Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
  35#include <linux/panic.h>
  36#include <linux/panic_notifier.h>
  37#include <linux/percpu.h>
  38#include <linux/notifier.h>
  39#include <linux/cpu.h>
  40#include <linux/mutex.h>
  41#include <linux/time.h>
  42#include <linux/kernel_stat.h>
  43#include <linux/wait.h>
  44#include <linux/kthread.h>
  45#include <uapi/linux/sched/types.h>
  46#include <linux/prefetch.h>
  47#include <linux/delay.h>
 
  48#include <linux/random.h>
  49#include <linux/trace_events.h>
  50#include <linux/suspend.h>
  51#include <linux/ftrace.h>
  52#include <linux/tick.h>
  53#include <linux/sysrq.h>
  54#include <linux/kprobes.h>
  55#include <linux/gfp.h>
  56#include <linux/oom.h>
  57#include <linux/smpboot.h>
  58#include <linux/jiffies.h>
  59#include <linux/slab.h>
  60#include <linux/sched/isolation.h>
  61#include <linux/sched/clock.h>
  62#include <linux/vmalloc.h>
  63#include <linux/mm.h>
  64#include <linux/kasan.h>
  65#include <linux/context_tracking.h>
  66#include "../time/tick-internal.h"
  67
  68#include "tree.h"
  69#include "rcu.h"
  70
 
  71#ifdef MODULE_PARAM_PREFIX
  72#undef MODULE_PARAM_PREFIX
  73#endif
  74#define MODULE_PARAM_PREFIX "rcutree."
  75
  76/* Data structures. */
  77
  78static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  79	.gpwrap = true,
  80#ifdef CONFIG_RCU_NOCB_CPU
  81	.cblist.flags = SEGCBLIST_RCU_CORE,
  82#endif
  83};
  84static struct rcu_state rcu_state = {
  85	.level = { &rcu_state.node[0] },
  86	.gp_state = RCU_GP_IDLE,
  87	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  88	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  89	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
  90	.name = RCU_NAME,
  91	.abbr = RCU_ABBR,
  92	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  93	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  94	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
  95};
  96
  97/* Dump rcu_node combining tree at boot to verify correct setup. */
  98static bool dump_tree;
  99module_param(dump_tree, bool, 0444);
 100/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 101static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 102#ifndef CONFIG_PREEMPT_RT
 103module_param(use_softirq, bool, 0444);
 104#endif
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 
 
 
 
 
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146			      unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 152static void sync_sched_exp_online_cleanup(int cpu);
 153static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 154static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 155
 156/*
 157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 158 * real-time priority(enabling/disabling) is controlled by
 159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 160 */
 161static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 162module_param(kthread_prio, int, 0444);
 163
 164/* Delay in jiffies for grace-period initialization delays, debug only. */
 165
 166static int gp_preinit_delay;
 167module_param(gp_preinit_delay, int, 0444);
 168static int gp_init_delay;
 169module_param(gp_init_delay, int, 0444);
 170static int gp_cleanup_delay;
 171module_param(gp_cleanup_delay, int, 0444);
 172
 173// Add delay to rcu_read_unlock() for strict grace periods.
 174static int rcu_unlock_delay;
 175#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 176module_param(rcu_unlock_delay, int, 0444);
 177#endif
 178
 179/*
 180 * This rcu parameter is runtime-read-only. It reflects
 181 * a minimum allowed number of objects which can be cached
 182 * per-CPU. Object size is equal to one page. This value
 183 * can be changed at boot time.
 184 */
 185static int rcu_min_cached_objs = 5;
 186module_param(rcu_min_cached_objs, int, 0444);
 
 
 187
 188// A page shrinker can ask for pages to be freed to make them
 189// available for other parts of the system. This usually happens
 190// under low memory conditions, and in that case we should also
 191// defer page-cache filling for a short time period.
 192//
 193// The default value is 5 seconds, which is long enough to reduce
 194// interference with the shrinker while it asks other systems to
 195// drain their caches.
 196static int rcu_delay_page_cache_fill_msec = 5000;
 197module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 198
 199/* Retrieve RCU kthreads priority for rcutorture */
 200int rcu_get_gp_kthreads_prio(void)
 201{
 202	return kthread_prio;
 203}
 204EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 205
 206/*
 207 * Number of grace periods between delays, normalized by the duration of
 208 * the delay.  The longer the delay, the more the grace periods between
 209 * each delay.  The reason for this normalization is that it means that,
 210 * for non-zero delays, the overall slowdown of grace periods is constant
 211 * regardless of the duration of the delay.  This arrangement balances
 212 * the need for long delays to increase some race probabilities with the
 213 * need for fast grace periods to increase other race probabilities.
 214 */
 215#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 
 216
 217/*
 218 * Compute the mask of online CPUs for the specified rcu_node structure.
 219 * This will not be stable unless the rcu_node structure's ->lock is
 220 * held, but the bit corresponding to the current CPU will be stable
 221 * in most contexts.
 222 */
 223static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 224{
 225	return READ_ONCE(rnp->qsmaskinitnext);
 226}
 227
 228/*
 229 * Is the CPU corresponding to the specified rcu_data structure online
 230 * from RCU's perspective?  This perspective is given by that structure's
 231 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
 
 232 */
 233static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
 234{
 235	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
 
 
 
 
 236}
 237
 238/*
 239 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 240 * permit this function to be invoked without holding the root rcu_node
 241 * structure's ->lock, but of course results can be subject to change.
 242 */
 243static int rcu_gp_in_progress(void)
 244{
 245	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 
 
 
 
 246}
 247
 248/*
 249 * Return the number of callbacks queued on the specified CPU.
 250 * Handles both the nocbs and normal cases.
 
 251 */
 252static long rcu_get_n_cbs_cpu(int cpu)
 253{
 254	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 255
 256	if (rcu_segcblist_is_enabled(&rdp->cblist))
 257		return rcu_segcblist_n_cbs(&rdp->cblist);
 258	return 0;
 259}
 
 
 
 
 
 
 
 
 
 
 260
 261void rcu_softirq_qs(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 262{
 263	rcu_qs();
 264	rcu_preempt_deferred_qs(current);
 265	rcu_tasks_qs(current, false);
 266}
 
 267
 268/*
 269 * Reset the current CPU's ->dynticks counter to indicate that the
 270 * newly onlined CPU is no longer in an extended quiescent state.
 271 * This will either leave the counter unchanged, or increment it
 272 * to the next non-quiescent value.
 273 *
 274 * The non-atomic test/increment sequence works because the upper bits
 275 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 276 * or when the corresponding CPU is offline.
 277 */
 278static void rcu_dynticks_eqs_online(void)
 279{
 280	if (ct_dynticks() & RCU_DYNTICKS_IDX)
 281		return;
 282	ct_state_inc(RCU_DYNTICKS_IDX);
 283}
 
 284
 285/*
 286 * Snapshot the ->dynticks counter with full ordering so as to allow
 287 * stable comparison of this counter with past and future snapshots.
 288 */
 289static int rcu_dynticks_snap(int cpu)
 290{
 291	smp_mb();  // Fundamental RCU ordering guarantee.
 292	return ct_dynticks_cpu_acquire(cpu);
 293}
 
 294
 295/*
 296 * Return true if the snapshot returned from rcu_dynticks_snap()
 297 * indicates that RCU is in an extended quiescent state.
 
 
 
 298 */
 299static bool rcu_dynticks_in_eqs(int snap)
 300{
 301	return !(snap & RCU_DYNTICKS_IDX);
 
 302}
 
 303
 304/*
 305 * Return true if the CPU corresponding to the specified rcu_data
 306 * structure has spent some time in an extended quiescent state since
 307 * rcu_dynticks_snap() returned the specified snapshot.
 308 */
 309static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 310{
 311	return snap != rcu_dynticks_snap(rdp->cpu);
 312}
 
 313
 314/*
 315 * Return true if the referenced integer is zero while the specified
 316 * CPU remains within a single extended quiescent state.
 317 */
 318bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 319{
 320	int snap;
 321
 322	// If not quiescent, force back to earlier extended quiescent state.
 323	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
 324	smp_rmb(); // Order ->dynticks and *vp reads.
 325	if (READ_ONCE(*vp))
 326		return false;  // Non-zero, so report failure;
 327	smp_rmb(); // Order *vp read and ->dynticks re-read.
 328
 329	// If still in the same extended quiescent state, we are good!
 330	return snap == ct_dynticks_cpu(cpu);
 331}
 
 332
 333/*
 334 * Let the RCU core know that this CPU has gone through the scheduler,
 335 * which is a quiescent state.  This is called when the need for a
 336 * quiescent state is urgent, so we burn an atomic operation and full
 337 * memory barriers to let the RCU core know about it, regardless of what
 338 * this CPU might (or might not) do in the near future.
 339 *
 340 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 341 *
 342 * The caller must have disabled interrupts and must not be idle.
 343 */
 344notrace void rcu_momentary_dyntick_idle(void)
 
 345{
 346	int seq;
 347
 348	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 349	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
 350	/* It is illegal to call this from idle state. */
 351	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
 352	rcu_preempt_deferred_qs(current);
 353}
 354EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 355
 356/**
 357 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 358 *
 359 * If the current CPU is idle and running at a first-level (not nested)
 360 * interrupt, or directly, from idle, return true.
 361 *
 362 * The caller must have at least disabled IRQs.
 363 */
 364static int rcu_is_cpu_rrupt_from_idle(void)
 
 365{
 366	long nesting;
 367
 368	/*
 369	 * Usually called from the tick; but also used from smp_function_call()
 370	 * for expedited grace periods. This latter can result in running from
 371	 * the idle task, instead of an actual IPI.
 372	 */
 373	lockdep_assert_irqs_disabled();
 374
 375	/* Check for counter underflows */
 376	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
 377			 "RCU dynticks_nesting counter underflow!");
 378	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
 379			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 380
 381	/* Are we at first interrupt nesting level? */
 382	nesting = ct_dynticks_nmi_nesting();
 383	if (nesting > 1)
 384		return false;
 385
 386	/*
 387	 * If we're not in an interrupt, we must be in the idle task!
 388	 */
 389	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 390
 391	/* Does CPU appear to be idle from an RCU standpoint? */
 392	return ct_dynticks_nesting() == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 393}
 394
 395#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 396				// Maximum callbacks per rcu_do_batch ...
 397#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 398static long blimit = DEFAULT_RCU_BLIMIT;
 399#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 400static long qhimark = DEFAULT_RCU_QHIMARK;
 401#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 402static long qlowmark = DEFAULT_RCU_QLOMARK;
 403#define DEFAULT_RCU_QOVLD_MULT 2
 404#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 405static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 406static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 407
 408module_param(blimit, long, 0444);
 409module_param(qhimark, long, 0444);
 410module_param(qlowmark, long, 0444);
 411module_param(qovld, long, 0444);
 412
 413static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 414static ulong jiffies_till_next_fqs = ULONG_MAX;
 415static bool rcu_kick_kthreads;
 416static int rcu_divisor = 7;
 417module_param(rcu_divisor, int, 0644);
 418
 419/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 420static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 421module_param(rcu_resched_ns, long, 0644);
 422
 423/*
 424 * How long the grace period must be before we start recruiting
 425 * quiescent-state help from rcu_note_context_switch().
 426 */
 427static ulong jiffies_till_sched_qs = ULONG_MAX;
 428module_param(jiffies_till_sched_qs, ulong, 0444);
 429static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 430module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 431
 432/*
 433 * Make sure that we give the grace-period kthread time to detect any
 434 * idle CPUs before taking active measures to force quiescent states.
 435 * However, don't go below 100 milliseconds, adjusted upwards for really
 436 * large systems.
 
 437 */
 438static void adjust_jiffies_till_sched_qs(void)
 
 439{
 440	unsigned long j;
 
 441
 442	/* If jiffies_till_sched_qs was specified, respect the request. */
 443	if (jiffies_till_sched_qs != ULONG_MAX) {
 444		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 445		return;
 446	}
 447	/* Otherwise, set to third fqs scan, but bound below on large system. */
 448	j = READ_ONCE(jiffies_till_first_fqs) +
 449		      2 * READ_ONCE(jiffies_till_next_fqs);
 450	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 451		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 452	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 453	WRITE_ONCE(jiffies_to_sched_qs, j);
 454}
 455
 456static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 457{
 458	ulong j;
 459	int ret = kstrtoul(val, 0, &j);
 460
 461	if (!ret) {
 462		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 463		adjust_jiffies_till_sched_qs();
 464	}
 465	return ret;
 
 
 
 
 
 
 
 
 466}
 467
 468static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 469{
 470	ulong j;
 471	int ret = kstrtoul(val, 0, &j);
 472
 473	if (!ret) {
 474		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 475		adjust_jiffies_till_sched_qs();
 
 
 
 
 
 
 
 
 
 476	}
 477	return ret;
 478}
 479
 480static const struct kernel_param_ops first_fqs_jiffies_ops = {
 481	.set = param_set_first_fqs_jiffies,
 482	.get = param_get_ulong,
 483};
 484
 485static const struct kernel_param_ops next_fqs_jiffies_ops = {
 486	.set = param_set_next_fqs_jiffies,
 487	.get = param_get_ulong,
 488};
 489
 490module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 491module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 492module_param(rcu_kick_kthreads, bool, 0644);
 493
 494static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 495static int rcu_pending(int user);
 496
 497/*
 498 * Return the number of RCU GPs completed thus far for debug & stats.
 499 */
 500unsigned long rcu_get_gp_seq(void)
 501{
 502	return READ_ONCE(rcu_state.gp_seq);
 
 
 
 
 
 503}
 504EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 505
 506/*
 507 * Return the number of RCU expedited batches completed thus far for
 508 * debug & stats.  Odd numbers mean that a batch is in progress, even
 509 * numbers mean idle.  The value returned will thus be roughly double
 510 * the cumulative batches since boot.
 
 
 
 511 */
 512unsigned long rcu_exp_batches_completed(void)
 513{
 514	return rcu_state.expedited_sequence;
 515}
 516EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 517
 518/*
 519 * Return the root node of the rcu_state structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 520 */
 521static struct rcu_node *rcu_get_root(void)
 522{
 523	return &rcu_state.node[0];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 524}
 525
 526/*
 527 * Send along grace-period-related data for rcutorture diagnostics.
 
 
 
 
 528 */
 529void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 530			    unsigned long *gp_seq)
 531{
 532	switch (test_type) {
 533	case RCU_FLAVOR:
 534		*flags = READ_ONCE(rcu_state.gp_flags);
 535		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 536		break;
 537	default:
 538		break;
 
 
 
 
 
 
 
 
 
 
 539	}
 540}
 541EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 542
 543#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 544/*
 545 * An empty function that will trigger a reschedule on
 546 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 547 */
 548static void late_wakeup_func(struct irq_work *work)
 549{
 550}
 
 551
 552static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 553	IRQ_WORK_INIT(late_wakeup_func);
 
 
 
 
 
 
 
 
 554
 555/*
 556 * If either:
 557 *
 558 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 559 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 560 *
 561 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 562 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 563 * get re-enabled again.
 
 564 */
 565noinstr void rcu_irq_work_resched(void)
 566{
 567	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 568
 569	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 570		return;
 571
 572	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 573		return;
 574
 575	instrumentation_begin();
 576	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 577		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 578	}
 579	instrumentation_end();
 580}
 581#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 582
 583#ifdef CONFIG_PROVE_RCU
 584/**
 585 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 
 
 
 586 */
 587void rcu_irq_exit_check_preempt(void)
 588{
 589	lockdep_assert_irqs_disabled();
 590
 591	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
 592			 "RCU dynticks_nesting counter underflow/zero!");
 593	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
 594			 DYNTICK_IRQ_NONIDLE,
 595			 "Bad RCU  dynticks_nmi_nesting counter\n");
 596	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 597			 "RCU in extended quiescent state!");
 598}
 599#endif /* #ifdef CONFIG_PROVE_RCU */
 600
 601#ifdef CONFIG_NO_HZ_FULL
 602/**
 603 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 
 
 
 
 
 
 
 
 
 
 
 
 604 *
 605 * The scheduler tick is not normally enabled when CPUs enter the kernel
 606 * from nohz_full userspace execution.  After all, nohz_full userspace
 607 * execution is an RCU quiescent state and the time executing in the kernel
 608 * is quite short.  Except of course when it isn't.  And it is not hard to
 609 * cause a large system to spend tens of seconds or even minutes looping
 610 * in the kernel, which can cause a number of problems, include RCU CPU
 611 * stall warnings.
 612 *
 613 * Therefore, if a nohz_full CPU fails to report a quiescent state
 614 * in a timely manner, the RCU grace-period kthread sets that CPU's
 615 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 616 * exception will invoke this function, which will turn on the scheduler
 617 * tick, which will enable RCU to detect that CPU's quiescent states,
 618 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 619 * The tick will be disabled once a quiescent state is reported for
 620 * this CPU.
 621 *
 622 * Of course, in carefully tuned systems, there might never be an
 623 * interrupt or exception.  In that case, the RCU grace-period kthread
 624 * will eventually cause one to happen.  However, in less carefully
 625 * controlled environments, this function allows RCU to get what it
 626 * needs without creating otherwise useless interruptions.
 627 */
 628void __rcu_irq_enter_check_tick(void)
 629{
 630	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 631
 632	// If we're here from NMI there's nothing to do.
 633	if (in_nmi())
 634		return;
 
 
 
 
 
 
 
 
 
 635
 636	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 637			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 
 
 
 
 
 
 
 
 638
 639	if (!tick_nohz_full_cpu(rdp->cpu) ||
 640	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 641	    READ_ONCE(rdp->rcu_forced_tick)) {
 642		// RCU doesn't need nohz_full help from this CPU, or it is
 643		// already getting that help.
 644		return;
 645	}
 646
 647	// We get here only when not in an extended quiescent state and
 648	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 649	// already watching and (2) The fact that we are in an interrupt
 650	// handler and that the rcu_node lock is an irq-disabled lock
 651	// prevents self-deadlock.  So we can safely recheck under the lock.
 652	// Note that the nohz_full state currently cannot change.
 653	raw_spin_lock_rcu_node(rdp->mynode);
 654	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
 655		// A nohz_full CPU is in the kernel and RCU needs a
 656		// quiescent state.  Turn on the tick!
 657		WRITE_ONCE(rdp->rcu_forced_tick, true);
 658		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 659	}
 660	raw_spin_unlock_rcu_node(rdp->mynode);
 661}
 662#endif /* CONFIG_NO_HZ_FULL */
 663
 664/*
 665 * Check to see if any future non-offloaded RCU-related work will need
 666 * to be done by the current CPU, even if none need be done immediately,
 667 * returning 1 if so.  This function is part of the RCU implementation;
 668 * it is -not- an exported member of the RCU API.  This is used by
 669 * the idle-entry code to figure out whether it is safe to disable the
 670 * scheduler-clock interrupt.
 671 *
 672 * Just check whether or not this CPU has non-offloaded RCU callbacks
 673 * queued.
 
 674 */
 675int rcu_needs_cpu(void)
 676{
 677	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 678		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 
 
 
 
 
 
 
 
 679}
 680
 681/*
 682 * If any sort of urgency was applied to the current CPU (for example,
 683 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 684 * to get to a quiescent state, disable it.
 
 
 
 685 */
 686static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 687{
 688	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 689	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 690	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 691	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 692		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 693		WRITE_ONCE(rdp->rcu_forced_tick, false);
 694	}
 695}
 696
 697/**
 698 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 699 *
 700 * Return true if RCU is watching the running CPU, which means that this
 701 * CPU can safely enter RCU read-side critical sections.  In other words,
 702 * if the current CPU is not in its idle loop or is in an interrupt or
 703 * NMI handler, return true.
 704 *
 705 * Make notrace because it can be called by the internal functions of
 706 * ftrace, and making this notrace removes unnecessary recursion calls.
 707 */
 708notrace bool rcu_is_watching(void)
 709{
 710	bool ret;
 711
 712	preempt_disable_notrace();
 713	ret = !rcu_dynticks_curr_cpu_in_eqs();
 714	preempt_enable_notrace();
 715	return ret;
 716}
 717EXPORT_SYMBOL_GPL(rcu_is_watching);
 718
 719/*
 720 * If a holdout task is actually running, request an urgent quiescent
 721 * state from its CPU.  This is unsynchronized, so migrations can cause
 722 * the request to go to the wrong CPU.  Which is OK, all that will happen
 723 * is that the CPU's next context switch will be a bit slower and next
 724 * time around this task will generate another request.
 725 */
 726void rcu_request_urgent_qs_task(struct task_struct *t)
 727{
 728	int cpu;
 729
 730	barrier();
 731	cpu = task_cpu(t);
 732	if (!task_curr(t))
 733		return; /* This task is not running on that CPU. */
 734	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 735}
 736
 737#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 738
 739/*
 740 * Is the current CPU online as far as RCU is concerned?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741 *
 742 * Disable preemption to avoid false positives that could otherwise
 743 * happen due to the current CPU number being sampled, this task being
 744 * preempted, its old CPU being taken offline, resuming on some other CPU,
 745 * then determining that its old CPU is now offline.
 746 *
 747 * Disable checking if in an NMI handler because we cannot safely
 748 * report errors from NMI handlers anyway.  In addition, it is OK to use
 749 * RCU on an offline processor during initial boot, hence the check for
 750 * rcu_scheduler_fully_active.
 751 */
 752bool rcu_lockdep_current_cpu_online(void)
 753{
 754	struct rcu_data *rdp;
 755	bool ret = false;
 
 756
 757	if (in_nmi() || !rcu_scheduler_fully_active)
 758		return true;
 759	preempt_disable_notrace();
 760	rdp = this_cpu_ptr(&rcu_data);
 761	/*
 762	 * Strictly, we care here about the case where the current CPU is
 763	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
 764	 * not being up to date. So arch_spin_is_locked() might have a
 765	 * false positive if it's held by some *other* CPU, but that's
 766	 * OK because that just means a false *negative* on the warning.
 767	 */
 768	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
 769		ret = true;
 770	preempt_enable_notrace();
 771	return ret;
 772}
 773EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 774
 775#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 776
 777/*
 778 * When trying to report a quiescent state on behalf of some other CPU,
 779 * it is our responsibility to check for and handle potential overflow
 780 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 781 * After all, the CPU might be in deep idle state, and thus executing no
 782 * code whatsoever.
 783 */
 784static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 785{
 786	raw_lockdep_assert_held_rcu_node(rnp);
 787	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 788			 rnp->gp_seq))
 789		WRITE_ONCE(rdp->gpwrap, true);
 790	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 791		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 792}
 793
 794/*
 795 * Snapshot the specified CPU's dynticks counter so that we can later
 796 * credit them with an implicit quiescent state.  Return 1 if this CPU
 797 * is in dynticks idle mode, which is an extended quiescent state.
 798 */
 799static int dyntick_save_progress_counter(struct rcu_data *rdp)
 
 800{
 801	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
 802	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 803		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 804		rcu_gpnum_ovf(rdp->mynode, rdp);
 805		return 1;
 806	}
 807	return 0;
 808}
 809
 810/*
 
 
 
 
 
 
 811 * Return true if the specified CPU has passed through a quiescent
 812 * state by virtue of being in or having passed through an dynticks
 813 * idle state since the last call to dyntick_save_progress_counter()
 814 * for this same CPU, or by virtue of having been offline.
 815 */
 816static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 
 817{
 818	unsigned long jtsq;
 819	struct rcu_node *rnp = rdp->mynode;
 
 
 
 820
 821	/*
 822	 * If the CPU passed through or entered a dynticks idle phase with
 823	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 824	 * already acknowledged the request to pass through a quiescent
 825	 * state.  Either way, that CPU cannot possibly be in an RCU
 826	 * read-side critical section that started before the beginning
 827	 * of the current RCU grace period.
 828	 */
 829	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
 830		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 831		rcu_gpnum_ovf(rnp, rdp);
 832		return 1;
 833	}
 834
 835	/*
 836	 * Complain if a CPU that is considered to be offline from RCU's
 837	 * perspective has not yet reported a quiescent state.  After all,
 838	 * the offline CPU should have reported a quiescent state during
 839	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 840	 * if it ran concurrently with either the CPU going offline or the
 841	 * last task on a leaf rcu_node structure exiting its RCU read-side
 842	 * critical section while all CPUs corresponding to that structure
 843	 * are offline.  This added warning detects bugs in any of these
 844	 * code paths.
 845	 *
 846	 * The rcu_node structure's ->lock is held here, which excludes
 847	 * the relevant portions the CPU-hotplug code, the grace-period
 848	 * initialization code, and the rcu_read_unlock() code paths.
 849	 *
 850	 * For more detail, please refer to the "Hotplug CPU" section
 851	 * of RCU's Requirements documentation.
 
