Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 */
   5
   6#include <linux/fs.h>
   7#include <linux/blkdev.h>
 
 
   8#include <linux/radix-tree.h>
   9#include <linux/writeback.h>
 
  10#include <linux/workqueue.h>
  11#include <linux/kthread.h>
  12#include <linux/slab.h>
  13#include <linux/migrate.h>
  14#include <linux/ratelimit.h>
  15#include <linux/uuid.h>
  16#include <linux/semaphore.h>
  17#include <linux/error-injection.h>
  18#include <linux/crc32c.h>
  19#include <linux/sched/mm.h>
  20#include <asm/unaligned.h>
  21#include <crypto/hash.h>
  22#include "ctree.h"
  23#include "disk-io.h"
 
  24#include "transaction.h"
  25#include "btrfs_inode.h"
  26#include "bio.h"
  27#include "print-tree.h"
  28#include "locking.h"
  29#include "tree-log.h"
  30#include "free-space-cache.h"
  31#include "free-space-tree.h"
 
  32#include "check-integrity.h"
  33#include "rcu-string.h"
  34#include "dev-replace.h"
  35#include "raid56.h"
  36#include "sysfs.h"
  37#include "qgroup.h"
  38#include "compression.h"
  39#include "tree-checker.h"
  40#include "ref-verify.h"
  41#include "block-group.h"
  42#include "discard.h"
  43#include "space-info.h"
  44#include "zoned.h"
  45#include "subpage.h"
  46#include "fs.h"
  47#include "accessors.h"
  48#include "extent-tree.h"
  49#include "root-tree.h"
  50#include "defrag.h"
  51#include "uuid-tree.h"
  52#include "relocation.h"
  53#include "scrub.h"
  54#include "super.h"
  55
  56#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  57				 BTRFS_HEADER_FLAG_RELOC |\
  58				 BTRFS_SUPER_FLAG_ERROR |\
  59				 BTRFS_SUPER_FLAG_SEEDING |\
  60				 BTRFS_SUPER_FLAG_METADUMP |\
  61				 BTRFS_SUPER_FLAG_METADUMP_V2)
  62
 
 
 
 
 
  63static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  64static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  65				      struct btrfs_fs_info *fs_info);
  66static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  67static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  68					struct extent_io_tree *dirty_pages,
  69					int mark);
  70static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  71				       struct extent_io_tree *pinned_extents);
  72static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  73static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  74
  75static void btrfs_free_csum_hash(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  76{
  77	if (fs_info->csum_shash)
  78		crypto_free_shash(fs_info->csum_shash);
  79}
  80
  81/*
  82 * async submit bios are used to offload expensive checksumming
  83 * onto the worker threads.  They checksum file and metadata bios
  84 * just before they are sent down the IO stack.
  85 */
  86struct async_submit_bio {
  87	struct btrfs_inode *inode;
  88	struct bio *bio;
  89	enum btrfs_wq_submit_cmd submit_cmd;
 
 
  90	int mirror_num;
  91
  92	/* Optional parameter for used by direct io */
  93	u64 dio_file_offset;
 
 
 
  94	struct btrfs_work work;
  95	blk_status_t status;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  96};
  97
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  98/*
  99 * Compute the csum of a btree block and store the result to provided buffer.
 
 100 */
 101static void csum_tree_block(struct extent_buffer *buf, u8 *result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 102{
 103	struct btrfs_fs_info *fs_info = buf->fs_info;
 104	const int num_pages = num_extent_pages(buf);
 105	const int first_page_part = min_t(u32, PAGE_SIZE, fs_info->nodesize);
 106	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 107	char *kaddr;
 108	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109
 110	shash->tfm = fs_info->csum_shash;
 111	crypto_shash_init(shash);
 112	kaddr = page_address(buf->pages[0]) + offset_in_page(buf->start);
 113	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
 114			    first_page_part - BTRFS_CSUM_SIZE);
 115
 116	for (i = 1; i < num_pages; i++) {
 117		kaddr = page_address(buf->pages[i]);
 118		crypto_shash_update(shash, kaddr, PAGE_SIZE);
 
 
 
 
 
 
 
 
 
 
 119	}
 120	memset(result, 0, BTRFS_CSUM_SIZE);
 121	crypto_shash_final(shash, result);
 
 122}
 123
 124/*
 125 * we can't consider a given block up to date unless the transid of the
 126 * block matches the transid in the parent node's pointer.  This is how we
 127 * detect blocks that either didn't get written at all or got written
 128 * in the wrong place.
 129 */
 130static int verify_parent_transid(struct extent_io_tree *io_tree,
 131				 struct extent_buffer *eb, u64 parent_transid,
 132				 int atomic)
 133{
 134	struct extent_state *cached_state = NULL;
 135	int ret;
 
 136
 137	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 138		return 0;
 139
 140	if (atomic)
 141		return -EAGAIN;
 142
 143	lock_extent(io_tree, eb->start, eb->start + eb->len - 1, &cached_state);
 
 
 
 
 
 
 144	if (extent_buffer_uptodate(eb) &&
 145	    btrfs_header_generation(eb) == parent_transid) {
 146		ret = 0;
 147		goto out;
 148	}
 149	btrfs_err_rl(eb->fs_info,
 150"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 151			eb->start, eb->read_mirror,
 152			parent_transid, btrfs_header_generation(eb));
 153	ret = 1;
 154	clear_extent_buffer_uptodate(eb);
 
 
 
 
 
 
 
 
 
 
 155out:
 156	unlock_extent(io_tree, eb->start, eb->start + eb->len - 1,
 157		      &cached_state);
 
 
 158	return ret;
 159}
 160
 161static bool btrfs_supported_super_csum(u16 csum_type)
 162{
 163	switch (csum_type) {
 164	case BTRFS_CSUM_TYPE_CRC32:
 165	case BTRFS_CSUM_TYPE_XXHASH:
 166	case BTRFS_CSUM_TYPE_SHA256:
 167	case BTRFS_CSUM_TYPE_BLAKE2:
 168		return true;
 169	default:
 170		return false;
 171	}
 172}
 173
 174/*
 175 * Return 0 if the superblock checksum type matches the checksum value of that
 176 * algorithm. Pass the raw disk superblock data.
 177 */
 178int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 179			   const struct btrfs_super_block *disk_sb)
 180{
 181	char result[BTRFS_CSUM_SIZE];
 182	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
 183
 184	shash->tfm = fs_info->csum_shash;
 185
 186	/*
 187	 * The super_block structure does not span the whole
 188	 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space is
 189	 * filled with zeros and is included in the checksum.
 190	 */
 191	crypto_shash_digest(shash, (const u8 *)disk_sb + BTRFS_CSUM_SIZE,
 192			    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, result);
 193
 194	if (memcmp(disk_sb->csum, result, fs_info->csum_size))
 195		return 1;
 196
 197	return 0;
 198}
 199
 200int btrfs_verify_level_key(struct extent_buffer *eb, int level,
 201			   struct btrfs_key *first_key, u64 parent_transid)
 202{
 203	struct btrfs_fs_info *fs_info = eb->fs_info;
 204	int found_level;
 205	struct btrfs_key found_key;
 206	int ret;
 207
 208	found_level = btrfs_header_level(eb);
 209	if (found_level != level) {
 210		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 211		     KERN_ERR "BTRFS: tree level check failed\n");
 212		btrfs_err(fs_info,
 213"tree level mismatch detected, bytenr=%llu level expected=%u has=%u",
 214			  eb->start, level, found_level);
 215		return -EIO;
 216	}
 217
 218	if (!first_key)
 219		return 0;
 220
 221	/*
 222	 * For live tree block (new tree blocks in current transaction),
 223	 * we need proper lock context to avoid race, which is impossible here.
 224	 * So we only checks tree blocks which is read from disk, whose
 225	 * generation <= fs_info->last_trans_committed.
 226	 */
 227	if (btrfs_header_generation(eb) > fs_info->last_trans_committed)
 228		return 0;
 229
 230	/* We have @first_key, so this @eb must have at least one item */
 231	if (btrfs_header_nritems(eb) == 0) {
 232		btrfs_err(fs_info,
 233		"invalid tree nritems, bytenr=%llu nritems=0 expect >0",
 234			  eb->start);
 235		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
 236		return -EUCLEAN;
 237	}
 238
 239	if (found_level)
 240		btrfs_node_key_to_cpu(eb, &found_key, 0);
 241	else
 242		btrfs_item_key_to_cpu(eb, &found_key, 0);
 243	ret = btrfs_comp_cpu_keys(first_key, &found_key);
 244
 245	if (ret) {
 246		WARN(IS_ENABLED(CONFIG_BTRFS_DEBUG),
 247		     KERN_ERR "BTRFS: tree first key check failed\n");
 248		btrfs_err(fs_info,
 249"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 250			  eb->start, parent_transid, first_key->objectid,
 251			  first_key->type, first_key->offset,
 252			  found_key.objectid, found_key.type,
 253			  found_key.offset);
 254	}
 255	return ret;
 256}
 257
 258static int btrfs_repair_eb_io_failure(const struct extent_buffer *eb,
 259				      int mirror_num)
 260{
 261	struct btrfs_fs_info *fs_info = eb->fs_info;
 262	u64 start = eb->start;
 263	int i, num_pages = num_extent_pages(eb);
 264	int ret = 0;
 265
 266	if (sb_rdonly(fs_info->sb))
 267		return -EROFS;
 
 
 268
 269	for (i = 0; i < num_pages; i++) {
 270		struct page *p = eb->pages[i];
 
 
 
 
 
 
 
 
 
 
 271
 272		ret = btrfs_repair_io_failure(fs_info, 0, start, PAGE_SIZE,
 273				start, p, start - page_offset(p), mirror_num);
 274		if (ret)
 275			break;
 276		start += PAGE_SIZE;
 277	}
 278
 279	return ret;
 280}
 281
 282/*
 283 * helper to read a given tree block, doing retries as required when
 284 * the checksums don't match and we have alternate mirrors to try.
 285 *
 286 * @check:		expected tree parentness check, see the comments of the
 287 *			structure for details.
 288 */
 289int btrfs_read_extent_buffer(struct extent_buffer *eb,
 290			     struct btrfs_tree_parent_check *check)
 
 291{
 292	struct btrfs_fs_info *fs_info = eb->fs_info;
 293	int failed = 0;
 294	int ret;
 295	int num_copies = 0;
 296	int mirror_num = 0;
 297	int failed_mirror = 0;
 298
 299	ASSERT(check);
 300
 301	while (1) {
 302		clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 303		ret = read_extent_buffer_pages(eb, WAIT_COMPLETE, mirror_num, check);
 304		if (!ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 305			break;
 306
 307		num_copies = btrfs_num_copies(fs_info,
 308					      eb->start, eb->len);
 309		if (num_copies == 1)
 310			break;
 311
 312		if (!failed_mirror) {
 313			failed = 1;
 314			failed_mirror = eb->read_mirror;
 315		}
 316
 317		mirror_num++;
 318		if (mirror_num == failed_mirror)
 319			mirror_num++;
 320
 321		if (mirror_num > num_copies)
 322			break;
 323	}
 324
 325	if (failed && !ret && failed_mirror)
 326		btrfs_repair_eb_io_failure(eb, failed_mirror);
 327
 328	return ret;
 329}
 330
 331static int csum_one_extent_buffer(struct extent_buffer *eb)
 332{
 333	struct btrfs_fs_info *fs_info = eb->fs_info;
 334	u8 result[BTRFS_CSUM_SIZE];
 335	int ret;
 336
 337	ASSERT(memcmp_extent_buffer(eb, fs_info->fs_devices->metadata_uuid,
 338				    offsetof(struct btrfs_header, fsid),
 339				    BTRFS_FSID_SIZE) == 0);
 340	csum_tree_block(eb, result);
 341
 342	if (btrfs_header_level(eb))
 343		ret = btrfs_check_node(eb);
 344	else
 345		ret = btrfs_check_leaf_full(eb);
 
 346
 347	if (ret < 0)
 348		goto error;
 
 349
 
 350	/*
 351	 * Also check the generation, the eb reached here must be newer than
 352	 * last committed. Or something seriously wrong happened.
 353	 */
 354	if (unlikely(btrfs_header_generation(eb) <= fs_info->last_trans_committed)) {
 355		ret = -EUCLEAN;
 356		btrfs_err(fs_info,
 357			"block=%llu bad generation, have %llu expect > %llu",
 358			  eb->start, btrfs_header_generation(eb),
 359			  fs_info->last_trans_committed);
 360		goto error;
 361	}
 362	write_extent_buffer(eb, result, 0, fs_info->csum_size);
 363
 364	return 0;
 
 365
 366error:
 367	btrfs_print_tree(eb, 0);
 368	btrfs_err(fs_info, "block=%llu write time tree block corruption detected",
 369		  eb->start);
 370	/*
 371	 * Be noisy if this is an extent buffer from a log tree. We don't abort
 372	 * a transaction in case there's a bad log tree extent buffer, we just
 373	 * fallback to a transaction commit. Still we want to know when there is
 374	 * a bad log tree extent buffer, as that may signal a bug somewhere.
 375	 */
 376	WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG) ||
 377		btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID);
 378	return ret;
 379}
 380
 381/* Checksum all dirty extent buffers in one bio_vec */
 382static int csum_dirty_subpage_buffers(struct btrfs_fs_info *fs_info,
 383				      struct bio_vec *bvec)
 384{
 385	struct page *page = bvec->bv_page;
 386	u64 bvec_start = page_offset(page) + bvec->bv_offset;
 387	u64 cur;
 388	int ret = 0;
 389
 390	for (cur = bvec_start; cur < bvec_start + bvec->bv_len;
 391	     cur += fs_info->nodesize) {
 392		struct extent_buffer *eb;
 393		bool uptodate;
 394
 395		eb = find_extent_buffer(fs_info, cur);
 396		uptodate = btrfs_subpage_test_uptodate(fs_info, page, cur,
 397						       fs_info->nodesize);
 398
 399		/* A dirty eb shouldn't disappear from buffer_radix */
 400		if (WARN_ON(!eb))
 401			return -EUCLEAN;
 402
 403		if (WARN_ON(cur != btrfs_header_bytenr(eb))) {
 404			free_extent_buffer(eb);
 405			return -EUCLEAN;
 406		}
 407		if (WARN_ON(!uptodate)) {
 408			free_extent_buffer(eb);
 409			return -EUCLEAN;
 410		}
 411
 412		ret = csum_one_extent_buffer(eb);
 413		free_extent_buffer(eb);
 414		if (ret < 0)
 415			return ret;
 416	}
 417	return ret;
 418}
 419
 420/*
 421 * Checksum a dirty tree block before IO.  This has extra checks to make sure
 422 * we only fill in the checksum field in the first page of a multi-page block.
 423 * For subpage extent buffers we need bvec to also read the offset in the page.
 424 */
 425static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct bio_vec *bvec)
 
 
 426{
 427	struct page *page = bvec->bv_page;
 428	u64 start = page_offset(page);
 429	u64 found_start;
 430	struct extent_buffer *eb;
 
 431
 432	if (fs_info->nodesize < PAGE_SIZE)
 433		return csum_dirty_subpage_buffers(fs_info, bvec);
 
 
 
 
 
 
 
 
 
 
 
 
 434
 435	eb = (struct extent_buffer *)page->private;
 436	if (page != eb->pages[0])
 437		return 0;
 
 
 
 
 438
 439	found_start = btrfs_header_bytenr(eb);
 
 
 
 
 
 
 
 
 
 
 
 440
 441	if (test_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags)) {
 442		WARN_ON(found_start != 0);
 443		return 0;
 
 
 
 
 
 
 444	}
 445
 446	/*
 447	 * Please do not consolidate these warnings into a single if.
 448	 * It is useful to know what went wrong.
 449	 */
 450	if (WARN_ON(found_start != start))
 451		return -EUCLEAN;
 452	if (WARN_ON(!PageUptodate(page)))
 453		return -EUCLEAN;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454
 455	return csum_one_extent_buffer(eb);
 
 
 
 
 
 
 
 
 
 
 
 
 456}
 457
 458static int check_tree_block_fsid(struct extent_buffer *eb)
 459{
 460	struct btrfs_fs_info *fs_info = eb->fs_info;
 461	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs;
 462	u8 fsid[BTRFS_FSID_SIZE];
 463	u8 *metadata_uuid;
 464
 465	read_extent_buffer(eb, fsid, offsetof(struct btrfs_header, fsid),
 466			   BTRFS_FSID_SIZE);
 467	/*
 468	 * Checking the incompat flag is only valid for the current fs. For
 469	 * seed devices it's forbidden to have their uuid changed so reading
 470	 * ->fsid in this case is fine
 471	 */
 472	if (btrfs_fs_incompat(fs_info, METADATA_UUID))
 473		metadata_uuid = fs_devices->metadata_uuid;
 474	else
 475		metadata_uuid = fs_devices->fsid;
 476
 477	if (!memcmp(fsid, metadata_uuid, BTRFS_FSID_SIZE))
 478		return 0;
 
 
 
 
 479
 480	list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list)
 481		if (!memcmp(fsid, seed_devs->fsid, BTRFS_FSID_SIZE))
 482			return 0;
 
 
 
 
 
 
 
 483
 484	return 1;
 
 
 
 
 
 
 
 485}
 486
 487/* Do basic extent buffer checks at read time */
 488static int validate_extent_buffer(struct extent_buffer *eb,
 489				  struct btrfs_tree_parent_check *check)
 490{
 491	struct btrfs_fs_info *fs_info = eb->fs_info;
 492	u64 found_start;
 493	const u32 csum_size = fs_info->csum_size;
 494	u8 found_level;
 495	u8 result[BTRFS_CSUM_SIZE];
 496	const u8 *header_csum;
 497	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498
 499	ASSERT(check);
 
 
 
 
 500
 501	found_start = btrfs_header_bytenr(eb);
 502	if (found_start != eb->start) {
 503		btrfs_err_rl(fs_info,
 504			"bad tree block start, mirror %u want %llu have %llu",
 505			     eb->read_mirror, eb->start, found_start);
 506		ret = -EIO;
 507		goto out;
 508	}
 509	if (check_tree_block_fsid(eb)) {
 510		btrfs_err_rl(fs_info, "bad fsid on logical %llu mirror %u",
 511			     eb->start, eb->read_mirror);
 512		ret = -EIO;
 513		goto out;
 514	}
 515	found_level = btrfs_header_level(eb);
 516	if (found_level >= BTRFS_MAX_LEVEL) {
 517		btrfs_err(fs_info,
 518			"bad tree block level, mirror %u level %d on logical %llu",
 519			eb->read_mirror, btrfs_header_level(eb), eb->start);
 520		ret = -EIO;
 521		goto out;
 522	}
 523
 524	csum_tree_block(eb, result);
 525	header_csum = page_address(eb->pages[0]) +
 526		get_eb_offset_in_page(eb, offsetof(struct btrfs_header, csum));
 527
 528	if (memcmp(result, header_csum, csum_size) != 0) {
 529		btrfs_warn_rl(fs_info,
 530"checksum verify failed on logical %llu mirror %u wanted " CSUM_FMT " found " CSUM_FMT " level %d",
 531			      eb->start, eb->read_mirror,
 532			      CSUM_FMT_VALUE(csum_size, header_csum),
 533			      CSUM_FMT_VALUE(csum_size, result),
 534			      btrfs_header_level(eb));
 535		ret = -EUCLEAN;
 536		goto out;
 537	}
 538
 539	if (found_level != check->level) {
 540		btrfs_err(fs_info,
 541		"level verify failed on logical %llu mirror %u wanted %u found %u",
 542			  eb->start, eb->read_mirror, check->level, found_level);
 543		ret = -EIO;
 544		goto out;
 545	}
 546	if (unlikely(check->transid &&
 547		     btrfs_header_generation(eb) != check->transid)) {
 548		btrfs_err_rl(eb->fs_info,
 549"parent transid verify failed on logical %llu mirror %u wanted %llu found %llu",
 550				eb->start, eb->read_mirror, check->transid,
 551				btrfs_header_generation(eb));
 552		ret = -EIO;
 553		goto out;
 554	}
 555	if (check->has_first_key) {
 556		struct btrfs_key *expect_key = &check->first_key;
 557		struct btrfs_key found_key;
 558
 559		if (found_level)
 560			btrfs_node_key_to_cpu(eb, &found_key, 0);
 561		else
 562			btrfs_item_key_to_cpu(eb, &found_key, 0);
 563		if (unlikely(btrfs_comp_cpu_keys(expect_key, &found_key))) {
 564			btrfs_err(fs_info,
 565"tree first key mismatch detected, bytenr=%llu parent_transid=%llu key expected=(%llu,%u,%llu) has=(%llu,%u,%llu)",
 566				  eb->start, check->transid,
 567				  expect_key->objectid,
 568				  expect_key->type, expect_key->offset,
 569				  found_key.objectid, found_key.type,
 570				  found_key.offset);
 571			ret = -EUCLEAN;
 572			goto out;
 573		}
 574	}
 575	if (check->owner_root) {
 576		ret = btrfs_check_eb_owner(eb, check->owner_root);
 577		if (ret < 0)
 578			goto out;
 579	}
 580
 581	/*
 582	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 583	 * that we don't try and read the other copies of this block, just
 584	 * return -EIO.
 585	 */
 586	if (found_level == 0 && btrfs_check_leaf_full(eb)) {
 587		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 588		ret = -EIO;
 589	}
 590
 591	if (found_level > 0 && btrfs_check_node(eb))
 592		ret = -EIO;
 593
 594	if (!ret)
 595		set_extent_buffer_uptodate(eb);
 596	else
 597		btrfs_err(fs_info,
 598		"read time tree block corruption detected on logical %llu mirror %u",
 599			  eb->start, eb->read_mirror);
 
 
 
 
 
 
 
 
 
 
 
 600out:
 601	return ret;
 602}
 603
 604static int validate_subpage_buffer(struct page *page, u64 start, u64 end,
 605				   int mirror, struct btrfs_tree_parent_check *check)
 606{
 607	struct btrfs_fs_info *fs_info = btrfs_sb(page->mapping->host->i_sb);
 608	struct extent_buffer *eb;
 609	bool reads_done;
 610	int ret = 0;
 611
 612	ASSERT(check);
 613
 614	/*
 615	 * We don't allow bio merge for subpage metadata read, so we should
 616	 * only get one eb for each endio hook.
 617	 */
 618	ASSERT(end == start + fs_info->nodesize - 1);
 619	ASSERT(PagePrivate(page));
 
 
 620
 621	eb = find_extent_buffer(fs_info, start);
 622	/*
 623	 * When we are reading one tree block, eb must have been inserted into
 624	 * the radix tree. If not, something is wrong.
 625	 */
 626	ASSERT(eb);
 627
 628	reads_done = atomic_dec_and_test(&eb->io_pages);
 629	/* Subpage read must finish in page read */
 630	ASSERT(reads_done);
 631
 632	eb->read_mirror = mirror;
 633	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 634		ret = -EIO;
 635		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 636	}
 637	ret = validate_extent_buffer(eb, check);
 638	if (ret < 0)
 639		goto err;
 640
 641	set_extent_buffer_uptodate(eb);
 642
 643	free_extent_buffer(eb);
 644	return ret;
 645err:
 646	/*
 647	 * end_bio_extent_readpage decrements io_pages in case of error,
 648	 * make sure it has something to decrement.
 649	 */
 650	atomic_inc(&eb->io_pages);
 651	clear_extent_buffer_uptodate(eb);
 652	free_extent_buffer(eb);
 653	return ret;
 654}
 655
 656int btrfs_validate_metadata_buffer(struct btrfs_bio *bbio,
 657				   struct page *page, u64 start, u64 end,
 658				   int mirror)
 659{
 660	struct extent_buffer *eb;
 661	int ret = 0;
 662	int reads_done;
 663
 664	ASSERT(page->private);
 665
 666	if (btrfs_sb(page->mapping->host->i_sb)->nodesize < PAGE_SIZE)
 667		return validate_subpage_buffer(page, start, end, mirror,
 668					       &bbio->parent_check);
 669
 670	eb = (struct extent_buffer *)page->private;
 671
 672	/*
 673	 * The pending IO might have been the only thing that kept this buffer
 674	 * in memory.  Make sure we have a ref for all this other checks
 675	 */
 676	atomic_inc(&eb->refs);
 677
 678	reads_done = atomic_dec_and_test(&eb->io_pages);
 679	if (!reads_done)
 680		goto err;
 
 
 
 681
 682	eb->read_mirror = mirror;
 683	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 684		ret = -EIO;
 685		goto err;
 686	}
 687	ret = validate_extent_buffer(eb, &bbio->parent_check);
 688err:
 689	if (ret) {
 690		/*
 691		 * our io error hook is going to dec the io pages
 692		 * again, we have to make sure it has something
 693		 * to decrement
 694		 */
 695		atomic_inc(&eb->io_pages);
 696		clear_extent_buffer_uptodate(eb);
 697	}
 698	free_extent_buffer(eb);
 699
 700	return ret;
 
 
 
 
 
 701}
 702
 703static void run_one_async_start(struct btrfs_work *work)
 704{
 705	struct async_submit_bio *async;
 706	blk_status_t ret;
 707
 708	async = container_of(work, struct  async_submit_bio, work);
 709	switch (async->submit_cmd) {
 710	case WQ_SUBMIT_METADATA:
 711		ret = btree_submit_bio_start(async->bio);
 712		break;
 713	case WQ_SUBMIT_DATA:
 714		ret = btrfs_submit_bio_start(async->inode, async->bio);
 715		break;
 716	case WQ_SUBMIT_DATA_DIO:
 717		ret = btrfs_submit_bio_start_direct_io(async->inode,
 718				async->bio, async->dio_file_offset);
 719		break;
 720	}
 721	if (ret)
 722		async->status = ret;
 723}
 724
 725/*
 726 * In order to insert checksums into the metadata in large chunks, we wait
 727 * until bio submission time.   All the pages in the bio are checksummed and
 728 * sums are attached onto the ordered extent record.
 729 *
 730 * At IO completion time the csums attached on the ordered extent record are
 731 * inserted into the tree.
 732 */
 733static void run_one_async_done(struct btrfs_work *work)
 734{
 735	struct async_submit_bio *async =
 736		container_of(work, struct  async_submit_bio, work);
 737	struct btrfs_inode *inode = async->inode;
 738	struct btrfs_bio *bbio = btrfs_bio(async->bio);
 
 
 
 
 
 
 
 
 
 
 
 
 739
 740	/* If an error occurred we just want to clean up the bio and move on */
 741	if (async->status) {
 742		btrfs_bio_end_io(bbio, async->status);
 
 743		return;
 744	}
 745
 746	/*
 747	 * All of the bios that pass through here are from async helpers.
 748	 * Use REQ_CGROUP_PUNT to issue them from the owning cgroup's context.
 749	 * This changes nothing when cgroups aren't in use.
 750	 */
 751	async->bio->bi_opf |= REQ_CGROUP_PUNT;
 752	btrfs_submit_bio(inode->root->fs_info, async->bio, async->mirror_num);
 753}
 754
 755static void run_one_async_free(struct btrfs_work *work)
 756{
 757	struct async_submit_bio *async;
 758
 759	async = container_of(work, struct  async_submit_bio, work);
 760	kfree(async);
 761}
 762
 763/*
 764 * Submit bio to an async queue.
 765 *
 766 * Retrun:
 767 * - true if the work has been succesfuly submitted
 768 * - false in case of error
 769 */
 770bool btrfs_wq_submit_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num,
 771			 u64 dio_file_offset, enum btrfs_wq_submit_cmd cmd)
 772{
 773	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 774	struct async_submit_bio *async;
 775
 776	async = kmalloc(sizeof(*async), GFP_NOFS);
 777	if (!async)
 778		return false;
 779
 780	async->inode = inode;
 781	async->bio = bio;
 782	async->mirror_num = mirror_num;
 783	async->submit_cmd = cmd;
 
 
 
 
 784
 785	btrfs_init_work(&async->work, run_one_async_start, run_one_async_done,
 786			run_one_async_free);
 787
 788	async->dio_file_offset = dio_file_offset;
 789
 790	async->status = 0;
 791
 792	if (op_is_sync(bio->bi_opf))
 793		btrfs_queue_work(fs_info->hipri_workers, &async->work);
 794	else
 795		btrfs_queue_work(fs_info->workers, &async->work);
 796	return true;
 
 
 
 
 
 
 
 797}
 798
 799static blk_status_t btree_csum_one_bio(struct bio *bio)
 800{
 801	struct bio_vec *bvec;
 802	struct btrfs_root *root;
 803	int ret = 0;
 804	struct bvec_iter_all iter_all;
 805
 806	ASSERT(!bio_flagged(bio, BIO_CLONED));
 807	bio_for_each_segment_all(bvec, bio, iter_all) {
 808		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 809		ret = csum_dirty_buffer(root->fs_info, bvec);
 810		if (ret)
 811			break;
 812	}
 813
 814	return errno_to_blk_status(ret);
 815}
 816
 817blk_status_t btree_submit_bio_start(struct bio *bio)
 
 
 818{
 819	/*
 820	 * when we're called for a write, we're already in the async
 821	 * submission context.  Just jump into btrfs_submit_bio.
 822	 */
 823	return btree_csum_one_bio(bio);
 824}
 825
 826static bool should_async_write(struct btrfs_fs_info *fs_info,
 827			     struct btrfs_inode *bi)
 
 828{
 829	if (btrfs_is_zoned(fs_info))
 830		return false;
 831	if (atomic_read(&bi->sync_writers))
 832		return false;
 833	if (test_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags))
 834		return false;
 835	return true;
 
 
 
 
 
 836}
 837
 838void btrfs_submit_metadata_bio(struct btrfs_inode *inode, struct bio *bio, int mirror_num)
 839{
 840	struct btrfs_fs_info *fs_info = inode->root->fs_info;
 841	struct btrfs_bio *bbio = btrfs_bio(bio);
 842	blk_status_t ret;
 
 
 
 
 
 843
 844	bio->bi_opf |= REQ_META;
 845	bbio->is_metadata = 1;
 
 
 
 
 
 846
 847	if (btrfs_op(bio) != BTRFS_MAP_WRITE) {
 848		btrfs_submit_bio(fs_info, bio, mirror_num);
 849		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 850	}
 851
 852	/*
 853	 * Kthread helpers are used to submit writes so that checksumming can
 854	 * happen in parallel across all CPUs.
 855	 */
 856	if (should_async_write(fs_info, inode) &&
 857	    btrfs_wq_submit_bio(inode, bio, mirror_num, 0, WQ_SUBMIT_METADATA))
 858		return;
 859
 860	ret = btree_csum_one_bio(bio);
 861	if (ret) {
 862		btrfs_bio_end_io(bbio, ret);
 863		return;
 864	}
 865
 866	btrfs_submit_bio(fs_info, bio, mirror_num);
 
 
 
 867}
 868
 869#ifdef CONFIG_MIGRATION
 870static int btree_migrate_folio(struct address_space *mapping,
 871		struct folio *dst, struct folio *src, enum migrate_mode mode)
 
 872{
 873	/*
 874	 * we can't safely write a btree page from here,
 875	 * we haven't done the locking hook
 876	 */
 877	if (folio_test_dirty(src))
 878		return -EAGAIN;
 879	/*
 880	 * Buffers may be managed in a filesystem specific way.
 881	 * We must have no buffers or drop them.
 882	 */
 883	if (folio_get_private(src) &&
 884	    !filemap_release_folio(src, GFP_KERNEL))
 885		return -EAGAIN;
 886	return migrate_folio(mapping, dst, src, mode);
 887}
 888#else
 889#define btree_migrate_folio NULL
 890#endif
 891
 
 892static int btree_writepages(struct address_space *mapping,
 893			    struct writeback_control *wbc)
 894{
 895	struct btrfs_fs_info *fs_info;
 896	int ret;
 897
 898	if (wbc->sync_mode == WB_SYNC_NONE) {
 899
 900		if (wbc->for_kupdate)
 901			return 0;
 902
 903		fs_info = BTRFS_I(mapping->host)->root->fs_info;
 904		/* this is a bit racy, but that's ok */
 905		ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
 906					     BTRFS_DIRTY_METADATA_THRESH,
 907					     fs_info->dirty_metadata_batch);
 908		if (ret < 0)
 909			return 0;
 910	}
 911	return btree_write_cache_pages(mapping, wbc);
 912}
 913
 914static bool btree_release_folio(struct folio *folio, gfp_t gfp_flags)
 
 
 
 
 
 
 
 915{
 916	if (folio_test_writeback(folio) || folio_test_dirty(folio))
 917		return false;
 918
 919	return try_release_extent_buffer(&folio->page);
 920}
 921
 922static void btree_invalidate_folio(struct folio *folio, size_t offset,
 923				 size_t length)
 924{
 925	struct extent_io_tree *tree;
 926	tree = &BTRFS_I(folio->mapping->host)->io_tree;
 927	extent_invalidate_folio(tree, folio, offset);
 928	btree_release_folio(folio, GFP_NOFS);
 929	if (folio_get_private(folio)) {
 930		btrfs_warn(BTRFS_I(folio->mapping->host)->root->fs_info,
 931			   "folio private not zero on folio %llu",
 932			   (unsigned long long)folio_pos(folio));
 933		folio_detach_private(folio);
 
 
 934	}
 935}
 936
 937#ifdef DEBUG
 938static bool btree_dirty_folio(struct address_space *mapping,
 939		struct folio *folio)
 940{
 941	struct btrfs_fs_info *fs_info = btrfs_sb(mapping->host->i_sb);
 942	struct btrfs_subpage *subpage;
 943	struct extent_buffer *eb;
 944	int cur_bit = 0;
 945	u64 page_start = folio_pos(folio);
 946
 947	if (fs_info->sectorsize == PAGE_SIZE) {
 948		eb = folio_get_private(folio);
 949		BUG_ON(!eb);
 950		BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 951		BUG_ON(!atomic_read(&eb->refs));
 952		btrfs_assert_tree_write_locked(eb);
 953		return filemap_dirty_folio(mapping, folio);
 954	}
 955	subpage = folio_get_private(folio);
 956
 957	ASSERT(subpage->dirty_bitmap);
 958	while (cur_bit < BTRFS_SUBPAGE_BITMAP_SIZE) {
 959		unsigned long flags;
 960		u64 cur;
 961		u16 tmp = (1 << cur_bit);
 962
 963		spin_lock_irqsave(&subpage->lock, flags);
 964		if (!(tmp & subpage->dirty_bitmap)) {
 965			spin_unlock_irqrestore(&subpage->lock, flags);
 966			cur_bit++;
 967			continue;
 968		}
 969		spin_unlock_irqrestore(&subpage->lock, flags);
 970		cur = page_start + cur_bit * fs_info->sectorsize;
 971
 972		eb = find_extent_buffer(fs_info, cur);
 973		ASSERT(eb);
 974		ASSERT(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
 975		ASSERT(atomic_read(&eb->refs));
 976		btrfs_assert_tree_write_locked(eb);
 977		free_extent_buffer(eb);
 978
 979		cur_bit += (fs_info->nodesize >> fs_info->sectorsize_bits);
 980	}
 981	return filemap_dirty_folio(mapping, folio);
 982}
 983#else
 984#define btree_dirty_folio filemap_dirty_folio
 985#endif
 
 
 986
 987static const struct address_space_operations btree_aops = {
 
 988	.writepages	= btree_writepages,
 989	.release_folio	= btree_release_folio,
 990	.invalidate_folio = btree_invalidate_folio,
 991	.migrate_folio	= btree_migrate_folio,
 992	.dirty_folio	= btree_dirty_folio,
 
 
 993};
 994
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 995struct extent_buffer *btrfs_find_create_tree_block(
 996						struct btrfs_fs_info *fs_info,
 997						u64 bytenr, u64 owner_root,
 998						int level)
 999{
1000	if (btrfs_is_testing(fs_info))
1001		return alloc_test_extent_buffer(fs_info, bytenr);
1002	return alloc_extent_buffer(fs_info, bytenr, owner_root, level);
 
 
 
 
 
 
 
 
 
 
 
 
 
1003}
1004
1005/*
1006 * Read tree block at logical address @bytenr and do variant basic but critical
1007 * verification.
1008 *
1009 * @check:		expected tree parentness check, see comments of the
1010 *			structure for details.
1011 */
1012struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1013				      struct btrfs_tree_parent_check *check)
1014{
1015	struct extent_buffer *buf = NULL;
1016	int ret;
1017
1018	ASSERT(check);
1019
1020	buf = btrfs_find_create_tree_block(fs_info, bytenr, check->owner_root,
1021					   check->level);
1022	if (IS_ERR(buf))
1023		return buf;
1024
1025	ret = btrfs_read_extent_buffer(buf, check);
1026	if (ret) {
1027		free_extent_buffer_stale(buf);
1028		return ERR_PTR(ret);
1029	}
1030	if (btrfs_check_eb_owner(buf, check->owner_root)) {
1031		free_extent_buffer_stale(buf);
1032		return ERR_PTR(-EUCLEAN);
1033	}
1034	return buf;
1035
1036}
1037
1038void btrfs_clean_tree_block(struct extent_buffer *buf)
 
 
1039{
1040	struct btrfs_fs_info *fs_info = buf->fs_info;
1041	if (btrfs_header_generation(buf) ==
1042	    fs_info->running_transaction->transid) {
1043		btrfs_assert_tree_write_locked(buf);
1044
1045		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1046			percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
1047						 -buf->len,
1048						 fs_info->dirty_metadata_batch);
 
 
1049			clear_extent_buffer_dirty(buf);
1050		}
1051	}
1052}
1053
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1054static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1055			 u64 objectid)
1056{
1057	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
1058
1059	memset(&root->root_key, 0, sizeof(root->root_key));
1060	memset(&root->root_item, 0, sizeof(root->root_item));
1061	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1062	root->fs_info = fs_info;
1063	root->root_key.objectid = objectid;
1064	root->node = NULL;
1065	root->commit_root = NULL;
1066	root->state = 0;
1067	RB_CLEAR_NODE(&root->rb_node);
1068
 
1069	root->last_trans = 0;
1070	root->free_objectid = 0;
1071	root->nr_delalloc_inodes = 0;
1072	root->nr_ordered_extents = 0;
 
1073	root->inode_tree = RB_ROOT;
1074	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1075
1076	btrfs_init_root_block_rsv(root);
1077
1078	INIT_LIST_HEAD(&root->dirty_list);
1079	INIT_LIST_HEAD(&root->root_list);
1080	INIT_LIST_HEAD(&root->delalloc_inodes);
1081	INIT_LIST_HEAD(&root->delalloc_root);
1082	INIT_LIST_HEAD(&root->ordered_extents);
1083	INIT_LIST_HEAD(&root->ordered_root);
1084	INIT_LIST_HEAD(&root->reloc_dirty_list);
1085	INIT_LIST_HEAD(&root->logged_list[0]);
1086	INIT_LIST_HEAD(&root->logged_list[1]);
 
1087	spin_lock_init(&root->inode_lock);
1088	spin_lock_init(&root->delalloc_lock);
1089	spin_lock_init(&root->ordered_extent_lock);
1090	spin_lock_init(&root->accounting_lock);
1091	spin_lock_init(&root->log_extents_lock[0]);
1092	spin_lock_init(&root->log_extents_lock[1]);
1093	spin_lock_init(&root->qgroup_meta_rsv_lock);
1094	mutex_init(&root->objectid_mutex);
1095	mutex_init(&root->log_mutex);
1096	mutex_init(&root->ordered_extent_mutex);
1097	mutex_init(&root->delalloc_mutex);
1098	init_waitqueue_head(&root->qgroup_flush_wait);
1099	init_waitqueue_head(&root->log_writer_wait);
1100	init_waitqueue_head(&root->log_commit_wait[0]);
1101	init_waitqueue_head(&root->log_commit_wait[1]);
1102	INIT_LIST_HEAD(&root->log_ctxs[0]);
1103	INIT_LIST_HEAD(&root->log_ctxs[1]);
1104	atomic_set(&root->log_commit[0], 0);
1105	atomic_set(&root->log_commit[1], 0);
1106	atomic_set(&root->log_writers, 0);
1107	atomic_set(&root->log_batch, 0);
1108	refcount_set(&root->refs, 1);
1109	atomic_set(&root->snapshot_force_cow, 0);
1110	atomic_set(&root->nr_swapfiles, 0);
 
1111	root->log_transid = 0;
1112	root->log_transid_committed = -1;
1113	root->last_log_commit = 0;
 
 
 
 
 
 
 
 
 
 
 
 
1114	root->anon_dev = 0;
1115	if (!dummy) {
1116		extent_io_tree_init(fs_info, &root->dirty_log_pages,
1117				    IO_TREE_ROOT_DIRTY_LOG_PAGES);
1118		extent_io_tree_init(fs_info, &root->log_csum_range,
1119				    IO_TREE_LOG_CSUM_RANGE);
1120	}
1121
1122	spin_lock_init(&root->root_item_lock);
1123	btrfs_qgroup_init_swapped_blocks(&root->swapped_blocks);
1124#ifdef CONFIG_BTRFS_DEBUG
1125	INIT_LIST_HEAD(&root->leak_list);
1126	spin_lock(&fs_info->fs_roots_radix_lock);
1127	list_add_tail(&root->leak_list, &fs_info->allocated_roots);
1128	spin_unlock(&fs_info->fs_roots_radix_lock);
1129#endif
1130}
1131
1132static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1133					   u64 objectid, gfp_t flags)
1134{
1135	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1136	if (root)
1137		__setup_root(root, fs_info, objectid);
1138	return root;
1139}
1140
1141#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1142/* Should only be used by the testing infrastructure */
1143struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1144{
1145	struct btrfs_root *root;
1146
1147	if (!fs_info)
1148		return ERR_PTR(-EINVAL);
1149
1150	root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID, GFP_KERNEL);
1151	if (!root)
1152		return ERR_PTR(-ENOMEM);
1153
1154	/* We don't use the stripesize in selftest, set it as sectorsize */
 
1155	root->alloc_bytenr = 0;
1156
1157	return root;
1158}
1159#endif
1160
1161static int global_root_cmp(struct rb_node *a_node, const struct rb_node *b_node)
1162{
1163	const struct btrfs_root *a = rb_entry(a_node, struct btrfs_root, rb_node);
1164	const struct btrfs_root *b = rb_entry(b_node, struct btrfs_root, rb_node);
1165
1166	return btrfs_comp_cpu_keys(&a->root_key, &b->root_key);
1167}
1168
1169static int global_root_key_cmp(const void *k, const struct rb_node *node)
1170{
1171	const struct btrfs_key *key = k;
1172	const struct btrfs_root *root = rb_entry(node, struct btrfs_root, rb_node);
1173
1174	return btrfs_comp_cpu_keys(key, &root->root_key);
1175}
1176
1177int btrfs_global_root_insert(struct btrfs_root *root)
1178{
1179	struct btrfs_fs_info *fs_info = root->fs_info;
1180	struct rb_node *tmp;
1181
1182	write_lock(&fs_info->global_root_lock);
1183	tmp = rb_find_add(&root->rb_node, &fs_info->global_root_tree, global_root_cmp);
1184	write_unlock(&fs_info->global_root_lock);
1185	ASSERT(!tmp);
1186
1187	return tmp ? -EEXIST : 0;
1188}
1189
1190void btrfs_global_root_delete(struct btrfs_root *root)
1191{
1192	struct btrfs_fs_info *fs_info = root->fs_info;
1193
1194	write_lock(&fs_info->global_root_lock);
1195	rb_erase(&root->rb_node, &fs_info->global_root_tree);
1196	write_unlock(&fs_info->global_root_lock);
1197}
1198
1199struct btrfs_root *btrfs_global_root(struct btrfs_fs_info *fs_info,
1200				     struct btrfs_key *key)
1201{
1202	struct rb_node *node;
1203	struct btrfs_root *root = NULL;
1204
1205	read_lock(&fs_info->global_root_lock);
1206	node = rb_find(key, &fs_info->global_root_tree, global_root_key_cmp);
1207	if (node)
1208		root = container_of(node, struct btrfs_root, rb_node);
1209	read_unlock(&fs_info->global_root_lock);
1210
1211	return root;
1212}
1213
1214static u64 btrfs_global_root_id(struct btrfs_fs_info *fs_info, u64 bytenr)
1215{
1216	struct btrfs_block_group *block_group;
1217	u64 ret;
1218
1219	if (!btrfs_fs_incompat(fs_info, EXTENT_TREE_V2))
1220		return 0;
1221
1222	if (bytenr)
1223		block_group = btrfs_lookup_block_group(fs_info, bytenr);
1224	else
1225		block_group = btrfs_lookup_first_block_group(fs_info, bytenr);
1226	ASSERT(block_group);
1227	if (!block_group)
1228		return 0;
1229	ret = block_group->global_root_id;
1230	btrfs_put_block_group(block_group);
1231
1232	return ret;
1233}
1234
1235struct btrfs_root *btrfs_csum_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1236{
1237	struct btrfs_key key = {
1238		.objectid = BTRFS_CSUM_TREE_OBJECTID,
1239		.type = BTRFS_ROOT_ITEM_KEY,
1240		.offset = btrfs_global_root_id(fs_info, bytenr),
1241	};
1242
1243	return btrfs_global_root(fs_info, &key);
1244}
1245
1246struct btrfs_root *btrfs_extent_root(struct btrfs_fs_info *fs_info, u64 bytenr)
1247{
1248	struct btrfs_key key = {
1249		.objectid = BTRFS_EXTENT_TREE_OBJECTID,
1250		.type = BTRFS_ROOT_ITEM_KEY,
1251		.offset = btrfs_global_root_id(fs_info, bytenr),
1252	};
1253
1254	return btrfs_global_root(fs_info, &key);
1255}
1256
1257struct btrfs_root *btrfs_block_group_root(struct btrfs_fs_info *fs_info)
1258{
1259	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE))
1260		return fs_info->block_group_root;
1261	return btrfs_extent_root(fs_info, 0);
1262}
1263
1264struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
 
1265				     u64 objectid)
1266{
1267	struct btrfs_fs_info *fs_info = trans->fs_info;
1268	struct extent_buffer *leaf;
1269	struct btrfs_root *tree_root = fs_info->tree_root;
1270	struct btrfs_root *root;
1271	struct btrfs_key key;
1272	unsigned int nofs_flag;
1273	int ret = 0;
 
1274
1275	/*
1276	 * We're holding a transaction handle, so use a NOFS memory allocation
1277	 * context to avoid deadlock if reclaim happens.
1278	 */
1279	nofs_flag = memalloc_nofs_save();
1280	root = btrfs_alloc_root(fs_info, objectid, GFP_KERNEL);
1281	memalloc_nofs_restore(nofs_flag);
1282	if (!root)
1283		return ERR_PTR(-ENOMEM);
1284
 
1285	root->root_key.objectid = objectid;
1286	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1287	root->root_key.offset = 0;
1288
1289	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
1290				      BTRFS_NESTING_NORMAL);
1291	if (IS_ERR(leaf)) {
1292		ret = PTR_ERR(leaf);
1293		leaf = NULL;
1294		goto fail;
1295	}
1296
 
 
 
 
 
1297	root->node = leaf;
 
 
 
1298	btrfs_mark_buffer_dirty(leaf);
1299
1300	root->commit_root = btrfs_root_node(root);
1301	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1302
1303	btrfs_set_root_flags(&root->root_item, 0);
1304	btrfs_set_root_limit(&root->root_item, 0);
1305	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1306	btrfs_set_root_generation(&root->root_item, trans->transid);
1307	btrfs_set_root_level(&root->root_item, 0);
1308	btrfs_set_root_refs(&root->root_item, 1);
1309	btrfs_set_root_used(&root->root_item, leaf->len);
1310	btrfs_set_root_last_snapshot(&root->root_item, 0);
1311	btrfs_set_root_dirid(&root->root_item, 0);
1312	if (is_fstree(objectid))
1313		generate_random_guid(root->root_item.uuid);
1314	else
1315		export_guid(root->root_item.uuid, &guid_null);
1316	btrfs_set_root_drop_level(&root->root_item, 0);
1317
1318	btrfs_tree_unlock(leaf);
1319
1320	key.objectid = objectid;
1321	key.type = BTRFS_ROOT_ITEM_KEY;
1322	key.offset = 0;
1323	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1324	if (ret)
1325		goto fail;
1326
 
 
1327	return root;
1328
1329fail:
1330	btrfs_put_root(root);
 
 
 
 
 
1331
1332	return ERR_PTR(ret);
1333}
1334
1335static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1336					 struct btrfs_fs_info *fs_info)
1337{
1338	struct btrfs_root *root;
 
1339
1340	root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID, GFP_NOFS);
1341	if (!root)
1342		return ERR_PTR(-ENOMEM);
1343
 
 
1344	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1345	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1346	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1347
1348	return root;
1349}
1350
1351int btrfs_alloc_log_tree_node(struct btrfs_trans_handle *trans,
1352			      struct btrfs_root *root)
1353{
1354	struct extent_buffer *leaf;
1355
1356	/*
1357	 * DON'T set SHAREABLE bit for log trees.
1358	 *
1359	 * Log trees are not exposed to user space thus can't be snapshotted,
1360	 * and they go away before a real commit is actually done.
1361	 *
1362	 * They do store pointers to file data extents, and those reference
1363	 * counts still get updated (along with back refs to the log tree).
 
