS_ERR(page))
4034		return ERR_CAST(page);
4035
4036	super = page_address(page);
4037	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4038		btrfs_release_disk_super(super);
4039		return ERR_PTR(-ENODATA);
4040	}
4041
4042	if (btrfs_super_bytenr(super) != bytenr_orig) {
4043		btrfs_release_disk_super(super);
4044		return ERR_PTR(-EINVAL);
4045	}
4046
4047	return super;
4048}
4049
4050
4051struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
4052{
4053	struct btrfs_super_block *super, *latest = NULL;
 
 
4054	int i;
4055	u64 transid = 0;
 
4056
4057	/* we would like to check all the supers, but that would make
4058	 * a btrfs mount succeed after a mkfs from a different FS.
4059	 * So, we need to add a special mount option to scan for
4060	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4061	 */
4062	for (i = 0; i < 1; i++) {
4063		super = btrfs_read_dev_one_super(bdev, i, false);
4064		if (IS_ERR(super))
 
 
 
4065			continue;
4066
4067		if (!latest || btrfs_super_generation(super) > transid) {
4068			if (latest)
4069				btrfs_release_disk_super(super);
 
 
 
 
4070
4071			latest = super;
 
 
4072			transid = btrfs_super_generation(super);
 
 
4073		}
4074	}
4075
4076	return super;
4077}
4078
4079/*
4080 * Write superblock @sb to the @device. Do not wait for completion, all the
4081 * pages we use for writing are locked.
 
4082 *
4083 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4084 * the expected device size at commit time. Note that max_mirrors must be
4085 * same for write and wait phases.
4086 *
4087 * Return number of errors when page is not found or submission fails.
4088 */
4089static int write_dev_supers(struct btrfs_device *device,
4090			    struct btrfs_super_block *sb, int max_mirrors)
 
4091{
4092	struct btrfs_fs_info *fs_info = device->fs_info;
4093	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4094	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4095	int i;
4096	int errors = 0;
4097	int ret;
4098	u64 bytenr, bytenr_orig;
 
 
4099
4100	if (max_mirrors == 0)
4101		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4102
4103	shash->tfm = fs_info->csum_shash;
4104
4105	for (i = 0; i < max_mirrors; i++) {
4106		struct page *page;
4107		struct bio *bio;
4108		struct btrfs_super_block *disk_super;
4109
4110		bytenr_orig = btrfs_sb_offset(i);
4111		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4112		if (ret == -ENOENT) {
4113			continue;
4114		} else if (ret < 0) {
4115			btrfs_err(device->fs_info,
4116				"couldn't get super block location for mirror %d",
4117				i);
4118			errors++;
4119			continue;
4120		}
4121		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4122		    device->commit_total_bytes)
4123			break;
4124
4125		btrfs_set_super_bytenr(sb, bytenr_orig);
 
 
 
 
 
 
4126
4127		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4128				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4129				    sb->csum);
4130
4131		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4132					   GFP_NOFS);
4133		if (!page) {
4134			btrfs_err(device->fs_info,
4135			    "couldn't get super block page for bytenr %llu",
4136			    bytenr);
4137			errors++;
4138			continue;
4139		}
4140
4141		/* Bump the refcount for wait_dev_supers() */
4142		get_page(page);
 
 
 
4143
4144		disk_super = page_address(page);
4145		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
 
 
 
 
4146
4147		/*
4148		 * Directly use bios here instead of relying on the page cache
4149		 * to do I/O, so we don't lose the ability to do integrity
4150		 * checking.
4151		 */
4152		bio = bio_alloc(device->bdev, 1,
4153				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4154				GFP_NOFS);
4155		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4156		bio->bi_private = device;
4157		bio->bi_end_io = btrfs_end_super_write;
4158		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4159			       offset_in_page(bytenr));
 
 
 
4160
4161		/*
4162		 * We FUA only the first super block.  The others we allow to
4163		 * go down lazy and there's a short window where the on-disk
4164		 * copies might still contain the older version.
4165		 */
4166		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4167			bio->bi_opf |= REQ_FUA;
4168
4169		btrfsic_check_bio(bio);
4170		submit_bio(bio);
4171
4172		if (btrfs_advance_sb_log(device, i))
4173			errors++;
4174	}
4175	return errors < i ? 0 : -1;
4176}
4177
4178/*
4179 * Wait for write completion of superblocks done by write_dev_supers,
4180 * @max_mirrors same for write and wait phases.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4181 *
4182 * Return number of errors when page is not found or not marked up to
4183 * date.
4184 */
4185static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4186{
4187	int i;
4188	int errors = 0;
4189	bool primary_failed = false;
4190	int ret;
4191	u64 bytenr;
4192
4193	if (max_mirrors == 0)
4194		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4195
4196	for (i = 0; i < max_mirrors; i++) {
4197		struct page *page;
 
 
4198
4199		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4200		if (ret == -ENOENT) {
4201			break;
4202		} else if (ret < 0) {
4203			errors++;
4204			if (i == 0)
4205				primary_failed = true;
4206			continue;
4207		}
4208		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4209		    device->commit_total_bytes)
4210			break;
4211
4212		page = find_get_page(device->bdev->bd_inode->i_mapping,
4213				     bytenr >> PAGE_SHIFT);
4214		if (!page) {
4215			errors++;
4216			if (i == 0)
4217				primary_failed = true;
4218			continue;
4219		}
4220		/* Page is submitted locked and unlocked once the IO completes */
4221		wait_on_page_locked(page);
4222		if (PageError(page)) {
4223			errors++;
4224			if (i == 0)
4225				primary_failed = true;
4226		}
4227
4228		/* Drop our reference */
4229		put_page(page);
 
4230
4231		/* Drop the reference from the writing run */
4232		put_page(page);
4233	}
4234
4235	/* log error, force error return */
4236	if (primary_failed) {
4237		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4238			  device->devid);
4239		return -1;
4240	}
4241
4242	return errors < i ? 0 : -1;
4243}
4244
4245/*
4246 * endio for the write_dev_flush, this will wake anyone waiting
4247 * for the barrier when it is done
4248 */
4249static void btrfs_end_empty_barrier(struct bio *bio)
4250{
4251	bio_uninit(bio);
4252	complete(bio->bi_private);
4253}
4254
4255/*
4256 * Submit a flush request to the device if it supports it. Error handling is
4257 * done in the waiting counterpart.
4258 */
4259static void write_dev_flush(struct btrfs_device *device)
4260{
4261	struct bio *bio = &device->flush_bio;
4262
4263#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4264	/*
4265	 * When a disk has write caching disabled, we skip submission of a bio
4266	 * with flush and sync requests before writing the superblock, since
4267	 * it's not needed. However when the integrity checker is enabled, this
4268	 * results in reports that there are metadata blocks referred by a
4269	 * superblock that were not properly flushed. So don't skip the bio
4270	 * submission only when the integrity checker is enabled for the sake
4271	 * of simplicity, since this is a debug tool and not meant for use in
4272	 * non-debug builds.
4273	 */
4274	if (!bdev_write_cache(device->bdev))
4275		return;
4276#endif
 
4277
4278	bio_init(bio, device->bdev, NULL, 0,
4279		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4280	bio->bi_end_io = btrfs_end_empty_barrier;
 
4281	init_completion(&device->flush_wait);
4282	bio->bi_private = &device->flush_wait;
 
4283
4284	btrfsic_check_bio(bio);
4285	submit_bio(bio);
4286	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4287}
4288
4289/*
4290 * If the flush bio has been submitted by write_dev_flush, wait for it.
4291 */
4292static blk_status_t wait_dev_flush(struct btrfs_device *device)
4293{
4294	struct bio *bio = &device->flush_bio;
4295
4296	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4297		return BLK_STS_OK;
4298
4299	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4300	wait_for_completion_io(&device->flush_wait);
4301
4302	return bio->bi_status;
4303}
4304
4305static int check_barrier_error(struct btrfs_fs_info *fs_info)
4306{
4307	if (!btrfs_check_rw_degradable(fs_info, NULL))
4308		return -EIO;
4309	return 0;
4310}
4311
4312/*
4313 * send an empty flush down to each device in parallel,
4314 * then wait for them
4315 */
4316static int barrier_all_devices(struct btrfs_fs_info *info)
4317{
4318	struct list_head *head;
4319	struct btrfs_device *dev;
4320	int errors_wait = 0;
4321	blk_status_t ret;
4322
4323	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4324	/* send down all the barriers */
4325	head = &info->fs_devices->devices;
4326	list_for_each_entry(dev, head, dev_list) {
4327		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4328			continue;
4329		if (!dev->bdev)
4330			continue;
4331		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4332		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4333			continue;
4334
4335		write_dev_flush(dev);
4336		dev->last_flush_error = BLK_STS_OK;
 
4337	}
4338
4339	/* wait for all the barriers */
4340	list_for_each_entry(dev, head, dev_list) {
4341		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4342			continue;
4343		if (!dev->bdev) {
4344			errors_wait++;
4345			continue;
4346		}
4347		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4348		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4349			continue;
4350
4351		ret = wait_dev_flush(dev);
4352		if (ret) {
4353			dev->last_flush_error = ret;
4354			btrfs_dev_stat_inc_and_print(dev,
4355					BTRFS_DEV_STAT_FLUSH_ERRS);
4356			errors_wait++;
4357		}
4358	}
4359
4360	if (errors_wait) {
4361		/*
4362		 * At some point we need the status of all disks
4363		 * to arrive at the volume status. So error checking
4364		 * is being pushed to a separate loop.
4365		 */
4366		return check_barrier_error(info);
4367	}
 
 
4368	return 0;
4369}
4370
4371int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4372{
4373	int raid_type;
4374	int min_tolerated = INT_MAX;
4375
4376	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4377	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4378		min_tolerated = min_t(int, min_tolerated,
4379				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4380				    tolerated_failures);
4381
4382	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4383		if (raid_type == BTRFS_RAID_SINGLE)
4384			continue;
4385		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4386			continue;
4387		min_tolerated = min_t(int, min_tolerated,
4388				    btrfs_raid_array[raid_type].
4389				    tolerated_failures);
4390	}
4391
4392	if (min_tolerated == INT_MAX) {
4393		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4394		min_tolerated = 0;
4395	}
4396
4397	return min_tolerated;
4398}
4399
4400int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
4401{
4402	struct list_head *head;
4403	struct btrfs_device *dev;
4404	struct btrfs_super_block *sb;
4405	struct btrfs_dev_item *dev_item;
4406	int ret;
4407	int do_barriers;
4408	int max_errors;
4409	int total_errors = 0;
4410	u64 flags;
4411
4412	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
 
 
4413
4414	/*
4415	 * max_mirrors == 0 indicates we're from commit_transaction,
4416	 * not from fsync where the tree roots in fs_info have not
4417	 * been consistent on disk.
4418	 */
4419	if (max_mirrors == 0)
4420		backup_super_roots(fs_info);
4421
4422	sb = fs_info->super_for_commit;
4423	dev_item = &sb->dev_item;
4424
4425	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4426	head = &fs_info->fs_devices->devices;
4427	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4428
4429	if (do_barriers) {
4430		ret = barrier_all_devices(fs_info);
4431		if (ret) {
4432			mutex_unlock(
4433				&fs_info->fs_devices->device_list_mutex);
4434			btrfs_handle_fs_error(fs_info, ret,
4435					      "errors while submitting device barriers.");
4436			return ret;
4437		}
4438	}
4439
4440	list_for_each_entry(dev, head, dev_list) {
4441		if (!dev->bdev) {
4442			total_errors++;
4443			continue;
4444		}
4445		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4446		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4447			continue;
4448
4449		btrfs_set_stack_device_generation(dev_item, 0);
4450		btrfs_set_stack_device_type(dev_item, dev->type);
4451		btrfs_set_stack_device_id(dev_item, dev->devid);
4452		btrfs_set_stack_device_total_bytes(dev_item,
4453						   dev->commit_total_bytes);
4454		btrfs_set_stack_device_bytes_used(dev_item,
4455						  dev->commit_bytes_used);
4456		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4457		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4458		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4459		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4460		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4461		       BTRFS_FSID_SIZE);
4462
4463		flags = btrfs_super_flags(sb);
4464		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4465
4466		ret = btrfs_validate_write_super(fs_info, sb);
4467		if (ret < 0) {
4468			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4469			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4470				"unexpected superblock corruption detected");
4471			return -EUCLEAN;
4472		}
4473
4474		ret = write_dev_supers(dev, sb, max_mirrors);
4475		if (ret)
4476			total_errors++;
4477	}
4478	if (total_errors > max_errors) {
4479		btrfs_err(fs_info, "%d errors while writing supers",
4480			  total_errors);
4481		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4482
4483		/* FUA is masked off if unsupported and can't be the reason */
4484		btrfs_handle_fs_error(fs_info, -EIO,
4485				      "%d errors while writing supers",
4486				      total_errors);
4487		return -EIO;
4488	}
4489
4490	total_errors = 0;
4491	list_for_each_entry(dev, head, dev_list) {
4492		if (!dev->bdev)
4493			continue;
4494		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4495		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4496			continue;
4497
4498		ret = wait_dev_supers(dev, max_mirrors);
4499		if (ret)
4500			total_errors++;
4501	}
4502	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4503	if (total_errors > max_errors) {
4504		btrfs_handle_fs_error(fs_info, -EIO,
4505				      "%d errors while writing supers",
4506				      total_errors);
4507		return -EIO;
4508	}
4509	return 0;
4510}
4511
4512/* Drop a fs root from the radix tree and free it. */
4513void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4514				  struct btrfs_root *root)
4515{
4516	bool drop_ref = false;
 
 
 
 
4517
 
 
4518	spin_lock(&fs_info->fs_roots_radix_lock);
4519	radix_tree_delete(&fs_info->fs_roots_radix,
4520			  (unsigned long)root->root_key.objectid);
4521	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4522		drop_ref = true;
4523	spin_unlock(&fs_info->fs_roots_radix_lock);
4524
4525	if (BTRFS_FS_ERROR(fs_info)) {
4526		ASSERT(root->log_root == NULL);
4527		if (root->reloc_root) {
4528			btrfs_put_root(root->reloc_root);
4529			root->reloc_root = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4530		}
4531	}
4532
4533	if (drop_ref)
4534		btrfs_put_root(root);
 
 
 
 
 
 
 
4535}
4536
4537int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4538{
4539	u64 root_objectid = 0;
4540	struct btrfs_root *gang[8];
4541	int i = 0;
4542	int err = 0;
4543	unsigned int ret = 0;
4544
4545	while (1) {
4546		spin_lock(&fs_info->fs_roots_radix_lock);
4547		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4548					     (void **)gang, root_objectid,
4549					     ARRAY_SIZE(gang));
4550		if (!ret) {
4551			spin_unlock(&fs_info->fs_roots_radix_lock);
4552			break;
4553		}
4554		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4555
 
4556		for (i = 0; i < ret; i++) {
4557			/* Avoid to grab roots in dead_roots */
4558			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4559				gang[i] = NULL;
4560				continue;
4561			}
4562			/* grab all the search result for later use */
4563			gang[i] = btrfs_grab_root(gang[i]);
4564		}
4565		spin_unlock(&fs_info->fs_roots_radix_lock);
4566
4567		for (i = 0; i < ret; i++) {
4568			if (!gang[i])
4569				continue;
4570			root_objectid = gang[i]->root_key.objectid;
4571			err = btrfs_orphan_cleanup(gang[i]);
4572			if (err)
4573				break;
4574			btrfs_put_root(gang[i]);
4575		}
4576		root_objectid++;
4577	}
4578
4579	/* release the uncleaned roots due to error */
4580	for (; i < ret; i++) {
4581		if (gang[i])
4582			btrfs_put_root(gang[i]);
4583	}
4584	return err;
4585}
4586
4587int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4588{
4589	struct btrfs_root *root = fs_info->tree_root;
4590	struct btrfs_trans_handle *trans;
 
4591
4592	mutex_lock(&fs_info->cleaner_mutex);
4593	btrfs_run_delayed_iputs(fs_info);
4594	mutex_unlock(&fs_info->cleaner_mutex);
4595	wake_up_process(fs_info->cleaner_kthread);
4596
4597	/* wait until ongoing cleanup work done */
4598	down_write(&fs_info->cleanup_work_sem);
4599	up_write(&fs_info->cleanup_work_sem);
4600
4601	trans = btrfs_join_transaction(root);
4602	if (IS_ERR(trans))
4603		return PTR_ERR(trans);
4604	return btrfs_commit_transaction(trans);
4605}
4606
4607static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4608{
4609	struct btrfs_transaction *trans;
4610	struct btrfs_transaction *tmp;
4611	bool found = false;
4612
4613	if (list_empty(&fs_info->trans_list))
4614		return;
4615
4616	/*
4617	 * This function is only called at the very end of close_ctree(),
4618	 * thus no other running transaction, no need to take trans_lock.
4619	 */
4620	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4621	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4622		struct extent_state *cached = NULL;
4623		u64 dirty_bytes = 0;
4624		u64 cur = 0;
4625		u64 found_start;
4626		u64 found_end;
4627
4628		found = true;
4629		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4630			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4631			dirty_bytes += found_end + 1 - found_start;
4632			cur = found_end + 1;
4633		}
4634		btrfs_warn(fs_info,
4635	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4636			   trans->transid, dirty_bytes);
4637		btrfs_cleanup_one_transaction(trans, fs_info);
4638
4639		if (trans == fs_info->running_transaction)
4640			fs_info->running_transaction = NULL;
4641		list_del_init(&trans->list);
4642
4643		btrfs_put_transaction(trans);
4644		trace_btrfs_transaction_commit(fs_info);
4645	}
4646	ASSERT(!found);
 