 
 852	 */
 853	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 854		struct rcu_node *rnp1;
 855
 856		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 857			__func__, rnp->grplo, rnp->grphi, rnp->level,
 858			(long)rnp->gp_seq, (long)rnp->completedqs);
 859		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 860			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 861				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 862		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 863			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 864			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 865			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 866		return 1; /* Break things loose after complaining. */
 867	}
 868
 869	/*
 870	 * A CPU running for an extended time within the kernel can
 871	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 872	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 873	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 874	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 875	 * variable are safe because the assignments are repeated if this
 876	 * CPU failed to pass through a quiescent state.  This code
 877	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 878	 * is set way high.
 879	 */
 880	jtsq = READ_ONCE(jiffies_to_sched_qs);
 881	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 882	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 883	     time_after(jiffies, rcu_state.jiffies_resched) ||
 884	     rcu_state.cbovld)) {
 885		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 886		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 887		smp_store_release(&rdp->rcu_urgent_qs, true);
 888	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 889		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 890	}
 891
 892	/*
 893	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 894	 * The above code handles this, but only for straight cond_resched().
 895	 * And some in-kernel loops check need_resched() before calling
 896	 * cond_resched(), which defeats the above code for CPUs that are
 897	 * running in-kernel with scheduling-clock interrupts disabled.
 898	 * So hit them over the head with the resched_cpu() hammer!
 899	 */
 900	if (tick_nohz_full_cpu(rdp->cpu) &&
 901	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 902	     rcu_state.cbovld)) {
 903		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 
 
 
 
 
 
 
 
 
 904		resched_cpu(rdp->cpu);
 905		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 906	}
 907
 908	/*
 909	 * If more than halfway to RCU CPU stall-warning time, invoke
 910	 * resched_cpu() more frequently to try to loosen things up a bit.
 911	 * Also check to see if the CPU is getting hammered with interrupts,
 912	 * but only once per grace period, just to keep the IPIs down to
 913	 * a dull roar.
 914	 */
 915	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 916		if (time_after(jiffies,
 917			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 918			resched_cpu(rdp->cpu);
 919			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 920		}
 921		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 922		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 923		    (rnp->ffmask & rdp->grpmask)) {
 924			rdp->rcu_iw_pending = true;
 925			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 926			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 927		}
 928	}
 929
 930	return 0;
 931}
 932
 933/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 934static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 935			      unsigned long gp_seq_req, const char *s)
 936{
 937	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 938				      gp_seq_req, rnp->level,
 939				      rnp->grplo, rnp->grphi, s);
 
 
 
 
 
 940}
 941
 942/*
 943 * rcu_start_this_gp - Request the start of a particular grace period
 944 * @rnp_start: The leaf node of the CPU from which to start.
 945 * @rdp: The rcu_data corresponding to the CPU from which to start.
 946 * @gp_seq_req: The gp_seq of the grace period to start.
 947 *
 948 * Start the specified grace period, as needed to handle newly arrived
 949 * callbacks.  The required future grace periods are recorded in each
 950 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 951 * is reason to awaken the grace-period kthread.
 952 *
 953 * The caller must hold the specified rcu_node structure's ->lock, which
 954 * is why the caller is responsible for waking the grace-period kthread.
 955 *
 956 * Returns true if the GP thread needs to be awakened else false.
 957 */
 958static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 959			      unsigned long gp_seq_req)
 960{
 961	bool ret = false;
 
 962	struct rcu_node *rnp;
 963
 964	/*
 965	 * Use funnel locking to either acquire the root rcu_node
 966	 * structure's lock or bail out if the need for this grace period
 967	 * has already been recorded -- or if that grace period has in
 968	 * fact already started.  If there is already a grace period in
 969	 * progress in a non-leaf node, no recording is needed because the
 970	 * end of the grace period will scan the leaf rcu_node structures.
 971	 * Note that rnp_start->lock must not be released.
 972	 */
 973	raw_lockdep_assert_held_rcu_node(rnp_start);
 974	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 975	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 976		if (rnp != rnp_start)
 977			raw_spin_lock_rcu_node(rnp);
 978		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 979		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 980		    (rnp != rnp_start &&
 981		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
 982			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
 983					  TPS("Prestarted"));
 984			goto unlock_out;
 985		}
 986		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
 987		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
 988			/*
 989			 * We just marked the leaf or internal node, and a
 990			 * grace period is in progress, which means that
 991			 * rcu_gp_cleanup() will see the marking.  Bail to
 992			 * reduce contention.
 993			 */
 994			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
 995					  TPS("Startedleaf"));
 996			goto unlock_out;
 997		}
 998		if (rnp != rnp_start && rnp->parent != NULL)
 999			raw_spin_unlock_rcu_node(rnp);
1000		if (!rnp->parent)
1001			break;  /* At root, and perhaps also leaf. */
1002	}
1003
1004	/* If GP already in progress, just leave, otherwise start one. */
1005	if (rcu_gp_in_progress()) {
1006		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1007		goto unlock_out;
1008	}
1009	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1010	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1011	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1012	if (!READ_ONCE(rcu_state.gp_kthread)) {
1013		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1014		goto unlock_out;
1015	}
1016	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1017	ret = true;  /* Caller must wake GP kthread. */
1018unlock_out:
1019	/* Push furthest requested GP to leaf node and rcu_data structure. */
1020	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1021		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1022		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1023	}
1024	if (rnp != rnp_start)
1025		raw_spin_unlock_rcu_node(rnp);
1026	return ret;
1027}
1028
1029/*
1030 * Clean up any old requests for the just-ended grace period.  Also return
1031 * whether any additional grace periods have been requested.
1032 */
1033static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1034{
1035	bool needmore;
1036	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1037
1038	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1039	if (!needmore)
1040		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1041	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1042			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1043	return needmore;
1044}
 
1045
1046/*
1047 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1048 * interrupt or softirq handler, in which case we just might immediately
1049 * sleep upon return, resulting in a grace-period hang), and don't bother
1050 * awakening when there is nothing for the grace-period kthread to do
1051 * (as in several CPUs raced to awaken, we lost), and finally don't try
1052 * to awaken a kthread that has not yet been created.  If all those checks
1053 * are passed, track some debug information and awaken.
1054 *
1055 * So why do the self-wakeup when in an interrupt or softirq handler
1056 * in the grace-period kthread's context?  Because the kthread might have
1057 * been interrupted just as it was going to sleep, and just after the final
1058 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1059 * is required, and is therefore supplied.
1060 */
1061static void rcu_gp_kthread_wake(void)
1062{
1063	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1064
1065	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1066	    !READ_ONCE(rcu_state.gp_flags) || !t)
1067		return;
1068	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1069	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1070	swake_up_one(&rcu_state.gp_wq);
1071}
1072
1073/*
1074 * If there is room, assign a ->gp_seq number to any callbacks on this
1075 * CPU that have not already been assigned.  Also accelerate any callbacks
1076 * that were previously assigned a ->gp_seq number that has since proven
1077 * to be too conservative, which can happen if callbacks get assigned a
1078 * ->gp_seq number while RCU is idle, but with reference to a non-root
1079 * rcu_node structure.  This function is idempotent, so it does not hurt
1080 * to call it repeatedly.  Returns an flag saying that we should awaken
1081 * the RCU grace-period kthread.
1082 *
1083 * The caller must hold rnp->lock with interrupts disabled.
1084 */
1085static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 
 
1086{
1087	unsigned long gp_seq_req;
1088	bool ret = false;
 
 
1089
1090	rcu_lockdep_assert_cblist_protected(rdp);
1091	raw_lockdep_assert_held_rcu_node(rnp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1092
1093	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1094	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1095		return false;
 
 
 
 
 
 
1096
1097	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
 
 
 
 
 
 
 
 
 
 
 
1098
1099	/*
1100	 * Callbacks are often registered with incomplete grace-period
1101	 * information.  Something about the fact that getting exact
1102	 * information requires acquiring a global lock...  RCU therefore
1103	 * makes a conservative estimate of the grace period number at which
1104	 * a given callback will become ready to invoke.	The following
1105	 * code checks this estimate and improves it when possible, thus
1106	 * accelerating callback invocation to an earlier grace-period
1107	 * number.
 
 
 
 
 
 
 
1108	 */
1109	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1110	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1111		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
 
 
 
 
 
 
 
 
 
 
 
1112
1113	/* Trace depending on how much we were able to accelerate. */
1114	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1115		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1116	else
1117		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1118
1119	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
 
1120
1121	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122}
1123
1124/*
1125 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1126 * rcu_node structure's ->lock be held.  It consults the cached value
1127 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1128 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1129 * while holding the leaf rcu_node structure's ->lock.
1130 */
1131static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1132					struct rcu_data *rdp)
1133{
1134	unsigned long c;
1135	bool needwake;
1136
1137	rcu_lockdep_assert_cblist_protected(rdp);
1138	c = rcu_seq_snap(&rcu_state.gp_seq);
1139	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1140		/* Old request still live, so mark recent callbacks. */
1141		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1142		return;
1143	}
1144	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1145	needwake = rcu_accelerate_cbs(rnp, rdp);
1146	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1147	if (needwake)
1148		rcu_gp_kthread_wake();
1149}
1150
1151/*
1152 * Move any callbacks whose grace period has completed to the
1153 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1154 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1155 * sublist.  This function is idempotent, so it does not hurt to
1156 * invoke it repeatedly.  As long as it is not invoked -too- often...
1157 * Returns true if the RCU grace-period kthread needs to be awakened.
1158 *
1159 * The caller must hold rnp->lock with interrupts disabled.
1160 */
1161static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 
1162{
1163	rcu_lockdep_assert_cblist_protected(rdp);
1164	raw_lockdep_assert_held_rcu_node(rnp);
1165
1166	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1167	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1168		return false;
1169
1170	/*
1171	 * Find all callbacks whose ->gp_seq numbers indicate that they
1172	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
 
 
 
1173	 */
1174	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
 
1175
1176	/* Classify any remaining callbacks. */
1177	return rcu_accelerate_cbs(rnp, rdp);
1178}
1179
1180/*
1181 * Move and classify callbacks, but only if doing so won't require
1182 * that the RCU grace-period kthread be awakened.
1183 */
1184static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1185						  struct rcu_data *rdp)
1186{
1187	rcu_lockdep_assert_cblist_protected(rdp);
1188	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1189		return;
1190	// The grace period cannot end while we hold the rcu_node lock.
1191	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1192		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1193	raw_spin_unlock_rcu_node(rnp);
1194}
1195
1196/*
1197 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1198 * quiescent state.  This is intended to be invoked when the CPU notices
1199 * a new grace period.
1200 */
1201static void rcu_strict_gp_check_qs(void)
 
1202{
1203	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1204		rcu_read_lock();
1205		rcu_read_unlock();
1206	}
1207}
1208
1209/*
1210 * Update CPU-local rcu_data state to record the beginnings and ends of
1211 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1212 * structure corresponding to the current CPU, and must have irqs disabled.
1213 * Returns true if the grace-period kthread needs to be awakened.
 
1214 */
1215static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
 
1216{
1217	bool ret = false;
1218	bool need_qs;
1219	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1220
1221	raw_lockdep_assert_held_rcu_node(rnp);
1222
1223	if (rdp->gp_seq == rnp->gp_seq)
1224		return false; /* Nothing to do. */
1225
1226	/* Handle the ends of any preceding grace periods first. */
1227	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1228	    unlikely(READ_ONCE(rdp->gpwrap))) {
1229		if (!offloaded)
1230			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1231		rdp->core_needs_qs = false;
1232		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1233	} else {
1234		if (!offloaded)
1235			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1236		if (rdp->core_needs_qs)
1237			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1238	}
1239
1240	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1241	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1242	    unlikely(READ_ONCE(rdp->gpwrap))) {
1243		/*
1244		 * If the current grace period is waiting for this CPU,
1245		 * set up to detect a quiescent state, otherwise don't
1246		 * go looking for one.
1247		 */
1248		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1249		need_qs = !!(rnp->qsmask & rdp->grpmask);
1250		rdp->cpu_no_qs.b.norm = need_qs;
1251		rdp->core_needs_qs = need_qs;
1252		zero_cpu_stall_ticks(rdp);
1253	}
1254	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1255	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1256		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1257	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1258		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1259	WRITE_ONCE(rdp->gpwrap, false);
1260	rcu_gpnum_ovf(rnp, rdp);
1261	return ret;
1262}
1263
1264static void note_gp_changes(struct rcu_data *rdp)
1265{
1266	unsigned long flags;
1267	bool needwake;
1268	struct rcu_node *rnp;
1269
1270	local_irq_save(flags);
1271	rnp = rdp->mynode;
1272	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1273	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1274	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1275		local_irq_restore(flags);
1276		return;
 
1277	}
1278	needwake = __note_gp_changes(rnp, rdp);
1279	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1280	rcu_strict_gp_check_qs();
1281	if (needwake)
1282		rcu_gp_kthread_wake();
1283}
1284
1285static atomic_t *rcu_gp_slow_suppress;
1286
1287/* Register a counter to suppress debugging grace-period delays. */
1288void rcu_gp_slow_register(atomic_t *rgssp)
1289{
1290	WARN_ON_ONCE(rcu_gp_slow_suppress);
 
 
 
 
1291
1292	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1293}
1294EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
 
 
 
 
 
1295
1296/* Unregister a counter, with NULL for not caring which. */
1297void rcu_gp_slow_unregister(atomic_t *rgssp)
1298{
1299	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1300
1301	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
 
 
 
 
 
 
 
 
 
 
1302}
1303EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1304
1305static bool rcu_gp_slow_is_suppressed(void)
1306{
1307	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1308
1309	return rgssp && atomic_read(rgssp);
 
 
 
 
 
 
 
 
 
 
 
 
 
1310}
1311
1312static void rcu_gp_slow(int delay)
 
 
 
 
 
 
 
 
 
 
 
 
1313{
1314	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1315	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1316		schedule_timeout_idle(delay);
1317}
1318
1319static unsigned long sleep_duration;
1320
1321/* Allow rcutorture to stall the grace-period kthread. */
1322void rcu_gp_set_torture_wait(int duration)
1323{
1324	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1325		WRITE_ONCE(sleep_duration, duration);
1326}
1327EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1328
1329/* Actually implement the aforementioned wait. */
1330static void rcu_gp_torture_wait(void)
1331{
1332	unsigned long duration;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1333
1334	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
 
 
 
 
 
 
1335		return;
1336	duration = xchg(&sleep_duration, 0UL);
1337	if (duration > 0) {
1338		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1339		schedule_timeout_idle(duration);
1340		pr_alert("%s: Wait complete\n", __func__);
 
 
 
 
1341	}
 
 
 
 
 
 
 
 
1342}
1343
1344/*
1345 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1346 * processing.
 
 
 
 
 
1347 */
1348static void rcu_strict_gp_boundary(void *unused)
 
1349{
1350	invoke_rcu_core();
1351}
1352
1353// Has rcu_init() been invoked?  This is used (for example) to determine
1354// whether spinlocks may be acquired safely.
1355static bool rcu_init_invoked(void)
1356{
1357	return !!rcu_state.n_online_cpus;
1358}
1359
1360// Make the polled API aware of the beginning of a grace period.
1361static void rcu_poll_gp_seq_start(unsigned long *snap)
1362{
1363	struct rcu_node *rnp = rcu_get_root();
1364
1365	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1366		raw_lockdep_assert_held_rcu_node(rnp);
 
1367
1368	// If RCU was idle, note beginning of GP.
1369	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1370		rcu_seq_start(&rcu_state.gp_seq_polled);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
1372	// Either way, record current state.
1373	*snap = rcu_state.gp_seq_polled;
1374}
1375
1376// Make the polled API aware of the end of a grace period.
1377static void rcu_poll_gp_seq_end(unsigned long *snap)
 
 
 
 
1378{
1379	struct rcu_node *rnp = rcu_get_root();
 
1380
1381	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1382		raw_lockdep_assert_held_rcu_node(rnp);
1383
1384	// If the previously noted GP is still in effect, record the
1385	// end of that GP.  Either way, zero counter to avoid counter-wrap
1386	// problems.
1387	if (*snap && *snap == rcu_state.gp_seq_polled) {
1388		rcu_seq_end(&rcu_state.gp_seq_polled);
1389		rcu_state.gp_seq_polled_snap = 0;
1390		rcu_state.gp_seq_polled_exp_snap = 0;
1391	} else {
1392		*snap = 0;
1393	}
1394}
1395
1396// Make the polled API aware of the beginning of a grace period, but
1397// where caller does not hold the root rcu_node structure's lock.
1398static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1399{
1400	unsigned long flags;
1401	struct rcu_node *rnp = rcu_get_root();
 
1402
1403	if (rcu_init_invoked()) {
1404		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1405			lockdep_assert_irqs_enabled();
1406		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
 
 
 
 
 
 
1407	}
1408	rcu_poll_gp_seq_start(snap);
1409	if (rcu_init_invoked())
1410		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1411}
1412
1413// Make the polled API aware of the end of a grace period, but where
1414// caller does not hold the root rcu_node structure's lock.
1415static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1416{
1417	unsigned long flags;
1418	struct rcu_node *rnp = rcu_get_root();
1419
1420	if (rcu_init_invoked()) {
1421		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1422			lockdep_assert_irqs_enabled();
1423		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
 
 
1424	}
1425	rcu_poll_gp_seq_end(snap);
1426	if (rcu_init_invoked())
1427		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1428}
1429
1430/*
1431 * Initialize a new grace period.  Return false if no grace period required.
1432 */
1433static noinline_for_stack bool rcu_gp_init(void)
1434{
1435	unsigned long flags;
1436	unsigned long oldmask;
1437	unsigned long mask;
1438	struct rcu_data *rdp;
1439	struct rcu_node *rnp = rcu_get_root();
1440
1441	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1442	raw_spin_lock_irq_rcu_node(rnp);
1443	if (!READ_ONCE(rcu_state.gp_flags)) {
 
1444		/* Spurious wakeup, tell caller to go back to sleep.  */
1445		raw_spin_unlock_irq_rcu_node(rnp);
1446		return false;
1447	}
1448	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1449
1450	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1451		/*
1452		 * Grace period already in progress, don't start another.
1453		 * Not supposed to be able to happen.
1454		 */
1455		raw_spin_unlock_irq_rcu_node(rnp);
1456		return false;
1457	}
1458
1459	/* Advance to a new grace period and initialize state. */
1460	record_gp_stall_check_time();
1461	/* Record GP times before starting GP, hence rcu_seq_start(). */
1462	rcu_seq_start(&rcu_state.gp_seq);
1463	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1464	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1465	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1466	raw_spin_unlock_irq_rcu_node(rnp);
1467
1468	/*
1469	 * Apply per-leaf buffered online and offline operations to
1470	 * the rcu_node tree. Note that this new grace period need not
1471	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1472	 * offlining path, when combined with checks in this function,
1473	 * will handle CPUs that are currently going offline or that will
1474	 * go offline later.  Please also refer to "Hotplug CPU" section
1475	 * of RCU's Requirements documentation.
1476	 */
1477	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1478	/* Exclude CPU hotplug operations. */
1479	rcu_for_each_leaf_node(rnp) {
1480		local_irq_save(flags);
1481		arch_spin_lock(&rcu_state.ofl_lock);
1482		raw_spin_lock_rcu_node(rnp);
1483		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1484		    !rnp->wait_blkd_tasks) {
1485			/* Nothing to do on this leaf rcu_node structure. */
1486			raw_spin_unlock_rcu_node(rnp);
1487			arch_spin_unlock(&rcu_state.ofl_lock);
1488			local_irq_restore(flags);
1489			continue;
1490		}
1491
1492		/* Record old state, apply changes to ->qsmaskinit field. */
1493		oldmask = rnp->qsmaskinit;
1494		rnp->qsmaskinit = rnp->qsmaskinitnext;
1495
1496		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1497		if (!oldmask != !rnp->qsmaskinit) {
1498			if (!oldmask) { /* First online CPU for rcu_node. */
1499				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1500					rcu_init_new_rnp(rnp);
1501			} else if (rcu_preempt_has_tasks(rnp)) {
1502				rnp->wait_blkd_tasks = true; /* blocked tasks */
1503			} else { /* Last offline CPU and can propagate. */
1504				rcu_cleanup_dead_rnp(rnp);
1505			}
1506		}
1507
1508		/*
1509		 * If all waited-on tasks from prior grace period are
1510		 * done, and if all this rcu_node structure's CPUs are
1511		 * still offline, propagate up the rcu_node tree and
1512		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1513		 * rcu_node structure's CPUs has since come back online,
1514		 * simply clear ->wait_blkd_tasks.
1515		 */
1516		if (rnp->wait_blkd_tasks &&
1517		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1518			rnp->wait_blkd_tasks = false;
1519			if (!rnp->qsmaskinit)
1520				rcu_cleanup_dead_rnp(rnp);
1521		}
1522
1523		raw_spin_unlock_rcu_node(rnp);
1524		arch_spin_unlock(&rcu_state.ofl_lock);
1525		local_irq_restore(flags);
1526	}
1527	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1528
1529	/*
1530	 * Set the quiescent-state-needed bits in all the rcu_node
1531	 * structures for all currently online CPUs in breadth-first
1532	 * order, starting from the root rcu_node structure, relying on the
1533	 * layout of the tree within the rcu_state.node[] array.  Note that
1534	 * other CPUs will access only the leaves of the hierarchy, thus
1535	 * seeing that no grace period is in progress, at least until the
1536	 * corresponding leaf node has been initialized.
 
1537	 *
1538	 * The grace period cannot complete until the initialization
1539	 * process finishes, because this kthread handles both.
1540	 */
1541	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1542	rcu_for_each_node_breadth_first(rnp) {
1543		rcu_gp_slow(gp_init_delay);
1544		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545		rdp = this_cpu_ptr(&rcu_data);
1546		rcu_preempt_check_blocked_tasks(rnp);
1547		rnp->qsmask = rnp->qsmaskinit;
1548		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
 
 
1549		if (rnp == rdp->mynode)
1550			(void)__note_gp_changes(rnp, rdp);
1551		rcu_preempt_boost_start_gp(rnp);
1552		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1553					    rnp->level, rnp->grplo,
1554					    rnp->grphi, rnp->qsmask);
1555		/* Quiescent states for tasks on any now-offline CPUs. */
1556		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1557		rnp->rcu_gp_init_mask = mask;
1558		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1559			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1560		else
1561			raw_spin_unlock_irq_rcu_node(rnp);
1562		cond_resched_tasks_rcu_qs();
1563		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1564	}
1565
1566	// If strict, make all CPUs aware of new grace period.
1567	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1568		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1569
1570	return true;
1571}
1572
1573/*
1574 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1575 * time.
1576 */
1577static bool rcu_gp_fqs_check_wake(int *gfp)
1578{
1579	struct rcu_node *rnp = rcu_get_root();
1580
1581	// If under overload conditions, force an immediate FQS scan.
1582	if (*gfp & RCU_GP_FLAG_OVLD)
1583		return true;
1584
1585	// Someone like call_rcu() requested a force-quiescent-state scan.
1586	*gfp = READ_ONCE(rcu_state.gp_flags);
1587	if (*gfp & RCU_GP_FLAG_FQS)
1588		return true;
1589
1590	// The current grace period has completed.
1591	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1592		return true;
1593
1594	return false;
1595}
1596
1597/*
1598 * Do one round of quiescent-state forcing.
1599 */
1600static void rcu_gp_fqs(bool first_time)
1601{
1602	struct rcu_node *rnp = rcu_get_root();
 
 
 
1603
1604	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1605	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1606	if (first_time) {
1607		/* Collect dyntick-idle snapshots. */
1608		force_qs_rnp(dyntick_save_progress_counter);
 
 
 
 
 
 
 
1609	} else {
1610		/* Handle dyntick-idle and offline CPUs. */
1611		force_qs_rnp(rcu_implicit_dynticks_qs);
 
1612	}
1613	/* Clear flag to prevent immediate re-entry. */
1614	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1615		raw_spin_lock_irq_rcu_node(rnp);
1616		WRITE_ONCE(rcu_state.gp_flags,
1617			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1618		raw_spin_unlock_irq_rcu_node(rnp);
1619	}
1620}
1621
1622/*
1623 * Loop doing repeated quiescent-state forcing until the grace period ends.
1624 */
1625static noinline_for_stack void rcu_gp_fqs_loop(void)
1626{
1627	bool first_gp_fqs = true;
1628	int gf = 0;
1629	unsigned long j;
1630	int ret;
1631	struct rcu_node *rnp = rcu_get_root();
1632
1633	j = READ_ONCE(jiffies_till_first_fqs);
1634	if (rcu_state.cbovld)
1635		gf = RCU_GP_FLAG_OVLD;
1636	ret = 0;
1637	for (;;) {
1638		if (rcu_state.cbovld) {
1639			j = (j + 2) / 3;
1640			if (j <= 0)
1641				j = 1;
1642		}
1643		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1644			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1645			/*
1646			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1647			 * update; required for stall checks.
1648			 */
1649			smp_wmb();
1650			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1651				   jiffies + (j ? 3 * j : 2));
1652		}
1653		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1654				       TPS("fqswait"));
1655		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1656		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1657				 rcu_gp_fqs_check_wake(&gf), j);
1658		rcu_gp_torture_wait();
1659		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1660		/* Locking provides needed memory barriers. */
1661		/*
1662		 * Exit the loop if the root rcu_node structure indicates that the grace period
1663		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1664		 * is required only for single-node rcu_node trees because readers blocking
1665		 * the current grace period are queued only on leaf rcu_node structures.
1666		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1667		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1668		 * the corresponding leaf nodes have passed through their quiescent state.
1669		 */
1670		if (!READ_ONCE(rnp->qsmask) &&
1671		    !rcu_preempt_blocked_readers_cgp(rnp))
1672			break;
1673		/* If time for quiescent-state forcing, do it. */
1674		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1675		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1676			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1677					       TPS("fqsstart"));
1678			rcu_gp_fqs(first_gp_fqs);
1679			gf = 0;
1680			if (first_gp_fqs) {
1681				first_gp_fqs = false;
1682				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1683			}
1684			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1685					       TPS("fqsend"));
1686			cond_resched_tasks_rcu_qs();
1687			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1688			ret = 0; /* Force full wait till next FQS. */
1689			j = READ_ONCE(jiffies_till_next_fqs);
1690		} else {
1691			/* Deal with stray signal. */
1692			cond_resched_tasks_rcu_qs();
1693			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694			WARN_ON(signal_pending(current));
1695			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1696					       TPS("fqswaitsig"));
1697			ret = 1; /* Keep old FQS timing. */
1698			j = jiffies;
1699			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1700				j = 1;
1701			else
1702				j = rcu_state.jiffies_force_qs - j;
1703			gf = 0;
1704		}
1705	}
 