 
1364	 */
1365
1366	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1367			NULL, 0, 0, 0, BTRFS_NESTING_NORMAL);
1368	if (IS_ERR(leaf))
1369		return PTR_ERR(leaf);
 
 
1370
 
 
 
 
 
1371	root->node = leaf;
1372
 
1373	btrfs_mark_buffer_dirty(root->node);
1374	btrfs_tree_unlock(root->node);
1375
1376	return 0;
1377}
1378
1379int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1380			     struct btrfs_fs_info *fs_info)
1381{
1382	struct btrfs_root *log_root;
1383
1384	log_root = alloc_log_tree(trans, fs_info);
1385	if (IS_ERR(log_root))
1386		return PTR_ERR(log_root);
1387
1388	if (!btrfs_is_zoned(fs_info)) {
1389		int ret = btrfs_alloc_log_tree_node(trans, log_root);
1390
1391		if (ret) {
1392			btrfs_put_root(log_root);
1393			return ret;
1394		}
1395	}
1396
1397	WARN_ON(fs_info->log_root_tree);
1398	fs_info->log_root_tree = log_root;
1399	return 0;
1400}
1401
1402int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1403		       struct btrfs_root *root)
1404{
1405	struct btrfs_fs_info *fs_info = root->fs_info;
1406	struct btrfs_root *log_root;
1407	struct btrfs_inode_item *inode_item;
1408	int ret;
1409
1410	log_root = alloc_log_tree(trans, fs_info);
1411	if (IS_ERR(log_root))
1412		return PTR_ERR(log_root);
1413
1414	ret = btrfs_alloc_log_tree_node(trans, log_root);
1415	if (ret) {
1416		btrfs_put_root(log_root);
1417		return ret;
1418	}
1419
1420	log_root->last_trans = trans->transid;
1421	log_root->root_key.offset = root->root_key.objectid;
1422
1423	inode_item = &log_root->root_item.inode;
1424	btrfs_set_stack_inode_generation(inode_item, 1);
1425	btrfs_set_stack_inode_size(inode_item, 3);
1426	btrfs_set_stack_inode_nlink(inode_item, 1);
1427	btrfs_set_stack_inode_nbytes(inode_item,
1428				     fs_info->nodesize);
1429	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1430
1431	btrfs_set_root_node(&log_root->root_item, log_root->node);
1432
1433	WARN_ON(root->log_root);
1434	root->log_root = log_root;
1435	root->log_transid = 0;
1436	root->log_transid_committed = -1;
1437	root->last_log_commit = 0;
1438	return 0;
1439}
1440
1441static struct btrfs_root *read_tree_root_path(struct btrfs_root *tree_root,
1442					      struct btrfs_path *path,
1443					      struct btrfs_key *key)
1444{
1445	struct btrfs_root *root;
1446	struct btrfs_tree_parent_check check = { 0 };
1447	struct btrfs_fs_info *fs_info = tree_root->fs_info;
 
1448	u64 generation;
1449	int ret;
1450	int level;
1451
1452	root = btrfs_alloc_root(fs_info, key->objectid, GFP_NOFS);
1453	if (!root)
1454		return ERR_PTR(-ENOMEM);
1455
 
 
 
 
 
 
 
 
1456	ret = btrfs_find_root(tree_root, key, path,
1457			      &root->root_item, &root->root_key);
1458	if (ret) {
1459		if (ret > 0)
1460			ret = -ENOENT;
1461		goto fail;
1462	}
1463
1464	generation = btrfs_root_generation(&root->root_item);
1465	level = btrfs_root_level(&root->root_item);
1466	check.level = level;
1467	check.transid = generation;
1468	check.owner_root = key->objectid;
1469	root->node = read_tree_block(fs_info, btrfs_root_bytenr(&root->root_item),
1470				     &check);
1471	if (IS_ERR(root->node)) {
1472		ret = PTR_ERR(root->node);
1473		root->node = NULL;
1474		goto fail;
1475	}
1476	if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1477		ret = -EIO;
1478		goto fail;
1479	}
1480
1481	/*
1482	 * For real fs, and not log/reloc trees, root owner must
1483	 * match its root node owner
1484	 */
1485	if (!test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state) &&
1486	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1487	    root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID &&
1488	    root->root_key.objectid != btrfs_header_owner(root->node)) {
1489		btrfs_crit(fs_info,
1490"root=%llu block=%llu, tree root owner mismatch, have %llu expect %llu",
1491			   root->root_key.objectid, root->node->start,
1492			   btrfs_header_owner(root->node),
1493			   root->root_key.objectid);
1494		ret = -EUCLEAN;
1495		goto fail;
1496	}
1497	root->commit_root = btrfs_root_node(root);
 
 
1498	return root;
1499fail:
1500	btrfs_put_root(root);
1501	return ERR_PTR(ret);
 
 
 
1502}
1503
1504struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1505					struct btrfs_key *key)
1506{
1507	struct btrfs_root *root;
1508	struct btrfs_path *path;
1509
1510	path = btrfs_alloc_path();
1511	if (!path)
1512		return ERR_PTR(-ENOMEM);
1513	root = read_tree_root_path(tree_root, path, key);
1514	btrfs_free_path(path);
 
 
 
1515
1516	return root;
1517}
1518
1519/*
1520 * Initialize subvolume root in-memory structure
1521 *
1522 * @anon_dev:	anonymous device to attach to the root, if zero, allocate new
1523 */
1524static int btrfs_init_fs_root(struct btrfs_root *root, dev_t anon_dev)
1525{
1526	int ret;
1527	unsigned int nofs_flag;
1528
1529	/*
1530	 * We might be called under a transaction (e.g. indirect backref
1531	 * resolution) which could deadlock if it triggers memory reclaim
1532	 */
1533	nofs_flag = memalloc_nofs_save();
1534	ret = btrfs_drew_lock_init(&root->snapshot_lock);
1535	memalloc_nofs_restore(nofs_flag);
1536	if (ret)
1537		goto fail;
1538
1539	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID &&
1540	    !btrfs_is_data_reloc_root(root)) {
1541		set_bit(BTRFS_ROOT_SHAREABLE, &root->state);
1542		btrfs_check_and_init_root_item(&root->root_item);
1543	}
1544
1545	/*
1546	 * Don't assign anonymous block device to roots that are not exposed to
1547	 * userspace, the id pool is limited to 1M
1548	 */
1549	if (is_fstree(root->root_key.objectid) &&
1550	    btrfs_root_refs(&root->root_item) > 0) {
1551		if (!anon_dev) {
1552			ret = get_anon_bdev(&root->anon_dev);
1553			if (ret)
1554				goto fail;
1555		} else {
1556			root->anon_dev = anon_dev;
1557		}
1558	}
 
 
 
 
 
 
 
 
 
1559
1560	mutex_lock(&root->objectid_mutex);
1561	ret = btrfs_init_root_free_objectid(root);
 
1562	if (ret) {
1563		mutex_unlock(&root->objectid_mutex);
1564		goto fail;
1565	}
1566
1567	ASSERT(root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
1568
1569	mutex_unlock(&root->objectid_mutex);
1570
1571	return 0;
1572fail:
1573	/* The caller is responsible to call btrfs_free_fs_root */
1574	return ret;
1575}
1576
1577static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1578					       u64 root_id)
1579{
1580	struct btrfs_root *root;
1581
1582	spin_lock(&fs_info->fs_roots_radix_lock);
1583	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1584				 (unsigned long)root_id);
1585	if (root)
1586		root = btrfs_grab_root(root);
1587	spin_unlock(&fs_info->fs_roots_radix_lock);
1588	return root;
1589}
1590
1591static struct btrfs_root *btrfs_get_global_root(struct btrfs_fs_info *fs_info,
1592						u64 objectid)
1593{
1594	struct btrfs_key key = {
1595		.objectid = objectid,
1596		.type = BTRFS_ROOT_ITEM_KEY,
1597		.offset = 0,
1598	};
1599
1600	if (objectid == BTRFS_ROOT_TREE_OBJECTID)
1601		return btrfs_grab_root(fs_info->tree_root);
1602	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
1603		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1604	if (objectid == BTRFS_CHUNK_TREE_OBJECTID)
1605		return btrfs_grab_root(fs_info->chunk_root);
1606	if (objectid == BTRFS_DEV_TREE_OBJECTID)
1607		return btrfs_grab_root(fs_info->dev_root);
1608	if (objectid == BTRFS_CSUM_TREE_OBJECTID)
1609		return btrfs_grab_root(btrfs_global_root(fs_info, &key));
1610	if (objectid == BTRFS_QUOTA_TREE_OBJECTID)
1611		return btrfs_grab_root(fs_info->quota_root) ?
1612			fs_info->quota_root : ERR_PTR(-ENOENT);
1613	if (objectid == BTRFS_UUID_TREE_OBJECTID)
1614		return btrfs_grab_root(fs_info->uuid_root) ?
1615			fs_info->uuid_root : ERR_PTR(-ENOENT);
1616	if (objectid == BTRFS_BLOCK_GROUP_TREE_OBJECTID)
1617		return btrfs_grab_root(fs_info->block_group_root) ?
1618			fs_info->block_group_root : ERR_PTR(-ENOENT);
1619	if (objectid == BTRFS_FREE_SPACE_TREE_OBJECTID) {
1620		struct btrfs_root *root = btrfs_global_root(fs_info, &key);
1621
1622		return btrfs_grab_root(root) ? root : ERR_PTR(-ENOENT);
1623	}
1624	return NULL;
1625}
1626
1627int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1628			 struct btrfs_root *root)
1629{
1630	int ret;
1631
1632	ret = radix_tree_preload(GFP_NOFS);
1633	if (ret)
1634		return ret;
1635
1636	spin_lock(&fs_info->fs_roots_radix_lock);
1637	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1638				(unsigned long)root->root_key.objectid,
1639				root);
1640	if (ret == 0) {
1641		btrfs_grab_root(root);
1642		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1643	}
1644	spin_unlock(&fs_info->fs_roots_radix_lock);
1645	radix_tree_preload_end();
1646
1647	return ret;
1648}
1649
1650void btrfs_check_leaked_roots(struct btrfs_fs_info *fs_info)
1651{
1652#ifdef CONFIG_BTRFS_DEBUG
1653	struct btrfs_root *root;
1654
1655	while (!list_empty(&fs_info->allocated_roots)) {
1656		char buf[BTRFS_ROOT_NAME_BUF_LEN];
1657
1658		root = list_first_entry(&fs_info->allocated_roots,
1659					struct btrfs_root, leak_list);
1660		btrfs_err(fs_info, "leaked root %s refcount %d",
1661			  btrfs_root_name(&root->root_key, buf),
1662			  refcount_read(&root->refs));
1663		while (refcount_read(&root->refs) > 1)
1664			btrfs_put_root(root);
1665		btrfs_put_root(root);
1666	}
1667#endif
1668}
1669
1670static void free_global_roots(struct btrfs_fs_info *fs_info)
1671{
1672	struct btrfs_root *root;
1673	struct rb_node *node;
1674
1675	while ((node = rb_first_postorder(&fs_info->global_root_tree)) != NULL) {
1676		root = rb_entry(node, struct btrfs_root, rb_node);
1677		rb_erase(&root->rb_node, &fs_info->global_root_tree);
1678		btrfs_put_root(root);
1679	}
1680}
1681
1682void btrfs_free_fs_info(struct btrfs_fs_info *fs_info)
1683{
1684	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
1685	percpu_counter_destroy(&fs_info->delalloc_bytes);
1686	percpu_counter_destroy(&fs_info->ordered_bytes);
1687	percpu_counter_destroy(&fs_info->dev_replace.bio_counter);
1688	btrfs_free_csum_hash(fs_info);
1689	btrfs_free_stripe_hash_table(fs_info);
1690	btrfs_free_ref_cache(fs_info);
1691	kfree(fs_info->balance_ctl);
1692	kfree(fs_info->delayed_root);
1693	free_global_roots(fs_info);
1694	btrfs_put_root(fs_info->tree_root);
1695	btrfs_put_root(fs_info->chunk_root);
1696	btrfs_put_root(fs_info->dev_root);
1697	btrfs_put_root(fs_info->quota_root);
1698	btrfs_put_root(fs_info->uuid_root);
1699	btrfs_put_root(fs_info->fs_root);
1700	btrfs_put_root(fs_info->data_reloc_root);
1701	btrfs_put_root(fs_info->block_group_root);
1702	btrfs_check_leaked_roots(fs_info);
1703	btrfs_extent_buffer_leak_debug_check(fs_info);
1704	kfree(fs_info->super_copy);
1705	kfree(fs_info->super_for_commit);
1706	kfree(fs_info->subpage_info);
1707	kvfree(fs_info);
1708}
1709
1710
1711/*
1712 * Get an in-memory reference of a root structure.
1713 *
1714 * For essential trees like root/extent tree, we grab it from fs_info directly.
1715 * For subvolume trees, we check the cached filesystem roots first. If not
1716 * found, then read it from disk and add it to cached fs roots.
1717 *
1718 * Caller should release the root by calling btrfs_put_root() after the usage.
1719 *
1720 * NOTE: Reloc and log trees can't be read by this function as they share the
1721 *	 same root objectid.
1722 *
1723 * @objectid:	root id
1724 * @anon_dev:	preallocated anonymous block device number for new roots,
1725 * 		pass 0 for new allocation.
1726 * @check_ref:	whether to check root item references, If true, return -ENOENT
1727 *		for orphan roots
1728 */
1729static struct btrfs_root *btrfs_get_root_ref(struct btrfs_fs_info *fs_info,
1730					     u64 objectid, dev_t anon_dev,
1731					     bool check_ref)
1732{
1733	struct btrfs_root *root;
1734	struct btrfs_path *path;
1735	struct btrfs_key key;
1736	int ret;
1737
1738	root = btrfs_get_global_root(fs_info, objectid);
1739	if (root)
1740		return root;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1741again:
1742	root = btrfs_lookup_fs_root(fs_info, objectid);
1743	if (root) {
1744		/* Shouldn't get preallocated anon_dev for cached roots */
1745		ASSERT(!anon_dev);
1746		if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1747			btrfs_put_root(root);
1748			return ERR_PTR(-ENOENT);
1749		}
1750		return root;
1751	}
1752
1753	key.objectid = objectid;
1754	key.type = BTRFS_ROOT_ITEM_KEY;
1755	key.offset = (u64)-1;
1756	root = btrfs_read_tree_root(fs_info->tree_root, &key);
1757	if (IS_ERR(root))
1758		return root;
1759
1760	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1761		ret = -ENOENT;
1762		goto fail;
1763	}
1764
1765	ret = btrfs_init_fs_root(root, anon_dev);
1766	if (ret)
1767		goto fail;
1768
1769	path = btrfs_alloc_path();
1770	if (!path) {
1771		ret = -ENOMEM;
1772		goto fail;
1773	}
1774	key.objectid = BTRFS_ORPHAN_OBJECTID;
1775	key.type = BTRFS_ORPHAN_ITEM_KEY;
1776	key.offset = objectid;
1777
1778	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1779	btrfs_free_path(path);
1780	if (ret < 0)
1781		goto fail;
1782	if (ret == 0)
1783		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1784
1785	ret = btrfs_insert_fs_root(fs_info, root);
1786	if (ret) {
1787		if (ret == -EEXIST) {
1788			btrfs_put_root(root);
1789			goto again;
1790		}
1791		goto fail;
1792	}
1793	return root;
1794fail:
1795	/*
1796	 * If our caller provided us an anonymous device, then it's his
1797	 * responsibility to free it in case we fail. So we have to set our
1798	 * root's anon_dev to 0 to avoid a double free, once by btrfs_put_root()
1799	 * and once again by our caller.
1800	 */
1801	if (anon_dev)
1802		root->anon_dev = 0;
1803	btrfs_put_root(root);
1804	return ERR_PTR(ret);
1805}
1806
1807/*
1808 * Get in-memory reference of a root structure
1809 *
1810 * @objectid:	tree objectid
1811 * @check_ref:	if set, verify that the tree exists and the item has at least
1812 *		one reference
1813 */
1814struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1815				     u64 objectid, bool check_ref)
1816{
1817	return btrfs_get_root_ref(fs_info, objectid, 0, check_ref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1818}
1819
1820/*
1821 * Get in-memory reference of a root structure, created as new, optionally pass
1822 * the anonymous block device id
1823 *
1824 * @objectid:	tree objectid
1825 * @anon_dev:	if zero, allocate a new anonymous block device or use the
1826 *		parameter value
1827 */
1828struct btrfs_root *btrfs_get_new_fs_root(struct btrfs_fs_info *fs_info,
1829					 u64 objectid, dev_t anon_dev)
1830{
1831	return btrfs_get_root_ref(fs_info, objectid, anon_dev, true);
 
 
 
 
 
 
 
 
 
 
1832}
1833
1834/*
1835 * btrfs_get_fs_root_commit_root - return a root for the given objectid
1836 * @fs_info:	the fs_info
1837 * @objectid:	the objectid we need to lookup
1838 *
1839 * This is exclusively used for backref walking, and exists specifically because
1840 * of how qgroups does lookups.  Qgroups will do a backref lookup at delayed ref
1841 * creation time, which means we may have to read the tree_root in order to look
1842 * up a fs root that is not in memory.  If the root is not in memory we will
1843 * read the tree root commit root and look up the fs root from there.  This is a
1844 * temporary root, it will not be inserted into the radix tree as it doesn't
1845 * have the most uptodate information, it'll simply be discarded once the
1846 * backref code is finished using the root.
1847 */
1848struct btrfs_root *btrfs_get_fs_root_commit_root(struct btrfs_fs_info *fs_info,
1849						 struct btrfs_path *path,
1850						 u64 objectid)
1851{
1852	struct btrfs_root *root;
1853	struct btrfs_key key;
1854
1855	ASSERT(path->search_commit_root && path->skip_locking);
1856
1857	/*
1858	 * This can return -ENOENT if we ask for a root that doesn't exist, but
1859	 * since this is called via the backref walking code we won't be looking
1860	 * up a root that doesn't exist, unless there's corruption.  So if root
1861	 * != NULL just return it.
1862	 */
1863	root = btrfs_get_global_root(fs_info, objectid);
1864	if (root)
1865		return root;
1866
1867	root = btrfs_lookup_fs_root(fs_info, objectid);
1868	if (root)
1869		return root;
1870
1871	key.objectid = objectid;
1872	key.type = BTRFS_ROOT_ITEM_KEY;
1873	key.offset = (u64)-1;
1874	root = read_tree_root_path(fs_info->tree_root, path, &key);
1875	btrfs_release_path(path);
1876
1877	return root;
 
 
 
 
1878}
1879
1880static int cleaner_kthread(void *arg)
1881{
1882	struct btrfs_fs_info *fs_info = arg;
 
1883	int again;
 
1884
1885	while (1) {
1886		again = 0;
1887
1888		set_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1889
1890		/* Make the cleaner go to sleep early. */
1891		if (btrfs_need_cleaner_sleep(fs_info))
1892			goto sleep;
1893
1894		/*
1895		 * Do not do anything if we might cause open_ctree() to block
1896		 * before we have finished mounting the filesystem.
1897		 */
1898		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1899			goto sleep;
1900
1901		if (!mutex_trylock(&fs_info->cleaner_mutex))
1902			goto sleep;
1903
1904		/*
1905		 * Avoid the problem that we change the status of the fs
1906		 * during the above check and trylock.
1907		 */
1908		if (btrfs_need_cleaner_sleep(fs_info)) {
1909			mutex_unlock(&fs_info->cleaner_mutex);
1910			goto sleep;
1911		}
1912
 
1913		btrfs_run_delayed_iputs(fs_info);
 
1914
1915		again = btrfs_clean_one_deleted_snapshot(fs_info);
1916		mutex_unlock(&fs_info->cleaner_mutex);
1917
1918		/*
1919		 * The defragger has dealt with the R/O remount and umount,
1920		 * needn't do anything special here.
1921		 */
1922		btrfs_run_defrag_inodes(fs_info);
1923
1924		/*
1925		 * Acquires fs_info->reclaim_bgs_lock to avoid racing
1926		 * with relocation (btrfs_relocate_chunk) and relocation
1927		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1928		 * after acquiring fs_info->reclaim_bgs_lock. So we
1929		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1930		 * unused block groups.
1931		 */
1932		btrfs_delete_unused_bgs(fs_info);
1933
1934		/*
1935		 * Reclaim block groups in the reclaim_bgs list after we deleted
1936		 * all unused block_groups. This possibly gives us some more free
1937		 * space.
1938		 */
1939		btrfs_reclaim_bgs(fs_info);
1940sleep:
1941		clear_and_wake_up_bit(BTRFS_FS_CLEANER_RUNNING, &fs_info->flags);
1942		if (kthread_should_park())
1943			kthread_parkme();
1944		if (kthread_should_stop())
1945			return 0;
1946		if (!again) {
1947			set_current_state(TASK_INTERRUPTIBLE);
1948			schedule();
 
1949			__set_current_state(TASK_RUNNING);
1950		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1951	}
 
 
1952}
1953
1954static int transaction_kthread(void *arg)
1955{
1956	struct btrfs_root *root = arg;
1957	struct btrfs_fs_info *fs_info = root->fs_info;
1958	struct btrfs_trans_handle *trans;
1959	struct btrfs_transaction *cur;
1960	u64 transid;
1961	time64_t delta;
1962	unsigned long delay;
1963	bool cannot_commit;
1964
1965	do {
1966		cannot_commit = false;
1967		delay = msecs_to_jiffies(fs_info->commit_interval * 1000);
1968		mutex_lock(&fs_info->transaction_kthread_mutex);
1969
1970		spin_lock(&fs_info->trans_lock);
1971		cur = fs_info->running_transaction;
1972		if (!cur) {
1973			spin_unlock(&fs_info->trans_lock);
1974			goto sleep;
1975		}
1976
1977		delta = ktime_get_seconds() - cur->start_time;
1978		if (!test_and_clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags) &&
1979		    cur->state < TRANS_STATE_COMMIT_START &&
1980		    delta < fs_info->commit_interval) {
1981			spin_unlock(&fs_info->trans_lock);
1982			delay -= msecs_to_jiffies((delta - 1) * 1000);
1983			delay = min(delay,
1984				    msecs_to_jiffies(fs_info->commit_interval * 1000));
1985			goto sleep;
1986		}
1987		transid = cur->transid;
1988		spin_unlock(&fs_info->trans_lock);
1989
1990		/* If the file system is aborted, this will always fail. */
1991		trans = btrfs_attach_transaction(root);
1992		if (IS_ERR(trans)) {
1993			if (PTR_ERR(trans) != -ENOENT)
1994				cannot_commit = true;
1995			goto sleep;
1996		}
1997		if (transid == trans->transid) {
1998			btrfs_commit_transaction(trans);
1999		} else {
2000			btrfs_end_transaction(trans);
2001		}
2002sleep:
2003		wake_up_process(fs_info->cleaner_kthread);
2004		mutex_unlock(&fs_info->transaction_kthread_mutex);
2005
2006		if (BTRFS_FS_ERROR(fs_info))
 
2007			btrfs_cleanup_transaction(fs_info);
 
2008		if (!kthread_should_stop() &&
2009				(!btrfs_transaction_blocked(fs_info) ||
2010				 cannot_commit))
2011			schedule_timeout_interruptible(delay);
 
2012	} while (!kthread_should_stop());
2013	return 0;
2014}
2015
2016/*
2017 * This will find the highest generation in the array of root backups.  The
2018 * index of the highest array is returned, or -EINVAL if we can't find
2019 * anything.
2020 *
2021 * We check to make sure the array is valid by comparing the
2022 * generation of the latest  root in the array with the generation
2023 * in the super block.  If they don't match we pitch it.
2024 */
2025static int find_newest_super_backup(struct btrfs_fs_info *info)
2026{
2027	const u64 newest_gen = btrfs_super_generation(info->super_copy);
2028	u64 cur;
 
2029	struct btrfs_root_backup *root_backup;
2030	int i;
2031
2032	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2033		root_backup = info->super_copy->super_roots + i;
2034		cur = btrfs_backup_tree_root_gen(root_backup);
2035		if (cur == newest_gen)
2036			return i;
 
 
 
 
 
 
 
 
2037	}
 
 
2038
2039	return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2040}
2041
2042/*
2043 * copy all the root pointers into the super backup array.
2044 * this will bump the backup pointer by one when it is
2045 * done
2046 */
2047static void backup_super_roots(struct btrfs_fs_info *info)
2048{
2049	const int next_backup = info->backup_root_index;
2050	struct btrfs_root_backup *root_backup;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2051
2052	root_backup = info->super_for_commit->super_roots + next_backup;
2053
2054	/*
2055	 * make sure all of our padding and empty slots get zero filled
2056	 * regardless of which ones we use today
2057	 */
2058	memset(root_backup, 0, sizeof(*root_backup));
2059
2060	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2061
2062	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2063	btrfs_set_backup_tree_root_gen(root_backup,
2064			       btrfs_header_generation(info->tree_root->node));
2065
2066	btrfs_set_backup_tree_root_level(root_backup,
2067			       btrfs_header_level(info->tree_root->node));
2068
2069	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2070	btrfs_set_backup_chunk_root_gen(root_backup,
2071			       btrfs_header_generation(info->chunk_root->node));
2072	btrfs_set_backup_chunk_root_level(root_backup,
2073			       btrfs_header_level(info->chunk_root->node));
2074
2075	if (!btrfs_fs_compat_ro(info, BLOCK_GROUP_TREE)) {
2076		struct btrfs_root *extent_root = btrfs_extent_root(info, 0);
2077		struct btrfs_root *csum_root = btrfs_csum_root(info, 0);
2078
2079		btrfs_set_backup_extent_root(root_backup,
2080					     extent_root->node->start);
2081		btrfs_set_backup_extent_root_gen(root_backup,
2082				btrfs_header_generation(extent_root->node));
2083		btrfs_set_backup_extent_root_level(root_backup,
2084					btrfs_header_level(extent_root->node));
2085
2086		btrfs_set_backup_csum_root(root_backup, csum_root->node->start);
2087		btrfs_set_backup_csum_root_gen(root_backup,
2088					       btrfs_header_generation(csum_root->node));
2089		btrfs_set_backup_csum_root_level(root_backup,
2090						 btrfs_header_level(csum_root->node));
2091	}
2092
2093	/*
2094	 * we might commit during log recovery, which happens before we set
2095	 * the fs_root.  Make sure it is valid before we fill it in.
2096	 */
2097	if (info->fs_root && info->fs_root->node) {
2098		btrfs_set_backup_fs_root(root_backup,
2099					 info->fs_root->node->start);
2100		btrfs_set_backup_fs_root_gen(root_backup,
2101			       btrfs_header_generation(info->fs_root->node));
2102		btrfs_set_backup_fs_root_level(root_backup,
2103			       btrfs_header_level(info->fs_root->node));
2104	}
2105
2106	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2107	btrfs_set_backup_dev_root_gen(root_backup,
2108			       btrfs_header_generation(info->dev_root->node));
2109	btrfs_set_backup_dev_root_level(root_backup,
2110				       btrfs_header_level(info->dev_root->node));
2111
 
 
 
 
 
 
2112	btrfs_set_backup_total_bytes(root_backup,
2113			     btrfs_super_total_bytes(info->super_copy));
2114	btrfs_set_backup_bytes_used(root_backup,
2115			     btrfs_super_bytes_used(info->super_copy));
2116	btrfs_set_backup_num_devices(root_backup,
2117			     btrfs_super_num_devices(info->super_copy));
2118
2119	/*
2120	 * if we don't copy this out to the super_copy, it won't get remembered
2121	 * for the next commit
2122	 */
2123	memcpy(&info->super_copy->super_roots,
2124	       &info->super_for_commit->super_roots,
2125	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2126}
2127
2128/*
2129 * read_backup_root - Reads a backup root based on the passed priority. Prio 0
2130 * is the newest, prio 1/2/3 are 2nd newest/3rd newest/4th (oldest) backup roots
2131 *
2132 * fs_info - filesystem whose backup roots need to be read
2133 * priority - priority of backup root required
2134 *
2135 * Returns backup root index on success and -EINVAL otherwise.
2136 */
2137static int read_backup_root(struct btrfs_fs_info *fs_info, u8 priority)
 
 
2138{
2139	int backup_index = find_newest_super_backup(fs_info);
2140	struct btrfs_super_block *super = fs_info->super_copy;
2141	struct btrfs_root_backup *root_backup;
 
2142
2143	if (priority < BTRFS_NUM_BACKUP_ROOTS && backup_index >= 0) {
2144		if (priority == 0)
2145			return backup_index;
2146
2147		backup_index = backup_index + BTRFS_NUM_BACKUP_ROOTS - priority;
2148		backup_index %= BTRFS_NUM_BACKUP_ROOTS;
 
 
 
 
 
 
 
2149	} else {
2150		return -EINVAL;
 
 
 
 
2151	}
2152
2153	root_backup = super->super_roots + backup_index;
2154
2155	btrfs_set_super_generation(super,
2156				   btrfs_backup_tree_root_gen(root_backup));
2157	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2158	btrfs_set_super_root_level(super,
2159				   btrfs_backup_tree_root_level(root_backup));
2160	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2161
2162	/*
2163	 * Fixme: the total bytes and num_devices need to match or we should
2164	 * need a fsck
2165	 */
2166	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2167	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2168
2169	return backup_index;
2170}
2171
2172/* helper to cleanup workers */
2173static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2174{
2175	btrfs_destroy_workqueue(fs_info->fixup_workers);
2176	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2177	btrfs_destroy_workqueue(fs_info->hipri_workers);
2178	btrfs_destroy_workqueue(fs_info->workers);
2179	if (fs_info->endio_workers)
2180		destroy_workqueue(fs_info->endio_workers);
2181	if (fs_info->rmw_workers)
2182		destroy_workqueue(fs_info->rmw_workers);
2183	if (fs_info->compressed_write_workers)
2184		destroy_workqueue(fs_info->compressed_write_workers);
2185	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2186	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
 
2187	btrfs_destroy_workqueue(fs_info->delayed_workers);
2188	btrfs_destroy_workqueue(fs_info->caching_workers);
 
2189	btrfs_destroy_workqueue(fs_info->flush_workers);
2190	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2191	if (fs_info->discard_ctl.discard_workers)
2192		destroy_workqueue(fs_info->discard_ctl.discard_workers);
2193	/*
2194	 * Now that all other work queues are destroyed, we can safely destroy
2195	 * the queues used for metadata I/O, since tasks from those other work
2196	 * queues can do metadata I/O operations.
2197	 */
2198	if (fs_info->endio_meta_workers)
2199		destroy_workqueue(fs_info->endio_meta_workers);
2200}
2201
2202static void free_root_extent_buffers(struct btrfs_root *root)
2203{
2204	if (root) {
2205		free_extent_buffer(root->node);
2206		free_extent_buffer(root->commit_root);
2207		root->node = NULL;
2208		root->commit_root = NULL;
2209	}
2210}
2211
2212static void free_global_root_pointers(struct btrfs_fs_info *fs_info)
2213{
2214	struct btrfs_root *root, *tmp;
2215
2216	rbtree_postorder_for_each_entry_safe(root, tmp,
2217					     &fs_info->global_root_tree,
2218					     rb_node)
2219		free_root_extent_buffers(root);
2220}
2221
2222/* helper to cleanup tree roots */
2223static void free_root_pointers(struct btrfs_fs_info *info, bool free_chunk_root)
2224{
2225	free_root_extent_buffers(info->tree_root);
2226
2227	free_global_root_pointers(info);
2228	free_root_extent_buffers(info->dev_root);
 
 
2229	free_root_extent_buffers(info->quota_root);
2230	free_root_extent_buffers(info->uuid_root);
2231	free_root_extent_buffers(info->fs_root);
2232	free_root_extent_buffers(info->data_reloc_root);
2233	free_root_extent_buffers(info->block_group_root);
2234	if (free_chunk_root)
2235		free_root_extent_buffers(info->chunk_root);
2236}
2237
2238void btrfs_put_root(struct btrfs_root *root)
2239{
2240	if (!root)
2241		return;
2242
2243	if (refcount_dec_and_test(&root->refs)) {
2244		WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2245		WARN_ON(test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state));
2246		if (root->anon_dev)
2247			free_anon_bdev(root->anon_dev);
2248		btrfs_drew_lock_destroy(&root->snapshot_lock);
2249		free_root_extent_buffers(root);
2250#ifdef CONFIG_BTRFS_DEBUG
2251		spin_lock(&root->fs_info->fs_roots_radix_lock);
2252		list_del_init(&root->leak_list);
2253		spin_unlock(&root->fs_info->fs_roots_radix_lock);
2254#endif
2255		kfree(root);
2256	}
2257}
2258
2259void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2260{
2261	int ret;
2262	struct btrfs_root *gang[8];
2263	int i;
2264
2265	while (!list_empty(&fs_info->dead_roots)) {
2266		gang[0] = list_entry(fs_info->dead_roots.next,
2267				     struct btrfs_root, root_list);
2268		list_del(&gang[0]->root_list);
2269
2270		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state))
2271			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2272		btrfs_put_root(gang[0]);
 
 
 
 
2273	}
2274
2275	while (1) {
2276		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2277					     (void **)gang, 0,
2278					     ARRAY_SIZE(gang));
2279		if (!ret)
2280			break;
2281		for (i = 0; i < ret; i++)
2282			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2283	}
 
 
 
 
 
2284}
2285
2286static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2287{
2288	mutex_init(&fs_info->scrub_lock);
2289	atomic_set(&fs_info->scrubs_running, 0);
2290	atomic_set(&fs_info->scrub_pause_req, 0);
2291	atomic_set(&fs_info->scrubs_paused, 0);
2292	atomic_set(&fs_info->scrub_cancel_req, 0);
2293	init_waitqueue_head(&fs_info->scrub_pause_wait);
2294	refcount_set(&fs_info->scrub_workers_refcnt, 0);
2295}
2296
2297static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2298{
2299	spin_lock_init(&fs_info->balance_lock);
2300	mutex_init(&fs_info->balance_mutex);
 
2301	atomic_set(&fs_info->balance_pause_req, 0);
2302	atomic_set(&fs_info->balance_cancel_req, 0);
2303	fs_info->balance_ctl = NULL;
2304	init_waitqueue_head(&fs_info->balance_wait_q);
2305	atomic_set(&fs_info->reloc_cancel_req, 0);
2306}
2307
2308static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2309{
2310	struct inode *inode = fs_info->btree_inode;
2311	unsigned long hash = btrfs_inode_hash(BTRFS_BTREE_INODE_OBJECTID,
2312					      fs_info->tree_root);
2313
2314	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2315	set_nlink(inode, 1);
2316	/*
2317	 * we set the i_size on the btree inode to the max possible int.
2318	 * the real end of the address space is determined by all of
2319	 * the devices in the system
2320	 */
2321	inode->i_size = OFFSET_MAX;
2322	inode->i_mapping->a_ops = &btree_aops;
2323
2324	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2325	extent_io_tree_init(fs_info, &BTRFS_I(inode)->io_tree,
2326			    IO_TREE_BTREE_INODE_IO);
2327	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2328
2329	BTRFS_I(inode)->root = btrfs_grab_root(fs_info->tree_root);
2330	BTRFS_I(inode)->location.objectid = BTRFS_BTREE_INODE_OBJECTID;
2331	BTRFS_I(inode)->location.type = 0;
2332	BTRFS_I(inode)->location.offset = 0;
2333	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2334	__insert_inode_hash(inode, hash);
2335}
2336
2337static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2338{
 
 
2339	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2340	init_rwsem(&fs_info->dev_replace.rwsem);
2341	init_waitqueue_head(&fs_info->dev_replace.replace_wait);
 
 
 
2342}
2343
2344static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2345{
2346	spin_lock_init(&fs_info->qgroup_lock);
2347	mutex_init(&fs_info->qgroup_ioctl_lock);
2348	fs_info->qgroup_tree = RB_ROOT;
 
2349	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2350	fs_info->qgroup_seq = 1;
2351	fs_info->qgroup_ulist = NULL;
2352	fs_info->qgroup_rescan_running = false;
2353	fs_info->qgroup_drop_subtree_thres = BTRFS_MAX_LEVEL;
2354	mutex_init(&fs_info->qgroup_rescan_lock);
2355}
2356
2357static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info)
 
2358{
2359	u32 max_active = fs_info->thread_pool_size;
2360	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2361
2362	fs_info->workers =
2363		btrfs_alloc_workqueue(fs_info, "worker", flags, max_active, 16);
2364	fs_info->hipri_workers =
2365		btrfs_alloc_workqueue(fs_info, "worker-high",
2366				      flags | WQ_HIGHPRI, max_active, 16);
2367
2368	fs_info->delalloc_workers =
2369		btrfs_alloc_workqueue(fs_info, "delalloc",
2370				      flags, max_active, 2);
2371
2372	fs_info->flush_workers =
2373		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2374				      flags, max_active, 0);
2375
2376	fs_info->caching_workers =
2377		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2378
 
 
 
 
 
 
 
 
 
 
2379	fs_info->fixup_workers =
2380		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2381
 
 
 
 
2382	fs_info->endio_workers =
2383		alloc_workqueue("btrfs-endio", flags, max_active);
2384	fs_info->endio_meta_workers =
2385		alloc_workqueue("btrfs-endio-meta", flags, max_active);
2386	fs_info->rmw_workers = alloc_workqueue("btrfs-rmw", flags, max_active);
 
 
 
 
 
 
 
 
 
 
2387	fs_info->endio_write_workers =
2388		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2389				      max_active, 2);
2390	fs_info->compressed_write_workers =
2391		alloc_workqueue("btrfs-compressed-write", flags, max_active);
2392	fs_info->endio_freespace_worker =
2393		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2394				      max_active, 0);
2395	fs_info->delayed_workers =
2396		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2397				      max_active, 0);
 
 
 
2398	fs_info->qgroup_rescan_workers =
2399		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2400	fs_info->discard_ctl.discard_workers =
2401		alloc_workqueue("btrfs_discard", WQ_UNBOUND | WQ_FREEZABLE, 1);
 
 
2402
2403	if (!(fs_info->workers && fs_info->hipri_workers &&
2404	      fs_info->delalloc_workers && fs_info->flush_workers &&
2405	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2406	      fs_info->compressed_write_workers &&
2407	      fs_info->endio_write_workers &&
 
2408	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2409	      fs_info->caching_workers && fs_info->fixup_workers &&
2410	      fs_info->delayed_workers && fs_info->qgroup_rescan_workers &&
2411	      fs_info->discard_ctl.discard_workers)) {
 