 
4647}
4648
4649void __cold close_ctree(struct btrfs_fs_info *fs_info)
4650{
 
4651	int ret;
4652
4653	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4654
4655	/*
4656	 * If we had UNFINISHED_DROPS we could still be processing them, so
4657	 * clear that bit and wake up relocation so it can stop.
4658	 * We must do this before stopping the block group reclaim task, because
4659	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4660	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4661	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4662	 * return 1.
4663	 */
4664	btrfs_wake_unfinished_drop(fs_info);
4665
4666	/*
4667	 * We may have the reclaim task running and relocating a data block group,
4668	 * in which case it may create delayed iputs. So stop it before we park
4669	 * the cleaner kthread otherwise we can get new delayed iputs after
4670	 * parking the cleaner, and that can make the async reclaim task to hang
4671	 * if it's waiting for delayed iputs to complete, since the cleaner is
4672	 * parked and can not run delayed iputs - this will make us hang when
4673	 * trying to stop the async reclaim task.
4674	 */
4675	cancel_work_sync(&fs_info->reclaim_bgs_work);
4676	/*
4677	 * We don't want the cleaner to start new transactions, add more delayed
4678	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4679	 * because that frees the task_struct, and the transaction kthread might
4680	 * still try to wake up the cleaner.
4681	 */
4682	kthread_park(fs_info->cleaner_kthread);
4683
4684	/* wait for the qgroup rescan worker to stop */
4685	btrfs_qgroup_wait_for_completion(fs_info, false);
4686
4687	/* wait for the uuid_scan task to finish */
4688	down(&fs_info->uuid_tree_rescan_sem);
4689	/* avoid complains from lockdep et al., set sem back to initial state */
4690	up(&fs_info->uuid_tree_rescan_sem);
4691
4692	/* pause restriper - we want to resume on mount */
4693	btrfs_pause_balance(fs_info);
4694
4695	btrfs_dev_replace_suspend_for_unmount(fs_info);
4696
4697	btrfs_scrub_cancel(fs_info);
4698
4699	/* wait for any defraggers to finish */
4700	wait_event(fs_info->transaction_wait,
4701		   (atomic_read(&fs_info->defrag_running) == 0));
4702
4703	/* clear out the rbtree of defraggable inodes */
4704	btrfs_cleanup_defrag_inodes(fs_info);
4705
4706	/*
4707	 * After we parked the cleaner kthread, ordered extents may have
4708	 * completed and created new delayed iputs. If one of the async reclaim
4709	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4710	 * can hang forever trying to stop it, because if a delayed iput is
4711	 * added after it ran btrfs_run_delayed_iputs() and before it called
4712	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4713	 * no one else to run iputs.
4714	 *
4715	 * So wait for all ongoing ordered extents to complete and then run
4716	 * delayed iputs. This works because once we reach this point no one
4717	 * can either create new ordered extents nor create delayed iputs
4718	 * through some other means.
4719	 *
4720	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4721	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4722	 * but the delayed iput for the respective inode is made only when doing
4723	 * the final btrfs_put_ordered_extent() (which must happen at
4724	 * btrfs_finish_ordered_io() when we are unmounting).
4725	 */
4726	btrfs_flush_workqueue(fs_info->endio_write_workers);
4727	/* Ordered extents for free space inodes. */
4728	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4729	btrfs_run_delayed_iputs(fs_info);
4730
4731	cancel_work_sync(&fs_info->async_reclaim_work);
4732	cancel_work_sync(&fs_info->async_data_reclaim_work);
4733	cancel_work_sync(&fs_info->preempt_reclaim_work);
4734
4735	/* Cancel or finish ongoing discard work */
4736	btrfs_discard_cleanup(fs_info);
4737
4738	if (!sb_rdonly(fs_info->sb)) {
4739		/*
4740		 * The cleaner kthread is stopped, so do one final pass over
4741		 * unused block groups.
4742		 */
4743		btrfs_delete_unused_bgs(fs_info);
4744
4745		/*
4746		 * There might be existing delayed inode workers still running
4747		 * and holding an empty delayed inode item. We must wait for
4748		 * them to complete first because they can create a transaction.
4749		 * This happens when someone calls btrfs_balance_delayed_items()
4750		 * and then a transaction commit runs the same delayed nodes
4751		 * before any delayed worker has done something with the nodes.
4752		 * We must wait for any worker here and not at transaction
4753		 * commit time since that could cause a deadlock.
4754		 * This is a very rare case.
4755		 */
4756		btrfs_flush_workqueue(fs_info->delayed_workers);
4757
4758		ret = btrfs_commit_super(fs_info);
4759		if (ret)
4760			btrfs_err(fs_info, "commit super ret %d", ret);
4761	}
4762
4763	if (BTRFS_FS_ERROR(fs_info))
4764		btrfs_error_commit_super(fs_info);
4765
4766	kthread_stop(fs_info->transaction_kthread);
4767	kthread_stop(fs_info->cleaner_kthread);
4768
4769	ASSERT(list_empty(&fs_info->delayed_iputs));
4770	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4771
4772	if (btrfs_check_quota_leak(fs_info)) {
4773		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4774		btrfs_err(fs_info, "qgroup reserved space leaked");
4775	}
4776
4777	btrfs_free_qgroup_config(fs_info);
4778	ASSERT(list_empty(&fs_info->delalloc_roots));
4779
4780	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4781		btrfs_info(fs_info, "at unmount delalloc count %lld",
4782		       percpu_counter_sum(&fs_info->delalloc_bytes));
4783	}
4784
4785	if (percpu_counter_sum(&fs_info->ordered_bytes))
4786		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4787			   percpu_counter_sum(&fs_info->ordered_bytes));
4788
4789	btrfs_sysfs_remove_mounted(fs_info);
4790	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4791
4792	btrfs_put_block_group_cache(fs_info);
4793
4794	/*
4795	 * we must make sure there is not any read request to
4796	 * submit after we stopping all workers.
4797	 */
4798	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4799	btrfs_stop_all_workers(fs_info);
4800
4801	/* We shouldn't have any transaction open at this point */
4802	warn_about_uncommitted_trans(fs_info);
4803
4804	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4805	free_root_pointers(fs_info, true);
4806	btrfs_free_fs_roots(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4807
4808	/*
4809	 * We must free the block groups after dropping the fs_roots as we could
4810	 * have had an IO error and have left over tree log blocks that aren't
4811	 * cleaned up until the fs roots are freed.  This makes the block group
4812	 * accounting appear to be wrong because there's pending reserved bytes,
4813	 * so make sure we do the block group cleanup afterwards.
4814	 */
4815	btrfs_free_block_groups(fs_info);
4816
 
 
4817	iput(fs_info->btree_inode);
4818
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4819#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4820	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4821		btrfsic_unmount(fs_info->fs_devices);
4822#endif
4823
4824	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4825	btrfs_close_devices(fs_info->fs_devices);
 
 
 
 
 
 
4826}
4827
4828int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4829			  int atomic)
4830{
4831	int ret;
4832	struct inode *btree_inode = buf->pages[0]->mapping->host;
4833
4834	ret = extent_buffer_uptodate(buf);
4835	if (!ret)
4836		return ret;
4837
4838	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4839				    parent_transid, atomic);
4840	if (ret == -EAGAIN)
4841		return ret;
4842	return !ret;
4843}
4844
 
 
 
 
 
4845void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4846{
4847	struct btrfs_fs_info *fs_info = buf->fs_info;
4848	u64 transid = btrfs_header_generation(buf);
4849	int was_dirty;
4850
4851#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4852	/*
4853	 * This is a fast path so only do this check if we have sanity tests
4854	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4855	 * outside of the sanity tests.
4856	 */
4857	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4858		return;
4859#endif
4860	btrfs_assert_tree_write_locked(buf);
4861	if (transid != fs_info->generation)
4862		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4863			buf->start, transid, fs_info->generation);
4864	was_dirty = set_extent_buffer_dirty(buf);
4865	if (!was_dirty)
4866		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4867					 buf->len,
4868					 fs_info->dirty_metadata_batch);
4869#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 
 
 
 
4870	/*
4871	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4872	 * but item data not updated.
4873	 * So here we should only check item pointers, not item data.
4874	 */
4875	if (btrfs_header_level(buf) == 0 &&
4876	    btrfs_check_leaf_relaxed(buf)) {
4877		btrfs_print_leaf(buf);
4878		ASSERT(0);
 
 
 
 
 
 
 
 
 
4879	}
4880#endif
4881}
4882
4883static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4884					int flush_delayed)
4885{
4886	/*
4887	 * looks as though older kernels can get into trouble with
4888	 * this code, they end up stuck in balance_dirty_pages forever
4889	 */
4890	int ret;
 
4891
4892	if (current->flags & PF_MEMALLOC)
4893		return;
4894
4895	if (flush_delayed)
4896		btrfs_balance_delayed_items(fs_info);
4897
4898	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4899				     BTRFS_DIRTY_METADATA_THRESH,
4900				     fs_info->dirty_metadata_batch);
4901	if (ret > 0) {
4902		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4903	}
 
4904}
4905
4906void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4907{
4908	__btrfs_btree_balance_dirty(fs_info, 1);
 
4909}
4910
4911void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
 
4912{
4913	__btrfs_btree_balance_dirty(fs_info, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4914}
4915
4916static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
 
4917{
4918	/* cleanup FS via transaction */
4919	btrfs_cleanup_transaction(fs_info);
 
 
 
 
 
4920
4921	mutex_lock(&fs_info->cleaner_mutex);
4922	btrfs_run_delayed_iputs(fs_info);
4923	mutex_unlock(&fs_info->cleaner_mutex);
 
4924
4925	down_write(&fs_info->cleanup_work_sem);
4926	up_write(&fs_info->cleanup_work_sem);
4927}
4928
4929static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
4930{
4931	struct btrfs_root *gang[8];
4932	u64 root_objectid = 0;
4933	int ret;
4934
4935	spin_lock(&fs_info->fs_roots_radix_lock);
4936	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4937					     (void **)gang, root_objectid,
4938					     ARRAY_SIZE(gang))) != 0) {
4939		int i;
4940
4941		for (i = 0; i < ret; i++)
4942			gang[i] = btrfs_grab_root(gang[i]);
4943		spin_unlock(&fs_info->fs_roots_radix_lock);
4944
4945		for (i = 0; i < ret; i++) {
4946			if (!gang[i])
4947				continue;
4948			root_objectid = gang[i]->root_key.objectid;
4949			btrfs_free_log(NULL, gang[i]);
4950			btrfs_put_root(gang[i]);
4951		}
4952		root_objectid++;
4953		spin_lock(&fs_info->fs_roots_radix_lock);
4954	}
4955	spin_unlock(&fs_info->fs_roots_radix_lock);
4956	btrfs_free_log_root_tree(NULL, fs_info);
4957}
4958
4959static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4960{
4961	struct btrfs_ordered_extent *ordered;
 
4962
4963	spin_lock(&root->ordered_extent_lock);
4964	/*
4965	 * This will just short circuit the ordered completion stuff which will
4966	 * make sure the ordered extent gets properly cleaned up.
4967	 */
4968	list_for_each_entry(ordered, &root->ordered_extents,
4969			    root_extent_list)
4970		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4971	spin_unlock(&root->ordered_extent_lock);
 
 
 
 
 
 
 
 
4972}
4973
4974static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4975{
4976	struct btrfs_root *root;
4977	struct list_head splice;
 
 
4978
4979	INIT_LIST_HEAD(&splice);
4980
4981	spin_lock(&fs_info->ordered_root_lock);
4982	list_splice_init(&fs_info->ordered_roots, &splice);
 
4983	while (!list_empty(&splice)) {
4984		root = list_first_entry(&splice, struct btrfs_root,
4985					ordered_root);
4986		list_move_tail(&root->ordered_root,
4987			       &fs_info->ordered_roots);
4988
4989		spin_unlock(&fs_info->ordered_root_lock);
4990		btrfs_destroy_ordered_extents(root);
4991
4992		cond_resched();
4993		spin_lock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
 
4994	}
4995	spin_unlock(&fs_info->ordered_root_lock);
4996
4997	/*
4998	 * We need this here because if we've been flipped read-only we won't
4999	 * get sync() from the umount, so we need to make sure any ordered
5000	 * extents that haven't had their dirty pages IO start writeout yet
5001	 * actually get run and error out properly.
5002	 */
5003	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
5004}
5005
5006static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
5007				      struct btrfs_fs_info *fs_info)
5008{
5009	struct rb_node *node;
5010	struct btrfs_delayed_ref_root *delayed_refs;
5011	struct btrfs_delayed_ref_node *ref;
5012	int ret = 0;
5013
5014	delayed_refs = &trans->delayed_refs;
5015
5016	spin_lock(&delayed_refs->lock);
5017	if (atomic_read(&delayed_refs->num_entries) == 0) {
5018		spin_unlock(&delayed_refs->lock);
5019		btrfs_debug(fs_info, "delayed_refs has NO entry");
5020		return ret;
5021	}
5022
5023	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
5024		struct btrfs_delayed_ref_head *head;
5025		struct rb_node *n;
5026		bool pin_bytes = false;
5027
5028		head = rb_entry(node, struct btrfs_delayed_ref_head,
5029				href_node);
5030		if (btrfs_delayed_ref_lock(delayed_refs, head))
5031			continue;
5032
5033		spin_lock(&head->lock);
5034		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
5035			ref = rb_entry(n, struct btrfs_delayed_ref_node,
5036				       ref_node);
5037			ref->in_tree = 0;
5038			rb_erase_cached(&ref->ref_node, &head->ref_tree);
5039			RB_CLEAR_NODE(&ref->ref_node);
5040			if (!list_empty(&ref->add_list))
5041				list_del(&ref->add_list);
5042			atomic_dec(&delayed_refs->num_entries);
5043			btrfs_put_delayed_ref(ref);
5044		}
5045		if (head->must_insert_reserved)
5046			pin_bytes = true;
5047		btrfs_free_delayed_extent_op(head->extent_op);
5048		btrfs_delete_ref_head(delayed_refs, head);
5049		spin_unlock(&head->lock);
5050		spin_unlock(&delayed_refs->lock);
5051		mutex_unlock(&head->mutex);
5052
5053		if (pin_bytes) {
5054			struct btrfs_block_group *cache;
 
 
 
 
 
 
 
 
 
 
 
5055
5056			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5057			BUG_ON(!cache);
 
5058
5059			spin_lock(&cache->space_info->lock);
5060			spin_lock(&cache->lock);
5061			cache->pinned += head->num_bytes;
5062			btrfs_space_info_update_bytes_pinned(fs_info,
5063				cache->space_info, head->num_bytes);
5064			cache->reserved -= head->num_bytes;
5065			cache->space_info->bytes_reserved -= head->num_bytes;
5066			spin_unlock(&cache->lock);
5067			spin_unlock(&cache->space_info->lock);
5068
5069			btrfs_put_block_group(cache);
 
5070
5071			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5072				head->bytenr + head->num_bytes - 1);
5073		}
5074		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5075		btrfs_put_delayed_ref_head(head);
5076		cond_resched();
5077		spin_lock(&delayed_refs->lock);
5078	}
5079	btrfs_qgroup_destroy_extent_records(trans);
5080
5081	spin_unlock(&delayed_refs->lock);
5082
5083	return ret;
5084}
5085
5086static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5087{
5088	struct btrfs_inode *btrfs_inode;
5089	struct list_head splice;
5090
5091	INIT_LIST_HEAD(&splice);
5092
5093	spin_lock(&root->delalloc_lock);
5094	list_splice_init(&root->delalloc_inodes, &splice);
5095
5096	while (!list_empty(&splice)) {
5097		struct inode *inode = NULL;
5098		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5099					       delalloc_inodes);
5100		__btrfs_del_delalloc_inode(root, btrfs_inode);
5101		spin_unlock(&root->delalloc_lock);
5102
5103		/*
5104		 * Make sure we get a live inode and that it'll not disappear
5105		 * meanwhile.
5106		 */
5107		inode = igrab(&btrfs_inode->vfs_inode);
5108		if (inode) {
5109			invalidate_inode_pages2(inode->i_mapping);
5110			iput(inode);
5111		}
5112		spin_lock(&root->delalloc_lock);
5113	}
5114	spin_unlock(&root->delalloc_lock);
5115}
5116
5117static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5118{
5119	struct btrfs_root *root;
5120	struct list_head splice;
5121
5122	INIT_LIST_HEAD(&splice);
5123
5124	spin_lock(&fs_info->delalloc_root_lock);
5125	list_splice_init(&fs_info->delalloc_roots, &splice);
 
5126	while (!list_empty(&splice)) {
5127		root = list_first_entry(&splice, struct btrfs_root,
5128					 delalloc_root);
5129		root = btrfs_grab_root(root);
5130		BUG_ON(!root);
5131		spin_unlock(&fs_info->delalloc_root_lock);
5132
5133		btrfs_destroy_delalloc_inodes(root);
5134		btrfs_put_root(root);
5135
5136		spin_lock(&fs_info->delalloc_root_lock);
5137	}
5138	spin_unlock(&fs_info->delalloc_root_lock);
 
5139}
5140
5141static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5142					struct extent_io_tree *dirty_pages,
5143					int mark)
5144{
5145	int ret;
 
 
5146	struct extent_buffer *eb;
5147	u64 start = 0;
5148	u64 end;
 
 
5149
5150	while (1) {
5151		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5152					    mark, NULL);
5153		if (ret)
5154			break;
5155
5156		clear_extent_bits(dirty_pages, start, end, mark);
5157		while (start <= end) {
5158			eb = find_extent_buffer(fs_info, start);
5159			start += fs_info->nodesize;
5160			if (!eb)
 
5161				continue;
5162			wait_on_extent_buffer_writeback(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5163
5164			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5165					       &eb->bflags))
5166				clear_extent_buffer_dirty(eb);
5167			free_extent_buffer_stale(eb);
5168		}
5169	}
5170
5171	return ret;
5172}
5173
5174static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5175				       struct extent_io_tree *unpin)
5176{
 
5177	u64 start;
5178	u64 end;
5179	int ret;
 
5180
 
 
5181	while (1) {
5182		struct extent_state *cached_state = NULL;
5183
5184		/*
5185		 * The btrfs_finish_extent_commit() may get the same range as
5186		 * ours between find_first_extent_bit and clear_extent_dirty.
5187		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5188		 * the same extent range.
5189		 */
5190		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5191		ret = find_first_extent_bit(unpin, 0, &start, &end,
5192					    EXTENT_DIRTY, &cached_state);
5193		if (ret) {
5194			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5195			break;
5196		}
5197
5198		clear_extent_dirty(unpin, start, end, &cached_state);
5199		free_extent_state(cached_state);
5200		btrfs_error_unpin_extent_range(fs_info, start, end);
5201		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
 
 
 
 
5202		cond_resched();
5203	}
5204
 
 
 
 
 
 
 
 
 
5205	return 0;
5206}
5207
5208static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
 
5209{
5210	struct inode *inode;
 
 
5211
5212	inode = cache->io_ctl.inode;
5213	if (inode) {
5214		invalidate_inode_pages2(inode->i_mapping);
5215		BTRFS_I(inode)->generation = 0;
5216		cache->io_ctl.inode = NULL;
5217		iput(inode);
5218	}
5219	ASSERT(cache->io_ctl.pages == NULL);
5220	btrfs_put_block_group(cache);
5221}
5222
5223void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5224			     struct btrfs_fs_info *fs_info)
5225{
5226	struct btrfs_block_group *cache;
5227
5228	spin_lock(&cur_trans->dirty_bgs_lock);
5229	while (!list_empty(&cur_trans->dirty_bgs)) {
5230		cache = list_first_entry(&cur_trans->dirty_bgs,
5231					 struct btrfs_block_group,
5232					 dirty_list);
5233
5234		if (!list_empty(&cache->io_list)) {
5235			spin_unlock(&cur_trans->dirty_bgs_lock);
5236			list_del_init(&cache->io_list);
5237			btrfs_cleanup_bg_io(cache);
5238			spin_lock(&cur_trans->dirty_bgs_lock);
5239		}
5240
5241		list_del_init(&cache->dirty_list);
5242		spin_lock(&cache->lock);
5243		cache->disk_cache_state = BTRFS_DC_ERROR;
5244		spin_unlock(&cache->lock);
5245
5246		spin_unlock(&cur_trans->dirty_bgs_lock);
5247		btrfs_put_block_group(cache);
5248		btrfs_delayed_refs_rsv_release(fs_info, 1);
5249		spin_lock(&cur_trans->dirty_bgs_lock);
5250	}
5251	spin_unlock(&cur_trans->dirty_bgs_lock);
5252
5253	/*
5254	 * Refer to the definition of io_bgs member for details why it's safe
5255	 * to use it without any locking
5256	 */
5257	while (!list_empty(&cur_trans->io_bgs)) {
5258		cache = list_first_entry(&cur_trans->io_bgs,
5259					 struct btrfs_block_group,
5260					 io_list);
5261
5262		list_del_init(&cache->io_list);
5263		spin_lock(&cache->lock);
5264		cache->disk_cache_state = BTRFS_DC_ERROR;
5265		spin_unlock(&cache->lock);
5266		btrfs_cleanup_bg_io(cache);
5267	}
5268}
5269
5270void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5271				   struct btrfs_fs_info *fs_info)
5272{
5273	struct btrfs_device *dev, *tmp;
 
5274
5275	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5276	ASSERT(list_empty(&cur_trans->dirty_bgs));
5277	ASSERT(list_empty(&cur_trans->io_bgs));
5278
5279	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5280				 post_commit_list) {
5281		list_del_init(&dev->post_commit_list);
5282	}
 
 
 
 
 
5283
5284	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5285
5286	cur_trans->state = TRANS_STATE_COMMIT_START;
5287	wake_up(&fs_info->transaction_blocked_wait);
5288
5289	cur_trans->state = TRANS_STATE_UNBLOCKED;
5290	wake_up(&fs_info->transaction_wait);
5291
5292	btrfs_destroy_delayed_inodes(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5293
5294	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5295				     EXTENT_DIRTY);
5296	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5297
5298	btrfs_free_redirty_list(cur_trans);
5299
5300	cur_trans->state =TRANS_STATE_COMPLETED;
5301	wake_up(&cur_trans->commit_wait);
5302}
5303
5304static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5305{
5306	struct btrfs_transaction *t;
5307
5308	mutex_lock(&fs_info->transaction_kthread_mutex);
 
5309
5310	spin_lock(&fs_info->trans_lock);
5311	while (!list_empty(&fs_info->trans_list)) {
5312		t = list_first_entry(&fs_info->trans_list,
5313				     struct btrfs_transaction, list);
5314		if (t->state >= TRANS_STATE_COMMIT_START) {
5315			refcount_inc(&t->use_count);
5316			spin_unlock(&fs_info->trans_lock);
5317			btrfs_wait_for_commit(fs_info, t->transid);
5318			btrfs_put_transaction(t);
5319			spin_lock(&fs_info->trans_lock);
5320			continue;
5321		}
5322		if (t == fs_info->running_transaction) {
5323			t->state = TRANS_STATE_COMMIT_DOING;
5324			spin_unlock(&fs_info->trans_lock);
5325			/*
5326			 * We wait for 0 num_writers since we don't hold a trans
5327			 * handle open currently for this transaction.
5328			 */
5329			wait_event(t->writer_wait,
5330				   atomic_read(&t->num_writers) == 0);
5331		} else {
5332			spin_unlock(&fs_info->trans_lock);
5333		}
5334		btrfs_cleanup_one_transaction(t, fs_info);
5335
5336		spin_lock(&fs_info->trans_lock);
5337		if (t == fs_info->running_transaction)
5338			fs_info->running_transaction = NULL;
5339		list_del_init(&t->list);
5340		spin_unlock(&fs_info->trans_lock);
 