1706}
1707
1708/*
1709 * Clean up after the old grace period.
1710 */
1711static noinline void rcu_gp_cleanup(void)
1712{
1713	int cpu;
1714	bool needgp = false;
1715	unsigned long gp_duration;
1716	unsigned long new_gp_seq;
1717	bool offloaded;
1718	struct rcu_data *rdp;
1719	struct rcu_node *rnp = rcu_get_root();
1720	struct swait_queue_head *sq;
1721
1722	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1723	raw_spin_lock_irq_rcu_node(rnp);
1724	rcu_state.gp_end = jiffies;
1725	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1726	if (gp_duration > rcu_state.gp_max)
1727		rcu_state.gp_max = gp_duration;
1728
1729	/*
1730	 * We know the grace period is complete, but to everyone else
1731	 * it appears to still be ongoing.  But it is also the case
1732	 * that to everyone else it looks like there is nothing that
1733	 * they can do to advance the grace period.  It is therefore
1734	 * safe for us to drop the lock in order to mark the grace
1735	 * period as completed in all of the rcu_node structures.
1736	 */
1737	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1738	raw_spin_unlock_irq_rcu_node(rnp);
1739
1740	/*
1741	 * Propagate new ->gp_seq value to rcu_node structures so that
1742	 * other CPUs don't have to wait until the start of the next grace
1743	 * period to process their callbacks.  This also avoids some nasty
1744	 * RCU grace-period initialization races by forcing the end of
1745	 * the current grace period to be completely recorded in all of
1746	 * the rcu_node structures before the beginning of the next grace
1747	 * period is recorded in any of the rcu_node structures.
1748	 */
1749	new_gp_seq = rcu_state.gp_seq;
1750	rcu_seq_end(&new_gp_seq);
1751	rcu_for_each_node_breadth_first(rnp) {
1752		raw_spin_lock_irq_rcu_node(rnp);
1753		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1754			dump_blkd_tasks(rnp, 10);
1755		WARN_ON_ONCE(rnp->qsmask);
1756		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1757		if (!rnp->parent)
1758			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1759		rdp = this_cpu_ptr(&rcu_data);
1760		if (rnp == rdp->mynode)
1761			needgp = __note_gp_changes(rnp, rdp) || needgp;
1762		/* smp_mb() provided by prior unlock-lock pair. */
1763		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1764		// Reset overload indication for CPUs no longer overloaded
1765		if (rcu_is_leaf_node(rnp))
1766			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1767				rdp = per_cpu_ptr(&rcu_data, cpu);
1768				check_cb_ovld_locked(rdp, rnp);
1769			}
1770		sq = rcu_nocb_gp_get(rnp);
1771		raw_spin_unlock_irq_rcu_node(rnp);
1772		rcu_nocb_gp_cleanup(sq);
1773		cond_resched_tasks_rcu_qs();
1774		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1775		rcu_gp_slow(gp_cleanup_delay);
1776	}
1777	rnp = rcu_get_root();
1778	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1779
1780	/* Declare grace period done, trace first to use old GP number. */
1781	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1782	rcu_seq_end(&rcu_state.gp_seq);
1783	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1784	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1785	/* Check for GP requests since above loop. */
1786	rdp = this_cpu_ptr(&rcu_data);
1787	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1788		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1789				  TPS("CleanupMore"));
1790		needgp = true;
1791	}
1792	/* Advance CBs to reduce false positives below. */
1793	offloaded = rcu_rdp_is_offloaded(rdp);
1794	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1795
1796		// We get here if a grace period was needed (“needgp”)
1797		// and the above call to rcu_accelerate_cbs() did not set
1798		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1799		// the need for another grace period).  The purpose
1800		// of the “offloaded” check is to avoid invoking
1801		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1802		// hold the ->nocb_lock needed to safely access an offloaded
1803		// ->cblist.  We do not want to acquire that lock because
1804		// it can be heavily contended during callback floods.
1805
1806		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1807		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1808		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1809	} else {
1810
1811		// We get here either if there is no need for an
1812		// additional grace period or if rcu_accelerate_cbs() has
1813		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1814		// So all we need to do is to clear all of the other
1815		// ->gp_flags bits.
1816
1817		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1818	}
1819	raw_spin_unlock_irq_rcu_node(rnp);
1820
1821	// If strict, make all CPUs aware of the end of the old grace period.
1822	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1823		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1824}
1825
1826/*
1827 * Body of kthread that handles grace periods.
1828 */
1829static int __noreturn rcu_gp_kthread(void *unused)
1830{
1831	rcu_bind_gp_kthread();
 
 
 
 
 
 
1832	for (;;) {
1833
1834		/* Handle grace-period start. */
1835		for (;;) {
1836			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1837					       TPS("reqwait"));
1838			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1839			swait_event_idle_exclusive(rcu_state.gp_wq,
1840					 READ_ONCE(rcu_state.gp_flags) &
1841					 RCU_GP_FLAG_INIT);
1842			rcu_gp_torture_wait();
1843			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1844			/* Locking provides needed memory barrier. */
1845			if (rcu_gp_init())
1846				break;
1847			cond_resched_tasks_rcu_qs();
1848			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1849			WARN_ON(signal_pending(current));
1850			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1851					       TPS("reqwaitsig"));
1852		}
1853
1854		/* Handle quiescent-state forcing. */
1855		rcu_gp_fqs_loop();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856
1857		/* Handle grace-period end. */
1858		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1859		rcu_gp_cleanup();
1860		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1861	}
1862}
1863
 
 
 
 
 
 
 
 
1864/*
1865 * Report a full set of quiescent states to the rcu_state data structure.
1866 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1867 * another grace period is required.  Whether we wake the grace-period
1868 * kthread or it awakens itself for the next round of quiescent-state
1869 * forcing, that kthread will clean up after the just-completed grace
1870 * period.  Note that the caller must hold rnp->lock, which is released
1871 * before return.
1872 */
1873static void rcu_report_qs_rsp(unsigned long flags)
1874	__releases(rcu_get_root()->lock)
1875{
1876	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1877	WARN_ON_ONCE(!rcu_gp_in_progress());
1878	WRITE_ONCE(rcu_state.gp_flags,
1879		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1880	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1881	rcu_gp_kthread_wake();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882}
1883
1884/*
1885 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1886 * Allows quiescent states for a group of CPUs to be reported at one go
1887 * to the specified rcu_node structure, though all the CPUs in the group
1888 * must be represented by the same rcu_node structure (which need not be a
1889 * leaf rcu_node structure, though it often will be).  The gps parameter
1890 * is the grace-period snapshot, which means that the quiescent states
1891 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1892 * must be held upon entry, and it is released before return.
1893 *
1894 * As a special case, if mask is zero, the bit-already-cleared check is
1895 * disabled.  This allows propagating quiescent state due to resumed tasks
1896 * during grace-period initialization.
1897 */
1898static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1899			      unsigned long gps, unsigned long flags)
 
1900	__releases(rnp->lock)
1901{
1902	unsigned long oldmask = 0;
1903	struct rcu_node *rnp_c;
1904
1905	raw_lockdep_assert_held_rcu_node(rnp);
1906
1907	/* Walk up the rcu_node hierarchy. */
1908	for (;;) {
1909		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1910
1911			/*
1912			 * Our bit has already been cleared, or the
1913			 * relevant grace period is already over, so done.
1914			 */
1915			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916			return;
1917		}
1918		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1919		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1920			     rcu_preempt_blocked_readers_cgp(rnp));
1921		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1922		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1923						 mask, rnp->qsmask, rnp->level,
1924						 rnp->grplo, rnp->grphi,
1925						 !!rnp->gp_tasks);
1926		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1927
1928			/* Other bits still set at this level, so done. */
1929			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1930			return;
1931		}
1932		rnp->completedqs = rnp->gp_seq;
1933		mask = rnp->grpmask;
1934		if (rnp->parent == NULL) {
1935
1936			/* No more levels.  Exit loop holding root lock. */
1937
1938			break;
1939		}
1940		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941		rnp_c = rnp;
1942		rnp = rnp->parent;
1943		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1944		oldmask = READ_ONCE(rnp_c->qsmask);
 
1945	}
1946
1947	/*
1948	 * Get here if we are the last CPU to pass through a quiescent
1949	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1950	 * to clean up and start the next grace period if one is needed.
1951	 */
1952	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1953}
1954
1955/*
1956 * Record a quiescent state for all tasks that were previously queued
1957 * on the specified rcu_node structure and that were blocking the current
1958 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1959 * irqs disabled, and this lock is released upon return, but irqs remain
1960 * disabled.
1961 */
1962static void __maybe_unused
1963rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1964	__releases(rnp->lock)
1965{
1966	unsigned long gps;
1967	unsigned long mask;
1968	struct rcu_node *rnp_p;
1969
1970	raw_lockdep_assert_held_rcu_node(rnp);
1971	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1972	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1973	    rnp->qsmask != 0) {
1974		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975		return;  /* Still need more quiescent states! */
1976	}
1977
1978	rnp->completedqs = rnp->gp_seq;
1979	rnp_p = rnp->parent;
1980	if (rnp_p == NULL) {
1981		/*
1982		 * Only one rcu_node structure in the tree, so don't
1983		 * try to report up to its nonexistent parent!
1984		 */
1985		rcu_report_qs_rsp(flags);
1986		return;
1987	}
1988
1989	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1990	gps = rnp->gp_seq;
1991	mask = rnp->grpmask;
1992	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1993	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1994	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1995}
1996
1997/*
1998 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1999 * structure.  This must be called from the specified CPU.
 
 
 
 
 
2000 */
2001static void
2002rcu_report_qs_rdp(struct rcu_data *rdp)
2003{
2004	unsigned long flags;
2005	unsigned long mask;
2006	bool needwake = false;
2007	bool needacc = false;
2008	struct rcu_node *rnp;
2009
2010	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2011	rnp = rdp->mynode;
2012	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2013	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2014	    rdp->gpwrap) {
 
2015
2016		/*
2017		 * The grace period in which this quiescent state was
2018		 * recorded has ended, so don't report it upwards.
2019		 * We will instead need a new quiescent state that lies
2020		 * within the current grace period.
2021		 */
2022		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2023		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2024		return;
2025	}
2026	mask = rdp->grpmask;
2027	rdp->core_needs_qs = false;
2028	if ((rnp->qsmask & mask) == 0) {
2029		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030	} else {
 
 
2031		/*
2032		 * This GP can't end until cpu checks in, so all of our
2033		 * callbacks can be processed during the next GP.
2034		 *
2035		 * NOCB kthreads have their own way to deal with that...
2036		 */
2037		if (!rcu_rdp_is_offloaded(rdp)) {
2038			needwake = rcu_accelerate_cbs(rnp, rdp);
2039		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2040			/*
2041			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2042			 * if in the middle of a (de-)offloading process.
2043			 */
2044			needacc = true;
2045		}
2046
2047		rcu_disable_urgency_upon_qs(rdp);
2048		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2049		/* ^^^ Released rnp->lock */
2050		if (needwake)
2051			rcu_gp_kthread_wake();
2052
2053		if (needacc) {
2054			rcu_nocb_lock_irqsave(rdp, flags);
2055			rcu_accelerate_cbs_unlocked(rnp, rdp);
2056			rcu_nocb_unlock_irqrestore(rdp, flags);
2057		}
2058	}
2059}
2060
2061/*
2062 * Check to see if there is a new grace period of which this CPU
2063 * is not yet aware, and if so, set up local rcu_data state for it.
2064 * Otherwise, see if this CPU has just passed through its first
2065 * quiescent state for this grace period, and record that fact if so.
2066 */
2067static void
2068rcu_check_quiescent_state(struct rcu_data *rdp)
2069{
2070	/* Check for grace-period ends and beginnings. */
2071	note_gp_changes(rdp);
2072
2073	/*
2074	 * Does this CPU still need to do its part for current grace period?
2075	 * If no, return and let the other CPUs do their part as well.
2076	 */
2077	if (!rdp->core_needs_qs)
2078		return;
2079
2080	/*
2081	 * Was there a quiescent state since the beginning of the grace
2082	 * period? If no, then exit and wait for the next call.
2083	 */
2084	if (rdp->cpu_no_qs.b.norm)
2085		return;
2086
2087	/*
2088	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2089	 * judge of that).
2090	 */
2091	rcu_report_qs_rdp(rdp);
2092}
2093
 
 
2094/*
2095 * Near the end of the offline process.  Trace the fact that this CPU
2096 * is going offline.
 
2097 */
2098int rcutree_dying_cpu(unsigned int cpu)
 
 
2099{
2100	bool blkd;
2101	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2102	struct rcu_node *rnp = rdp->mynode;
2103
2104	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2105		return 0;
 
 
 
 
 
 
 
 
 
 
2106
2107	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
2108	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2109			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2110	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2111}
2112
2113/*
2114 * All CPUs for the specified rcu_node structure have gone offline,
2115 * and all tasks that were preempted within an RCU read-side critical
2116 * section while running on one of those CPUs have since exited their RCU
2117 * read-side critical section.  Some other CPU is reporting this fact with
2118 * the specified rcu_node structure's ->lock held and interrupts disabled.
2119 * This function therefore goes up the tree of rcu_node structures,
2120 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2121 * the leaf rcu_node structure's ->qsmaskinit field has already been
2122 * updated.
2123 *
2124 * This function does check that the specified rcu_node structure has
2125 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2126 * prematurely.  That said, invoking it after the fact will cost you
2127 * a needless lock acquisition.  So once it has done its work, don't
2128 * invoke it again.
2129 */
2130static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2131{
2132	long mask;
2133	struct rcu_node *rnp = rnp_leaf;
2134
2135	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2136	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2137	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2138	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2139		return;
2140	for (;;) {
2141		mask = rnp->grpmask;
2142		rnp = rnp->parent;
2143		if (!rnp)
2144			break;
2145		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2146		rnp->qsmaskinit &= ~mask;
2147		/* Between grace periods, so better already be zero! */
2148		WARN_ON_ONCE(rnp->qsmask);
2149		if (rnp->qsmaskinit) {
2150			raw_spin_unlock_rcu_node(rnp);
2151			/* irqs remain disabled. */
2152			return;
2153		}
2154		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
 
 
 
 
 
 
 
 
 
 
2155	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2156}
2157
2158/*
2159 * The CPU has been completely removed, and some other CPU is reporting
2160 * this fact from process context.  Do the remainder of the cleanup.
2161 * There can only be one CPU hotplug operation at a time, so no need for
2162 * explicit locking.
 
2163 */
2164int rcutree_dead_cpu(unsigned int cpu)
2165{
2166	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 
 
 
2167	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2168
2169	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2170		return 0;
2171
2172	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2173	/* Adjust any no-longer-needed kthreads. */
2174	rcu_boost_kthread_setaffinity(rnp, -1);
2175	// Stop-machine done, so allow nohz_full to disable tick.
2176	tick_dep_clear(TICK_DEP_BIT_RCU);
2177	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2178}
2179
 
 
2180/*
2181 * Invoke any RCU callbacks that have made it to the end of their grace
2182 * period.  Throttle as specified by rdp->blimit.
2183 */
2184static void rcu_do_batch(struct rcu_data *rdp)
2185{
2186	int div;
2187	bool __maybe_unused empty;
2188	unsigned long flags;
2189	struct rcu_head *rhp;
2190	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2191	long bl, count = 0;
2192	long pending, tlimit = 0;
2193
2194	/* If no callbacks are ready, just return. */
2195	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2196		trace_rcu_batch_start(rcu_state.name,
2197				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2198		trace_rcu_batch_end(rcu_state.name, 0,
2199				    !rcu_segcblist_empty(&rdp->cblist),
2200				    need_resched(), is_idle_task(current),
2201				    rcu_is_callbacks_kthread(rdp));
2202		return;
2203	}
2204
2205	/*
2206	 * Extract the list of ready callbacks, disabling IRQs to prevent
2207	 * races with call_rcu() from interrupt handlers.  Leave the
2208	 * callback counts, as rcu_barrier() needs to be conservative.
2209	 */
2210	rcu_nocb_lock_irqsave(rdp, flags);
2211	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2212	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2213	div = READ_ONCE(rcu_divisor);
2214	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2215	bl = max(rdp->blimit, pending >> div);
2216	if (in_serving_softirq() && unlikely(bl > 100)) {
2217		long rrn = READ_ONCE(rcu_resched_ns);
2218
2219		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2220		tlimit = local_clock() + rrn;
2221	}
2222	trace_rcu_batch_start(rcu_state.name,
2223			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2224	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2225	if (rcu_rdp_is_offloaded(rdp))
2226		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2227
2228	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2229	rcu_nocb_unlock_irqrestore(rdp, flags);
2230
2231	/* Invoke callbacks. */
2232	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2233	rhp = rcu_cblist_dequeue(&rcl);
2234
2235	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2236		rcu_callback_t f;
2237
2238		count++;
2239		debug_rcu_head_unqueue(rhp);
2240
2241		rcu_lock_acquire(&rcu_callback_map);
2242		trace_rcu_invoke_callback(rcu_state.name, rhp);
2243
2244		f = rhp->func;
2245		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2246		f(rhp);
2247
2248		rcu_lock_release(&rcu_callback_map);
2249
2250		/*
2251		 * Stop only if limit reached and CPU has something to do.
2252		 */
2253		if (in_serving_softirq()) {
2254			if (count >= bl && (need_resched() || !is_idle_task(current)))
2255				break;
2256			/*
2257			 * Make sure we don't spend too much time here and deprive other
2258			 * softirq vectors of CPU cycles.
2259			 */
2260			if (unlikely(tlimit)) {
2261				/* only call local_clock() every 32 callbacks */
2262				if (likely((count & 31) || local_clock() < tlimit))
2263					continue;
2264				/* Exceeded the time limit, so leave. */
2265				break;
2266			}
2267		} else {
2268			local_bh_enable();
2269			lockdep_assert_irqs_enabled();
2270			cond_resched_tasks_rcu_qs();
2271			lockdep_assert_irqs_enabled();
2272			local_bh_disable();
2273		}
2274	}
2275
2276	rcu_nocb_lock_irqsave(rdp, flags);
 
2277	rdp->n_cbs_invoked += count;
2278	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2279			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2280
2281	/* Update counts and requeue any remaining callbacks. */
2282	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2283	rcu_segcblist_add_len(&rdp->cblist, -count);
2284
2285	/* Reinstate batch limit if we have worked down the excess. */
2286	count = rcu_segcblist_n_cbs(&rdp->cblist);
2287	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2288		rdp->blimit = blimit;
2289
2290	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2291	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2292		rdp->qlen_last_fqs_check = 0;
2293		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2294	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2295		rdp->qlen_last_fqs_check = count;
 
2296
2297	/*
2298	 * The following usually indicates a double call_rcu().  To track
2299	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2300	 */
2301	empty = rcu_segcblist_empty(&rdp->cblist);
2302	WARN_ON_ONCE(count == 0 && !empty);
2303	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2304		     count != 0 && empty);
2305	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2306	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2307
2308	rcu_nocb_unlock_irqrestore(rdp, flags);
2309
2310	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
 
 
2311}
2312
2313/*
2314 * This function is invoked from each scheduling-clock interrupt,
2315 * and checks to see if this CPU is in a non-context-switch quiescent
2316 * state, for example, user mode or idle loop.  It also schedules RCU
2317 * core processing.  If the current grace period has gone on too long,
2318 * it will ask the scheduler to manufacture a context switch for the sole
2319 * purpose of providing the needed quiescent state.
 
2320 */
2321void rcu_sched_clock_irq(int user)
2322{
2323	unsigned long j;
2324
2325	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2326		j = jiffies;
2327		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2328		__this_cpu_write(rcu_data.last_sched_clock, j);
2329	}
2330	trace_rcu_utilization(TPS("Start scheduler-tick"));
2331	lockdep_assert_irqs_disabled();
2332	raw_cpu_inc(rcu_data.ticks_this_gp);
2333	/* The load-acquire pairs with the store-release setting to true. */
2334	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2335		/* Idle and userspace execution already are quiescent states. */
2336		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2337			set_tsk_need_resched(current);
2338			set_preempt_need_resched();
2339		}
2340		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341	}
2342	rcu_flavor_sched_clock_irq(user);
2343	if (rcu_pending(user))
2344		invoke_rcu_core();
2345	if (user || rcu_is_cpu_rrupt_from_idle())
2346		rcu_note_voluntary_context_switch(current);
2347	lockdep_assert_irqs_disabled();
2348
2349	trace_rcu_utilization(TPS("End scheduler-tick"));
2350}
2351
2352/*
2353 * Scan the leaf rcu_node structures.  For each structure on which all
2354 * CPUs have reported a quiescent state and on which there are tasks
2355 * blocking the current grace period, initiate RCU priority boosting.
2356 * Otherwise, invoke the specified function to check dyntick state for
2357 * each CPU that has not yet reported a quiescent state.
2358 */
2359static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
 
 
 
2360{
 
2361	int cpu;
2362	unsigned long flags;
2363	unsigned long mask;
2364	struct rcu_data *rdp;
2365	struct rcu_node *rnp;
2366
2367	rcu_state.cbovld = rcu_state.cbovldnext;
2368	rcu_state.cbovldnext = false;
2369	rcu_for_each_leaf_node(rnp) {
2370		cond_resched_tasks_rcu_qs();
2371		mask = 0;
2372		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373		rcu_state.cbovldnext |= !!rnp->cbovldmask;
 
 
 
 
2374		if (rnp->qsmask == 0) {
2375			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2376				/*
2377				 * No point in scanning bits because they
2378				 * are all zero.  But we might need to
2379				 * priority-boost blocked readers.
2380				 */
2381				rcu_initiate_boost(rnp, flags);
2382				/* rcu_initiate_boost() releases rnp->lock */
2383				continue;
2384			}
2385			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2386			continue;
2387		}
2388		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2389			rdp = per_cpu_ptr(&rcu_data, cpu);
2390			if (f(rdp)) {
2391				mask |= rdp->grpmask;
2392				rcu_disable_urgency_upon_qs(rdp);
 
 
 
2393			}
2394		}
2395		if (mask != 0) {
2396			/* Idle/offline CPUs, report (releases rnp->lock). */
2397			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2398		} else {
2399			/* Nothing to do here, so just drop the lock. */
2400			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2401		}
 
 
 
 
 
 
 
2402	}
2403}
2404
2405/*
2406 * Force quiescent states on reluctant CPUs, and also detect which
2407 * CPUs are in dyntick-idle mode.
2408 */
2409void rcu_force_quiescent_state(void)
2410{
2411	unsigned long flags;
2412	bool ret;
2413	struct rcu_node *rnp;
2414	struct rcu_node *rnp_old = NULL;
2415
2416	/* Funnel through hierarchy to reduce memory contention. */
2417	rnp = raw_cpu_read(rcu_data.mynode);
2418	for (; rnp != NULL; rnp = rnp->parent) {
2419		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2420		       !raw_spin_trylock(&rnp->fqslock);
2421		if (rnp_old != NULL)
2422			raw_spin_unlock(&rnp_old->fqslock);
2423		if (ret)
 
2424			return;
 
2425		rnp_old = rnp;
2426	}
2427	/* rnp_old == rcu_get_root(), rnp == NULL. */
2428
2429	/* Reached the root of the rcu_node tree, acquire lock. */
2430	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
 
2431	raw_spin_unlock(&rnp_old->fqslock);
2432	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2433		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
 
2434		return;  /* Someone beat us to it. */
2435	}
2436	WRITE_ONCE(rcu_state.gp_flags,
2437		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2438	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2439	rcu_gp_kthread_wake();
2440}
2441EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2442
2443// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2444// grace periods.
2445static void strict_work_handler(struct work_struct *work)
2446{
2447	rcu_read_lock();
2448	rcu_read_unlock();
2449}
2450
2451/* Perform RCU core processing work for the current CPU.  */
2452static __latent_entropy void rcu_core(void)
2453{
2454	unsigned long flags;
2455	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2456	struct rcu_node *rnp = rdp->mynode;
2457	/*
2458	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2459	 * Therefore this function can race with concurrent NOCB (de-)offloading
2460	 * on this CPU and the below condition must be considered volatile.
2461	 * However if we race with:
2462	 *
2463	 * _ Offloading:   In the worst case we accelerate or process callbacks
2464	 *                 concurrently with NOCB kthreads. We are guaranteed to
2465	 *                 call rcu_nocb_lock() if that happens.
2466	 *
2467	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2468	 *                 processing. This is fine because the early stage
2469	 *                 of deoffloading invokes rcu_core() after setting
2470	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2471	 *                 what could have been dismissed without the need to wait
2472	 *                 for the next rcu_pending() check in the next jiffy.
2473	 */
2474	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2475
2476	if (cpu_is_offline(smp_processor_id()))
2477		return;
2478	trace_rcu_utilization(TPS("Start RCU core"));
2479	WARN_ON_ONCE(!rdp->beenonline);
2480
2481	/* Report any deferred quiescent states if preemption enabled. */
2482	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2483		rcu_preempt_deferred_qs(current);
2484	} else if (rcu_preempt_need_deferred_qs(current)) {
2485		set_tsk_need_resched(current);
2486		set_preempt_need_resched();
2487	}
2488
2489	/* Update RCU state based on any recent quiescent states. */
2490	rcu_check_quiescent_state(rdp);
2491
2492	/* No grace period and unregistered callbacks? */
2493	if (!rcu_gp_in_progress() &&
2494	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2495		rcu_nocb_lock_irqsave(rdp, flags);
2496		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2497			rcu_accelerate_cbs_unlocked(rnp, rdp);
2498		rcu_nocb_unlock_irqrestore(rdp, flags);
 
2499	}
2500
2501	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2502
2503	/* If there are callbacks ready, invoke them. */
2504	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2505	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2506		rcu_do_batch(rdp);
2507		/* Re-invoke RCU core processing if there are callbacks remaining. */
2508		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2509			invoke_rcu_core();
2510	}
2511
2512	/* Do any needed deferred wakeups of rcuo kthreads. */
2513	do_nocb_deferred_wakeup(rdp);
2514	trace_rcu_utilization(TPS("End RCU core"));
2515
2516	// If strict GPs, schedule an RCU reader in a clean environment.
2517	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2518		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2519}
2520
2521static void rcu_core_si(struct softirq_action *h)
2522{
2523	rcu_core();
2524}
2525
2526static void rcu_wake_cond(struct task_struct *t, int status)
2527{
2528	/*
2529	 * If the thread is yielding, only wake it when this
2530	 * is invoked from idle
2531	 */
2532	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2533		wake_up_process(t);
2534}
2535
2536static void invoke_rcu_core_kthread(void)
2537{
2538	struct task_struct *t;
2539	unsigned long flags;
2540
2541	local_irq_save(flags);
2542	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2543	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2544	if (t != NULL && t != current)
2545		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2546	local_irq_restore(flags);
2547}
2548
2549/*
2550 * Wake up this CPU's rcuc kthread to do RCU core processing.
2551 */
2552static void invoke_rcu_core(void)
2553{
2554	if (!cpu_online(smp_processor_id()))
2555		return;
2556	if (use_softirq)
2557		raise_softirq(RCU_SOFTIRQ);
2558	else
2559		invoke_rcu_core_kthread();
2560}
2561
2562static void rcu_cpu_kthread_park(unsigned int cpu)
2563{
2564	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2565}
2566
2567static int rcu_cpu_kthread_should_run(unsigned int cpu)
2568{
2569	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
 
 
 
2570}
2571
2572/*
2573 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2574 * the RCU softirq used in configurations of RCU that do not support RCU
2575 * priority boosting.
 