2412		return -ENOMEM;
2413	}
2414
2415	return 0;
2416}
2417
2418static int btrfs_init_csum_hash(struct btrfs_fs_info *fs_info, u16 csum_type)
2419{
2420	struct crypto_shash *csum_shash;
2421	const char *csum_driver = btrfs_super_csum_driver(csum_type);
2422
2423	csum_shash = crypto_alloc_shash(csum_driver, 0, 0);
2424
2425	if (IS_ERR(csum_shash)) {
2426		btrfs_err(fs_info, "error allocating %s hash for checksum",
2427			  csum_driver);
2428		return PTR_ERR(csum_shash);
2429	}
2430
2431	fs_info->csum_shash = csum_shash;
2432
2433	btrfs_info(fs_info, "using %s (%s) checksum algorithm",
2434			btrfs_super_csum_name(csum_type),
2435			crypto_shash_driver_name(csum_shash));
2436	return 0;
2437}
2438
2439static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2440			    struct btrfs_fs_devices *fs_devices)
2441{
2442	int ret;
2443	struct btrfs_tree_parent_check check = { 0 };
2444	struct btrfs_root *log_tree_root;
2445	struct btrfs_super_block *disk_super = fs_info->super_copy;
2446	u64 bytenr = btrfs_super_log_root(disk_super);
2447	int level = btrfs_super_log_root_level(disk_super);
2448
2449	if (fs_devices->rw_devices == 0) {
2450		btrfs_warn(fs_info, "log replay required on RO media");
2451		return -EIO;
2452	}
2453
2454	log_tree_root = btrfs_alloc_root(fs_info, BTRFS_TREE_LOG_OBJECTID,
2455					 GFP_KERNEL);
2456	if (!log_tree_root)
2457		return -ENOMEM;
2458
2459	check.level = level;
2460	check.transid = fs_info->generation + 1;
2461	check.owner_root = BTRFS_TREE_LOG_OBJECTID;
2462	log_tree_root->node = read_tree_block(fs_info, bytenr, &check);
2463	if (IS_ERR(log_tree_root->node)) {
2464		btrfs_warn(fs_info, "failed to read log tree");
2465		ret = PTR_ERR(log_tree_root->node);
2466		log_tree_root->node = NULL;
2467		btrfs_put_root(log_tree_root);
2468		return ret;
2469	}
2470	if (!extent_buffer_uptodate(log_tree_root->node)) {
2471		btrfs_err(fs_info, "failed to read log tree");
2472		btrfs_put_root(log_tree_root);
 
2473		return -EIO;
2474	}
2475
2476	/* returns with log_tree_root freed on success */
2477	ret = btrfs_recover_log_trees(log_tree_root);
2478	if (ret) {
2479		btrfs_handle_fs_error(fs_info, ret,
2480				      "Failed to recover log tree");
2481		btrfs_put_root(log_tree_root);
 
2482		return ret;
2483	}
2484
2485	if (sb_rdonly(fs_info->sb)) {
2486		ret = btrfs_commit_super(fs_info);
2487		if (ret)
2488			return ret;
2489	}
2490
2491	return 0;
2492}
2493
2494static int load_global_roots_objectid(struct btrfs_root *tree_root,
2495				      struct btrfs_path *path, u64 objectid,
2496				      const char *name)
2497{
2498	struct btrfs_fs_info *fs_info = tree_root->fs_info;
2499	struct btrfs_root *root;
2500	u64 max_global_id = 0;
2501	int ret;
2502	struct btrfs_key key = {
2503		.objectid = objectid,
2504		.type = BTRFS_ROOT_ITEM_KEY,
2505		.offset = 0,
2506	};
2507	bool found = false;
2508
2509	/* If we have IGNOREDATACSUMS skip loading these roots. */
2510	if (objectid == BTRFS_CSUM_TREE_OBJECTID &&
2511	    btrfs_test_opt(fs_info, IGNOREDATACSUMS)) {
2512		set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2513		return 0;
2514	}
2515
2516	while (1) {
2517		ret = btrfs_search_slot(NULL, tree_root, &key, path, 0, 0);
2518		if (ret < 0)
2519			break;
2520
2521		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
2522			ret = btrfs_next_leaf(tree_root, path);
2523			if (ret) {
2524				if (ret > 0)
2525					ret = 0;
2526				break;
2527			}
2528		}
2529		ret = 0;
2530
2531		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
2532		if (key.objectid != objectid)
2533			break;
2534		btrfs_release_path(path);
2535
2536		/*
2537		 * Just worry about this for extent tree, it'll be the same for
2538		 * everybody.
2539		 */
2540		if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2541			max_global_id = max(max_global_id, key.offset);
2542
2543		found = true;
2544		root = read_tree_root_path(tree_root, path, &key);
2545		if (IS_ERR(root)) {
2546			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2547				ret = PTR_ERR(root);
2548			break;
2549		}
2550		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551		ret = btrfs_global_root_insert(root);
2552		if (ret) {
2553			btrfs_put_root(root);
2554			break;
2555		}
2556		key.offset++;
2557	}
2558	btrfs_release_path(path);
2559
2560	if (objectid == BTRFS_EXTENT_TREE_OBJECTID)
2561		fs_info->nr_global_roots = max_global_id + 1;
2562
2563	if (!found || ret) {
2564		if (objectid == BTRFS_CSUM_TREE_OBJECTID)
2565			set_bit(BTRFS_FS_STATE_NO_CSUMS, &fs_info->fs_state);
2566
2567		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS))
2568			ret = ret ? ret : -ENOENT;
2569		else
2570			ret = 0;
2571		btrfs_err(fs_info, "failed to load root %s", name);
2572	}
2573	return ret;
2574}
2575
2576static int load_global_roots(struct btrfs_root *tree_root)
2577{
2578	struct btrfs_path *path;
2579	int ret = 0;
2580
2581	path = btrfs_alloc_path();
2582	if (!path)
2583		return -ENOMEM;
2584
2585	ret = load_global_roots_objectid(tree_root, path,
2586					 BTRFS_EXTENT_TREE_OBJECTID, "extent");
2587	if (ret)
2588		goto out;
2589	ret = load_global_roots_objectid(tree_root, path,
2590					 BTRFS_CSUM_TREE_OBJECTID, "csum");
2591	if (ret)
2592		goto out;
2593	if (!btrfs_fs_compat_ro(tree_root->fs_info, FREE_SPACE_TREE))
2594		goto out;
2595	ret = load_global_roots_objectid(tree_root, path,
2596					 BTRFS_FREE_SPACE_TREE_OBJECTID,
2597					 "free space");
2598out:
2599	btrfs_free_path(path);
2600	return ret;
2601}
2602
2603static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2604{
2605	struct btrfs_root *tree_root = fs_info->tree_root;
2606	struct btrfs_root *root;
2607	struct btrfs_key location;
2608	int ret;
2609
2610	BUG_ON(!fs_info->tree_root);
2611
2612	ret = load_global_roots(tree_root);
2613	if (ret)
2614		return ret;
2615
2616	location.type = BTRFS_ROOT_ITEM_KEY;
2617	location.offset = 0;
2618
2619	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE)) {
2620		location.objectid = BTRFS_BLOCK_GROUP_TREE_OBJECTID;
2621		root = btrfs_read_tree_root(tree_root, &location);
2622		if (IS_ERR(root)) {
2623			if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2624				ret = PTR_ERR(root);
2625				goto out;
2626			}
2627		} else {
2628			set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2629			fs_info->block_group_root = root;
2630		}
2631	}
2632
2633	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2634	root = btrfs_read_tree_root(tree_root, &location);
2635	if (IS_ERR(root)) {
2636		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2637			ret = PTR_ERR(root);
2638			goto out;
2639		}
2640	} else {
2641		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2642		fs_info->dev_root = root;
2643	}
2644	/* Initialize fs_info for all devices in any case */
2645	ret = btrfs_init_devices_late(fs_info);
2646	if (ret)
2647		goto out;
2648
2649	/*
2650	 * This tree can share blocks with some other fs tree during relocation
2651	 * and we need a proper setup by btrfs_get_fs_root
2652	 */
2653	root = btrfs_get_fs_root(tree_root->fs_info,
2654				 BTRFS_DATA_RELOC_TREE_OBJECTID, true);
2655	if (IS_ERR(root)) {
2656		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2657			ret = PTR_ERR(root);
2658			goto out;
2659		}
2660	} else {
2661		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2662		fs_info->data_reloc_root = root;
2663	}
2664
2665	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2666	root = btrfs_read_tree_root(tree_root, &location);
2667	if (!IS_ERR(root)) {
2668		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2669		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2670		fs_info->quota_root = root;
2671	}
2672
2673	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2674	root = btrfs_read_tree_root(tree_root, &location);
2675	if (IS_ERR(root)) {
2676		if (!btrfs_test_opt(fs_info, IGNOREBADROOTS)) {
2677			ret = PTR_ERR(root);
2678			if (ret != -ENOENT)
2679				goto out;
2680		}
2681	} else {
2682		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2683		fs_info->uuid_root = root;
2684	}
2685
 
 
 
 
 
 
 
 
 
2686	return 0;
2687out:
2688	btrfs_warn(fs_info, "failed to read root (objectid=%llu): %d",
2689		   location.objectid, ret);
2690	return ret;
2691}
2692
2693/*
2694 * Real super block validation
2695 * NOTE: super csum type and incompat features will not be checked here.
2696 *
2697 * @sb:		super block to check
2698 * @mirror_num:	the super block number to check its bytenr:
2699 * 		0	the primary (1st) sb
2700 * 		1, 2	2nd and 3rd backup copy
2701 * 	       -1	skip bytenr check
2702 */
2703int btrfs_validate_super(struct btrfs_fs_info *fs_info,
2704			 struct btrfs_super_block *sb, int mirror_num)
2705{
2706	u64 nodesize = btrfs_super_nodesize(sb);
2707	u64 sectorsize = btrfs_super_sectorsize(sb);
2708	int ret = 0;
2709
2710	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
2711		btrfs_err(fs_info, "no valid FS found");
2712		ret = -EINVAL;
2713	}
2714	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP) {
2715		btrfs_err(fs_info, "unrecognized or unsupported super flag: %llu",
2716				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
2717		ret = -EINVAL;
2718	}
2719	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
2720		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
2721				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
2722		ret = -EINVAL;
2723	}
2724	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
2725		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
2726				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
2727		ret = -EINVAL;
2728	}
2729	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
2730		btrfs_err(fs_info, "log_root level too big: %d >= %d",
2731				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
2732		ret = -EINVAL;
2733	}
2734
2735	/*
2736	 * Check sectorsize and nodesize first, other check will need it.
2737	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
2738	 */
2739	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
2740	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2741		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
2742		ret = -EINVAL;
2743	}
2744
2745	/*
2746	 * We only support at most two sectorsizes: 4K and PAGE_SIZE.
2747	 *
2748	 * We can support 16K sectorsize with 64K page size without problem,
2749	 * but such sectorsize/pagesize combination doesn't make much sense.
2750	 * 4K will be our future standard, PAGE_SIZE is supported from the very
2751	 * beginning.
2752	 */
2753	if (sectorsize > PAGE_SIZE || (sectorsize != SZ_4K && sectorsize != PAGE_SIZE)) {
2754		btrfs_err(fs_info,
2755			"sectorsize %llu not yet supported for page size %lu",
2756			sectorsize, PAGE_SIZE);
2757		ret = -EINVAL;
2758	}
2759
2760	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
2761	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
2762		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
2763		ret = -EINVAL;
2764	}
2765	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
2766		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
2767			  le32_to_cpu(sb->__unused_leafsize), nodesize);
2768		ret = -EINVAL;
2769	}
2770
2771	/* Root alignment check */
2772	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
2773		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
2774			   btrfs_super_root(sb));
2775		ret = -EINVAL;
2776	}
2777	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
2778		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
2779			   btrfs_super_chunk_root(sb));
2780		ret = -EINVAL;
2781	}
2782	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
2783		btrfs_warn(fs_info, "log_root block unaligned: %llu",
2784			   btrfs_super_log_root(sb));
2785		ret = -EINVAL;
2786	}
2787
2788	if (memcmp(fs_info->fs_devices->fsid, fs_info->super_copy->fsid,
2789		   BTRFS_FSID_SIZE)) {
2790		btrfs_err(fs_info,
2791		"superblock fsid doesn't match fsid of fs_devices: %pU != %pU",
2792			fs_info->super_copy->fsid, fs_info->fs_devices->fsid);
2793		ret = -EINVAL;
2794	}
2795
2796	if (btrfs_fs_incompat(fs_info, METADATA_UUID) &&
2797	    memcmp(fs_info->fs_devices->metadata_uuid,
2798		   fs_info->super_copy->metadata_uuid, BTRFS_FSID_SIZE)) {
2799		btrfs_err(fs_info,
2800"superblock metadata_uuid doesn't match metadata uuid of fs_devices: %pU != %pU",
2801			fs_info->super_copy->metadata_uuid,
2802			fs_info->fs_devices->metadata_uuid);
2803		ret = -EINVAL;
2804	}
2805
2806	/*
2807	 * Artificial requirement for block-group-tree to force newer features
2808	 * (free-space-tree, no-holes) so the test matrix is smaller.
2809	 */
2810	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
2811	    (!btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID) ||
2812	     !btrfs_fs_incompat(fs_info, NO_HOLES))) {
2813		btrfs_err(fs_info,
2814		"block-group-tree feature requires fres-space-tree and no-holes");
2815		ret = -EINVAL;
2816	}
2817
2818	if (memcmp(fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid,
2819		   BTRFS_FSID_SIZE) != 0) {
2820		btrfs_err(fs_info,
2821			"dev_item UUID does not match metadata fsid: %pU != %pU",
2822			fs_info->fs_devices->metadata_uuid, sb->dev_item.fsid);
2823		ret = -EINVAL;
2824	}
2825
2826	/*
2827	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
2828	 * done later
2829	 */
2830	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
2831		btrfs_err(fs_info, "bytes_used is too small %llu",
2832			  btrfs_super_bytes_used(sb));
2833		ret = -EINVAL;
2834	}
2835	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
2836		btrfs_err(fs_info, "invalid stripesize %u",
2837			  btrfs_super_stripesize(sb));
2838		ret = -EINVAL;
2839	}
2840	if (btrfs_super_num_devices(sb) > (1UL << 31))
2841		btrfs_warn(fs_info, "suspicious number of devices: %llu",
2842			   btrfs_super_num_devices(sb));
2843	if (btrfs_super_num_devices(sb) == 0) {
2844		btrfs_err(fs_info, "number of devices is 0");
2845		ret = -EINVAL;
2846	}
2847
2848	if (mirror_num >= 0 &&
2849	    btrfs_super_bytenr(sb) != btrfs_sb_offset(mirror_num)) {
2850		btrfs_err(fs_info, "super offset mismatch %llu != %u",
2851			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
2852		ret = -EINVAL;
2853	}
2854
2855	/*
2856	 * Obvious sys_chunk_array corruptions, it must hold at least one key
2857	 * and one chunk
2858	 */
2859	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
2860		btrfs_err(fs_info, "system chunk array too big %u > %u",
2861			  btrfs_super_sys_array_size(sb),
2862			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
2863		ret = -EINVAL;
2864	}
2865	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
2866			+ sizeof(struct btrfs_chunk)) {
2867		btrfs_err(fs_info, "system chunk array too small %u < %zu",
2868			  btrfs_super_sys_array_size(sb),
2869			  sizeof(struct btrfs_disk_key)
2870			  + sizeof(struct btrfs_chunk));
2871		ret = -EINVAL;
2872	}
2873
2874	/*
2875	 * The generation is a global counter, we'll trust it more than the others
2876	 * but it's still possible that it's the one that's wrong.
2877	 */
2878	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
2879		btrfs_warn(fs_info,
2880			"suspicious: generation < chunk_root_generation: %llu < %llu",
2881			btrfs_super_generation(sb),
2882			btrfs_super_chunk_root_generation(sb));
2883	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
2884	    && btrfs_super_cache_generation(sb) != (u64)-1)
2885		btrfs_warn(fs_info,
2886			"suspicious: generation < cache_generation: %llu < %llu",
2887			btrfs_super_generation(sb),
2888			btrfs_super_cache_generation(sb));
2889
2890	return ret;
2891}
2892
2893/*
2894 * Validation of super block at mount time.
2895 * Some checks already done early at mount time, like csum type and incompat
2896 * flags will be skipped.
2897 */
2898static int btrfs_validate_mount_super(struct btrfs_fs_info *fs_info)
2899{
2900	return btrfs_validate_super(fs_info, fs_info->super_copy, 0);
2901}
2902
2903/*
2904 * Validation of super block at write time.
2905 * Some checks like bytenr check will be skipped as their values will be
2906 * overwritten soon.
2907 * Extra checks like csum type and incompat flags will be done here.
2908 */
2909static int btrfs_validate_write_super(struct btrfs_fs_info *fs_info,
2910				      struct btrfs_super_block *sb)
2911{
2912	int ret;
2913
2914	ret = btrfs_validate_super(fs_info, sb, -1);
2915	if (ret < 0)
2916		goto out;
2917	if (!btrfs_supported_super_csum(btrfs_super_csum_type(sb))) {
2918		ret = -EUCLEAN;
2919		btrfs_err(fs_info, "invalid csum type, has %u want %u",
2920			  btrfs_super_csum_type(sb), BTRFS_CSUM_TYPE_CRC32);
2921		goto out;
2922	}
2923	if (btrfs_super_incompat_flags(sb) & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
2924		ret = -EUCLEAN;
2925		btrfs_err(fs_info,
2926		"invalid incompat flags, has 0x%llx valid mask 0x%llx",
2927			  btrfs_super_incompat_flags(sb),
2928			  (unsigned long long)BTRFS_FEATURE_INCOMPAT_SUPP);
2929		goto out;
2930	}
2931out:
2932	if (ret < 0)
2933		btrfs_err(fs_info,
2934		"super block corruption detected before writing it to disk");
2935	return ret;
2936}
2937
2938static int load_super_root(struct btrfs_root *root, u64 bytenr, u64 gen, int level)
2939{
2940	struct btrfs_tree_parent_check check = {
2941		.level = level,
2942		.transid = gen,
2943		.owner_root = root->root_key.objectid
2944	};
2945	int ret = 0;
2946
2947	root->node = read_tree_block(root->fs_info, bytenr, &check);
2948	if (IS_ERR(root->node)) {
2949		ret = PTR_ERR(root->node);
2950		root->node = NULL;
2951		return ret;
2952	}
2953	if (!extent_buffer_uptodate(root->node)) {
2954		free_extent_buffer(root->node);
2955		root->node = NULL;
2956		return -EIO;
2957	}
2958
2959	btrfs_set_root_node(&root->root_item, root->node);
2960	root->commit_root = btrfs_root_node(root);
2961	btrfs_set_root_refs(&root->root_item, 1);
2962	return ret;
2963}
2964
2965static int load_important_roots(struct btrfs_fs_info *fs_info)
2966{
2967	struct btrfs_super_block *sb = fs_info->super_copy;
2968	u64 gen, bytenr;
2969	int level, ret;
2970
2971	bytenr = btrfs_super_root(sb);
2972	gen = btrfs_super_generation(sb);
2973	level = btrfs_super_root_level(sb);
2974	ret = load_super_root(fs_info->tree_root, bytenr, gen, level);
2975	if (ret) {
2976		btrfs_warn(fs_info, "couldn't read tree root");
2977		return ret;
2978	}
2979	return 0;
2980}
2981
2982static int __cold init_tree_roots(struct btrfs_fs_info *fs_info)
2983{
2984	int backup_index = find_newest_super_backup(fs_info);
2985	struct btrfs_super_block *sb = fs_info->super_copy;
2986	struct btrfs_root *tree_root = fs_info->tree_root;
2987	bool handle_error = false;
2988	int ret = 0;
2989	int i;
2990
2991	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2992		if (handle_error) {
2993			if (!IS_ERR(tree_root->node))
2994				free_extent_buffer(tree_root->node);
2995			tree_root->node = NULL;
2996
2997			if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
2998				break;
2999
3000			free_root_pointers(fs_info, 0);
3001
3002			/*
3003			 * Don't use the log in recovery mode, it won't be
3004			 * valid
3005			 */
3006			btrfs_set_super_log_root(sb, 0);
3007
3008			/* We can't trust the free space cache either */
3009			btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3010
3011			ret = read_backup_root(fs_info, i);
3012			backup_index = ret;
3013			if (ret < 0)
3014				return ret;
3015		}
3016
3017		ret = load_important_roots(fs_info);
3018		if (ret) {
3019			handle_error = true;
3020			continue;
3021		}
3022
3023		/*
3024		 * No need to hold btrfs_root::objectid_mutex since the fs
3025		 * hasn't been fully initialised and we are the only user
3026		 */
3027		ret = btrfs_init_root_free_objectid(tree_root);
3028		if (ret < 0) {
3029			handle_error = true;
3030			continue;
3031		}
3032
3033		ASSERT(tree_root->free_objectid <= BTRFS_LAST_FREE_OBJECTID);
3034
3035		ret = btrfs_read_roots(fs_info);
3036		if (ret < 0) {
3037			handle_error = true;
3038			continue;
3039		}
3040
3041		/* All successful */
3042		fs_info->generation = btrfs_header_generation(tree_root->node);
3043		fs_info->last_trans_committed = fs_info->generation;
3044		fs_info->last_reloc_trans = 0;
3045
3046		/* Always begin writing backup roots after the one being used */
3047		if (backup_index < 0) {
3048			fs_info->backup_root_index = 0;
3049		} else {
3050			fs_info->backup_root_index = backup_index + 1;
3051			fs_info->backup_root_index %= BTRFS_NUM_BACKUP_ROOTS;
3052		}
3053		break;
3054	}
3055
3056	return ret;
3057}
3058
3059void btrfs_init_fs_info(struct btrfs_fs_info *fs_info)
3060{
3061	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
3062	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
3063	INIT_LIST_HEAD(&fs_info->trans_list);
3064	INIT_LIST_HEAD(&fs_info->dead_roots);
3065	INIT_LIST_HEAD(&fs_info->delayed_iputs);
3066	INIT_LIST_HEAD(&fs_info->delalloc_roots);
3067	INIT_LIST_HEAD(&fs_info->caching_block_groups);
3068	spin_lock_init(&fs_info->delalloc_root_lock);
3069	spin_lock_init(&fs_info->trans_lock);
3070	spin_lock_init(&fs_info->fs_roots_radix_lock);
3071	spin_lock_init(&fs_info->delayed_iput_lock);
3072	spin_lock_init(&fs_info->defrag_inodes_lock);
 
 
3073	spin_lock_init(&fs_info->super_lock);
 
3074	spin_lock_init(&fs_info->buffer_lock);
3075	spin_lock_init(&fs_info->unused_bgs_lock);
3076	spin_lock_init(&fs_info->treelog_bg_lock);
3077	spin_lock_init(&fs_info->zone_active_bgs_lock);
3078	spin_lock_init(&fs_info->relocation_bg_lock);
3079	rwlock_init(&fs_info->tree_mod_log_lock);
3080	rwlock_init(&fs_info->global_root_lock);
3081	mutex_init(&fs_info->unused_bg_unpin_mutex);
3082	mutex_init(&fs_info->reclaim_bgs_lock);
3083	mutex_init(&fs_info->reloc_mutex);
3084	mutex_init(&fs_info->delalloc_root_mutex);
3085	mutex_init(&fs_info->zoned_meta_io_lock);
3086	mutex_init(&fs_info->zoned_data_reloc_io_lock);
3087	seqlock_init(&fs_info->profiles_lock);
3088
3089	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_writers);
3090	btrfs_lockdep_init_map(fs_info, btrfs_trans_num_extwriters);
3091	btrfs_lockdep_init_map(fs_info, btrfs_trans_pending_ordered);
3092	btrfs_lockdep_init_map(fs_info, btrfs_ordered_extent);
3093	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_commit_start,
3094				     BTRFS_LOCKDEP_TRANS_COMMIT_START);
3095	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_unblocked,
3096				     BTRFS_LOCKDEP_TRANS_UNBLOCKED);
3097	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_super_committed,
3098				     BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
3099	btrfs_state_lockdep_init_map(fs_info, btrfs_trans_completed,
3100				     BTRFS_LOCKDEP_TRANS_COMPLETED);
3101
3102	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
3103	INIT_LIST_HEAD(&fs_info->space_info);
3104	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
3105	INIT_LIST_HEAD(&fs_info->unused_bgs);
3106	INIT_LIST_HEAD(&fs_info->reclaim_bgs);
3107	INIT_LIST_HEAD(&fs_info->zone_active_bgs);
3108#ifdef CONFIG_BTRFS_DEBUG
3109	INIT_LIST_HEAD(&fs_info->allocated_roots);
3110	INIT_LIST_HEAD(&fs_info->allocated_ebs);
3111	spin_lock_init(&fs_info->eb_leak_lock);
3112#endif
3113	extent_map_tree_init(&fs_info->mapping_tree);
3114	btrfs_init_block_rsv(&fs_info->global_block_rsv,
3115			     BTRFS_BLOCK_RSV_GLOBAL);
 
 
3116	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
3117	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
3118	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
3119	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
3120			     BTRFS_BLOCK_RSV_DELOPS);
3121	btrfs_init_block_rsv(&fs_info->delayed_refs_rsv,
3122			     BTRFS_BLOCK_RSV_DELREFS);
3123
3124	atomic_set(&fs_info->async_delalloc_pages, 0);
 
 
3125	atomic_set(&fs_info->defrag_running, 0);
3126	atomic_set(&fs_info->nr_delayed_iputs, 0);
 
3127	atomic64_set(&fs_info->tree_mod_seq, 0);
3128	fs_info->global_root_tree = RB_ROOT;
 
3129	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
3130	fs_info->metadata_ratio = 0;
3131	fs_info->defrag_inodes = RB_ROOT;
3132	atomic64_set(&fs_info->free_chunk_space, 0);
3133	fs_info->tree_mod_log = RB_ROOT;
3134	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
3135	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
3136	btrfs_init_ref_verify(fs_info);
 
 
3137
3138	fs_info->thread_pool_size = min_t(unsigned long,
3139					  num_online_cpus() + 2, 8);
3140
3141	INIT_LIST_HEAD(&fs_info->ordered_roots);
3142	spin_lock_init(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
3143
3144	btrfs_init_scrub(fs_info);
3145#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3146	fs_info->check_integrity_print_mask = 0;
3147#endif
3148	btrfs_init_balance(fs_info);
3149	btrfs_init_async_reclaim_work(fs_info);
 
 
 
 
3150
3151	rwlock_init(&fs_info->block_group_cache_lock);
3152	fs_info->block_group_cache_tree = RB_ROOT_CACHED;
3153
3154	extent_io_tree_init(fs_info, &fs_info->excluded_extents,
3155			    IO_TREE_FS_EXCLUDED_EXTENTS);
 
 
 
 
 
 
 
 
3156
3157	mutex_init(&fs_info->ordered_operations_mutex);
3158	mutex_init(&fs_info->tree_log_mutex);
3159	mutex_init(&fs_info->chunk_mutex);
3160	mutex_init(&fs_info->transaction_kthread_mutex);
3161	mutex_init(&fs_info->cleaner_mutex);
 
3162	mutex_init(&fs_info->ro_block_group_mutex);
3163	init_rwsem(&fs_info->commit_root_sem);
3164	init_rwsem(&fs_info->cleanup_work_sem);
3165	init_rwsem(&fs_info->subvol_sem);
3166	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
3167
3168	btrfs_init_dev_replace_locks(fs_info);
3169	btrfs_init_qgroup(fs_info);
3170	btrfs_discard_init(fs_info);
3171
3172	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
3173	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
3174
3175	init_waitqueue_head(&fs_info->transaction_throttle);
3176	init_waitqueue_head(&fs_info->transaction_wait);
3177	init_waitqueue_head(&fs_info->transaction_blocked_wait);
3178	init_waitqueue_head(&fs_info->async_submit_wait);
3179	init_waitqueue_head(&fs_info->delayed_iputs_wait);
 
3180
3181	/* Usable values until the real ones are cached from the superblock */
3182	fs_info->nodesize = 4096;
3183	fs_info->sectorsize = 4096;
3184	fs_info->sectorsize_bits = ilog2(4096);
3185	fs_info->stripesize = 4096;
3186
3187	fs_info->max_extent_size = BTRFS_MAX_EXTENT_SIZE;
3188
3189	spin_lock_init(&fs_info->swapfile_pins_lock);
3190	fs_info->swapfile_pins = RB_ROOT;
3191
3192	fs_info->bg_reclaim_threshold = BTRFS_DEFAULT_RECLAIM_THRESH;
3193	INIT_WORK(&fs_info->reclaim_bgs_work, btrfs_reclaim_bgs_work);
3194}
3195
3196static int init_mount_fs_info(struct btrfs_fs_info *fs_info, struct super_block *sb)
3197{
3198	int ret;
3199
3200	fs_info->sb = sb;
3201	sb->s_blocksize = BTRFS_BDEV_BLOCKSIZE;
3202	sb->s_blocksize_bits = blksize_bits(BTRFS_BDEV_BLOCKSIZE);
3203
3204	ret = percpu_counter_init(&fs_info->ordered_bytes, 0, GFP_KERNEL);
3205	if (ret)
3206		return ret;
3207
3208	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
3209	if (ret)
3210		return ret;
3211
3212	fs_info->dirty_metadata_batch = PAGE_SIZE *
3213					(1 + ilog2(nr_cpu_ids));
3214
3215	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
3216	if (ret)
3217		return ret;
3218
3219	ret = percpu_counter_init(&fs_info->dev_replace.bio_counter, 0,
3220			GFP_KERNEL);
3221	if (ret)
3222		return ret;
3223
3224	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
3225					GFP_KERNEL);
3226	if (!fs_info->delayed_root)
3227		return -ENOMEM;
3228	btrfs_init_delayed_root(fs_info->delayed_root);
3229
3230	if (sb_rdonly(sb))
3231		set_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
3232
3233	return btrfs_alloc_stripe_hash_table(fs_info);
3234}
3235
3236static int btrfs_uuid_rescan_kthread(void *data)
3237{
3238	struct btrfs_fs_info *fs_info = data;
3239	int ret;
3240
3241	/*
3242	 * 1st step is to iterate through the existing UUID tree and
3243	 * to delete all entries that contain outdated data.
3244	 * 2nd step is to add all missing entries to the UUID tree.
3245	 */
3246	ret = btrfs_uuid_tree_iterate(fs_info);
3247	if (ret < 0) {
3248		if (ret != -EINTR)
3249			btrfs_warn(fs_info, "iterating uuid_tree failed %d",
3250				   ret);
3251		up(&fs_info->uuid_tree_rescan_sem);
3252		return ret;
3253	}
3254	return btrfs_uuid_scan_kthread(data);
3255}
3256
3257static int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3258{
3259	struct task_struct *task;
3260
3261	down(&fs_info->uuid_tree_rescan_sem);
3262	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3263	if (IS_ERR(task)) {
3264		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3265		btrfs_warn(fs_info, "failed to start uuid_rescan task");
3266		up(&fs_info->uuid_tree_rescan_sem);
3267		return PTR_ERR(task);
3268	}
3269
3270	return 0;
3271}
3272
3273/*
3274 * Some options only have meaning at mount time and shouldn't persist across
3275 * remounts, or be displayed. Clear these at the end of mount and remount
3276 * code paths.
3277 */
3278void btrfs_clear_oneshot_options(struct btrfs_fs_info *fs_info)
3279{
3280	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3281	btrfs_clear_opt(fs_info->mount_opt, CLEAR_CACHE);
3282}
3283
3284/*
3285 * Mounting logic specific to read-write file systems. Shared by open_ctree
3286 * and btrfs_remount when remounting from read-only to read-write.
3287 */
3288int btrfs_start_pre_rw_mount(struct btrfs_fs_info *fs_info)
3289{
3290	int ret;
3291	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
3292	bool clear_free_space_tree = false;
3293
3294	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3295	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3296		clear_free_space_tree = true;
3297	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3298		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3299		btrfs_warn(fs_info, "free space tree is invalid");
3300		clear_free_space_tree = true;
3301	}
3302
3303	if (clear_free_space_tree) {
3304		btrfs_info(fs_info, "clearing free space tree");
3305		ret = btrfs_clear_free_space_tree(fs_info);
3306		if (ret) {
3307			btrfs_warn(fs_info,
3308				   "failed to clear free space tree: %d", ret);
3309			goto out;
3310		}
3311	}
3312
3313	/*
3314	 * btrfs_find_orphan_roots() is responsible for finding all the dead
3315	 * roots (with 0 refs), flag them with BTRFS_ROOT_DEAD_TREE and load
3316	 * them into the fs_info->fs_roots_radix tree. This must be done before
3317	 * calling btrfs_orphan_cleanup() on the tree root. If we don't do it
3318	 * first, then btrfs_orphan_cleanup() will delete a dead root's orphan
3319	 * item before the root's tree is deleted - this means that if we unmount
3320	 * or crash before the deletion completes, on the next mount we will not
3321	 * delete what remains of the tree because the orphan item does not
3322	 * exists anymore, which is what tells us we have a pending deletion.
3323	 */
3324	ret = btrfs_find_orphan_roots(fs_info);
3325	if (ret)
3326		goto out;
3327
3328	ret = btrfs_cleanup_fs_roots(fs_info);
3329	if (ret)
3330		goto out;
3331
3332	down_read(&fs_info->cleanup_work_sem);
3333	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3334	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3335		up_read(&fs_info->cleanup_work_sem);
3336		goto out;
3337	}
3338	up_read(&fs_info->cleanup_work_sem);
3339
3340	mutex_lock(&fs_info->cleaner_mutex);
3341	ret = btrfs_recover_relocation(fs_info);
3342	mutex_unlock(&fs_info->cleaner_mutex);
3343	if (ret < 0) {
3344		btrfs_warn(fs_info, "failed to recover relocation: %d", ret);
3345		goto out;
3346	}
3347
3348	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3349	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3350		btrfs_info(fs_info, "creating free space tree");
3351		ret = btrfs_create_free_space_tree(fs_info);
3352		if (ret) {
3353			btrfs_warn(fs_info,
3354				"failed to create free space tree: %d", ret);
3355			goto out;
3356		}
3357	}
3358
3359	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) {
3360		ret = btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
3361		if (ret)
3362			goto out;
3363	}
3364
3365	ret = btrfs_resume_balance_async(fs_info);
3366	if (ret)
3367		goto out;
3368
3369	ret = btrfs_resume_dev_replace_async(fs_info);
3370	if (ret) {
3371		btrfs_warn(fs_info, "failed to resume dev_replace");
3372		goto out;
3373	}
3374
3375	btrfs_qgroup_rescan_resume(fs_info);
3376
3377	if (!fs_info->uuid_root) {
3378		btrfs_info(fs_info, "creating UUID tree");
3379		ret = btrfs_create_uuid_tree(fs_info);
3380		if (ret) {
3381			btrfs_warn(fs_info,
3382				   "failed to create the UUID tree %d", ret);
3383			goto out;
3384		}
3385	}
3386
3387out:
3388	return ret;
3389}
3390
3391/*
3392 * Do various sanity and dependency checks of different features.
3393 *
3394 * @is_rw_mount:	If the mount is read-write.
3395 *
3396 * This is the place for less strict checks (like for subpage or artificial
3397 * feature dependencies).
3398 *
3399 * For strict checks or possible corruption detection, see
3400 * btrfs_validate_super().
3401 *
3402 * This should be called after btrfs_parse_options(), as some mount options
3403 * (space cache related) can modify on-disk format like free space tree and
3404 * screw up certain feature dependencies.
3405 */
3406int btrfs_check_features(struct btrfs_fs_info *fs_info, bool is_rw_mount)
3407{
3408	struct btrfs_super_block *disk_super = fs_info->super_copy;
3409	u64 incompat = btrfs_super_incompat_flags(disk_super);
3410	const u64 compat_ro = btrfs_super_compat_ro_flags(disk_super);
3411	const u64 compat_ro_unsupp = (compat_ro & ~BTRFS_FEATURE_COMPAT_RO_SUPP);
3412
3413	if (incompat & ~BTRFS_FEATURE_INCOMPAT_SUPP) {
3414		btrfs_err(fs_info,
3415		"cannot mount because of unknown incompat features (0x%llx)",
3416		    incompat);
3417		return -EINVAL;
3418	}
3419
3420	/* Runtime limitation for mixed block groups. */
3421	if ((incompat & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
3422	    (fs_info->sectorsize != fs_info->nodesize)) {
3423		btrfs_err(fs_info,
3424"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
3425			fs_info->nodesize, fs_info->sectorsize);
3426		return -EINVAL;
3427	}
3428
3429	/* Mixed backref is an always-enabled feature. */
3430	incompat |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
3431
3432	/* Set compression related flags just in case. */
3433	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
3434		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
3435	else if (fs_info->compress_type == BTRFS_COMPRESS_ZSTD)
3436		incompat |= BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD;
3437
3438	/*
3439	 * An ancient flag, which should really be marked deprecated.
3440	 * Such runtime limitation doesn't really need a incompat flag.
3441	 */
3442	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE)
3443		incompat |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
3444
3445	if (compat_ro_unsupp && is_rw_mount) {
3446		btrfs_err(fs_info,
3447	"cannot mount read-write because of unknown compat_ro features (0x%llx)",
3448		       compat_ro);
3449		return -EINVAL;
3450	}
3451
3452	/*
3453	 * We have unsupported RO compat features, although RO mounted, we
3454	 * should not cause any metadata writes, including log replay.
3455	 * Or we could screw up whatever the new feature requires.
3456	 */
3457	if (compat_ro_unsupp && btrfs_super_log_root(disk_super) &&
3458	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3459		btrfs_err(fs_info,
3460"cannot replay dirty log with unsupported compat_ro features (0x%llx), try rescue=nologreplay",
3461			  compat_ro);
3462		return -EINVAL;
3463	}
3464
3465	/*
3466	 * Artificial limitations for block group tree, to force
3467	 * block-group-tree to rely on no-holes and free-space-tree.
3468	 */
3469	if (btrfs_fs_compat_ro(fs_info, BLOCK_GROUP_TREE) &&
3470	    (!btrfs_fs_incompat(fs_info, NO_HOLES) ||
3471	     !btrfs_test_opt(fs_info, FREE_SPACE_TREE))) {
3472		btrfs_err(fs_info,
3473"block-group-tree feature requires no-holes and free-space-tree features");
3474		return -EINVAL;
3475	}
3476
3477	/*
3478	 * Subpage runtime limitation on v1 cache.
3479	 *
3480	 * V1 space cache still has some hard codeed PAGE_SIZE usage, while
3481	 * we're already defaulting to v2 cache, no need to bother v1 as it's
3482	 * going to be deprecated anyway.
3483	 */
3484	if (fs_info->sectorsize < PAGE_SIZE && btrfs_test_opt(fs_info, SPACE_CACHE)) {
3485		btrfs_warn(fs_info,
3486	"v1 space cache is not supported for page size %lu with sectorsize %u",
3487			   PAGE_SIZE, fs_info->sectorsize);
3488		return -EINVAL;
3489	}
3490
3491	/* This can be called by remount, we need to protect the super block. */
3492	spin_lock(&fs_info->super_lock);
3493	btrfs_set_super_incompat_flags(disk_super, incompat);
3494	spin_unlock(&fs_info->super_lock);
3495
3496	return 0;
3497}
3498
3499int __cold open_ctree(struct super_block *sb, struct btrfs_fs_devices *fs_devices,
3500		      char *options)
3501{
3502	u32 sectorsize;
3503	u32 nodesize;
3504	u32 stripesize;
3505	u64 generation;
3506	u64 features;
3507	u16 csum_type;
3508	struct btrfs_super_block *disk_super;
3509	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
3510	struct btrfs_root *tree_root;
3511	struct btrfs_root *chunk_root;
3512	int ret;
3513	int err = -EINVAL;
3514	int level;
3515
3516	ret = init_mount_fs_info(fs_info, sb);
3517	if (ret) {
3518		err = ret;
3519		goto fail;
3520	}
3521
3522	/* These need to be init'ed before we start creating inodes and such. */
3523	tree_root = btrfs_alloc_root(fs_info, BTRFS_ROOT_TREE_OBJECTID,
3524				     GFP_KERNEL);
3525	fs_info->tree_root = tree_root;
3526	chunk_root = btrfs_alloc_root(fs_info, BTRFS_CHUNK_TREE_OBJECTID,
3527				      GFP_KERNEL);
3528	fs_info->chunk_root = chunk_root;
3529	if (!tree_root || !chunk_root) {
3530		err = -ENOMEM;
3531		goto fail;
3532	}
3533
3534	fs_info->btree_inode = new_inode(sb);
3535	if (!fs_info->btree_inode) {
3536		err = -ENOMEM;
3537		goto fail;
3538	}
3539	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
3540	btrfs_init_btree_inode(fs_info);
3541
3542	invalidate_bdev(fs_devices->latest_dev->bdev);
3543
3544	/*
3545	 * Read super block and check the signature bytes only
3546	 */
3547	disk_super = btrfs_read_dev_super(fs_devices->latest_dev->bdev);
3548	if (IS_ERR(disk_super)) {
3549		err = PTR_ERR(disk_super);
3550		goto fail_alloc;
3551	}
3552
3553	/*
3554	 * Verify the type first, if that or the checksum value are
3555	 * corrupted, we'll find out
3556	 */
3557	csum_type = btrfs_super_csum_type(disk_super);
3558	if (!btrfs_supported_super_csum(csum_type)) {
3559		btrfs_err(fs_info, "unsupported checksum algorithm: %u",
3560			  csum_type);
3561		err = -EINVAL;
3562		btrfs_release_disk_super(disk_super);
3563		goto fail_alloc;
3564	}
3565
3566	fs_info->csum_size = btrfs_super_csum_size(disk_super);
3567
3568	ret = btrfs_init_csum_hash(fs_info, csum_type);
3569	if (ret) {
3570		err = ret;
3571		btrfs_release_disk_super(disk_super);
3572		goto fail_alloc;
3573	}
3574
3575	/*
3576	 * We want to check superblock checksum, the type is stored inside.
3577	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
3578	 */
3579	if (btrfs_check_super_csum(fs_info, disk_super)) {
3580		btrfs_err(fs_info, "superblock checksum mismatch");
3581		err = -EINVAL;
3582		btrfs_release_disk_super(disk_super);
3583		goto fail_alloc;
3584	}
3585
3586	/*
3587	 * super_copy is zeroed at allocation time and we never touch the
3588	 * following bytes up to INFO_SIZE, the checksum is calculated from
3589	 * the whole block of INFO_SIZE
3590	 */
3591	memcpy(fs_info->super_copy, disk_super, sizeof(*fs_info->super_copy));
3592	btrfs_release_disk_super(disk_super);
3593
3594	disk_super = fs_info->super_copy;
3595
3596
3597	features = btrfs_super_flags(disk_super);
3598	if (features & BTRFS_SUPER_FLAG_CHANGING_FSID_V2) {
3599		features &= ~BTRFS_SUPER_FLAG_CHANGING_FSID_V2;
3600		btrfs_set_super_flags(disk_super, features);
3601		btrfs_info(fs_info,
3602			"found metadata UUID change in progress flag, clearing");
3603	}
3604
3605	memcpy(fs_info->super_for_commit, fs_info->super_copy,
3606	       sizeof(*fs_info->super_for_commit));
 
 
 
3607
3608	ret = btrfs_validate_mount_super(fs_info);
3609	if (ret) {
3610		btrfs_err(fs_info, "superblock contains fatal errors");
3611		err = -EINVAL;
3612		goto fail_alloc;
3613	}
3614
 
3615	if (!btrfs_super_root(disk_super))
3616		goto fail_alloc;
3617
3618	/* check FS state, whether FS is broken. */
3619	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
3620		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
3621
3622	/*
 
 
 
 
 
 
 
3623	 * In the long term, we'll store the compression type in the super
3624	 * block, and it'll be used for per file compression control.
3625	 */
3626	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
3627
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3628
3629	/* Set up fs_info before parsing mount options */
3630	nodesize = btrfs_super_nodesize(disk_super);
3631	sectorsize = btrfs_super_sectorsize(disk_super);
3632	stripesize = sectorsize;
3633	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
3634	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
3635
 
3636	fs_info->nodesize = nodesize;
3637	fs_info->sectorsize = sectorsize;
3638	fs_info->sectorsize_bits = ilog2(sectorsize);
3639	fs_info->csums_per_leaf = BTRFS_MAX_ITEM_SIZE(fs_info) / fs_info->csum_size;
3640	fs_info->stripesize = stripesize;
3641
3642	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
3643	if (ret) {
3644		err = ret;
 