 
5341
5342		btrfs_put_transaction(t);
5343		trace_btrfs_transaction_commit(fs_info);
5344		spin_lock(&fs_info->trans_lock);
5345	}
5346	spin_unlock(&fs_info->trans_lock);
5347	btrfs_destroy_all_ordered_extents(fs_info);
5348	btrfs_destroy_delayed_inodes(fs_info);
5349	btrfs_assert_delayed_root_empty(fs_info);
5350	btrfs_destroy_all_delalloc_inodes(fs_info);
5351	btrfs_drop_all_logs(fs_info);
5352	mutex_unlock(&fs_info->transaction_kthread_mutex);
5353
5354	return 0;
5355}
5356
5357int btrfs_init_root_free_objectid(struct btrfs_root *root)
5358{
5359	struct btrfs_path *path;
5360	int ret;
5361	struct extent_buffer *l;
5362	struct btrfs_key search_key;
5363	struct btrfs_key found_key;
5364	int slot;
5365
5366	path = btrfs_alloc_path();
5367	if (!path)
5368		return -ENOMEM;
5369
5370	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5371	search_key.type = -1;
5372	search_key.offset = (u64)-1;
5373	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5374	if (ret < 0)
5375		goto error;
5376	BUG_ON(ret == 0); /* Corruption */
5377	if (path->slots[0] > 0) {
5378		slot = path->slots[0] - 1;
5379		l = path->nodes[0];
5380		btrfs_item_key_to_cpu(l, &found_key, slot);
5381		root->free_objectid = max_t(u64, found_key.objectid + 1,
5382					    BTRFS_FIRST_FREE_OBJECTID);
5383	} else {
5384		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5385	}
5386	ret = 0;
5387error:
5388	btrfs_free_path(path);
5389	return ret;
5390}
5391
5392int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5393{
5394	int ret;
5395	mutex_lock(&root->objectid_mutex);
5396
5397	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5398		btrfs_warn(root->fs_info,
5399			   "the objectid of root %llu reaches its highest value",
5400			   root->root_key.objectid);
5401		ret = -ENOSPC;
5402		goto out;
5403	}
5404
5405	*objectid = root->free_objectid++;
5406	ret = 0;
5407out:
5408	mutex_unlock(&root->objectid_mutex);
5409	return ret;
5410}
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/crc32c.h>
  30#include <linux/slab.h>
  31#include <linux/migrate.h>
  32#include <linux/ratelimit.h>
 
 
 
 
 
  33#include <asm/unaligned.h>
  34#include "compat.h"
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "async-thread.h"
  42#include "locking.h"
  43#include "tree-log.h"
  44#include "free-space-cache.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49static struct extent_io_ops btree_extent_io_ops;
  50static void end_workqueue_fn(struct btrfs_work *work);
  51static void free_fs_root(struct btrfs_root *root);
  52static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  53				    int read_only);
  54static void btrfs_destroy_ordered_operations(struct btrfs_root *root);
  55static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  56static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  57				      struct btrfs_root *root);
  58static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  59static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  60static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  61					struct extent_io_tree *dirty_pages,
  62					int mark);
  63static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  64				       struct extent_io_tree *pinned_extents);
 
 
  65
  66/*
  67 * end_io_wq structs are used to do processing in task context when an IO is
  68 * complete.  This is used during reads to verify checksums, and it is used
  69 * by writes to insert metadata for new file extents after IO is complete.
  70 */
  71struct end_io_wq {
  72	struct bio *bio;
  73	bio_end_io_t *end_io;
  74	void *private;
  75	struct btrfs_fs_info *info;
  76	int error;
  77	int metadata;
  78	struct list_head list;
  79	struct btrfs_work work;
  80};
  81
  82/*
  83 * async submit bios are used to offload expensive checksumming
  84 * onto the worker threads.  They checksum file and metadata bios
  85 * just before they are sent down the IO stack.
  86 */
  87struct async_submit_bio {
  88	struct inode *inode;
  89	struct bio *bio;
  90	struct list_head list;
  91	extent_submit_bio_hook_t *submit_bio_start;
  92	extent_submit_bio_hook_t *submit_bio_done;
  93	int rw;
  94	int mirror_num;
  95	unsigned long bio_flags;
  96	/*
  97	 * bio_offset is optional, can be used if the pages in the bio
  98	 * can't tell us where in the file the bio should go
  99	 */
 100	u64 bio_offset;
 101	struct btrfs_work work;
 102	int error;
 103};
 104
 105/*
 106 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 107 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 108 * the level the eb occupies in the tree.
 109 *
 110 * Different roots are used for different purposes and may nest inside each
 111 * other and they require separate keysets.  As lockdep keys should be
 112 * static, assign keysets according to the purpose of the root as indicated
 113 * by btrfs_root->objectid.  This ensures that all special purpose roots
 114 * have separate keysets.
 115 *
 116 * Lock-nesting across peer nodes is always done with the immediate parent
 117 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 118 * subclass to avoid triggering lockdep warning in such cases.
 119 *
 120 * The key is set by the readpage_end_io_hook after the buffer has passed
 121 * csum validation but before the pages are unlocked.  It is also set by
 122 * btrfs_init_new_buffer on freshly allocated blocks.
 123 *
 124 * We also add a check to make sure the highest level of the tree is the
 125 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 126 * needs update as well.
 127 */
 128#ifdef CONFIG_DEBUG_LOCK_ALLOC
 129# if BTRFS_MAX_LEVEL != 8
 130#  error
 131# endif
 132
 133static struct btrfs_lockdep_keyset {
 134	u64			id;		/* root objectid */
 135	const char		*name_stem;	/* lock name stem */
 136	char			names[BTRFS_MAX_LEVEL + 1][20];
 137	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 138} btrfs_lockdep_keysets[] = {
 139	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 140	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 141	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 142	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 143	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 144	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 145	{ .id = BTRFS_ORPHAN_OBJECTID,		.name_stem = "orphan"	},
 146	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 147	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 148	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 149	{ .id = 0,				.name_stem = "tree"	},
 150};
 151
 152void __init btrfs_init_lockdep(void)
 153{
 154	int i, j;
 155
 156	/* initialize lockdep class names */
 157	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 158		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 
 159
 160		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 161			snprintf(ks->names[j], sizeof(ks->names[j]),
 162				 "btrfs-%s-%02d", ks->name_stem, j);
 
 
 
 
 
 
 163	}
 
 
 164}
 165
 166void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 167				    int level)
 
 
 
 
 
 
 
 168{
 169	struct btrfs_lockdep_keyset *ks;
 
 170
 171	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 
 172
 173	/* find the matching keyset, id 0 is the default entry */
 174	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 175		if (ks->id == objectid)
 176			break;
 177
 178	lockdep_set_class_and_name(&eb->lock,
 179				   &ks->keys[level], ks->names[level]);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180}
 181
 182#endif
 
 
 
 
 
 
 
 
 
 
 
 183
 184/*
 185 * extents on the btree inode are pretty simple, there's one extent
 186 * that covers the entire device
 187 */
 188static struct extent_map *btree_get_extent(struct inode *inode,
 189		struct page *page, size_t pg_offset, u64 start, u64 len,
 190		int create)
 191{
 192	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 193	struct extent_map *em;
 194	int ret;
 195
 196	read_lock(&em_tree->lock);
 197	em = lookup_extent_mapping(em_tree, start, len);
 198	if (em) {
 199		em->bdev =
 200			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 201		read_unlock(&em_tree->lock);
 202		goto out;
 203	}
 204	read_unlock(&em_tree->lock);
 205
 206	em = alloc_extent_map();
 207	if (!em) {
 208		em = ERR_PTR(-ENOMEM);
 209		goto out;
 210	}
 211	em->start = 0;
 212	em->len = (u64)-1;
 213	em->block_len = (u64)-1;
 214	em->block_start = 0;
 215	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 216
 217	write_lock(&em_tree->lock);
 218	ret = add_extent_mapping(em_tree, em);
 219	if (ret == -EEXIST) {
 220		u64 failed_start = em->start;
 221		u64 failed_len = em->len;
 222
 223		free_extent_map(em);
 224		em = lookup_extent_mapping(em_tree, start, len);
 225		if (em) {
 226			ret = 0;
 227		} else {
 228			em = lookup_extent_mapping(em_tree, failed_start,
 229						   failed_len);
 230			ret = -EIO;
 231		}
 232	} else if (ret) {
 233		free_extent_map(em);
 234		em = NULL;
 235	}
 236	write_unlock(&em_tree->lock);
 237
 238	if (ret)
 239		em = ERR_PTR(ret);
 240out:
 241	return em;
 242}
 243
 244u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
 
 245{
 246	return crc32c(seed, data, len);
 247}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 248
 249void btrfs_csum_final(u32 crc, char *result)
 250{
 251	put_unaligned_le32(~crc, result);
 252}
 
 
 
 
 253
 254/*
 255 * compute the csum for a btree block, and either verify it or write it
 256 * into the csum field of the block.
 257 */
 258static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 259			   int verify)
 260{
 261	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
 262	char *result = NULL;
 263	unsigned long len;
 264	unsigned long cur_len;
 265	unsigned long offset = BTRFS_CSUM_SIZE;
 266	char *kaddr;
 267	unsigned long map_start;
 268	unsigned long map_len;
 269	int err;
 270	u32 crc = ~(u32)0;
 271	unsigned long inline_result;
 272
 273	len = buf->len - offset;
 274	while (len > 0) {
 275		err = map_private_extent_buffer(buf, offset, 32,
 276					&kaddr, &map_start, &map_len);
 277		if (err)
 278			return 1;
 279		cur_len = min(len, map_len - (offset - map_start));
 280		crc = btrfs_csum_data(root, kaddr + offset - map_start,
 281				      crc, cur_len);
 282		len -= cur_len;
 283		offset += cur_len;
 284	}
 285	if (csum_size > sizeof(inline_result)) {
 286		result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 287		if (!result)
 288			return 1;
 289	} else {
 290		result = (char *)&inline_result;
 291	}
 292
 293	btrfs_csum_final(crc, result);
 
 
 
 
 294
 295	if (verify) {
 296		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 297			u32 val;
 298			u32 found = 0;
 299			memcpy(&found, result, csum_size);
 300
 301			read_extent_buffer(buf, &val, 0, csum_size);
 302			printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
 303				       "failed on %llu wanted %X found %X "
 304				       "level %d\n",
 305				       root->fs_info->sb->s_id,
 306				       (unsigned long long)buf->start, val, found,
 307				       btrfs_header_level(buf));
 308			if (result != (char *)&inline_result)
 309				kfree(result);
 310			return 1;
 311		}
 312	} else {
 313		write_extent_buffer(buf, result, 0, csum_size);
 314	}
 315	if (result != (char *)&inline_result)
 316		kfree(result);
 317	return 0;
 318}
 319
 320/*
 321 * we can't consider a given block up to date unless the transid of the
 322 * block matches the transid in the parent node's pointer.  This is how we
 323 * detect blocks that either didn't get written at all or got written
 324 * in the wrong place.
 325 */
 326static int verify_parent_transid(struct extent_io_tree *io_tree,
 327				 struct extent_buffer *eb, u64 parent_transid,
 328				 int atomic)
 329{
 330	struct extent_state *cached_state = NULL;
 331	int ret;
 
 
 332
 333	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 334		return 0;
 335
 336	if (atomic)
 337		return -EAGAIN;
 338
 339	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 340			 0, &cached_state);
 341	if (extent_buffer_uptodate(eb) &&
 342	    btrfs_header_generation(eb) == parent_transid) {
 343		ret = 0;
 344		goto out;
 345	}
 346	printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 347		       "found %llu\n",
 348		       (unsigned long long)eb->start,
 349		       (unsigned long long)parent_transid,
 350		       (unsigned long long)btrfs_header_generation(eb));
 351	ret = 1;
 352	clear_extent_buffer_uptodate(eb);
 353out:
 354	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 355			     &cached_state, GFP_NOFS);
 356	return ret;
 357}
 358
 359/*
 360 * helper to read a given tree block, doing retries as required when
 361 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 362 */
 363static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 364					  struct extent_buffer *eb,
 365					  u64 start, u64 parent_transid)
 366{
 367	struct extent_io_tree *io_tree;
 368	int failed = 0;
 369	int ret;
 370	int num_copies = 0;
 371	int mirror_num = 0;
 372	int failed_mirror = 0;
 373
 374	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 375	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 376	while (1) {
 377		ret = read_extent_buffer_pages(io_tree, eb, start,
 378					       WAIT_COMPLETE,
 379					       btree_get_extent, mirror_num);
 380		if (!ret && !verify_parent_transid(io_tree, eb,
 381						   parent_transid, 0))
 382			break;
 383
 384		/*
 385		 * This buffer's crc is fine, but its contents are corrupted, so
 386		 * there is no reason to read the other copies, they won't be
 387		 * any less wrong.
 388		 */
 389		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 390			break;
 391
 392		num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
 393					      eb->start, eb->len);
 394		if (num_copies == 1)
 395			break;
 396
 397		if (!failed_mirror) {
 398			failed = 1;
 399			failed_mirror = eb->read_mirror;
 400		}
 401
 402		mirror_num++;
 403		if (mirror_num == failed_mirror)
 404			mirror_num++;
 405
 406		if (mirror_num > num_copies)
 407			break;
 408	}
 409
 410	if (failed && !ret)
 411		repair_eb_io_failure(root, eb, failed_mirror);
 412
 413	return ret;
 414}
 415
 416/*
 417 * checksum a dirty tree block before IO.  This has extra checks to make sure
 418 * we only fill in the checksum field in the first page of a multi-page block
 419 */
 
 
 
 
 
 
 420
 421static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 422{
 423	struct extent_io_tree *tree;
 424	u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 425	u64 found_start;
 426	struct extent_buffer *eb;
 427
 428	tree = &BTRFS_I(page->mapping->host)->io_tree;
 
 429
 430	eb = (struct extent_buffer *)page->private;
 431	if (page != eb->pages[0])
 432		return 0;
 433	found_start = btrfs_header_bytenr(eb);
 434	if (found_start != start) {
 435		WARN_ON(1);
 436		return 0;
 
 
 
 
 437	}
 438	if (eb->pages[0] != page) {
 439		WARN_ON(1);
 440		return 0;
 441	}
 442	if (!PageUptodate(page)) {
 443		WARN_ON(1);
 444		return 0;
 445	}
 446	csum_tree_block(root, eb, 0);
 447	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 448}
 449
 450static int check_tree_block_fsid(struct btrfs_root *root,
 451				 struct extent_buffer *eb)
 
 452{
 453	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 454	u8 fsid[BTRFS_UUID_SIZE];
 455	int ret = 1;
 
 456
 457	read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
 458			   BTRFS_FSID_SIZE);
 459	while (fs_devices) {
 460		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 461			ret = 0;
 462			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 463		}
 464		fs_devices = fs_devices->seed;
 
 
 
 
 465	}
 466	return ret;
 467}
 468
 469#define CORRUPT(reason, eb, root, slot)				\
 470	printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu,"	\
 471	       "root=%llu, slot=%d\n", reason,			\
 472	       (unsigned long long)btrfs_header_bytenr(eb),	\
 473	       (unsigned long long)root->objectid, slot)
 
 
 
 
 
 
 474
 475static noinline int check_leaf(struct btrfs_root *root,
 476			       struct extent_buffer *leaf)
 477{
 478	struct btrfs_key key;
 479	struct btrfs_key leaf_key;
 480	u32 nritems = btrfs_header_nritems(leaf);
 481	int slot;
 482
 483	if (nritems == 0)
 
 484		return 0;
 485
 486	/* Check the 0 item */
 487	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 488	    BTRFS_LEAF_DATA_SIZE(root)) {
 489		CORRUPT("invalid item offset size pair", leaf, root, 0);
 490		return -EIO;
 491	}
 492
 493	/*
 494	 * Check to make sure each items keys are in the correct order and their
 495	 * offsets make sense.  We only have to loop through nritems-1 because
 496	 * we check the current slot against the next slot, which verifies the
 497	 * next slot's offset+size makes sense and that the current's slot
 498	 * offset is correct.
 499	 */
 500	for (slot = 0; slot < nritems - 1; slot++) {
 501		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 502		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 503
 504		/* Make sure the keys are in the right order */
 505		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 506			CORRUPT("bad key order", leaf, root, slot);
 507			return -EIO;
 508		}
 509
 510		/*
 511		 * Make sure the offset and ends are right, remember that the
 512		 * item data starts at the end of the leaf and grows towards the
 513		 * front.
 514		 */
 515		if (btrfs_item_offset_nr(leaf, slot) !=
 516			btrfs_item_end_nr(leaf, slot + 1)) {
 517			CORRUPT("slot offset bad", leaf, root, slot);
 518			return -EIO;
 519		}
 520
 521		/*
 522		 * Check to make sure that we don't point outside of the leaf,
 523		 * just incase all the items are consistent to eachother, but
 524		 * all point outside of the leaf.
 525		 */
 526		if (btrfs_item_end_nr(leaf, slot) >
 527		    BTRFS_LEAF_DATA_SIZE(root)) {
 528			CORRUPT("slot end outside of leaf", leaf, root, slot);
 529			return -EIO;
 530		}
 531	}
 532
 533	return 0;
 534}
 535
 536struct extent_buffer *find_eb_for_page(struct extent_io_tree *tree,
 537				       struct page *page, int max_walk)
 538{
 539	struct extent_buffer *eb;
 540	u64 start = page_offset(page);
 541	u64 target = start;
 542	u64 min_start;
 543
 544	if (start < max_walk)
 545		min_start = 0;
 
 
 
 
 
 
 
 546	else
 547		min_start = start - max_walk;
 548
 549	while (start >= min_start) {
 550		eb = find_extent_buffer(tree, start, 0);
 551		if (eb) {
 552			/*
 553			 * we found an extent buffer and it contains our page
 554			 * horray!
 555			 */
 556			if (eb->start <= target &&
 557			    eb->start + eb->len > target)
 558				return eb;
 559
 560			/* we found an extent buffer that wasn't for us */
 561			free_extent_buffer(eb);
 562			return NULL;
 563		}
 564		if (start == 0)
 565			break;
 566		start -= PAGE_CACHE_SIZE;
 567	}
 568	return NULL;
 569}
 570
 571static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
 572			       struct extent_state *state, int mirror)
 
 573{
 574	struct extent_io_tree *tree;
 575	u64 found_start;
 576	int found_level;
 577	struct extent_buffer *eb;
 578	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 
 579	int ret = 0;
 580	int reads_done;
 581
 582	if (!page->private)
 583		goto out;
 584
 585	tree = &BTRFS_I(page->mapping->host)->io_tree;
 586	eb = (struct extent_buffer *)page->private;
 587
 588	/* the pending IO might have been the only thing that kept this buffer
 589	 * in memory.  Make sure we have a ref for all this other checks
 590	 */
 591	extent_buffer_get(eb);
 592
 593	reads_done = atomic_dec_and_test(&eb->io_pages);
 594	if (!reads_done)
 595		goto err;
 596
 597	eb->read_mirror = mirror;
 598	if (test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
 599		ret = -EIO;
 600		goto err;
 601	}
 602
 603	found_start = btrfs_header_bytenr(eb);
 604	if (found_start != eb->start) {
 605		printk_ratelimited(KERN_INFO "btrfs bad tree block start "
 606			       "%llu %llu\n",
 607			       (unsigned long long)found_start,
 608			       (unsigned long long)eb->start);
 609		ret = -EIO;
 610		goto err;
 611	}
 612	if (check_tree_block_fsid(root, eb)) {
 613		printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
 614			       (unsigned long long)eb->start);
 615		ret = -EIO;
 616		goto err;
 617	}
 618	found_level = btrfs_header_level(eb);
 
 
 
 
 
 
 
 619
 620	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 621				       eb, found_level);
 
 
 
 
 
 
 
 
 
 
 
 
 622
 623	ret = csum_tree_block(root, eb, 1);
 624	if (ret) {
 
 
 
 
 
 
 
 
 
 
 
 625		ret = -EIO;
 626		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 627	}
 628
 629	/*
 630	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 631	 * that we don't try and read the other copies of this block, just
 632	 * return -EIO.
 633	 */
 634	if (found_level == 0 && check_leaf(root, eb)) {
 635		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 636		ret = -EIO;
 637	}
 638
 
 
 
 639	if (!ret)
 640		set_extent_buffer_uptodate(eb);
 641err:
 642	if (test_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags)) {
 643		clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags);
 644		btree_readahead_hook(root, eb, eb->start, ret);
 645	}
 646
 647	if (ret)
 648		clear_extent_buffer_uptodate(eb);
 649	free_extent_buffer(eb);
 650out:
 651	return ret;
 652}
 653
 654static int btree_io_failed_hook(struct page *page, int failed_mirror)
 
 655{
 
 656	struct extent_buffer *eb;
 657	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 
 
 
 
 
 
 
 
 
 