 
2576 */
2577static void rcu_cpu_kthread(unsigned int cpu)
2578{
2579	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2580	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2581	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2582	int spincnt;
2583
2584	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2585	for (spincnt = 0; spincnt < 10; spincnt++) {
2586		WRITE_ONCE(*j, jiffies);
2587		local_bh_disable();
2588		*statusp = RCU_KTHREAD_RUNNING;
2589		local_irq_disable();
2590		work = *workp;
2591		*workp = 0;
2592		local_irq_enable();
2593		if (work)
2594			rcu_core();
2595		local_bh_enable();
2596		if (*workp == 0) {
2597			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2598			*statusp = RCU_KTHREAD_WAITING;
2599			return;
2600		}
2601	}
2602	*statusp = RCU_KTHREAD_YIELDING;
2603	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2604	schedule_timeout_idle(2);
2605	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2606	*statusp = RCU_KTHREAD_WAITING;
2607	WRITE_ONCE(*j, jiffies);
2608}
2609
2610static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2611	.store			= &rcu_data.rcu_cpu_kthread_task,
2612	.thread_should_run	= rcu_cpu_kthread_should_run,
2613	.thread_fn		= rcu_cpu_kthread,
2614	.thread_comm		= "rcuc/%u",
2615	.setup			= rcu_cpu_kthread_setup,
2616	.park			= rcu_cpu_kthread_park,
2617};
2618
2619/*
2620 * Spawn per-CPU RCU core processing kthreads.
2621 */
2622static int __init rcu_spawn_core_kthreads(void)
2623{
2624	int cpu;
2625
2626	for_each_possible_cpu(cpu)
2627		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2628	if (use_softirq)
2629		return 0;
2630	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2631		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2632	return 0;
2633}
2634
2635/*
2636 * Handle any core-RCU processing required by a call_rcu() invocation.
2637 */
2638static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2639			    unsigned long flags)
2640{
2641	/*
2642	 * If called from an extended quiescent state, invoke the RCU
2643	 * core in order to force a re-evaluation of RCU's idleness.
2644	 */
2645	if (!rcu_is_watching())
2646		invoke_rcu_core();
2647
2648	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2649	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2650		return;
2651
2652	/*
2653	 * Force the grace period if too many callbacks or too long waiting.
2654	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2655	 * if some other CPU has recently done so.  Also, don't bother
2656	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2657	 * is the only one waiting for a grace period to complete.
2658	 */
2659	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2660		     rdp->qlen_last_fqs_check + qhimark)) {
2661
2662		/* Are we ignoring a completed grace period? */
2663		note_gp_changes(rdp);
2664
2665		/* Start a new grace period if one not already started. */
2666		if (!rcu_gp_in_progress()) {
2667			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
 
 
 
 
 
2668		} else {
2669			/* Give the grace period a kick. */
2670			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2671			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2672			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2673				rcu_force_quiescent_state();
2674			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2675			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2676		}
2677	}
2678}
2679
2680/*
2681 * RCU callback function to leak a callback.
2682 */
2683static void rcu_leak_callback(struct rcu_head *rhp)
2684{
2685}
2686
2687/*
2688 * Check and if necessary update the leaf rcu_node structure's
2689 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2690 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2691 * structure's ->lock.
2692 */
2693static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2694{
2695	raw_lockdep_assert_held_rcu_node(rnp);
2696	if (qovld_calc <= 0)
2697		return; // Early boot and wildcard value set.
2698	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2699		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2700	else
2701		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2702}
2703
2704/*
2705 * Check and if necessary update the leaf rcu_node structure's
2706 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2707 * number of queued RCU callbacks.  No locks need be held, but the
2708 * caller must have disabled interrupts.
2709 *
2710 * Note that this function ignores the possibility that there are a lot
2711 * of callbacks all of which have already seen the end of their respective
2712 * grace periods.  This omission is due to the need for no-CBs CPUs to
2713 * be holding ->nocb_lock to do this check, which is too heavy for a
2714 * common-case operation.
2715 */
2716static void check_cb_ovld(struct rcu_data *rdp)
2717{
2718	struct rcu_node *const rnp = rdp->mynode;
2719
2720	if (qovld_calc <= 0 ||
2721	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2722	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2723		return; // Early boot wildcard value or already set correctly.
2724	raw_spin_lock_rcu_node(rnp);
2725	check_cb_ovld_locked(rdp, rnp);
2726	raw_spin_unlock_rcu_node(rnp);
2727}
2728
2729static void
2730__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy)
 
2731{
2732	static atomic_t doublefrees;
2733	unsigned long flags;
2734	struct rcu_data *rdp;
2735	bool was_alldone;
2736
2737	/* Misaligned rcu_head! */
2738	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2739
 
2740	if (debug_rcu_head_queue(head)) {
2741		/*
2742		 * Probable double call_rcu(), so leak the callback.
2743		 * Use rcu:rcu_callback trace event to find the previous
2744		 * time callback was passed to call_rcu().
2745		 */
2746		if (atomic_inc_return(&doublefrees) < 4) {
2747			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2748			mem_dump_obj(head);
2749		}
2750		WRITE_ONCE(head->func, rcu_leak_callback);
2751		return;
2752	}
2753	head->func = func;
2754	head->next = NULL;
2755	kasan_record_aux_stack_noalloc(head);
 
 
 
 
 
 
2756	local_irq_save(flags);
2757	rdp = this_cpu_ptr(&rcu_data);
2758
2759	/* Add the callback to our list. */
2760	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2761		// This can trigger due to call_rcu() from offline CPU:
2762		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2763		WARN_ON_ONCE(!rcu_is_watching());
2764		// Very early boot, before rcu_init().  Initialize if needed
2765		// and then drop through to queue the callback.
2766		if (rcu_segcblist_empty(&rdp->cblist))
2767			rcu_segcblist_init(&rdp->cblist);
2768	}
2769
2770	check_cb_ovld(rdp);
2771	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2772		return; // Enqueued onto ->nocb_bypass, so just leave.
2773	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2774	rcu_segcblist_enqueue(&rdp->cblist, head);
2775	if (__is_kvfree_rcu_offset((unsigned long)func))
2776		trace_rcu_kvfree_callback(rcu_state.name, head,
2777					 (unsigned long)func,
2778					 rcu_segcblist_n_cbs(&rdp->cblist));
2779	else
2780		trace_rcu_callback(rcu_state.name, head,
2781				   rcu_segcblist_n_cbs(&rdp->cblist));
2782
2783	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2784
2785	/* Go handle any RCU core processing required. */
2786	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2787		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2788	} else {
2789		__call_rcu_core(rdp, head, flags);
2790		local_irq_restore(flags);
 
2791	}
2792}
 
 
 
 
 
 
 
 
 
 
 
 
 
2793
2794#ifdef CONFIG_RCU_LAZY
2795/**
2796 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2797 * flush all lazy callbacks (including the new one) to the main ->cblist while
2798 * doing so.
2799 *
2800 * @head: structure to be used for queueing the RCU updates.
2801 * @func: actual callback function to be invoked after the grace period
2802 *
2803 * The callback function will be invoked some time after a full grace
2804 * period elapses, in other words after all pre-existing RCU read-side
2805 * critical sections have completed.
2806 *
2807 * Use this API instead of call_rcu() if you don't want the callback to be
2808 * invoked after very long periods of time, which can happen on systems without
2809 * memory pressure and on systems which are lightly loaded or mostly idle.
2810 * This function will cause callbacks to be invoked sooner than later at the
2811 * expense of extra power. Other than that, this function is identical to, and
2812 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2813 * ordering and other functionality.
2814 */
2815void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2816{
2817	return __call_rcu_common(head, func, false);
2818}
2819EXPORT_SYMBOL_GPL(call_rcu_hurry);
2820#endif
2821
2822/**
2823 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2824 * By default the callbacks are 'lazy' and are kept hidden from the main
2825 * ->cblist to prevent starting of grace periods too soon.
2826 * If you desire grace periods to start very soon, use call_rcu_hurry().
2827 *
2828 * @head: structure to be used for queueing the RCU updates.
2829 * @func: actual callback function to be invoked after the grace period
2830 *
2831 * The callback function will be invoked some time after a full grace
2832 * period elapses, in other words after all pre-existing RCU read-side
2833 * critical sections have completed.  However, the callback function
2834 * might well execute concurrently with RCU read-side critical sections
2835 * that started after call_rcu() was invoked.
2836 *
2837 * RCU read-side critical sections are delimited by rcu_read_lock()
2838 * and rcu_read_unlock(), and may be nested.  In addition, but only in
2839 * v5.0 and later, regions of code across which interrupts, preemption,
2840 * or softirqs have been disabled also serve as RCU read-side critical
2841 * sections.  This includes hardware interrupt handlers, softirq handlers,
2842 * and NMI handlers.
2843 *
2844 * Note that all CPUs must agree that the grace period extended beyond
2845 * all pre-existing RCU read-side critical section.  On systems with more
2846 * than one CPU, this means that when "func()" is invoked, each CPU is
2847 * guaranteed to have executed a full memory barrier since the end of its
2848 * last RCU read-side critical section whose beginning preceded the call
2849 * to call_rcu().  It also means that each CPU executing an RCU read-side
2850 * critical section that continues beyond the start of "func()" must have
2851 * executed a memory barrier after the call_rcu() but before the beginning
2852 * of that RCU read-side critical section.  Note that these guarantees
2853 * include CPUs that are offline, idle, or executing in user mode, as
2854 * well as CPUs that are executing in the kernel.
2855 *
2856 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2857 * resulting RCU callback function "func()", then both CPU A and CPU B are
2858 * guaranteed to execute a full memory barrier during the time interval
2859 * between the call to call_rcu() and the invocation of "func()" -- even
2860 * if CPU A and CPU B are the same CPU (but again only if the system has
2861 * more than one CPU).
2862 *
2863 * Implementation of these memory-ordering guarantees is described here:
2864 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2865 */
2866void call_rcu(struct rcu_head *head, rcu_callback_t func)
2867{
2868	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2869}
2870EXPORT_SYMBOL_GPL(call_rcu);
2871
2872/* Maximum number of jiffies to wait before draining a batch. */
2873#define KFREE_DRAIN_JIFFIES (5 * HZ)
2874#define KFREE_N_BATCHES 2
2875#define FREE_N_CHANNELS 2
2876
2877/**
2878 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2879 * @nr_records: Number of active pointers in the array
2880 * @next: Next bulk object in the block chain
2881 * @records: Array of the kvfree_rcu() pointers
2882 */
2883struct kvfree_rcu_bulk_data {
2884	unsigned long nr_records;
2885	struct kvfree_rcu_bulk_data *next;
2886	void *records[];
2887};
2888
2889/*
2890 * This macro defines how many entries the "records" array
2891 * will contain. It is based on the fact that the size of
2892 * kvfree_rcu_bulk_data structure becomes exactly one page.
2893 */
2894#define KVFREE_BULK_MAX_ENTR \
2895	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2896
2897/**
2898 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2899 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2900 * @head_free: List of kfree_rcu() objects waiting for a grace period
2901 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2902 * @krcp: Pointer to @kfree_rcu_cpu structure
2903 */
2904
2905struct kfree_rcu_cpu_work {
2906	struct rcu_work rcu_work;
2907	struct rcu_head *head_free;
2908	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
2909	struct kfree_rcu_cpu *krcp;
2910};
2911
2912/**
2913 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2914 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2915 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2916 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2917 * @lock: Synchronize access to this structure
2918 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2919 * @initialized: The @rcu_work fields have been initialized
2920 * @count: Number of objects for which GP not started
2921 * @bkvcache:
2922 *	A simple cache list that contains objects for reuse purpose.
2923 *	In order to save some per-cpu space the list is singular.
2924 *	Even though it is lockless an access has to be protected by the
2925 *	per-cpu lock.
2926 * @page_cache_work: A work to refill the cache when it is empty
2927 * @backoff_page_cache_fill: Delay cache refills
2928 * @work_in_progress: Indicates that page_cache_work is running
2929 * @hrtimer: A hrtimer for scheduling a page_cache_work
2930 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2931 *
2932 * This is a per-CPU structure.  The reason that it is not included in
2933 * the rcu_data structure is to permit this code to be extracted from
2934 * the RCU files.  Such extraction could allow further optimization of
2935 * the interactions with the slab allocators.
2936 */
2937struct kfree_rcu_cpu {
2938	struct rcu_head *head;
2939	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
2940	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2941	raw_spinlock_t lock;
2942	struct delayed_work monitor_work;
2943	bool initialized;
2944	int count;
2945
2946	struct delayed_work page_cache_work;
2947	atomic_t backoff_page_cache_fill;
2948	atomic_t work_in_progress;
2949	struct hrtimer hrtimer;
2950
2951	struct llist_head bkvcache;
2952	int nr_bkv_objs;
2953};
2954
2955static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2956	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2957};
2958
2959static __always_inline void
2960debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2961{
2962#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2963	int i;
2964
2965	for (i = 0; i < bhead->nr_records; i++)
2966		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2967#endif
2968}
2969
2970static inline struct kfree_rcu_cpu *
2971krc_this_cpu_lock(unsigned long *flags)
2972{
2973	struct kfree_rcu_cpu *krcp;
2974
2975	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2976	krcp = this_cpu_ptr(&krc);
2977	raw_spin_lock(&krcp->lock);
2978
2979	return krcp;
2980}
2981
2982static inline void
2983krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2984{
2985	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2986}
2987
2988static inline struct kvfree_rcu_bulk_data *
2989get_cached_bnode(struct kfree_rcu_cpu *krcp)
2990{
2991	if (!krcp->nr_bkv_objs)
2992		return NULL;
2993
2994	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2995	return (struct kvfree_rcu_bulk_data *)
2996		llist_del_first(&krcp->bkvcache);
2997}
2998
2999static inline bool
3000put_cached_bnode(struct kfree_rcu_cpu *krcp,
3001	struct kvfree_rcu_bulk_data *bnode)
3002{
3003	// Check the limit.
3004	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3005		return false;
3006
3007	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3008	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3009	return true;
3010}
3011
3012static int
3013drain_page_cache(struct kfree_rcu_cpu *krcp)
3014{
3015	unsigned long flags;
3016	struct llist_node *page_list, *pos, *n;
3017	int freed = 0;
3018
3019	raw_spin_lock_irqsave(&krcp->lock, flags);
3020	page_list = llist_del_all(&krcp->bkvcache);
3021	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3022	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3023
3024	llist_for_each_safe(pos, n, page_list) {
3025		free_page((unsigned long)pos);
3026		freed++;
3027	}
3028
3029	return freed;
3030}
 
3031
3032/*
3033 * This function is invoked in workqueue context after a grace period.
3034 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3035 */
3036static void kfree_rcu_work(struct work_struct *work)
3037{
3038	unsigned long flags;
3039	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3040	struct rcu_head *head, *next;
3041	struct kfree_rcu_cpu *krcp;
3042	struct kfree_rcu_cpu_work *krwp;
3043	int i, j;
3044
3045	krwp = container_of(to_rcu_work(work),
3046			    struct kfree_rcu_cpu_work, rcu_work);
3047	krcp = krwp->krcp;
3048
3049	raw_spin_lock_irqsave(&krcp->lock, flags);
3050	// Channels 1 and 2.
3051	for (i = 0; i < FREE_N_CHANNELS; i++) {
3052		bkvhead[i] = krwp->bkvhead_free[i];
3053		krwp->bkvhead_free[i] = NULL;
3054	}
3055
3056	// Channel 3.
3057	head = krwp->head_free;
3058	krwp->head_free = NULL;
3059	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3060
3061	// Handle the first two channels.
3062	for (i = 0; i < FREE_N_CHANNELS; i++) {
3063		for (; bkvhead[i]; bkvhead[i] = bnext) {
3064			bnext = bkvhead[i]->next;
3065			debug_rcu_bhead_unqueue(bkvhead[i]);
3066
3067			rcu_lock_acquire(&rcu_callback_map);
3068			if (i == 0) { // kmalloc() / kfree().
3069				trace_rcu_invoke_kfree_bulk_callback(
3070					rcu_state.name, bkvhead[i]->nr_records,
3071					bkvhead[i]->records);
3072
3073				kfree_bulk(bkvhead[i]->nr_records,
3074					bkvhead[i]->records);
3075			} else { // vmalloc() / vfree().
3076				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3077					trace_rcu_invoke_kvfree_callback(
3078						rcu_state.name,
3079						bkvhead[i]->records[j], 0);
3080
3081					vfree(bkvhead[i]->records[j]);
3082				}
3083			}
3084			rcu_lock_release(&rcu_callback_map);
3085
3086			raw_spin_lock_irqsave(&krcp->lock, flags);
3087			if (put_cached_bnode(krcp, bkvhead[i]))
3088				bkvhead[i] = NULL;
3089			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3090
3091			if (bkvhead[i])
3092				free_page((unsigned long) bkvhead[i]);
3093
3094			cond_resched_tasks_rcu_qs();
3095		}
3096	}
3097
3098	/*
3099	 * This is used when the "bulk" path can not be used for the
3100	 * double-argument of kvfree_rcu().  This happens when the
3101	 * page-cache is empty, which means that objects are instead
3102	 * queued on a linked list through their rcu_head structures.
3103	 * This list is named "Channel 3".
3104	 */
3105	for (; head; head = next) {
3106		unsigned long offset = (unsigned long)head->func;
3107		void *ptr = (void *)head - offset;
3108
3109		next = head->next;
3110		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3111		rcu_lock_acquire(&rcu_callback_map);
3112		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3113
3114		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3115			kvfree(ptr);
3116
3117		rcu_lock_release(&rcu_callback_map);
3118		cond_resched_tasks_rcu_qs();
3119	}
3120}
3121
3122static bool
3123need_offload_krc(struct kfree_rcu_cpu *krcp)
3124{
3125	int i;
3126
3127	for (i = 0; i < FREE_N_CHANNELS; i++)
3128		if (krcp->bkvhead[i])
3129			return true;
3130
3131	return !!krcp->head;
3132}
3133
3134static void
3135schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3136{
3137	long delay, delay_left;
3138
3139	delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3140	if (delayed_work_pending(&krcp->monitor_work)) {
3141		delay_left = krcp->monitor_work.timer.expires - jiffies;
3142		if (delay < delay_left)
3143			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3144		return;
3145	}
3146	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3147}
3148
3149/*
3150 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3151 */
3152static void kfree_rcu_monitor(struct work_struct *work)
3153{
3154	struct kfree_rcu_cpu *krcp = container_of(work,
3155		struct kfree_rcu_cpu, monitor_work.work);
3156	unsigned long flags;
3157	int i, j;
3158
3159	raw_spin_lock_irqsave(&krcp->lock, flags);
3160
3161	// Attempt to start a new batch.
3162	for (i = 0; i < KFREE_N_BATCHES; i++) {
3163		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3164
3165		// Try to detach bkvhead or head and attach it over any
3166		// available corresponding free channel. It can be that
3167		// a previous RCU batch is in progress, it means that
3168		// immediately to queue another one is not possible so
3169		// in that case the monitor work is rearmed.
3170		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3171			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3172				(krcp->head && !krwp->head_free)) {
3173			// Channel 1 corresponds to the SLAB-pointer bulk path.
3174			// Channel 2 corresponds to vmalloc-pointer bulk path.
3175			for (j = 0; j < FREE_N_CHANNELS; j++) {
3176				if (!krwp->bkvhead_free[j]) {
3177					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3178					krcp->bkvhead[j] = NULL;
3179				}
3180			}
3181
3182			// Channel 3 corresponds to both SLAB and vmalloc
3183			// objects queued on the linked list.
3184			if (!krwp->head_free) {
3185				krwp->head_free = krcp->head;
3186				krcp->head = NULL;
3187			}
3188
3189			WRITE_ONCE(krcp->count, 0);
3190
3191			// One work is per one batch, so there are three
3192			// "free channels", the batch can handle. It can
3193			// be that the work is in the pending state when
3194			// channels have been detached following by each
3195			// other.
3196			queue_rcu_work(system_wq, &krwp->rcu_work);
3197		}
3198	}
3199
3200	// If there is nothing to detach, it means that our job is
3201	// successfully done here. In case of having at least one
3202	// of the channels that is still busy we should rearm the
3203	// work to repeat an attempt. Because previous batches are
3204	// still in progress.
3205	if (need_offload_krc(krcp))
3206		schedule_delayed_monitor_work(krcp);
3207
3208	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3209}
3210
3211static enum hrtimer_restart
3212schedule_page_work_fn(struct hrtimer *t)
3213{
3214	struct kfree_rcu_cpu *krcp =
3215		container_of(t, struct kfree_rcu_cpu, hrtimer);
3216
3217	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3218	return HRTIMER_NORESTART;
3219}
3220
3221static void fill_page_cache_func(struct work_struct *work)
3222{
3223	struct kvfree_rcu_bulk_data *bnode;
3224	struct kfree_rcu_cpu *krcp =
3225		container_of(work, struct kfree_rcu_cpu,
3226			page_cache_work.work);
3227	unsigned long flags;
3228	int nr_pages;
3229	bool pushed;
3230	int i;
3231
3232	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3233		1 : rcu_min_cached_objs;
3234
3235	for (i = 0; i < nr_pages; i++) {
3236		bnode = (struct kvfree_rcu_bulk_data *)
3237			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3238
3239		if (!bnode)
3240			break;
3241
3242		raw_spin_lock_irqsave(&krcp->lock, flags);
3243		pushed = put_cached_bnode(krcp, bnode);
3244		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3245
3246		if (!pushed) {
3247			free_page((unsigned long) bnode);
3248			break;
3249		}
3250	}
3251
3252	atomic_set(&krcp->work_in_progress, 0);
3253	atomic_set(&krcp->backoff_page_cache_fill, 0);
3254}
3255
3256static void
3257run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3258{
3259	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3260			!atomic_xchg(&krcp->work_in_progress, 1)) {
3261		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3262			queue_delayed_work(system_wq,
3263				&krcp->page_cache_work,
3264					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3265		} else {
3266			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3267			krcp->hrtimer.function = schedule_page_work_fn;
3268			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3269		}
3270	}
3271}
3272
3273// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3274// state specified by flags.  If can_alloc is true, the caller must
3275// be schedulable and not be holding any locks or mutexes that might be
3276// acquired by the memory allocator or anything that it might invoke.
3277// Returns true if ptr was successfully recorded, else the caller must
3278// use a fallback.
3279static inline bool
3280add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3281	unsigned long *flags, void *ptr, bool can_alloc)
3282{
3283	struct kvfree_rcu_bulk_data *bnode;
3284	int idx;
3285
3286	*krcp = krc_this_cpu_lock(flags);
3287	if (unlikely(!(*krcp)->initialized))
3288		return false;
3289
3290	idx = !!is_vmalloc_addr(ptr);
3291
3292	/* Check if a new block is required. */
3293	if (!(*krcp)->bkvhead[idx] ||
3294			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3295		bnode = get_cached_bnode(*krcp);
3296		if (!bnode && can_alloc) {
3297			krc_this_cpu_unlock(*krcp, *flags);
3298
3299			// __GFP_NORETRY - allows a light-weight direct reclaim
3300			// what is OK from minimizing of fallback hitting point of
3301			// view. Apart of that it forbids any OOM invoking what is
3302			// also beneficial since we are about to release memory soon.
3303			//
3304			// __GFP_NOMEMALLOC - prevents from consuming of all the
3305			// memory reserves. Please note we have a fallback path.
3306			//
3307			// __GFP_NOWARN - it is supposed that an allocation can
3308			// be failed under low memory or high memory pressure
3309			// scenarios.
3310			bnode = (struct kvfree_rcu_bulk_data *)
3311				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3312			*krcp = krc_this_cpu_lock(flags);
3313		}
3314
3315		if (!bnode)
3316			return false;
3317
3318		/* Initialize the new block. */
3319		bnode->nr_records = 0;
3320		bnode->next = (*krcp)->bkvhead[idx];
3321
3322		/* Attach it to the head. */
3323		(*krcp)->bkvhead[idx] = bnode;
3324	}
3325
3326	/* Finally insert. */
3327	(*krcp)->bkvhead[idx]->records
3328		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3329
3330	return true;
3331}
 
3332
3333/*
3334 * Queue a request for lazy invocation of the appropriate free routine
3335 * after a grace period.  Please note that three paths are maintained,
3336 * two for the common case using arrays of pointers and a third one that
3337 * is used only when the main paths cannot be used, for example, due to
3338 * memory pressure.
3339 *
3340 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3341 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3342 * be free'd in workqueue context. This allows us to: batch requests together to
3343 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3344 */
3345void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3346{
3347	unsigned long flags;
3348	struct kfree_rcu_cpu *krcp;
3349	bool success;
3350	void *ptr;
3351
3352	if (head) {
3353		ptr = (void *) head - (unsigned long) func;
3354	} else {
3355		/*
3356		 * Please note there is a limitation for the head-less
3357		 * variant, that is why there is a clear rule for such
3358		 * objects: it can be used from might_sleep() context
3359		 * only. For other places please embed an rcu_head to
3360		 * your data.
3361		 */
3362		might_sleep();
3363		ptr = (unsigned long *) func;
3364	}
3365
3366	// Queue the object but don't yet schedule the batch.
3367	if (debug_rcu_head_queue(ptr)) {
3368		// Probable double kfree_rcu(), just leak.
3369		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3370			  __func__, head);
3371
3372		// Mark as success and leave.
3373		return;
3374	}
3375
3376	kasan_record_aux_stack_noalloc(ptr);
3377	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3378	if (!success) {
3379		run_page_cache_worker(krcp);
3380
3381		if (head == NULL)
3382			// Inline if kvfree_rcu(one_arg) call.
3383			goto unlock_return;
3384
3385		head->func = func;
3386		head->next = krcp->head;
3387		krcp->head = head;
3388		success = true;
3389	}
3390
3391	WRITE_ONCE(krcp->count, krcp->count + 1);
3392
3393	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3394	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3395		schedule_delayed_monitor_work(krcp);
3396
3397unlock_return:
3398	krc_this_cpu_unlock(krcp, flags);
3399
3400	/*
3401	 * Inline kvfree() after synchronize_rcu(). We can do
3402	 * it from might_sleep() context only, so the current
3403	 * CPU can pass the QS state.
3404	 */
3405	if (!success) {
3406		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3407		synchronize_rcu();
3408		kvfree(ptr);
3409	}
3410}
3411EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3412
3413static unsigned long
3414kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3415{
3416	int cpu;
3417	unsigned long count = 0;
3418
3419	/* Snapshot count of all CPUs */
3420	for_each_possible_cpu(cpu) {
3421		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3422
3423		count += READ_ONCE(krcp->count);
3424		count += READ_ONCE(krcp->nr_bkv_objs);
3425		atomic_set(&krcp->backoff_page_cache_fill, 1);
3426	}
3427
3428	return count == 0 ? SHRINK_EMPTY : count;
3429}
3430
3431static unsigned long
3432kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3433{
3434	int cpu, freed = 0;
3435
3436	for_each_possible_cpu(cpu) {
3437		int count;
3438		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3439
3440		count = krcp->count;
3441		count += drain_page_cache(krcp);
3442		kfree_rcu_monitor(&krcp->monitor_work.work);
3443
3444		sc->nr_to_scan -= count;
3445		freed += count;
3446
3447		if (sc->nr_to_scan <= 0)
3448			break;
3449	}
3450
3451	return freed == 0 ? SHRINK_STOP : freed;
3452}
3453
3454static struct shrinker kfree_rcu_shrinker = {
3455	.count_objects = kfree_rcu_shrink_count,
3456	.scan_objects = kfree_rcu_shrink_scan,
3457	.batch = 0,
3458	.seeks = DEFAULT_SEEKS,
3459};
3460
3461void __init kfree_rcu_scheduler_running(void)
3462{
3463	int cpu;
3464	unsigned long flags;
3465
3466	for_each_possible_cpu(cpu) {
3467		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3468
3469		raw_spin_lock_irqsave(&krcp->lock, flags);
3470		if (need_offload_krc(krcp))
3471			schedule_delayed_monitor_work(krcp);
3472		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3473	}
3474}
3475
3476/*
3477 * During early boot, any blocking grace-period wait automatically
3478 * implies a grace period.
3479 *
3480 * Later on, this could in theory be the case for kernels built with
3481 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3482 * is not a common case.  Furthermore, this optimization would cause
3483 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3484 * grace-period optimization is ignored once the scheduler is running.
3485 */
3486static int rcu_blocking_is_gp(void)
3487{
3488	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
3489		return false;
3490	might_sleep();  /* Check for RCU read-side critical section. */
3491	return true;
 