 
 
 
 
 
3645		goto fail_alloc;
3646	}
3647
3648	ret = btrfs_check_features(fs_info, !sb_rdonly(sb));
3649	if (ret < 0) {
3650		err = ret;
 
 
 
 
 
 
 
 
 
 
3651		goto fail_alloc;
3652	}
3653
3654	if (sectorsize < PAGE_SIZE) {
3655		struct btrfs_subpage_info *subpage_info;
3656
3657		/*
3658		 * V1 space cache has some hardcoded PAGE_SIZE usage, and is
3659		 * going to be deprecated.
3660		 *
3661		 * Force to use v2 cache for subpage case.
3662		 */
3663		btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
3664		btrfs_set_and_info(fs_info, FREE_SPACE_TREE,
3665			"forcing free space tree for sector size %u with page size %lu",
3666			sectorsize, PAGE_SIZE);
3667
3668		btrfs_warn(fs_info,
3669		"read-write for sector size %u with page size %lu is experimental",
3670			   sectorsize, PAGE_SIZE);
3671		subpage_info = kzalloc(sizeof(*subpage_info), GFP_KERNEL);
3672		if (!subpage_info)
3673			goto fail_alloc;
3674		btrfs_init_subpage_info(subpage_info, sectorsize);
3675		fs_info->subpage_info = subpage_info;
3676	}
3677
3678	ret = btrfs_init_workqueues(fs_info);
3679	if (ret) {
3680		err = ret;
3681		goto fail_sb_buffer;
3682	}
3683
3684	sb->s_bdi->ra_pages *= btrfs_super_num_devices(disk_super);
3685	sb->s_bdi->ra_pages = max(sb->s_bdi->ra_pages, SZ_4M / PAGE_SIZE);
 
3686
3687	sb->s_blocksize = sectorsize;
3688	sb->s_blocksize_bits = blksize_bits(sectorsize);
3689	memcpy(&sb->s_uuid, fs_info->fs_devices->fsid, BTRFS_FSID_SIZE);
3690
3691	mutex_lock(&fs_info->chunk_mutex);
3692	ret = btrfs_read_sys_array(fs_info);
3693	mutex_unlock(&fs_info->chunk_mutex);
3694	if (ret) {
3695		btrfs_err(fs_info, "failed to read the system array: %d", ret);
3696		goto fail_sb_buffer;
3697	}
3698
3699	generation = btrfs_super_chunk_root_generation(disk_super);
3700	level = btrfs_super_chunk_root_level(disk_super);
3701	ret = load_super_root(chunk_root, btrfs_super_chunk_root(disk_super),
3702			      generation, level);
3703	if (ret) {
 
 
 
 
3704		btrfs_err(fs_info, "failed to read chunk root");
 
 
 
3705		goto fail_tree_roots;
3706	}
 
 
3707
3708	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
3709			   offsetof(struct btrfs_header, chunk_tree_uuid),
3710			   BTRFS_UUID_SIZE);
3711
3712	ret = btrfs_read_chunk_tree(fs_info);
3713	if (ret) {
3714		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
3715		goto fail_tree_roots;
3716	}
3717
3718	/*
3719	 * At this point we know all the devices that make this filesystem,
3720	 * including the seed devices but we don't know yet if the replace
3721	 * target is required. So free devices that are not part of this
3722	 * filesystem but skip the replace target device which is checked
3723	 * below in btrfs_init_dev_replace().
3724	 */
3725	btrfs_free_extra_devids(fs_devices);
3726	if (!fs_devices->latest_dev->bdev) {
 
3727		btrfs_err(fs_info, "failed to read devices");
3728		goto fail_tree_roots;
3729	}
3730
3731	ret = init_tree_roots(fs_info);
3732	if (ret)
3733		goto fail_tree_roots;
3734
3735	/*
3736	 * Get zone type information of zoned block devices. This will also
3737	 * handle emulation of a zoned filesystem if a regular device has the
3738	 * zoned incompat feature flag set.
3739	 */
3740	ret = btrfs_get_dev_zone_info_all_devices(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
3741	if (ret) {
3742		btrfs_err(fs_info,
3743			  "zoned: failed to read device zone info: %d",
3744			  ret);
3745		goto fail_block_groups;
3746	}
3747
3748	/*
3749	 * If we have a uuid root and we're not being told to rescan we need to
3750	 * check the generation here so we can set the
3751	 * BTRFS_FS_UPDATE_UUID_TREE_GEN bit.  Otherwise we could commit the
3752	 * transaction during a balance or the log replay without updating the
3753	 * uuid generation, and then if we crash we would rescan the uuid tree,
3754	 * even though it was perfectly fine.
3755	 */
3756	if (fs_info->uuid_root && !btrfs_test_opt(fs_info, RESCAN_UUID_TREE) &&
3757	    fs_info->generation == btrfs_super_uuid_tree_generation(disk_super))
3758		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3759
3760	ret = btrfs_verify_dev_extents(fs_info);
3761	if (ret) {
3762		btrfs_err(fs_info,
3763			  "failed to verify dev extents against chunks: %d",
3764			  ret);
3765		goto fail_block_groups;
3766	}
3767	ret = btrfs_recover_balance(fs_info);
3768	if (ret) {
3769		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3770		goto fail_block_groups;
3771	}
3772
3773	ret = btrfs_init_dev_stats(fs_info);
3774	if (ret) {
3775		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3776		goto fail_block_groups;
3777	}
3778
3779	ret = btrfs_init_dev_replace(fs_info);
3780	if (ret) {
3781		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3782		goto fail_block_groups;
3783	}
3784
3785	ret = btrfs_check_zoned_mode(fs_info);
 
 
3786	if (ret) {
3787		btrfs_err(fs_info, "failed to initialize zoned mode: %d",
3788			  ret);
3789		goto fail_block_groups;
3790	}
3791
3792	ret = btrfs_sysfs_add_fsid(fs_devices);
3793	if (ret) {
3794		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3795				ret);
3796		goto fail_block_groups;
3797	}
3798
3799	ret = btrfs_sysfs_add_mounted(fs_info);
3800	if (ret) {
3801		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3802		goto fail_fsdev_sysfs;
3803	}
3804
3805	ret = btrfs_init_space_info(fs_info);
3806	if (ret) {
3807		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3808		goto fail_sysfs;
3809	}
3810
3811	ret = btrfs_read_block_groups(fs_info);
3812	if (ret) {
3813		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3814		goto fail_sysfs;
3815	}
3816
3817	btrfs_free_zone_cache(fs_info);
3818
3819	if (!sb_rdonly(sb) && fs_info->fs_devices->missing_devices &&
3820	    !btrfs_check_rw_degradable(fs_info, NULL)) {
3821		btrfs_warn(fs_info,
3822		"writable mount is not allowed due to too many missing devices");
 
 
3823		goto fail_sysfs;
3824	}
3825
3826	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, fs_info,
3827					       "btrfs-cleaner");
3828	if (IS_ERR(fs_info->cleaner_kthread))
3829		goto fail_sysfs;
3830
3831	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3832						   tree_root,
3833						   "btrfs-transaction");
3834	if (IS_ERR(fs_info->transaction_kthread))
3835		goto fail_cleaner;
3836
3837	if (!btrfs_test_opt(fs_info, NOSSD) &&
 
3838	    !fs_info->fs_devices->rotating) {
3839		btrfs_set_and_info(fs_info, SSD, "enabling ssd optimizations");
 
3840	}
3841
3842	/*
3843	 * For devices supporting discard turn on discard=async automatically,
3844	 * unless it's already set or disabled. This could be turned off by
3845	 * nodiscard for the same mount.
3846	 */
3847	if (!(btrfs_test_opt(fs_info, DISCARD_SYNC) ||
3848	      btrfs_test_opt(fs_info, DISCARD_ASYNC) ||
3849	      btrfs_test_opt(fs_info, NODISCARD)) &&
3850	    fs_info->fs_devices->discardable) {
3851		btrfs_set_and_info(fs_info, DISCARD_ASYNC,
3852				   "auto enabling async discard");
3853		btrfs_clear_opt(fs_info->mount_opt, NODISCARD);
3854	}
3855
3856#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3857	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3858		ret = btrfsic_mount(fs_info, fs_devices,
3859				    btrfs_test_opt(fs_info,
3860					CHECK_INTEGRITY_DATA) ? 1 : 0,
 
3861				    fs_info->check_integrity_print_mask);
3862		if (ret)
3863			btrfs_warn(fs_info,
3864				"failed to initialize integrity check module: %d",
3865				ret);
3866	}
3867#endif
3868	ret = btrfs_read_qgroup_config(fs_info);
3869	if (ret)
3870		goto fail_trans_kthread;
3871
3872	if (btrfs_build_ref_tree(fs_info))
3873		btrfs_err(fs_info, "couldn't build ref tree");
3874
3875	/* do not make disk changes in broken FS or nologreplay is given */
3876	if (btrfs_super_log_root(disk_super) != 0 &&
3877	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
3878		btrfs_info(fs_info, "start tree-log replay");
3879		ret = btrfs_replay_log(fs_info, fs_devices);
3880		if (ret) {
3881			err = ret;
3882			goto fail_qgroup;
3883		}
3884	}
3885
3886	fs_info->fs_root = btrfs_get_fs_root(fs_info, BTRFS_FS_TREE_OBJECTID, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3887	if (IS_ERR(fs_info->fs_root)) {
3888		err = PTR_ERR(fs_info->fs_root);
3889		btrfs_warn(fs_info, "failed to read fs tree: %d", err);
3890		fs_info->fs_root = NULL;
3891		goto fail_qgroup;
3892	}
3893
3894	if (sb_rdonly(sb))
3895		goto clear_oneshot;
3896
3897	ret = btrfs_start_pre_rw_mount(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3898	if (ret) {
 
3899		close_ctree(fs_info);
3900		return ret;
3901	}
3902	btrfs_discard_resume(fs_info);
3903
3904	if (fs_info->uuid_root &&
3905	    (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3906	     fs_info->generation != btrfs_super_uuid_tree_generation(disk_super))) {
 
 
 
 
 
 
 
 
 
 
 
3907		btrfs_info(fs_info, "checking UUID tree");
3908		ret = btrfs_check_uuid_tree(fs_info);
3909		if (ret) {
3910			btrfs_warn(fs_info,
3911				"failed to check the UUID tree: %d", ret);
3912			close_ctree(fs_info);
3913			return ret;
3914		}
 
 
3915	}
3916
3917	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3918
3919	/* Kick the cleaner thread so it'll start deleting snapshots. */
3920	if (test_bit(BTRFS_FS_UNFINISHED_DROPS, &fs_info->flags))
3921		wake_up_process(fs_info->cleaner_kthread);
 
 
3922
3923clear_oneshot:
3924	btrfs_clear_oneshot_options(fs_info);
3925	return 0;
3926
3927fail_qgroup:
3928	btrfs_free_qgroup_config(fs_info);
3929fail_trans_kthread:
3930	kthread_stop(fs_info->transaction_kthread);
3931	btrfs_cleanup_transaction(fs_info);
3932	btrfs_free_fs_roots(fs_info);
3933fail_cleaner:
3934	kthread_stop(fs_info->cleaner_kthread);
3935
3936	/*
3937	 * make sure we're done with the btree inode before we stop our
3938	 * kthreads
3939	 */
3940	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3941
3942fail_sysfs:
3943	btrfs_sysfs_remove_mounted(fs_info);
3944
3945fail_fsdev_sysfs:
3946	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3947
3948fail_block_groups:
3949	btrfs_put_block_group_cache(fs_info);
 
3950
3951fail_tree_roots:
3952	if (fs_info->data_reloc_root)
3953		btrfs_drop_and_free_fs_root(fs_info, fs_info->data_reloc_root);
3954	free_root_pointers(fs_info, true);
3955	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3956
3957fail_sb_buffer:
3958	btrfs_stop_all_workers(fs_info);
3959	btrfs_free_block_groups(fs_info);
3960fail_alloc:
 
3961	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3962
3963	iput(fs_info->btree_inode);
 
 
 
 
 
 
 
 
 
 
3964fail:
 
3965	btrfs_close_devices(fs_info->fs_devices);
3966	return err;
3967}
3968ALLOW_ERROR_INJECTION(open_ctree, ERRNO);
3969
3970static void btrfs_end_super_write(struct bio *bio)
3971{
3972	struct btrfs_device *device = bio->bi_private;
3973	struct bio_vec *bvec;
3974	struct bvec_iter_all iter_all;
3975	struct page *page;
3976
3977	bio_for_each_segment_all(bvec, bio, iter_all) {
3978		page = bvec->bv_page;
3979
3980		if (bio->bi_status) {
3981			btrfs_warn_rl_in_rcu(device->fs_info,
3982				"lost page write due to IO error on %s (%d)",
3983				btrfs_dev_name(device),
3984				blk_status_to_errno(bio->bi_status));
3985			ClearPageUptodate(page);
3986			SetPageError(page);
3987			btrfs_dev_stat_inc_and_print(device,
3988						     BTRFS_DEV_STAT_WRITE_ERRS);
3989		} else {
3990			SetPageUptodate(page);
3991		}
3992
3993		put_page(page);
3994		unlock_page(page);
3995	}
3996
3997	bio_put(bio);
 
 
 
 
3998}
3999
4000struct btrfs_super_block *btrfs_read_dev_one_super(struct block_device *bdev,
4001						   int copy_num, bool drop_cache)
4002{
4003	struct btrfs_super_block *super;
4004	struct page *page;
4005	u64 bytenr, bytenr_orig;
4006	struct address_space *mapping = bdev->bd_inode->i_mapping;
4007	int ret;
4008
4009	bytenr_orig = btrfs_sb_offset(copy_num);
4010	ret = btrfs_sb_log_location_bdev(bdev, copy_num, READ, &bytenr);
4011	if (ret == -ENOENT)
4012		return ERR_PTR(-EINVAL);
4013	else if (ret)
4014		return ERR_PTR(ret);
4015
4016	if (bytenr + BTRFS_SUPER_INFO_SIZE >= bdev_nr_bytes(bdev))
4017		return ERR_PTR(-EINVAL);
4018
4019	if (drop_cache) {
4020		/* This should only be called with the primary sb. */
4021		ASSERT(copy_num == 0);
4022
4023		/*
4024		 * Drop the page of the primary superblock, so later read will
4025		 * always read from the device.
 
 
4026		 */
4027		invalidate_inode_pages2_range(mapping,
4028				bytenr >> PAGE_SHIFT,
4029				(bytenr + BTRFS_SUPER_INFO_SIZE) >> PAGE_SHIFT);
4030	}
 
 
 
4031
4032	page = read_cache_page_gfp(mapping, bytenr >> PAGE_SHIFT, GFP_NOFS);
4033	if (IS_ERR(page))
4034		return ERR_CAST(page);
 
 
 
4035
4036	super = page_address(page);
4037	if (btrfs_super_magic(super) != BTRFS_MAGIC) {
4038		btrfs_release_disk_super(super);
4039		return ERR_PTR(-ENODATA);
4040	}
4041
4042	if (btrfs_super_bytenr(super) != bytenr_orig) {
4043		btrfs_release_disk_super(super);
4044		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
 
 
4045	}
4046
4047	return super;
 
4048}
4049
4050
4051struct btrfs_super_block *btrfs_read_dev_super(struct block_device *bdev)
4052{
4053	struct btrfs_super_block *super, *latest = NULL;
 
 
4054	int i;
4055	u64 transid = 0;
 
4056
4057	/* we would like to check all the supers, but that would make
4058	 * a btrfs mount succeed after a mkfs from a different FS.
4059	 * So, we need to add a special mount option to scan for
4060	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
4061	 */
4062	for (i = 0; i < 1; i++) {
4063		super = btrfs_read_dev_one_super(bdev, i, false);
4064		if (IS_ERR(super))
4065			continue;
4066
4067		if (!latest || btrfs_super_generation(super) > transid) {
4068			if (latest)
4069				btrfs_release_disk_super(super);
4070
4071			latest = super;
 
 
4072			transid = btrfs_super_generation(super);
 
 
4073		}
4074	}
4075
4076	return super;
 
 
 
4077}
4078
4079/*
4080 * Write superblock @sb to the @device. Do not wait for completion, all the
4081 * pages we use for writing are locked.
 
4082 *
4083 * Write @max_mirrors copies of the superblock, where 0 means default that fit
4084 * the expected device size at commit time. Note that max_mirrors must be
4085 * same for write and wait phases.
4086 *
4087 * Return number of errors when page is not found or submission fails.
4088 */
4089static int write_dev_supers(struct btrfs_device *device,
4090			    struct btrfs_super_block *sb, int max_mirrors)
 
4091{
4092	struct btrfs_fs_info *fs_info = device->fs_info;
4093	struct address_space *mapping = device->bdev->bd_inode->i_mapping;
4094	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
4095	int i;
4096	int errors = 0;
4097	int ret;
4098	u64 bytenr, bytenr_orig;
 
 
4099
4100	if (max_mirrors == 0)
4101		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4102
4103	shash->tfm = fs_info->csum_shash;
4104
4105	for (i = 0; i < max_mirrors; i++) {
4106		struct page *page;
4107		struct bio *bio;
4108		struct btrfs_super_block *disk_super;
4109
4110		bytenr_orig = btrfs_sb_offset(i);
4111		ret = btrfs_sb_log_location(device, i, WRITE, &bytenr);
4112		if (ret == -ENOENT) {
4113			continue;
4114		} else if (ret < 0) {
4115			btrfs_err(device->fs_info,
4116				"couldn't get super block location for mirror %d",
4117				i);
4118			errors++;
4119			continue;
4120		}
4121		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4122		    device->commit_total_bytes)
4123			break;
4124
4125		btrfs_set_super_bytenr(sb, bytenr_orig);
4126
4127		crypto_shash_digest(shash, (const char *)sb + BTRFS_CSUM_SIZE,
4128				    BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE,
4129				    sb->csum);
4130
4131		page = find_or_create_page(mapping, bytenr >> PAGE_SHIFT,
4132					   GFP_NOFS);
4133		if (!page) {
4134			btrfs_err(device->fs_info,
4135			    "couldn't get super block page for bytenr %llu",
4136			    bytenr);
4137			errors++;
4138			continue;
4139		}
4140
4141		/* Bump the refcount for wait_dev_supers() */
4142		get_page(page);
4143
4144		disk_super = page_address(page);
4145		memcpy(disk_super, sb, BTRFS_SUPER_INFO_SIZE);
4146
4147		/*
4148		 * Directly use bios here instead of relying on the page cache
4149		 * to do I/O, so we don't lose the ability to do integrity
4150		 * checking.
4151		 */
4152		bio = bio_alloc(device->bdev, 1,
4153				REQ_OP_WRITE | REQ_SYNC | REQ_META | REQ_PRIO,
4154				GFP_NOFS);
4155		bio->bi_iter.bi_sector = bytenr >> SECTOR_SHIFT;
4156		bio->bi_private = device;
4157		bio->bi_end_io = btrfs_end_super_write;
4158		__bio_add_page(bio, page, BTRFS_SUPER_INFO_SIZE,
4159			       offset_in_page(bytenr));
4160
4161		/*
4162		 * We FUA only the first super block.  The others we allow to
4163		 * go down lazy and there's a short window where the on-disk
4164		 * copies might still contain the older version.
4165		 */
4166		if (i == 0 && !btrfs_test_opt(device->fs_info, NOBARRIER))
4167			bio->bi_opf |= REQ_FUA;
4168
4169		btrfsic_check_bio(bio);
4170		submit_bio(bio);
 
 
 
4171
4172		if (btrfs_advance_sb_log(device, i))
4173			errors++;
4174	}
4175	return errors < i ? 0 : -1;
4176}
 
4177
4178/*
4179 * Wait for write completion of superblocks done by write_dev_supers,
4180 * @max_mirrors same for write and wait phases.
4181 *
4182 * Return number of errors when page is not found or not marked up to
4183 * date.
4184 */
4185static int wait_dev_supers(struct btrfs_device *device, int max_mirrors)
4186{
4187	int i;
4188	int errors = 0;
4189	bool primary_failed = false;
4190	int ret;
4191	u64 bytenr;
4192
4193	if (max_mirrors == 0)
4194		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
4195
4196	for (i = 0; i < max_mirrors; i++) {
4197		struct page *page;
4198
4199		ret = btrfs_sb_log_location(device, i, READ, &bytenr);
4200		if (ret == -ENOENT) {
4201			break;
4202		} else if (ret < 0) {
4203			errors++;
4204			if (i == 0)
4205				primary_failed = true;
4206			continue;
4207		}
4208		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
4209		    device->commit_total_bytes)
4210			break;
4211
4212		page = find_get_page(device->bdev->bd_inode->i_mapping,
4213				     bytenr >> PAGE_SHIFT);
4214		if (!page) {
4215			errors++;
4216			if (i == 0)
4217				primary_failed = true;
4218			continue;
4219		}
4220		/* Page is submitted locked and unlocked once the IO completes */
4221		wait_on_page_locked(page);
4222		if (PageError(page)) {
4223			errors++;
4224			if (i == 0)
4225				primary_failed = true;
4226		}
4227
4228		/* Drop our reference */
4229		put_page(page);
4230
4231		/* Drop the reference from the writing run */
4232		put_page(page);
4233	}
4234
4235	/* log error, force error return */
4236	if (primary_failed) {
4237		btrfs_err(device->fs_info, "error writing primary super block to device %llu",
4238			  device->devid);
4239		return -1;
4240	}
4241
4242	return errors < i ? 0 : -1;
4243}
4244
4245/*
4246 * endio for the write_dev_flush, this will wake anyone waiting
4247 * for the barrier when it is done
4248 */
4249static void btrfs_end_empty_barrier(struct bio *bio)
4250{
4251	bio_uninit(bio);
4252	complete(bio->bi_private);
 
4253}
4254
4255/*
4256 * Submit a flush request to the device if it supports it. Error handling is
4257 * done in the waiting counterpart.
 
 
 
4258 */
4259static void write_dev_flush(struct btrfs_device *device)
4260{
4261	struct bio *bio = &device->flush_bio;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4262
4263#ifndef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4264	/*
4265	 * When a disk has write caching disabled, we skip submission of a bio
4266	 * with flush and sync requests before writing the superblock, since
4267	 * it's not needed. However when the integrity checker is enabled, this
4268	 * results in reports that there are metadata blocks referred by a
4269	 * superblock that were not properly flushed. So don't skip the bio
4270	 * submission only when the integrity checker is enabled for the sake
4271	 * of simplicity, since this is a debug tool and not meant for use in
4272	 * non-debug builds.
4273	 */
4274	if (!bdev_write_cache(device->bdev))
4275		return;
4276#endif
 
4277
4278	bio_init(bio, device->bdev, NULL, 0,
4279		 REQ_OP_WRITE | REQ_SYNC | REQ_PREFLUSH);
4280	bio->bi_end_io = btrfs_end_empty_barrier;
 
 
4281	init_completion(&device->flush_wait);
4282	bio->bi_private = &device->flush_wait;
 
4283
4284	btrfsic_check_bio(bio);
4285	submit_bio(bio);
4286	set_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4287}
4288
4289/*
4290 * If the flush bio has been submitted by write_dev_flush, wait for it.
4291 */
4292static blk_status_t wait_dev_flush(struct btrfs_device *device)
4293{
4294	struct bio *bio = &device->flush_bio;
4295
4296	if (!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state))
4297		return BLK_STS_OK;
4298
4299	clear_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state);
4300	wait_for_completion_io(&device->flush_wait);
4301
4302	return bio->bi_status;
4303}
4304
4305static int check_barrier_error(struct btrfs_fs_info *fs_info)
4306{
4307	if (!btrfs_check_rw_degradable(fs_info, NULL))
4308		return -EIO;
4309	return 0;
4310}
4311
4312/*
4313 * send an empty flush down to each device in parallel,
4314 * then wait for them
4315 */
4316static int barrier_all_devices(struct btrfs_fs_info *info)
4317{
4318	struct list_head *head;
4319	struct btrfs_device *dev;
 
4320	int errors_wait = 0;
4321	blk_status_t ret;
4322
4323	lockdep_assert_held(&info->fs_devices->device_list_mutex);
4324	/* send down all the barriers */
4325	head = &info->fs_devices->devices;
4326	list_for_each_entry(dev, head, dev_list) {
4327		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4328			continue;
4329		if (!dev->bdev)
 
4330			continue;
4331		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4332		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4333			continue;
4334
4335		write_dev_flush(dev);
4336		dev->last_flush_error = BLK_STS_OK;
 
4337	}
4338
4339	/* wait for all the barriers */
4340	list_for_each_entry(dev, head, dev_list) {
4341		if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state))
4342			continue;
4343		if (!dev->bdev) {
4344			errors_wait++;
4345			continue;
4346		}
4347		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4348		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4349			continue;
4350
4351		ret = wait_dev_flush(dev);
4352		if (ret) {
4353			dev->last_flush_error = ret;
4354			btrfs_dev_stat_inc_and_print(dev,
4355					BTRFS_DEV_STAT_FLUSH_ERRS);
4356			errors_wait++;
4357		}
4358	}
4359
4360	if (errors_wait) {
4361		/*
4362		 * At some point we need the status of all disks
4363		 * to arrive at the volume status. So error checking
4364		 * is being pushed to a separate loop.
4365		 */
4366		return check_barrier_error(info);
4367	}
 
 
 
4368	return 0;
4369}
4370
4371int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
4372{
4373	int raid_type;
4374	int min_tolerated = INT_MAX;
4375
4376	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
4377	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
4378		min_tolerated = min_t(int, min_tolerated,
4379				    btrfs_raid_array[BTRFS_RAID_SINGLE].
4380				    tolerated_failures);
4381
4382	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4383		if (raid_type == BTRFS_RAID_SINGLE)
4384			continue;
4385		if (!(flags & btrfs_raid_array[raid_type].bg_flag))
4386			continue;
4387		min_tolerated = min_t(int, min_tolerated,
4388				    btrfs_raid_array[raid_type].
4389				    tolerated_failures);
4390	}
4391
4392	if (min_tolerated == INT_MAX) {
4393		pr_warn("BTRFS: unknown raid flag: %llu", flags);
4394		min_tolerated = 0;
4395	}
4396
4397	return min_tolerated;
4398}
4399
4400int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4401{
4402	struct list_head *head;
4403	struct btrfs_device *dev;
4404	struct btrfs_super_block *sb;
4405	struct btrfs_dev_item *dev_item;
4406	int ret;
4407	int do_barriers;
4408	int max_errors;
4409	int total_errors = 0;
4410	u64 flags;
4411
4412	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
4413
4414	/*
4415	 * max_mirrors == 0 indicates we're from commit_transaction,
4416	 * not from fsync where the tree roots in fs_info have not
4417	 * been consistent on disk.
4418	 */
4419	if (max_mirrors == 0)
4420		backup_super_roots(fs_info);
4421
4422	sb = fs_info->super_for_commit;
4423	dev_item = &sb->dev_item;
4424
4425	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4426	head = &fs_info->fs_devices->devices;
4427	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
4428
4429	if (do_barriers) {
4430		ret = barrier_all_devices(fs_info);
4431		if (ret) {
4432			mutex_unlock(
4433				&fs_info->fs_devices->device_list_mutex);
4434			btrfs_handle_fs_error(fs_info, ret,
4435					      "errors while submitting device barriers.");
4436			return ret;
4437		}
4438	}
4439
4440	list_for_each_entry(dev, head, dev_list) {
4441		if (!dev->bdev) {
4442			total_errors++;
4443			continue;
4444		}
4445		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4446		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4447			continue;
4448
4449		btrfs_set_stack_device_generation(dev_item, 0);
4450		btrfs_set_stack_device_type(dev_item, dev->type);
4451		btrfs_set_stack_device_id(dev_item, dev->devid);
4452		btrfs_set_stack_device_total_bytes(dev_item,
4453						   dev->commit_total_bytes);
4454		btrfs_set_stack_device_bytes_used(dev_item,
4455						  dev->commit_bytes_used);
4456		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
4457		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
4458		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
4459		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
4460		memcpy(dev_item->fsid, dev->fs_devices->metadata_uuid,
4461		       BTRFS_FSID_SIZE);
4462
4463		flags = btrfs_super_flags(sb);
4464		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
4465
4466		ret = btrfs_validate_write_super(fs_info, sb);
4467		if (ret < 0) {
4468			mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4469			btrfs_handle_fs_error(fs_info, -EUCLEAN,
4470				"unexpected superblock corruption detected");
4471			return -EUCLEAN;
4472		}
4473
4474		ret = write_dev_supers(dev, sb, max_mirrors);
4475		if (ret)
4476			total_errors++;
4477	}
4478	if (total_errors > max_errors) {
4479		btrfs_err(fs_info, "%d errors while writing supers",
4480			  total_errors);
4481		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4482
4483		/* FUA is masked off if unsupported and can't be the reason */
4484		btrfs_handle_fs_error(fs_info, -EIO,
4485				      "%d errors while writing supers",
4486				      total_errors);
4487		return -EIO;
4488	}
4489
4490	total_errors = 0;
4491	list_for_each_entry(dev, head, dev_list) {
4492		if (!dev->bdev)
4493			continue;
4494		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4495		    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))
4496			continue;
4497
4498		ret = wait_dev_supers(dev, max_mirrors);
4499		if (ret)
4500			total_errors++;
4501	}
4502	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4503	if (total_errors > max_errors) {
4504		btrfs_handle_fs_error(fs_info, -EIO,
4505				      "%d errors while writing supers",
4506				      total_errors);
4507		return -EIO;
4508	}
4509	return 0;
4510}
4511
 
 
 
 
 
 
4512/* Drop a fs root from the radix tree and free it. */
4513void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
4514				  struct btrfs_root *root)
4515{
4516	bool drop_ref = false;
4517
4518	spin_lock(&fs_info->fs_roots_radix_lock);
4519	radix_tree_delete(&fs_info->fs_roots_radix,
4520			  (unsigned long)root->root_key.objectid);
4521	if (test_and_clear_bit(BTRFS_ROOT_IN_RADIX, &root->state))
4522		drop_ref = true;
4523	spin_unlock(&fs_info->fs_roots_radix_lock);
4524
4525	if (BTRFS_FS_ERROR(fs_info)) {
4526		ASSERT(root->log_root == NULL);
 
 
 
4527		if (root->reloc_root) {
4528			btrfs_put_root(root->reloc_root);
 
 
4529			root->reloc_root = NULL;
4530		}
4531	}
4532
4533	if (drop_ref)
4534		btrfs_put_root(root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4535}
4536
4537int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
4538{
4539	u64 root_objectid = 0;
4540	struct btrfs_root *gang[8];
4541	int i = 0;
4542	int err = 0;
4543	unsigned int ret = 0;
 
4544
4545	while (1) {
4546		spin_lock(&fs_info->fs_roots_radix_lock);
4547		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4548					     (void **)gang, root_objectid,
4549					     ARRAY_SIZE(gang));
4550		if (!ret) {
4551			spin_unlock(&fs_info->fs_roots_radix_lock);
4552			break;
4553		}
4554		root_objectid = gang[ret - 1]->root_key.objectid + 1;
4555
4556		for (i = 0; i < ret; i++) {
4557			/* Avoid to grab roots in dead_roots */
4558			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
4559				gang[i] = NULL;
4560				continue;
4561			}
4562			/* grab all the search result for later use */
4563			gang[i] = btrfs_grab_root(gang[i]);
4564		}
4565		spin_unlock(&fs_info->fs_roots_radix_lock);
4566
4567		for (i = 0; i < ret; i++) {
4568			if (!gang[i])
4569				continue;
4570			root_objectid = gang[i]->root_key.objectid;
4571			err = btrfs_orphan_cleanup(gang[i]);
4572			if (err)
4573				break;
4574			btrfs_put_root(gang[i]);
4575		}
4576		root_objectid++;
4577	}
4578
4579	/* release the uncleaned roots due to error */
4580	for (; i < ret; i++) {
4581		if (gang[i])
4582			btrfs_put_root(gang[i]);
4583	}
4584	return err;
4585}
4586
4587int btrfs_commit_super(struct btrfs_fs_info *fs_info)
4588{
4589	struct btrfs_root *root = fs_info->tree_root;
4590	struct btrfs_trans_handle *trans;
4591
4592	mutex_lock(&fs_info->cleaner_mutex);
4593	btrfs_run_delayed_iputs(fs_info);
4594	mutex_unlock(&fs_info->cleaner_mutex);
4595	wake_up_process(fs_info->cleaner_kthread);
4596
4597	/* wait until ongoing cleanup work done */
4598	down_write(&fs_info->cleanup_work_sem);
4599	up_write(&fs_info->cleanup_work_sem);
4600
4601	trans = btrfs_join_transaction(root);
4602	if (IS_ERR(trans))
4603		return PTR_ERR(trans);
4604	return btrfs_commit_transaction(trans);
4605}
4606
4607static void warn_about_uncommitted_trans(struct btrfs_fs_info *fs_info)
4608{
4609	struct btrfs_transaction *trans;
4610	struct btrfs_transaction *tmp;
4611	bool found = false;
4612
4613	if (list_empty(&fs_info->trans_list))
4614		return;
4615
4616	/*
4617	 * This function is only called at the very end of close_ctree(),
4618	 * thus no other running transaction, no need to take trans_lock.
4619	 */
4620	ASSERT(test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags));
4621	list_for_each_entry_safe(trans, tmp, &fs_info->trans_list, list) {
4622		struct extent_state *cached = NULL;
4623		u64 dirty_bytes = 0;
4624		u64 cur = 0;
4625		u64 found_start;
4626		u64 found_end;
4627
4628		found = true;
4629		while (!find_first_extent_bit(&trans->dirty_pages, cur,
4630			&found_start, &found_end, EXTENT_DIRTY, &cached)) {
4631			dirty_bytes += found_end + 1 - found_start;
4632			cur = found_end + 1;
4633		}
4634		btrfs_warn(fs_info,
4635	"transaction %llu (with %llu dirty metadata bytes) is not committed",
4636			   trans->transid, dirty_bytes);
4637		btrfs_cleanup_one_transaction(trans, fs_info);
4638
4639		if (trans == fs_info->running_transaction)
4640			fs_info->running_transaction = NULL;
4641		list_del_init(&trans->list);
4642
4643		btrfs_put_transaction(trans);
4644		trace_btrfs_transaction_commit(fs_info);
4645	}
4646	ASSERT(!found);
4647}
4648
4649void __cold close_ctree(struct btrfs_fs_info *fs_info)
4650{
 
4651	int ret;
4652
4653	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
4654
4655	/*
4656	 * If we had UNFINISHED_DROPS we could still be processing them, so
4657	 * clear that bit and wake up relocation so it can stop.
4658	 * We must do this before stopping the block group reclaim task, because
4659	 * at btrfs_relocate_block_group() we wait for this bit, and after the
4660	 * wait we stop with -EINTR if btrfs_fs_closing() returns non-zero - we
4661	 * have just set BTRFS_FS_CLOSING_START, so btrfs_fs_closing() will
4662	 * return 1.
4663	 */
4664	btrfs_wake_unfinished_drop(fs_info);
4665
4666	/*
4667	 * We may have the reclaim task running and relocating a data block group,
4668	 * in which case it may create delayed iputs. So stop it before we park
4669	 * the cleaner kthread otherwise we can get new delayed iputs after
4670	 * parking the cleaner, and that can make the async reclaim task to hang
4671	 * if it's waiting for delayed iputs to complete, since the cleaner is
4672	 * parked and can not run delayed iputs - this will make us hang when
4673	 * trying to stop the async reclaim task.
4674	 */
4675	cancel_work_sync(&fs_info->reclaim_bgs_work);
4676	/*
4677	 * We don't want the cleaner to start new transactions, add more delayed
4678	 * iputs, etc. while we're closing. We can't use kthread_stop() yet
4679	 * because that frees the task_struct, and the transaction kthread might
4680	 * still try to wake up the cleaner.
4681	 */
4682	kthread_park(fs_info->cleaner_kthread);
4683
4684	/* wait for the qgroup rescan worker to stop */
4685	btrfs_qgroup_wait_for_completion(fs_info, false);
4686
4687	/* wait for the uuid_scan task to finish */
4688	down(&fs_info->uuid_tree_rescan_sem);
4689	/* avoid complains from lockdep et al., set sem back to initial state */
4690	up(&fs_info->uuid_tree_rescan_sem);
4691
4692	/* pause restriper - we want to resume on mount */
4693	btrfs_pause_balance(fs_info);
4694
4695	btrfs_dev_replace_suspend_for_unmount(fs_info);
4696
4697	btrfs_scrub_cancel(fs_info);
4698
4699	/* wait for any defraggers to finish */
4700	wait_event(fs_info->transaction_wait,
4701		   (atomic_read(&fs_info->defrag_running) == 0));
4702
4703	/* clear out the rbtree of defraggable inodes */
4704	btrfs_cleanup_defrag_inodes(fs_info);
4705
4706	/*
4707	 * After we parked the cleaner kthread, ordered extents may have
4708	 * completed and created new delayed iputs. If one of the async reclaim
4709	 * tasks is running and in the RUN_DELAYED_IPUTS flush state, then we
4710	 * can hang forever trying to stop it, because if a delayed iput is
4711	 * added after it ran btrfs_run_delayed_iputs() and before it called
4712	 * btrfs_wait_on_delayed_iputs(), it will hang forever since there is
4713	 * no one else to run iputs.
4714	 *
4715	 * So wait for all ongoing ordered extents to complete and then run
4716	 * delayed iputs. This works because once we reach this point no one
4717	 * can either create new ordered extents nor create delayed iputs
4718	 * through some other means.
4719	 *
4720	 * Also note that btrfs_wait_ordered_roots() is not safe here, because
4721	 * it waits for BTRFS_ORDERED_COMPLETE to be set on an ordered extent,
4722	 * but the delayed iput for the respective inode is made only when doing
4723	 * the final btrfs_put_ordered_extent() (which must happen at
4724	 * btrfs_finish_ordered_io() when we are unmounting).
4725	 */
4726	btrfs_flush_workqueue(fs_info->endio_write_workers);
4727	/* Ordered extents for free space inodes. */
4728	btrfs_flush_workqueue(fs_info->endio_freespace_worker);
4729	btrfs_run_delayed_iputs(fs_info);
4730
4731	cancel_work_sync(&fs_info->async_reclaim_work);
4732	cancel_work_sync(&fs_info->async_data_reclaim_work);
4733	cancel_work_sync(&fs_info->preempt_reclaim_work);
4734
4735	/* Cancel or finish ongoing discard work */
4736	btrfs_discard_cleanup(fs_info);
4737
4738	if (!sb_rdonly(fs_info->sb)) {
4739		/*
4740		 * The cleaner kthread is stopped, so do one final pass over
4741		 * unused block groups.
 