 658
 659	eb = (struct extent_buffer *)page->private;
 660	set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
 661	eb->read_mirror = failed_mirror;
 662	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 663		btree_readahead_hook(root, eb, eb->start, -EIO);
 664	return -EIO;	/* we fixed nothing */
 665}
 666
 667static void end_workqueue_bio(struct bio *bio, int err)
 668{
 669	struct end_io_wq *end_io_wq = bio->bi_private;
 670	struct btrfs_fs_info *fs_info;
 671
 672	fs_info = end_io_wq->info;
 673	end_io_wq->error = err;
 674	end_io_wq->work.func = end_workqueue_fn;
 675	end_io_wq->work.flags = 0;
 676
 677	if (bio->bi_rw & REQ_WRITE) {
 678		if (end_io_wq->metadata == 1)
 679			btrfs_queue_worker(&fs_info->endio_meta_write_workers,
 680					   &end_io_wq->work);
 681		else if (end_io_wq->metadata == 2)
 682			btrfs_queue_worker(&fs_info->endio_freespace_worker,
 683					   &end_io_wq->work);
 684		else
 685			btrfs_queue_worker(&fs_info->endio_write_workers,
 686					   &end_io_wq->work);
 687	} else {
 688		if (end_io_wq->metadata)
 689			btrfs_queue_worker(&fs_info->endio_meta_workers,
 690					   &end_io_wq->work);
 691		else
 692			btrfs_queue_worker(&fs_info->endio_workers,
 693					   &end_io_wq->work);
 694	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695}
 696
 697/*
 698 * For the metadata arg you want
 699 *
 700 * 0 - if data
 701 * 1 - if normal metadta
 702 * 2 - if writing to the free space cache area
 703 */
 704int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 705			int metadata)
 706{
 707	struct end_io_wq *end_io_wq;
 708	end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 709	if (!end_io_wq)
 710		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 711
 712	end_io_wq->private = bio->bi_private;
 713	end_io_wq->end_io = bio->bi_end_io;
 714	end_io_wq->info = info;
 715	end_io_wq->error = 0;
 716	end_io_wq->bio = bio;
 717	end_io_wq->metadata = metadata;
 718
 719	bio->bi_private = end_io_wq;
 720	bio->bi_end_io = end_workqueue_bio;
 721	return 0;
 722}
 
 
 
 
 
 
 
 
 
 
 
 
 
 723
 724unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 725{
 726	unsigned long limit = min_t(unsigned long,
 727				    info->workers.max_workers,
 728				    info->fs_devices->open_devices);
 729	return 256 * limit;
 730}
 731
 732static void run_one_async_start(struct btrfs_work *work)
 733{
 734	struct async_submit_bio *async;
 735	int ret;
 736
 737	async = container_of(work, struct  async_submit_bio, work);
 738	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
 739				      async->mirror_num, async->bio_flags,
 740				      async->bio_offset);
 
 
 
 
 
 
 
 
 
 741	if (ret)
 742		async->error = ret;
 743}
 744
 
 
 
 
 
 
 
 
 745static void run_one_async_done(struct btrfs_work *work)
 746{
 747	struct btrfs_fs_info *fs_info;
 748	struct async_submit_bio *async;
 749	int limit;
 750
 751	async = container_of(work, struct  async_submit_bio, work);
 752	fs_info = BTRFS_I(async->inode)->root->fs_info;
 753
 754	limit = btrfs_async_submit_limit(fs_info);
 755	limit = limit * 2 / 3;
 756
 757	atomic_dec(&fs_info->nr_async_submits);
 758
 759	if (atomic_read(&fs_info->nr_async_submits) < limit &&
 760	    waitqueue_active(&fs_info->async_submit_wait))
 761		wake_up(&fs_info->async_submit_wait);
 762
 763	/* If an error occured we just want to clean up the bio and move on */
 764	if (async->error) {
 765		bio_endio(async->bio, async->error);
 766		return;
 767	}
 768
 769	async->submit_bio_done(async->inode, async->rw, async->bio,
 770			       async->mirror_num, async->bio_flags,
 771			       async->bio_offset);
 
 
 
 
 772}
 773
 774static void run_one_async_free(struct btrfs_work *work)
 775{
 776	struct async_submit_bio *async;
 777
 778	async = container_of(work, struct  async_submit_bio, work);
 779	kfree(async);
 780}
 781
 782int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 783			int rw, struct bio *bio, int mirror_num,
 784			unsigned long bio_flags,
 785			u64 bio_offset,
 786			extent_submit_bio_hook_t *submit_bio_start,
 787			extent_submit_bio_hook_t *submit_bio_done)
 
 
 
 788{
 
 789	struct async_submit_bio *async;
 790
 791	async = kmalloc(sizeof(*async), GFP_NOFS);
 792	if (!async)
 793		return -ENOMEM;
 794
 795	async->inode = inode;
 796	async->rw = rw;
 797	async->bio = bio;
 798	async->mirror_num = mirror_num;
 799	async->submit_bio_start = submit_bio_start;
 800	async->submit_bio_done = submit_bio_done;
 801
 802	async->work.func = run_one_async_start;
 803	async->work.ordered_func = run_one_async_done;
 804	async->work.ordered_free = run_one_async_free;
 805
 806	async->work.flags = 0;
 807	async->bio_flags = bio_flags;
 808	async->bio_offset = bio_offset;
 809
 810	async->error = 0;
 811
 812	atomic_inc(&fs_info->nr_async_submits);
 813
 814	if (rw & REQ_SYNC)
 815		btrfs_set_work_high_prio(&async->work);
 816
 817	btrfs_queue_worker(&fs_info->workers, &async->work);
 818
 819	while (atomic_read(&fs_info->async_submit_draining) &&
 820	      atomic_read(&fs_info->nr_async_submits)) {
 821		wait_event(fs_info->async_submit_wait,
 822			   (atomic_read(&fs_info->nr_async_submits) == 0));
 823	}
 824
 825	return 0;
 826}
 827
 828static int btree_csum_one_bio(struct bio *bio)
 829{
 830	struct bio_vec *bvec = bio->bi_io_vec;
 831	int bio_index = 0;
 832	struct btrfs_root *root;
 833	int ret = 0;
 
 834
 835	WARN_ON(bio->bi_vcnt <= 0);
 836	while (bio_index < bio->bi_vcnt) {
 837		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 838		ret = csum_dirty_buffer(root, bvec->bv_page);
 839		if (ret)
 840			break;
 841		bio_index++;
 842		bvec++;
 843	}
 844	return ret;
 
 845}
 846
 847static int __btree_submit_bio_start(struct inode *inode, int rw,
 848				    struct bio *bio, int mirror_num,
 849				    unsigned long bio_flags,
 850				    u64 bio_offset)
 851{
 852	/*
 853	 * when we're called for a write, we're already in the async
 854	 * submission context.  Just jump into btrfs_map_bio
 855	 */
 856	return btree_csum_one_bio(bio);
 857}
 858
 859static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 860				 int mirror_num, unsigned long bio_flags,
 861				 u64 bio_offset)
 862{
 863	/*
 864	 * when we're called for a write, we're already in the async
 865	 * submission context.  Just jump into btrfs_map_bio
 866	 */
 867	return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 
 
 868}
 869
 870static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 871				 int mirror_num, unsigned long bio_flags,
 872				 u64 bio_offset)
 873{
 874	int ret;
 
 
 875
 876	if (!(rw & REQ_WRITE)) {
 
 877
 878		/*
 879		 * called for a read, do the setup so that checksum validation
 880		 * can happen in the async kernel threads
 881		 */
 882		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 883					  bio, 1);
 884		if (ret)
 885			return ret;
 886		return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 887				     mirror_num, 0);
 888	}
 889
 890	/*
 891	 * kthread helpers are used to submit writes so that checksumming
 892	 * can happen in parallel across all CPUs
 893	 */
 894	return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 895				   inode, rw, bio, mirror_num, 0,
 896				   bio_offset,
 897				   __btree_submit_bio_start,
 898				   __btree_submit_bio_done);
 
 
 
 
 
 
 899}
 900
 901#ifdef CONFIG_MIGRATION
 902static int btree_migratepage(struct address_space *mapping,
 903			struct page *newpage, struct page *page,
 904			enum migrate_mode mode)
 905{
 906	/*
 907	 * we can't safely write a btree page from here,
 908	 * we haven't done the locking hook
 909	 */
 910	if (PageDirty(page))
 911		return -EAGAIN;
 912	/*
 913	 * Buffers may be managed in a filesystem specific way.
 914	 * We must have no buffers or drop them.
 915	 */
 916	if (page_has_private(page) &&
 917	    !try_to_release_page(page, GFP_KERNEL))
 918		return -EAGAIN;
 919	return migrate_page(mapping, newpage, page, mode);
 920}
 
 
 921#endif
 922
 923
 924static int btree_writepages(struct address_space *mapping,
 925			    struct writeback_control *wbc)
 926{
 927	struct extent_io_tree *tree;
 928	tree = &BTRFS_I(mapping->host)->io_tree;
 
 929	if (wbc->sync_mode == WB_SYNC_NONE) {
 930		struct btrfs_root *root = BTRFS_I(mapping->host)->root;
 931		u64 num_dirty;
 932		unsigned long thresh = 32 * 1024 * 1024;
 933
 934		if (wbc->for_kupdate)
 935			return 0;
 936
 
 937		/* this is a bit racy, but that's ok */
 938		num_dirty = root->fs_info->dirty_metadata_bytes;
 939		if (num_dirty < thresh)
 
 
 940			return 0;
 941	}
 942	return btree_write_cache_pages(mapping, wbc);
 943}
 944
 945static int btree_readpage(struct file *file, struct page *page)
 946{
 947	struct extent_io_tree *tree;
 948	tree = &BTRFS_I(page->mapping->host)->io_tree;
 949	return extent_read_full_page(tree, page, btree_get_extent, 0);
 950}
 951
 952static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 953{
 954	if (PageWriteback(page) || PageDirty(page))
 955		return 0;
 956	/*
 957	 * We need to mask out eg. __GFP_HIGHMEM and __GFP_DMA32 as we're doing
 958	 * slab allocation from alloc_extent_state down the callchain where
 959	 * it'd hit a BUG_ON as those flags are not allowed.
 960	 */
 961	gfp_flags &= ~GFP_SLAB_BUG_MASK;
 962
 963	return try_release_extent_buffer(page, gfp_flags);
 964}
 965
 966static void btree_invalidatepage(struct page *page, unsigned long offset)
 
 967{
 968	struct extent_io_tree *tree;
 969	tree = &BTRFS_I(page->mapping->host)->io_tree;
 970	extent_invalidatepage(tree, page, offset);
 971	btree_releasepage(page, GFP_NOFS);
 972	if (PagePrivate(page)) {
 973		printk(KERN_WARNING "btrfs warning page private not zero "
 974		       "on page %llu\n", (unsigned long long)page_offset(page));
 975		ClearPagePrivate(page);
 976		set_page_private(page, 0);
 977		page_cache_release(page);
 978	}
 979}
 980
 981static int btree_set_page_dirty(struct page *page)
 
 
 982{
 
 
 983	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 984
 985	BUG_ON(!PagePrivate(page));
 986	eb = (struct extent_buffer *)page->private;
 987	BUG_ON(!eb);
 988	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 989	BUG_ON(!atomic_read(&eb->refs));
 990	btrfs_assert_tree_locked(eb);
 991	return __set_page_dirty_nobuffers(page);
 
 
 
 992}
 
 
 
 993
 994static const struct address_space_operations btree_aops = {
 995	.readpage	= btree_readpage,
 996	.writepages	= btree_writepages,
 997	.releasepage	= btree_releasepage,
 998	.invalidatepage = btree_invalidatepage,
 999#ifdef CONFIG_MIGRATION
1000	.migratepage	= btree_migratepage,
1001#endif
1002	.set_page_dirty = btree_set_page_dirty,
1003};
1004
1005int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1006			 u64 parent_transid)
1007{
1008	struct extent_buffer *buf = NULL;
1009	struct inode *btree_inode = root->fs_info->btree_inode;
1010	int ret = 0;
1011
1012	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1013	if (!buf)
1014		return 0;
1015	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1016				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1017	free_extent_buffer(buf);
1018	return ret;
1019}
1020
1021int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr, u32 blocksize,
1022			 int mirror_num, struct extent_buffer **eb)
 
 
 
 
 
 
 
1023{
1024	struct extent_buffer *buf = NULL;
1025	struct inode *btree_inode = root->fs_info->btree_inode;
1026	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1027	int ret;
1028
1029	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1030	if (!buf)
1031		return 0;
1032
1033	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
 
 
 
1034
1035	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1036				       btree_get_extent, mirror_num);
1037	if (ret) {
1038		free_extent_buffer(buf);
1039		return ret;
1040	}
1041
1042	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1043		free_extent_buffer(buf);
1044		return -EIO;
1045	} else if (extent_buffer_uptodate(buf)) {
1046		*eb = buf;
1047	} else {
1048		free_extent_buffer(buf);
1049	}
1050	return 0;
1051}
1052
1053struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
1054					    u64 bytenr, u32 blocksize)
1055{
1056	struct inode *btree_inode = root->fs_info->btree_inode;
1057	struct extent_buffer *eb;
1058	eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1059				bytenr, blocksize);
1060	return eb;
1061}
1062
1063struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1064						 u64 bytenr, u32 blocksize)
1065{
1066	struct inode *btree_inode = root->fs_info->btree_inode;
1067	struct extent_buffer *eb;
1068
1069	eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
1070				 bytenr, blocksize);
1071	return eb;
1072}
1073
1074
1075int btrfs_write_tree_block(struct extent_buffer *buf)
1076{
1077	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1078					buf->start + buf->len - 1);
1079}
1080
1081int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1082{
1083	return filemap_fdatawait_range(buf->pages[0]->mapping,
1084				       buf->start, buf->start + buf->len - 1);
1085}
1086
1087struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1088				      u32 blocksize, u64 parent_transid)
1089{
1090	struct extent_buffer *buf = NULL;
1091	int ret;
1092
1093	buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1094	if (!buf)
1095		return NULL;
1096
1097	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1098	return buf;
1099
1100}
1101
1102void clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1103		      struct extent_buffer *buf)
1104{
 
1105	if (btrfs_header_generation(buf) ==
1106	    root->fs_info->running_transaction->transid) {
1107		btrfs_assert_tree_locked(buf);
1108
1109		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1110			spin_lock(&root->fs_info->delalloc_lock);
1111			if (root->fs_info->dirty_metadata_bytes >= buf->len)
1112				root->fs_info->dirty_metadata_bytes -= buf->len;
1113			else {
1114				spin_unlock(&root->fs_info->delalloc_lock);
1115				btrfs_panic(root->fs_info, -EOVERFLOW,
1116					  "Can't clear %lu bytes from "
1117					  " dirty_mdatadata_bytes (%lu)",
1118					  buf->len,
1119					  root->fs_info->dirty_metadata_bytes);
1120			}
1121			spin_unlock(&root->fs_info->delalloc_lock);
1122		}
1123
1124		/* ugh, clear_extent_buffer_dirty needs to lock the page */
1125		btrfs_set_lock_blocking(buf);
1126		clear_extent_buffer_dirty(buf);
1127	}
1128}
1129
1130static void __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1131			 u32 stripesize, struct btrfs_root *root,
1132			 struct btrfs_fs_info *fs_info,
1133			 u64 objectid)
1134{
 
 
 
 
 
 
 
1135	root->node = NULL;
1136	root->commit_root = NULL;
1137	root->sectorsize = sectorsize;
1138	root->nodesize = nodesize;
1139	root->leafsize = leafsize;
1140	root->stripesize = stripesize;
1141	root->ref_cows = 0;
1142	root->track_dirty = 0;
1143	root->in_radix = 0;
1144	root->orphan_item_inserted = 0;
1145	root->orphan_cleanup_state = 0;
1146
1147	root->objectid = objectid;
1148	root->last_trans = 0;
1149	root->highest_objectid = 0;
1150	root->name = NULL;
 
1151	root->inode_tree = RB_ROOT;
1152	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1153	root->block_rsv = NULL;
1154	root->orphan_block_rsv = NULL;
1155
1156	INIT_LIST_HEAD(&root->dirty_list);
1157	INIT_LIST_HEAD(&root->root_list);
1158	spin_lock_init(&root->orphan_lock);
 
 
 
 
 
 
1159	spin_lock_init(&root->inode_lock);
 
 
1160	spin_lock_init(&root->accounting_lock);
 
 
 
1161	mutex_init(&root->objectid_mutex);
1162	mutex_init(&root->log_mutex);
 
 
 
1163	init_waitqueue_head(&root->log_writer_wait);
1164	init_waitqueue_head(&root->log_commit_wait[0]);
1165	init_waitqueue_head(&root->log_commit_wait[1]);
 
 
1166	atomic_set(&root->log_commit[0], 0);
1167	atomic_set(&root->log_commit[1], 0);
1168	atomic_set(&root->log_writers, 0);
1169	atomic_set(&root->orphan_inodes, 0);
1170	root->log_batch = 0;
 
 
1171	root->log_transid = 0;
 
1172	root->last_log_commit = 0;
1173	extent_io_tree_init(&root->dirty_log_pages,
1174			     fs_info->btree_inode->i_mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175
1176	memset(&root->root_key, 0, sizeof(root->root_key));
1177	memset(&root->root_item, 0, sizeof(root->root_item));
1178	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1179	memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1180	root->defrag_trans_start = fs_info->generation;
1181	init_completion(&root->kobj_unregister);
1182	root->defrag_running = 0;
1183	root->root_key.objectid = objectid;
1184	root->anon_dev = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185}
1186
1187static int __must_check find_and_setup_root(struct btrfs_root *tree_root,
1188					    struct btrfs_fs_info *fs_info,
1189					    u64 objectid,
1190					    struct btrfs_root *root)
1191{
1192	int ret;
1193	u32 blocksize;
1194	u64 generation;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1195
1196	__setup_root(tree_root->nodesize, tree_root->leafsize,
1197		     tree_root->sectorsize, tree_root->stripesize,
1198		     root, fs_info, objectid);
1199	ret = btrfs_find_last_root(tree_root, objectid,
1200				   &root->root_item, &root->root_key);
1201	if (ret > 0)
1202		return -ENOENT;
1203	else if (ret < 0)
1204		return ret;
1205
1206	generation = btrfs_root_generation(&root->root_item);
1207	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1208	root->commit_root = NULL;
1209	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1210				     blocksize, generation);
1211	if (!root->node || !btrfs_buffer_uptodate(root->node, generation, 0)) {
1212		free_extent_buffer(root->node);
1213		root->node = NULL;
1214		return -EIO;
1215	}
 
 
 
 
1216	root->commit_root = btrfs_root_node(root);
1217	return 0;
1218}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1219
1220static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1221{
1222	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1223	if (root)
1224		root->fs_info = fs_info;
1225	return root;
 
 
 
 
 
1226}
1227
1228static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1229					 struct btrfs_fs_info *fs_info)
1230{
1231	struct btrfs_root *root;
1232	struct btrfs_root *tree_root = fs_info->tree_root;
1233	struct extent_buffer *leaf;
1234
1235	root = btrfs_alloc_root(fs_info);
1236	if (!root)
1237		return ERR_PTR(-ENOMEM);
1238
1239	__setup_root(tree_root->nodesize, tree_root->leafsize,
1240		     tree_root->sectorsize, tree_root->stripesize,
1241		     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1242
1243	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1244	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1245	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
 
 
 
 
 
 
 
 
 
1246	/*
1247	 * log trees do not get reference counted because they go away
1248	 * before a real commit is actually done.  They do store pointers
1249	 * to file data extents, and those reference counts still get
1250	 * updated (along with back refs to the log tree).
1251	 */
1252	root->ref_cows = 0;
1253
1254	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1255				      BTRFS_TREE_LOG_OBJECTID, NULL,
1256				      0, 0, 0);
1257	if (IS_ERR(leaf)) {
1258		kfree(root);
1259		return ERR_CAST(leaf);
1260	}
1261
1262	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1263	btrfs_set_header_bytenr(leaf, leaf->start);
1264	btrfs_set_header_generation(leaf, trans->transid);
1265	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1266	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1267	root->node = leaf;
1268
1269	write_extent_buffer(root->node, root->fs_info->fsid,
1270			    (unsigned long)btrfs_header_fsid(root->node),
1271			    BTRFS_FSID_SIZE);
1272	btrfs_mark_buffer_dirty(root->node);
1273	btrfs_tree_unlock(root->node);
1274	return root;
 
1275}
1276
1277int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1278			     struct btrfs_fs_info *fs_info)
1279{
1280	struct btrfs_root *log_root;
1281
1282	log_root = alloc_log_tree(trans, fs_info);
1283	if (IS_ERR(log_root))
1284		return PTR_ERR(log_root);
 
 
 
 
 
 
 
 
 
 
1285	WARN_ON(fs_info->log_root_tree);
1286	fs_info->log_root_tree = log_root;
1287	return 0;
1288}
1289
1290int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1291		       struct btrfs_root *root)
1292{
 