 
 
3492}
3493
3494/**
3495 * synchronize_rcu - wait until a grace period has elapsed.
3496 *
3497 * Control will return to the caller some time after a full grace
3498 * period has elapsed, in other words after all currently executing RCU
3499 * read-side critical sections have completed.  Note, however, that
3500 * upon return from synchronize_rcu(), the caller might well be executing
3501 * concurrently with new RCU read-side critical sections that began while
3502 * synchronize_rcu() was waiting.
3503 *
3504 * RCU read-side critical sections are delimited by rcu_read_lock()
3505 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3506 * v5.0 and later, regions of code across which interrupts, preemption,
3507 * or softirqs have been disabled also serve as RCU read-side critical
3508 * sections.  This includes hardware interrupt handlers, softirq handlers,
3509 * and NMI handlers.
3510 *
3511 * Note that this guarantee implies further memory-ordering guarantees.
3512 * On systems with more than one CPU, when synchronize_rcu() returns,
3513 * each CPU is guaranteed to have executed a full memory barrier since
3514 * the end of its last RCU read-side critical section whose beginning
3515 * preceded the call to synchronize_rcu().  In addition, each CPU having
3516 * an RCU read-side critical section that extends beyond the return from
3517 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3518 * after the beginning of synchronize_rcu() and before the beginning of
3519 * that RCU read-side critical section.  Note that these guarantees include
3520 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3521 * that are executing in the kernel.
3522 *
3523 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3524 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3525 * to have executed a full memory barrier during the execution of
3526 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3527 * again only if the system has more than one CPU).
3528 *
3529 * Implementation of these memory-ordering guarantees is described here:
3530 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3531 */
3532void synchronize_rcu(void)
3533{
3534	unsigned long flags;
3535	struct rcu_node *rnp;
3536
3537	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3538			 lock_is_held(&rcu_lock_map) ||
3539			 lock_is_held(&rcu_sched_lock_map),
3540			 "Illegal synchronize_rcu() in RCU read-side critical section");
3541	if (!rcu_blocking_is_gp()) {
3542		if (rcu_gp_is_expedited())
3543			synchronize_rcu_expedited();
3544		else
3545			wait_rcu_gp(call_rcu_hurry);
3546		return;
3547	}
3548
3549	// Context allows vacuous grace periods.
3550	// Note well that this code runs with !PREEMPT && !SMP.
3551	// In addition, all code that advances grace periods runs at
3552	// process level.  Therefore, this normal GP overlaps with other
3553	// normal GPs only by being fully nested within them, which allows
3554	// reuse of ->gp_seq_polled_snap.
3555	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3556	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3557
3558	// Update the normal grace-period counters to record
3559	// this grace period, but only those used by the boot CPU.
3560	// The rcu_scheduler_starting() will take care of the rest of
3561	// these counters.
3562	local_irq_save(flags);
3563	WARN_ON_ONCE(num_online_cpus() > 1);
3564	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3565	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3566		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3567	local_irq_restore(flags);
3568}
3569EXPORT_SYMBOL_GPL(synchronize_rcu);
3570
3571/**
3572 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3573 * @rgosp: Place to put state cookie
3574 *
3575 * Stores into @rgosp a value that will always be treated by functions
3576 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3577 * has already completed.
3578 */
3579void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3580{
3581	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3582	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
 
 
 
 
 
 
 
 
 
 
 
 
 
3583}
3584EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3585
3586/**
3587 * get_state_synchronize_rcu - Snapshot current RCU state
3588 *
3589 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3590 * or poll_state_synchronize_rcu() to determine whether or not a full
3591 * grace period has elapsed in the meantime.
3592 */
3593unsigned long get_state_synchronize_rcu(void)
3594{
3595	/*
3596	 * Any prior manipulation of RCU-protected data must happen
3597	 * before the load from ->gp_seq.
3598	 */
3599	smp_mb();  /* ^^^ */
3600	return rcu_seq_snap(&rcu_state.gp_seq_polled);
 
 
 
 
 
 
3601}
3602EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3603
3604/**
3605 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3606 * @rgosp: location to place combined normal/expedited grace-period state
3607 *
3608 * Places the normal and expedited grace-period states in @rgosp.  This
3609 * state value can be passed to a later call to cond_synchronize_rcu_full()
3610 * or poll_state_synchronize_rcu_full() to determine whether or not a
3611 * grace period (whether normal or expedited) has elapsed in the meantime.
3612 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3613 * long, but is guaranteed to see all grace periods.  In contrast, the
3614 * combined state occupies less memory, but can sometimes fail to take
3615 * grace periods into account.
3616 *
3617 * This does not guarantee that the needed grace period will actually
3618 * start.
 
 
 
 
 
 
3619 */
3620void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3621{
3622	struct rcu_node *rnp = rcu_get_root();
3623
3624	/*
3625	 * Any prior manipulation of RCU-protected data must happen
3626	 * before the loads from ->gp_seq and ->expedited_sequence.
3627	 */
3628	smp_mb();  /* ^^^ */
3629	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3630	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3631}
3632EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3633
3634/*
3635 * Helper function for start_poll_synchronize_rcu() and
3636 * start_poll_synchronize_rcu_full().
3637 */
3638static void start_poll_synchronize_rcu_common(void)
3639{
3640	unsigned long flags;
3641	bool needwake;
3642	struct rcu_data *rdp;
3643	struct rcu_node *rnp;
3644
3645	lockdep_assert_irqs_enabled();
3646	local_irq_save(flags);
3647	rdp = this_cpu_ptr(&rcu_data);
3648	rnp = rdp->mynode;
3649	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3650	// Note it is possible for a grace period to have elapsed between
3651	// the above call to get_state_synchronize_rcu() and the below call
3652	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3653	// get a grace period that no one needed.  These accesses are ordered
3654	// by smp_mb(), and we are accessing them in the opposite order
3655	// from which they are updated at grace-period start, as required.
3656	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3657	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3658	if (needwake)
3659		rcu_gp_kthread_wake();
3660}
 
3661
3662/**
3663 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3664 *
3665 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3666 * or poll_state_synchronize_rcu() to determine whether or not a full
3667 * grace period has elapsed in the meantime.  If the needed grace period
3668 * is not already slated to start, notifies RCU core of the need for that
3669 * grace period.
3670 *
3671 * Interrupts must be enabled for the case where it is necessary to awaken
3672 * the grace-period kthread.
3673 */
3674unsigned long start_poll_synchronize_rcu(void)
3675{
3676	unsigned long gp_seq = get_state_synchronize_rcu();
3677
3678	start_poll_synchronize_rcu_common();
3679	return gp_seq;
 
 
 
 
 
 
 
 
 
3680}
3681EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3682
3683/**
3684 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3685 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3686 *
3687 * Places the normal and expedited grace-period states in *@rgos.  This
3688 * state value can be passed to a later call to cond_synchronize_rcu_full()
3689 * or poll_state_synchronize_rcu_full() to determine whether or not a
3690 * grace period (whether normal or expedited) has elapsed in the meantime.
3691 * If the needed grace period is not already slated to start, notifies
3692 * RCU core of the need for that grace period.
3693 *
3694 * Interrupts must be enabled for the case where it is necessary to awaken
3695 * the grace-period kthread.
3696 */
3697void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3698{
3699	get_state_synchronize_rcu_full(rgosp);
3700
3701	start_poll_synchronize_rcu_common();
3702}
3703EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3704
3705/**
3706 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3707 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3708 *
3709 * If a full RCU grace period has elapsed since the earlier call from
3710 * which @oldstate was obtained, return @true, otherwise return @false.
3711 * If @false is returned, it is the caller's responsibility to invoke this
3712 * function later on until it does return @true.  Alternatively, the caller
3713 * can explicitly wait for a grace period, for example, by passing @oldstate
3714 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3715 *
3716 * Yes, this function does not take counter wrap into account.
3717 * But counter wrap is harmless.  If the counter wraps, we have waited for
3718 * more than a billion grace periods (and way more on a 64-bit system!).
3719 * Those needing to keep old state values for very long time periods
3720 * (many hours even on 32-bit systems) should check them occasionally and
3721 * either refresh them or set a flag indicating that the grace period has
3722 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3723 * to get a guaranteed-completed grace-period state.
3724 *
3725 * This function provides the same memory-ordering guarantees that
3726 * would be provided by a synchronize_rcu() that was invoked at the call
3727 * to the function that provided @oldstate, and that returned at the end
3728 * of this function.
3729 */
3730bool poll_state_synchronize_rcu(unsigned long oldstate)
3731{
3732	if (oldstate == RCU_GET_STATE_COMPLETED ||
3733	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3734		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3735		return true;
3736	}
3737	return false;
3738}
3739EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3740
3741/**
3742 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3743 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3744 *
3745 * If a full RCU grace period has elapsed since the earlier call from
3746 * which *rgosp was obtained, return @true, otherwise return @false.
3747 * If @false is returned, it is the caller's responsibility to invoke this
3748 * function later on until it does return @true.  Alternatively, the caller
3749 * can explicitly wait for a grace period, for example, by passing @rgosp
3750 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3751 *
3752 * Yes, this function does not take counter wrap into account.
3753 * But counter wrap is harmless.  If the counter wraps, we have waited
3754 * for more than a billion grace periods (and way more on a 64-bit
3755 * system!).  Those needing to keep rcu_gp_oldstate values for very
3756 * long time periods (many hours even on 32-bit systems) should check
3757 * them occasionally and either refresh them or set a flag indicating
3758 * that the grace period has completed.  Alternatively, they can use
3759 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3760 * grace-period state.
3761 *
3762 * This function provides the same memory-ordering guarantees that would
3763 * be provided by a synchronize_rcu() that was invoked at the call to
3764 * the function that provided @rgosp, and that returned at the end of this
3765 * function.  And this guarantee requires that the root rcu_node structure's
3766 * ->gp_seq field be checked instead of that of the rcu_state structure.
3767 * The problem is that the just-ending grace-period's callbacks can be
3768 * invoked between the time that the root rcu_node structure's ->gp_seq
3769 * field is updated and the time that the rcu_state structure's ->gp_seq
3770 * field is updated.  Therefore, if a single synchronize_rcu() is to
3771 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3772 * then the root rcu_node structure is the one that needs to be polled.
3773 */
3774bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3775{
3776	struct rcu_node *rnp = rcu_get_root();
3777
3778	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3779	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3780	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3781	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3782	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3783		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3784		return true;
3785	}
3786	return false;
3787}
3788EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3789
3790/**
3791 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3792 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3793 *
3794 * If a full RCU grace period has elapsed since the earlier call to
3795 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3796 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3797 *
3798 * Yes, this function does not take counter wrap into account.
3799 * But counter wrap is harmless.  If the counter wraps, we have waited for
3800 * more than 2 billion grace periods (and way more on a 64-bit system!),
3801 * so waiting for a couple of additional grace periods should be just fine.
3802 *
3803 * This function provides the same memory-ordering guarantees that
3804 * would be provided by a synchronize_rcu() that was invoked at the call
3805 * to the function that provided @oldstate and that returned at the end
3806 * of this function.
3807 */
3808void cond_synchronize_rcu(unsigned long oldstate)
3809{
3810	if (!poll_state_synchronize_rcu(oldstate))
3811		synchronize_rcu();
3812}
3813EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
 
 
 
 
 
 
3814
3815/**
3816 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3817 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3818 *
3819 * If a full RCU grace period has elapsed since the call to
3820 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3821 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3822 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3823 * for a full grace period.
3824 *
3825 * Yes, this function does not take counter wrap into account.
3826 * But counter wrap is harmless.  If the counter wraps, we have waited for
3827 * more than 2 billion grace periods (and way more on a 64-bit system!),
3828 * so waiting for a couple of additional grace periods should be just fine.
3829 *
3830 * This function provides the same memory-ordering guarantees that
3831 * would be provided by a synchronize_rcu() that was invoked at the call
3832 * to the function that provided @rgosp and that returned at the end of
3833 * this function.
3834 */
3835void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3836{
3837	if (!poll_state_synchronize_rcu_full(rgosp))
3838		synchronize_rcu();
3839}
3840EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3841
3842/*
3843 * Check to see if there is any immediate RCU-related work to be done by
3844 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3845 * in order of increasing expense: checks that can be carried out against
3846 * CPU-local state are performed first.  However, we must check for CPU
3847 * stalls first, else we might not get a chance.
3848 */
3849static int rcu_pending(int user)
3850{
3851	bool gp_in_progress;
3852	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3853	struct rcu_node *rnp = rdp->mynode;
3854
3855	lockdep_assert_irqs_disabled();
3856
3857	/* Check for CPU stalls, if enabled. */
3858	check_cpu_stall(rdp);
3859
3860	/* Does this CPU need a deferred NOCB wakeup? */
3861	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3862		return 1;
3863
3864	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3865	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3866		return 0;
3867
3868	/* Is the RCU core waiting for a quiescent state from this CPU? */
3869	gp_in_progress = rcu_gp_in_progress();
3870	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
 
 
 
3871		return 1;
 
3872
3873	/* Does this CPU have callbacks ready to invoke? */
3874	if (!rcu_rdp_is_offloaded(rdp) &&
3875	    rcu_segcblist_ready_cbs(&rdp->cblist))
3876		return 1;
 
3877
3878	/* Has RCU gone idle with this CPU needing another grace period? */
3879	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3880	    !rcu_rdp_is_offloaded(rdp) &&
3881	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 
 
 
 
 
 
 
 
 
 
 
3882		return 1;
 
3883
3884	/* Have RCU grace period completed or started?  */
3885	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3886	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3887		return 1;
 
3888
3889	/* nothing to do */
 
3890	return 0;
3891}
3892
3893/*
3894 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3895 * the compiler is expected to optimize this away.
 
3896 */
3897static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3898{
3899	trace_rcu_barrier(rcu_state.name, s, cpu,
3900			  atomic_read(&rcu_state.barrier_cpu_count), done);
 
 
 
 
3901}
3902
3903/*
3904 * RCU callback function for rcu_barrier().  If we are last, wake
3905 * up the task executing rcu_barrier().
3906 *
3907 * Note that the value of rcu_state.barrier_sequence must be captured
3908 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3909 * other CPUs might count the value down to zero before this CPU gets
3910 * around to invoking rcu_barrier_trace(), which might result in bogus
3911 * data from the next instance of rcu_barrier().
3912 */
3913static void rcu_barrier_callback(struct rcu_head *rhp)
3914{
3915	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
 
 
 
3916
3917	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3918		rcu_barrier_trace(TPS("LastCB"), -1, s);
3919		complete(&rcu_state.barrier_completion);
3920	} else {
3921		rcu_barrier_trace(TPS("CB"), -1, s);
 
 
 
 
3922	}
 
 
 
3923}
3924
3925/*
3926 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
 
3927 */
3928static void rcu_barrier_entrain(struct rcu_data *rdp)
 
3929{
3930	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3931	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3932	bool wake_nocb = false;
3933	bool was_alldone = false;
3934
3935	lockdep_assert_held(&rcu_state.barrier_lock);
3936	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3937		return;
3938	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3939	rdp->barrier_head.func = rcu_barrier_callback;
3940	debug_rcu_head_queue(&rdp->barrier_head);
3941	rcu_nocb_lock(rdp);
3942	/*
3943	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3944	 * queue. This way we don't wait for bypass timer that can reach seconds
3945	 * if it's fully lazy.
3946	 */
3947	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3948	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3949	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3950	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3951		atomic_inc(&rcu_state.barrier_cpu_count);
3952	} else {
3953		debug_rcu_head_unqueue(&rdp->barrier_head);
3954		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3955	}
3956	rcu_nocb_unlock(rdp);
3957	if (wake_nocb)
3958		wake_nocb_gp(rdp, false);
3959	smp_store_release(&rdp->barrier_seq_snap, gseq);
3960}
3961
3962/*
3963 * Called with preemption disabled, and from cross-cpu IRQ context.
3964 */
3965static void rcu_barrier_handler(void *cpu_in)
3966{
3967	uintptr_t cpu = (uintptr_t)cpu_in;
3968	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3969
3970	lockdep_assert_irqs_disabled();
3971	WARN_ON_ONCE(cpu != rdp->cpu);
3972	WARN_ON_ONCE(cpu != smp_processor_id());
3973	raw_spin_lock(&rcu_state.barrier_lock);
3974	rcu_barrier_entrain(rdp);
3975	raw_spin_unlock(&rcu_state.barrier_lock);
3976}
3977
3978/**
3979 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3980 *
3981 * Note that this primitive does not necessarily wait for an RCU grace period
3982 * to complete.  For example, if there are no RCU callbacks queued anywhere
3983 * in the system, then rcu_barrier() is within its rights to return
3984 * immediately, without waiting for anything, much less an RCU grace period.
3985 */
3986void rcu_barrier(void)
3987{
3988	uintptr_t cpu;
3989	unsigned long flags;
3990	unsigned long gseq;
3991	struct rcu_data *rdp;
3992	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
 
3993
3994	rcu_barrier_trace(TPS("Begin"), -1, s);
3995
3996	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3997	mutex_lock(&rcu_state.barrier_mutex);
 
 
 
 
 
 
3998
3999	/* Did someone else do our work for us? */
4000	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4001		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4002		smp_mb(); /* caller's subsequent code after above check. */
4003		mutex_unlock(&rcu_state.barrier_mutex);
4004		return;
4005	}
4006
4007	/* Mark the start of the barrier operation. */
4008	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4009	rcu_seq_start(&rcu_state.barrier_sequence);
4010	gseq = rcu_state.barrier_sequence;
4011	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4012
4013	/*
4014	 * Initialize the count to two rather than to zero in order
4015	 * to avoid a too-soon return to zero in case of an immediate
4016	 * invocation of the just-enqueued callback (or preemption of
4017	 * this task).  Exclude CPU-hotplug operations to ensure that no
4018	 * offline non-offloaded CPU has callbacks queued.
4019	 */
4020	init_completion(&rcu_state.barrier_completion);
4021	atomic_set(&rcu_state.barrier_cpu_count, 2);
4022	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
 
 
 
4023
4024	/*
4025	 * Force each CPU with callbacks to register a new callback.
4026	 * When that callback is invoked, we will know that all of the
4027	 * corresponding CPU's preceding callbacks have been invoked.
4028	 */
4029	for_each_possible_cpu(cpu) {
4030		rdp = per_cpu_ptr(&rcu_data, cpu);
4031retry:
4032		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4033			continue;
4034		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4035		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4036			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4037			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4038			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4039			continue;
4040		}
4041		if (!rcu_rdp_cpu_online(rdp)) {
4042			rcu_barrier_entrain(rdp);
4043			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4044			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4045			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4046			continue;
4047		}
4048		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4049		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4050			schedule_timeout_uninterruptible(1);
4051			goto retry;
4052		}
4053		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4054		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4055	}
 
4056
4057	/*
4058	 * Now that we have an rcu_barrier_callback() callback on each
4059	 * CPU, and thus each counted, remove the initial count.
4060	 */
4061	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4062		complete(&rcu_state.barrier_completion);
4063
4064	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4065	wait_for_completion(&rcu_state.barrier_completion);
4066
4067	/* Mark the end of the barrier operation. */
4068	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4069	rcu_seq_end(&rcu_state.barrier_sequence);
4070	gseq = rcu_state.barrier_sequence;
4071	for_each_possible_cpu(cpu) {
4072		rdp = per_cpu_ptr(&rcu_data, cpu);
4073
4074		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4075	}
4076
4077	/* Other rcu_barrier() invocations can now safely proceed. */
4078	mutex_unlock(&rcu_state.barrier_mutex);
4079}
4080EXPORT_SYMBOL_GPL(rcu_barrier);
4081
4082/*
4083 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4084 * first CPU in a given leaf rcu_node structure coming online.  The caller
4085 * must hold the corresponding leaf rcu_node ->lock with interrupts
4086 * disabled.
4087 */
4088static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4089{
4090	long mask;
4091	long oldmask;
4092	struct rcu_node *rnp = rnp_leaf;
4093
4094	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4095	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4096	for (;;) {
4097		mask = rnp->grpmask;
4098		rnp = rnp->parent;
4099		if (rnp == NULL)
4100			return;
4101		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4102		oldmask = rnp->qsmaskinit;
4103		rnp->qsmaskinit |= mask;
4104		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4105		if (oldmask)
4106			return;
4107	}
4108}
 
4109
4110/*
4111 * Do boot-time initialization of a CPU's per-CPU RCU data.
4112 */
4113static void __init
4114rcu_boot_init_percpu_data(int cpu)
4115{
4116	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4117	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 
4118
4119	/* Set up local state, ensuring consistent view of global state. */
4120	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4121	INIT_WORK(&rdp->strict_work, strict_work_handler);
4122	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4123	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4124	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4125	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4126	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4127	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4128	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4129	rdp->last_sched_clock = jiffies;
4130	rdp->cpu = cpu;
 
4131	rcu_boot_init_nocb_percpu_data(rdp);
 
4132}
4133
4134/*
4135 * Invoked early in the CPU-online process, when pretty much all services
4136 * are available.  The incoming CPU is not present.
4137 *
4138 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4139 * offline event can be happening at a given time.  Note also that we can
4140 * accept some slop in the rsp->gp_seq access due to the fact that this
4141 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4142 * And any offloaded callbacks are being numbered elsewhere.
4143 */
4144int rcutree_prepare_cpu(unsigned int cpu)
 
4145{
4146	unsigned long flags;
4147	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4148	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4149	struct rcu_node *rnp = rcu_get_root();
 
 
 
4150
4151	/* Set up local state, ensuring consistent view of global state. */
4152	raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
 
4153	rdp->qlen_last_fqs_check = 0;
4154	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4155	rdp->blimit = blimit;
4156	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4157	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4158
4159	/*
4160	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4161	 * (re-)initialized.
4162	 */
4163	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4164		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4165
4166	/*
4167	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4168	 * propagation up the rcu_node tree will happen at the beginning
4169	 * of the next grace period.
4170	 */
4171	rnp = rdp->mynode;
4172	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4173	rdp->beenonline = true;	 /* We have now been online. */
4174	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4175	rdp->gp_seq_needed = rdp->gp_seq;
4176	rdp->cpu_no_qs.b.norm = true;
4177	rdp->core_needs_qs = false;
4178	rdp->rcu_iw_pending = false;
4179	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4180	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4181	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4182	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4183	rcu_spawn_one_boost_kthread(rnp);
4184	rcu_spawn_cpu_nocb_kthread(cpu);
4185	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4186
4187	return 0;
4188}
4189
4190/*
4191 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4192 */
4193static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4194{
4195	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4196
4197	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4198}
4199
4200/*
4201 * Near the end of the CPU-online process.  Pretty much all services
4202 * enabled, and the CPU is now very much alive.
4203 */
4204int rcutree_online_cpu(unsigned int cpu)
4205{
4206	unsigned long flags;
4207	struct rcu_data *rdp;
4208	struct rcu_node *rnp;
4209
4210	rdp = per_cpu_ptr(&rcu_data, cpu);
4211	rnp = rdp->mynode;
4212	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4213	rnp->ffmask |= rdp->grpmask;
4214	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4215	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4216		return 0; /* Too early in boot for scheduler work. */
4217	sync_sched_exp_online_cleanup(cpu);
4218	rcutree_affinity_setting(cpu, -1);
4219
4220	// Stop-machine done, so allow nohz_full to disable tick.
4221	tick_dep_clear(TICK_DEP_BIT_RCU);
4222	return 0;
4223}
4224
4225/*
4226 * Near the beginning of the process.  The CPU is still very much alive
4227 * with pretty much all services enabled.
4228 */
4229int rcutree_offline_cpu(unsigned int cpu)
4230{
4231	unsigned long flags;
4232	struct rcu_data *rdp;
4233	struct rcu_node *rnp;
4234
4235	rdp = per_cpu_ptr(&rcu_data, cpu);
4236	rnp = rdp->mynode;
4237	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4238	rnp->ffmask &= ~rdp->grpmask;
4239	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4240
4241	rcutree_affinity_setting(cpu, cpu);
4242
4243	// nohz_full CPUs need the tick for stop-machine to work quickly
4244	tick_dep_set(TICK_DEP_BIT_RCU);
4245	return 0;
4246}
4247
4248/*
4249 * Mark the specified CPU as being online so that subsequent grace periods
4250 * (both expedited and normal) will wait on it.  Note that this means that
4251 * incoming CPUs are not allowed to use RCU read-side critical sections
4252 * until this function is called.  Failing to observe this restriction
4253 * will result in lockdep splats.
4254 *
4255 * Note that this function is special in that it is invoked directly
4256 * from the incoming CPU rather than from the cpuhp_step mechanism.
4257 * This is because this function must be invoked at a precise location.
4258 */
4259void rcu_cpu_starting(unsigned int cpu)
4260{
4261	unsigned long flags;
4262	unsigned long mask;
4263	struct rcu_data *rdp;
4264	struct rcu_node *rnp;
4265	bool newcpu;
4266
4267	rdp = per_cpu_ptr(&rcu_data, cpu);
4268	if (rdp->cpu_started)
4269		return;
4270	rdp->cpu_started = true;
4271
 