4742		 */
4743		btrfs_delete_unused_bgs(fs_info);
4744
4745		/*
4746		 * There might be existing delayed inode workers still running
4747		 * and holding an empty delayed inode item. We must wait for
4748		 * them to complete first because they can create a transaction.
4749		 * This happens when someone calls btrfs_balance_delayed_items()
4750		 * and then a transaction commit runs the same delayed nodes
4751		 * before any delayed worker has done something with the nodes.
4752		 * We must wait for any worker here and not at transaction
4753		 * commit time since that could cause a deadlock.
4754		 * This is a very rare case.
4755		 */
4756		btrfs_flush_workqueue(fs_info->delayed_workers);
4757
4758		ret = btrfs_commit_super(fs_info);
4759		if (ret)
4760			btrfs_err(fs_info, "commit super ret %d", ret);
4761	}
4762
4763	if (BTRFS_FS_ERROR(fs_info))
4764		btrfs_error_commit_super(fs_info);
4765
4766	kthread_stop(fs_info->transaction_kthread);
4767	kthread_stop(fs_info->cleaner_kthread);
4768
4769	ASSERT(list_empty(&fs_info->delayed_iputs));
4770	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
4771
4772	if (btrfs_check_quota_leak(fs_info)) {
4773		WARN_ON(IS_ENABLED(CONFIG_BTRFS_DEBUG));
4774		btrfs_err(fs_info, "qgroup reserved space leaked");
4775	}
4776
4777	btrfs_free_qgroup_config(fs_info);
4778	ASSERT(list_empty(&fs_info->delalloc_roots));
4779
4780	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
4781		btrfs_info(fs_info, "at unmount delalloc count %lld",
4782		       percpu_counter_sum(&fs_info->delalloc_bytes));
4783	}
4784
4785	if (percpu_counter_sum(&fs_info->ordered_bytes))
4786		btrfs_info(fs_info, "at unmount dio bytes count %lld",
4787			   percpu_counter_sum(&fs_info->ordered_bytes));
4788
4789	btrfs_sysfs_remove_mounted(fs_info);
4790	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
4791
 
 
4792	btrfs_put_block_group_cache(fs_info);
4793
 
 
4794	/*
4795	 * we must make sure there is not any read request to
4796	 * submit after we stopping all workers.
4797	 */
4798	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
4799	btrfs_stop_all_workers(fs_info);
4800
4801	/* We shouldn't have any transaction open at this point */
4802	warn_about_uncommitted_trans(fs_info);
4803
4804	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
4805	free_root_pointers(fs_info, true);
4806	btrfs_free_fs_roots(fs_info);
4807
4808	/*
4809	 * We must free the block groups after dropping the fs_roots as we could
4810	 * have had an IO error and have left over tree log blocks that aren't
4811	 * cleaned up until the fs roots are freed.  This makes the block group
4812	 * accounting appear to be wrong because there's pending reserved bytes,
4813	 * so make sure we do the block group cleanup afterwards.
4814	 */
4815	btrfs_free_block_groups(fs_info);
4816
4817	iput(fs_info->btree_inode);
4818
4819#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4820	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4821		btrfsic_unmount(fs_info->fs_devices);
4822#endif
4823
4824	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4825	btrfs_close_devices(fs_info->fs_devices);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4826}
4827
4828int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4829			  int atomic)
4830{
4831	int ret;
4832	struct inode *btree_inode = buf->pages[0]->mapping->host;
4833
4834	ret = extent_buffer_uptodate(buf);
4835	if (!ret)
4836		return ret;
4837
4838	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4839				    parent_transid, atomic);
4840	if (ret == -EAGAIN)
4841		return ret;
4842	return !ret;
4843}
4844
4845void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4846{
4847	struct btrfs_fs_info *fs_info = buf->fs_info;
 
4848	u64 transid = btrfs_header_generation(buf);
4849	int was_dirty;
4850
4851#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4852	/*
4853	 * This is a fast path so only do this check if we have sanity tests
4854	 * enabled.  Normal people shouldn't be using unmapped buffers as dirty
4855	 * outside of the sanity tests.
4856	 */
4857	if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &buf->bflags)))
4858		return;
4859#endif
4860	btrfs_assert_tree_write_locked(buf);
 
 
4861	if (transid != fs_info->generation)
4862		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4863			buf->start, transid, fs_info->generation);
4864	was_dirty = set_extent_buffer_dirty(buf);
4865	if (!was_dirty)
4866		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
4867					 buf->len,
4868					 fs_info->dirty_metadata_batch);
4869#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4870	/*
4871	 * Since btrfs_mark_buffer_dirty() can be called with item pointer set
4872	 * but item data not updated.
4873	 * So here we should only check item pointers, not item data.
4874	 */
4875	if (btrfs_header_level(buf) == 0 &&
4876	    btrfs_check_leaf_relaxed(buf)) {
4877		btrfs_print_leaf(buf);
4878		ASSERT(0);
4879	}
4880#endif
4881}
4882
4883static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4884					int flush_delayed)
4885{
4886	/*
4887	 * looks as though older kernels can get into trouble with
4888	 * this code, they end up stuck in balance_dirty_pages forever
4889	 */
4890	int ret;
4891
4892	if (current->flags & PF_MEMALLOC)
4893		return;
4894
4895	if (flush_delayed)
4896		btrfs_balance_delayed_items(fs_info);
4897
4898	ret = __percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4899				     BTRFS_DIRTY_METADATA_THRESH,
4900				     fs_info->dirty_metadata_batch);
4901	if (ret > 0) {
4902		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4903	}
4904}
4905
4906void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4907{
4908	__btrfs_btree_balance_dirty(fs_info, 1);
4909}
4910
4911void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4912{
4913	__btrfs_btree_balance_dirty(fs_info, 0);
4914}
4915
4916static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4917{
4918	/* cleanup FS via transaction */
4919	btrfs_cleanup_transaction(fs_info);
4920
4921	mutex_lock(&fs_info->cleaner_mutex);
4922	btrfs_run_delayed_iputs(fs_info);
4923	mutex_unlock(&fs_info->cleaner_mutex);
4924
4925	down_write(&fs_info->cleanup_work_sem);
4926	up_write(&fs_info->cleanup_work_sem);
4927}
4928
4929static void btrfs_drop_all_logs(struct btrfs_fs_info *fs_info)
 
4930{
4931	struct btrfs_root *gang[8];
4932	u64 root_objectid = 0;
4933	int ret;
 
4934
4935	spin_lock(&fs_info->fs_roots_radix_lock);
4936	while ((ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
4937					     (void **)gang, root_objectid,
4938					     ARRAY_SIZE(gang))) != 0) {
4939		int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4940
4941		for (i = 0; i < ret; i++)
4942			gang[i] = btrfs_grab_root(gang[i]);
4943		spin_unlock(&fs_info->fs_roots_radix_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4944
4945		for (i = 0; i < ret; i++) {
4946			if (!gang[i])
4947				continue;
4948			root_objectid = gang[i]->root_key.objectid;
4949			btrfs_free_log(NULL, gang[i]);
4950			btrfs_put_root(gang[i]);
4951		}
4952		root_objectid++;
4953		spin_lock(&fs_info->fs_roots_radix_lock);
4954	}
4955	spin_unlock(&fs_info->fs_roots_radix_lock);
4956	btrfs_free_log_root_tree(NULL, fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4957}
4958
4959static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4960{
4961	struct btrfs_ordered_extent *ordered;
4962
4963	spin_lock(&root->ordered_extent_lock);
4964	/*
4965	 * This will just short circuit the ordered completion stuff which will
4966	 * make sure the ordered extent gets properly cleaned up.
4967	 */
4968	list_for_each_entry(ordered, &root->ordered_extents,
4969			    root_extent_list)
4970		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4971	spin_unlock(&root->ordered_extent_lock);
4972}
4973
4974static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4975{
4976	struct btrfs_root *root;
4977	struct list_head splice;
4978
4979	INIT_LIST_HEAD(&splice);
4980
4981	spin_lock(&fs_info->ordered_root_lock);
4982	list_splice_init(&fs_info->ordered_roots, &splice);
4983	while (!list_empty(&splice)) {
4984		root = list_first_entry(&splice, struct btrfs_root,
4985					ordered_root);
4986		list_move_tail(&root->ordered_root,
4987			       &fs_info->ordered_roots);
4988
4989		spin_unlock(&fs_info->ordered_root_lock);
4990		btrfs_destroy_ordered_extents(root);
4991
4992		cond_resched();
4993		spin_lock(&fs_info->ordered_root_lock);
4994	}
4995	spin_unlock(&fs_info->ordered_root_lock);
4996
4997	/*
4998	 * We need this here because if we've been flipped read-only we won't
4999	 * get sync() from the umount, so we need to make sure any ordered
5000	 * extents that haven't had their dirty pages IO start writeout yet
5001	 * actually get run and error out properly.
5002	 */
5003	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
5004}
5005
5006static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
5007				      struct btrfs_fs_info *fs_info)
5008{
5009	struct rb_node *node;
5010	struct btrfs_delayed_ref_root *delayed_refs;
5011	struct btrfs_delayed_ref_node *ref;
5012	int ret = 0;
5013
5014	delayed_refs = &trans->delayed_refs;
5015
5016	spin_lock(&delayed_refs->lock);
5017	if (atomic_read(&delayed_refs->num_entries) == 0) {
5018		spin_unlock(&delayed_refs->lock);
5019		btrfs_debug(fs_info, "delayed_refs has NO entry");
5020		return ret;
5021	}
5022
5023	while ((node = rb_first_cached(&delayed_refs->href_root)) != NULL) {
5024		struct btrfs_delayed_ref_head *head;
5025		struct rb_node *n;
5026		bool pin_bytes = false;
5027
5028		head = rb_entry(node, struct btrfs_delayed_ref_head,
5029				href_node);
5030		if (btrfs_delayed_ref_lock(delayed_refs, head))
 
 
 
 
 
 
 
5031			continue;
5032
5033		spin_lock(&head->lock);
5034		while ((n = rb_first_cached(&head->ref_tree)) != NULL) {
5035			ref = rb_entry(n, struct btrfs_delayed_ref_node,
5036				       ref_node);
5037			ref->in_tree = 0;
5038			rb_erase_cached(&ref->ref_node, &head->ref_tree);
5039			RB_CLEAR_NODE(&ref->ref_node);
5040			if (!list_empty(&ref->add_list))
5041				list_del(&ref->add_list);
5042			atomic_dec(&delayed_refs->num_entries);
5043			btrfs_put_delayed_ref(ref);
5044		}
5045		if (head->must_insert_reserved)
5046			pin_bytes = true;
5047		btrfs_free_delayed_extent_op(head->extent_op);
5048		btrfs_delete_ref_head(delayed_refs, head);
 
 
 
 
 
5049		spin_unlock(&head->lock);
5050		spin_unlock(&delayed_refs->lock);
5051		mutex_unlock(&head->mutex);
5052
5053		if (pin_bytes) {
5054			struct btrfs_block_group *cache;
5055
5056			cache = btrfs_lookup_block_group(fs_info, head->bytenr);
5057			BUG_ON(!cache);
5058
5059			spin_lock(&cache->space_info->lock);
5060			spin_lock(&cache->lock);
5061			cache->pinned += head->num_bytes;
5062			btrfs_space_info_update_bytes_pinned(fs_info,
5063				cache->space_info, head->num_bytes);
5064			cache->reserved -= head->num_bytes;
5065			cache->space_info->bytes_reserved -= head->num_bytes;
5066			spin_unlock(&cache->lock);
5067			spin_unlock(&cache->space_info->lock);
5068
5069			btrfs_put_block_group(cache);
5070
5071			btrfs_error_unpin_extent_range(fs_info, head->bytenr,
5072				head->bytenr + head->num_bytes - 1);
5073		}
5074		btrfs_cleanup_ref_head_accounting(fs_info, delayed_refs, head);
5075		btrfs_put_delayed_ref_head(head);
5076		cond_resched();
5077		spin_lock(&delayed_refs->lock);
5078	}
5079	btrfs_qgroup_destroy_extent_records(trans);
5080
5081	spin_unlock(&delayed_refs->lock);
5082
5083	return ret;
5084}
5085
5086static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
5087{
5088	struct btrfs_inode *btrfs_inode;
5089	struct list_head splice;
5090
5091	INIT_LIST_HEAD(&splice);
5092
5093	spin_lock(&root->delalloc_lock);
5094	list_splice_init(&root->delalloc_inodes, &splice);
5095
5096	while (!list_empty(&splice)) {
5097		struct inode *inode = NULL;
5098		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
5099					       delalloc_inodes);
5100		__btrfs_del_delalloc_inode(root, btrfs_inode);
 
 
 
5101		spin_unlock(&root->delalloc_lock);
5102
5103		/*
5104		 * Make sure we get a live inode and that it'll not disappear
5105		 * meanwhile.
5106		 */
5107		inode = igrab(&btrfs_inode->vfs_inode);
5108		if (inode) {
5109			invalidate_inode_pages2(inode->i_mapping);
5110			iput(inode);
5111		}
5112		spin_lock(&root->delalloc_lock);
5113	}
 
5114	spin_unlock(&root->delalloc_lock);
5115}
5116
5117static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
5118{
5119	struct btrfs_root *root;
5120	struct list_head splice;
5121
5122	INIT_LIST_HEAD(&splice);
5123
5124	spin_lock(&fs_info->delalloc_root_lock);
5125	list_splice_init(&fs_info->delalloc_roots, &splice);
5126	while (!list_empty(&splice)) {
5127		root = list_first_entry(&splice, struct btrfs_root,
5128					 delalloc_root);
5129		root = btrfs_grab_root(root);
 
5130		BUG_ON(!root);
5131		spin_unlock(&fs_info->delalloc_root_lock);
5132
5133		btrfs_destroy_delalloc_inodes(root);
5134		btrfs_put_root(root);
5135
5136		spin_lock(&fs_info->delalloc_root_lock);
5137	}
5138	spin_unlock(&fs_info->delalloc_root_lock);
5139}
5140
5141static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
5142					struct extent_io_tree *dirty_pages,
5143					int mark)
5144{
5145	int ret;
5146	struct extent_buffer *eb;
5147	u64 start = 0;
5148	u64 end;
5149
5150	while (1) {
5151		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
5152					    mark, NULL);
5153		if (ret)
5154			break;
5155
5156		clear_extent_bits(dirty_pages, start, end, mark);
5157		while (start <= end) {
5158			eb = find_extent_buffer(fs_info, start);
5159			start += fs_info->nodesize;
5160			if (!eb)
5161				continue;
5162			wait_on_extent_buffer_writeback(eb);
5163
5164			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
5165					       &eb->bflags))
5166				clear_extent_buffer_dirty(eb);
5167			free_extent_buffer_stale(eb);
5168		}
5169	}
5170
5171	return ret;
5172}
5173
5174static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
5175				       struct extent_io_tree *unpin)
5176{
 
5177	u64 start;
5178	u64 end;
5179	int ret;
 
5180
 
 
5181	while (1) {
5182		struct extent_state *cached_state = NULL;
5183
5184		/*
5185		 * The btrfs_finish_extent_commit() may get the same range as
5186		 * ours between find_first_extent_bit and clear_extent_dirty.
5187		 * Hence, hold the unused_bg_unpin_mutex to avoid double unpin
5188		 * the same extent range.
5189		 */
5190		mutex_lock(&fs_info->unused_bg_unpin_mutex);
5191		ret = find_first_extent_bit(unpin, 0, &start, &end,
5192					    EXTENT_DIRTY, &cached_state);
5193		if (ret) {
5194			mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5195			break;
5196		}
5197
5198		clear_extent_dirty(unpin, start, end, &cached_state);
5199		free_extent_state(cached_state);
5200		btrfs_error_unpin_extent_range(fs_info, start, end);
5201		mutex_unlock(&fs_info->unused_bg_unpin_mutex);
5202		cond_resched();
5203	}
5204
 
 
 
 
 
 
 
 
 
5205	return 0;
5206}
5207
5208static void btrfs_cleanup_bg_io(struct btrfs_block_group *cache)
5209{
5210	struct inode *inode;
5211
5212	inode = cache->io_ctl.inode;
5213	if (inode) {
5214		invalidate_inode_pages2(inode->i_mapping);
5215		BTRFS_I(inode)->generation = 0;
5216		cache->io_ctl.inode = NULL;
5217		iput(inode);
5218	}
5219	ASSERT(cache->io_ctl.pages == NULL);
5220	btrfs_put_block_group(cache);
5221}
5222
5223void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
5224			     struct btrfs_fs_info *fs_info)
5225{
5226	struct btrfs_block_group *cache;
5227
5228	spin_lock(&cur_trans->dirty_bgs_lock);
5229	while (!list_empty(&cur_trans->dirty_bgs)) {
5230		cache = list_first_entry(&cur_trans->dirty_bgs,
5231					 struct btrfs_block_group,
5232					 dirty_list);
 
 
 
 
 
5233
5234		if (!list_empty(&cache->io_list)) {
5235			spin_unlock(&cur_trans->dirty_bgs_lock);
5236			list_del_init(&cache->io_list);
5237			btrfs_cleanup_bg_io(cache);
5238			spin_lock(&cur_trans->dirty_bgs_lock);
5239		}
5240
5241		list_del_init(&cache->dirty_list);
5242		spin_lock(&cache->lock);
5243		cache->disk_cache_state = BTRFS_DC_ERROR;
5244		spin_unlock(&cache->lock);
5245
5246		spin_unlock(&cur_trans->dirty_bgs_lock);
5247		btrfs_put_block_group(cache);
5248		btrfs_delayed_refs_rsv_release(fs_info, 1);
5249		spin_lock(&cur_trans->dirty_bgs_lock);
5250	}
5251	spin_unlock(&cur_trans->dirty_bgs_lock);
5252
5253	/*
5254	 * Refer to the definition of io_bgs member for details why it's safe
5255	 * to use it without any locking
5256	 */
5257	while (!list_empty(&cur_trans->io_bgs)) {
5258		cache = list_first_entry(&cur_trans->io_bgs,
5259					 struct btrfs_block_group,
5260					 io_list);
 
 
 
 
5261
5262		list_del_init(&cache->io_list);
5263		spin_lock(&cache->lock);
5264		cache->disk_cache_state = BTRFS_DC_ERROR;
5265		spin_unlock(&cache->lock);
5266		btrfs_cleanup_bg_io(cache);
5267	}
5268}
5269
5270void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
5271				   struct btrfs_fs_info *fs_info)
5272{
5273	struct btrfs_device *dev, *tmp;
5274
5275	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
5276	ASSERT(list_empty(&cur_trans->dirty_bgs));
5277	ASSERT(list_empty(&cur_trans->io_bgs));
5278
5279	list_for_each_entry_safe(dev, tmp, &cur_trans->dev_update_list,
5280				 post_commit_list) {
5281		list_del_init(&dev->post_commit_list);
5282	}
5283
5284	btrfs_destroy_delayed_refs(cur_trans, fs_info);
5285
5286	cur_trans->state = TRANS_STATE_COMMIT_START;
5287	wake_up(&fs_info->transaction_blocked_wait);
5288
5289	cur_trans->state = TRANS_STATE_UNBLOCKED;
5290	wake_up(&fs_info->transaction_wait);
5291
5292	btrfs_destroy_delayed_inodes(fs_info);
 
5293
5294	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
5295				     EXTENT_DIRTY);
5296	btrfs_destroy_pinned_extent(fs_info, &cur_trans->pinned_extents);
5297
5298	btrfs_free_redirty_list(cur_trans);
5299
5300	cur_trans->state =TRANS_STATE_COMPLETED;
5301	wake_up(&cur_trans->commit_wait);
 
 
 
 
 
5302}
5303
5304static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
5305{
5306	struct btrfs_transaction *t;
5307
5308	mutex_lock(&fs_info->transaction_kthread_mutex);
5309
5310	spin_lock(&fs_info->trans_lock);
5311	while (!list_empty(&fs_info->trans_list)) {
5312		t = list_first_entry(&fs_info->trans_list,
5313				     struct btrfs_transaction, list);
5314		if (t->state >= TRANS_STATE_COMMIT_START) {
5315			refcount_inc(&t->use_count);
5316			spin_unlock(&fs_info->trans_lock);
5317			btrfs_wait_for_commit(fs_info, t->transid);
5318			btrfs_put_transaction(t);
5319			spin_lock(&fs_info->trans_lock);
5320			continue;
5321		}
5322		if (t == fs_info->running_transaction) {
5323			t->state = TRANS_STATE_COMMIT_DOING;
5324			spin_unlock(&fs_info->trans_lock);
5325			/*
5326			 * We wait for 0 num_writers since we don't hold a trans
5327			 * handle open currently for this transaction.
5328			 */
5329			wait_event(t->writer_wait,
5330				   atomic_read(&t->num_writers) == 0);
5331		} else {
5332			spin_unlock(&fs_info->trans_lock);
5333		}
5334		btrfs_cleanup_one_transaction(t, fs_info);
5335
5336		spin_lock(&fs_info->trans_lock);
5337		if (t == fs_info->running_transaction)
5338			fs_info->running_transaction = NULL;
5339		list_del_init(&t->list);
5340		spin_unlock(&fs_info->trans_lock);
5341
5342		btrfs_put_transaction(t);
5343		trace_btrfs_transaction_commit(fs_info);
5344		spin_lock(&fs_info->trans_lock);
5345	}
5346	spin_unlock(&fs_info->trans_lock);
5347	btrfs_destroy_all_ordered_extents(fs_info);
5348	btrfs_destroy_delayed_inodes(fs_info);
5349	btrfs_assert_delayed_root_empty(fs_info);
 
5350	btrfs_destroy_all_delalloc_inodes(fs_info);
5351	btrfs_drop_all_logs(fs_info);
5352	mutex_unlock(&fs_info->transaction_kthread_mutex);
5353
5354	return 0;
5355}
5356
5357int btrfs_init_root_free_objectid(struct btrfs_root *root)
5358{
5359	struct btrfs_path *path;
5360	int ret;
5361	struct extent_buffer *l;
5362	struct btrfs_key search_key;
5363	struct btrfs_key found_key;
5364	int slot;
5365
5366	path = btrfs_alloc_path();
5367	if (!path)
5368		return -ENOMEM;
5369
5370	search_key.objectid = BTRFS_LAST_FREE_OBJECTID;
5371	search_key.type = -1;
5372	search_key.offset = (u64)-1;
5373	ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
5374	if (ret < 0)
5375		goto error;
5376	BUG_ON(ret == 0); /* Corruption */
5377	if (path->slots[0] > 0) {
5378		slot = path->slots[0] - 1;
5379		l = path->nodes[0];
5380		btrfs_item_key_to_cpu(l, &found_key, slot);
5381		root->free_objectid = max_t(u64, found_key.objectid + 1,
5382					    BTRFS_FIRST_FREE_OBJECTID);
5383	} else {
5384		root->free_objectid = BTRFS_FIRST_FREE_OBJECTID;
5385	}
5386	ret = 0;
5387error:
5388	btrfs_free_path(path);
5389	return ret;
5390}
5391
5392int btrfs_get_free_objectid(struct btrfs_root *root, u64 *objectid)
5393{
5394	int ret;
5395	mutex_lock(&root->objectid_mutex);
5396
5397	if (unlikely(root->free_objectid >= BTRFS_LAST_FREE_OBJECTID)) {
5398		btrfs_warn(root->fs_info,
5399			   "the objectid of root %llu reaches its highest value",
5400			   root->root_key.objectid);
5401		ret = -ENOSPC;
5402		goto out;
5403	}
5404
5405	*objectid = root->free_objectid++;
5406	ret = 0;
5407out:
5408	mutex_unlock(&root->objectid_mutex);
5409	return ret;
5410}
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/slab.h>
  29#include <linux/migrate.h>
  30#include <linux/ratelimit.h>
  31#include <linux/uuid.h>
  32#include <linux/semaphore.h>
 
 
 
  33#include <asm/unaligned.h>
 
  34#include "ctree.h"
  35#include "disk-io.h"
  36#include "hash.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "locking.h"
  42#include "tree-log.h"
  43#include "free-space-cache.h"
  44#include "free-space-tree.h"
  45#include "inode-map.h"
  46#include "check-integrity.h"
  47#include "rcu-string.h"
  48#include "dev-replace.h"
  49#include "raid56.h"
  50#include "sysfs.h"
  51#include "qgroup.h"
  52#include "compression.h"
  53
  54#ifdef CONFIG_X86
  55#include <asm/cpufeature.h>
  56#endif
 
 
 
 
 
 
 
 
 
 
 
 
  57
  58#define BTRFS_SUPER_FLAG_SUPP	(BTRFS_HEADER_FLAG_WRITTEN |\
  59				 BTRFS_HEADER_FLAG_RELOC |\
  60				 BTRFS_SUPER_FLAG_ERROR |\
  61				 BTRFS_SUPER_FLAG_SEEDING |\
  62				 BTRFS_SUPER_FLAG_METADUMP)
 
  63
  64static const struct extent_io_ops btree_extent_io_ops;
  65static void end_workqueue_fn(struct btrfs_work *work);
  66static void free_fs_root(struct btrfs_root *root);
  67static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  68				    int read_only);
  69static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
  70static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  71				      struct btrfs_fs_info *fs_info);
  72static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  73static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
  74					struct extent_io_tree *dirty_pages,
  75					int mark);
  76static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
  77				       struct extent_io_tree *pinned_extents);
  78static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info);
  79static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info);
  80
  81/*
  82 * btrfs_end_io_wq structs are used to do processing in task context when an IO
  83 * is complete.  This is used during reads to verify checksums, and it is used
  84 * by writes to insert metadata for new file extents after IO is complete.
  85 */
  86struct btrfs_end_io_wq {
  87	struct bio *bio;
  88	bio_end_io_t *end_io;
  89	void *private;
  90	struct btrfs_fs_info *info;
  91	int error;
  92	enum btrfs_wq_endio_type metadata;
  93	struct list_head list;
  94	struct btrfs_work work;
  95};
  96
  97static struct kmem_cache *btrfs_end_io_wq_cache;
  98
  99int __init btrfs_end_io_wq_init(void)
 100{
 101	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
 102					sizeof(struct btrfs_end_io_wq),
 103					0,
 104					SLAB_MEM_SPREAD,
 105					NULL);
 106	if (!btrfs_end_io_wq_cache)
 107		return -ENOMEM;
 108	return 0;
 109}
 110
 111void btrfs_end_io_wq_exit(void)
 112{
 113	kmem_cache_destroy(btrfs_end_io_wq_cache);
 
 114}
 115
 116/*
 117 * async submit bios are used to offload expensive checksumming
 118 * onto the worker threads.  They checksum file and metadata bios
 119 * just before they are sent down the IO stack.
 120 */
 121struct async_submit_bio {
 122	struct inode *inode;
 123	struct bio *bio;
 124	struct list_head list;
 125	extent_submit_bio_hook_t *submit_bio_start;
 126	extent_submit_bio_hook_t *submit_bio_done;
 127	int mirror_num;
 128	unsigned long bio_flags;
 129	/*
 130	 * bio_offset is optional, can be used if the pages in the bio
 131	 * can't tell us where in the file the bio should go
 132	 */
 133	u64 bio_offset;
 134	struct btrfs_work work;
 135	int error;
 136};
 137
 138/*
 139 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 140 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 141 * the level the eb occupies in the tree.
 142 *
 143 * Different roots are used for different purposes and may nest inside each
 144 * other and they require separate keysets.  As lockdep keys should be
 145 * static, assign keysets according to the purpose of the root as indicated
 146 * by btrfs_root->objectid.  This ensures that all special purpose roots
 147 * have separate keysets.
 148 *
 149 * Lock-nesting across peer nodes is always done with the immediate parent
 150 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 151 * subclass to avoid triggering lockdep warning in such cases.
 152 *
 153 * The key is set by the readpage_end_io_hook after the buffer has passed
 154 * csum validation but before the pages are unlocked.  It is also set by
 155 * btrfs_init_new_buffer on freshly allocated blocks.
 156 *
 157 * We also add a check to make sure the highest level of the tree is the
 158 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 159 * needs update as well.
 160 */
 161#ifdef CONFIG_DEBUG_LOCK_ALLOC
 162# if BTRFS_MAX_LEVEL != 8
 163#  error
 164# endif
 165
 166static struct btrfs_lockdep_keyset {
 167	u64			id;		/* root objectid */
 168	const char		*name_stem;	/* lock name stem */
 169	char			names[BTRFS_MAX_LEVEL + 1][20];
 170	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
 171} btrfs_lockdep_keysets[] = {
 172	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
 173	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
 174	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
 175	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
 176	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
 177	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
 178	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
 179	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
 180	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
 181	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
 182	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
 183	{ .id = BTRFS_FREE_SPACE_TREE_OBJECTID,	.name_stem = "free-space" },
 184	{ .id = 0,				.name_stem = "tree"	},
 185};
 186
 187void __init btrfs_init_lockdep(void)
 188{
 189	int i, j;
 190
 191	/* initialize lockdep class names */
 192	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 193		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 194
 195		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 196			snprintf(ks->names[j], sizeof(ks->names[j]),
 197				 "btrfs-%s-%02d", ks->name_stem, j);
 198	}
 199}
 200
 201void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 202				    int level)
 203{
 204	struct btrfs_lockdep_keyset *ks;
 205
 206	BUG_ON(level >= ARRAY_SIZE(ks->keys));
 207
 208	/* find the matching keyset, id 0 is the default entry */
 209	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 210		if (ks->id == objectid)
 211			break;
 212
 213	lockdep_set_class_and_name(&eb->lock,
 214				   &ks->keys[level], ks->names[level]);
 215}
 216
 217#endif
 218
 219/*
 220 * extents on the btree inode are pretty simple, there's one extent
 221 * that covers the entire device
 222 */
 223static struct extent_map *btree_get_extent(struct inode *inode,
 224		struct page *page, size_t pg_offset, u64 start, u64 len,
 225		int create)
 226{
 227	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
 228	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 229	struct extent_map *em;
 230	int ret;
 231
 232	read_lock(&em_tree->lock);
 233	em = lookup_extent_mapping(em_tree, start, len);
 234	if (em) {
 235		em->bdev = fs_info->fs_devices->latest_bdev;
 236		read_unlock(&em_tree->lock);
 237		goto out;
 238	}
 239	read_unlock(&em_tree->lock);
 240
 241	em = alloc_extent_map();
 242	if (!em) {
 243		em = ERR_PTR(-ENOMEM);
 244		goto out;
 245	}
 246	em->start = 0;
 247	em->len = (u64)-1;
 248	em->block_len = (u64)-1;
 249	em->block_start = 0;
 250	em->bdev = fs_info->fs_devices->latest_bdev;
 251
 252	write_lock(&em_tree->lock);
 253	ret = add_extent_mapping(em_tree, em, 0);
 254	if (ret == -EEXIST) {
 255		free_extent_map(em);
 256		em = lookup_extent_mapping(em_tree, start, len);
 257		if (!em)
 258			em = ERR_PTR(-EIO);
 259	} else if (ret) {
 260		free_extent_map(em);
 261		em = ERR_PTR(ret);
 262	}
 263	write_unlock(&em_tree->lock);
 264
 265out:
 266	return em;
 267}
 268
 269u32 btrfs_csum_data(char *data, u32 seed, size_t len)
 270{
 271	return btrfs_crc32c(seed, data, len);
 272}
 273
 274void btrfs_csum_final(u32 crc, u8 *result)
 275{
 276	put_unaligned_le32(~crc, result);
 277}
 278
 279/*
 280 * compute the csum for a btree block, and either verify it or write it
 281 * into the csum field of the block.
 282 */
 283static int csum_tree_block(struct btrfs_fs_info *fs_info,
 284			   struct extent_buffer *buf,
 285			   int verify)
 286{
 287	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
 288	char *result = NULL;
 289	unsigned long len;
 290	unsigned long cur_len;
 291	unsigned long offset = BTRFS_CSUM_SIZE;
 292	char *kaddr;
 293	unsigned long map_start;
 294	unsigned long map_len;
 295	int err;
 296	u32 crc = ~(u32)0;
 297	unsigned long inline_result;
 298
 299	len = buf->len - offset;
 300	while (len > 0) {
 301		err = map_private_extent_buffer(buf, offset, 32,
 302					&kaddr, &map_start, &map_len);
 303		if (err)
 304			return err;
 305		cur_len = min(len, map_len - (offset - map_start));
 306		crc = btrfs_csum_data(kaddr + offset - map_start,
 307				      crc, cur_len);
 308		len -= cur_len;
 309		offset += cur_len;
 310	}
 311	if (csum_size > sizeof(inline_result)) {
 312		result = kzalloc(csum_size, GFP_NOFS);
 313		if (!result)
 314			return -ENOMEM;
 315	} else {
 316		result = (char *)&inline_result;
 317	}
 318
 319	btrfs_csum_final(crc, result);
 320
 321	if (verify) {
 322		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 323			u32 val;
 324			u32 found = 0;
 325			memcpy(&found, result, csum_size);
 326
 327			read_extent_buffer(buf, &val, 0, csum_size);
 328			btrfs_warn_rl(fs_info,
 329				"%s checksum verify failed on %llu wanted %X found %X level %d",
 330				fs_info->sb->s_id, buf->start,
 331				val, found, btrfs_header_level(buf));
 332			if (result != (char *)&inline_result)
 333				kfree(result);
 334			return -EUCLEAN;
 335		}
 336	} else {
 337		write_extent_buffer(buf, result, 0, csum_size);
 338	}
 339	if (result != (char *)&inline_result)
 340		kfree(result);
 341	return 0;
 342}
 343
 344/*
 345 * we can't consider a given block up to date unless the transid of the
 346 * block matches the transid in the parent node's pointer.  This is how we
 347 * detect blocks that either didn't get written at all or got written
 348 * in the wrong place.
 349 */
 350static int verify_parent_transid(struct extent_io_tree *io_tree,
 351				 struct extent_buffer *eb, u64 parent_transid,
 352				 int atomic)
 353{
 354	struct extent_state *cached_state = NULL;
 355	int ret;
 356	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
 357
 358	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 359		return 0;
 360
 361	if (atomic)
 362		return -EAGAIN;
 363
 364	if (need_lock) {
 365		btrfs_tree_read_lock(eb);
 366		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
 367	}
 368
 369	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 370			 &cached_state);
 371	if (extent_buffer_uptodate(eb) &&
 372	    btrfs_header_generation(eb) == parent_transid) {
 373		ret = 0;
 374		goto out;
 375	}
 376	btrfs_err_rl(eb->fs_info,
 377		"parent transid verify failed on %llu wanted %llu found %llu",
 378			eb->start,
 379			parent_transid, btrfs_header_generation(eb));
 380	ret = 1;
 381
 382	/*
 383	 * Things reading via commit roots that don't have normal protection,
 384	 * like send, can have a really old block in cache that may point at a
 385	 * block that has been freed and re-allocated.  So don't clear uptodate
 386	 * if we find an eb that is under IO (dirty/writeback) because we could
 387	 * end up reading in the stale data and then writing it back out and
 388	 * making everybody very sad.
 389	 */
 390	if (!extent_buffer_under_io(eb))
 391		clear_extent_buffer_uptodate(eb);
 392out:
 393	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 394			     &cached_state, GFP_NOFS);
 395	if (need_lock)
 396		btrfs_tree_read_unlock_blocking(eb);
 397	return ret;
 398}
 399
 
 
 
 
 
 
 
 
 
 
 
 
 
 400/*
 401 * Return 0 if the superblock checksum type matches the checksum value of that
 402 * algorithm. Pass the raw disk superblock data.
 403 */
 404static int btrfs_check_super_csum(struct btrfs_fs_info *fs_info,
 405				  char *raw_disk_sb)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 406{
 407	struct btrfs_super_block *disk_sb =
 408		(struct btrfs_super_block *)raw_disk_sb;
 409	u16 csum_type = btrfs_super_csum_type(disk_sb);
 410	int ret = 0;
 411
 412	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
 413		u32 crc = ~(u32)0;
 414		const int csum_size = sizeof(crc);
 415		char result[csum_size];
 416
 417		/*
 418		 * The super_block structure does not span the whole
 419		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
 420		 * is filled with zeros and is included in the checksum.
 421		 */
 422		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
 423				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
 424		btrfs_csum_final(crc, result);
 425
 426		if (memcmp(raw_disk_sb, result, csum_size))
 427			ret = 1;
 428	}
 429
 430	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
 431		btrfs_err(fs_info, "unsupported checksum algorithm %u",
 432				csum_type);
 433		ret = 1;
 
 434	}
 435
 436	return ret;
 437}
 438
 439/*
 440 * helper to read a given tree block, doing retries as required when
 441 * the checksums don't match and we have alternate mirrors to try.
 
 
 
 442 */
 443static int btree_read_extent_buffer_pages(struct btrfs_fs_info *fs_info,
 444					  struct extent_buffer *eb,
 445					  u64 parent_transid)
 446{
 447	struct extent_io_tree *io_tree;
 448	int failed = 0;
 449	int ret;
 450	int num_copies = 0;
 451	int mirror_num = 0;
 452	int failed_mirror = 0;
 453
 454	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 455	io_tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
 456	while (1) {
 457		ret = read_extent_buffer_pages(io_tree, eb, WAIT_COMPLETE,
 458					       btree_get_extent, mirror_num);
 459		if (!ret) {
 460			if (!verify_parent_transid(io_tree, eb,
 461						   parent_transid, 0))
 462				break;
 463			else
 464				ret = -EIO;
 465		}
 466
 467		/*
 468		 * This buffer's crc is fine, but its contents are corrupted, so
 469		 * there is no reason to read the other copies, they won't be
 470		 * any less wrong.
 471		 */
 472		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 473			break;
 474
 475		num_copies = btrfs_num_copies(fs_info,
 476					      eb->start, eb->len);
 477		if (num_copies == 1)
 478			break;
 479
 480		if (!failed_mirror) {
 481			failed = 1;
 482			failed_mirror = eb->read_mirror;
 483		}
 484
 485		mirror_num++;
 486		if (mirror_num == failed_mirror)
 487			mirror_num++;
 488
 489		if (mirror_num > num_copies)
 490			break;
 491	}
 492
 493	if (failed && !ret && failed_mirror)
 494		repair_eb_io_failure(fs_info, eb, failed_mirror);
 495
 496	return ret;
 497}
 498
 499/*
 500 * checksum a dirty tree block before IO.  This has extra checks to make sure
 501 * we only fill in the checksum field in the first page of a multi-page block
 502 */
 
 
 
 
 
 
 503
 504static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
 505{
 506	u64 start = page_offset(page);
 507	u64 found_start;
 508	struct extent_buffer *eb;
 509
 510	eb = (struct extent_buffer *)page->private;
 511	if (page != eb->pages[0])
 512		return 0;
 513
 514	found_start = btrfs_header_bytenr(eb);
 515	/*
 516	 * Please do not consolidate these warnings into a single if.
 517	 * It is useful to know what went wrong.
 518	 */
 519	if (WARN_ON(found_start != start))
 520		return -EUCLEAN;
 521	if (WARN_ON(!PageUptodate(page)))
 522		return -EUCLEAN;
 
 
 
 
 
 523
 524	ASSERT(memcmp_extent_buffer(eb, fs_info->fsid,
 525			btrfs_header_fsid(), BTRFS_FSID_SIZE) == 0);
 526
 527	return csum_tree_block(fs_info, eb, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 528}
 529
 530static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
 531				 struct extent_buffer *eb)
 
 532{
 533	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
 534	u8 fsid[BTRFS_UUID_SIZE];
 535	int ret = 1;
 
 536
 537	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
 538	while (fs_devices) {
 539		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 540			ret = 0;
 541			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 542		}
 543		fs_devices = fs_devices->seed;
 
 
 
 
 544	}
 545	return ret;
 546}
 547
 548#define CORRUPT(reason, eb, root, slot)					\
 549	btrfs_crit(root->fs_info,					\
 550		   "corrupt %s, %s: block=%llu, root=%llu, slot=%d",	\
 551		   btrfs_header_level(eb) == 0 ? "leaf" : "node",	\
 552		   reason, btrfs_header_bytenr(eb), root->objectid, slot)
 553
 554static noinline int check_leaf(struct btrfs_root *root,
 555			       struct extent_buffer *leaf)
 556{
 557	struct btrfs_fs_info *fs_info = root->fs_info;
 558	struct btrfs_key key;
 559	struct btrfs_key leaf_key;
 560	u32 nritems = btrfs_header_nritems(leaf);
 561	int slot;
 562
 563	/*
 564	 * Extent buffers from a relocation tree have a owner field that
 565	 * corresponds to the subvolume tree they are based on. So just from an
 566	 * extent buffer alone we can not find out what is the id of the
 567	 * corresponding subvolume tree, so we can not figure out if the extent
 568	 * buffer corresponds to the root of the relocation tree or not. So skip
 569	 * this check for relocation trees.
 570	 */
 571	if (nritems == 0 && !btrfs_header_flag(leaf, BTRFS_HEADER_FLAG_RELOC)) {
 572		struct btrfs_root *check_root;
 573
 574		key.objectid = btrfs_header_owner(leaf);
 575		key.type = BTRFS_ROOT_ITEM_KEY;
 576		key.offset = (u64)-1;
 577
 578		check_root = btrfs_get_fs_root(fs_info, &key, false);
 579		/*
 580		 * The only reason we also check NULL here is that during
 581		 * open_ctree() some roots has not yet been set up.
 582		 */
 583		if (!IS_ERR_OR_NULL(check_root)) {
 584			struct extent_buffer *eb;
 585
 586			eb = btrfs_root_node(check_root);
 587			/* if leaf is the root, then it's fine */
 588			if (leaf != eb) {
 589				CORRUPT("non-root leaf's nritems is 0",
 590					leaf, check_root, 0);
 591				free_extent_buffer(eb);
 592				return -EIO;
 593			}
 594			free_extent_buffer(eb);
 595		}
 596		return 0;
 597	}
 598
 599	if (nritems == 0)
 
 600		return 0;
 601
 602	/* Check the 0 item */
 603	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 604	    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 605		CORRUPT("invalid item offset size pair", leaf, root, 0);
 606		return -EIO;
 607	}
 608
 609	/*
 610	 * Check to make sure each items keys are in the correct order and their
 611	 * offsets make sense.  We only have to loop through nritems-1 because
 612	 * we check the current slot against the next slot, which verifies the
 613	 * next slot's offset+size makes sense and that the current's slot
 614	 * offset is correct.
 615	 */
 616	for (slot = 0; slot < nritems - 1; slot++) {
 617		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 618		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 619
 620		/* Make sure the keys are in the right order */
 621		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 622			CORRUPT("bad key order", leaf, root, slot);
 623			return -EIO;
 624		}
 625
 626		/*
 627		 * Make sure the offset and ends are right, remember that the
 628		 * item data starts at the end of the leaf and grows towards the
 629		 * front.
 630		 */
 631		if (btrfs_item_offset_nr(leaf, slot) !=
 632			btrfs_item_end_nr(leaf, slot + 1)) {
 633			CORRUPT("slot offset bad", leaf, root, slot);
 634			return -EIO;
 635		}
 636
 637		/*
 638		 * Check to make sure that we don't point outside of the leaf,
 639		 * just in case all the items are consistent to each other, but
 640		 * all point outside of the leaf.
 641		 */
 642		if (btrfs_item_end_nr(leaf, slot) >
 643		    BTRFS_LEAF_DATA_SIZE(fs_info)) {
 644			CORRUPT("slot end outside of leaf", leaf, root, slot);
 645			return -EIO;
 646		}
 647	}
 648
 649	return 0;
 650}
 651
 652static int check_node(struct btrfs_root *root, struct extent_buffer *node)
 653{
 654	unsigned long nr = btrfs_header_nritems(node);
 655	struct btrfs_key key, next_key;
 656	int slot;
 657	u64 bytenr;
 658	int ret = 0;
 
 
 
 
 
 
 
 
 
 
 
 659
 660	if (nr == 0 || nr > BTRFS_NODEPTRS_PER_BLOCK(root->fs_info)) {
 661		btrfs_crit(root->fs_info,
 662			   "corrupt node: block %llu root %llu nritems %lu",
 663			   node->start, root->objectid, nr);
 664		return -EIO;
 665	}
 666
 667	for (slot = 0; slot < nr - 1; slot++) {
 668		bytenr = btrfs_node_blockptr(node, slot);
 669		btrfs_node_key_to_cpu(node, &key, slot);
 670		btrfs_node_key_to_cpu(node, &next_key, slot + 1);
 671
 672		if (!bytenr) {
 673			CORRUPT("invalid item slot", node, root, slot);
 674			ret = -EIO;
 675			goto out;
 676		}
 677
 678		if (btrfs_comp_cpu_keys(&key, &next_key) >= 0) {
 679			CORRUPT("bad key order", node, root, slot);
 680			ret = -EIO;
 681			goto out;
 682		}
 683	}
 684out:
 685	return ret;
 686}
 687
 688static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
 689				      u64 phy_offset, struct page *page,
 690				      u64 start, u64 end, int mirror)
 691{
 
 692	u64 found_start;
 693	int found_level;
 694	struct extent_buffer *eb;
 695	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 696	struct btrfs_fs_info *fs_info = root->fs_info;
 697	int ret = 0;
 698	int reads_done;
 699
 700	if (!page->private)
 701		goto out;
 702
 703	eb = (struct extent_buffer *)page->private;
 704
 705	/* the pending IO might have been the only thing that kept this buffer
 706	 * in memory.  Make sure we have a ref for all this other checks
 707	 */
 708	extent_buffer_get(eb);
 709
 710	reads_done = atomic_dec_and_test(&eb->io_pages);
 711	if (!reads_done)
 712		goto err;
 713
 714	eb->read_mirror = mirror;
 715	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
 716		ret = -EIO;
 717		goto err;
 718	}
 719
 720	found_start = btrfs_header_bytenr(eb);
 721	if (found_start != eb->start) {
 722		btrfs_err_rl(fs_info, "bad tree block start %llu %llu",
 723			     found_start, eb->start);
 
 724		ret = -EIO;
 725		goto err;
 726	}
 727	if (check_tree_block_fsid(fs_info, eb)) {
 728		btrfs_err_rl(fs_info, "bad fsid on block %llu",
 729			     eb->start);
 730		ret = -EIO;
 731		goto err;
 732	}
 733	found_level = btrfs_header_level(eb);
 734	if (found_level >= BTRFS_MAX_LEVEL) {
 735		btrfs_err(fs_info, "bad tree block level %d",
 736			  (int)btrfs_header_level(eb));
 
 737		ret = -EIO;
 738		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 739	}
 740
 741	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 742				       eb, found_level);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743
 744	ret = csum_tree_block(fs_info, eb, 1);
 745	if (ret)
 746		goto err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 747
 748	/*
 749	 * If this is a leaf block and it is corrupt, set the corrupt bit so
 750	 * that we don't try and read the other copies of this block, just
 751	 * return -EIO.
 752	 */
 753	if (found_level == 0 && check_leaf(root, eb)) {
 754		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 755		ret = -EIO;
 756	}
 757
 758	if (found_level > 0 && check_node(root, eb))
 759		ret = -EIO;
 760
 761	if (!ret)
 762		set_extent_buffer_uptodate(eb);
 763err:
 764	if (reads_done &&
 765	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 766		btree_readahead_hook(fs_info, eb, ret);
 767
 768	if (ret) {
 769		/*
 770		 * our io error hook is going to dec the io pages
 771		 * again, we have to make sure it has something
 772		 * to decrement
 773		 */
 774		atomic_inc(&eb->io_pages);
 775		clear_extent_buffer_uptodate(eb);
 776	}
 777	free_extent_buffer(eb);
 778out:
 779	return ret;
 780}
 781
 782static int btree_io_failed_hook(struct page *page, int failed_mirror)
 
 783{
 
 784	struct extent_buffer *eb;
 
 
 
 
 785
 786	eb = (struct extent_buffer *)page->private;
 787	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
 788	eb->read_mirror = failed_mirror;
 789	atomic_dec(&eb->io_pages);
 790	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
 791		btree_readahead_hook(eb->fs_info, eb, -EIO);
 792	return -EIO;	/* we fixed nothing */
 793}
 794
 795static void end_workqueue_bio(struct bio *bio)
 796{
 797	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
 798	struct btrfs_fs_info *fs_info;
 799	struct btrfs_workqueue *wq;
 800	btrfs_work_func_t func;
 801
 802	fs_info = end_io_wq->info;
 803	end_io_wq->error = bio->bi_error;
 
 804
 805	if (bio_op(bio) == REQ_OP_WRITE) {
 806		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
 807			wq = fs_info->endio_meta_write_workers;
 808			func = btrfs_endio_meta_write_helper;
 809		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
 810			wq = fs_info->endio_freespace_worker;
 811			func = btrfs_freespace_write_helper;
 812		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 813			wq = fs_info->endio_raid56_workers;
 814			func = btrfs_endio_raid56_helper;
 815		} else {
 816			wq = fs_info->endio_write_workers;
 817			func = btrfs_endio_write_helper;
 818		}
 819	} else {
 820		if (unlikely(end_io_wq->metadata ==
 821			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
 822			wq = fs_info->endio_repair_workers;
 823			func = btrfs_endio_repair_helper;
 824		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
 825			wq = fs_info->endio_raid56_workers;
 826			func = btrfs_endio_raid56_helper;
 827		} else if (end_io_wq->metadata) {
 828			wq = fs_info->endio_meta_workers;
 829			func = btrfs_endio_meta_helper;
 830		} else {
 831			wq = fs_info->endio_workers;
 832			func = btrfs_endio_helper;
 833		}
 834	}
 