1293	struct btrfs_root *log_root;
1294	struct btrfs_inode_item *inode_item;
 
1295
1296	log_root = alloc_log_tree(trans, root->fs_info);
1297	if (IS_ERR(log_root))
1298		return PTR_ERR(log_root);
1299
 
 
 
 
 
 
1300	log_root->last_trans = trans->transid;
1301	log_root->root_key.offset = root->root_key.objectid;
1302
1303	inode_item = &log_root->root_item.inode;
1304	inode_item->generation = cpu_to_le64(1);
1305	inode_item->size = cpu_to_le64(3);
1306	inode_item->nlink = cpu_to_le32(1);
1307	inode_item->nbytes = cpu_to_le64(root->leafsize);
1308	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
 
1309
1310	btrfs_set_root_node(&log_root->root_item, log_root->node);
1311
1312	WARN_ON(root->log_root);
1313	root->log_root = log_root;
1314	root->log_transid = 0;
 
1315	root->last_log_commit = 0;
1316	return 0;
1317}
1318
1319struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1320					       struct btrfs_key *location)
 
1321{
1322	struct btrfs_root *root;
 
1323	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1324	struct btrfs_path *path;
1325	struct extent_buffer *l;
1326	u64 generation;
1327	u32 blocksize;
1328	int ret = 0;
1329
1330	root = btrfs_alloc_root(fs_info);
1331	if (!root)
1332		return ERR_PTR(-ENOMEM);
1333	if (location->offset == (u64)-1) {
1334		ret = find_and_setup_root(tree_root, fs_info,
1335					  location->objectid, root);
1336		if (ret) {
1337			kfree(root);
1338			return ERR_PTR(ret);
1339		}
1340		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1341	}
 
 
 
 
 
 
1342
1343	__setup_root(tree_root->nodesize, tree_root->leafsize,
1344		     tree_root->sectorsize, tree_root->stripesize,
1345		     root, fs_info, location->objectid);
 
 
1346
1347	path = btrfs_alloc_path();
1348	if (!path) {
1349		kfree(root);
1350		return ERR_PTR(-ENOMEM);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1351	}
1352	ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1353	if (ret == 0) {
1354		l = path->nodes[0];
1355		read_extent_buffer(l, &root->root_item,
1356				btrfs_item_ptr_offset(l, path->slots[0]),
1357				sizeof(root->root_item));
1358		memcpy(&root->root_key, location, sizeof(*location));
 
 
 
 
 
 
 
1359	}
1360	btrfs_free_path(path);
 
 
1361	if (ret) {
1362		kfree(root);
1363		if (ret > 0)
1364			ret = -ENOENT;
1365		return ERR_PTR(ret);
1366	}
1367
1368	generation = btrfs_root_generation(&root->root_item);
1369	blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1370	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1371				     blocksize, generation);
1372	root->commit_root = btrfs_root_node(root);
1373	BUG_ON(!root->node); /* -ENOMEM */
1374out:
1375	if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1376		root->ref_cows = 1;
1377		btrfs_check_and_init_root_item(&root->root_item);
1378	}
 
 
 
1379
 
 
 
 
 
 
1380	return root;
1381}
1382
1383struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1384					      struct btrfs_key *location)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1385{
1386	struct btrfs_root *root;
1387	int ret;
1388
1389	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1390		return fs_info->tree_root;
1391	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1392		return fs_info->extent_root;
1393	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1394		return fs_info->chunk_root;
1395	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1396		return fs_info->dev_root;
1397	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1398		return fs_info->csum_root;
1399again:
1400	spin_lock(&fs_info->fs_roots_radix_lock);
1401	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1402				 (unsigned long)location->objectid);
 
 
 
 
 
1403	spin_unlock(&fs_info->fs_roots_radix_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1404	if (root)
1405		return root;
 
 
 
 
 
 
 
 
 
 
 
1406
1407	root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
 
 
 
1408	if (IS_ERR(root))
1409		return root;
1410
1411	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1412	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1413					GFP_NOFS);
1414	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1415		ret = -ENOMEM;
1416		goto fail;
1417	}
1418
1419	btrfs_init_free_ino_ctl(root);
1420	mutex_init(&root->fs_commit_mutex);
1421	spin_lock_init(&root->cache_lock);
1422	init_waitqueue_head(&root->cache_wait);
1423
1424	ret = get_anon_bdev(&root->anon_dev);
1425	if (ret)
1426		goto fail;
1427
1428	if (btrfs_root_refs(&root->root_item) == 0) {
1429		ret = -ENOENT;
 
1430		goto fail;
1431	}
 
 
 
1432
1433	ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
 
1434	if (ret < 0)
1435		goto fail;
1436	if (ret == 0)
1437		root->orphan_item_inserted = 1;
1438
1439	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1440	if (ret)
1441		goto fail;
1442
1443	spin_lock(&fs_info->fs_roots_radix_lock);
1444	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1445				(unsigned long)root->root_key.objectid,
1446				root);
1447	if (ret == 0)
1448		root->in_radix = 1;
1449
1450	spin_unlock(&fs_info->fs_roots_radix_lock);
1451	radix_tree_preload_end();
1452	if (ret) {
1453		if (ret == -EEXIST) {
1454			free_fs_root(root);
1455			goto again;
1456		}
1457		goto fail;
1458	}
1459
1460	ret = btrfs_find_dead_roots(fs_info->tree_root,
1461				    root->root_key.objectid);
1462	WARN_ON(ret);
1463	return root;
1464fail:
1465	free_fs_root(root);
 
 
 
 
 
 
 
 
1466	return ERR_PTR(ret);
1467}
1468
1469static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1470{
1471	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1472	int ret = 0;
1473	struct btrfs_device *device;
1474	struct backing_dev_info *bdi;
1475
1476	rcu_read_lock();
1477	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1478		if (!device->bdev)
1479			continue;
1480		bdi = blk_get_backing_dev_info(device->bdev);
1481		if (bdi && bdi_congested(bdi, bdi_bits)) {
1482			ret = 1;
1483			break;
1484		}
1485	}
1486	rcu_read_unlock();
1487	return ret;
1488}
1489
1490/*
1491 * If this fails, caller must call bdi_destroy() to get rid of the
1492 * bdi again.
 
 
 
 
1493 */
1494static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
 
1495{
1496	int err;
1497
1498	bdi->capabilities = BDI_CAP_MAP_COPY;
1499	err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1500	if (err)
1501		return err;
1502
1503	bdi->ra_pages	= default_backing_dev_info.ra_pages;
1504	bdi->congested_fn	= btrfs_congested_fn;
1505	bdi->congested_data	= info;
1506	return 0;
1507}
1508
1509/*
1510 * called by the kthread helper functions to finally call the bio end_io
1511 * functions.  This is where read checksum verification actually happens
 
 
 
 
 
 
 
 
 
 
1512 */
1513static void end_workqueue_fn(struct btrfs_work *work)
 
 
1514{
1515	struct bio *bio;
1516	struct end_io_wq *end_io_wq;
1517	struct btrfs_fs_info *fs_info;
1518	int error;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1519
1520	end_io_wq = container_of(work, struct end_io_wq, work);
1521	bio = end_io_wq->bio;
1522	fs_info = end_io_wq->info;
1523
1524	error = end_io_wq->error;
1525	bio->bi_private = end_io_wq->private;
1526	bio->bi_end_io = end_io_wq->end_io;
1527	kfree(end_io_wq);
1528	bio_endio(bio, error);
1529}
1530
1531static int cleaner_kthread(void *arg)
1532{
1533	struct btrfs_root *root = arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1534
1535	do {
1536		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1537
1538		if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1539		    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1540			btrfs_run_delayed_iputs(root);
1541			btrfs_clean_old_snapshots(root);
1542			mutex_unlock(&root->fs_info->cleaner_mutex);
1543			btrfs_run_defrag_inodes(root->fs_info);
 
1544		}
1545
1546		if (!try_to_freeze()) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1547			set_current_state(TASK_INTERRUPTIBLE);
1548			if (!kthread_should_stop())
1549				schedule();
1550			__set_current_state(TASK_RUNNING);
1551		}
1552	} while (!kthread_should_stop());
1553	return 0;
1554}
1555
1556static int transaction_kthread(void *arg)
1557{
1558	struct btrfs_root *root = arg;
 
1559	struct btrfs_trans_handle *trans;
1560	struct btrfs_transaction *cur;
1561	u64 transid;
1562	unsigned long now;
1563	unsigned long delay;
1564	bool cannot_commit;
1565
1566	do {
1567		cannot_commit = false;
1568		delay = HZ * 30;
1569		vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1570		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1571
1572		spin_lock(&root->fs_info->trans_lock);
1573		cur = root->fs_info->running_transaction;
1574		if (!cur) {
1575			spin_unlock(&root->fs_info->trans_lock);
1576			goto sleep;
1577		}
1578
1579		now = get_seconds();
1580		if (!cur->blocked &&
1581		    (now < cur->start_time || now - cur->start_time < 30)) {
1582			spin_unlock(&root->fs_info->trans_lock);
1583			delay = HZ * 5;
 
 
 
1584			goto sleep;
1585		}
1586		transid = cur->transid;
1587		spin_unlock(&root->fs_info->trans_lock);
1588
1589		/* If the file system is aborted, this will always fail. */
1590		trans = btrfs_join_transaction(root);
1591		if (IS_ERR(trans)) {
1592			cannot_commit = true;
 
1593			goto sleep;
1594		}
1595		if (transid == trans->transid) {
1596			btrfs_commit_transaction(trans, root);
1597		} else {
1598			btrfs_end_transaction(trans, root);
1599		}
1600sleep:
1601		wake_up_process(root->fs_info->cleaner_kthread);
1602		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1603
1604		if (!try_to_freeze()) {
1605			set_current_state(TASK_INTERRUPTIBLE);
1606			if (!kthread_should_stop() &&
1607			    (!btrfs_transaction_blocked(root->fs_info) ||
1608			     cannot_commit))
1609				schedule_timeout(delay);
1610			__set_current_state(TASK_RUNNING);
1611		}
1612	} while (!kthread_should_stop());
1613	return 0;
1614}
1615
1616/*
1617 * this will find the highest generation in the array of
1618 * root backups.  The index of the highest array is returned,
1619 * or -1 if we can't find anything.
1620 *
1621 * We check to make sure the array is valid by comparing the
1622 * generation of the latest  root in the array with the generation
1623 * in the super block.  If they don't match we pitch it.
1624 */
1625static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1626{
 
1627	u64 cur;
1628	int newest_index = -1;
1629	struct btrfs_root_backup *root_backup;
1630	int i;
1631
1632	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1633		root_backup = info->super_copy->super_roots + i;
1634		cur = btrfs_backup_tree_root_gen(root_backup);
1635		if (cur == newest_gen)
1636			newest_index = i;
1637	}
1638
1639	/* check to see if we actually wrapped around */
1640	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1641		root_backup = info->super_copy->super_roots;
1642		cur = btrfs_backup_tree_root_gen(root_backup);
1643		if (cur == newest_gen)
1644			newest_index = 0;
1645	}
1646	return newest_index;
1647}
1648
1649
1650/*
1651 * find the oldest backup so we know where to store new entries
1652 * in the backup array.  This will set the backup_root_index
1653 * field in the fs_info struct
1654 */
1655static void find_oldest_super_backup(struct btrfs_fs_info *info,
1656				     u64 newest_gen)
1657{
1658	int newest_index = -1;
1659
1660	newest_index = find_newest_super_backup(info, newest_gen);
1661	/* if there was garbage in there, just move along */
1662	if (newest_index == -1) {
1663		info->backup_root_index = 0;
1664	} else {
1665		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1666	}
1667}
1668
1669/*
1670 * copy all the root pointers into the super backup array.
1671 * this will bump the backup pointer by one when it is
1672 * done
1673 */
1674static void backup_super_roots(struct btrfs_fs_info *info)
1675{
1676	int next_backup;
1677	struct btrfs_root_backup *root_backup;
1678	int last_backup;
1679
1680	next_backup = info->backup_root_index;
1681	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1682		BTRFS_NUM_BACKUP_ROOTS;
1683
1684	/*
1685	 * just overwrite the last backup if we're at the same generation
1686	 * this happens only at umount
1687	 */
1688	root_backup = info->super_for_commit->super_roots + last_backup;
1689	if (btrfs_backup_tree_root_gen(root_backup) ==
1690	    btrfs_header_generation(info->tree_root->node))
1691		next_backup = last_backup;
1692
1693	root_backup = info->super_for_commit->super_roots + next_backup;
1694
1695	/*
1696	 * make sure all of our padding and empty slots get zero filled
1697	 * regardless of which ones we use today
1698	 */
1699	memset(root_backup, 0, sizeof(*root_backup));
1700
1701	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1702
1703	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1704	btrfs_set_backup_tree_root_gen(root_backup,
1705			       btrfs_header_generation(info->tree_root->node));
1706
1707	btrfs_set_backup_tree_root_level(root_backup,
1708			       btrfs_header_level(info->tree_root->node));
1709
1710	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1711	btrfs_set_backup_chunk_root_gen(root_backup,
1712			       btrfs_header_generation(info->chunk_root->node));
1713	btrfs_set_backup_chunk_root_level(root_backup,
1714			       btrfs_header_level(info->chunk_root->node));
1715
1716	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1717	btrfs_set_backup_extent_root_gen(root_backup,
1718			       btrfs_header_generation(info->extent_root->node));
1719	btrfs_set_backup_extent_root_level(root_backup,
1720			       btrfs_header_level(info->extent_root->node));
 
 
 
 
 
 
 
 
 
 
 
 
1721
1722	/*
1723	 * we might commit during log recovery, which happens before we set
1724	 * the fs_root.  Make sure it is valid before we fill it in.
1725	 */
1726	if (info->fs_root && info->fs_root->node) {
1727		btrfs_set_backup_fs_root(root_backup,
1728					 info->fs_root->node->start);
1729		btrfs_set_backup_fs_root_gen(root_backup,
1730			       btrfs_header_generation(info->fs_root->node));
1731		btrfs_set_backup_fs_root_level(root_backup,
1732			       btrfs_header_level(info->fs_root->node));
1733	}
1734
1735	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1736	btrfs_set_backup_dev_root_gen(root_backup,
1737			       btrfs_header_generation(info->dev_root->node));
1738	btrfs_set_backup_dev_root_level(root_backup,
1739				       btrfs_header_level(info->dev_root->node));
1740
1741	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
1742	btrfs_set_backup_csum_root_gen(root_backup,
1743			       btrfs_header_generation(info->csum_root->node));
1744	btrfs_set_backup_csum_root_level(root_backup,
1745			       btrfs_header_level(info->csum_root->node));
1746
1747	btrfs_set_backup_total_bytes(root_backup,
1748			     btrfs_super_total_bytes(info->super_copy));
1749	btrfs_set_backup_bytes_used(root_backup,
1750			     btrfs_super_bytes_used(info->super_copy));
1751	btrfs_set_backup_num_devices(root_backup,
1752			     btrfs_super_num_devices(info->super_copy));
1753
1754	/*
1755	 * if we don't copy this out to the super_copy, it won't get remembered
1756	 * for the next commit
1757	 */
1758	memcpy(&info->super_copy->super_roots,
1759	       &info->super_for_commit->super_roots,
1760	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
1761}
1762
1763/*
1764 * this copies info out of the root backup array and back into
1765 * the in-memory super block.  It is meant to help iterate through
1766 * the array, so you send it the number of backups you've already
1767 * tried and the last backup index you used.
1768 *
1769 * this returns -1 when it has tried all the backups
1770 */
1771static noinline int next_root_backup(struct btrfs_fs_info *info,
1772				     struct btrfs_super_block *super,
1773				     int *num_backups_tried, int *backup_index)
1774{
 
 
1775	struct btrfs_root_backup *root_backup;
1776	int newest = *backup_index;
1777
1778	if (*num_backups_tried == 0) {
1779		u64 gen = btrfs_super_generation(super);
 
1780
1781		newest = find_newest_super_backup(info, gen);
1782		if (newest == -1)
1783			return -1;
1784
1785		*backup_index = newest;
1786		*num_backups_tried = 1;
1787	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
1788		/* we've tried all the backups, all done */
1789		return -1;
1790	} else {
1791		/* jump to the next oldest backup */
1792		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
1793			BTRFS_NUM_BACKUP_ROOTS;
1794		*backup_index = newest;
1795		*num_backups_tried += 1;
1796	}
1797	root_backup = super->super_roots + newest;
 
1798
1799	btrfs_set_super_generation(super,
1800				   btrfs_backup_tree_root_gen(root_backup));
1801	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
1802	btrfs_set_super_root_level(super,
1803				   btrfs_backup_tree_root_level(root_backup));
1804	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
1805
1806	/*
1807	 * fixme: the total bytes and num_devices need to match or we should
1808	 * need a fsck
1809	 */
1810	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
1811	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1812	return 0;
1813}
1814
1815/* helper to cleanup tree roots */
1816static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
1817{
1818	free_extent_buffer(info->tree_root->node);
1819	free_extent_buffer(info->tree_root->commit_root);
1820	free_extent_buffer(info->dev_root->node);
1821	free_extent_buffer(info->dev_root->commit_root);
1822	free_extent_buffer(info->extent_root->node);
1823	free_extent_buffer(info->extent_root->commit_root);
1824	free_extent_buffer(info->csum_root->node);
1825	free_extent_buffer(info->csum_root->commit_root);
1826
1827	info->tree_root->node = NULL;
1828	info->tree_root->commit_root = NULL;
1829	info->dev_root->node = NULL;
1830	info->dev_root->commit_root = NULL;
1831	info->extent_root->node = NULL;
1832	info->extent_root->commit_root = NULL;
1833	info->csum_root->node = NULL;
1834	info->csum_root->commit_root = NULL;
1835
1836	if (chunk_root) {
1837		free_extent_buffer(info->chunk_root->node);
1838		free_extent_buffer(info->chunk_root->commit_root);
1839		info->chunk_root->node = NULL;
1840		info->chunk_root->commit_root = NULL;
1841	}
 
 
 
 
 
 
 
1842}
1843
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845int open_ctree(struct super_block *sb,
1846	       struct btrfs_fs_devices *fs_devices,
1847	       char *options)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1848{
1849	u32 sectorsize;
1850	u32 nodesize;
1851	u32 leafsize;
1852	u32 blocksize;
1853	u32 stripesize;
1854	u64 generation;
1855	u64 features;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856	struct btrfs_key location;
1857	struct buffer_head *bh;
1858	struct btrfs_super_block *disk_super;
1859	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1860	struct btrfs_root *tree_root;
1861	struct btrfs_root *extent_root;
1862	struct btrfs_root *csum_root;
1863	struct btrfs_root *chunk_root;
1864	struct btrfs_root *dev_root;
1865	struct btrfs_root *log_tree_root;
1866	int ret;
1867	int err = -EINVAL;
1868	int num_backups_tried = 0;
1869	int backup_index = 0;
1870
1871	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
1872	extent_root = fs_info->extent_root = btrfs_alloc_root(fs_info);
1873	csum_root = fs_info->csum_root = btrfs_alloc_root(fs_info);
1874	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
1875	dev_root = fs_info->dev_root = btrfs_alloc_root(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1876
1877	if (!tree_root || !extent_root || !csum_root ||
1878	    !chunk_root || !dev_root) {
1879		err = -ENOMEM;
1880		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
1881	}
 
 
 
 
 
 
1882
1883	ret = init_srcu_struct(&fs_info->subvol_srcu);
1884	if (ret) {
1885		err = ret;
1886		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1887	}
1888
1889	ret = setup_bdi(fs_info, &fs_info->bdi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1890	if (ret) {
1891		err = ret;
1892		goto fail_srcu;
1893	}
 
 
 
 
 
 
 
 
 
 
 
1894
1895	fs_info->btree_inode = new_inode(sb);
1896	if (!fs_info->btree_inode) {
1897		err = -ENOMEM;
1898		goto fail_bdi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1899	}
1900
1901	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
1902
 
 
1903	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
 
1904	INIT_LIST_HEAD(&fs_info->trans_list);
1905	INIT_LIST_HEAD(&fs_info->dead_roots);
1906	INIT_LIST_HEAD(&fs_info->delayed_iputs);
1907	INIT_LIST_HEAD(&fs_info->hashers);
1908	INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1909	INIT_LIST_HEAD(&fs_info->ordered_operations);
1910	INIT_LIST_HEAD(&fs_info->caching_block_groups);
1911	spin_lock_init(&fs_info->delalloc_lock);
1912	spin_lock_init(&fs_info->trans_lock);
1913	spin_lock_init(&fs_info->ref_cache_lock);
1914	spin_lock_init(&fs_info->fs_roots_radix_lock);
1915	spin_lock_init(&fs_info->delayed_iput_lock);
1916	spin_lock_init(&fs_info->defrag_inodes_lock);
1917	spin_lock_init(&fs_info->free_chunk_lock);
1918	spin_lock_init(&fs_info->tree_mod_seq_lock);
 