4272	rnp = rdp->mynode;
4273	mask = rdp->grpmask;
4274	local_irq_save(flags);
4275	arch_spin_lock(&rcu_state.ofl_lock);
4276	rcu_dynticks_eqs_online();
4277	raw_spin_lock(&rcu_state.barrier_lock);
4278	raw_spin_lock_rcu_node(rnp);
4279	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4280	raw_spin_unlock(&rcu_state.barrier_lock);
4281	newcpu = !(rnp->expmaskinitnext & mask);
4282	rnp->expmaskinitnext |= mask;
4283	/* Allow lockless access for expedited grace periods. */
4284	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4285	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4286	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4287	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4288	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4289
4290	/* An incoming CPU should never be blocking a grace period. */
4291	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4292		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4293		unsigned long flags2;
4294
4295		local_irq_save(flags2);
4296		rcu_disable_urgency_upon_qs(rdp);
4297		/* Report QS -after- changing ->qsmaskinitnext! */
4298		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4299	} else {
4300		raw_spin_unlock_rcu_node(rnp);
4301	}
4302	arch_spin_unlock(&rcu_state.ofl_lock);
4303	local_irq_restore(flags);
4304	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
 
4305}
4306
4307/*
4308 * The outgoing function has no further need of RCU, so remove it from
4309 * the rcu_node tree's ->qsmaskinitnext bit masks.
4310 *
4311 * Note that this function is special in that it is invoked directly
4312 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4313 * This is because this function must be invoked at a precise location.
4314 */
4315void rcu_report_dead(unsigned int cpu)
4316{
4317	unsigned long flags, seq_flags;
4318	unsigned long mask;
4319	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4320	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4321
4322	// Do any dangling deferred wakeups.
4323	do_nocb_deferred_wakeup(rdp);
4324
4325	rcu_preempt_deferred_qs(current);
4326
4327	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4328	mask = rdp->grpmask;
4329	local_irq_save(seq_flags);
4330	arch_spin_lock(&rcu_state.ofl_lock);
4331	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4332	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4333	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4334	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4335		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4336		rcu_disable_urgency_upon_qs(rdp);
4337		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4338		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4339	}
4340	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4341	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4342	arch_spin_unlock(&rcu_state.ofl_lock);
4343	local_irq_restore(seq_flags);
4344
4345	rdp->cpu_started = false;
4346}
4347
4348#ifdef CONFIG_HOTPLUG_CPU
4349/*
4350 * The outgoing CPU has just passed through the dying-idle state, and we
4351 * are being invoked from the CPU that was IPIed to continue the offline
4352 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4353 */
4354void rcutree_migrate_callbacks(int cpu)
 
4355{
4356	unsigned long flags;
4357	struct rcu_data *my_rdp;
4358	struct rcu_node *my_rnp;
4359	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4360	bool needwake;
4361
4362	if (rcu_rdp_is_offloaded(rdp) ||
4363	    rcu_segcblist_empty(&rdp->cblist))
4364		return;  /* No callbacks to migrate. */
4365
4366	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4367	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4368	rcu_barrier_entrain(rdp);
4369	my_rdp = this_cpu_ptr(&rcu_data);
4370	my_rnp = my_rdp->mynode;
4371	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4372	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4373	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4374	/* Leverage recent GPs and set GP for new callbacks. */
4375	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4376		   rcu_advance_cbs(my_rnp, my_rdp);
4377	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4378	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4379	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4380	rcu_segcblist_disable(&rdp->cblist);
4381	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4382	check_cb_ovld_locked(my_rdp, my_rnp);
4383	if (rcu_rdp_is_offloaded(my_rdp)) {
4384		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4385		__call_rcu_nocb_wake(my_rdp, true, flags);
4386	} else {
4387		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4388		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4389	}
4390	if (needwake)
4391		rcu_gp_kthread_wake();
4392	lockdep_assert_irqs_enabled();
4393	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4394		  !rcu_segcblist_empty(&rdp->cblist),
4395		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4396		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4397		  rcu_segcblist_first_cb(&rdp->cblist));
4398}
4399#endif
4400
4401/*
4402 * On non-huge systems, use expedited RCU grace periods to make suspend
4403 * and hibernation run faster.
4404 */
4405static int rcu_pm_notify(struct notifier_block *self,
4406			 unsigned long action, void *hcpu)
4407{
4408	switch (action) {
4409	case PM_HIBERNATION_PREPARE:
4410	case PM_SUSPEND_PREPARE:
4411		rcu_expedite_gp();
 
4412		break;
4413	case PM_POST_HIBERNATION:
4414	case PM_POST_SUSPEND:
4415		rcu_unexpedite_gp();
4416		break;
4417	default:
4418		break;
4419	}
4420	return NOTIFY_OK;
4421}
4422
4423#ifdef CONFIG_RCU_EXP_KTHREAD
4424struct kthread_worker *rcu_exp_gp_kworker;
4425struct kthread_worker *rcu_exp_par_gp_kworker;
4426
4427static void __init rcu_start_exp_gp_kworkers(void)
4428{
4429	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4430	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4431	struct sched_param param = { .sched_priority = kthread_prio };
4432
4433	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4434	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4435		pr_err("Failed to create %s!\n", gp_kworker_name);
4436		return;
4437	}
4438
4439	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4440	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4441		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4442		kthread_destroy_worker(rcu_exp_gp_kworker);
4443		return;
4444	}
4445
4446	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4447	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4448				   &param);
4449}
4450
4451static inline void rcu_alloc_par_gp_wq(void)
4452{
4453}
4454#else /* !CONFIG_RCU_EXP_KTHREAD */
4455struct workqueue_struct *rcu_par_gp_wq;
4456
4457static void __init rcu_start_exp_gp_kworkers(void)
4458{
4459}
4460
4461static inline void rcu_alloc_par_gp_wq(void)
4462{
4463	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4464	WARN_ON(!rcu_par_gp_wq);
4465}
4466#endif /* CONFIG_RCU_EXP_KTHREAD */
4467
4468/*
4469 * Spawn the kthreads that handle RCU's grace periods.
4470 */
4471static int __init rcu_spawn_gp_kthread(void)
4472{
4473	unsigned long flags;
4474	struct rcu_node *rnp;
4475	struct sched_param sp;
4476	struct task_struct *t;
4477	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4478
4479	rcu_scheduler_fully_active = 1;
4480	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4481	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4482		return 0;
4483	if (kthread_prio) {
4484		sp.sched_priority = kthread_prio;
4485		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4486	}
4487	rnp = rcu_get_root();
4488	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4489	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4490	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4491	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4492	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4493	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4494	wake_up_process(t);
4495	/* This is a pre-SMP initcall, we expect a single CPU */
4496	WARN_ON(num_online_cpus() > 1);
4497	/*
4498	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4499	 * due to rcu_scheduler_fully_active.
4500	 */
4501	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4502	rcu_spawn_one_boost_kthread(rdp->mynode);
4503	rcu_spawn_core_kthreads();
4504	/* Create kthread worker for expedited GPs */
4505	rcu_start_exp_gp_kworkers();
4506	return 0;
4507}
4508early_initcall(rcu_spawn_gp_kthread);
4509
4510/*
4511 * This function is invoked towards the end of the scheduler's
4512 * initialization process.  Before this is called, the idle task might
4513 * contain synchronous grace-period primitives (during which time, this idle
4514 * task is booting the system, and such primitives are no-ops).  After this
4515 * function is called, any synchronous grace-period primitives are run as
4516 * expedited, with the requesting task driving the grace period forward.
4517 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4518 * runtime RCU functionality.
4519 */
4520void rcu_scheduler_starting(void)
4521{
4522	unsigned long flags;
4523	struct rcu_node *rnp;
4524
4525	WARN_ON(num_online_cpus() != 1);
4526	WARN_ON(nr_context_switches() > 0);
4527	rcu_test_sync_prims();
 
4528
4529	// Fix up the ->gp_seq counters.
4530	local_irq_save(flags);
4531	rcu_for_each_node_breadth_first(rnp)
4532		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4533	local_irq_restore(flags);
 
 
 
4534
4535	// Switch out of early boot mode.
4536	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4537	rcu_test_sync_prims();
4538}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4539
4540/*
4541 * Helper function for rcu_init() that initializes the rcu_state structure.
4542 */
4543static void __init rcu_init_one(void)
 
4544{
4545	static const char * const buf[] = RCU_NODE_NAME_INIT;
4546	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4547	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4548	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4549
4550	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
 
 
4551	int cpustride = 1;
4552	int i;
4553	int j;
4554	struct rcu_node *rnp;
4555
4556	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4557
4558	/* Silence gcc 4.8 false positive about array index out of range. */
4559	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4560		panic("rcu_init_one: rcu_num_lvls out of range");
4561
4562	/* Initialize the level-tracking arrays. */
4563
 
 
4564	for (i = 1; i < rcu_num_lvls; i++)
4565		rcu_state.level[i] =
4566			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4567	rcu_init_levelspread(levelspread, num_rcu_lvl);
4568
4569	/* Initialize the elements themselves, starting from the leaves. */
4570
4571	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4572		cpustride *= levelspread[i];
4573		rnp = rcu_state.level[i];
4574		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4575			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4576			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4577						   &rcu_node_class[i], buf[i]);
4578			raw_spin_lock_init(&rnp->fqslock);
4579			lockdep_set_class_and_name(&rnp->fqslock,
4580						   &rcu_fqs_class[i], fqs[i]);
4581			rnp->gp_seq = rcu_state.gp_seq;
4582			rnp->gp_seq_needed = rcu_state.gp_seq;
4583			rnp->completedqs = rcu_state.gp_seq;
4584			rnp->qsmask = 0;
4585			rnp->qsmaskinit = 0;
4586			rnp->grplo = j * cpustride;
4587			rnp->grphi = (j + 1) * cpustride - 1;
4588			if (rnp->grphi >= nr_cpu_ids)
4589				rnp->grphi = nr_cpu_ids - 1;
4590			if (i == 0) {
4591				rnp->grpnum = 0;
4592				rnp->grpmask = 0;
4593				rnp->parent = NULL;
4594			} else {
4595				rnp->grpnum = j % levelspread[i - 1];
4596				rnp->grpmask = BIT(rnp->grpnum);
4597				rnp->parent = rcu_state.level[i - 1] +
4598					      j / levelspread[i - 1];
4599			}
4600			rnp->level = i;
4601			INIT_LIST_HEAD(&rnp->blkd_tasks);
4602			rcu_init_one_nocb(rnp);
4603			init_waitqueue_head(&rnp->exp_wq[0]);
4604			init_waitqueue_head(&rnp->exp_wq[1]);
4605			init_waitqueue_head(&rnp->exp_wq[2]);
4606			init_waitqueue_head(&rnp->exp_wq[3]);
4607			spin_lock_init(&rnp->exp_lock);
4608			mutex_init(&rnp->boost_kthread_mutex);
4609			raw_spin_lock_init(&rnp->exp_poll_lock);
4610			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4611			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4612		}
4613	}
4614
4615	init_swait_queue_head(&rcu_state.gp_wq);
4616	init_swait_queue_head(&rcu_state.expedited_wq);
4617	rnp = rcu_first_leaf_node();
 
4618	for_each_possible_cpu(i) {
4619		while (i > rnp->grphi)
4620			rnp++;
4621		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4622		rcu_boot_init_percpu_data(i);
4623	}
4624}
4625
4626/*
4627 * Force priority from the kernel command-line into range.
4628 */
4629static void __init sanitize_kthread_prio(void)
4630{
4631	int kthread_prio_in = kthread_prio;
4632
4633	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4634	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4635		kthread_prio = 2;
4636	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4637		kthread_prio = 1;
4638	else if (kthread_prio < 0)
4639		kthread_prio = 0;
4640	else if (kthread_prio > 99)
4641		kthread_prio = 99;
4642
4643	if (kthread_prio != kthread_prio_in)
4644		pr_alert("%s: Limited prio to %d from %d\n",
4645			 __func__, kthread_prio, kthread_prio_in);
4646}
4647
4648/*
4649 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4650 * replace the definitions in tree.h because those are needed to size
4651 * the ->node array in the rcu_state structure.
4652 */
4653void rcu_init_geometry(void)
4654{
4655	ulong d;
4656	int i;
4657	static unsigned long old_nr_cpu_ids;
4658	int rcu_capacity[RCU_NUM_LVLS];
4659	static bool initialized;
4660
4661	if (initialized) {
4662		/*
4663		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4664		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4665		 */
4666		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4667		return;
4668	}
4669
4670	old_nr_cpu_ids = nr_cpu_ids;
4671	initialized = true;
4672
4673	/*
4674	 * Initialize any unspecified boot parameters.
4675	 * The default values of jiffies_till_first_fqs and
4676	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4677	 * value, which is a function of HZ, then adding one for each
4678	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4679	 */
4680	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4681	if (jiffies_till_first_fqs == ULONG_MAX)
4682		jiffies_till_first_fqs = d;
4683	if (jiffies_till_next_fqs == ULONG_MAX)
4684		jiffies_till_next_fqs = d;
4685	adjust_jiffies_till_sched_qs();
4686
4687	/* If the compile-time values are accurate, just leave. */
4688	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4689	    nr_cpu_ids == NR_CPUS)
4690		return;
4691	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4692		rcu_fanout_leaf, nr_cpu_ids);
4693
4694	/*
4695	 * The boot-time rcu_fanout_leaf parameter must be at least two
4696	 * and cannot exceed the number of bits in the rcu_node masks.
4697	 * Complain and fall back to the compile-time values if this
4698	 * limit is exceeded.
4699	 */
4700	if (rcu_fanout_leaf < 2 ||
4701	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4702		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4703		WARN_ON(1);
4704		return;
4705	}
4706
4707	/*
4708	 * Compute number of nodes that can be handled an rcu_node tree
4709	 * with the given number of levels.
4710	 */
4711	rcu_capacity[0] = rcu_fanout_leaf;
4712	for (i = 1; i < RCU_NUM_LVLS; i++)
4713		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4714
4715	/*
4716	 * The tree must be able to accommodate the configured number of CPUs.
4717	 * If this limit is exceeded, fall back to the compile-time values.
4718	 */
4719	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4720		rcu_fanout_leaf = RCU_FANOUT_LEAF;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4721		WARN_ON(1);
4722		return;
4723	}
4724
4725	/* Calculate the number of levels in the tree. */
4726	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4727	}
4728	rcu_num_lvls = i + 1;
4729
4730	/* Calculate the number of rcu_nodes at each level of the tree. */
4731	for (i = 0; i < rcu_num_lvls; i++) {
4732		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4733		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4734	}
 
 
 
 
 
 
4735
4736	/* Calculate the total number of rcu_node structures. */
4737	rcu_num_nodes = 0;
4738	for (i = 0; i < rcu_num_lvls; i++)
4739		rcu_num_nodes += num_rcu_lvl[i];
4740}
4741
4742/*
4743 * Dump out the structure of the rcu_node combining tree associated
4744 * with the rcu_state structure.
4745 */
4746static void __init rcu_dump_rcu_node_tree(void)
4747{
4748	int level = 0;
4749	struct rcu_node *rnp;
4750
4751	pr_info("rcu_node tree layout dump\n");
4752	pr_info(" ");
4753	rcu_for_each_node_breadth_first(rnp) {
4754		if (rnp->level != level) {
4755			pr_cont("\n");
4756			pr_info(" ");
4757			level = rnp->level;
4758		}
4759		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4760	}
4761	pr_cont("\n");
4762}
4763
4764struct workqueue_struct *rcu_gp_wq;
4765
4766static void __init kfree_rcu_batch_init(void)
4767{
4768	int cpu;
4769	int i;
4770
4771	/* Clamp it to [0:100] seconds interval. */
4772	if (rcu_delay_page_cache_fill_msec < 0 ||
4773		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4774
4775		rcu_delay_page_cache_fill_msec =
4776			clamp(rcu_delay_page_cache_fill_msec, 0,
4777				(int) (100 * MSEC_PER_SEC));
4778
4779		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4780			rcu_delay_page_cache_fill_msec);
4781	}
4782
4783	for_each_possible_cpu(cpu) {
4784		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4785
4786		for (i = 0; i < KFREE_N_BATCHES; i++) {
4787			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4788			krcp->krw_arr[i].krcp = krcp;
4789		}
4790
4791		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4792		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4793		krcp->initialized = true;
4794	}
4795	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4796		pr_err("Failed to register kfree_rcu() shrinker!\n");
4797}
4798
4799void __init rcu_init(void)
4800{
4801	int cpu = smp_processor_id();
4802
4803	rcu_early_boot_tests();
4804
4805	kfree_rcu_batch_init();
4806	rcu_bootup_announce();
4807	sanitize_kthread_prio();
4808	rcu_init_geometry();
4809	rcu_init_one();
4810	if (dump_tree)
4811		rcu_dump_rcu_node_tree();
4812	if (use_softirq)
4813		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4814
4815	/*
4816	 * We don't need protection against CPU-hotplug here because
4817	 * this is called early in boot, before either interrupts
4818	 * or the scheduler are operational.
4819	 */
 
4820	pm_notifier(rcu_pm_notify, 0);
4821	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4822	rcutree_prepare_cpu(cpu);
4823	rcu_cpu_starting(cpu);
4824	rcutree_online_cpu(cpu);
4825
4826	/* Create workqueue for Tree SRCU and for expedited GPs. */
4827	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4828	WARN_ON(!rcu_gp_wq);
4829	rcu_alloc_par_gp_wq();
4830
4831	/* Fill in default value for rcutree.qovld boot parameter. */
4832	/* -After- the rcu_node ->lock fields are initialized! */
4833	if (qovld < 0)
4834		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4835	else
4836		qovld_calc = qovld;
4837
4838	// Kick-start any polled grace periods that started early.
4839	if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4840		(void)start_poll_synchronize_rcu_expedited();
4841}
4842
4843#include "tree_stall.h"
4844#include "tree_exp.h"
4845#include "tree_nocb.h"
4846#include "tree_plugin.h"
v3.15
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
 
 
 
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
 
  38#include <linux/nmi.h>
  39#include <linux/atomic.h>
  40#include <linux/bitops.h>
  41#include <linux/export.h>
  42#include <linux/completion.h>
  43#include <linux/moduleparam.h>
  44#include <linux/module.h>
 
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
 
  53#include <linux/prefetch.h>
  54#include <linux/delay.h>
  55#include <linux/stop_machine.h>
  56#include <linux/random.h>
  57#include <linux/ftrace_event.h>
  58#include <linux/suspend.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  59
  60#include "tree.h"
  61#include "rcu.h"
  62
  63MODULE_ALIAS("rcutree");
  64#ifdef MODULE_PARAM_PREFIX
  65#undef MODULE_PARAM_PREFIX
  66#endif
  67#define MODULE_PARAM_PREFIX "rcutree."
  68
  69/* Data structures. */
  70
  71static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
  72static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  73
  74/*
  75 * In order to export the rcu_state name to the tracing tools, it
  76 * needs to be added in the __tracepoint_string section.
  77 * This requires defining a separate variable tp_<sname>_varname
  78 * that points to the string being used, and this will allow
  79 * the tracing userspace tools to be able to decipher the string
  80 * address to the matching string.
  81 */
  82#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  83static char sname##_varname[] = #sname; \
  84static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname; \
  85struct rcu_state sname##_state = { \
  86	.level = { &sname##_state.node[0] }, \
  87	.call = cr, \
  88	.fqs_state = RCU_GP_IDLE, \
  89	.gpnum = 0UL - 300UL, \
  90	.completed = 0UL - 300UL, \
  91	.orphan_lock = __RAW_SPIN_LOCK_UNLOCKED(&sname##_state.orphan_lock), \
  92	.orphan_nxttail = &sname##_state.orphan_nxtlist, \
  93	.orphan_donetail = &sname##_state.orphan_donelist, \
  94	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
  95	.onoff_mutex = __MUTEX_INITIALIZER(sname##_state.onoff_mutex), \
  96	.name = sname##_varname, \
  97	.abbr = sabbr, \
  98}; \
  99DEFINE_PER_CPU(struct rcu_data, sname##_data)
 100
 101RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 102RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 103
 104static struct rcu_state *rcu_state;
 105LIST_HEAD(rcu_struct_flavors);
 106
 107/* Increase (but not decrease) the CONFIG_RCU_FANOUT_LEAF at boot time. */
 108static int rcu_fanout_leaf = CONFIG_RCU_FANOUT_LEAF;
 109module_param(rcu_fanout_leaf, int, 0444);
 110int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 111static int num_rcu_lvl[] = {  /* Number of rcu_nodes at specified level. */
 112	NUM_RCU_LVL_0,
 113	NUM_RCU_LVL_1,
 114	NUM_RCU_LVL_2,
 115	NUM_RCU_LVL_3,
 116	NUM_RCU_LVL_4,
 117};
 118int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 119
 120/*
 121 * The rcu_scheduler_active variable transitions from zero to one just
 122 * before the first task is spawned.  So when this variable is zero, RCU
 123 * can assume that there is but one task, allowing RCU to (for example)
 124 * optimize synchronize_sched() to a simple barrier().  When this variable
 125 * is one, RCU must actually do all the hard work required to detect real
 126 * grace periods.  This variable is also used to suppress boot-time false
 127 * positives from lockdep-RCU error checking.
 
 
 
 128 */
 129int rcu_scheduler_active __read_mostly;
 130EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 131
 132/*
 133 * The rcu_scheduler_fully_active variable transitions from zero to one
 134 * during the early_initcall() processing, which is after the scheduler
 135 * is capable of creating new tasks.  So RCU processing (for example,
 136 * creating tasks for RCU priority boosting) must be delayed until after
 137 * rcu_scheduler_fully_active transitions from zero to one.  We also
 138 * currently delay invocation of any RCU callbacks until after this point.
 139 *
 140 * It might later prove better for people registering RCU callbacks during
 141 * early boot to take responsibility for these callbacks, but one step at
 142 * a time.
 143 */
 144static int rcu_scheduler_fully_active __read_mostly;
 145
 146#ifdef CONFIG_RCU_BOOST
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 147
 148/*
 149 * Control variables for per-CPU and per-rcu_node kthreads.  These
 150 * handle all flavors of RCU.
 
 
 151 */
 152static DEFINE_PER_CPU(struct task_struct *, rcu_cpu_kthread_task);
 153DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_status);
 154DEFINE_PER_CPU(unsigned int, rcu_cpu_kthread_loops);
 155DEFINE_PER_CPU(char, rcu_cpu_has_work);
 156
 157#endif /* #ifdef CONFIG_RCU_BOOST */
 
 
 
 
 
 
 
 
 
 158
 159static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 160static void invoke_rcu_core(void);
 161static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 
 
 
 162
 163/*
 164 * Track the rcutorture test sequence number and the update version
 165 * number within a given test.  The rcutorture_testseq is incremented
 166 * on every rcutorture module load and unload, so has an odd value
 167 * when a test is running.  The rcutorture_vernum is set to zero
 168 * when rcutorture starts and is incremented on each rcutorture update.
 169 * These variables enable correlating rcutorture output with the
 170 * RCU tracing information.
 171 */
 172unsigned long rcutorture_testseq;
 173unsigned long rcutorture_vernum;
 174
 175/*
 176 * Return true if an RCU grace period is in progress.  The ACCESS_ONCE()s
 177 * permit this function to be invoked without holding the root rcu_node
 178 * structure's ->lock, but of course results can be subject to change.
 
 179 */
 180static int rcu_gp_in_progress(struct rcu_state *rsp)
 181{
 182	return ACCESS_ONCE(rsp->completed) != ACCESS_ONCE(rsp->gpnum);
 183}
 184
 185/*
 186 * Note a quiescent state.  Because we do not need to know
 187 * how many quiescent states passed, just if there was at least
 188 * one since the start of the grace period, this just sets a flag.
 189 * The caller must have disabled preemption.
 190 */
 191void rcu_sched_qs(int cpu)
 192{
 193	struct rcu_data *rdp = &per_cpu(rcu_sched_data, cpu);
 194
 195	if (rdp->passed_quiesce == 0)
 196		trace_rcu_grace_period(TPS("rcu_sched"), rdp->gpnum, TPS("cpuqs"));
 197	rdp->passed_quiesce = 1;
 198}
 199
 200void rcu_bh_qs(int cpu)
 
 
 
 
 
 201{
 202	struct rcu_data *rdp = &per_cpu(rcu_bh_data, cpu);
 203
 204	if (rdp->passed_quiesce == 0)
 205		trace_rcu_grace_period(TPS("rcu_bh"), rdp->gpnum, TPS("cpuqs"));
 206	rdp->passed_quiesce = 1;
 207}
 208
 209/*
 210 * Note a context switch.  This is a quiescent state for RCU-sched,
 211 * and requires special handling for preemptible RCU.
 212 * The caller must have disabled preemption.
 213 */
 214void rcu_note_context_switch(int cpu)
 215{
 216	trace_rcu_utilization(TPS("Start context switch"));
 217	rcu_sched_qs(cpu);
 218	rcu_preempt_note_context_switch(cpu);
 219	trace_rcu_utilization(TPS("End context switch"));
 
 220}
 221EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 222
 223static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 224	.dynticks_nesting = DYNTICK_TASK_EXIT_IDLE,
 225	.dynticks = ATOMIC_INIT(1),
 226#ifdef CONFIG_NO_HZ_FULL_SYSIDLE
 227	.dynticks_idle_nesting = DYNTICK_TASK_NEST_VALUE,
 228	.dynticks_idle = ATOMIC_INIT(1),
 229#endif /* #ifdef CONFIG_NO_HZ_FULL_SYSIDLE */
 230};
 231
 232static long blimit = 10;	/* Maximum callbacks per rcu_do_batch. */
 233static long qhimark = 10000;	/* If this many pending, ignore blimit. */
 234static long qlowmark = 100;	/* Once only this many pending, use blimit. */
 235
 236module_param(blimit, long, 0444);
 237module_param(qhimark, long, 0444);
 238module_param(qlowmark, long, 0444);
 239
 240static ulong jiffies_till_first_fqs = ULONG_MAX;
 241static ulong jiffies_till_next_fqs = ULONG_MAX;
 242
 243module_param(jiffies_till_first_fqs, ulong, 0644);
 244module_param(jiffies_till_next_fqs, ulong, 0644);
 245
 246static void rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 247				  struct rcu_data *rdp);
 248static void force_qs_rnp(struct rcu_state *rsp,
 249			 int (*f)(struct rcu_data *rsp, bool *isidle,
 250				  unsigned long *maxj),
 251			 bool *isidle, unsigned long *maxj);
 252static void force_quiescent_state(struct rcu_state *rsp);
 253static int rcu_pending(int cpu);
 254
 255/*
 256 * Return the number of RCU-sched batches processed thus far for debug & stats.
 257 */
 258long rcu_batches_completed_sched(void)
 259{
 260	return rcu_sched_state.completed;
 
 
 261}
 262EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 263
 264/*
 265 * Return the number of RCU BH batches processed thus far for debug & stats.
 