 
 
 835
 836	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
 837	btrfs_queue_work(wq, &end_io_wq->work);
 
 
 
 
 
 
 
 
 
 
 
 838}
 839
 840int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 841			enum btrfs_wq_endio_type metadata)
 
 842{
 843	struct btrfs_end_io_wq *end_io_wq;
 
 
 
 
 844
 845	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
 846	if (!end_io_wq)
 847		return -ENOMEM;
 
 
 
 
 
 
 
 
 848
 849	end_io_wq->private = bio->bi_private;
 850	end_io_wq->end_io = bio->bi_end_io;
 851	end_io_wq->info = info;
 852	end_io_wq->error = 0;
 853	end_io_wq->bio = bio;
 854	end_io_wq->metadata = metadata;
 855
 856	bio->bi_private = end_io_wq;
 857	bio->bi_end_io = end_workqueue_bio;
 858	return 0;
 859}
 
 
 
 
 
 
 
 
 
 
 
 
 
 860
 861unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 862{
 863	unsigned long limit = min_t(unsigned long,
 864				    info->thread_pool_size,
 865				    info->fs_devices->open_devices);
 866	return 256 * limit;
 867}
 868
 869static void run_one_async_start(struct btrfs_work *work)
 870{
 871	struct async_submit_bio *async;
 872	int ret;
 873
 874	async = container_of(work, struct  async_submit_bio, work);
 875	ret = async->submit_bio_start(async->inode, async->bio,
 876				      async->mirror_num, async->bio_flags,
 877				      async->bio_offset);
 
 
 
 
 
 
 
 
 
 878	if (ret)
 879		async->error = ret;
 880}
 881
 
 
 
 
 
 
 
 
 882static void run_one_async_done(struct btrfs_work *work)
 883{
 884	struct btrfs_fs_info *fs_info;
 885	struct async_submit_bio *async;
 886	int limit;
 887
 888	async = container_of(work, struct  async_submit_bio, work);
 889	fs_info = BTRFS_I(async->inode)->root->fs_info;
 890
 891	limit = btrfs_async_submit_limit(fs_info);
 892	limit = limit * 2 / 3;
 893
 894	/*
 895	 * atomic_dec_return implies a barrier for waitqueue_active
 896	 */
 897	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
 898	    waitqueue_active(&fs_info->async_submit_wait))
 899		wake_up(&fs_info->async_submit_wait);
 900
 901	/* If an error occurred we just want to clean up the bio and move on */
 902	if (async->error) {
 903		async->bio->bi_error = async->error;
 904		bio_endio(async->bio);
 905		return;
 906	}
 907
 908	async->submit_bio_done(async->inode, async->bio, async->mirror_num,
 909			       async->bio_flags, async->bio_offset);
 
 
 
 
 
 910}
 911
 912static void run_one_async_free(struct btrfs_work *work)
 913{
 914	struct async_submit_bio *async;
 915
 916	async = container_of(work, struct  async_submit_bio, work);
 917	kfree(async);
 918}
 919
 920int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 921			struct bio *bio, int mirror_num,
 922			unsigned long bio_flags,
 923			u64 bio_offset,
 924			extent_submit_bio_hook_t *submit_bio_start,
 925			extent_submit_bio_hook_t *submit_bio_done)
 
 
 
 926{
 
 927	struct async_submit_bio *async;
 928
 929	async = kmalloc(sizeof(*async), GFP_NOFS);
 930	if (!async)
 931		return -ENOMEM;
 932
 933	async->inode = inode;
 934	async->bio = bio;
 935	async->mirror_num = mirror_num;
 936	async->submit_bio_start = submit_bio_start;
 937	async->submit_bio_done = submit_bio_done;
 938
 939	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
 940			run_one_async_done, run_one_async_free);
 941
 942	async->bio_flags = bio_flags;
 943	async->bio_offset = bio_offset;
 944
 945	async->error = 0;
 946
 947	atomic_inc(&fs_info->nr_async_submits);
 948
 949	if (op_is_sync(bio->bi_opf))
 950		btrfs_set_work_high_priority(&async->work);
 951
 952	btrfs_queue_work(fs_info->workers, &async->work);
 953
 954	while (atomic_read(&fs_info->async_submit_draining) &&
 955	      atomic_read(&fs_info->nr_async_submits)) {
 956		wait_event(fs_info->async_submit_wait,
 957			   (atomic_read(&fs_info->nr_async_submits) == 0));
 958	}
 959
 960	return 0;
 961}
 962
 963static int btree_csum_one_bio(struct bio *bio)
 964{
 965	struct bio_vec *bvec;
 966	struct btrfs_root *root;
 967	int i, ret = 0;
 
 968
 969	bio_for_each_segment_all(bvec, bio, i) {
 
 970		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 971		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
 972		if (ret)
 973			break;
 974	}
 975
 976	return ret;
 977}
 978
 979static int __btree_submit_bio_start(struct inode *inode, struct bio *bio,
 980				    int mirror_num, unsigned long bio_flags,
 981				    u64 bio_offset)
 982{
 983	/*
 984	 * when we're called for a write, we're already in the async
 985	 * submission context.  Just jump into btrfs_map_bio
 986	 */
 987	return btree_csum_one_bio(bio);
 988}
 989
 990static int __btree_submit_bio_done(struct inode *inode, struct bio *bio,
 991				 int mirror_num, unsigned long bio_flags,
 992				 u64 bio_offset)
 993{
 994	int ret;
 995
 996	/*
 997	 * when we're called for a write, we're already in the async
 998	 * submission context.  Just jump into btrfs_map_bio
 999	 */
1000	ret = btrfs_map_bio(btrfs_sb(inode->i_sb), bio, mirror_num, 1);
1001	if (ret) {
1002		bio->bi_error = ret;
1003		bio_endio(bio);
1004	}
1005	return ret;
1006}
1007
1008static int check_async_write(struct inode *inode, unsigned long bio_flags)
1009{
1010	if (bio_flags & EXTENT_BIO_TREE_LOG)
1011		return 0;
1012#ifdef CONFIG_X86
1013	if (static_cpu_has(X86_FEATURE_XMM4_2))
1014		return 0;
1015#endif
1016	return 1;
1017}
1018
1019static int btree_submit_bio_hook(struct inode *inode, struct bio *bio,
1020				 int mirror_num, unsigned long bio_flags,
1021				 u64 bio_offset)
1022{
1023	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1024	int async = check_async_write(inode, bio_flags);
1025	int ret;
1026
1027	if (bio_op(bio) != REQ_OP_WRITE) {
1028		/*
1029		 * called for a read, do the setup so that checksum validation
1030		 * can happen in the async kernel threads
1031		 */
1032		ret = btrfs_bio_wq_end_io(fs_info, bio,
1033					  BTRFS_WQ_ENDIO_METADATA);
1034		if (ret)
1035			goto out_w_error;
1036		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1037	} else if (!async) {
1038		ret = btree_csum_one_bio(bio);
1039		if (ret)
1040			goto out_w_error;
1041		ret = btrfs_map_bio(fs_info, bio, mirror_num, 0);
1042	} else {
1043		/*
1044		 * kthread helpers are used to submit writes so that
1045		 * checksumming can happen in parallel across all CPUs
1046		 */
1047		ret = btrfs_wq_submit_bio(fs_info, inode, bio, mirror_num, 0,
1048					  bio_offset,
1049					  __btree_submit_bio_start,
1050					  __btree_submit_bio_done);
1051	}
1052
1053	if (ret)
1054		goto out_w_error;
1055	return 0;
 
 
 
 
 
 
 
 
 
 
1056
1057out_w_error:
1058	bio->bi_error = ret;
1059	bio_endio(bio);
1060	return ret;
1061}
1062
1063#ifdef CONFIG_MIGRATION
1064static int btree_migratepage(struct address_space *mapping,
1065			struct page *newpage, struct page *page,
1066			enum migrate_mode mode)
1067{
1068	/*
1069	 * we can't safely write a btree page from here,
1070	 * we haven't done the locking hook
1071	 */
1072	if (PageDirty(page))
1073		return -EAGAIN;
1074	/*
1075	 * Buffers may be managed in a filesystem specific way.
1076	 * We must have no buffers or drop them.
1077	 */
1078	if (page_has_private(page) &&
1079	    !try_to_release_page(page, GFP_KERNEL))
1080		return -EAGAIN;
1081	return migrate_page(mapping, newpage, page, mode);
1082}
 
 
1083#endif
1084
1085
1086static int btree_writepages(struct address_space *mapping,
1087			    struct writeback_control *wbc)
1088{
1089	struct btrfs_fs_info *fs_info;
1090	int ret;
1091
1092	if (wbc->sync_mode == WB_SYNC_NONE) {
1093
1094		if (wbc->for_kupdate)
1095			return 0;
1096
1097		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1098		/* this is a bit racy, but that's ok */
1099		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1100					     BTRFS_DIRTY_METADATA_THRESH);
 
1101		if (ret < 0)
1102			return 0;
1103	}
1104	return btree_write_cache_pages(mapping, wbc);
1105}
1106
1107static int btree_readpage(struct file *file, struct page *page)
1108{
1109	struct extent_io_tree *tree;
1110	tree = &BTRFS_I(page->mapping->host)->io_tree;
1111	return extent_read_full_page(tree, page, btree_get_extent, 0);
1112}
1113
1114static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1115{
1116	if (PageWriteback(page) || PageDirty(page))
1117		return 0;
1118
1119	return try_release_extent_buffer(page);
1120}
1121
1122static void btree_invalidatepage(struct page *page, unsigned int offset,
1123				 unsigned int length)
1124{
1125	struct extent_io_tree *tree;
1126	tree = &BTRFS_I(page->mapping->host)->io_tree;
1127	extent_invalidatepage(tree, page, offset);
1128	btree_releasepage(page, GFP_NOFS);
1129	if (PagePrivate(page)) {
1130		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1131			   "page private not zero on page %llu",
1132			   (unsigned long long)page_offset(page));
1133		ClearPagePrivate(page);
1134		set_page_private(page, 0);
1135		put_page(page);
1136	}
1137}
1138
1139static int btree_set_page_dirty(struct page *page)
 
 
1140{
1141#ifdef DEBUG
 
1142	struct extent_buffer *eb;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1143
1144	BUG_ON(!PagePrivate(page));
1145	eb = (struct extent_buffer *)page->private;
1146	BUG_ON(!eb);
1147	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1148	BUG_ON(!atomic_read(&eb->refs));
1149	btrfs_assert_tree_locked(eb);
 
 
 
 
 
 
 
1150#endif
1151	return __set_page_dirty_nobuffers(page);
1152}
1153
1154static const struct address_space_operations btree_aops = {
1155	.readpage	= btree_readpage,
1156	.writepages	= btree_writepages,
1157	.releasepage	= btree_releasepage,
1158	.invalidatepage = btree_invalidatepage,
1159#ifdef CONFIG_MIGRATION
1160	.migratepage	= btree_migratepage,
1161#endif
1162	.set_page_dirty = btree_set_page_dirty,
1163};
1164
1165void readahead_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr)
1166{
1167	struct extent_buffer *buf = NULL;
1168	struct inode *btree_inode = fs_info->btree_inode;
1169
1170	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1171	if (IS_ERR(buf))
1172		return;
1173	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1174				 buf, WAIT_NONE, btree_get_extent, 0);
1175	free_extent_buffer(buf);
1176}
1177
1178int reada_tree_block_flagged(struct btrfs_fs_info *fs_info, u64 bytenr,
1179			 int mirror_num, struct extent_buffer **eb)
1180{
1181	struct extent_buffer *buf = NULL;
1182	struct inode *btree_inode = fs_info->btree_inode;
1183	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1184	int ret;
1185
1186	buf = btrfs_find_create_tree_block(fs_info, bytenr);
1187	if (IS_ERR(buf))
1188		return 0;
1189
1190	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1191
1192	ret = read_extent_buffer_pages(io_tree, buf, WAIT_PAGE_LOCK,
1193				       btree_get_extent, mirror_num);
1194	if (ret) {
1195		free_extent_buffer(buf);
1196		return ret;
1197	}
1198
1199	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1200		free_extent_buffer(buf);
1201		return -EIO;
1202	} else if (extent_buffer_uptodate(buf)) {
1203		*eb = buf;
1204	} else {
1205		free_extent_buffer(buf);
1206	}
1207	return 0;
1208}
1209
1210struct extent_buffer *btrfs_find_create_tree_block(
1211						struct btrfs_fs_info *fs_info,
1212						u64 bytenr)
 
1213{
1214	if (btrfs_is_testing(fs_info))
1215		return alloc_test_extent_buffer(fs_info, bytenr);
1216	return alloc_extent_buffer(fs_info, bytenr);
1217}
1218
1219
1220int btrfs_write_tree_block(struct extent_buffer *buf)
1221{
1222	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1223					buf->start + buf->len - 1);
1224}
1225
1226int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1227{
1228	return filemap_fdatawait_range(buf->pages[0]->mapping,
1229				       buf->start, buf->start + buf->len - 1);
1230}
1231
 
 
 
 
 
 
 
1232struct extent_buffer *read_tree_block(struct btrfs_fs_info *fs_info, u64 bytenr,
1233				      u64 parent_transid)
1234{
1235	struct extent_buffer *buf = NULL;
1236	int ret;
1237
1238	buf = btrfs_find_create_tree_block(fs_info, bytenr);
 
 
 
1239	if (IS_ERR(buf))
1240		return buf;
1241
1242	ret = btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
1243	if (ret) {
1244		free_extent_buffer(buf);
1245		return ERR_PTR(ret);
1246	}
 
 
 
 
1247	return buf;
1248
1249}
1250
1251void clean_tree_block(struct btrfs_trans_handle *trans,
1252		      struct btrfs_fs_info *fs_info,
1253		      struct extent_buffer *buf)
1254{
 
1255	if (btrfs_header_generation(buf) ==
1256	    fs_info->running_transaction->transid) {
1257		btrfs_assert_tree_locked(buf);
1258
1259		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1260			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1261					     -buf->len,
1262					     fs_info->dirty_metadata_batch);
1263			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1264			btrfs_set_lock_blocking(buf);
1265			clear_extent_buffer_dirty(buf);
1266		}
1267	}
1268}
1269
1270static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1271{
1272	struct btrfs_subvolume_writers *writers;
1273	int ret;
1274
1275	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1276	if (!writers)
1277		return ERR_PTR(-ENOMEM);
1278
1279	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1280	if (ret < 0) {
1281		kfree(writers);
1282		return ERR_PTR(ret);
1283	}
1284
1285	init_waitqueue_head(&writers->wait);
1286	return writers;
1287}
1288
1289static void
1290btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1291{
1292	percpu_counter_destroy(&writers->counter);
1293	kfree(writers);
1294}
1295
1296static void __setup_root(struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1297			 u64 objectid)
1298{
1299	bool dummy = test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
 
 
 
 
 
 
1300	root->node = NULL;
1301	root->commit_root = NULL;
1302	root->state = 0;
1303	root->orphan_cleanup_state = 0;
1304
1305	root->objectid = objectid;
1306	root->last_trans = 0;
1307	root->highest_objectid = 0;
1308	root->nr_delalloc_inodes = 0;
1309	root->nr_ordered_extents = 0;
1310	root->name = NULL;
1311	root->inode_tree = RB_ROOT;
1312	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1313	root->block_rsv = NULL;
1314	root->orphan_block_rsv = NULL;
1315
1316	INIT_LIST_HEAD(&root->dirty_list);
1317	INIT_LIST_HEAD(&root->root_list);
1318	INIT_LIST_HEAD(&root->delalloc_inodes);
1319	INIT_LIST_HEAD(&root->delalloc_root);
1320	INIT_LIST_HEAD(&root->ordered_extents);
1321	INIT_LIST_HEAD(&root->ordered_root);
 
1322	INIT_LIST_HEAD(&root->logged_list[0]);
1323	INIT_LIST_HEAD(&root->logged_list[1]);
1324	spin_lock_init(&root->orphan_lock);
1325	spin_lock_init(&root->inode_lock);
1326	spin_lock_init(&root->delalloc_lock);
1327	spin_lock_init(&root->ordered_extent_lock);
1328	spin_lock_init(&root->accounting_lock);
1329	spin_lock_init(&root->log_extents_lock[0]);
1330	spin_lock_init(&root->log_extents_lock[1]);
 
1331	mutex_init(&root->objectid_mutex);
1332	mutex_init(&root->log_mutex);
1333	mutex_init(&root->ordered_extent_mutex);
1334	mutex_init(&root->delalloc_mutex);
 
1335	init_waitqueue_head(&root->log_writer_wait);
1336	init_waitqueue_head(&root->log_commit_wait[0]);
1337	init_waitqueue_head(&root->log_commit_wait[1]);
1338	INIT_LIST_HEAD(&root->log_ctxs[0]);
1339	INIT_LIST_HEAD(&root->log_ctxs[1]);
1340	atomic_set(&root->log_commit[0], 0);
1341	atomic_set(&root->log_commit[1], 0);
1342	atomic_set(&root->log_writers, 0);
1343	atomic_set(&root->log_batch, 0);
1344	atomic_set(&root->orphan_inodes, 0);
1345	atomic_set(&root->refs, 1);
1346	atomic_set(&root->will_be_snapshoted, 0);
1347	atomic_set(&root->qgroup_meta_rsv, 0);
1348	root->log_transid = 0;
1349	root->log_transid_committed = -1;
1350	root->last_log_commit = 0;
1351	if (!dummy)
1352		extent_io_tree_init(&root->dirty_log_pages,
1353				     fs_info->btree_inode->i_mapping);
1354
1355	memset(&root->root_key, 0, sizeof(root->root_key));
1356	memset(&root->root_item, 0, sizeof(root->root_item));
1357	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1358	if (!dummy)
1359		root->defrag_trans_start = fs_info->generation;
1360	else
1361		root->defrag_trans_start = 0;
1362	root->root_key.objectid = objectid;
1363	root->anon_dev = 0;
 
 
 
 
 
 
1364
1365	spin_lock_init(&root->root_item_lock);
 
 
 
 
 
 
 
1366}
1367
1368static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info,
1369		gfp_t flags)
1370{
1371	struct btrfs_root *root = kzalloc(sizeof(*root), flags);
1372	if (root)
1373		root->fs_info = fs_info;
1374	return root;
1375}
1376
1377#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1378/* Should only be used by the testing infrastructure */
1379struct btrfs_root *btrfs_alloc_dummy_root(struct btrfs_fs_info *fs_info)
1380{
1381	struct btrfs_root *root;
1382
1383	if (!fs_info)
1384		return ERR_PTR(-EINVAL);
1385
1386	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
1387	if (!root)
1388		return ERR_PTR(-ENOMEM);
1389
1390	/* We don't use the stripesize in selftest, set it as sectorsize */
1391	__setup_root(root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
1392	root->alloc_bytenr = 0;
1393
1394	return root;
1395}
1396#endif
1397
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1398struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1399				     struct btrfs_fs_info *fs_info,
1400				     u64 objectid)
1401{
 
1402	struct extent_buffer *leaf;
1403	struct btrfs_root *tree_root = fs_info->tree_root;
1404	struct btrfs_root *root;
1405	struct btrfs_key key;
 
1406	int ret = 0;
1407	uuid_le uuid;
1408
1409	root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
 
 
 
 
 
1410	if (!root)
1411		return ERR_PTR(-ENOMEM);
1412
1413	__setup_root(root, fs_info, objectid);
1414	root->root_key.objectid = objectid;
1415	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1416	root->root_key.offset = 0;
1417
1418	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
 
1419	if (IS_ERR(leaf)) {
1420		ret = PTR_ERR(leaf);
1421		leaf = NULL;
1422		goto fail;
1423	}
1424
1425	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1426	btrfs_set_header_bytenr(leaf, leaf->start);
1427	btrfs_set_header_generation(leaf, trans->transid);
1428	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1429	btrfs_set_header_owner(leaf, objectid);
1430	root->node = leaf;
1431
1432	write_extent_buffer_fsid(leaf, fs_info->fsid);
1433	write_extent_buffer_chunk_tree_uuid(leaf, fs_info->chunk_tree_uuid);
1434	btrfs_mark_buffer_dirty(leaf);
1435
1436	root->commit_root = btrfs_root_node(root);
1437	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1438
1439	root->root_item.flags = 0;
1440	root->root_item.byte_limit = 0;
1441	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1442	btrfs_set_root_generation(&root->root_item, trans->transid);
1443	btrfs_set_root_level(&root->root_item, 0);
1444	btrfs_set_root_refs(&root->root_item, 1);
1445	btrfs_set_root_used(&root->root_item, leaf->len);
1446	btrfs_set_root_last_snapshot(&root->root_item, 0);
1447	btrfs_set_root_dirid(&root->root_item, 0);
1448	uuid_le_gen(&uuid);
1449	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1450	root->root_item.drop_level = 0;
 
 
 
 
1451
1452	key.objectid = objectid;
1453	key.type = BTRFS_ROOT_ITEM_KEY;
1454	key.offset = 0;
1455	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1456	if (ret)
1457		goto fail;
1458
1459	btrfs_tree_unlock(leaf);
1460
1461	return root;
1462
1463fail:
1464	if (leaf) {
1465		btrfs_tree_unlock(leaf);
1466		free_extent_buffer(root->commit_root);
1467		free_extent_buffer(leaf);
1468	}
1469	kfree(root);
1470
1471	return ERR_PTR(ret);
1472}
1473
1474static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1475					 struct btrfs_fs_info *fs_info)
1476{
1477	struct btrfs_root *root;
1478	struct extent_buffer *leaf;
1479
1480	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1481	if (!root)
1482		return ERR_PTR(-ENOMEM);
1483
1484	__setup_root(root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1485
1486	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1487	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1488	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1489
 
 
 
 
 
 
 
 
1490	/*
1491	 * DON'T set REF_COWS for log trees
 
 
 
1492	 *
1493	 * log trees do not get reference counted because they go away
1494	 * before a real commit is actually done.  They do store pointers
1495	 * to file data extents, and those reference counts still get
1496	 * updated (along with back refs to the log tree).
1497	 */
1498
1499	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1500			NULL, 0, 0, 0);
1501	if (IS_ERR(leaf)) {
1502		kfree(root);
1503		return ERR_CAST(leaf);
1504	}
1505
1506	memzero_extent_buffer(leaf, 0, sizeof(struct btrfs_header));
1507	btrfs_set_header_bytenr(leaf, leaf->start);
1508	btrfs_set_header_generation(leaf, trans->transid);
1509	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1510	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1511	root->node = leaf;
1512
1513	write_extent_buffer_fsid(root->node, fs_info->fsid);
1514	btrfs_mark_buffer_dirty(root->node);
1515	btrfs_tree_unlock(root->node);
1516	return root;
 
1517}
1518
1519int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1520			     struct btrfs_fs_info *fs_info)
1521{
1522	struct btrfs_root *log_root;
1523
1524	log_root = alloc_log_tree(trans, fs_info);
1525	if (IS_ERR(log_root))
1526		return PTR_ERR(log_root);
 
 
 
 
 
 
 
 
 
 
1527	WARN_ON(fs_info->log_root_tree);
1528	fs_info->log_root_tree = log_root;
1529	return 0;
1530}
1531
1532int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1533		       struct btrfs_root *root)
1534{
1535	struct btrfs_fs_info *fs_info = root->fs_info;
1536	struct btrfs_root *log_root;
1537	struct btrfs_inode_item *inode_item;
 
1538
1539	log_root = alloc_log_tree(trans, fs_info);
1540	if (IS_ERR(log_root))
1541		return PTR_ERR(log_root);
1542
 
 
 
 
 
 
1543	log_root->last_trans = trans->transid;
1544	log_root->root_key.offset = root->root_key.objectid;
1545
1546	inode_item = &log_root->root_item.inode;
1547	btrfs_set_stack_inode_generation(inode_item, 1);
1548	btrfs_set_stack_inode_size(inode_item, 3);
1549	btrfs_set_stack_inode_nlink(inode_item, 1);
1550	btrfs_set_stack_inode_nbytes(inode_item,
1551				     fs_info->nodesize);
1552	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1553
1554	btrfs_set_root_node(&log_root->root_item, log_root->node);
1555
1556	WARN_ON(root->log_root);
1557	root->log_root = log_root;
1558	root->log_transid = 0;
1559	root->log_transid_committed = -1;
1560	root->last_log_commit = 0;
1561	return 0;
1562}
1563
1564static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1565					       struct btrfs_key *key)
 
1566{
1567	struct btrfs_root *root;
 
1568	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1569	struct btrfs_path *path;
1570	u64 generation;
1571	int ret;
 
1572
1573	path = btrfs_alloc_path();
1574	if (!path)
1575		return ERR_PTR(-ENOMEM);
1576
1577	root = btrfs_alloc_root(fs_info, GFP_NOFS);
1578	if (!root) {
1579		ret = -ENOMEM;
1580		goto alloc_fail;
1581	}
1582
1583	__setup_root(root, fs_info, key->objectid);
1584
1585	ret = btrfs_find_root(tree_root, key, path,
1586			      &root->root_item, &root->root_key);
1587	if (ret) {
1588		if (ret > 0)
1589			ret = -ENOENT;
1590		goto find_fail;
1591	}
1592
1593	generation = btrfs_root_generation(&root->root_item);
1594	root->node = read_tree_block(fs_info,
1595				     btrfs_root_bytenr(&root->root_item),
1596				     generation);
 
 
 
1597	if (IS_ERR(root->node)) {
1598		ret = PTR_ERR(root->node);
1599		goto find_fail;
1600	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
 
 
1601		ret = -EIO;
1602		free_extent_buffer(root->node);
1603		goto find_fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604	}
1605	root->commit_root = btrfs_root_node(root);
1606out:
1607	btrfs_free_path(path);
1608	return root;
1609
1610find_fail:
1611	kfree(root);
1612alloc_fail:
1613	root = ERR_PTR(ret);
1614	goto out;
1615}
1616
1617struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1618				      struct btrfs_key *location)
1619{
1620	struct btrfs_root *root;
 
1621
1622	root = btrfs_read_tree_root(tree_root, location);
1623	if (IS_ERR(root))
1624		return root;
1625
1626	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1627		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1628		btrfs_check_and_init_root_item(&root->root_item);
1629	}
1630
1631	return root;
1632}
1633
1634int btrfs_init_fs_root(struct btrfs_root *root)
 
 
 
 
 
1635{
1636	int ret;
1637	struct btrfs_subvolume_writers *writers;
1638
1639	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1640	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1641					GFP_NOFS);
1642	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1643		ret = -ENOMEM;
 
 
 
1644		goto fail;
 
 
 
 
 
1645	}
1646
1647	writers = btrfs_alloc_subvolume_writers();
1648	if (IS_ERR(writers)) {
1649		ret = PTR_ERR(writers);
1650		goto fail;
 
 
 
 
 
 
 
 
 
1651	}
1652	root->subv_writers = writers;
1653
1654	btrfs_init_free_ino_ctl(root);
1655	spin_lock_init(&root->ino_cache_lock);
1656	init_waitqueue_head(&root->ino_cache_wait);
1657
1658	ret = get_anon_bdev(&root->anon_dev);
1659	if (ret)
1660		goto fail;
1661
1662	mutex_lock(&root->objectid_mutex);
1663	ret = btrfs_find_highest_objectid(root,
1664					&root->highest_objectid);
1665	if (ret) {
1666		mutex_unlock(&root->objectid_mutex);
1667		goto fail;
1668	}
1669
1670	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1671
1672	mutex_unlock(&root->objectid_mutex);
1673
1674	return 0;
1675fail:
1676	/* the caller is responsible to call free_fs_root */
1677	return ret;
1678}
1679
1680struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1681					u64 root_id)
1682{
1683	struct btrfs_root *root;
1684
1685	spin_lock(&fs_info->fs_roots_radix_lock);
1686	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1687				 (unsigned long)root_id);
 
 
1688	spin_unlock(&fs_info->fs_roots_radix_lock);
1689	return root;
1690}
1691
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1692int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1693			 struct btrfs_root *root)
1694{
1695	int ret;
1696
1697	ret = radix_tree_preload(GFP_NOFS);
1698	if (ret)
1699		return ret;
1700
1701	spin_lock(&fs_info->fs_roots_radix_lock);
1702	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1703				(unsigned long)root->root_key.objectid,
1704				root);
1705	if (ret == 0)
 
1706		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
 
1707	spin_unlock(&fs_info->fs_roots_radix_lock);
1708	radix_tree_preload_end();
1709
1710	return ret;
1711}
1712
1713struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1714				     struct btrfs_key *location,
1715				     bool check_ref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1716{
1717	struct btrfs_root *root;
1718	struct btrfs_path *path;
1719	struct btrfs_key key;
1720	int ret;
1721
1722	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1723		return fs_info->tree_root;
1724	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1725		return fs_info->extent_root;
1726	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1727		return fs_info->chunk_root;
1728	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1729		return fs_info->dev_root;
1730	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1731		return fs_info->csum_root;
1732	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1733		return fs_info->quota_root ? fs_info->quota_root :
1734					     ERR_PTR(-ENOENT);
1735	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1736		return fs_info->uuid_root ? fs_info->uuid_root :
1737					    ERR_PTR(-ENOENT);
1738	if (location->objectid == BTRFS_FREE_SPACE_TREE_OBJECTID)
1739		return fs_info->free_space_root ? fs_info->free_space_root :
1740						  ERR_PTR(-ENOENT);
1741again:
1742	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1743	if (root) {
1744		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
 
 
 
1745			return ERR_PTR(-ENOENT);
 
1746		return root;
1747	}
1748
1749	root = btrfs_read_fs_root(fs_info->tree_root, location);
 
 
 
1750	if (IS_ERR(root))
1751		return root;
1752
1753	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1754		ret = -ENOENT;
1755		goto fail;
1756	}
1757
1758	ret = btrfs_init_fs_root(root);
1759	if (ret)
1760		goto fail;
1761
1762	path = btrfs_alloc_path();
1763	if (!path) {
1764		ret = -ENOMEM;
1765		goto fail;
1766	}
1767	key.objectid = BTRFS_ORPHAN_OBJECTID;
1768	key.type = BTRFS_ORPHAN_ITEM_KEY;
1769	key.offset = location->objectid;
1770
1771	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1772	btrfs_free_path(path);
1773	if (ret < 0)
1774		goto fail;
1775	if (ret == 0)
1776		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1777
1778	ret = btrfs_insert_fs_root(fs_info, root);
1779	if (ret) {
1780		if (ret == -EEXIST) {
1781			free_fs_root(root);
1782			goto again;
1783		}
1784		goto fail;
1785	}
1786	return root;
1787fail:
1788	free_fs_root(root);
 
 
 
 
 
 
 
 
1789	return ERR_PTR(ret);
1790}
1791
1792static int btrfs_congested_fn(void *congested_data, int bdi_bits)
 
 
 
 
 
 
 
 
1793{
1794	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1795	int ret = 0;
1796	struct btrfs_device *device;
1797	struct backing_dev_info *bdi;
1798
1799	rcu_read_lock();
1800	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1801		if (!device->bdev)
1802			continue;
1803		bdi = blk_get_backing_dev_info(device->bdev);
1804		if (bdi_congested(bdi, bdi_bits)) {
1805			ret = 1;
1806			break;
1807		}
1808	}
1809	rcu_read_unlock();
1810	return ret;
1811}
1812
1813static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
 
 
 
 
 
 
 
 
 
1814{
1815	int err;
1816
1817	err = bdi_setup_and_register(bdi, "btrfs");
1818	if (err)
1819		return err;
1820
1821	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_SIZE;
1822	bdi->congested_fn	= btrfs_congested_fn;
1823	bdi->congested_data	= info;
1824	bdi->capabilities |= BDI_CAP_CGROUP_WRITEBACK;
1825	return 0;
1826}
1827
1828/*
1829 * called by the kthread helper functions to finally call the bio end_io
1830 * functions.  This is where read checksum verification actually happens
 
 
 
 
 
 
 
 
 
 
1831 */
1832static void end_workqueue_fn(struct btrfs_work *work)
 
 
1833{
1834	struct bio *bio;
1835	struct btrfs_end_io_wq *end_io_wq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1836
1837	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1838	bio = end_io_wq->bio;
 
 
 
1839
1840	bio->bi_error = end_io_wq->error;
1841	bio->bi_private = end_io_wq->private;
1842	bio->bi_end_io = end_io_wq->end_io;
1843	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1844	bio_endio(bio);
1845}
1846
1847static int cleaner_kthread(void *arg)
1848{
1849	struct btrfs_root *root = arg;
1850	struct btrfs_fs_info *fs_info = root->fs_info;
1851	int again;
1852	struct btrfs_trans_handle *trans;
1853
1854	do {
1855		again = 0;
1856
 
 
1857		/* Make the cleaner go to sleep early. */
1858		if (btrfs_need_cleaner_sleep(fs_info))
1859			goto sleep;
1860
1861		/*
1862		 * Do not do anything if we might cause open_ctree() to block
1863		 * before we have finished mounting the filesystem.
1864		 */
1865		if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
1866			goto sleep;
1867
1868		if (!mutex_trylock(&fs_info->cleaner_mutex))
1869			goto sleep;
1870
1871		/*
1872		 * Avoid the problem that we change the status of the fs
1873		 * during the above check and trylock.
1874		 */
1875		if (btrfs_need_cleaner_sleep(fs_info)) {
1876			mutex_unlock(&fs_info->cleaner_mutex);
1877			goto sleep;
1878		}
1879
1880		mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
1881		btrfs_run_delayed_iputs(fs_info);
1882		mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
1883
1884		again = btrfs_clean_one_deleted_snapshot(root);
1885		mutex_unlock(&fs_info->cleaner_mutex);
1886
1887		/*
1888		 * The defragger has dealt with the R/O remount and umount,
1889		 * needn't do anything special here.
1890		 */
1891		btrfs_run_defrag_inodes(fs_info);
1892
1893		/*
1894		 * Acquires fs_info->delete_unused_bgs_mutex to avoid racing
1895		 * with relocation (btrfs_relocate_chunk) and relocation
1896		 * acquires fs_info->cleaner_mutex (btrfs_relocate_block_group)
1897		 * after acquiring fs_info->delete_unused_bgs_mutex. So we
1898		 * can't hold, nor need to, fs_info->cleaner_mutex when deleting
1899		 * unused block groups.
1900		 */
1901		btrfs_delete_unused_bgs(fs_info);
 
 
 
 
 
 
 
1902sleep:
 
 
 
 
 
1903		if (!again) {
1904			set_current_state(TASK_INTERRUPTIBLE);
1905			if (!kthread_should_stop())
1906				schedule();
1907			__set_current_state(TASK_RUNNING);
1908		}
1909	} while (!kthread_should_stop());
1910
1911	/*
1912	 * Transaction kthread is stopped before us and wakes us up.
1913	 * However we might have started a new transaction and COWed some
1914	 * tree blocks when deleting unused block groups for example. So
1915	 * make sure we commit the transaction we started to have a clean
1916	 * shutdown when evicting the btree inode - if it has dirty pages
1917	 * when we do the final iput() on it, eviction will trigger a
1918	 * writeback for it which will fail with null pointer dereferences
1919	 * since work queues and other resources were already released and
1920	 * destroyed by the time the iput/eviction/writeback is made.
1921	 */
1922	trans = btrfs_attach_transaction(root);
1923	if (IS_ERR(trans)) {
1924		if (PTR_ERR(trans) != -ENOENT)
1925			btrfs_err(fs_info,
1926				  "cleaner transaction attach returned %ld",
1927				  PTR_ERR(trans));
1928	} else {
1929		int ret;
1930
1931		ret = btrfs_commit_transaction(trans);
1932		if (ret)
1933			btrfs_err(fs_info,
1934				  "cleaner open transaction commit returned %d",
1935				  ret);
1936	}
1937
1938	return 0;
1939}
1940
1941static int transaction_kthread(void *arg)
1942{
1943	struct btrfs_root *root = arg;
1944	struct btrfs_fs_info *fs_info = root->fs_info;
1945	struct btrfs_trans_handle *trans;
1946	struct btrfs_transaction *cur;
1947	u64 transid;
1948	unsigned long now;
1949	unsigned long delay;
1950	bool cannot_commit;
1951
1952	do {
1953		cannot_commit = false;
1954		delay = HZ * fs_info->commit_interval;
1955		mutex_lock(&fs_info->transaction_kthread_mutex);
1956
1957		spin_lock(&fs_info->trans_lock);
1958		cur = fs_info->running_transaction;
1959		if (!cur) {
1960			spin_unlock(&fs_info->trans_lock);
1961			goto sleep;
1962		}
1963
1964		now = get_seconds();
1965		if (cur->state < TRANS_STATE_BLOCKED &&
1966		    (now < cur->start_time ||
1967		     now - cur->start_time < fs_info->commit_interval)) {
1968			spin_unlock(&fs_info->trans_lock);
1969			delay = HZ * 5;
 
 
1970			goto sleep;
1971		}
1972		transid = cur->transid;
1973		spin_unlock(&fs_info->trans_lock);
1974
1975		/* If the file system is aborted, this will always fail. */
1976		trans = btrfs_attach_transaction(root);
1977		if (IS_ERR(trans)) {
1978			if (PTR_ERR(trans) != -ENOENT)
1979				cannot_commit = true;
1980			goto sleep;
1981		}
1982		if (transid == trans->transid) {
1983			btrfs_commit_transaction(trans);
1984		} else {
1985			btrfs_end_transaction(trans);
1986		}
1987sleep:
1988		wake_up_process(fs_info->cleaner_kthread);
1989		mutex_unlock(&fs_info->transaction_kthread_mutex);
1990
1991		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1992				      &fs_info->fs_state)))
1993			btrfs_cleanup_transaction(fs_info);
1994		set_current_state(TASK_INTERRUPTIBLE);
1995		if (!kthread_should_stop() &&
1996				(!btrfs_transaction_blocked(fs_info) ||
1997				 cannot_commit))
1998			schedule_timeout(delay);
1999		__set_current_state(TASK_RUNNING);
2000	} while (!kthread_should_stop());
2001	return 0;
2002}
2003
2004/*
2005 * this will find the highest generation in the array of
2006 * root backups.  The index of the highest array is returned,
2007 * or -1 if we can't find anything.
2008 *
2009 * We check to make sure the array is valid by comparing the
2010 * generation of the latest  root in the array with the generation
2011 * in the super block.  If they don't match we pitch it.
2012 */
2013static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
2014{
 
2015	u64 cur;
2016	int newest_index = -1;
2017	struct btrfs_root_backup *root_backup;
2018	int i;
2019
2020	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
2021		root_backup = info->super_copy->super_roots + i;
2022		cur = btrfs_backup_tree_root_gen(root_backup);
2023		if (cur == newest_gen)
2024			newest_index = i;
2025	}
2026
2027	/* check to see if we actually wrapped around */
2028	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
2029		root_backup = info->super_copy->super_roots;
2030		cur = btrfs_backup_tree_root_gen(root_backup);
2031		if (cur == newest_gen)
2032			newest_index = 0;
2033	}
2034	return newest_index;
2035}
2036
2037
2038/*
2039 * find the oldest backup so we know where to store new entries
2040 * in the backup array.  This will set the backup_root_index
2041 * field in the fs_info struct
2042 */
2043static void find_oldest_super_backup(struct btrfs_fs_info *info,
2044				     u64 newest_gen)
2045{
2046	int newest_index = -1;
2047
2048	newest_index = find_newest_super_backup(info, newest_gen);
2049	/* if there was garbage in there, just move along */
2050	if (newest_index == -1) {
2051		info->backup_root_index = 0;
2052	} else {
2053		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
2054	}
2055}
2056
2057/*
2058 * copy all the root pointers into the super backup array.
2059 * this will bump the backup pointer by one when it is
2060 * done
2061 */
2062static void backup_super_roots(struct btrfs_fs_info *info)
2063{
2064	int next_backup;
2065	struct btrfs_root_backup *root_backup;
2066	int last_backup;
2067
2068	next_backup = info->backup_root_index;
2069	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
2070		BTRFS_NUM_BACKUP_ROOTS;
2071
2072	/*
2073	 * just overwrite the last backup if we're at the same generation
2074	 * this happens only at umount
2075	 */
2076	root_backup = info->super_for_commit->super_roots + last_backup;
2077	if (btrfs_backup_tree_root_gen(root_backup) ==
2078	    btrfs_header_generation(info->tree_root->node))
2079		next_backup = last_backup;
2080
2081	root_backup = info->super_for_commit->super_roots + next_backup;
2082
2083	/*
2084	 * make sure all of our padding and empty slots get zero filled
2085	 * regardless of which ones we use today
2086	 */
2087	memset(root_backup, 0, sizeof(*root_backup));
2088
2089	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
2090
2091	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
2092	btrfs_set_backup_tree_root_gen(root_backup,
2093			       btrfs_header_generation(info->tree_root->node));
2094
2095	btrfs_set_backup_tree_root_level(root_backup,
2096			       btrfs_header_level(info->tree_root->node));
2097
2098	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
2099	btrfs_set_backup_chunk_root_gen(root_backup,
2100			       btrfs_header_generation(info->chunk_root->node));
2101	btrfs_set_backup_chunk_root_level(root_backup,
2102			       btrfs_header_level(info->chunk_root->node));
2103
2104	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
2105	btrfs_set_backup_extent_root_gen(root_backup,
2106			       btrfs_header_generation(info->extent_root->node));
2107	btrfs_set_backup_extent_root_level(root_backup,
2108			       btrfs_header_level(info->extent_root->node));
 
 
 
 
 
 
 
 
 
 
 
 
2109
2110	/*
2111	 * we might commit during log recovery, which happens before we set
2112	 * the fs_root.  Make sure it is valid before we fill it in.
2113	 */
2114	if (info->fs_root && info->fs_root->node) {
2115		btrfs_set_backup_fs_root(root_backup,
2116					 info->fs_root->node->start);
2117		btrfs_set_backup_fs_root_gen(root_backup,
2118			       btrfs_header_generation(info->fs_root->node));
2119		btrfs_set_backup_fs_root_level(root_backup,
2120			       btrfs_header_level(info->fs_root->node));
2121	}
2122
2123	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
2124	btrfs_set_backup_dev_root_gen(root_backup,
2125			       btrfs_header_generation(info->dev_root->node));
2126	btrfs_set_backup_dev_root_level(root_backup,
2127				       btrfs_header_level(info->dev_root->node));
2128
2129	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2130	btrfs_set_backup_csum_root_gen(root_backup,
2131			       btrfs_header_generation(info->csum_root->node));
2132	btrfs_set_backup_csum_root_level(root_backup,
2133			       btrfs_header_level(info->csum_root->node));
2134
2135	btrfs_set_backup_total_bytes(root_backup,
2136			     btrfs_super_total_bytes(info->super_copy));
2137	btrfs_set_backup_bytes_used(root_backup,
2138			     btrfs_super_bytes_used(info->super_copy));
2139	btrfs_set_backup_num_devices(root_backup,
2140			     btrfs_super_num_devices(info->super_copy));
2141
2142	/*
2143	 * if we don't copy this out to the super_copy, it won't get remembered
2144	 * for the next commit
2145	 */
2146	memcpy(&info->super_copy->super_roots,
2147	       &info->super_for_commit->super_roots,
2148	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2149}
2150
2151/*
2152 * this copies info out of the root backup array and back into
2153 * the in-memory super block.  It is meant to help iterate through
2154 * the array, so you send it the number of backups you've already
2155 * tried and the last backup index you used.
 