 
 
 
1919	rwlock_init(&fs_info->tree_mod_log_lock);
 
 
 
1920	mutex_init(&fs_info->reloc_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1921
1922	init_completion(&fs_info->kobj_unregister);
1923	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1924	INIT_LIST_HEAD(&fs_info->space_info);
1925	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
1926	btrfs_mapping_init(&fs_info->mapping_tree);
1927	btrfs_init_block_rsv(&fs_info->global_block_rsv);
1928	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1929	btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1930	btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1931	btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1932	btrfs_init_block_rsv(&fs_info->delayed_block_rsv);
1933	atomic_set(&fs_info->nr_async_submits, 0);
 
 
 
 
 
 
 
 
 
 
 
1934	atomic_set(&fs_info->async_delalloc_pages, 0);
1935	atomic_set(&fs_info->async_submit_draining, 0);
1936	atomic_set(&fs_info->nr_async_bios, 0);
1937	atomic_set(&fs_info->defrag_running, 0);
1938	atomic_set(&fs_info->tree_mod_seq, 0);
1939	fs_info->sb = sb;
1940	fs_info->max_inline = 8192 * 1024;
 
1941	fs_info->metadata_ratio = 0;
1942	fs_info->defrag_inodes = RB_ROOT;
1943	fs_info->trans_no_join = 0;
1944	fs_info->free_chunk_space = 0;
1945	fs_info->tree_mod_log = RB_ROOT;
1946
1947	/* readahead state */
1948	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
1949	spin_lock_init(&fs_info->reada_lock);
1950
1951	fs_info->thread_pool_size = min_t(unsigned long,
1952					  num_online_cpus() + 2, 8);
1953
1954	INIT_LIST_HEAD(&fs_info->ordered_extents);
1955	spin_lock_init(&fs_info->ordered_extent_lock);
1956	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1957					GFP_NOFS);
1958	if (!fs_info->delayed_root) {
1959		err = -ENOMEM;
1960		goto fail_iput;
1961	}
1962	btrfs_init_delayed_root(fs_info->delayed_root);
1963
1964	mutex_init(&fs_info->scrub_lock);
1965	atomic_set(&fs_info->scrubs_running, 0);
1966	atomic_set(&fs_info->scrub_pause_req, 0);
1967	atomic_set(&fs_info->scrubs_paused, 0);
1968	atomic_set(&fs_info->scrub_cancel_req, 0);
1969	init_waitqueue_head(&fs_info->scrub_pause_wait);
1970	init_rwsem(&fs_info->scrub_super_lock);
1971	fs_info->scrub_workers_refcnt = 0;
1972#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1973	fs_info->check_integrity_print_mask = 0;
1974#endif
 
 
1975
1976	spin_lock_init(&fs_info->balance_lock);
1977	mutex_init(&fs_info->balance_mutex);
1978	atomic_set(&fs_info->balance_running, 0);
1979	atomic_set(&fs_info->balance_pause_req, 0);
1980	atomic_set(&fs_info->balance_cancel_req, 0);
1981	fs_info->balance_ctl = NULL;
1982	init_waitqueue_head(&fs_info->balance_wait_q);
1983
1984	sb->s_blocksize = 4096;
1985	sb->s_blocksize_bits = blksize_bits(4096);
1986	sb->s_bdi = &fs_info->bdi;
1987
1988	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1989	set_nlink(fs_info->btree_inode, 1);
1990	/*
1991	 * we set the i_size on the btree inode to the max possible int.
1992	 * the real end of the address space is determined by all of
1993	 * the devices in the system
1994	 */
1995	fs_info->btree_inode->i_size = OFFSET_MAX;
1996	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1997	fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1998
1999	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2000	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2001			     fs_info->btree_inode->i_mapping);
2002	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2003	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2004
2005	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2006
2007	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2008	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2009	       sizeof(struct btrfs_key));
2010	set_bit(BTRFS_INODE_DUMMY,
2011		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2012	insert_inode_hash(fs_info->btree_inode);
2013
2014	spin_lock_init(&fs_info->block_group_cache_lock);
2015	fs_info->block_group_cache_tree = RB_ROOT;
2016
2017	extent_io_tree_init(&fs_info->freed_extents[0],
2018			     fs_info->btree_inode->i_mapping);
2019	extent_io_tree_init(&fs_info->freed_extents[1],
2020			     fs_info->btree_inode->i_mapping);
2021	fs_info->pinned_extents = &fs_info->freed_extents[0];
2022	fs_info->do_barriers = 1;
2023
 
 
2024
2025	mutex_init(&fs_info->ordered_operations_mutex);
2026	mutex_init(&fs_info->tree_log_mutex);
2027	mutex_init(&fs_info->chunk_mutex);
2028	mutex_init(&fs_info->transaction_kthread_mutex);
2029	mutex_init(&fs_info->cleaner_mutex);
2030	mutex_init(&fs_info->volume_mutex);
2031	init_rwsem(&fs_info->extent_commit_sem);
2032	init_rwsem(&fs_info->cleanup_work_sem);
2033	init_rwsem(&fs_info->subvol_sem);
 
 
 
 
 
2034
2035	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2036	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2037
2038	init_waitqueue_head(&fs_info->transaction_throttle);
2039	init_waitqueue_head(&fs_info->transaction_wait);
2040	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2041	init_waitqueue_head(&fs_info->async_submit_wait);
 
2042
2043	__setup_root(4096, 4096, 4096, 4096, tree_root,
2044		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2045
2046	invalidate_bdev(fs_devices->latest_bdev);
2047	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2048	if (!bh) {
2049		err = -EINVAL;
2050		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051	}
2052
2053	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2054	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2055	       sizeof(*fs_info->super_for_commit));
2056	brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2057
2058	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
 
 
 
 
 
 
 
 
 
2059
2060	disk_super = fs_info->super_copy;
2061	if (!btrfs_super_root(disk_super))
2062		goto fail_alloc;
 
 
2063
2064	/* check FS state, whether FS is broken. */
2065	fs_info->fs_state |= btrfs_super_flags(disk_super);
 
2066
2067	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2068	if (ret) {
2069		printk(KERN_ERR "btrfs: superblock contains fatal errors\n");
2070		err = ret;
2071		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2072	}
2073
2074	/*
2075	 * run through our array of backup supers and setup
2076	 * our ring pointer to the oldest one
2077	 */
2078	generation = btrfs_super_generation(disk_super);
2079	find_oldest_super_backup(fs_info, generation);
 
 
 
 
 
2080
2081	/*
2082	 * In the long term, we'll store the compression type in the super
2083	 * block, and it'll be used for per file compression control.
 
 
 
2084	 */
2085	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2086
2087	ret = btrfs_parse_options(tree_root, options);
2088	if (ret) {
2089		err = ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2090		goto fail_alloc;
2091	}
2092
2093	features = btrfs_super_incompat_flags(disk_super) &
2094		~BTRFS_FEATURE_INCOMPAT_SUPP;
2095	if (features) {
2096		printk(KERN_ERR "BTRFS: couldn't mount because of "
2097		       "unsupported optional features (%Lx).\n",
2098		       (unsigned long long)features);
 
 
2099		err = -EINVAL;
 
2100		goto fail_alloc;
2101	}
2102
2103	if (btrfs_super_leafsize(disk_super) !=
2104	    btrfs_super_nodesize(disk_super)) {
2105		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2106		       "blocksizes don't match.  node %d leaf %d\n",
2107		       btrfs_super_nodesize(disk_super),
2108		       btrfs_super_leafsize(disk_super));
 
 
 
 
 
 
 
 
 
2109		err = -EINVAL;
 
2110		goto fail_alloc;
2111	}
2112	if (btrfs_super_leafsize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2113		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2114		       "blocksize (%d) was too large\n",
2115		       btrfs_super_leafsize(disk_super));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2116		err = -EINVAL;
2117		goto fail_alloc;
2118	}
2119
2120	features = btrfs_super_incompat_flags(disk_super);
2121	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2122	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2123		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
 
 
2124
2125	/*
2126	 * flag our filesystem as having big metadata blocks if
2127	 * they are bigger than the page size
2128	 */
2129	if (btrfs_super_leafsize(disk_super) > PAGE_CACHE_SIZE) {
2130		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2131			printk(KERN_INFO "btrfs flagging fs with big metadata feature\n");
2132		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2133	}
2134
 
2135	nodesize = btrfs_super_nodesize(disk_super);
2136	leafsize = btrfs_super_leafsize(disk_super);
2137	sectorsize = btrfs_super_sectorsize(disk_super);
2138	stripesize = btrfs_super_stripesize(disk_super);
 
 
 
 
 
 
 
 
2139
2140	/*
2141	 * mixed block groups end up with duplicate but slightly offset
2142	 * extent buffers for the same range.  It leads to corruptions
2143	 */
2144	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2145	    (sectorsize != leafsize)) {
2146		printk(KERN_WARNING "btrfs: unequal leaf/node/sector sizes "
2147				"are not allowed for mixed block groups on %s\n",
2148				sb->s_id);
2149		goto fail_alloc;
2150	}
2151
2152	btrfs_set_super_incompat_flags(disk_super, features);
2153
2154	features = btrfs_super_compat_ro_flags(disk_super) &
2155		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2156	if (!(sb->s_flags & MS_RDONLY) && features) {
2157		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2158		       "unsupported option features (%Lx).\n",
2159		       (unsigned long long)features);
2160		err = -EINVAL;
2161		goto fail_alloc;
2162	}
2163
2164	btrfs_init_workers(&fs_info->generic_worker,
2165			   "genwork", 1, NULL);
2166
2167	btrfs_init_workers(&fs_info->workers, "worker",
2168			   fs_info->thread_pool_size,
2169			   &fs_info->generic_worker);
2170
2171	btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
2172			   fs_info->thread_pool_size,
2173			   &fs_info->generic_worker);
2174
2175	btrfs_init_workers(&fs_info->submit_workers, "submit",
2176			   min_t(u64, fs_devices->num_devices,
2177			   fs_info->thread_pool_size),
2178			   &fs_info->generic_worker);
2179
2180	btrfs_init_workers(&fs_info->caching_workers, "cache",
2181			   2, &fs_info->generic_worker);
2182
2183	/* a higher idle thresh on the submit workers makes it much more
2184	 * likely that bios will be send down in a sane order to the
2185	 * devices
2186	 */
2187	fs_info->submit_workers.idle_thresh = 64;
2188
2189	fs_info->workers.idle_thresh = 16;
2190	fs_info->workers.ordered = 1;
2191
2192	fs_info->delalloc_workers.idle_thresh = 2;
2193	fs_info->delalloc_workers.ordered = 1;
2194
2195	btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
2196			   &fs_info->generic_worker);
2197	btrfs_init_workers(&fs_info->endio_workers, "endio",
2198			   fs_info->thread_pool_size,
2199			   &fs_info->generic_worker);
2200	btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
2201			   fs_info->thread_pool_size,
2202			   &fs_info->generic_worker);
2203	btrfs_init_workers(&fs_info->endio_meta_write_workers,
2204			   "endio-meta-write", fs_info->thread_pool_size,
2205			   &fs_info->generic_worker);
2206	btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
2207			   fs_info->thread_pool_size,
2208			   &fs_info->generic_worker);
2209	btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
2210			   1, &fs_info->generic_worker);
2211	btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
2212			   fs_info->thread_pool_size,
2213			   &fs_info->generic_worker);
2214	btrfs_init_workers(&fs_info->readahead_workers, "readahead",
2215			   fs_info->thread_pool_size,
2216			   &fs_info->generic_worker);
2217
2218	/*
2219	 * endios are largely parallel and should have a very
2220	 * low idle thresh
2221	 */
2222	fs_info->endio_workers.idle_thresh = 4;
2223	fs_info->endio_meta_workers.idle_thresh = 4;
2224
2225	fs_info->endio_write_workers.idle_thresh = 2;
2226	fs_info->endio_meta_write_workers.idle_thresh = 2;
2227	fs_info->readahead_workers.idle_thresh = 2;
2228
2229	/*
2230	 * btrfs_start_workers can really only fail because of ENOMEM so just
2231	 * return -ENOMEM if any of these fail.
2232	 */
2233	ret = btrfs_start_workers(&fs_info->workers);
2234	ret |= btrfs_start_workers(&fs_info->generic_worker);
2235	ret |= btrfs_start_workers(&fs_info->submit_workers);
2236	ret |= btrfs_start_workers(&fs_info->delalloc_workers);
2237	ret |= btrfs_start_workers(&fs_info->fixup_workers);
2238	ret |= btrfs_start_workers(&fs_info->endio_workers);
2239	ret |= btrfs_start_workers(&fs_info->endio_meta_workers);
2240	ret |= btrfs_start_workers(&fs_info->endio_meta_write_workers);
2241	ret |= btrfs_start_workers(&fs_info->endio_write_workers);
2242	ret |= btrfs_start_workers(&fs_info->endio_freespace_worker);
2243	ret |= btrfs_start_workers(&fs_info->delayed_workers);
2244	ret |= btrfs_start_workers(&fs_info->caching_workers);
2245	ret |= btrfs_start_workers(&fs_info->readahead_workers);
2246	if (ret) {
2247		ret = -ENOMEM;
2248		goto fail_sb_buffer;
2249	}
2250
2251	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2252	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2253				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2254
2255	tree_root->nodesize = nodesize;
2256	tree_root->leafsize = leafsize;
2257	tree_root->sectorsize = sectorsize;
2258	tree_root->stripesize = stripesize;
2259
2260	sb->s_blocksize = sectorsize;
2261	sb->s_blocksize_bits = blksize_bits(sectorsize);
2262
2263	if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
2264		    sizeof(disk_super->magic))) {
2265		printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
2266		goto fail_sb_buffer;
2267	}
2268
2269	if (sectorsize != PAGE_SIZE) {
2270		printk(KERN_WARNING "btrfs: Incompatible sector size(%lu) "
2271		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2272		goto fail_sb_buffer;
2273	}
2274
2275	mutex_lock(&fs_info->chunk_mutex);
2276	ret = btrfs_read_sys_array(tree_root);
2277	mutex_unlock(&fs_info->chunk_mutex);
2278	if (ret) {
2279		printk(KERN_WARNING "btrfs: failed to read the system "
2280		       "array on %s\n", sb->s_id);
2281		goto fail_sb_buffer;
2282	}
2283
2284	blocksize = btrfs_level_size(tree_root,
2285				     btrfs_super_chunk_root_level(disk_super));
2286	generation = btrfs_super_chunk_root_generation(disk_super);
2287
2288	__setup_root(nodesize, leafsize, sectorsize, stripesize,
2289		     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2290
2291	chunk_root->node = read_tree_block(chunk_root,
2292					   btrfs_super_chunk_root(disk_super),
2293					   blocksize, generation);
2294	BUG_ON(!chunk_root->node); /* -ENOMEM */
2295	if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2296		printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
2297		       sb->s_id);
2298		goto fail_tree_roots;
2299	}
2300	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2301	chunk_root->commit_root = btrfs_root_node(chunk_root);
2302
2303	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2304	   (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
2305	   BTRFS_UUID_SIZE);
2306
2307	ret = btrfs_read_chunk_tree(chunk_root);
2308	if (ret) {
2309		printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
2310		       sb->s_id);
2311		goto fail_tree_roots;
2312	}
2313
2314	btrfs_close_extra_devices(fs_devices);
2315
2316	if (!fs_devices->latest_bdev) {
2317		printk(KERN_CRIT "btrfs: failed to read devices on %s\n",
2318		       sb->s_id);
 
 
 
 
 
2319		goto fail_tree_roots;
2320	}
2321
2322retry_root_backup:
2323	blocksize = btrfs_level_size(tree_root,
2324				     btrfs_super_root_level(disk_super));
2325	generation = btrfs_super_generation(disk_super);
2326
2327	tree_root->node = read_tree_block(tree_root,
2328					  btrfs_super_root(disk_super),
2329					  blocksize, generation);
2330	if (!tree_root->node ||
2331	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2332		printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
2333		       sb->s_id);
2334
2335		goto recovery_tree_root;
 
 
 
 
 
 
 
 
 
 
2336	}
2337
2338	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2339	tree_root->commit_root = btrfs_root_node(tree_root);
 
 
 
 
 
 
 
 
 
2340
2341	ret = find_and_setup_root(tree_root, fs_info,
2342				  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
2343	if (ret)
2344		goto recovery_tree_root;
2345	extent_root->track_dirty = 1;
 
 
 
 
 
 
 
2346
2347	ret = find_and_setup_root(tree_root, fs_info,
2348				  BTRFS_DEV_TREE_OBJECTID, dev_root);
2349	if (ret)
2350		goto recovery_tree_root;
2351	dev_root->track_dirty = 1;
2352
2353	ret = find_and_setup_root(tree_root, fs_info,
2354				  BTRFS_CSUM_TREE_OBJECTID, csum_root);
2355	if (ret)
2356		goto recovery_tree_root;
2357	csum_root->track_dirty = 1;
2358
2359	fs_info->generation = generation;
2360	fs_info->last_trans_committed = generation;
 
 
 
 
2361
2362	ret = btrfs_recover_balance(fs_info);
2363	if (ret) {
2364		printk(KERN_WARNING "btrfs: failed to recover balance\n");
 
2365		goto fail_block_groups;
2366	}
2367
2368	ret = btrfs_init_dev_stats(fs_info);
2369	if (ret) {
2370		printk(KERN_ERR "btrfs: failed to init dev_stats: %d\n",
2371		       ret);
2372		goto fail_block_groups;
2373	}
2374
2375	ret = btrfs_init_space_info(fs_info);
2376	if (ret) {
2377		printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2378		goto fail_block_groups;
2379	}
2380
2381	ret = btrfs_read_block_groups(extent_root);
2382	if (ret) {
2383		printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2384		goto fail_block_groups;
 
 
 
 
 
 
 
 
 
2385	}
2386
2387	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2388					       "btrfs-cleaner");
2389	if (IS_ERR(fs_info->cleaner_kthread))
2390		goto fail_block_groups;
2391
2392	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2393						   tree_root,
2394						   "btrfs-transaction");
2395	if (IS_ERR(fs_info->transaction_kthread))
2396		goto fail_cleaner;
2397
2398	if (!btrfs_test_opt(tree_root, SSD) &&
2399	    !btrfs_test_opt(tree_root, NOSSD) &&
2400	    !fs_info->fs_devices->rotating) {
2401		printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2402		       "mode\n");
2403		btrfs_set_opt(fs_info->mount_opt, SSD);
 
 
 
 
 
 
 
 
 
 
 
 
2404	}
2405
2406#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2407	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2408		ret = btrfsic_mount(tree_root, fs_devices,
2409				    btrfs_test_opt(tree_root,
2410					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2411				    1 : 0,
2412				    fs_info->check_integrity_print_mask);
2413		if (ret)
2414			printk(KERN_WARNING "btrfs: failed to initialize"
2415			       " integrity check module %s\n", sb->s_id);
 
2416	}
2417#endif
2418
2419	/* do not make disk changes in broken FS */
2420	if (btrfs_super_log_root(disk_super) != 0 &&
2421	    !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2422		u64 bytenr = btrfs_super_log_root(disk_super);
2423
2424		if (fs_devices->rw_devices == 0) {
2425			printk(KERN_WARNING "Btrfs log replay required "
2426			       "on RO media\n");
2427			err = -EIO;
2428			goto fail_trans_kthread;
2429		}
2430		blocksize =
2431		     btrfs_level_size(tree_root,
2432				      btrfs_super_log_root_level(disk_super));
2433
2434		log_tree_root = btrfs_alloc_root(fs_info);
2435		if (!log_tree_root) {
2436			err = -ENOMEM;
2437			goto fail_trans_kthread;
2438		}
2439
2440		__setup_root(nodesize, leafsize, sectorsize, stripesize,
2441			     log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2442
2443		log_tree_root->node = read_tree_block(tree_root, bytenr,
2444						      blocksize,
2445						      generation + 1);
2446		/* returns with log_tree_root freed on success */
2447		ret = btrfs_recover_log_trees(log_tree_root);
2448		if (ret) {
2449			btrfs_error(tree_root->fs_info, ret,
2450				    "Failed to recover log tree");
2451			free_extent_buffer(log_tree_root->node);
2452			kfree(log_tree_root);
2453			goto fail_trans_kthread;
2454		}
2455
2456		if (sb->s_flags & MS_RDONLY) {
2457			ret = btrfs_commit_super(tree_root);
2458			if (ret)
2459				goto fail_trans_kthread;
2460		}
2461	}
2462
2463	ret = btrfs_find_orphan_roots(tree_root);
2464	if (ret)
2465		goto fail_trans_kthread;
2466
2467	if (!(sb->s_flags & MS_RDONLY)) {
2468		ret = btrfs_cleanup_fs_roots(fs_info);
 