 
 
 
 
 
 
 266 */
 267long rcu_batches_completed_bh(void)
 268{
 269	return rcu_bh_state.completed;
 
 
 270}
 271EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 272
 273/*
 274 * Force a quiescent state for RCU BH.
 
 275 */
 276void rcu_bh_force_quiescent_state(void)
 277{
 278	force_quiescent_state(&rcu_bh_state);
 
 279}
 280EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 281
 282/*
 283 * Record the number of times rcutorture tests have been initiated and
 284 * terminated.  This information allows the debugfs tracing stats to be
 285 * correlated to the rcutorture messages, even when the rcutorture module
 286 * is being repeatedly loaded and unloaded.  In other words, we cannot
 287 * store this state in rcutorture itself.
 288 */
 289void rcutorture_record_test_transition(void)
 290{
 291	rcutorture_testseq++;
 292	rcutorture_vernum = 0;
 293}
 294EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 295
 296/*
 297 * Record the number of writer passes through the current rcutorture test.
 298 * This is also used to correlate debugfs tracing stats with the rcutorture
 299 * messages.
 300 */
 301void rcutorture_record_progress(unsigned long vernum)
 302{
 303	rcutorture_vernum++;
 304}
 305EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 306
 307/*
 308 * Force a quiescent state for RCU-sched.
 
 309 */
 310void rcu_sched_force_quiescent_state(void)
 311{
 312	force_quiescent_state(&rcu_sched_state);
 
 
 
 
 
 
 
 
 
 
 313}
 314EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 315
 316/*
 317 * Does the CPU have callbacks ready to be invoked?
 
 
 
 
 
 
 
 
 318 */
 319static int
 320cpu_has_callbacks_ready_to_invoke(struct rcu_data *rdp)
 321{
 322	return &rdp->nxtlist != rdp->nxttail[RCU_DONE_TAIL] &&
 323	       rdp->nxttail[RCU_DONE_TAIL] != NULL;
 
 
 
 
 
 324}
 
 325
 326/*
 327 * Does the current CPU require a not-yet-started grace period?
 328 * The caller must have disabled interrupts to prevent races with
 329 * normal callback registry.
 
 
 
 330 */
 331static int
 332cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 333{
 334	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335
 336	if (rcu_gp_in_progress(rsp))
 337		return 0;  /* No, a grace period is already in progress. */
 338	if (rcu_nocb_needs_gp(rsp))
 339		return 1;  /* Yes, a no-CBs CPU needs one. */
 340	if (!rdp->nxttail[RCU_NEXT_TAIL])
 341		return 0;  /* No, this is a no-CBs (or offline) CPU. */
 342	if (*rdp->nxttail[RCU_NEXT_READY_TAIL])
 343		return 1;  /* Yes, this CPU has newly registered callbacks. */
 344	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++)
 345		if (rdp->nxttail[i - 1] != rdp->nxttail[i] &&
 346		    ULONG_CMP_LT(ACCESS_ONCE(rsp->completed),
 347				 rdp->nxtcompleted[i]))
 348			return 1;  /* Yes, CBs for future grace period. */
 349	return 0; /* No grace period needed. */
 350}
 351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 352/*
 353 * Return the root node of the specified rcu_state structure.
 
 354 */
 355static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 356{
 357	return &rsp->node[0];
 358}
 359
 360/*
 361 * rcu_eqs_enter_common - current CPU is moving towards extended quiescent state
 362 *
 363 * If the new value of the ->dynticks_nesting counter now is zero,
 364 * we really have entered idle, and must do the appropriate accounting.
 365 * The caller must have disabled interrupts.
 366 */
 367static void rcu_eqs_enter_common(struct rcu_dynticks *rdtp, long long oldval,
 368				bool user)
 369{
 370	struct rcu_state *rsp;
 371	struct rcu_data *rdp;
 372
 373	trace_rcu_dyntick(TPS("Start"), oldval, rdtp->dynticks_nesting);
 374	if (!user && !is_idle_task(current)) {
 375		struct task_struct *idle __maybe_unused =
 376			idle_task(smp_processor_id());
 377
 378		trace_rcu_dyntick(TPS("Error on entry: not idle task"), oldval, 0);
 379		ftrace_dump(DUMP_ORIG);
 380		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 381			  current->pid, current->comm,
 382			  idle->pid, idle->comm); /* must be idle task! */
 383	}
 384	for_each_rcu_flavor(rsp) {
 385		rdp = this_cpu_ptr(rsp->rda);
 386		do_nocb_deferred_wakeup(rdp);
 387	}
 388	rcu_prepare_for_idle(smp_processor_id());
 389	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 390	smp_mb__before_atomic_inc();  /* See above. */
 391	atomic_inc(&rdtp->dynticks);
 392	smp_mb__after_atomic_inc();  /* Force ordering with next sojourn. */
 393	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 394
 395	/*
 396	 * It is illegal to enter an extended quiescent state while
 397	 * in an RCU read-side critical section.
 398	 */
 399	rcu_lockdep_assert(!lock_is_held(&rcu_lock_map),
 400			   "Illegal idle entry in RCU read-side critical section.");
 401	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map),
 402			   "Illegal idle entry in RCU-bh read-side critical section.");
 403	rcu_lockdep_assert(!lock_is_held(&rcu_sched_lock_map),
 404			   "Illegal idle entry in RCU-sched read-side critical section.");
 405}
 406
 407/*
 408 * Enter an RCU extended quiescent state, which can be either the
 409 * idle loop or adaptive-tickless usermode execution.
 410 */
 411static void rcu_eqs_enter(bool user)
 412{
 413	long long oldval;
 414	struct rcu_dynticks *rdtp;
 415
 416	rdtp = this_cpu_ptr(&rcu_dynticks);
 417	oldval = rdtp->dynticks_nesting;
 418	WARN_ON_ONCE((oldval & DYNTICK_TASK_NEST_MASK) == 0);
 419	if ((oldval & DYNTICK_TASK_NEST_MASK) == DYNTICK_TASK_NEST_VALUE) {
 420		rdtp->dynticks_nesting = 0;
 421		rcu_eqs_enter_common(rdtp, oldval, user);
 422	} else {
 423		rdtp->dynticks_nesting -= DYNTICK_TASK_NEST_VALUE;
 424	}
 
 425}
 426
 427/**
 428 * rcu_idle_enter - inform RCU that current CPU is entering idle
 429 *
 430 * Enter idle mode, in other words, -leave- the mode in which RCU
 431 * read-side critical sections can occur.  (Though RCU read-side
 432 * critical sections can occur in irq handlers in idle, a possibility
 433 * handled by irq_enter() and irq_exit().)
 434 *
 435 * We crowbar the ->dynticks_nesting field to zero to allow for
 436 * the possibility of usermode upcalls having messed up our count
 437 * of interrupt nesting level during the prior busy period.
 
 
 
 
 
 
 
 
 438 */
 439void rcu_idle_enter(void)
 440{
 441	unsigned long flags;
 442
 443	local_irq_save(flags);
 444	rcu_eqs_enter(false);
 445	rcu_sysidle_enter(this_cpu_ptr(&rcu_dynticks), 0);
 446	local_irq_restore(flags);
 447}
 448EXPORT_SYMBOL_GPL(rcu_idle_enter);
 449
 450#ifdef CONFIG_RCU_USER_QS
 451/**
 452 * rcu_user_enter - inform RCU that we are resuming userspace.
 453 *
 454 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 455 * is permitted between this call and rcu_user_exit(). This way the
 456 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 457 * when the CPU runs in userspace.
 458 */
 459void rcu_user_enter(void)
 460{
 461	rcu_eqs_enter(1);
 462}
 463#endif /* CONFIG_RCU_USER_QS */
 464
 465/**
 466 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 467 *
 468 * Exit from an interrupt handler, which might possibly result in entering
 469 * idle mode, in other words, leaving the mode in which read-side critical
 470 * sections can occur.
 471 *
 472 * This code assumes that the idle loop never does anything that might
 473 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 474 * architecture violates this assumption, RCU will give you what you
 475 * deserve, good and hard.  But very infrequently and irreproducibly.
 476 *
 477 * Use things like work queues to work around this limitation.
 478 *
 479 * You have been warned.
 480 */
 481void rcu_irq_exit(void)
 482{
 483	unsigned long flags;
 484	long long oldval;
 485	struct rcu_dynticks *rdtp;
 486
 487	local_irq_save(flags);
 488	rdtp = this_cpu_ptr(&rcu_dynticks);
 489	oldval = rdtp->dynticks_nesting;
 490	rdtp->dynticks_nesting--;
 491	WARN_ON_ONCE(rdtp->dynticks_nesting < 0);
 492	if (rdtp->dynticks_nesting)
 493		trace_rcu_dyntick(TPS("--="), oldval, rdtp->dynticks_nesting);
 494	else
 495		rcu_eqs_enter_common(rdtp, oldval, true);
 496	rcu_sysidle_enter(rdtp, 1);
 497	local_irq_restore(flags);
 498}
 499
 500/*
 501 * rcu_eqs_exit_common - current CPU moving away from extended quiescent state
 502 *
 503 * If the new value of the ->dynticks_nesting counter was previously zero,
 504 * we really have exited idle, and must do the appropriate accounting.
 505 * The caller must have disabled interrupts.
 506 */
 507static void rcu_eqs_exit_common(struct rcu_dynticks *rdtp, long long oldval,
 508			       int user)
 509{
 510	smp_mb__before_atomic_inc();  /* Force ordering w/previous sojourn. */
 511	atomic_inc(&rdtp->dynticks);
 512	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 513	smp_mb__after_atomic_inc();  /* See above. */
 514	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 515	rcu_cleanup_after_idle(smp_processor_id());
 516	trace_rcu_dyntick(TPS("End"), oldval, rdtp->dynticks_nesting);
 517	if (!user && !is_idle_task(current)) {
 518		struct task_struct *idle __maybe_unused =
 519			idle_task(smp_processor_id());
 520
 521		trace_rcu_dyntick(TPS("Error on exit: not idle task"),
 522				  oldval, rdtp->dynticks_nesting);
 523		ftrace_dump(DUMP_ORIG);
 524		WARN_ONCE(1, "Current pid: %d comm: %s / Idle pid: %d comm: %s",
 525			  current->pid, current->comm,
 526			  idle->pid, idle->comm); /* must be idle task! */
 527	}
 528}
 
 529
 
 530/*
 531 * Exit an RCU extended quiescent state, which can be either the
 532 * idle loop or adaptive-tickless usermode execution.
 533 */
 534static void rcu_eqs_exit(bool user)
 535{
 536	struct rcu_dynticks *rdtp;
 537	long long oldval;
 538
 539	rdtp = this_cpu_ptr(&rcu_dynticks);
 540	oldval = rdtp->dynticks_nesting;
 541	WARN_ON_ONCE(oldval < 0);
 542	if (oldval & DYNTICK_TASK_NEST_MASK) {
 543		rdtp->dynticks_nesting += DYNTICK_TASK_NEST_VALUE;
 544	} else {
 545		rdtp->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
 546		rcu_eqs_exit_common(rdtp, oldval, user);
 547	}
 548}
 549
 550/**
 551 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 552 *
 553 * Exit idle mode, in other words, -enter- the mode in which RCU
 554 * read-side critical sections can occur.
 555 *
 556 * We crowbar the ->dynticks_nesting field to DYNTICK_TASK_NEST to
 557 * allow for the possibility of usermode upcalls messing up our count
 558 * of interrupt nesting level during the busy period that is just
 559 * now starting.
 560 */
 561void rcu_idle_exit(void)
 562{
 563	unsigned long flags;
 
 
 
 
 
 
 564
 565	local_irq_save(flags);
 566	rcu_eqs_exit(false);
 567	rcu_sysidle_exit(this_cpu_ptr(&rcu_dynticks), 0);
 568	local_irq_restore(flags);
 
 569}
 570EXPORT_SYMBOL_GPL(rcu_idle_exit);
 571
 572#ifdef CONFIG_RCU_USER_QS
 573/**
 574 * rcu_user_exit - inform RCU that we are exiting userspace.
 575 *
 576 * Exit RCU idle mode while entering the kernel because it can
 577 * run a RCU read side critical section anytime.
 578 */
 579void rcu_user_exit(void)
 580{
 581	rcu_eqs_exit(1);
 
 
 
 
 
 
 
 
 582}
 583#endif /* CONFIG_RCU_USER_QS */
 584
 
 585/**
 586 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
 587 *
 588 * Enter an interrupt handler, which might possibly result in exiting
 589 * idle mode, in other words, entering the mode in which read-side critical
 590 * sections can occur.
 591 *
 592 * Note that the Linux kernel is fully capable of entering an interrupt
 593 * handler that it never exits, for example when doing upcalls to
 594 * user mode!  This code assumes that the idle loop never does upcalls to
 595 * user mode.  If your architecture does do upcalls from the idle loop (or
 596 * does anything else that results in unbalanced calls to the irq_enter()
 597 * and irq_exit() functions), RCU will give you what you deserve, good
 598 * and hard.  But very infrequently and irreproducibly.
 599 *
 600 * Use things like work queues to work around this limitation.
 601 *
 602 * You have been warned.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603 */
 604void rcu_irq_enter(void)
 605{
 606	unsigned long flags;
 607	struct rcu_dynticks *rdtp;
 608	long long oldval;
 609
 610	local_irq_save(flags);
 611	rdtp = this_cpu_ptr(&rcu_dynticks);
 612	oldval = rdtp->dynticks_nesting;
 613	rdtp->dynticks_nesting++;
 614	WARN_ON_ONCE(rdtp->dynticks_nesting == 0);
 615	if (oldval)
 616		trace_rcu_dyntick(TPS("++="), oldval, rdtp->dynticks_nesting);
 617	else
 618		rcu_eqs_exit_common(rdtp, oldval, true);
 619	rcu_sysidle_exit(rdtp, 1);
 620	local_irq_restore(flags);
 621}
 622
 623/**
 624 * rcu_nmi_enter - inform RCU of entry to NMI context
 625 *
 626 * If the CPU was idle with dynamic ticks active, and there is no
 627 * irq handler running, this updates rdtp->dynticks_nmi to let the
 628 * RCU grace-period handling know that the CPU is active.
 629 */
 630void rcu_nmi_enter(void)
 631{
 632	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 633
 634	if (rdtp->dynticks_nmi_nesting == 0 &&
 635	    (atomic_read(&rdtp->dynticks) & 0x1))
 
 
 
 636		return;
 637	rdtp->dynticks_nmi_nesting++;
 638	smp_mb__before_atomic_inc();  /* Force delay from prior write. */
 639	atomic_inc(&rdtp->dynticks);
 640	/* CPUs seeing atomic_inc() must see later RCU read-side crit sects */
 641	smp_mb__after_atomic_inc();  /* See above. */
 642	WARN_ON_ONCE(!(atomic_read(&rdtp->dynticks) & 0x1));
 
 
 
 
 
 
 
 
 
 
 643}
 
 644
 645/**
 646 * rcu_nmi_exit - inform RCU of exit from NMI context
 
 
 
 
 
 647 *
 648 * If the CPU was idle with dynamic ticks active, and there is no
 649 * irq handler running, this updates rdtp->dynticks_nmi to let the
 650 * RCU grace-period handling know that the CPU is no longer active.
 651 */
 652void rcu_nmi_exit(void)
 653{
 654	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 655
 656	if (rdtp->dynticks_nmi_nesting == 0 ||
 657	    --rdtp->dynticks_nmi_nesting != 0)
 658		return;
 659	/* CPUs seeing atomic_inc() must see prior RCU read-side crit sects */
 660	smp_mb__before_atomic_inc();  /* See above. */
 661	atomic_inc(&rdtp->dynticks);
 662	smp_mb__after_atomic_inc();  /* Force delay to next write. */
 663	WARN_ON_ONCE(atomic_read(&rdtp->dynticks) & 0x1);
 664}
 665
 666/**
 667 * __rcu_is_watching - are RCU read-side critical sections safe?
 668 *
 669 * Return true if RCU is watching the running CPU, which means that
 670 * this CPU can safely enter RCU read-side critical sections.  Unlike
 671 * rcu_is_watching(), the caller of __rcu_is_watching() must have at
 672 * least disabled preemption.
 673 */
 674bool notrace __rcu_is_watching(void)
 675{
 676	return atomic_read(this_cpu_ptr(&rcu_dynticks.dynticks)) & 0x1;
 
 
 
 
 
 
 677}
 678
 679/**
 680 * rcu_is_watching - see if RCU thinks that the current CPU is idle
 
 
 
 
 
 681 *
 682 * If the current CPU is in its idle loop and is neither in an interrupt
 683 * or NMI handler, return true.
 684 */
 685bool notrace rcu_is_watching(void)
 686{
 687	int ret;
 688
 689	preempt_disable();
 690	ret = __rcu_is_watching();
 691	preempt_enable();
 692	return ret;
 693}
 694EXPORT_SYMBOL_GPL(rcu_is_watching);
 695
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 696#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 697
 698/*
 699 * Is the current CPU online?  Disable preemption to avoid false positives
 700 * that could otherwise happen due to the current CPU number being sampled,
 701 * this task being preempted, its old CPU being taken offline, resuming
 702 * on some other CPU, then determining that its old CPU is now offline.
 703 * It is OK to use RCU on an offline processor during initial boot, hence
 704 * the check for rcu_scheduler_fully_active.  Note also that it is OK
 705 * for a CPU coming online to use RCU for one jiffy prior to marking itself
 706 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
 707 * offline to continue to use RCU for one jiffy after marking itself
 708 * offline in the cpu_online_mask.  This leniency is necessary given the
 709 * non-atomic nature of the online and offline processing, for example,
 710 * the fact that a CPU enters the scheduler after completing the CPU_DYING
 711 * notifiers.
 712 *
 713 * This is also why RCU internally marks CPUs online during the
 714 * CPU_UP_PREPARE phase and offline during the CPU_DEAD phase.
 715 *
 716 * Disable checking if in an NMI handler because we cannot safely report
 717 * errors from NMI handlers anyway.
 
 
 
 
 
 
 
 718 */
 719bool rcu_lockdep_current_cpu_online(void)
 720{
 721	struct rcu_data *rdp;
 722	struct rcu_node *rnp;
 723	bool ret;
 724
 725	if (in_nmi())
 726		return true;
 727	preempt_disable();
 728	rdp = this_cpu_ptr(&rcu_sched_data);
 729	rnp = rdp->mynode;
 730	ret = (rdp->grpmask & rnp->qsmaskinit) ||
 731	      !rcu_scheduler_fully_active;
 732	preempt_enable();
 
 
 
 
 
 
 733	return ret;
 734}
 735EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 736
 737#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 738
 739/**
 740 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
 741 *
 742 * If the current CPU is idle or running at a first-level (not nested)
 743 * interrupt from idle, return true.  The caller must have at least
 744 * disabled preemption.
 745 */
 746static int rcu_is_cpu_rrupt_from_idle(void)
 747{
 748	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 1;
 
 
 
 
 
 749}
 750
 751/*
 752 * Snapshot the specified CPU's dynticks counter so that we can later
 753 * credit them with an implicit quiescent state.  Return 1 if this CPU
 754 * is in dynticks idle mode, which is an extended quiescent state.
 755 */
 756static int dyntick_save_progress_counter(struct rcu_data *rdp,
 757					 bool *isidle, unsigned long *maxj)
 758{
 759	rdp->dynticks_snap = atomic_add_return(0, &rdp->dynticks->dynticks);
 760	rcu_sysidle_check_cpu(rdp, isidle, maxj);
 761	return (rdp->dynticks_snap & 0x1) == 0;
 
 
 
 
 762}
 763
 764/*
 765 * This function really isn't for public consumption, but RCU is special in
 766 * that context switches can allow the state machine to make progress.
 767 */
 768extern void resched_cpu(int cpu);
 769
 770/*
 771 * Return true if the specified CPU has passed through a quiescent
 772 * state by virtue of being in or having passed through an dynticks
 773 * idle state since the last call to dyntick_save_progress_counter()
 774 * for this same CPU, or by virtue of having been offline.
 775 */
 776static int rcu_implicit_dynticks_qs(struct rcu_data *rdp,
 777				    bool *isidle, unsigned long *maxj)
 778{
 779	unsigned int curr;
 780	unsigned int snap;
 781
 782	curr = (unsigned int)atomic_add_return(0, &rdp->dynticks->dynticks);
 783	snap = (unsigned int)rdp->dynticks_snap;
 784
 785	/*
 786	 * If the CPU passed through or entered a dynticks idle phase with
 787	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 788	 * already acknowledged the request to pass through a quiescent
 789	 * state.  Either way, that CPU cannot possibly be in an RCU
 790	 * read-side critical section that started before the beginning
 791	 * of the current RCU grace period.
 792	 */
 793	if ((curr & 0x1) == 0 || UINT_CMP_GE(curr, snap + 2)) {
 794		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
 795		rdp->dynticks_fqs++;
 796		return 1;
 797	}
 798
 799	/*
 800	 * Check for the CPU being offline, but only if the grace period
 801	 * is old enough.  We don't need to worry about the CPU changing
 802	 * state: If we see it offline even once, it has been through a
 803	 * quiescent state.
 
 
 
 
 
 
 
 
 
 804	 *
 805	 * The reason for insisting that the grace period be at least
 806	 * one jiffy old is that CPUs that are not quite online and that
 807	 * have just gone offline can still execute RCU read-side critical
 808	 * sections.
 809	 */
 810	if (ULONG_CMP_GE(rdp->rsp->gp_start + 2, jiffies))
 811		return 0;  /* Grace period is not old enough. */
 812	barrier();
 813	if (cpu_is_offline(rdp->cpu)) {
 814		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
 815		rdp->offline_fqs++;
 816		return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 817	}
 818
 819	/*
 820	 * There is a possibility that a CPU in adaptive-ticks state
 821	 * might run in the kernel with the scheduling-clock tick disabled
 822	 * for an extended time period.  Invoke rcu_kick_nohz_cpu() to
 823	 * force the CPU to restart the scheduling-clock tick in this
 824	 * CPU is in this state.
 825	 */
 826	rcu_kick_nohz_cpu(rdp->cpu);
 827
 828	/*
 829	 * Alternatively, the CPU might be running in the kernel
 830	 * for an extended period of time without a quiescent state.
 831	 * Attempt to force the CPU through the scheduler to gain the
 832	 * needed quiescent state, but only if the grace period has gone
 833	 * on for an uncommonly long time.  If there are many stuck CPUs,
 834	 * we will beat on the first one until it gets unstuck, then move
 835	 * to the next.  Only do this for the primary flavor of RCU.
 836	 */
 837	if (rdp->rsp == rcu_state &&
 838	    ULONG_CMP_GE(jiffies, rdp->rsp->jiffies_resched)) {
 839		rdp->rsp->jiffies_resched += 5;
 840		resched_cpu(rdp->cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 841	}
 842
 843	return 0;
 844}
 845
 846static void record_gp_stall_check_time(struct rcu_state *rsp)
 
 
 847{
 848	unsigned long j = jiffies;
 849	unsigned long j1;
 850
 851	rsp->gp_start = j;
 852	smp_wmb(); /* Record start time before stall time. */
 853	j1 = rcu_jiffies_till_stall_check();
 854	rsp->jiffies_stall = j + j1;
 855	rsp->jiffies_resched = j + j1 / 2;
 856}
 857
 858/*
 859 * Dump stacks of all tasks running on stalled CPUs.  This is a fallback
 860 * for architectures that do not implement trigger_all_cpu_backtrace().
 861 * The NMI-triggered stack traces are more accurate because they are
 862 * printed by the target CPU.
 
 
 
 
 
 
 
 
 
 
 863 */
 864static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
 
 865{
 866	int cpu;
 867	unsigned long flags;
 868	struct rcu_node *rnp;
 869
 870	rcu_for_each_leaf_node(rsp, rnp) {
 871		raw_spin_lock_irqsave(&rnp->lock, flags);
 872		if (rnp->qsmask != 0) {
 873			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 874				if (rnp->qsmask & (1UL << cpu))
 875					dump_cpu_task(rnp->grplo + cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 876		}
 877		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 
 
 
 878	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 879}
 880
 881static void print_other_cpu_stall(struct rcu_state *rsp)
 
 
 
 
 882{
 883	int cpu;
 884	long delta;
 885	unsigned long flags;
 886	int ndetected = 0;
 887	struct rcu_node *rnp = rcu_get_root(rsp);
 888	long totqlen = 0;
 889
 890	/* Only let one CPU complain about others per time interval. */
 891
 892	raw_spin_lock_irqsave(&rnp->lock, flags);
 893	delta = jiffies - rsp->jiffies_stall;
 894	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
 895		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 896		return;
 897	}
 898	rsp->jiffies_stall = jiffies + 3 * rcu_jiffies_till_stall_check() + 3;
 899	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 900
 901	/*
 902	 * OK, time to rat on our buddy...
 903	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 904	 * RCU CPU stall warnings.
 905	 */
 906	pr_err("INFO: %s detected stalls on CPUs/tasks:",
 907	       rsp->name);
 908	print_cpu_stall_info_begin();
 909	rcu_for_each_leaf_node(rsp, rnp) {
 910		raw_spin_lock_irqsave(&rnp->lock, flags);
 911		ndetected += rcu_print_task_stall(rnp);
 912		if (rnp->qsmask != 0) {
 913			for (cpu = 0; cpu <= rnp->grphi - rnp->grplo; cpu++)
 914				if (rnp->qsmask & (1UL << cpu)) {
 915					print_cpu_stall_info(rsp,
 916							     rnp->grplo + cpu);
 917					ndetected++;
 918				}
 919		}
 920		raw_spin_unlock_irqrestore(&rnp->lock, flags);
 921	}
 922
 923	/*
 924	 * Now rat on any tasks that got kicked up to the root rcu_node
 925	 * due to CPU offlining.
 926	 */
 927	rnp = rcu_get_root(rsp);
 928	raw_spin_lock_irqsave(&rnp->lock, flags);
 929	ndetected += rcu_print_task_stall(rnp);
 930	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 931
 932	print_cpu_stall_info_end();
 933	for_each_possible_cpu(cpu)
 934		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
 935	pr_cont("(detected by %d, t=%ld jiffies, g=%lu, c=%lu, q=%lu)\n",
 936	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
 937	       rsp->gpnum, rsp->completed, totqlen);
 938	if (ndetected == 0)
 939		pr_err("INFO: Stall ended before state dump start\n");
 940	else if (!trigger_all_cpu_backtrace())
 941		rcu_dump_cpu_stacks(rsp);
 
 
 
 
 
 
 
 
 942
 943	/* Complain about tasks blocking the grace period. */
 944
 945	rcu_print_detail_task_stall(rsp);
 946
 947	force_quiescent_state(rsp);  /* Kick them all. */
 
 948}
 949
 950/*
 951 * This function really isn't for public consumption, but RCU is special in
 952 * that context switches can allow the state machine to make progress.
 