2156 *
2157 * this returns -1 when it has tried all the backups
2158 */
2159static noinline int next_root_backup(struct btrfs_fs_info *info,
2160				     struct btrfs_super_block *super,
2161				     int *num_backups_tried, int *backup_index)
2162{
 
 
2163	struct btrfs_root_backup *root_backup;
2164	int newest = *backup_index;
2165
2166	if (*num_backups_tried == 0) {
2167		u64 gen = btrfs_super_generation(super);
 
2168
2169		newest = find_newest_super_backup(info, gen);
2170		if (newest == -1)
2171			return -1;
2172
2173		*backup_index = newest;
2174		*num_backups_tried = 1;
2175	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2176		/* we've tried all the backups, all done */
2177		return -1;
2178	} else {
2179		/* jump to the next oldest backup */
2180		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2181			BTRFS_NUM_BACKUP_ROOTS;
2182		*backup_index = newest;
2183		*num_backups_tried += 1;
2184	}
2185	root_backup = super->super_roots + newest;
 
2186
2187	btrfs_set_super_generation(super,
2188				   btrfs_backup_tree_root_gen(root_backup));
2189	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2190	btrfs_set_super_root_level(super,
2191				   btrfs_backup_tree_root_level(root_backup));
2192	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2193
2194	/*
2195	 * fixme: the total bytes and num_devices need to match or we should
2196	 * need a fsck
2197	 */
2198	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2199	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2200	return 0;
 
2201}
2202
2203/* helper to cleanup workers */
2204static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2205{
2206	btrfs_destroy_workqueue(fs_info->fixup_workers);
2207	btrfs_destroy_workqueue(fs_info->delalloc_workers);
 
2208	btrfs_destroy_workqueue(fs_info->workers);
2209	btrfs_destroy_workqueue(fs_info->endio_workers);
2210	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2211	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2212	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2213	btrfs_destroy_workqueue(fs_info->rmw_workers);
2214	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2215	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2216	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2217	btrfs_destroy_workqueue(fs_info->submit_workers);
2218	btrfs_destroy_workqueue(fs_info->delayed_workers);
2219	btrfs_destroy_workqueue(fs_info->caching_workers);
2220	btrfs_destroy_workqueue(fs_info->readahead_workers);
2221	btrfs_destroy_workqueue(fs_info->flush_workers);
2222	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2223	btrfs_destroy_workqueue(fs_info->extent_workers);
 
 
 
 
 
 
 
 
2224}
2225
2226static void free_root_extent_buffers(struct btrfs_root *root)
2227{
2228	if (root) {
2229		free_extent_buffer(root->node);
2230		free_extent_buffer(root->commit_root);
2231		root->node = NULL;
2232		root->commit_root = NULL;
2233	}
2234}
2235
 
 
 
 
 
 
 
 
 
 
2236/* helper to cleanup tree roots */
2237static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2238{
2239	free_root_extent_buffers(info->tree_root);
2240
 
2241	free_root_extent_buffers(info->dev_root);
2242	free_root_extent_buffers(info->extent_root);
2243	free_root_extent_buffers(info->csum_root);
2244	free_root_extent_buffers(info->quota_root);
2245	free_root_extent_buffers(info->uuid_root);
2246	if (chunk_root)
 
 
 
2247		free_root_extent_buffers(info->chunk_root);
2248	free_root_extent_buffers(info->free_space_root);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2249}
2250
2251void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2252{
2253	int ret;
2254	struct btrfs_root *gang[8];
2255	int i;
2256
2257	while (!list_empty(&fs_info->dead_roots)) {
2258		gang[0] = list_entry(fs_info->dead_roots.next,
2259				     struct btrfs_root, root_list);
2260		list_del(&gang[0]->root_list);
2261
2262		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2263			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2264		} else {
2265			free_extent_buffer(gang[0]->node);
2266			free_extent_buffer(gang[0]->commit_root);
2267			btrfs_put_fs_root(gang[0]);
2268		}
2269	}
2270
2271	while (1) {
2272		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2273					     (void **)gang, 0,
2274					     ARRAY_SIZE(gang));
2275		if (!ret)
2276			break;
2277		for (i = 0; i < ret; i++)
2278			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2279	}
2280
2281	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2282		btrfs_free_log_root_tree(NULL, fs_info);
2283		btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
2284	}
2285}
2286
2287static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2288{
2289	mutex_init(&fs_info->scrub_lock);
2290	atomic_set(&fs_info->scrubs_running, 0);
2291	atomic_set(&fs_info->scrub_pause_req, 0);
2292	atomic_set(&fs_info->scrubs_paused, 0);
2293	atomic_set(&fs_info->scrub_cancel_req, 0);
2294	init_waitqueue_head(&fs_info->scrub_pause_wait);
2295	fs_info->scrub_workers_refcnt = 0;
2296}
2297
2298static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2299{
2300	spin_lock_init(&fs_info->balance_lock);
2301	mutex_init(&fs_info->balance_mutex);
2302	atomic_set(&fs_info->balance_running, 0);
2303	atomic_set(&fs_info->balance_pause_req, 0);
2304	atomic_set(&fs_info->balance_cancel_req, 0);
2305	fs_info->balance_ctl = NULL;
2306	init_waitqueue_head(&fs_info->balance_wait_q);
 
2307}
2308
2309static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info)
2310{
2311	struct inode *inode = fs_info->btree_inode;
 
 
2312
2313	inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2314	set_nlink(inode, 1);
2315	/*
2316	 * we set the i_size on the btree inode to the max possible int.
2317	 * the real end of the address space is determined by all of
2318	 * the devices in the system
2319	 */
2320	inode->i_size = OFFSET_MAX;
2321	inode->i_mapping->a_ops = &btree_aops;
2322
2323	RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
2324	extent_io_tree_init(&BTRFS_I(inode)->io_tree, inode->i_mapping);
2325	BTRFS_I(inode)->io_tree.track_uptodate = 0;
2326	extent_map_tree_init(&BTRFS_I(inode)->extent_tree);
2327
2328	BTRFS_I(inode)->io_tree.ops = &btree_extent_io_ops;
2329
2330	BTRFS_I(inode)->root = fs_info->tree_root;
2331	memset(&BTRFS_I(inode)->location, 0, sizeof(struct btrfs_key));
2332	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
2333	btrfs_insert_inode_hash(inode);
2334}
2335
2336static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2337{
2338	fs_info->dev_replace.lock_owner = 0;
2339	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2340	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2341	rwlock_init(&fs_info->dev_replace.lock);
2342	atomic_set(&fs_info->dev_replace.read_locks, 0);
2343	atomic_set(&fs_info->dev_replace.blocking_readers, 0);
2344	init_waitqueue_head(&fs_info->replace_wait);
2345	init_waitqueue_head(&fs_info->dev_replace.read_lock_wq);
2346}
2347
2348static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2349{
2350	spin_lock_init(&fs_info->qgroup_lock);
2351	mutex_init(&fs_info->qgroup_ioctl_lock);
2352	fs_info->qgroup_tree = RB_ROOT;
2353	fs_info->qgroup_op_tree = RB_ROOT;
2354	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2355	fs_info->qgroup_seq = 1;
2356	fs_info->qgroup_ulist = NULL;
2357	fs_info->qgroup_rescan_running = false;
 
2358	mutex_init(&fs_info->qgroup_rescan_lock);
2359}
2360
2361static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2362		struct btrfs_fs_devices *fs_devices)
2363{
2364	int max_active = fs_info->thread_pool_size;
2365	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2366
2367	fs_info->workers =
2368		btrfs_alloc_workqueue(fs_info, "worker",
 
 
2369				      flags | WQ_HIGHPRI, max_active, 16);
2370
2371	fs_info->delalloc_workers =
2372		btrfs_alloc_workqueue(fs_info, "delalloc",
2373				      flags, max_active, 2);
2374
2375	fs_info->flush_workers =
2376		btrfs_alloc_workqueue(fs_info, "flush_delalloc",
2377				      flags, max_active, 0);
2378
2379	fs_info->caching_workers =
2380		btrfs_alloc_workqueue(fs_info, "cache", flags, max_active, 0);
2381
2382	/*
2383	 * a higher idle thresh on the submit workers makes it much more
2384	 * likely that bios will be send down in a sane order to the
2385	 * devices
2386	 */
2387	fs_info->submit_workers =
2388		btrfs_alloc_workqueue(fs_info, "submit", flags,
2389				      min_t(u64, fs_devices->num_devices,
2390					    max_active), 64);
2391
2392	fs_info->fixup_workers =
2393		btrfs_alloc_workqueue(fs_info, "fixup", flags, 1, 0);
2394
2395	/*
2396	 * endios are largely parallel and should have a very
2397	 * low idle thresh
2398	 */
2399	fs_info->endio_workers =
2400		btrfs_alloc_workqueue(fs_info, "endio", flags, max_active, 4);
2401	fs_info->endio_meta_workers =
2402		btrfs_alloc_workqueue(fs_info, "endio-meta", flags,
2403				      max_active, 4);
2404	fs_info->endio_meta_write_workers =
2405		btrfs_alloc_workqueue(fs_info, "endio-meta-write", flags,
2406				      max_active, 2);
2407	fs_info->endio_raid56_workers =
2408		btrfs_alloc_workqueue(fs_info, "endio-raid56", flags,
2409				      max_active, 4);
2410	fs_info->endio_repair_workers =
2411		btrfs_alloc_workqueue(fs_info, "endio-repair", flags, 1, 0);
2412	fs_info->rmw_workers =
2413		btrfs_alloc_workqueue(fs_info, "rmw", flags, max_active, 2);
2414	fs_info->endio_write_workers =
2415		btrfs_alloc_workqueue(fs_info, "endio-write", flags,
2416				      max_active, 2);
 
 
2417	fs_info->endio_freespace_worker =
2418		btrfs_alloc_workqueue(fs_info, "freespace-write", flags,
2419				      max_active, 0);
2420	fs_info->delayed_workers =
2421		btrfs_alloc_workqueue(fs_info, "delayed-meta", flags,
2422				      max_active, 0);
2423	fs_info->readahead_workers =
2424		btrfs_alloc_workqueue(fs_info, "readahead", flags,
2425				      max_active, 2);
2426	fs_info->qgroup_rescan_workers =
2427		btrfs_alloc_workqueue(fs_info, "qgroup-rescan", flags, 1, 0);
2428	fs_info->extent_workers =
2429		btrfs_alloc_workqueue(fs_info, "extent-refs", flags,
2430				      min_t(u64, fs_devices->num_devices,
2431					    max_active), 8);
2432
2433	if (!(fs_info->workers && fs_info->delalloc_workers &&
2434	      fs_info->submit_workers && fs_info->flush_workers &&
2435	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2436	      fs_info->endio_meta_write_workers &&
2437	      fs_info->endio_repair_workers &&
2438	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2439	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2440	      fs_info->caching_workers && fs_info->readahead_workers &&
2441	      fs_info->fixup_workers && fs_info->delayed_workers &&
2442	      fs_info->extent_workers &&
2443	      fs_info->qgroup_rescan_workers)) {
2444		return -ENOMEM;
2445	}
2446
2447	return 0;
2448}
2449
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2451			    struct btrfs_fs_devices *fs_devices)
2452{
2453	int ret;
 
2454	struct btrfs_root *log_tree_root;
2455	struct btrfs_super_block *disk_super = fs_info->super_copy;
2456	u64 bytenr = btrfs_super_log_root(disk_super);
 
2457
2458	if (fs_devices->rw_devices == 0) {
2459		btrfs_warn(fs_info, "log replay required on RO media");
2460		return -EIO;
2461	}
2462
2463	log_tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
 
2464	if (!log_tree_root)
2465		return -ENOMEM;
2466
2467	__setup_root(log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2468
2469	log_tree_root->node = read_tree_block(fs_info, bytenr,
2470					      fs_info->generation + 1);
2471	if (IS_ERR(log_tree_root->node)) {
2472		btrfs_warn(fs_info, "failed to read log tree");
2473		ret = PTR_ERR(log_tree_root->node);
2474		kfree(log_tree_root);
 
2475		return ret;
2476	} else if (!extent_buffer_uptodate(log_tree_root->node)) {
 
2477		btrfs_err(fs_info, "failed to read log tree");
2478		free_extent_buffer(log_tree_root->node);
2479		kfree(log_tree_root);
2480		return -EIO;
2481	}
 
2482	/* returns with log_tree_root freed on success */
2483	ret = btrfs_recover_log_trees(log_tree_root);
2484	if (ret) {
2485		btrfs_handle_fs_error(fs_info, ret,
2486				      "Failed to recover log tree");
2487		free_extent_buffer(log_tree_root->node);
2488		kfree(log_tree_root);
2489		return ret;
2490	}
2491
2492	if (fs_info->sb->s_flags & MS_RDONLY) {
2493		ret = btrfs_commit_super(fs_info);
2494		if (ret)
2495			return ret;
2496	}
2497
2498	return 0;
2499}
2500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2501static int btrfs_read_roots(struct btrfs_fs_info *fs_info)
2502{
2503	struct btrfs_root *tree_root = fs_info->tree_root;
2504	struct btrfs_root *root;
2505	struct btrfs_key location;
2506	int ret;
2507
2508	BUG_ON(!fs_info->tree_root);
2509
2510	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
 
 
 
2511	location.type = BTRFS_ROOT_ITEM_KEY;
2512	location.offset = 0;
2513
2514	root = btrfs_read_tree_root(tree_root, &location);
2515	if (IS_ERR(root))
2516		return PTR_ERR(root);
2517	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2518	fs_info->extent_root = root;
 
 
 
 
 
 
 
 
2519
2520	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2521	root = btrfs_read_tree_root(tree_root, &location);
2522	if (IS_ERR(root))
2523		return PTR_ERR(root);
2524	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2525	fs_info->dev_root = root;
2526	btrfs_init_devices_late(fs_info);
 
 
 
 
 
 
 
 
2527
2528	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2529	root = btrfs_read_tree_root(tree_root, &location);
2530	if (IS_ERR(root))
2531		return PTR_ERR(root);
2532	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2533	fs_info->csum_root = root;
 
 
 
 
 
 
 
 
 
2534
2535	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2536	root = btrfs_read_tree_root(tree_root, &location);
2537	if (!IS_ERR(root)) {
2538		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2539		set_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags);
2540		fs_info->quota_root = root;
2541	}
2542
2543	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2544	root = btrfs_read_tree_root(tree_root, &location);
2545	if (IS_ERR(root)) {
2546		ret = PTR_ERR(root);
2547		if (ret != -ENOENT)
2548			return ret;
 
 
2549	} else {
2550		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2551		fs_info->uuid_root = root;
2552	}
2553
2554	if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
2555		location.objectid = BTRFS_FREE_SPACE_TREE_OBJECTID;
2556		root = btrfs_read_tree_root(tree_root, &location);
2557		if (IS_ERR(root))
2558			return PTR_ERR(root);
2559		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2560		fs_info->free_space_root = root;
2561	}
2562
2563	return 0;
 
 
 
 
2564}
2565
2566int open_ctree(struct super_block *sb,
2567	       struct btrfs_fs_devices *fs_devices,
2568	       char *options)
 
 
 
 
 
 
 
 
 
2569{
2570	u32 sectorsize;
2571	u32 nodesize;
2572	u32 stripesize;
2573	u64 generation;
2574	u64 features;
2575	struct btrfs_key location;
2576	struct buffer_head *bh;
2577	struct btrfs_super_block *disk_super;
2578	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2579	struct btrfs_root *tree_root;
2580	struct btrfs_root *chunk_root;
2581	int ret;
2582	int err = -EINVAL;
2583	int num_backups_tried = 0;
2584	int backup_index = 0;
2585	int max_active;
2586	int clear_free_space_tree = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2587
2588	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2589	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info, GFP_KERNEL);
2590	if (!tree_root || !chunk_root) {
2591		err = -ENOMEM;
2592		goto fail;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2593	}
2594
2595	ret = init_srcu_struct(&fs_info->subvol_srcu);
2596	if (ret) {
2597		err = ret;
2598		goto fail;
 
2599	}
2600
2601	ret = setup_bdi(fs_info, &fs_info->bdi);
2602	if (ret) {
2603		err = ret;
2604		goto fail_srcu;
 
 
 
 
 
 
 
 
 
 
 
 
 
2605	}
2606
2607	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2608	if (ret) {
2609		err = ret;
2610		goto fail_bdi;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2611	}
2612	fs_info->dirty_metadata_batch = PAGE_SIZE *
2613					(1 + ilog2(nr_cpu_ids));
 
 
 
 
 
 
 
 
 
 
 
 
 
2614
2615	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2616	if (ret) {
2617		err = ret;
2618		goto fail_dirty_metadata_bytes;
 
 
 
 
 
 
2619	}
2620
2621	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2622	if (ret) {
2623		err = ret;
2624		goto fail_delalloc_bytes;
2625	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2626
2627	fs_info->btree_inode = new_inode(sb);
2628	if (!fs_info->btree_inode) {
2629		err = -ENOMEM;
2630		goto fail_bio_counter;
 
 
 
 
 
 
 
 
 
2631	}
2632
2633	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
 
2634
 
 
2635	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2636	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2637	INIT_LIST_HEAD(&fs_info->trans_list);
2638	INIT_LIST_HEAD(&fs_info->dead_roots);
2639	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2640	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2641	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2642	spin_lock_init(&fs_info->delalloc_root_lock);
2643	spin_lock_init(&fs_info->trans_lock);
2644	spin_lock_init(&fs_info->fs_roots_radix_lock);
2645	spin_lock_init(&fs_info->delayed_iput_lock);
2646	spin_lock_init(&fs_info->defrag_inodes_lock);
2647	spin_lock_init(&fs_info->free_chunk_lock);
2648	spin_lock_init(&fs_info->tree_mod_seq_lock);
2649	spin_lock_init(&fs_info->super_lock);
2650	spin_lock_init(&fs_info->qgroup_op_lock);
2651	spin_lock_init(&fs_info->buffer_lock);
2652	spin_lock_init(&fs_info->unused_bgs_lock);
 
 
 
2653	rwlock_init(&fs_info->tree_mod_log_lock);
 
2654	mutex_init(&fs_info->unused_bg_unpin_mutex);
2655	mutex_init(&fs_info->delete_unused_bgs_mutex);
2656	mutex_init(&fs_info->reloc_mutex);
2657	mutex_init(&fs_info->delalloc_root_mutex);
2658	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
 
2659	seqlock_init(&fs_info->profiles_lock);
2660
 
 
 
 
 
 
 
 
 
 
 
 
 
2661	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2662	INIT_LIST_HEAD(&fs_info->space_info);
2663	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2664	INIT_LIST_HEAD(&fs_info->unused_bgs);
2665	btrfs_mapping_init(&fs_info->mapping_tree);
 
 
 
 
 
 
 
2666	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2667			     BTRFS_BLOCK_RSV_GLOBAL);
2668	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2669			     BTRFS_BLOCK_RSV_DELALLOC);
2670	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2671	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2672	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2673	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2674			     BTRFS_BLOCK_RSV_DELOPS);
2675	atomic_set(&fs_info->nr_async_submits, 0);
 
 
2676	atomic_set(&fs_info->async_delalloc_pages, 0);
2677	atomic_set(&fs_info->async_submit_draining, 0);
2678	atomic_set(&fs_info->nr_async_bios, 0);
2679	atomic_set(&fs_info->defrag_running, 0);
2680	atomic_set(&fs_info->qgroup_op_seq, 0);
2681	atomic_set(&fs_info->reada_works_cnt, 0);
2682	atomic64_set(&fs_info->tree_mod_seq, 0);
2683	fs_info->fs_frozen = 0;
2684	fs_info->sb = sb;
2685	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2686	fs_info->metadata_ratio = 0;
2687	fs_info->defrag_inodes = RB_ROOT;
2688	fs_info->free_chunk_space = 0;
2689	fs_info->tree_mod_log = RB_ROOT;
2690	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2691	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2692	/* readahead state */
2693	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_DIRECT_RECLAIM);
2694	spin_lock_init(&fs_info->reada_lock);
2695
2696	fs_info->thread_pool_size = min_t(unsigned long,
2697					  num_online_cpus() + 2, 8);
2698
2699	INIT_LIST_HEAD(&fs_info->ordered_roots);
2700	spin_lock_init(&fs_info->ordered_root_lock);
2701	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2702					GFP_KERNEL);
2703	if (!fs_info->delayed_root) {
2704		err = -ENOMEM;
2705		goto fail_iput;
2706	}
2707	btrfs_init_delayed_root(fs_info->delayed_root);
2708
2709	btrfs_init_scrub(fs_info);
2710#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2711	fs_info->check_integrity_print_mask = 0;
2712#endif
2713	btrfs_init_balance(fs_info);
2714	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2715
2716	sb->s_blocksize = 4096;
2717	sb->s_blocksize_bits = blksize_bits(4096);
2718	sb->s_bdi = &fs_info->bdi;
2719
2720	btrfs_init_btree_inode(fs_info);
 
2721
2722	spin_lock_init(&fs_info->block_group_cache_lock);
2723	fs_info->block_group_cache_tree = RB_ROOT;
2724	fs_info->first_logical_byte = (u64)-1;
2725
2726	extent_io_tree_init(&fs_info->freed_extents[0],
2727			     fs_info->btree_inode->i_mapping);
2728	extent_io_tree_init(&fs_info->freed_extents[1],
2729			     fs_info->btree_inode->i_mapping);
2730	fs_info->pinned_extents = &fs_info->freed_extents[0];
2731	set_bit(BTRFS_FS_BARRIER, &fs_info->flags);
2732
2733	mutex_init(&fs_info->ordered_operations_mutex);
2734	mutex_init(&fs_info->tree_log_mutex);
2735	mutex_init(&fs_info->chunk_mutex);
2736	mutex_init(&fs_info->transaction_kthread_mutex);
2737	mutex_init(&fs_info->cleaner_mutex);
2738	mutex_init(&fs_info->volume_mutex);
2739	mutex_init(&fs_info->ro_block_group_mutex);
2740	init_rwsem(&fs_info->commit_root_sem);
2741	init_rwsem(&fs_info->cleanup_work_sem);
2742	init_rwsem(&fs_info->subvol_sem);
2743	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2744
2745	btrfs_init_dev_replace_locks(fs_info);
2746	btrfs_init_qgroup(fs_info);
 
2747
2748	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2749	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2750
2751	init_waitqueue_head(&fs_info->transaction_throttle);
2752	init_waitqueue_head(&fs_info->transaction_wait);
2753	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2754	init_waitqueue_head(&fs_info->async_submit_wait);
2755
2756	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2757
2758	/* Usable values until the real ones are cached from the superblock */
2759	fs_info->nodesize = 4096;
2760	fs_info->sectorsize = 4096;
 
2761	fs_info->stripesize = 4096;
2762
2763	ret = btrfs_alloc_stripe_hash_table(fs_info);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764	if (ret) {
2765		err = ret;
2766		goto fail_alloc;
 
 
 
 
 
 
 
 
 
 
 
 
2767	}
2768
2769	__setup_root(tree_root, fs_info, BTRFS_ROOT_TREE_OBJECTID);
 
 
 
 
 
 
2770
2771	invalidate_bdev(fs_devices->latest_bdev);
2772
2773	/*
2774	 * Read super block and check the signature bytes only
2775	 */
2776	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2777	if (IS_ERR(bh)) {
2778		err = PTR_ERR(bh);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2779		goto fail_alloc;
2780	}
2781
2782	/*
2783	 * We want to check superblock checksum, the type is stored inside.
2784	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2785	 */
2786	if (btrfs_check_super_csum(fs_info, bh->b_data)) {
2787		btrfs_err(fs_info, "superblock checksum mismatch");
2788		err = -EINVAL;
2789		brelse(bh);
2790		goto fail_alloc;
2791	}
2792
2793	/*
2794	 * super_copy is zeroed at allocation time and we never touch the
2795	 * following bytes up to INFO_SIZE, the checksum is calculated from
2796	 * the whole block of INFO_SIZE
2797	 */
2798	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
 
 
 
 
 
 
 
 
 
 
 
 
 
2799	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2800	       sizeof(*fs_info->super_for_commit));
2801	brelse(bh);
2802
2803	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2804
2805	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2806	if (ret) {
2807		btrfs_err(fs_info, "superblock contains fatal errors");
2808		err = -EINVAL;
2809		goto fail_alloc;
2810	}
2811
2812	disk_super = fs_info->super_copy;
2813	if (!btrfs_super_root(disk_super))
2814		goto fail_alloc;
2815
2816	/* check FS state, whether FS is broken. */
2817	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2818		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2819
2820	/*
2821	 * run through our array of backup supers and setup
2822	 * our ring pointer to the oldest one
2823	 */
2824	generation = btrfs_super_generation(disk_super);
2825	find_oldest_super_backup(fs_info, generation);
2826
2827	/*
2828	 * In the long term, we'll store the compression type in the super
2829	 * block, and it'll be used for per file compression control.
2830	 */
2831	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2832
2833	ret = btrfs_parse_options(fs_info, options, sb->s_flags);
2834	if (ret) {
2835		err = ret;
2836		goto fail_alloc;
2837	}
2838
2839	features = btrfs_super_incompat_flags(disk_super) &
2840		~BTRFS_FEATURE_INCOMPAT_SUPP;
2841	if (features) {
2842		btrfs_err(fs_info,
2843		    "cannot mount because of unsupported optional features (%llx)",
2844		    features);
2845		err = -EINVAL;
2846		goto fail_alloc;
2847	}
2848
2849	features = btrfs_super_incompat_flags(disk_super);
2850	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2851	if (fs_info->compress_type == BTRFS_COMPRESS_LZO)
2852		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2853
2854	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2855		btrfs_info(fs_info, "has skinny extents");
2856
2857	/*
2858	 * flag our filesystem as having big metadata blocks if
2859	 * they are bigger than the page size
2860	 */
2861	if (btrfs_super_nodesize(disk_super) > PAGE_SIZE) {
2862		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2863			btrfs_info(fs_info,
2864				"flagging fs with big metadata feature");
2865		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2866	}
2867
 
2868	nodesize = btrfs_super_nodesize(disk_super);
2869	sectorsize = btrfs_super_sectorsize(disk_super);
2870	stripesize = sectorsize;
2871	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2872	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2873
2874	/* Cache block sizes */
2875	fs_info->nodesize = nodesize;
2876	fs_info->sectorsize = sectorsize;
 
 
2877	fs_info->stripesize = stripesize;
2878
2879	/*
2880	 * mixed block groups end up with duplicate but slightly offset
2881	 * extent buffers for the same range.  It leads to corruptions
2882	 */
2883	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2884	    (sectorsize != nodesize)) {
2885		btrfs_err(fs_info,
2886"unequal nodesize/sectorsize (%u != %u) are not allowed for mixed block groups",
2887			nodesize, sectorsize);
2888		goto fail_alloc;
2889	}
2890
2891	/*
2892	 * Needn't use the lock because there is no other task which will
2893	 * update the flag.
2894	 */
2895	btrfs_set_super_incompat_flags(disk_super, features);
2896
2897	features = btrfs_super_compat_ro_flags(disk_super) &
2898		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2899	if (!(sb->s_flags & MS_RDONLY) && features) {
2900		btrfs_err(fs_info,
2901	"cannot mount read-write because of unsupported optional features (%llx)",
2902		       features);
2903		err = -EINVAL;
2904		goto fail_alloc;
2905	}
2906
2907	max_active = fs_info->thread_pool_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2908
2909	ret = btrfs_init_workqueues(fs_info, fs_devices);
2910	if (ret) {
2911		err = ret;
2912		goto fail_sb_buffer;
2913	}
2914
2915	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2916	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2917				    SZ_4M / PAGE_SIZE);
2918
2919	sb->s_blocksize = sectorsize;
2920	sb->s_blocksize_bits = blksize_bits(sectorsize);
 
2921
2922	mutex_lock(&fs_info->chunk_mutex);
2923	ret = btrfs_read_sys_array(fs_info);
2924	mutex_unlock(&fs_info->chunk_mutex);
2925	if (ret) {
2926		btrfs_err(fs_info, "failed to read the system array: %d", ret);
2927		goto fail_sb_buffer;
2928	}
2929
2930	generation = btrfs_super_chunk_root_generation(disk_super);
2931
2932	__setup_root(chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2933
2934	chunk_root->node = read_tree_block(fs_info,
2935					   btrfs_super_chunk_root(disk_super),
2936					   generation);
2937	if (IS_ERR(chunk_root->node) ||
2938	    !extent_buffer_uptodate(chunk_root->node)) {
2939		btrfs_err(fs_info, "failed to read chunk root");
2940		if (!IS_ERR(chunk_root->node))
2941			free_extent_buffer(chunk_root->node);
2942		chunk_root->node = NULL;
2943		goto fail_tree_roots;
2944	}
2945	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2946	chunk_root->commit_root = btrfs_root_node(chunk_root);
2947
2948	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2949	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
 
2950
2951	ret = btrfs_read_chunk_tree(fs_info);
2952	if (ret) {
2953		btrfs_err(fs_info, "failed to read chunk tree: %d", ret);
2954		goto fail_tree_roots;
2955	}
2956
2957	/*
2958	 * keep the device that is marked to be the target device for the
2959	 * dev_replace procedure
 
 
 
2960	 */
2961	btrfs_close_extra_devices(fs_devices, 0);
2962
2963	if (!fs_devices->latest_bdev) {
2964		btrfs_err(fs_info, "failed to read devices");
2965		goto fail_tree_roots;
2966	}
2967
2968retry_root_backup:
2969	generation = btrfs_super_generation(disk_super);
 
2970
2971	tree_root->node = read_tree_block(fs_info,
2972					  btrfs_super_root(disk_super),
2973					  generation);
2974	if (IS_ERR(tree_root->node) ||
2975	    !extent_buffer_uptodate(tree_root->node)) {
2976		btrfs_warn(fs_info, "failed to read tree root");
2977		if (!IS_ERR(tree_root->node))
2978			free_extent_buffer(tree_root->node);
2979		tree_root->node = NULL;
2980		goto recovery_tree_root;
2981	}
2982
2983	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2984	tree_root->commit_root = btrfs_root_node(tree_root);
2985	btrfs_set_root_refs(&tree_root->root_item, 1);
2986
2987	mutex_lock(&tree_root->objectid_mutex);
2988	ret = btrfs_find_highest_objectid(tree_root,
2989					&tree_root->highest_objectid);
2990	if (ret) {
2991		mutex_unlock(&tree_root->objectid_mutex);
2992		goto recovery_tree_root;
 
 
2993	}
2994
2995	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2996
2997	mutex_unlock(&tree_root->objectid_mutex);
2998
2999	ret = btrfs_read_roots(fs_info);
3000	if (ret)
3001		goto recovery_tree_root;
3002
3003	fs_info->generation = generation;
3004	fs_info->last_trans_committed = generation;
 
3005
 
 
 
 
 
 
 
3006	ret = btrfs_recover_balance(fs_info);
3007	if (ret) {
3008		btrfs_err(fs_info, "failed to recover balance: %d", ret);
3009		goto fail_block_groups;
3010	}
3011
3012	ret = btrfs_init_dev_stats(fs_info);
3013	if (ret) {
3014		btrfs_err(fs_info, "failed to init dev_stats: %d", ret);
3015		goto fail_block_groups;
3016	}
3017
3018	ret = btrfs_init_dev_replace(fs_info);
3019	if (ret) {
3020		btrfs_err(fs_info, "failed to init dev_replace: %d", ret);
3021		goto fail_block_groups;
3022	}
3023
3024	btrfs_close_extra_devices(fs_devices, 1);
3025
3026	ret = btrfs_sysfs_add_fsid(fs_devices, NULL);
3027	if (ret) {
3028		btrfs_err(fs_info, "failed to init sysfs fsid interface: %d",
3029				ret);
3030		goto fail_block_groups;
3031	}
3032
3033	ret = btrfs_sysfs_add_device(fs_devices);
3034	if (ret) {
3035		btrfs_err(fs_info, "failed to init sysfs device interface: %d",
3036				ret);
3037		goto fail_fsdev_sysfs;
3038	}
3039
3040	ret = btrfs_sysfs_add_mounted(fs_info);
3041	if (ret) {
3042		btrfs_err(fs_info, "failed to init sysfs interface: %d", ret);
3043		goto fail_fsdev_sysfs;
3044	}
3045
3046	ret = btrfs_init_space_info(fs_info);
3047	if (ret) {
3048		btrfs_err(fs_info, "failed to initialize space info: %d", ret);
3049		goto fail_sysfs;
3050	}
3051
3052	ret = btrfs_read_block_groups(fs_info);
3053	if (ret) {
3054		btrfs_err(fs_info, "failed to read block groups: %d", ret);
3055		goto fail_sysfs;
3056	}
3057	fs_info->num_tolerated_disk_barrier_failures =
3058		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3059	if (fs_info->fs_devices->missing_devices >
3060	     fs_info->num_tolerated_disk_barrier_failures &&
3061	    !(sb->s_flags & MS_RDONLY)) {
3062		btrfs_warn(fs_info,
3063"missing devices (%llu) exceeds the limit (%d), writeable mount is not allowed",
3064			fs_info->fs_devices->missing_devices,
3065			fs_info->num_tolerated_disk_barrier_failures);
3066		goto fail_sysfs;
3067	}
3068
3069	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
3070					       "btrfs-cleaner");
3071	if (IS_ERR(fs_info->cleaner_kthread))
3072		goto fail_sysfs;
3073
3074	fs_info->transaction_kthread = kthread_run(transaction_kthread,
3075						   tree_root,
3076						   "btrfs-transaction");
3077	if (IS_ERR(fs_info->transaction_kthread))
3078		goto fail_cleaner;
3079
3080	if (!btrfs_test_opt(fs_info, SSD) &&
3081	    !btrfs_test_opt(fs_info, NOSSD) &&
3082	    !fs_info->fs_devices->rotating) {
3083		btrfs_info(fs_info, "detected SSD devices, enabling SSD mode");
3084		btrfs_set_opt(fs_info->mount_opt, SSD);
3085	}
3086
3087	/*
3088	 * Mount does not set all options immediately, we can do it now and do
3089	 * not have to wait for transaction commit
 
3090	 */
3091	btrfs_apply_pending_changes(fs_info);
 
 
 
 
 
 
 
3092
3093#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3094	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY)) {
3095		ret = btrfsic_mount(fs_info, fs_devices,
3096				    btrfs_test_opt(fs_info,
3097					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
3098				    1 : 0,
3099				    fs_info->check_integrity_print_mask);
3100		if (ret)
3101			btrfs_warn(fs_info,
3102				"failed to initialize integrity check module: %d",
3103				ret);
3104	}
3105#endif
3106	ret = btrfs_read_qgroup_config(fs_info);
3107	if (ret)
3108		goto fail_trans_kthread;
3109
 
 
 
3110	/* do not make disk changes in broken FS or nologreplay is given */
3111	if (btrfs_super_log_root(disk_super) != 0 &&
3112	    !btrfs_test_opt(fs_info, NOLOGREPLAY)) {
 
3113		ret = btrfs_replay_log(fs_info, fs_devices);
3114		if (ret) {
3115			err = ret;
3116			goto fail_qgroup;
3117		}
3118	}
3119
3120	ret = btrfs_find_orphan_roots(fs_info);
3121	if (ret)
3122		goto fail_qgroup;
3123
3124	if (!(sb->s_flags & MS_RDONLY)) {
3125		ret = btrfs_cleanup_fs_roots(fs_info);
3126		if (ret)
3127			goto fail_qgroup;
3128
3129		mutex_lock(&fs_info->cleaner_mutex);
3130		ret = btrfs_recover_relocation(tree_root);
3131		mutex_unlock(&fs_info->cleaner_mutex);
3132		if (ret < 0) {
3133			btrfs_warn(fs_info, "failed to recover relocation: %d",
3134					ret);
3135			err = -EINVAL;
3136			goto fail_qgroup;
3137		}
3138	}
3139
3140	location.objectid = BTRFS_FS_TREE_OBJECTID;
3141	location.type = BTRFS_ROOT_ITEM_KEY;
3142	location.offset = 0;
3143
3144	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3145	if (IS_ERR(fs_info->fs_root)) {
3146		err = PTR_ERR(fs_info->fs_root);
 
 
3147		goto fail_qgroup;
3148	}
3149
3150	if (sb->s_flags & MS_RDONLY)
3151		return 0;
3152
3153	if (btrfs_test_opt(fs_info, CLEAR_CACHE) &&
3154	    btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3155		clear_free_space_tree = 1;
3156	} else if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
3157		   !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE_VALID)) {
3158		btrfs_warn(fs_info, "free space tree is invalid");
3159		clear_free_space_tree = 1;
3160	}
3161
3162	if (clear_free_space_tree) {
3163		btrfs_info(fs_info, "clearing free space tree");
3164		ret = btrfs_clear_free_space_tree(fs_info);
3165		if (ret) {
3166			btrfs_warn(fs_info,
3167				   "failed to clear free space tree: %d", ret);
3168			close_ctree(fs_info);
3169			return ret;
3170		}
3171	}
3172
3173	if (btrfs_test_opt(fs_info, FREE_SPACE_TREE) &&
3174	    !btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
3175		btrfs_info(fs_info, "creating free space tree");
3176		ret = btrfs_create_free_space_tree(fs_info);
3177		if (ret) {
3178			btrfs_warn(fs_info,
3179				"failed to create free space tree: %d", ret);
3180			close_ctree(fs_info);
3181			return ret;
3182		}
3183	}
3184
3185	down_read(&fs_info->cleanup_work_sem);
3186	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3187	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3188		up_read(&fs_info->cleanup_work_sem);
3189		close_ctree(fs_info);
3190		return ret;
3191	}
3192	up_read(&fs_info->cleanup_work_sem);
3193
3194	ret = btrfs_resume_balance_async(fs_info);
3195	if (ret) {
3196		btrfs_warn(fs_info, "failed to resume balance: %d", ret);
3197		close_ctree(fs_info);
3198		return ret;
3199	}
3200
3201	ret = btrfs_resume_dev_replace_async(fs_info);
3202	if (ret) {
3203		btrfs_warn(fs_info, "failed to resume device replace: %d", ret);
3204		close_ctree(fs_info);
3205		return ret;
3206	}
 
3207
3208	btrfs_qgroup_rescan_resume(fs_info);
3209
3210	if (!fs_info->uuid_root) {
3211		btrfs_info(fs_info, "creating UUID tree");
3212		ret = btrfs_create_uuid_tree(fs_info);
3213		if (ret) {
3214			btrfs_warn(fs_info,
3215				"failed to create the UUID tree: %d", ret);
3216			close_ctree(fs_info);
3217			return ret;
3218		}
3219	} else if (btrfs_test_opt(fs_info, RESCAN_UUID_TREE) ||
3220		   fs_info->generation !=
3221				btrfs_super_uuid_tree_generation(disk_super)) {
3222		btrfs_info(fs_info, "checking UUID tree");
3223		ret = btrfs_check_uuid_tree(fs_info);
3224		if (ret) {
3225			btrfs_warn(fs_info,
3226				"failed to check the UUID tree: %d", ret);
3227			close_ctree(fs_info);
3228			return ret;
3229		}
3230	} else {
3231		set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags);
3232	}
 
3233	set_bit(BTRFS_FS_OPEN, &fs_info->flags);
3234
3235	/*
3236	 * backuproot only affect mount behavior, and if open_ctree succeeded,
3237	 * no need to keep the flag
3238	 */
3239	btrfs_clear_opt(fs_info->mount_opt, USEBACKUPROOT);
3240
 
 
3241	return 0;
3242
3243fail_qgroup:
3244	btrfs_free_qgroup_config(fs_info);
3245fail_trans_kthread:
3246	kthread_stop(fs_info->transaction_kthread);
3247	btrfs_cleanup_transaction(fs_info);
3248	btrfs_free_fs_roots(fs_info);
3249fail_cleaner:
3250	kthread_stop(fs_info->cleaner_kthread);
3251
3252	/*
3253	 * make sure we're done with the btree inode before we stop our
3254	 * kthreads
3255	 */
3256	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3257
3258fail_sysfs:
3259	btrfs_sysfs_remove_mounted(fs_info);
3260
3261fail_fsdev_sysfs:
3262	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3263
3264fail_block_groups:
3265	btrfs_put_block_group_cache(fs_info);
3266	btrfs_free_block_groups(fs_info);
3267
3268fail_tree_roots:
3269	free_root_pointers(fs_info, 1);
 
 
3270	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3271
3272fail_sb_buffer:
3273	btrfs_stop_all_workers(fs_info);
 
3274fail_alloc:
3275fail_iput:
3276	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3277
3278	iput(fs_info->btree_inode);
3279fail_bio_counter:
3280	percpu_counter_destroy(&fs_info->bio_counter);
3281fail_delalloc_bytes:
3282	percpu_counter_destroy(&fs_info->delalloc_bytes);
3283fail_dirty_metadata_bytes:
3284	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3285fail_bdi:
3286	bdi_destroy(&fs_info->bdi);
3287fail_srcu:
3288	cleanup_srcu_struct(&fs_info->subvol_srcu);
3289fail:
3290	btrfs_free_stripe_hash_table(fs_info);
3291	btrfs_close_devices(fs_info->fs_devices);
3292	return err;
 
 
3293
3294recovery_tree_root:
3295	if (!btrfs_test_opt(fs_info, USEBACKUPROOT))
3296		goto fail_tree_roots;
 
 
 
3297
3298	free_root_pointers(fs_info, 0);
 
3299
3300	/* don't use the log in recovery mode, it won't be valid */
3301	btrfs_set_super_log_root(disk_super, 0);
 
 
 
 
 
 
 
 
 
 
3302
3303	/* we can't trust the free space cache either */
3304	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
 
3305
3306	ret = next_root_backup(fs_info, fs_info->super_copy,
3307			       &num_backups_tried, &backup_index);
3308	if (ret == -1)
3309		goto fail_block_groups;
3310	goto retry_root_backup;
3311}
3312
3313static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 
3314{
3315	if (uptodate) {
3316		set_buffer_uptodate(bh);
3317	} else {
3318		struct btrfs_device *device = (struct btrfs_device *)
3319			bh->b_private;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320
3321		btrfs_warn_rl_in_rcu(device->fs_info,
3322				"lost page write due to IO error on %s",
3323					  rcu_str_deref(device->name));
3324		/* note, we don't set_buffer_write_io_error because we have
3325		 * our own ways of dealing with the IO errors
3326		 */
3327		clear_buffer_uptodate(bh);
3328		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
 
3329	}
3330	unlock_buffer(bh);
3331	put_bh(bh);
3332}
3333
3334int btrfs_read_dev_one_super(struct block_device *bdev, int copy_num,
3335			struct buffer_head **bh_ret)
3336{
3337	struct buffer_head *bh;
3338	struct btrfs_super_block *super;
3339	u64 bytenr;
3340
3341	bytenr = btrfs_sb_offset(copy_num);
3342	if (bytenr + BTRFS_SUPER_INFO_SIZE >= i_size_read(bdev->bd_inode))
3343		return -EINVAL;
 
 
3344
3345	bh = __bread(bdev, bytenr / 4096, BTRFS_SUPER_INFO_SIZE);
3346	/*
3347	 * If we fail to read from the underlying devices, as of now
3348	 * the best option we have is to mark it EIO.
3349	 */
3350	if (!bh)
3351		return -EIO;
3352
3353	super = (struct btrfs_super_block *)bh->b_data;
3354	if (btrfs_super_bytenr(super) != bytenr ||
3355		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3356		brelse(bh);
3357		return -EINVAL;
3358	}
3359
3360	*bh_ret = bh;
3361	return 0;
3362}
3363
3364
3365struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3366{
3367	struct buffer_head *bh;
3368	struct buffer_head *latest = NULL;
3369	struct btrfs_super_block *super;
3370	int i;
3371	u64 transid = 0;
3372	int ret = -EINVAL;
3373
3374	/* we would like to check all the supers, but that would make
3375	 * a btrfs mount succeed after a mkfs from a different FS.
3376	 * So, we need to add a special mount option to scan for
3377	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3378	 */
3379	for (i = 0; i < 1; i++) {
3380		ret = btrfs_read_dev_one_super(bdev, i, &bh);
3381		if (ret)
3382			continue;
3383
3384		super = (struct btrfs_super_block *)bh->b_data;
 