 
 
 
 
 
2469		if (ret) {
2470			}
2471
2472		ret = btrfs_recover_relocation(tree_root);
2473		if (ret < 0) {
2474			printk(KERN_WARNING
2475			       "btrfs: failed to recover relocation\n");
2476			err = -EINVAL;
2477			goto fail_trans_kthread;
2478		}
2479	}
2480
2481	location.objectid = BTRFS_FS_TREE_OBJECTID;
2482	location.type = BTRFS_ROOT_ITEM_KEY;
2483	location.offset = (u64)-1;
2484
2485	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2486	if (!fs_info->fs_root)
2487		goto fail_trans_kthread;
2488	if (IS_ERR(fs_info->fs_root)) {
2489		err = PTR_ERR(fs_info->fs_root);
2490		goto fail_trans_kthread;
 
 
2491	}
2492
2493	if (sb->s_flags & MS_RDONLY)
2494		return 0;
2495
2496	down_read(&fs_info->cleanup_work_sem);
2497	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
2498	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
2499		up_read(&fs_info->cleanup_work_sem);
2500		close_ctree(tree_root);
2501		return ret;
2502	}
2503	up_read(&fs_info->cleanup_work_sem);
2504
2505	ret = btrfs_resume_balance_async(fs_info);
2506	if (ret) {
2507		printk(KERN_WARNING "btrfs: failed to resume balance\n");
2508		close_ctree(tree_root);
2509		return ret;
 
 
 
 
 
 
2510	}
2511
 
 
 
 
 
 
 
 
2512	return 0;
2513
 
 
2514fail_trans_kthread:
2515	kthread_stop(fs_info->transaction_kthread);
 
 
2516fail_cleaner:
2517	kthread_stop(fs_info->cleaner_kthread);
2518
2519	/*
2520	 * make sure we're done with the btree inode before we stop our
2521	 * kthreads
2522	 */
2523	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2524	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
 
 
 
 
 
2525
2526fail_block_groups:
2527	btrfs_free_block_groups(fs_info);
2528
2529fail_tree_roots:
2530	free_root_pointers(fs_info, 1);
 
 
 
2531
2532fail_sb_buffer:
2533	btrfs_stop_workers(&fs_info->generic_worker);
2534	btrfs_stop_workers(&fs_info->readahead_workers);
2535	btrfs_stop_workers(&fs_info->fixup_workers);
2536	btrfs_stop_workers(&fs_info->delalloc_workers);
2537	btrfs_stop_workers(&fs_info->workers);
2538	btrfs_stop_workers(&fs_info->endio_workers);
2539	btrfs_stop_workers(&fs_info->endio_meta_workers);
2540	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2541	btrfs_stop_workers(&fs_info->endio_write_workers);
2542	btrfs_stop_workers(&fs_info->endio_freespace_worker);
2543	btrfs_stop_workers(&fs_info->submit_workers);
2544	btrfs_stop_workers(&fs_info->delayed_workers);
2545	btrfs_stop_workers(&fs_info->caching_workers);
2546fail_alloc:
2547fail_iput:
2548	btrfs_mapping_tree_free(&fs_info->mapping_tree);
2549
2550	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2551	iput(fs_info->btree_inode);
2552fail_bdi:
2553	bdi_destroy(&fs_info->bdi);
2554fail_srcu:
2555	cleanup_srcu_struct(&fs_info->subvol_srcu);
2556fail:
2557	btrfs_close_devices(fs_info->fs_devices);
2558	return err;
 
 
2559
2560recovery_tree_root:
2561	if (!btrfs_test_opt(tree_root, RECOVERY))
2562		goto fail_tree_roots;
 
 
 
2563
2564	free_root_pointers(fs_info, 0);
 
2565
2566	/* don't use the log in recovery mode, it won't be valid */
2567	btrfs_set_super_log_root(disk_super, 0);
 
 
 
 
 
 
 
 
 
 
2568
2569	/* we can't trust the free space cache either */
2570	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 
2571
2572	ret = next_root_backup(fs_info, fs_info->super_copy,
2573			       &num_backups_tried, &backup_index);
2574	if (ret == -1)
2575		goto fail_block_groups;
2576	goto retry_root_backup;
2577}
2578
2579static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 
2580{
2581	if (uptodate) {
2582		set_buffer_uptodate(bh);
2583	} else {
2584		struct btrfs_device *device = (struct btrfs_device *)
2585			bh->b_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2586
2587		printk_ratelimited_in_rcu(KERN_WARNING "lost page write due to "
2588					  "I/O error on %s\n",
2589					  rcu_str_deref(device->name));
2590		/* note, we dont' set_buffer_write_io_error because we have
2591		 * our own ways of dealing with the IO errors
2592		 */
2593		clear_buffer_uptodate(bh);
2594		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2595	}
2596	unlock_buffer(bh);
2597	put_bh(bh);
2598}
2599
2600struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
 
2601{
2602	struct buffer_head *bh;
2603	struct buffer_head *latest = NULL;
2604	struct btrfs_super_block *super;
2605	int i;
2606	u64 transid = 0;
2607	u64 bytenr;
2608
2609	/* we would like to check all the supers, but that would make
2610	 * a btrfs mount succeed after a mkfs from a different FS.
2611	 * So, we need to add a special mount option to scan for
2612	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2613	 */
2614	for (i = 0; i < 1; i++) {
2615		bytenr = btrfs_sb_offset(i);
2616		if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2617			break;
2618		bh = __bread(bdev, bytenr / 4096, 4096);
2619		if (!bh)
2620			continue;
2621
2622		super = (struct btrfs_super_block *)bh->b_data;
2623		if (btrfs_super_bytenr(super) != bytenr ||
2624		    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2625			    sizeof(super->magic))) {
2626			brelse(bh);
2627			continue;
2628		}
2629
2630		if (!latest || btrfs_super_generation(super) > transid) {
2631			brelse(latest);
2632			latest = bh;
2633			transid = btrfs_super_generation(super);
2634		} else {
2635			brelse(bh);
2636		}
2637	}
2638	return latest;
 
2639}
2640
2641/*
2642 * this should be called twice, once with wait == 0 and
2643 * once with wait == 1.  When wait == 0 is done, all the buffer heads
2644 * we write are pinned.
2645 *
2646 * They are released when wait == 1 is done.
2647 * max_mirrors must be the same for both runs, and it indicates how
2648 * many supers on this one device should be written.
2649 *
2650 * max_mirrors == 0 means to write them all.
2651 */
2652static int write_dev_supers(struct btrfs_device *device,
2653			    struct btrfs_super_block *sb,
2654			    int do_barriers, int wait, int max_mirrors)
2655{
2656	struct buffer_head *bh;
 
 
2657	int i;
 
2658	int ret;
2659	int errors = 0;
2660	u32 crc;
2661	u64 bytenr;
2662
2663	if (max_mirrors == 0)
2664		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2665
 
 
2666	for (i = 0; i < max_mirrors; i++) {
2667		bytenr = btrfs_sb_offset(i);
2668		if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2669			break;
2670
2671		if (wait) {
2672			bh = __find_get_block(device->bdev, bytenr / 4096,
2673					      BTRFS_SUPER_INFO_SIZE);
2674			BUG_ON(!bh);
2675			wait_on_buffer(bh);
2676			if (!buffer_uptodate(bh))
2677				errors++;
2678
2679			/* drop our reference */
2680			brelse(bh);
 
 
 
 
 
 
 
 
 
 
 
2681
2682			/* drop the reference from the wait == 0 run */
2683			brelse(bh);
2684			continue;
2685		} else {
2686			btrfs_set_super_bytenr(sb, bytenr);
2687
2688			crc = ~(u32)0;
2689			crc = btrfs_csum_data(NULL, (char *)sb +
2690					      BTRFS_CSUM_SIZE, crc,
2691					      BTRFS_SUPER_INFO_SIZE -
2692					      BTRFS_CSUM_SIZE);
2693			btrfs_csum_final(crc, sb->csum);
2694
2695			/*
2696			 * one reference for us, and we leave it for the
2697			 * caller
2698			 */
2699			bh = __getblk(device->bdev, bytenr / 4096,
2700				      BTRFS_SUPER_INFO_SIZE);
2701			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2702
2703			/* one reference for submit_bh */
2704			get_bh(bh);
2705
2706			set_buffer_uptodate(bh);
2707			lock_buffer(bh);
2708			bh->b_end_io = btrfs_end_buffer_write_sync;
2709			bh->b_private = device;
2710		}
2711
2712		/*
2713		 * we fua the first super.  The others we allow
2714		 * to go down lazy.
 
2715		 */
2716		ret = btrfsic_submit_bh(WRITE_FUA, bh);
2717		if (ret)
 
 
 
 
 
2718			errors++;
2719	}
2720	return errors < i ? 0 : -1;
2721}
2722
2723/*
2724 * endio for the write_dev_flush, this will wake anyone waiting
2725 * for the barrier when it is done
2726 */
2727static void btrfs_end_empty_barrier(struct bio *bio, int err)
2728{
2729	if (err) {
2730		if (err == -EOPNOTSUPP)
2731			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2732		clear_bit(BIO_UPTODATE, &bio->bi_flags);
2733	}
2734	if (bio->bi_private)
2735		complete(bio->bi_private);
2736	bio_put(bio);
2737}
2738
2739/*
2740 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
2741 * sent down.  With wait == 1, it waits for the previous flush.
2742 *
2743 * any device where the flush fails with eopnotsupp are flagged as not-barrier
2744 * capable
2745 */
2746static int write_dev_flush(struct btrfs_device *device, int wait)
2747{
2748	struct bio *bio;
2749	int ret = 0;
 
 
 
2750
2751	if (device->nobarriers)
2752		return 0;
2753
2754	if (wait) {
2755		bio = device->flush_bio;
2756		if (!bio)
2757			return 0;
2758
2759		wait_for_completion(&device->flush_wait);
 
 
 
 
 
 
 
 
 
 
 
2760
2761		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
2762			printk_in_rcu("btrfs: disabling barriers on dev %s\n",
2763				      rcu_str_deref(device->name));
2764			device->nobarriers = 1;
2765		}
2766		if (!bio_flagged(bio, BIO_UPTODATE)) {
2767			ret = -EIO;
2768			if (!bio_flagged(bio, BIO_EOPNOTSUPP))
2769				btrfs_dev_stat_inc_and_print(device,
2770					BTRFS_DEV_STAT_FLUSH_ERRS);
 
 
 
 
2771		}
2772
2773		/* drop the reference from the wait == 0 run */
2774		bio_put(bio);
2775		device->flush_bio = NULL;
2776
2777		return ret;
 
 
 
 
 
 
 
 
2778	}
2779
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2780	/*
2781	 * one reference for us, and we leave it for the
2782	 * caller
 
 
 
 
 
 
2783	 */
2784	device->flush_bio = NULL;
2785	bio = bio_alloc(GFP_NOFS, 0);
2786	if (!bio)
2787		return -ENOMEM;
2788
 
 
2789	bio->bi_end_io = btrfs_end_empty_barrier;
2790	bio->bi_bdev = device->bdev;
2791	init_completion(&device->flush_wait);
2792	bio->bi_private = &device->flush_wait;
2793	device->flush_bio = bio;
2794
2795	bio_get(bio);
2796	btrfsic_submit_bio(WRITE_FLUSH, bio);
 
 
 
 
 
 
 
 
 
 
 
 
2797
 
 
 
 
 
 
 
 
 
 
2798	return 0;
2799}
2800
2801/*
2802 * send an empty flush down to each device in parallel,
2803 * then wait for them
2804 */
2805static int barrier_all_devices(struct btrfs_fs_info *info)
2806{
2807	struct list_head *head;
2808	struct btrfs_device *dev;
2809	int errors = 0;
2810	int ret;
2811
 
2812	/* send down all the barriers */
2813	head = &info->fs_devices->devices;
2814	list_for_each_entry_rcu(dev, head, dev_list) {
2815		if (!dev->bdev) {
2816			errors++;
 
2817			continue;
2818		}
2819		if (!dev->in_fs_metadata || !dev->writeable)
2820			continue;
2821
2822		ret = write_dev_flush(dev, 0);
2823		if (ret)
2824			errors++;
2825	}
2826
2827	/* wait for all the barriers */
2828	list_for_each_entry_rcu(dev, head, dev_list) {
 
 
2829		if (!dev->bdev) {
2830			errors++;
2831			continue;
2832		}
2833		if (!dev->in_fs_metadata || !dev->writeable)
 
2834			continue;
2835
2836		ret = write_dev_flush(dev, 1);
2837		if (ret)
2838			errors++;
 
 
 
 
 
 
 
 
 
 
 
 
 
2839	}
2840	if (errors)
2841		return -EIO;
2842	return 0;
2843}
2844
2845int write_all_supers(struct btrfs_root *root, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2846{
2847	struct list_head *head;
2848	struct btrfs_device *dev;
2849	struct btrfs_super_block *sb;
2850	struct btrfs_dev_item *dev_item;
2851	int ret;
2852	int do_barriers;
2853	int max_errors;
2854	int total_errors = 0;
2855	u64 flags;
2856
2857	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
2858	do_barriers = !btrfs_test_opt(root, NOBARRIER);
2859	backup_super_roots(root->fs_info);
2860
2861	sb = root->fs_info->super_for_commit;
 
 
 
 
 
 
 
 
2862	dev_item = &sb->dev_item;
2863
2864	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2865	head = &root->fs_info->fs_devices->devices;
 
2866
2867	if (do_barriers)
2868		barrier_all_devices(root->fs_info);
 
 
 
 
 
 
 
 
2869
2870	list_for_each_entry_rcu(dev, head, dev_list) {
2871		if (!dev->bdev) {
2872			total_errors++;
2873			continue;
2874		}
2875		if (!dev->in_fs_metadata || !dev->writeable)
 
2876			continue;
2877
2878		btrfs_set_stack_device_generation(dev_item, 0);
2879		btrfs_set_stack_device_type(dev_item, dev->type);
2880		btrfs_set_stack_device_id(dev_item, dev->devid);
2881		btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2882		btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
 
 
2883		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2884		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2885		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2886		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2887		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
2888
2889		flags = btrfs_super_flags(sb);
2890		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2891
2892		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
2893		if (ret)
2894			total_errors++;
2895	}
2896	if (total_errors > max_errors) {
2897		printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2898		       total_errors);
2899
2900		/* This shouldn't happen. FUA is masked off if unsupported */
2901		BUG();
 
 
 
 
2902	}
2903
2904	total_errors = 0;
2905	list_for_each_entry_rcu(dev, head, dev_list) {
2906		if (!dev->bdev)
2907			continue;
2908		if (!dev->in_fs_metadata || !dev->writeable)
 
2909			continue;
2910
2911		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2912		if (ret)
2913			total_errors++;
2914	}
2915	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2916	if (total_errors > max_errors) {
2917		btrfs_error(root->fs_info, -EIO,
2918			    "%d errors while writing supers", total_errors);
 
2919		return -EIO;
2920	}
2921	return 0;
2922}
2923
2924int write_ctree_super(struct btrfs_trans_handle *trans,
2925		      struct btrfs_root *root, int max_mirrors)
 
2926{
2927	int ret;
2928
2929	ret = write_all_supers(root, max_mirrors);
2930	return ret;
2931}
2932
2933void btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2934{
2935	spin_lock(&fs_info->fs_roots_radix_lock);
2936	radix_tree_delete(&fs_info->fs_roots_radix,
2937			  (unsigned long)root->root_key.objectid);
 
 
2938	spin_unlock(&fs_info->fs_roots_radix_lock);
2939
2940	if (btrfs_root_refs(&root->root_item) == 0)
2941		synchronize_srcu(&fs_info->subvol_srcu);
2942
2943	__btrfs_remove_free_space_cache(root->free_ino_pinned);
2944	__btrfs_remove_free_space_cache(root->free_ino_ctl);
2945	free_fs_root(root);
2946}
2947
2948static void free_fs_root(struct btrfs_root *root)
2949{
2950	iput(root->cache_inode);
2951	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2952	if (root->anon_dev)
2953		free_anon_bdev(root->anon_dev);
2954	free_extent_buffer(root->node);
2955	free_extent_buffer(root->commit_root);
2956	kfree(root->free_ino_ctl);
2957	kfree(root->free_ino_pinned);
2958	kfree(root->name);
2959	kfree(root);
2960}
2961
2962static void del_fs_roots(struct btrfs_fs_info *fs_info)
2963{
2964	int ret;
2965	struct btrfs_root *gang[8];
2966	int i;
2967
2968	while (!list_empty(&fs_info->dead_roots)) {
2969		gang[0] = list_entry(fs_info->dead_roots.next,
2970				     struct btrfs_root, root_list);
2971		list_del(&gang[0]->root_list);
2972
2973		if (gang[0]->in_radix) {
2974			btrfs_free_fs_root(fs_info, gang[0]);
2975		} else {
2976			free_extent_buffer(gang[0]->node);
2977			free_extent_buffer(gang[0]->commit_root);
2978			kfree(gang[0]);
2979		}
2980	}
2981
2982	while (1) {
2983		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2984					     (void **)gang, 0,
2985					     ARRAY_SIZE(gang));
2986		if (!ret)
2987			break;
2988		for (i = 0; i < ret; i++)
2989			btrfs_free_fs_root(fs_info, gang[i]);
2990	}
2991}
2992
2993int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2994{
2995	u64 root_objectid = 0;
2996	struct btrfs_root *gang[8];
2997	int i;
2998	int ret;
 
2999
3000	while (1) {
 
3001		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3002					     (void **)gang, root_objectid,
3003					     ARRAY_SIZE(gang));
3004		if (!ret)
 
3005			break;
 
 
3006
3007		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3008		for (i = 0; i < ret; i++) {
3009			int err;
 
 
 
 
 
 
 
 
3010
 
 
 
3011			root_objectid = gang[i]->root_key.objectid;
3012			err = btrfs_orphan_cleanup(gang[i]);
3013			if (err)
3014				return err;
 
3015		}
3016		root_objectid++;
3017	}
3018	return 0;
 
 
 
 
 
 
3019}
3020
3021int btrfs_commit_super(struct btrfs_root *root)
3022{
 
3023	struct btrfs_trans_handle *trans;
3024	int ret;
3025
3026	mutex_lock(&root->fs_info->cleaner_mutex);
3027	btrfs_run_delayed_iputs(root);
3028	btrfs_clean_old_snapshots(root);
3029	mutex_unlock(&root->fs_info->cleaner_mutex);
3030
3031	/* wait until ongoing cleanup work done */
3032	down_write(&root->fs_info->cleanup_work_sem);
3033	up_write(&root->fs_info->cleanup_work_sem);
3034
3035	trans = btrfs_join_transaction(root);
3036	if (IS_ERR(trans))
3037		return PTR_ERR(trans);
3038	ret = btrfs_commit_transaction(trans, root);
3039	if (ret)
3040		return ret;
3041	/* run commit again to drop the original snapshot */
3042	trans = btrfs_join_transaction(root);
3043	if (IS_ERR(trans))
3044		return PTR_ERR(trans);
3045	ret = btrfs_commit_transaction(trans, root);
3046	if (ret)
3047		return ret;
3048	ret = btrfs_write_and_wait_transaction(NULL, root);
3049	if (ret) {
3050		btrfs_error(root->fs_info, ret,
3051			    "Failed to sync btree inode to disk.");
3052		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3053	}
3054
3055	ret = write_ctree_super(NULL, root, 0);
3056	return ret;
3057}
3058
3059int close_ctree(struct btrfs_root *root)
3060{
3061	struct btrfs_fs_info *fs_info = root->fs_info;
3062	int ret;
3063
3064	fs_info->closing = 1;
3065	smp_mb();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3066
3067	/* pause restriper - we want to resume on mount */
3068	btrfs_pause_balance(root->fs_info);
 
 
3069
3070	btrfs_scrub_cancel(root);
3071
3072	/* wait for any defraggers to finish */
3073	wait_event(fs_info->transaction_wait,
3074		   (atomic_read(&fs_info->defrag_running) == 0));
3075
3076	/* clear out the rbtree of defraggable inodes */
3077	btrfs_run_defrag_inodes(fs_info);
3078
3079	/*
3080	 * Here come 2 situations when btrfs is broken to flip readonly:
 
 
 
 
 
 
3081	 *
3082	 * 1. when btrfs flips readonly somewhere else before
3083	 * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
3084	 * and btrfs will skip to write sb directly to keep
3085	 * ERROR state on disk.
3086	 *
3087	 * 2. when btrfs flips readonly just in btrfs_commit_super,
3088	 * and in such case, btrfs cannot write sb via btrfs_commit_super,
3089	 * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
3090	 * btrfs will cleanup all FS resources first and write sb then.
 