 
3385
3386		if (!latest || btrfs_super_generation(super) > transid) {
3387			brelse(latest);
3388			latest = bh;
3389			transid = btrfs_super_generation(super);
3390		} else {
3391			brelse(bh);
3392		}
3393	}
3394
3395	if (!latest)
3396		return ERR_PTR(ret);
3397
3398	return latest;
3399}
3400
3401/*
3402 * this should be called twice, once with wait == 0 and
3403 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3404 * we write are pinned.
3405 *
3406 * They are released when wait == 1 is done.
3407 * max_mirrors must be the same for both runs, and it indicates how
3408 * many supers on this one device should be written.
3409 *
3410 * max_mirrors == 0 means to write them all.
3411 */
3412static int write_dev_supers(struct btrfs_device *device,
3413			    struct btrfs_super_block *sb,
3414			    int do_barriers, int wait, int max_mirrors)
3415{
3416	struct buffer_head *bh;
 
 
3417	int i;
 
3418	int ret;
3419	int errors = 0;
3420	u32 crc;
3421	u64 bytenr;
3422
3423	if (max_mirrors == 0)
3424		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3425
 
 
3426	for (i = 0; i < max_mirrors; i++) {
3427		bytenr = btrfs_sb_offset(i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3428		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3429		    device->commit_total_bytes)
3430			break;
3431
3432		if (wait) {
3433			bh = __find_get_block(device->bdev, bytenr / 4096,
3434					      BTRFS_SUPER_INFO_SIZE);
3435			if (!bh) {
3436				errors++;
3437				continue;
3438			}
3439			wait_on_buffer(bh);
3440			if (!buffer_uptodate(bh))
3441				errors++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3442
3443			/* drop our reference */
3444			brelse(bh);
 
 
 
 
 
3445
3446			/* drop the reference from the wait == 0 run */
3447			brelse(bh);
3448			continue;
3449		} else {
3450			btrfs_set_super_bytenr(sb, bytenr);
3451
3452			crc = ~(u32)0;
3453			crc = btrfs_csum_data((char *)sb +
3454					      BTRFS_CSUM_SIZE, crc,
3455					      BTRFS_SUPER_INFO_SIZE -
3456					      BTRFS_CSUM_SIZE);
3457			btrfs_csum_final(crc, sb->csum);
3458
3459			/*
3460			 * one reference for us, and we leave it for the
3461			 * caller
3462			 */
3463			bh = __getblk(device->bdev, bytenr / 4096,
3464				      BTRFS_SUPER_INFO_SIZE);
3465			if (!bh) {
3466				btrfs_err(device->fs_info,
3467				    "couldn't get super buffer head for bytenr %llu",
3468				    bytenr);
3469				errors++;
3470				continue;
3471			}
 
3472
3473			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
 
3474
3475			/* one reference for submit_bh */
3476			get_bh(bh);
3477
3478			set_buffer_uptodate(bh);
3479			lock_buffer(bh);
3480			bh->b_end_io = btrfs_end_buffer_write_sync;
3481			bh->b_private = device;
 
 
 
 
3482		}
 
 
 
3483
3484		/*
3485		 * we fua the first super.  The others we allow
3486		 * to go down lazy.
3487		 */
3488		if (i == 0)
3489			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_FUA, bh);
3490		else
3491			ret = btrfsic_submit_bh(REQ_OP_WRITE, REQ_SYNC, bh);
3492		if (ret)
 
 
3493			errors++;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3494	}
 
3495	return errors < i ? 0 : -1;
3496}
3497
3498/*
3499 * endio for the write_dev_flush, this will wake anyone waiting
3500 * for the barrier when it is done
3501 */
3502static void btrfs_end_empty_barrier(struct bio *bio)
3503{
3504	if (bio->bi_private)
3505		complete(bio->bi_private);
3506	bio_put(bio);
3507}
3508
3509/*
3510 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3511 * sent down.  With wait == 1, it waits for the previous flush.
3512 *
3513 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3514 * capable
3515 */
3516static int write_dev_flush(struct btrfs_device *device, int wait)
3517{
3518	struct bio *bio;
3519	int ret = 0;
3520
3521	if (device->nobarriers)
3522		return 0;
3523
3524	if (wait) {
3525		bio = device->flush_bio;
3526		if (!bio)
3527			return 0;
3528
3529		wait_for_completion(&device->flush_wait);
3530
3531		if (bio->bi_error) {
3532			ret = bio->bi_error;
3533			btrfs_dev_stat_inc_and_print(device,
3534				BTRFS_DEV_STAT_FLUSH_ERRS);
3535		}
3536
3537		/* drop the reference from the wait == 0 run */
3538		bio_put(bio);
3539		device->flush_bio = NULL;
3540
3541		return ret;
3542	}
3543
 
3544	/*
3545	 * one reference for us, and we leave it for the
3546	 * caller
 
 
 
 
 
 
3547	 */
3548	device->flush_bio = NULL;
3549	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3550	if (!bio)
3551		return -ENOMEM;
3552
 
 
3553	bio->bi_end_io = btrfs_end_empty_barrier;
3554	bio->bi_bdev = device->bdev;
3555	bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3556	init_completion(&device->flush_wait);
3557	bio->bi_private = &device->flush_wait;
3558	device->flush_bio = bio;
3559
3560	bio_get(bio);
3561	btrfsic_submit_bio(bio);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3562
 
 
 
 
 
 
 
3563	return 0;
3564}
3565
3566/*
3567 * send an empty flush down to each device in parallel,
3568 * then wait for them
3569 */
3570static int barrier_all_devices(struct btrfs_fs_info *info)
3571{
3572	struct list_head *head;
3573	struct btrfs_device *dev;
3574	int errors_send = 0;
3575	int errors_wait = 0;
3576	int ret;
3577
 
3578	/* send down all the barriers */
3579	head = &info->fs_devices->devices;
3580	list_for_each_entry_rcu(dev, head, dev_list) {
3581		if (dev->missing)
3582			continue;
3583		if (!dev->bdev) {
3584			errors_send++;
3585			continue;
3586		}
3587		if (!dev->in_fs_metadata || !dev->writeable)
3588			continue;
3589
3590		ret = write_dev_flush(dev, 0);
3591		if (ret)
3592			errors_send++;
3593	}
3594
3595	/* wait for all the barriers */
3596	list_for_each_entry_rcu(dev, head, dev_list) {
3597		if (dev->missing)
3598			continue;
3599		if (!dev->bdev) {
3600			errors_wait++;
3601			continue;
3602		}
3603		if (!dev->in_fs_metadata || !dev->writeable)
 
3604			continue;
3605
3606		ret = write_dev_flush(dev, 1);
3607		if (ret)
 
 
 
3608			errors_wait++;
 
 
 
 
 
 
 
 
 
 
3609	}
3610	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3611	    errors_wait > info->num_tolerated_disk_barrier_failures)
3612		return -EIO;
3613	return 0;
3614}
3615
3616int btrfs_get_num_tolerated_disk_barrier_failures(u64 flags)
3617{
3618	int raid_type;
3619	int min_tolerated = INT_MAX;
3620
3621	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0 ||
3622	    (flags & BTRFS_AVAIL_ALLOC_BIT_SINGLE))
3623		min_tolerated = min(min_tolerated,
3624				    btrfs_raid_array[BTRFS_RAID_SINGLE].
3625				    tolerated_failures);
3626
3627	for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
3628		if (raid_type == BTRFS_RAID_SINGLE)
3629			continue;
3630		if (!(flags & btrfs_raid_group[raid_type]))
3631			continue;
3632		min_tolerated = min(min_tolerated,
3633				    btrfs_raid_array[raid_type].
3634				    tolerated_failures);
3635	}
3636
3637	if (min_tolerated == INT_MAX) {
3638		pr_warn("BTRFS: unknown raid flag: %llu", flags);
3639		min_tolerated = 0;
3640	}
3641
3642	return min_tolerated;
3643}
3644
3645int btrfs_calc_num_tolerated_disk_barrier_failures(
3646	struct btrfs_fs_info *fs_info)
3647{
3648	struct btrfs_ioctl_space_info space;
3649	struct btrfs_space_info *sinfo;
3650	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3651		       BTRFS_BLOCK_GROUP_SYSTEM,
3652		       BTRFS_BLOCK_GROUP_METADATA,
3653		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3654	int i;
3655	int c;
3656	int num_tolerated_disk_barrier_failures =
3657		(int)fs_info->fs_devices->num_devices;
3658
3659	for (i = 0; i < ARRAY_SIZE(types); i++) {
3660		struct btrfs_space_info *tmp;
3661
3662		sinfo = NULL;
3663		rcu_read_lock();
3664		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3665			if (tmp->flags == types[i]) {
3666				sinfo = tmp;
3667				break;
3668			}
3669		}
3670		rcu_read_unlock();
3671
3672		if (!sinfo)
3673			continue;
3674
3675		down_read(&sinfo->groups_sem);
3676		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3677			u64 flags;
3678
3679			if (list_empty(&sinfo->block_groups[c]))
3680				continue;
3681
3682			btrfs_get_block_group_info(&sinfo->block_groups[c],
3683						   &space);
3684			if (space.total_bytes == 0 || space.used_bytes == 0)
3685				continue;
3686			flags = space.flags;
3687
3688			num_tolerated_disk_barrier_failures = min(
3689				num_tolerated_disk_barrier_failures,
3690				btrfs_get_num_tolerated_disk_barrier_failures(
3691					flags));
3692		}
3693		up_read(&sinfo->groups_sem);
3694	}
3695
3696	return num_tolerated_disk_barrier_failures;
3697}
3698
3699static int write_all_supers(struct btrfs_fs_info *fs_info, int max_mirrors)
3700{
3701	struct list_head *head;
3702	struct btrfs_device *dev;
3703	struct btrfs_super_block *sb;
3704	struct btrfs_dev_item *dev_item;
3705	int ret;
3706	int do_barriers;
3707	int max_errors;
3708	int total_errors = 0;
3709	u64 flags;
3710
3711	do_barriers = !btrfs_test_opt(fs_info, NOBARRIER);
3712	backup_super_roots(fs_info);
 
 
 
 
 
 
 
3713
3714	sb = fs_info->super_for_commit;
3715	dev_item = &sb->dev_item;
3716
3717	mutex_lock(&fs_info->fs_devices->device_list_mutex);
3718	head = &fs_info->fs_devices->devices;
3719	max_errors = btrfs_super_num_devices(fs_info->super_copy) - 1;
3720
3721	if (do_barriers) {
3722		ret = barrier_all_devices(fs_info);
3723		if (ret) {
3724			mutex_unlock(
3725				&fs_info->fs_devices->device_list_mutex);
3726			btrfs_handle_fs_error(fs_info, ret,
3727					      "errors while submitting device barriers.");
3728			return ret;
3729		}
3730	}
3731
3732	list_for_each_entry_rcu(dev, head, dev_list) {
3733		if (!dev->bdev) {
3734			total_errors++;
3735			continue;
3736		}
3737		if (!dev->in_fs_metadata || !dev->writeable)
 
3738			continue;
3739
3740		btrfs_set_stack_device_generation(dev_item, 0);
3741		btrfs_set_stack_device_type(dev_item, dev->type);
3742		btrfs_set_stack_device_id(dev_item, dev->devid);
3743		btrfs_set_stack_device_total_bytes(dev_item,
3744						   dev->commit_total_bytes);
3745		btrfs_set_stack_device_bytes_used(dev_item,
3746						  dev->commit_bytes_used);
3747		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3748		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3749		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3750		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3751		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
 
3752
3753		flags = btrfs_super_flags(sb);
3754		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3755
3756		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
 
 
 
 
 
 
 
 
3757		if (ret)
3758			total_errors++;
3759	}
3760	if (total_errors > max_errors) {
3761		btrfs_err(fs_info, "%d errors while writing supers",
3762			  total_errors);
3763		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3764
3765		/* FUA is masked off if unsupported and can't be the reason */
3766		btrfs_handle_fs_error(fs_info, -EIO,
3767				      "%d errors while writing supers",
3768				      total_errors);
3769		return -EIO;
3770	}
3771
3772	total_errors = 0;
3773	list_for_each_entry_rcu(dev, head, dev_list) {
3774		if (!dev->bdev)
3775			continue;
3776		if (!dev->in_fs_metadata || !dev->writeable)
 
3777			continue;
3778
3779		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3780		if (ret)
3781			total_errors++;
3782	}
3783	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
3784	if (total_errors > max_errors) {
3785		btrfs_handle_fs_error(fs_info, -EIO,
3786				      "%d errors while writing supers",
3787				      total_errors);
3788		return -EIO;
3789	}
3790	return 0;
3791}
3792
3793int write_ctree_super(struct btrfs_trans_handle *trans,
3794		      struct btrfs_fs_info *fs_info, int max_mirrors)
3795{
3796	return write_all_supers(fs_info, max_mirrors);
3797}
3798
3799/* Drop a fs root from the radix tree and free it. */
3800void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3801				  struct btrfs_root *root)
3802{
 
 
3803	spin_lock(&fs_info->fs_roots_radix_lock);
3804	radix_tree_delete(&fs_info->fs_roots_radix,
3805			  (unsigned long)root->root_key.objectid);
 
 
3806	spin_unlock(&fs_info->fs_roots_radix_lock);
3807
3808	if (btrfs_root_refs(&root->root_item) == 0)
3809		synchronize_srcu(&fs_info->subvol_srcu);
3810
3811	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
3812		btrfs_free_log(NULL, root);
3813		if (root->reloc_root) {
3814			free_extent_buffer(root->reloc_root->node);
3815			free_extent_buffer(root->reloc_root->commit_root);
3816			btrfs_put_fs_root(root->reloc_root);
3817			root->reloc_root = NULL;
3818		}
3819	}
3820
3821	if (root->free_ino_pinned)
3822		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3823	if (root->free_ino_ctl)
3824		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3825	free_fs_root(root);
3826}
3827
3828static void free_fs_root(struct btrfs_root *root)
3829{
3830	iput(root->ino_cache_inode);
3831	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3832	btrfs_free_block_rsv(root->fs_info, root->orphan_block_rsv);
3833	root->orphan_block_rsv = NULL;
3834	if (root->anon_dev)
3835		free_anon_bdev(root->anon_dev);
3836	if (root->subv_writers)
3837		btrfs_free_subvolume_writers(root->subv_writers);
3838	free_extent_buffer(root->node);
3839	free_extent_buffer(root->commit_root);
3840	kfree(root->free_ino_ctl);
3841	kfree(root->free_ino_pinned);
3842	kfree(root->name);
3843	btrfs_put_fs_root(root);
3844}
3845
3846void btrfs_free_fs_root(struct btrfs_root *root)
3847{
3848	free_fs_root(root);
3849}
3850
3851int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3852{
3853	u64 root_objectid = 0;
3854	struct btrfs_root *gang[8];
3855	int i = 0;
3856	int err = 0;
3857	unsigned int ret = 0;
3858	int index;
3859
3860	while (1) {
3861		index = srcu_read_lock(&fs_info->subvol_srcu);
3862		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3863					     (void **)gang, root_objectid,
3864					     ARRAY_SIZE(gang));
3865		if (!ret) {
3866			srcu_read_unlock(&fs_info->subvol_srcu, index);
3867			break;
3868		}
3869		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3870
3871		for (i = 0; i < ret; i++) {
3872			/* Avoid to grab roots in dead_roots */
3873			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3874				gang[i] = NULL;
3875				continue;
3876			}
3877			/* grab all the search result for later use */
3878			gang[i] = btrfs_grab_fs_root(gang[i]);
3879		}
3880		srcu_read_unlock(&fs_info->subvol_srcu, index);
3881
3882		for (i = 0; i < ret; i++) {
3883			if (!gang[i])
3884				continue;
3885			root_objectid = gang[i]->root_key.objectid;
3886			err = btrfs_orphan_cleanup(gang[i]);
3887			if (err)
3888				break;
3889			btrfs_put_fs_root(gang[i]);
3890		}
3891		root_objectid++;
3892	}
3893
3894	/* release the uncleaned roots due to error */
3895	for (; i < ret; i++) {
3896		if (gang[i])
3897			btrfs_put_fs_root(gang[i]);
3898	}
3899	return err;
3900}
3901
3902int btrfs_commit_super(struct btrfs_fs_info *fs_info)
3903{
3904	struct btrfs_root *root = fs_info->tree_root;
3905	struct btrfs_trans_handle *trans;
3906
3907	mutex_lock(&fs_info->cleaner_mutex);
3908	btrfs_run_delayed_iputs(fs_info);
3909	mutex_unlock(&fs_info->cleaner_mutex);
3910	wake_up_process(fs_info->cleaner_kthread);
3911
3912	/* wait until ongoing cleanup work done */
3913	down_write(&fs_info->cleanup_work_sem);
3914	up_write(&fs_info->cleanup_work_sem);
3915
3916	trans = btrfs_join_transaction(root);
3917	if (IS_ERR(trans))
3918		return PTR_ERR(trans);
3919	return btrfs_commit_transaction(trans);
3920}
3921
3922void close_ctree(struct btrfs_fs_info *fs_info)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3923{
3924	struct btrfs_root *root = fs_info->tree_root;
3925	int ret;
3926
3927	set_bit(BTRFS_FS_CLOSING_START, &fs_info->flags);
3928
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3929	/* wait for the qgroup rescan worker to stop */
3930	btrfs_qgroup_wait_for_completion(fs_info, false);
3931
3932	/* wait for the uuid_scan task to finish */
3933	down(&fs_info->uuid_tree_rescan_sem);
3934	/* avoid complains from lockdep et al., set sem back to initial state */
3935	up(&fs_info->uuid_tree_rescan_sem);
3936
3937	/* pause restriper - we want to resume on mount */
3938	btrfs_pause_balance(fs_info);
3939
3940	btrfs_dev_replace_suspend_for_unmount(fs_info);
3941
3942	btrfs_scrub_cancel(fs_info);
3943
3944	/* wait for any defraggers to finish */
3945	wait_event(fs_info->transaction_wait,
3946		   (atomic_read(&fs_info->defrag_running) == 0));
3947
3948	/* clear out the rbtree of defraggable inodes */
3949	btrfs_cleanup_defrag_inodes(fs_info);
3950
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3951	cancel_work_sync(&fs_info->async_reclaim_work);
 
 
3952
3953	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
 
 
 
3954		/*
3955		 * If the cleaner thread is stopped and there are
3956		 * block groups queued for removal, the deletion will be
3957		 * skipped when we quit the cleaner thread.
3958		 */
3959		btrfs_delete_unused_bgs(fs_info);
3960
 
 
 
 
 
 
 
 
 
 
 
 
 
3961		ret = btrfs_commit_super(fs_info);
3962		if (ret)
3963			btrfs_err(fs_info, "commit super ret %d", ret);
3964	}
3965
3966	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3967		btrfs_error_commit_super(fs_info);
3968
3969	kthread_stop(fs_info->transaction_kthread);
3970	kthread_stop(fs_info->cleaner_kthread);
3971
 
3972	set_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags);
3973
 
 
 
 
 
3974	btrfs_free_qgroup_config(fs_info);
 
3975
3976	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3977		btrfs_info(fs_info, "at unmount delalloc count %lld",
3978		       percpu_counter_sum(&fs_info->delalloc_bytes));
3979	}
3980
 
 
 
 
3981	btrfs_sysfs_remove_mounted(fs_info);
3982	btrfs_sysfs_remove_fsid(fs_info->fs_devices);
3983
3984	btrfs_free_fs_roots(fs_info);
3985
3986	btrfs_put_block_group_cache(fs_info);
3987
3988	btrfs_free_block_groups(fs_info);
3989
3990	/*
3991	 * we must make sure there is not any read request to
3992	 * submit after we stopping all workers.
3993	 */
3994	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3995	btrfs_stop_all_workers(fs_info);
3996
 
 
 
3997	clear_bit(BTRFS_FS_OPEN, &fs_info->flags);
3998	free_root_pointers(fs_info, 1);
 
 
 
 
 
 
 
 
 
 
3999
4000	iput(fs_info->btree_inode);
4001
4002#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4003	if (btrfs_test_opt(fs_info, CHECK_INTEGRITY))
4004		btrfsic_unmount(fs_info->fs_devices);
4005#endif
4006
 
4007	btrfs_close_devices(fs_info->fs_devices);
4008	btrfs_mapping_tree_free(&fs_info->mapping_tree);
4009
4010	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
4011	percpu_counter_destroy(&fs_info->delalloc_bytes);
4012	percpu_counter_destroy(&fs_info->bio_counter);
4013	bdi_destroy(&fs_info->bdi);
4014	cleanup_srcu_struct(&fs_info->subvol_srcu);
4015
4016	btrfs_free_stripe_hash_table(fs_info);
4017
4018	__btrfs_free_block_rsv(root->orphan_block_rsv);
4019	root->orphan_block_rsv = NULL;
4020
4021	mutex_lock(&fs_info->chunk_mutex);
4022	while (!list_empty(&fs_info->pinned_chunks)) {
4023		struct extent_map *em;
4024
4025		em = list_first_entry(&fs_info->pinned_chunks,
4026				      struct extent_map, list);
4027		list_del_init(&em->list);
4028		free_extent_map(em);
4029	}
4030	mutex_unlock(&fs_info->chunk_mutex);
4031}
4032
4033int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
4034			  int atomic)
4035{
4036	int ret;
4037	struct inode *btree_inode = buf->pages[0]->mapping->host;
4038
4039	ret = extent_buffer_uptodate(buf);
4040	if (!ret)
4041		return ret;
4042
4043	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
4044				    parent_transid, atomic);
4045	if (ret == -EAGAIN)
4046		return ret;
4047	return !ret;
4048}
4049
4050void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
4051{
4052	struct btrfs_fs_info *fs_info;
4053	struct btrfs_root *root;
4054	u64 transid = btrfs_header_generation(buf);
4055	int was_dirty;
4056
4057#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4058	/*
4059	 * This is a fast path so only do this check if we have sanity tests
4060	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
4061	 * outside of the sanity tests.
4062	 */
4063	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
4064		return;
4065#endif
4066	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4067	fs_info = root->fs_info;
4068	btrfs_assert_tree_locked(buf);
4069	if (transid != fs_info->generation)
4070		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, found %llu running %llu\n",
4071			buf->start, transid, fs_info->generation);
4072	was_dirty = set_extent_buffer_dirty(buf);
4073	if (!was_dirty)
4074		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
4075				     buf->len,
4076				     fs_info->dirty_metadata_batch);
4077#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
4078	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
4079		btrfs_print_leaf(fs_info, buf);
 
 
 
 
 
 
4080		ASSERT(0);
4081	}
4082#endif
4083}
4084
4085static void __btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info,
4086					int flush_delayed)
4087{
4088	/*
4089	 * looks as though older kernels can get into trouble with
4090	 * this code, they end up stuck in balance_dirty_pages forever
4091	 */
4092	int ret;
4093
4094	if (current->flags & PF_MEMALLOC)
4095		return;
4096
4097	if (flush_delayed)
4098		btrfs_balance_delayed_items(fs_info);
4099
4100	ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
4101				     BTRFS_DIRTY_METADATA_THRESH);
 
4102	if (ret > 0) {
4103		balance_dirty_pages_ratelimited(fs_info->btree_inode->i_mapping);
4104	}
4105}
4106
4107void btrfs_btree_balance_dirty(struct btrfs_fs_info *fs_info)
4108{
4109	__btrfs_btree_balance_dirty(fs_info, 1);
4110}
4111
4112void btrfs_btree_balance_dirty_nodelay(struct btrfs_fs_info *fs_info)
4113{
4114	__btrfs_btree_balance_dirty(fs_info, 0);
4115}
4116
4117int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
4118{
4119	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
4120	struct btrfs_fs_info *fs_info = root->fs_info;
 
 
 
 
4121
4122	return btree_read_extent_buffer_pages(fs_info, buf, parent_transid);
 
4123}
4124
4125static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
4126			      int read_only)
4127{
4128	struct btrfs_super_block *sb = fs_info->super_copy;
4129	u64 nodesize = btrfs_super_nodesize(sb);
4130	u64 sectorsize = btrfs_super_sectorsize(sb);
4131	int ret = 0;
4132
4133	if (btrfs_super_magic(sb) != BTRFS_MAGIC) {
4134		btrfs_err(fs_info, "no valid FS found");
4135		ret = -EINVAL;
4136	}
4137	if (btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP)
4138		btrfs_warn(fs_info, "unrecognized super flag: %llu",
4139				btrfs_super_flags(sb) & ~BTRFS_SUPER_FLAG_SUPP);
4140	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
4141		btrfs_err(fs_info, "tree_root level too big: %d >= %d",
4142				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
4143		ret = -EINVAL;
4144	}
4145	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
4146		btrfs_err(fs_info, "chunk_root level too big: %d >= %d",
4147				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
4148		ret = -EINVAL;
4149	}
4150	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
4151		btrfs_err(fs_info, "log_root level too big: %d >= %d",
4152				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
4153		ret = -EINVAL;
4154	}
4155
4156	/*
4157	 * Check sectorsize and nodesize first, other check will need it.
4158	 * Check all possible sectorsize(4K, 8K, 16K, 32K, 64K) here.
4159	 */
4160	if (!is_power_of_2(sectorsize) || sectorsize < 4096 ||
4161	    sectorsize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4162		btrfs_err(fs_info, "invalid sectorsize %llu", sectorsize);
4163		ret = -EINVAL;
4164	}
4165	/* Only PAGE SIZE is supported yet */
4166	if (sectorsize != PAGE_SIZE) {
4167		btrfs_err(fs_info,
4168			"sectorsize %llu not supported yet, only support %lu",
4169			sectorsize, PAGE_SIZE);
4170		ret = -EINVAL;
4171	}
4172	if (!is_power_of_2(nodesize) || nodesize < sectorsize ||
4173	    nodesize > BTRFS_MAX_METADATA_BLOCKSIZE) {
4174		btrfs_err(fs_info, "invalid nodesize %llu", nodesize);
4175		ret = -EINVAL;
4176	}
4177	if (nodesize != le32_to_cpu(sb->__unused_leafsize)) {
4178		btrfs_err(fs_info, "invalid leafsize %u, should be %llu",
4179			  le32_to_cpu(sb->__unused_leafsize), nodesize);
4180		ret = -EINVAL;
4181	}
4182
4183	/* Root alignment check */
4184	if (!IS_ALIGNED(btrfs_super_root(sb), sectorsize)) {
4185		btrfs_warn(fs_info, "tree_root block unaligned: %llu",
4186			   btrfs_super_root(sb));
4187		ret = -EINVAL;
 
 
 
 
4188	}
4189	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), sectorsize)) {
4190		btrfs_warn(fs_info, "chunk_root block unaligned: %llu",
4191			   btrfs_super_chunk_root(sb));
4192		ret = -EINVAL;
4193	}
4194	if (!IS_ALIGNED(btrfs_super_log_root(sb), sectorsize)) {
4195		btrfs_warn(fs_info, "log_root block unaligned: %llu",
4196			   btrfs_super_log_root(sb));
4197		ret = -EINVAL;
4198	}
4199
4200	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
4201		btrfs_err(fs_info,
4202			   "dev_item UUID does not match fsid: %pU != %pU",
4203			   fs_info->fsid, sb->dev_item.fsid);
4204		ret = -EINVAL;
4205	}
4206
4207	/*
4208	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
4209	 * done later
4210	 */
4211	if (btrfs_super_bytes_used(sb) < 6 * btrfs_super_nodesize(sb)) {
4212		btrfs_err(fs_info, "bytes_used is too small %llu",
4213			  btrfs_super_bytes_used(sb));
4214		ret = -EINVAL;
4215	}
4216	if (!is_power_of_2(btrfs_super_stripesize(sb))) {
4217		btrfs_err(fs_info, "invalid stripesize %u",
4218			  btrfs_super_stripesize(sb));
4219		ret = -EINVAL;
4220	}
4221	if (btrfs_super_num_devices(sb) > (1UL << 31))
4222		btrfs_warn(fs_info, "suspicious number of devices: %llu",
4223			   btrfs_super_num_devices(sb));
4224	if (btrfs_super_num_devices(sb) == 0) {
4225		btrfs_err(fs_info, "number of devices is 0");
4226		ret = -EINVAL;
4227	}
4228
4229	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
4230		btrfs_err(fs_info, "super offset mismatch %llu != %u",
4231			  btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
4232		ret = -EINVAL;
4233	}
4234
4235	/*
4236	 * Obvious sys_chunk_array corruptions, it must hold at least one key
4237	 * and one chunk
4238	 */
4239	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
4240		btrfs_err(fs_info, "system chunk array too big %u > %u",
4241			  btrfs_super_sys_array_size(sb),
4242			  BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
4243		ret = -EINVAL;
4244	}
4245	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
4246			+ sizeof(struct btrfs_chunk)) {
4247		btrfs_err(fs_info, "system chunk array too small %u < %zu",
4248			  btrfs_super_sys_array_size(sb),
4249			  sizeof(struct btrfs_disk_key)
4250			  + sizeof(struct btrfs_chunk));
4251		ret = -EINVAL;
4252	}
4253
4254	/*
4255	 * The generation is a global counter, we'll trust it more than the others
4256	 * but it's still possible that it's the one that's wrong.
4257	 */
4258	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4259		btrfs_warn(fs_info,
4260			"suspicious: generation < chunk_root_generation: %llu < %llu",
4261			btrfs_super_generation(sb),
4262			btrfs_super_chunk_root_generation(sb));
4263	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4264	    && btrfs_super_cache_generation(sb) != (u64)-1)
4265		btrfs_warn(fs_info,
4266			"suspicious: generation < cache_generation: %llu < %llu",
4267			btrfs_super_generation(sb),
4268			btrfs_super_cache_generation(sb));
4269
4270	return ret;
4271}
4272
4273static void btrfs_error_commit_super(struct btrfs_fs_info *fs_info)
4274{
4275	mutex_lock(&fs_info->cleaner_mutex);
4276	btrfs_run_delayed_iputs(fs_info);
4277	mutex_unlock(&fs_info->cleaner_mutex);
4278
4279	down_write(&fs_info->cleanup_work_sem);
4280	up_write(&fs_info->cleanup_work_sem);
4281
4282	/* cleanup FS via transaction */
4283	btrfs_cleanup_transaction(fs_info);
4284}
4285
4286static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4287{
4288	struct btrfs_ordered_extent *ordered;
4289
4290	spin_lock(&root->ordered_extent_lock);
4291	/*
4292	 * This will just short circuit the ordered completion stuff which will
4293	 * make sure the ordered extent gets properly cleaned up.
4294	 */
4295	list_for_each_entry(ordered, &root->ordered_extents,
4296			    root_extent_list)
4297		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4298	spin_unlock(&root->ordered_extent_lock);
4299}
4300
4301static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4302{
4303	struct btrfs_root *root;
4304	struct list_head splice;
4305
4306	INIT_LIST_HEAD(&splice);
4307
4308	spin_lock(&fs_info->ordered_root_lock);
4309	list_splice_init(&fs_info->ordered_roots, &splice);
4310	while (!list_empty(&splice)) {
4311		root = list_first_entry(&splice, struct btrfs_root,
4312					ordered_root);
4313		list_move_tail(&root->ordered_root,
4314			       &fs_info->ordered_roots);
4315
4316		spin_unlock(&fs_info->ordered_root_lock);
4317		btrfs_destroy_ordered_extents(root);
4318
4319		cond_resched();
4320		spin_lock(&fs_info->ordered_root_lock);
4321	}
4322	spin_unlock(&fs_info->ordered_root_lock);
 
 
 
 
 
 
 
 
4323}
4324
4325static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4326				      struct btrfs_fs_info *fs_info)
4327{
4328	struct rb_node *node;
4329	struct btrfs_delayed_ref_root *delayed_refs;
4330	struct btrfs_delayed_ref_node *ref;
4331	int ret = 0;
4332
4333	delayed_refs = &trans->delayed_refs;
4334
4335	spin_lock(&delayed_refs->lock);
4336	if (atomic_read(&delayed_refs->num_entries) == 0) {
4337		spin_unlock(&delayed_refs->lock);
4338		btrfs_info(fs_info, "delayed_refs has NO entry");
4339		return ret;
4340	}
4341
4342	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4343		struct btrfs_delayed_ref_head *head;
4344		struct btrfs_delayed_ref_node *tmp;
4345		bool pin_bytes = false;
4346
4347		head = rb_entry(node, struct btrfs_delayed_ref_head,
4348				href_node);
4349		if (!mutex_trylock(&head->mutex)) {
4350			atomic_inc(&head->node.refs);
4351			spin_unlock(&delayed_refs->lock);
4352
4353			mutex_lock(&head->mutex);
4354			mutex_unlock(&head->mutex);
4355			btrfs_put_delayed_ref(&head->node);
4356			spin_lock(&delayed_refs->lock);
4357			continue;
4358		}
4359		spin_lock(&head->lock);
4360		list_for_each_entry_safe_reverse(ref, tmp, &head->ref_list,
4361						 list) {
 
4362			ref->in_tree = 0;
4363			list_del(&ref->list);
 
4364			if (!list_empty(&ref->add_list))
4365				list_del(&ref->add_list);
4366			atomic_dec(&delayed_refs->num_entries);
4367			btrfs_put_delayed_ref(ref);
4368		}
4369		if (head->must_insert_reserved)
4370			pin_bytes = true;
4371		btrfs_free_delayed_extent_op(head->extent_op);
4372		delayed_refs->num_heads--;
4373		if (head->processing == 0)
4374			delayed_refs->num_heads_ready--;
4375		atomic_dec(&delayed_refs->num_entries);
4376		head->node.in_tree = 0;
4377		rb_erase(&head->href_node, &delayed_refs->href_root);
4378		spin_unlock(&head->lock);
4379		spin_unlock(&delayed_refs->lock);
4380		mutex_unlock(&head->mutex);
4381
4382		if (pin_bytes)
4383			btrfs_pin_extent(fs_info, head->node.bytenr,
4384					 head->node.num_bytes, 1);
4385		btrfs_put_delayed_ref(&head->node);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4386		cond_resched();
4387		spin_lock(&delayed_refs->lock);
4388	}
 
4389
4390	spin_unlock(&delayed_refs->lock);
4391
4392	return ret;
4393}
4394
4395static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4396{
4397	struct btrfs_inode *btrfs_inode;
4398	struct list_head splice;
4399
4400	INIT_LIST_HEAD(&splice);
4401
4402	spin_lock(&root->delalloc_lock);
4403	list_splice_init(&root->delalloc_inodes, &splice);
4404
4405	while (!list_empty(&splice)) {
 
4406		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4407					       delalloc_inodes);
4408
4409		list_del_init(&btrfs_inode->delalloc_inodes);
4410		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4411			  &btrfs_inode->runtime_flags);
4412		spin_unlock(&root->delalloc_lock);
4413
4414		btrfs_invalidate_inodes(btrfs_inode->root);
4415
 
 
 
 
 
 
 
4416		spin_lock(&root->delalloc_lock);
4417	}
4418
4419	spin_unlock(&root->delalloc_lock);
4420}
4421
4422static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4423{
4424	struct btrfs_root *root;
4425	struct list_head splice;
4426
4427	INIT_LIST_HEAD(&splice);
4428
4429	spin_lock(&fs_info->delalloc_root_lock);
4430	list_splice_init(&fs_info->delalloc_roots, &splice);
4431	while (!list_empty(&splice)) {
4432		root = list_first_entry(&splice, struct btrfs_root,
4433					 delalloc_root);
4434		list_del_init(&root->delalloc_root);
4435		root = btrfs_grab_fs_root(root);
4436		BUG_ON(!root);
4437		spin_unlock(&fs_info->delalloc_root_lock);
4438
4439		btrfs_destroy_delalloc_inodes(root);
4440		btrfs_put_fs_root(root);
4441
4442		spin_lock(&fs_info->delalloc_root_lock);
4443	}
4444	spin_unlock(&fs_info->delalloc_root_lock);
4445}
4446
4447static int btrfs_destroy_marked_extents(struct btrfs_fs_info *fs_info,
4448					struct extent_io_tree *dirty_pages,
4449					int mark)
4450{
4451	int ret;
4452	struct extent_buffer *eb;
4453	u64 start = 0;
4454	u64 end;
4455
4456	while (1) {
4457		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4458					    mark, NULL);
4459		if (ret)
4460			break;
4461
4462		clear_extent_bits(dirty_pages, start, end, mark);
4463		while (start <= end) {
4464			eb = find_extent_buffer(fs_info, start);
4465			start += fs_info->nodesize;
4466			if (!eb)
4467				continue;
4468			wait_on_extent_buffer_writeback(eb);
4469
4470			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4471					       &eb->bflags))
4472				clear_extent_buffer_dirty(eb);
4473			free_extent_buffer_stale(eb);
4474		}
4475	}
4476
4477	return ret;
4478}
4479
4480static int btrfs_destroy_pinned_extent(struct btrfs_fs_info *fs_info,
4481				       struct extent_io_tree *pinned_extents)
4482{
4483	struct extent_io_tree *unpin;
4484	u64 start;
4485	u64 end;
4486	int ret;
4487	bool loop = true;
4488
4489	unpin = pinned_extents;
4490again:
4491	while (1) {
 
 
 
 
 
 
 
 
 
4492		ret = find_first_extent_bit(unpin, 0, &start, &end,
4493					    EXTENT_DIRTY, NULL);
4494		if (ret)
 
4495			break;
 
4496
4497		clear_extent_dirty(unpin, start, end);
 
4498		btrfs_error_unpin_extent_range(fs_info, start, end);
 
4499		cond_resched();
4500	}
4501
4502	if (loop) {
4503		if (unpin == &fs_info->freed_extents[0])
4504			unpin = &fs_info->freed_extents[1];
4505		else
4506			unpin = &fs_info->freed_extents[0];
4507		loop = false;
4508		goto again;
4509	}
4510
4511	return 0;
4512}
4513
4514static void btrfs_cleanup_bg_io(struct btrfs_block_group_cache *cache)
4515{
4516	struct inode *inode;
4517
4518	inode = cache->io_ctl.inode;
4519	if (inode) {
4520		invalidate_inode_pages2(inode->i_mapping);
4521		BTRFS_I(inode)->generation = 0;
4522		cache->io_ctl.inode = NULL;
4523		iput(inode);
4524	}
 
4525	btrfs_put_block_group(cache);
4526}
4527
4528void btrfs_cleanup_dirty_bgs(struct btrfs_transaction *cur_trans,
4529			     struct btrfs_fs_info *fs_info)
4530{
4531	struct btrfs_block_group_cache *cache;
4532
4533	spin_lock(&cur_trans->dirty_bgs_lock);
4534	while (!list_empty(&cur_trans->dirty_bgs)) {
4535		cache = list_first_entry(&cur_trans->dirty_bgs,
4536					 struct btrfs_block_group_cache,
4537					 dirty_list);
4538		if (!cache) {
4539			btrfs_err(fs_info, "orphan block group dirty_bgs list");
4540			spin_unlock(&cur_trans->dirty_bgs_lock);
4541			return;
4542		}
4543
4544		if (!list_empty(&cache->io_list)) {
4545			spin_unlock(&cur_trans->dirty_bgs_lock);
4546			list_del_init(&cache->io_list);
4547			btrfs_cleanup_bg_io(cache);
4548			spin_lock(&cur_trans->dirty_bgs_lock);
4549		}
4550
4551		list_del_init(&cache->dirty_list);
4552		spin_lock(&cache->lock);
4553		cache->disk_cache_state = BTRFS_DC_ERROR;
4554		spin_unlock(&cache->lock);
4555
4556		spin_unlock(&cur_trans->dirty_bgs_lock);
4557		btrfs_put_block_group(cache);
 
4558		spin_lock(&cur_trans->dirty_bgs_lock);
4559	}
4560	spin_unlock(&cur_trans->dirty_bgs_lock);
4561
 
 
 
 
4562	while (!list_empty(&cur_trans->io_bgs)) {
4563		cache = list_first_entry(&cur_trans->io_bgs,
4564					 struct btrfs_block_group_cache,
4565					 io_list);
4566		if (!cache) {
4567			btrfs_err(fs_info, "orphan block group on io_bgs list");
4568			return;
4569		}
4570
4571		list_del_init(&cache->io_list);
4572		spin_lock(&cache->lock);
4573		cache->disk_cache_state = BTRFS_DC_ERROR;
4574		spin_unlock(&cache->lock);
4575		btrfs_cleanup_bg_io(cache);
4576	}
4577}
4578
4579void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4580				   struct btrfs_fs_info *fs_info)
4581{
 
 
4582	btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
4583	ASSERT(list_empty(&cur_trans->dirty_bgs));
4584	ASSERT(list_empty(&cur_trans->io_bgs));
4585
 
 
 
 
 
4586	btrfs_destroy_delayed_refs(cur_trans, fs_info);
4587
4588	cur_trans->state = TRANS_STATE_COMMIT_START;
4589	wake_up(&fs_info->transaction_blocked_wait);
4590
4591	cur_trans->state = TRANS_STATE_UNBLOCKED;
4592	wake_up(&fs_info->transaction_wait);
4593
4594	btrfs_destroy_delayed_inodes(fs_info);
4595	btrfs_assert_delayed_root_empty(fs_info);
4596
4597	btrfs_destroy_marked_extents(fs_info, &cur_trans->dirty_pages,
4598				     EXTENT_DIRTY);
4599	btrfs_destroy_pinned_extent(fs_info,
4600				    fs_info->pinned_extents);
 
4601
4602	cur_trans->state =TRANS_STATE_COMPLETED;
4603	wake_up(&cur_trans->commit_wait);
4604
4605	/*
4606	memset(cur_trans, 0, sizeof(*cur_trans));
4607	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4608	*/
4609}
4610
4611static int btrfs_cleanup_transaction(struct btrfs_fs_info *fs_info)
4612{
4613	struct btrfs_transaction *t;
4614
4615	mutex_lock(&fs_info->transaction_kthread_mutex);
4616
4617	spin_lock(&fs_info->trans_lock);
4618	while (!list_empty(&fs_info->trans_list)) {
4619		t = list_first_entry(&fs_info->trans_list,
4620				     struct btrfs_transaction, list);
4621		if (t->state >= TRANS_STATE_COMMIT_START) {
4622			atomic_inc(&t->use_count);
4623			spin_unlock(&fs_info->trans_lock);
4624			btrfs_wait_for_commit(fs_info, t->transid);
4625			btrfs_put_transaction(t);
4626			spin_lock(&fs_info->trans_lock);
4627			continue;
4628		}
4629		if (t == fs_info->running_transaction) {
4630			t->state = TRANS_STATE_COMMIT_DOING;
4631			spin_unlock(&fs_info->trans_lock);
4632			/*
4633			 * We wait for 0 num_writers since we don't hold a trans
4634			 * handle open currently for this transaction.
4635			 */
4636			wait_event(t->writer_wait,
4637				   atomic_read(&t->num_writers) == 0);
4638		} else {
4639			spin_unlock(&fs_info->trans_lock);
4640		}
4641		btrfs_cleanup_one_transaction(t, fs_info);
4642
4643		spin_lock(&fs_info->trans_lock);
4644		if (t == fs_info->running_transaction)
4645			fs_info->running_transaction = NULL;
4646		list_del_init(&t->list);
4647		spin_unlock(&fs_info->trans_lock);
4648
4649		btrfs_put_transaction(t);
4650		trace_btrfs_transaction_commit(fs_info->tree_root);
4651		spin_lock(&fs_info->trans_lock);
4652	}
4653	spin_unlock(&fs_info->trans_lock);
4654	btrfs_destroy_all_ordered_extents(fs_info);
4655	btrfs_destroy_delayed_inodes(fs_info);
4656	btrfs_assert_delayed_root_empty(fs_info);
4657	btrfs_destroy_pinned_extent(fs_info, fs_info->pinned_extents);
4658	btrfs_destroy_all_delalloc_inodes(fs_info);
 
4659	mutex_unlock(&fs_info->transaction_kthread_mutex);
4660
4661	return 0;
4662}
4663
4664static const struct extent_io_ops btree_extent_io_ops = {
4665	.readpage_end_io_hook = btree_readpage_end_io_hook,
4666	.readpage_io_failed_hook = btree_io_failed_hook,
4667	.submit_bio_hook = btree_submit_bio_hook,
4668	/* note we're sharing with inode.c for the merge bio hook */
4669	.merge_bio_hook = btrfs_merge_bio_hook,
4670};