3091	 */
3092	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3093		ret = btrfs_commit_super(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094		if (ret)
3095			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3096	}
3097
3098	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3099		ret = btrfs_error_commit_super(root);
3100		if (ret)
3101			printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
 
 
3102	}
3103
 
 
 
 
 
 
 
3104	btrfs_put_block_group_cache(fs_info);
3105
3106	kthread_stop(fs_info->transaction_kthread);
3107	kthread_stop(fs_info->cleaner_kthread);
 
 
 
 
3108
3109	fs_info->closing = 2;
3110	smp_mb();
3111
3112	if (fs_info->delalloc_bytes) {
3113		printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
3114		       (unsigned long long)fs_info->delalloc_bytes);
3115	}
3116	if (fs_info->total_ref_cache_size) {
3117		printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
3118		       (unsigned long long)fs_info->total_ref_cache_size);
3119	}
3120
3121	free_extent_buffer(fs_info->extent_root->node);
3122	free_extent_buffer(fs_info->extent_root->commit_root);
3123	free_extent_buffer(fs_info->tree_root->node);
3124	free_extent_buffer(fs_info->tree_root->commit_root);
3125	free_extent_buffer(fs_info->chunk_root->node);
3126	free_extent_buffer(fs_info->chunk_root->commit_root);
3127	free_extent_buffer(fs_info->dev_root->node);
3128	free_extent_buffer(fs_info->dev_root->commit_root);
3129	free_extent_buffer(fs_info->csum_root->node);
3130	free_extent_buffer(fs_info->csum_root->commit_root);
3131
 
 
 
 
 
 
 
3132	btrfs_free_block_groups(fs_info);
3133
3134	del_fs_roots(fs_info);
3135
3136	iput(fs_info->btree_inode);
3137
3138	btrfs_stop_workers(&fs_info->generic_worker);
3139	btrfs_stop_workers(&fs_info->fixup_workers);
3140	btrfs_stop_workers(&fs_info->delalloc_workers);
3141	btrfs_stop_workers(&fs_info->workers);
3142	btrfs_stop_workers(&fs_info->endio_workers);
3143	btrfs_stop_workers(&fs_info->endio_meta_workers);
3144	btrfs_stop_workers(&fs_info->endio_meta_write_workers);
3145	btrfs_stop_workers(&fs_info->endio_write_workers);
3146	btrfs_stop_workers(&fs_info->endio_freespace_worker);
3147	btrfs_stop_workers(&fs_info->submit_workers);
3148	btrfs_stop_workers(&fs_info->delayed_workers);
3149	btrfs_stop_workers(&fs_info->caching_workers);
3150	btrfs_stop_workers(&fs_info->readahead_workers);
3151
3152#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3153	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3154		btrfsic_unmount(root, fs_info->fs_devices);
3155#endif
3156
 
3157	btrfs_close_devices(fs_info->fs_devices);
3158	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3159
3160	bdi_destroy(&fs_info->bdi);
3161	cleanup_srcu_struct(&fs_info->subvol_srcu);
3162
3163	return 0;
3164}
3165
3166int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3167			  int atomic)
3168{
3169	int ret;
3170	struct inode *btree_inode = buf->pages[0]->mapping->host;
3171
3172	ret = extent_buffer_uptodate(buf);
3173	if (!ret)
3174		return ret;
3175
3176	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3177				    parent_transid, atomic);
3178	if (ret == -EAGAIN)
3179		return ret;
3180	return !ret;
3181}
3182
3183int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3184{
3185	return set_extent_buffer_uptodate(buf);
3186}
3187
3188void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3189{
3190	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3191	u64 transid = btrfs_header_generation(buf);
3192	int was_dirty;
3193
3194	btrfs_assert_tree_locked(buf);
3195	if (transid != root->fs_info->generation) {
3196		printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
3197		       "found %llu running %llu\n",
3198			(unsigned long long)buf->start,
3199			(unsigned long long)transid,
3200			(unsigned long long)root->fs_info->generation);
3201		WARN_ON(1);
3202	}
 
 
 
 
3203	was_dirty = set_extent_buffer_dirty(buf);
3204	if (!was_dirty) {
3205		spin_lock(&root->fs_info->delalloc_lock);
3206		root->fs_info->dirty_metadata_bytes += buf->len;
3207		spin_unlock(&root->fs_info->delalloc_lock);
3208	}
3209}
3210
3211void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
3212{
3213	/*
3214	 * looks as though older kernels can get into trouble with
3215	 * this code, they end up stuck in balance_dirty_pages forever
 
3216	 */
3217	u64 num_dirty;
3218	unsigned long thresh = 32 * 1024 * 1024;
3219
3220	if (current->flags & PF_MEMALLOC)
3221		return;
3222
3223	btrfs_balance_delayed_items(root);
3224
3225	num_dirty = root->fs_info->dirty_metadata_bytes;
3226
3227	if (num_dirty > thresh) {
3228		balance_dirty_pages_ratelimited_nr(
3229				   root->fs_info->btree_inode->i_mapping, 1);
3230	}
3231	return;
3232}
3233
3234void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
 
3235{
3236	/*
3237	 * looks as though older kernels can get into trouble with
3238	 * this code, they end up stuck in balance_dirty_pages forever
3239	 */
3240	u64 num_dirty;
3241	unsigned long thresh = 32 * 1024 * 1024;
3242
3243	if (current->flags & PF_MEMALLOC)
3244		return;
3245
3246	num_dirty = root->fs_info->dirty_metadata_bytes;
 
3247
3248	if (num_dirty > thresh) {
3249		balance_dirty_pages_ratelimited_nr(
3250				   root->fs_info->btree_inode->i_mapping, 1);
 
 
3251	}
3252	return;
3253}
3254
3255int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3256{
3257	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3258	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3259}
3260
3261static int btree_lock_page_hook(struct page *page, void *data,
3262				void (*flush_fn)(void *))
3263{
3264	struct inode *inode = page->mapping->host;
3265	struct btrfs_root *root = BTRFS_I(inode)->root;
3266	struct extent_buffer *eb;
3267
3268	/*
3269	 * We culled this eb but the page is still hanging out on the mapping,
3270	 * carry on.
3271	 */
3272	if (!PagePrivate(page))
3273		goto out;
3274
3275	eb = (struct extent_buffer *)page->private;
3276	if (!eb) {
3277		WARN_ON(1);
3278		goto out;
3279	}
3280	if (page != eb->pages[0])
3281		goto out;
3282
3283	if (!btrfs_try_tree_write_lock(eb)) {
3284		flush_fn(data);
3285		btrfs_tree_lock(eb);
3286	}
3287	btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3288
3289	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3290		spin_lock(&root->fs_info->delalloc_lock);
3291		if (root->fs_info->dirty_metadata_bytes >= eb->len)
3292			root->fs_info->dirty_metadata_bytes -= eb->len;
3293		else
3294			WARN_ON(1);
3295		spin_unlock(&root->fs_info->delalloc_lock);
3296	}
3297
3298	btrfs_tree_unlock(eb);
3299out:
3300	if (!trylock_page(page)) {
3301		flush_fn(data);
3302		lock_page(page);
3303	}
3304	return 0;
3305}
3306
3307static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3308			      int read_only)
3309{
3310	if (btrfs_super_csum_type(fs_info->super_copy) >= ARRAY_SIZE(btrfs_csum_sizes)) {
3311		printk(KERN_ERR "btrfs: unsupported checksum algorithm\n");
3312		return -EINVAL;
3313	}
3314
3315	if (read_only)
3316		return 0;
3317
3318	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
3319		printk(KERN_WARNING "warning: mount fs with errors, "
3320		       "running btrfsck is recommended\n");
3321	}
3322
3323	return 0;
 
3324}
3325
3326int btrfs_error_commit_super(struct btrfs_root *root)
3327{
 
 
3328	int ret;
3329
3330	mutex_lock(&root->fs_info->cleaner_mutex);
3331	btrfs_run_delayed_iputs(root);
3332	mutex_unlock(&root->fs_info->cleaner_mutex);
 
 
3333
3334	down_write(&root->fs_info->cleanup_work_sem);
3335	up_write(&root->fs_info->cleanup_work_sem);
 
3336
3337	/* cleanup FS via transaction */
3338	btrfs_cleanup_transaction(root);
3339
3340	ret = write_ctree_super(NULL, root, 0);
3341
3342	return ret;
 
 
 
 
 
 
3343}
3344
3345static void btrfs_destroy_ordered_operations(struct btrfs_root *root)
3346{
3347	struct btrfs_inode *btrfs_inode;
3348	struct list_head splice;
3349
3350	INIT_LIST_HEAD(&splice);
3351
3352	mutex_lock(&root->fs_info->ordered_operations_mutex);
3353	spin_lock(&root->fs_info->ordered_extent_lock);
3354
3355	list_splice_init(&root->fs_info->ordered_operations, &splice);
3356	while (!list_empty(&splice)) {
3357		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3358					 ordered_operations);
3359
3360		list_del_init(&btrfs_inode->ordered_operations);
3361
3362		btrfs_invalidate_inodes(btrfs_inode->root);
3363	}
3364
3365	spin_unlock(&root->fs_info->ordered_extent_lock);
3366	mutex_unlock(&root->fs_info->ordered_operations_mutex);
3367}
3368
3369static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
3370{
 
3371	struct list_head splice;
3372	struct btrfs_ordered_extent *ordered;
3373	struct inode *inode;
3374
3375	INIT_LIST_HEAD(&splice);
3376
3377	spin_lock(&root->fs_info->ordered_extent_lock);
3378
3379	list_splice_init(&root->fs_info->ordered_extents, &splice);
3380	while (!list_empty(&splice)) {
3381		ordered = list_entry(splice.next, struct btrfs_ordered_extent,
3382				     root_extent_list);
 
 
3383
3384		list_del_init(&ordered->root_extent_list);
3385		atomic_inc(&ordered->refs);
3386
3387		/* the inode may be getting freed (in sys_unlink path). */
3388		inode = igrab(ordered->inode);
3389
3390		spin_unlock(&root->fs_info->ordered_extent_lock);
3391		if (inode)
3392			iput(inode);
3393
3394		atomic_set(&ordered->refs, 1);
3395		btrfs_put_ordered_extent(ordered);
3396
3397		spin_lock(&root->fs_info->ordered_extent_lock);
3398	}
 
3399
3400	spin_unlock(&root->fs_info->ordered_extent_lock);
 
 
 
 
 
 
3401}
3402
3403int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
3404			       struct btrfs_root *root)
3405{
3406	struct rb_node *node;
3407	struct btrfs_delayed_ref_root *delayed_refs;
3408	struct btrfs_delayed_ref_node *ref;
3409	int ret = 0;
3410
3411	delayed_refs = &trans->delayed_refs;
3412
3413	spin_lock(&delayed_refs->lock);
3414	if (delayed_refs->num_entries == 0) {
3415		spin_unlock(&delayed_refs->lock);
3416		printk(KERN_INFO "delayed_refs has NO entry\n");
3417		return ret;
3418	}
3419
3420	while ((node = rb_first(&delayed_refs->root)) != NULL) {
3421		ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3422
3423		atomic_set(&ref->refs, 1);
3424		if (btrfs_delayed_ref_is_head(ref)) {
3425			struct btrfs_delayed_ref_head *head;
3426
3427			head = btrfs_delayed_node_to_head(ref);
3428			if (!mutex_trylock(&head->mutex)) {
3429				atomic_inc(&ref->refs);
3430				spin_unlock(&delayed_refs->lock);
3431
3432				/* Need to wait for the delayed ref to run */
3433				mutex_lock(&head->mutex);
3434				mutex_unlock(&head->mutex);
3435				btrfs_put_delayed_ref(ref);
3436
3437				spin_lock(&delayed_refs->lock);
3438				continue;
3439			}
3440
3441			kfree(head->extent_op);
3442			delayed_refs->num_heads--;
3443			if (list_empty(&head->cluster))
3444				delayed_refs->num_heads_ready--;
3445			list_del_init(&head->cluster);
3446		}
3447		ref->in_tree = 0;
3448		rb_erase(&ref->rb_node, &delayed_refs->root);
3449		delayed_refs->num_entries--;
3450
3451		spin_unlock(&delayed_refs->lock);
3452		btrfs_put_delayed_ref(ref);
3453
 
 
 
 
 
3454		cond_resched();
3455		spin_lock(&delayed_refs->lock);
3456	}
 
3457
3458	spin_unlock(&delayed_refs->lock);
3459
3460	return ret;
3461}
3462
3463static void btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
3464{
3465	struct btrfs_pending_snapshot *snapshot;
3466	struct list_head splice;
3467
3468	INIT_LIST_HEAD(&splice);
3469
3470	list_splice_init(&t->pending_snapshots, &splice);
 
3471
3472	while (!list_empty(&splice)) {
3473		snapshot = list_entry(splice.next,
3474				      struct btrfs_pending_snapshot,
3475				      list);
 
 
3476
3477		list_del_init(&snapshot->list);
3478
3479		kfree(snapshot);
 
 
 
 
 
 
 
3480	}
 
3481}
3482
3483static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
3484{
3485	struct btrfs_inode *btrfs_inode;
3486	struct list_head splice;
3487
3488	INIT_LIST_HEAD(&splice);
3489
3490	spin_lock(&root->fs_info->delalloc_lock);
3491	list_splice_init(&root->fs_info->delalloc_inodes, &splice);
3492
3493	while (!list_empty(&splice)) {
3494		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
3495				    delalloc_inodes);
 
 
 
3496
3497		list_del_init(&btrfs_inode->delalloc_inodes);
 
3498
3499		btrfs_invalidate_inodes(btrfs_inode->root);
3500	}
3501
3502	spin_unlock(&root->fs_info->delalloc_lock);
3503}
3504
3505static int btrfs_destroy_marked_extents(struct btrfs_root *root,
3506					struct extent_io_tree *dirty_pages,
3507					int mark)
3508{
3509	int ret;
3510	struct page *page;
3511	struct inode *btree_inode = root->fs_info->btree_inode;
3512	struct extent_buffer *eb;
3513	u64 start = 0;
3514	u64 end;
3515	u64 offset;
3516	unsigned long index;
3517
3518	while (1) {
3519		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
3520					    mark);
3521		if (ret)
3522			break;
3523
3524		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
3525		while (start <= end) {
3526			index = start >> PAGE_CACHE_SHIFT;
3527			start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
3528			page = find_get_page(btree_inode->i_mapping, index);
3529			if (!page)
3530				continue;
3531			offset = page_offset(page);
3532
3533			spin_lock(&dirty_pages->buffer_lock);
3534			eb = radix_tree_lookup(
3535			     &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
3536					       offset >> PAGE_CACHE_SHIFT);
3537			spin_unlock(&dirty_pages->buffer_lock);
3538			if (eb)
3539				ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
3540							 &eb->bflags);
3541			if (PageWriteback(page))
3542				end_page_writeback(page);
3543
3544			lock_page(page);
3545			if (PageDirty(page)) {
3546				clear_page_dirty_for_io(page);
3547				spin_lock_irq(&page->mapping->tree_lock);
3548				radix_tree_tag_clear(&page->mapping->page_tree,
3549							page_index(page),
3550							PAGECACHE_TAG_DIRTY);
3551				spin_unlock_irq(&page->mapping->tree_lock);
3552			}
3553
3554			unlock_page(page);
3555			page_cache_release(page);
 
 
3556		}
3557	}
3558
3559	return ret;
3560}
3561
3562static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3563				       struct extent_io_tree *pinned_extents)
3564{
3565	struct extent_io_tree *unpin;
3566	u64 start;
3567	u64 end;
3568	int ret;
3569	bool loop = true;
3570
3571	unpin = pinned_extents;
3572again:
3573	while (1) {
 
 
 
 
 
 
 
 
 
3574		ret = find_first_extent_bit(unpin, 0, &start, &end,
3575					    EXTENT_DIRTY);
3576		if (ret)
 
3577			break;
 
3578
3579		/* opt_discard */
3580		if (btrfs_test_opt(root, DISCARD))
3581			ret = btrfs_error_discard_extent(root, start,
3582							 end + 1 - start,
3583							 NULL);
3584
3585		clear_extent_dirty(unpin, start, end, GFP_NOFS);
3586		btrfs_error_unpin_extent_range(root, start, end);
3587		cond_resched();
3588	}
3589
3590	if (loop) {
3591		if (unpin == &root->fs_info->freed_extents[0])
3592			unpin = &root->fs_info->freed_extents[1];
3593		else
3594			unpin = &root->fs_info->freed_extents[0];
3595		loop = false;
3596		goto again;
3597	}
3598
3599	return 0;
3600}
3601
3602void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
3603				   struct btrfs_root *root)
3604{
3605	btrfs_destroy_delayed_refs(cur_trans, root);
3606	btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
3607				cur_trans->dirty_pages.dirty_bytes);
3608
3609	/* FIXME: cleanup wait for commit */
3610	cur_trans->in_commit = 1;
3611	cur_trans->blocked = 1;
3612	wake_up(&root->fs_info->transaction_blocked_wait);
 
 
 
 
 
 
3613
3614	cur_trans->blocked = 0;
3615	wake_up(&root->fs_info->transaction_wait);
 
 
3616
3617	cur_trans->commit_done = 1;
3618	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
 
 
 
 
 
3619
3620	btrfs_destroy_delayed_inodes(root);
3621	btrfs_assert_delayed_root_empty(root);
3622
3623	btrfs_destroy_pending_snapshots(cur_trans);
3624
3625	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
3626				     EXTENT_DIRTY);
3627	btrfs_destroy_pinned_extent(root,
3628				    root->fs_info->pinned_extents);
 
 
3629
3630	/*
3631	memset(cur_trans, 0, sizeof(*cur_trans));
3632	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
3633	*/
 
 
 
 
 
 
 
 
 
 
 
3634}
3635
3636int btrfs_cleanup_transaction(struct btrfs_root *root)
 
3637{
3638	struct btrfs_transaction *t;
3639	LIST_HEAD(list);
3640
3641	mutex_lock(&root->fs_info->transaction_kthread_mutex);
 
 
3642
3643	spin_lock(&root->fs_info->trans_lock);
3644	list_splice_init(&root->fs_info->trans_list, &list);
3645	root->fs_info->trans_no_join = 1;
3646	spin_unlock(&root->fs_info->trans_lock);
3647
3648	while (!list_empty(&list)) {
3649		t = list_entry(list.next, struct btrfs_transaction, list);
3650		if (!t)
3651			break;
3652
3653		btrfs_destroy_ordered_operations(root);
3654
3655		btrfs_destroy_ordered_extents(root);
 
3656
3657		btrfs_destroy_delayed_refs(t, root);
 
3658
3659		btrfs_block_rsv_release(root,
3660					&root->fs_info->trans_block_rsv,
3661					t->dirty_pages.dirty_bytes);
3662
3663		/* FIXME: cleanup wait for commit */
3664		t->in_commit = 1;
3665		t->blocked = 1;
3666		if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3667			wake_up(&root->fs_info->transaction_blocked_wait);
3668
3669		t->blocked = 0;
3670		if (waitqueue_active(&root->fs_info->transaction_wait))
3671			wake_up(&root->fs_info->transaction_wait);
3672
3673		t->commit_done = 1;
3674		if (waitqueue_active(&t->commit_wait))
3675			wake_up(&t->commit_wait);
3676
3677		btrfs_destroy_delayed_inodes(root);
3678		btrfs_assert_delayed_root_empty(root);
 
3679
3680		btrfs_destroy_pending_snapshots(t);
3681
3682		btrfs_destroy_delalloc_inodes(root);
 
 
3683
3684		spin_lock(&root->fs_info->trans_lock);
3685		root->fs_info->running_transaction = NULL;
3686		spin_unlock(&root->fs_info->trans_lock);
3687
3688		btrfs_destroy_marked_extents(root, &t->dirty_pages,
3689					     EXTENT_DIRTY);
3690
3691		btrfs_destroy_pinned_extent(root,
3692					    root->fs_info->pinned_extents);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3693
3694		atomic_set(&t->use_count, 0);
 
 
3695		list_del_init(&t->list);
3696		memset(t, 0, sizeof(*t));
3697		kmem_cache_free(btrfs_transaction_cachep, t);
3698	}
3699
3700	spin_lock(&root->fs_info->trans_lock);
3701	root->fs_info->trans_no_join = 0;
3702	spin_unlock(&root->fs_info->trans_lock);
3703	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
 
 
 
 
 
 
 
3704
3705	return 0;
3706}
3707
3708static struct extent_io_ops btree_extent_io_ops = {
3709	.write_cache_pages_lock_hook = btree_lock_page_hook,
3710	.readpage_end_io_hook = btree_readpage_end_io_hook,
3711	.readpage_io_failed_hook = btree_io_failed_hook,
3712	.submit_bio_hook = btree_submit_bio_hook,
3713	/* note we're sharing with inode.c for the merge bio hook */
3714	.merge_bio_hook = btrfs_merge_bio_hook,
3715};