 
 
 
 
 
 
 
 953 */
 954extern void resched_cpu(int cpu);
 955
 956static void print_cpu_stall(struct rcu_state *rsp)
 957{
 958	int cpu;
 959	unsigned long flags;
 960	struct rcu_node *rnp = rcu_get_root(rsp);
 961	long totqlen = 0;
 962
 963	/*
 964	 * OK, time to rat on ourselves...
 965	 * See Documentation/RCU/stallwarn.txt for info on how to debug
 966	 * RCU CPU stall warnings.
 967	 */
 968	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
 969	print_cpu_stall_info_begin();
 970	print_cpu_stall_info(rsp, smp_processor_id());
 971	print_cpu_stall_info_end();
 972	for_each_possible_cpu(cpu)
 973		totqlen += per_cpu_ptr(rsp->rda, cpu)->qlen;
 974	pr_cont(" (t=%lu jiffies g=%lu c=%lu q=%lu)\n",
 975		jiffies - rsp->gp_start, rsp->gpnum, rsp->completed, totqlen);
 976	if (!trigger_all_cpu_backtrace())
 977		dump_stack();
 978
 979	raw_spin_lock_irqsave(&rnp->lock, flags);
 980	if (ULONG_CMP_GE(jiffies, rsp->jiffies_stall))
 981		rsp->jiffies_stall = jiffies +
 982				     3 * rcu_jiffies_till_stall_check() + 3;
 983	raw_spin_unlock_irqrestore(&rnp->lock, flags);
 984
 985	/*
 986	 * Attempt to revive the RCU machinery by forcing a context switch.
 987	 *
 988	 * A context switch would normally allow the RCU state machine to make
 989	 * progress and it could be we're stuck in kernel space without context
 990	 * switches for an entirely unreasonable amount of time.
 991	 */
 992	resched_cpu(smp_processor_id());
 993}
 994
 995static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
 996{
 997	unsigned long completed;
 998	unsigned long gpnum;
 999	unsigned long gps;
1000	unsigned long j;
1001	unsigned long js;
1002	struct rcu_node *rnp;
1003
1004	if (rcu_cpu_stall_suppress || !rcu_gp_in_progress(rsp))
1005		return;
1006	j = jiffies;
1007
1008	/*
1009	 * Lots of memory barriers to reject false positives.
1010	 *
1011	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1012	 * then rsp->gp_start, and finally rsp->completed.  These values
1013	 * are updated in the opposite order with memory barriers (or
1014	 * equivalent) during grace-period initialization and cleanup.
1015	 * Now, a false positive can occur if we get an new value of
1016	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1017	 * the memory barriers, the only way that this can happen is if one
1018	 * grace period ends and another starts between these two fetches.
1019	 * Detect this by comparing rsp->completed with the previous fetch
1020	 * from rsp->gpnum.
1021	 *
1022	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1023	 * and rsp->gp_start suffice to forestall false positives.
1024	 */
1025	gpnum = ACCESS_ONCE(rsp->gpnum);
1026	smp_rmb(); /* Pick up ->gpnum first... */
1027	js = ACCESS_ONCE(rsp->jiffies_stall);
1028	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1029	gps = ACCESS_ONCE(rsp->gp_start);
1030	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1031	completed = ACCESS_ONCE(rsp->completed);
1032	if (ULONG_CMP_GE(completed, gpnum) ||
1033	    ULONG_CMP_LT(j, js) ||
1034	    ULONG_CMP_GE(gps, js))
1035		return; /* No stall or GP completed since entering function. */
1036	rnp = rdp->mynode;
1037	if (rcu_gp_in_progress(rsp) &&
1038	    (ACCESS_ONCE(rnp->qsmask) & rdp->grpmask)) {
1039
1040		/* We haven't checked in, so go dump stack. */
1041		print_cpu_stall(rsp);
 
 
 
1042
1043	} else if (rcu_gp_in_progress(rsp) &&
1044		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1045
1046		/* They had a few time units to dump stack, so complain. */
1047		print_other_cpu_stall(rsp);
1048	}
1049}
1050
1051/**
1052 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1053 *
1054 * Set the stall-warning timeout way off into the future, thus preventing
1055 * any RCU CPU stall-warning messages from appearing in the current set of
1056 * RCU grace periods.
1057 *
1058 * The caller must disable hard irqs.
1059 */
1060void rcu_cpu_stall_reset(void)
1061{
1062	struct rcu_state *rsp;
1063
1064	for_each_rcu_flavor(rsp)
1065		rsp->jiffies_stall = jiffies + ULONG_MAX / 2;
1066}
1067
1068/*
1069 * Initialize the specified rcu_data structure's callback list to empty.
 
 
 
 
1070 */
1071static void init_callback_list(struct rcu_data *rdp)
 
1072{
1073	int i;
 
1074
1075	if (init_nocb_callback_list(rdp))
 
 
 
 
1076		return;
1077	rdp->nxtlist = NULL;
1078	for (i = 0; i < RCU_NEXT_SIZE; i++)
1079		rdp->nxttail[i] = &rdp->nxtlist;
 
 
 
1080}
1081
1082/*
1083 * Determine the value that ->completed will have at the end of the
1084 * next subsequent grace period.  This is used to tag callbacks so that
1085 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1086 * been dyntick-idle for an extended period with callbacks under the
1087 * influence of RCU_FAST_NO_HZ.
 
1088 *
1089 * The caller must hold rnp->lock with interrupts disabled.
1090 */
1091static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1092				       struct rcu_node *rnp)
1093{
 
 
 
 
 
 
 
1094	/*
1095	 * If RCU is idle, we just wait for the next grace period.
1096	 * But we can only be sure that RCU is idle if we are looking
1097	 * at the root rcu_node structure -- otherwise, a new grace
1098	 * period might have started, but just not yet gotten around
1099	 * to initializing the current non-root rcu_node structure.
1100	 */
1101	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1102		return rnp->completed + 1;
1103
1104	/*
1105	 * Otherwise, wait for a possible partial grace period and
1106	 * then the subsequent full grace period.
1107	 */
1108	return rnp->completed + 2;
 
 
 
 
 
 
 
 
 
 
 
 
 
1109}
1110
1111/*
1112 * Trace-event helper function for rcu_start_future_gp() and
1113 * rcu_nocb_wait_gp().
 
1114 */
1115static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1116				unsigned long c, const char *s)
1117{
1118	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1119				      rnp->completed, c, rnp->level,
1120				      rnp->grplo, rnp->grphi, s);
 
1121}
1122
1123/*
1124 * Start some future grace period, as needed to handle newly arrived
1125 * callbacks.  The required future grace periods are recorded in each
1126 * rcu_node structure's ->need_future_gp field.
1127 *
1128 * The caller must hold the specified rcu_node structure's ->lock.
1129 */
1130static unsigned long __maybe_unused
1131rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp)
1132{
1133	unsigned long c;
1134	int i;
1135	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
 
 
 
 
 
1136
1137	/*
1138	 * Pick up grace-period number for new callbacks.  If this
1139	 * grace period is already marked as needed, return to the caller.
1140	 */
1141	c = rcu_cbs_completed(rdp->rsp, rnp);
1142	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1143	if (rnp->need_future_gp[c & 0x1]) {
1144		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1145		return c;
 
 
 
1146	}
1147
1148	/*
1149	 * If either this rcu_node structure or the root rcu_node structure
1150	 * believe that a grace period is in progress, then we must wait
1151	 * for the one following, which is in "c".  Because our request
1152	 * will be noticed at the end of the current grace period, we don't
1153	 * need to explicitly start one.
1154	 */
1155	if (rnp->gpnum != rnp->completed ||
1156	    ACCESS_ONCE(rnp->gpnum) != ACCESS_ONCE(rnp->completed)) {
1157		rnp->need_future_gp[c & 0x1]++;
1158		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1159		return c;
 
1160	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1161
1162	/*
1163	 * There might be no grace period in progress.  If we don't already
1164	 * hold it, acquire the root rcu_node structure's lock in order to
1165	 * start one (if needed).
1166	 */
1167	if (rnp != rnp_root) {
1168		raw_spin_lock(&rnp_root->lock);
1169		smp_mb__after_unlock_lock();
1170	}
 
 
 
 
 
 
1171
1172	/*
1173	 * Get a new grace-period number.  If there really is no grace
1174	 * period in progress, it will be smaller than the one we obtained
1175	 * earlier.  Adjust callbacks as needed.  Note that even no-CBs
1176	 * CPUs have a ->nxtcompleted[] array, so no no-CBs checks needed.
1177	 */
1178	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1179	for (i = RCU_DONE_TAIL; i < RCU_NEXT_TAIL; i++)
1180		if (ULONG_CMP_LT(c, rdp->nxtcompleted[i]))
1181			rdp->nxtcompleted[i] = c;
1182
1183	/*
1184	 * If the needed for the required grace period is already
1185	 * recorded, trace and leave.
1186	 */
1187	if (rnp_root->need_future_gp[c & 0x1]) {
1188		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1189		goto unlock_out;
1190	}
1191
1192	/* Record the need for the future grace period. */
1193	rnp_root->need_future_gp[c & 0x1]++;
 
 
1194
1195	/* If a grace period is not already in progress, start one. */
1196	if (rnp_root->gpnum != rnp_root->completed) {
1197		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1198	} else {
1199		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1200		rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1201	}
1202unlock_out:
1203	if (rnp != rnp_root)
1204		raw_spin_unlock(&rnp_root->lock);
1205	return c;
1206}
 
1207
1208/*
1209 * Clean up any old requests for the just-ended grace period.  Also return
1210 * whether any additional grace periods have been requested.  Also invoke
1211 * rcu_nocb_gp_cleanup() in order to wake up any no-callbacks kthreads
1212 * waiting for this grace period to complete.
1213 */
1214static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1215{
1216	int c = rnp->completed;
1217	int needmore;
1218	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1219
1220	rcu_nocb_gp_cleanup(rsp, rnp);
1221	rnp->need_future_gp[c & 0x1] = 0;
1222	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1223	trace_rcu_future_gp(rnp, rdp, c,
1224			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1225	return needmore;
1226}
1227
1228/*
1229 * If there is room, assign a ->completed number to any callbacks on
1230 * this CPU that have not already been assigned.  Also accelerate any
1231 * callbacks that were previously assigned a ->completed number that has
1232 * since proven to be too conservative, which can happen if callbacks get
1233 * assigned a ->completed number while RCU is idle, but with reference to
1234 * a non-root rcu_node structure.  This function is idempotent, so it does
1235 * not hurt to call it repeatedly.
1236 *
1237 * The caller must hold rnp->lock with interrupts disabled.
1238 */
1239static void rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1240			       struct rcu_data *rdp)
1241{
1242	unsigned long c;
1243	int i;
 
 
 
 
1244
1245	/* If the CPU has no callbacks, nothing to do. */
1246	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1247		return;
 
 
 
 
1248
1249	/*
1250	 * Starting from the sublist containing the callbacks most
1251	 * recently assigned a ->completed number and working down, find the
1252	 * first sublist that is not assignable to an upcoming grace period.
1253	 * Such a sublist has something in it (first two tests) and has
1254	 * a ->completed number assigned that will complete sooner than
1255	 * the ->completed number for newly arrived callbacks (last test).
1256	 *
1257	 * The key point is that any later sublist can be assigned the
1258	 * same ->completed number as the newly arrived callbacks, which
1259	 * means that the callbacks in any of these later sublist can be
1260	 * grouped into a single sublist, whether or not they have already
1261	 * been assigned a ->completed number.
1262	 */
1263	c = rcu_cbs_completed(rsp, rnp);
1264	for (i = RCU_NEXT_TAIL - 1; i > RCU_DONE_TAIL; i--)
1265		if (rdp->nxttail[i] != rdp->nxttail[i - 1] &&
1266		    !ULONG_CMP_GE(rdp->nxtcompleted[i], c))
1267			break;
1268
1269	/*
1270	 * If there are no sublist for unassigned callbacks, leave.
1271	 * At the same time, advance "i" one sublist, so that "i" will
1272	 * index into the sublist where all the remaining callbacks should
1273	 * be grouped into.
1274	 */
1275	if (++i >= RCU_NEXT_TAIL)
1276		return;
1277
1278	/*
1279	 * Assign all subsequent callbacks' ->completed number to the next
1280	 * full grace period and group them all in the sublist initially
1281	 * indexed by "i".
1282	 */
1283	for (; i <= RCU_NEXT_TAIL; i++) {
1284		rdp->nxttail[i] = rdp->nxttail[RCU_NEXT_TAIL];
1285		rdp->nxtcompleted[i] = c;
1286	}
1287	/* Record any needed additional grace periods. */
1288	rcu_start_future_gp(rnp, rdp);
1289
1290	/* Trace depending on how much we were able to accelerate. */
1291	if (!*rdp->nxttail[RCU_WAIT_TAIL])
1292		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1293	else
1294		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
1295}
1296
1297/*
1298 * Move any callbacks whose grace period has completed to the
1299 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1300 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1301 * sublist.  This function is idempotent, so it does not hurt to
1302 * invoke it repeatedly.  As long as it is not invoked -too- often...
1303 *
1304 * The caller must hold rnp->lock with interrupts disabled.
1305 */
1306static void rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1307			    struct rcu_data *rdp)
1308{
1309	int i, j;
 
 
 
 
 
 
 
 
 
 
 
 
 
1310
1311	/* If the CPU has no callbacks, nothing to do. */
1312	if (!rdp->nxttail[RCU_NEXT_TAIL] || !*rdp->nxttail[RCU_DONE_TAIL])
1313		return;
1314
1315	/*
1316	 * Find all callbacks whose ->completed numbers indicate that they
1317	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1318	 */
1319	for (i = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++) {
1320		if (ULONG_CMP_LT(rnp->completed, rdp->nxtcompleted[i]))
1321			break;
1322		rdp->nxttail[RCU_DONE_TAIL] = rdp->nxttail[i];
1323	}
1324	/* Clean up any sublist tail pointers that were misordered above. */
1325	for (j = RCU_WAIT_TAIL; j < i; j++)
1326		rdp->nxttail[j] = rdp->nxttail[RCU_DONE_TAIL];
1327
1328	/* Copy down callbacks to fill in empty sublists. */
1329	for (j = RCU_WAIT_TAIL; i < RCU_NEXT_TAIL; i++, j++) {
1330		if (rdp->nxttail[j] == rdp->nxttail[RCU_NEXT_TAIL])
1331			break;
1332		rdp->nxttail[j] = rdp->nxttail[i];
1333		rdp->nxtcompleted[j] = rdp->nxtcompleted[i];
1334	}
1335
1336	/* Classify any remaining callbacks. */
1337	rcu_accelerate_cbs(rsp, rnp, rdp);
1338}
1339
1340/*
1341 * Update CPU-local rcu_data state to record the beginnings and ends of
1342 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1343 * structure corresponding to the current CPU, and must have irqs disabled.
1344 */
1345static void __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp, struct rcu_data *rdp)
1346{
1347	/* Handle the ends of any preceding grace periods first. */
1348	if (rdp->completed == rnp->completed) {
1349
1350		/* No grace period end, so just accelerate recent callbacks. */
1351		rcu_accelerate_cbs(rsp, rnp, rdp);
1352
 
 
 
 
 
 
 
1353	} else {
 
 
 
1354
1355		/* Advance callbacks. */
1356		rcu_advance_cbs(rsp, rnp, rdp);
1357
1358		/* Remember that we saw this grace-period completion. */
1359		rdp->completed = rnp->completed;
1360		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1361	}
1362
1363	if (rdp->gpnum != rnp->gpnum) {
1364		/*
1365		 * If the current grace period is waiting for this CPU,
1366		 * set up to detect a quiescent state, otherwise don't
1367		 * go looking for one.
1368		 */
1369		rdp->gpnum = rnp->gpnum;
1370		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1371		rdp->passed_quiesce = 0;
1372		rdp->qs_pending = !!(rnp->qsmask & rdp->grpmask);
1373		zero_cpu_stall_ticks(rdp);
1374	}
 
 
 
1375}
1376
1377static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
 
 
1378{
1379	unsigned long flags;
1380	struct rcu_node *rnp;
1381
1382	local_irq_save(flags);
1383	rnp = rdp->mynode;
1384	if ((rdp->gpnum == ACCESS_ONCE(rnp->gpnum) &&
1385	     rdp->completed == ACCESS_ONCE(rnp->completed)) || /* w/out lock. */
1386	    !raw_spin_trylock(&rnp->lock)) { /* irqs already off, so later. */
1387		local_irq_restore(flags);
1388		return;
1389	}
1390	smp_mb__after_unlock_lock();
1391	__note_gp_changes(rsp, rnp, rdp);
1392	raw_spin_unlock_irqrestore(&rnp->lock, flags);
1393}
1394
1395/*
1396 * Initialize a new grace period.  Return 0 if no grace period required.
1397 */
1398static int rcu_gp_init(struct rcu_state *rsp)
1399{
 
 
 
1400	struct rcu_data *rdp;
1401	struct rcu_node *rnp = rcu_get_root(rsp);
1402
1403	rcu_bind_gp_kthread();
1404	raw_spin_lock_irq(&rnp->lock);
1405	smp_mb__after_unlock_lock();
1406	if (rsp->gp_flags == 0) {
1407		/* Spurious wakeup, tell caller to go back to sleep.  */
1408		raw_spin_unlock_irq(&rnp->lock);
1409		return 0;
1410	}
1411	rsp->gp_flags = 0; /* Clear all flags: New grace period. */
1412
1413	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1414		/*
1415		 * Grace period already in progress, don't start another.
1416		 * Not supposed to be able to happen.
1417		 */
1418		raw_spin_unlock_irq(&rnp->lock);
1419		return 0;
1420	}
1421
1422	/* Advance to a new grace period and initialize state. */
1423	record_gp_stall_check_time(rsp);
1424	/* Record GP times before starting GP, hence smp_store_release(). */
1425	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1426	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
1427	raw_spin_unlock_irq(&rnp->lock);
1428
1429	/* Exclude any concurrent CPU-hotplug operations. */
1430	mutex_lock(&rsp->onoff_mutex);
1431	smp_mb__after_unlock_lock(); /* ->gpnum increment before GP! */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1432
1433	/*
1434	 * Set the quiescent-state-needed bits in all the rcu_node
1435	 * structures for all currently online CPUs in breadth-first order,
1436	 * starting from the root rcu_node structure, relying on the layout
1437	 * of the tree within the rsp->node[] array.  Note that other CPUs
1438	 * will access only the leaves of the hierarchy, thus seeing that no
1439	 * grace period is in progress, at least until the corresponding
1440	 * leaf node has been initialized.  In addition, we have excluded
1441	 * CPU-hotplug operations.
1442	 *
1443	 * The grace period cannot complete until the initialization
1444	 * process finishes, because this kthread handles both.
1445	 */
1446	rcu_for_each_node_breadth_first(rsp, rnp) {
1447		raw_spin_lock_irq(&rnp->lock);
1448		smp_mb__after_unlock_lock();
1449		rdp = this_cpu_ptr(rsp->rda);
 
1450		rcu_preempt_check_blocked_tasks(rnp);
1451		rnp->qsmask = rnp->qsmaskinit;
1452		ACCESS_ONCE(rnp->gpnum) = rsp->gpnum;
1453		WARN_ON_ONCE(rnp->completed != rsp->completed);
1454		ACCESS_ONCE(rnp->completed) = rsp->completed;
1455		if (rnp == rdp->mynode)
1456			__note_gp_changes(rsp, rnp, rdp);
1457		rcu_preempt_boost_start_gp(rnp);
1458		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
1459					    rnp->level, rnp->grplo,
1460					    rnp->grphi, rnp->qsmask);
1461		raw_spin_unlock_irq(&rnp->lock);
1462#ifdef CONFIG_PROVE_RCU_DELAY
1463		if ((prandom_u32() % (rcu_num_nodes + 1)) == 0 &&
1464		    system_state == SYSTEM_RUNNING)
1465			udelay(200);
1466#endif /* #ifdef CONFIG_PROVE_RCU_DELAY */
1467		cond_resched();
 
 
1468	}
1469
1470	mutex_unlock(&rsp->onoff_mutex);
1471	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1472}
1473
1474/*
1475 * Do one round of quiescent-state forcing.
1476 */
1477static int rcu_gp_fqs(struct rcu_state *rsp, int fqs_state_in)
1478{
1479	int fqs_state = fqs_state_in;
1480	bool isidle = false;
1481	unsigned long maxj;
1482	struct rcu_node *rnp = rcu_get_root(rsp);
1483
1484	rsp->n_force_qs++;
1485	if (fqs_state == RCU_SAVE_DYNTICK) {
 
1486		/* Collect dyntick-idle snapshots. */
1487		if (is_sysidle_rcu_state(rsp)) {
1488			isidle = 1;
1489			maxj = jiffies - ULONG_MAX / 4;
1490		}
1491		force_qs_rnp(rsp, dyntick_save_progress_counter,
1492			     &isidle, &maxj);
1493		rcu_sysidle_report_gp(rsp, isidle, maxj);
1494		fqs_state = RCU_FORCE_QS;
1495	} else {
1496		/* Handle dyntick-idle and offline CPUs. */
1497		isidle = 0;
1498		force_qs_rnp(rsp, rcu_implicit_dynticks_qs, &isidle, &maxj);
1499	}
1500	/* Clear flag to prevent immediate re-entry. */
1501	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
1502		raw_spin_lock_irq(&rnp->lock);
1503		smp_mb__after_unlock_lock();
1504		rsp->gp_flags &= ~RCU_GP_FLAG_FQS;
1505		raw_spin_unlock_irq(&rnp->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1506	}
1507	return fqs_state;
1508}
1509
1510/*
1511 * Clean up after the old grace period.
1512 */
1513static void rcu_gp_cleanup(struct rcu_state *rsp)
1514{
 
 
1515	unsigned long gp_duration;
1516	int nocb = 0;
 
1517	struct rcu_data *rdp;
1518	struct rcu_node *rnp = rcu_get_root(rsp);
 
1519
1520	raw_spin_lock_irq(&rnp->lock);
1521	smp_mb__after_unlock_lock();
1522	gp_duration = jiffies - rsp->gp_start;
1523	if (gp_duration > rsp->gp_max)
1524		rsp->gp_max = gp_duration;
 
1525
1526	/*
1527	 * We know the grace period is complete, but to everyone else
1528	 * it appears to still be ongoing.  But it is also the case
1529	 * that to everyone else it looks like there is nothing that
1530	 * they can do to advance the grace period.  It is therefore
1531	 * safe for us to drop the lock in order to mark the grace
1532	 * period as completed in all of the rcu_node structures.
1533	 */
1534	raw_spin_unlock_irq(&rnp->lock);
 
1535
1536	/*
1537	 * Propagate new ->completed value to rcu_node structures so
1538	 * that other CPUs don't have to wait until the start of the next
1539	 * grace period to process their callbacks.  This also avoids
1540	 * some nasty RCU grace-period initialization races by forcing
1541	 * the end of the current grace period to be completely recorded in
1542	 * all of the rcu_node structures before the beginning of the next
1543	 * grace period is recorded in any of the rcu_node structures.
1544	 */
1545	rcu_for_each_node_breadth_first(rsp, rnp) {
1546		raw_spin_lock_irq(&rnp->lock);
1547		smp_mb__after_unlock_lock();
1548		ACCESS_ONCE(rnp->completed) = rsp->gpnum;
1549		rdp = this_cpu_ptr(rsp->rda);
 
 
 
 
 
 
1550		if (rnp == rdp->mynode)
1551			__note_gp_changes(rsp, rnp, rdp);
1552		/* smp_mb() provided by prior unlock-lock pair. */
1553		nocb += rcu_future_gp_cleanup(rsp, rnp);
1554		raw_spin_unlock_irq(&rnp->lock);
1555		cond_resched();
1556	}
1557	rnp = rcu_get_root(rsp);
1558	raw_spin_lock_irq(&rnp->lock);
1559	smp_mb__after_unlock_lock(); /* Order GP before ->completed update. */
1560	rcu_nocb_gp_set(rnp, nocb);
1561
1562	/* Declare grace period done. */
1563	ACCESS_ONCE(rsp->completed) = rsp->gpnum;
1564	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
1565	rsp->fqs_state = RCU_GP_IDLE;
1566	rdp = this_cpu_ptr(rsp->rda);
1567	rcu_advance_cbs(rsp, rnp, rdp);  /* Reduce false positives below. */
1568	if (cpu_needs_another_gp(rsp, rdp)) {
1569		rsp->gp_flags = RCU_GP_FLAG_INIT;
1570		trace_rcu_grace_period(rsp->name,
1571				       ACCESS_ONCE(rsp->gpnum),
1572				       TPS("newreq"));
1573	}
1574	raw_spin_unlock_irq(&rnp->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1575}
1576
1577/*
1578 * Body of kthread that handles grace periods.
1579 */
1580static int __noreturn rcu_gp_kthread(void *arg)
1581{
1582	int fqs_state;
1583	int gf;
1584	unsigned long j;
1585	int ret;
1586	struct rcu_state *rsp = arg;
1587	struct rcu_node *rnp = rcu_get_root(rsp);
1588
1589	for (;;) {
1590
1591		/* Handle grace-period start. */
1592		for (;;) {
1593			trace_rcu_grace_period(rsp->name,
1594					       ACCESS_ONCE(rsp->gpnum),
1595					       TPS("reqwait"));
1596			wait_event_interruptible(rsp->gp_wq,
1597						 ACCESS_ONCE(rsp->gp_flags) &
1598						 RCU_GP_FLAG_INIT);
 
 
 
1599			/* Locking provides needed memory barrier. */
1600			if (rcu_gp_init(rsp))
1601				break;
1602			cond_resched();
1603			flush_signals(current);
1604			trace_rcu_grace_period(rsp->name,
1605					       ACCESS_ONCE(rsp->gpnum),
1606					       TPS("reqwaitsig"));
1607		}
1608
1609		/* Handle quiescent-state forcing. */
1610		fqs_state = RCU_SAVE_DYNTICK;
1611		j = jiffies_till_first_fqs;
1612		if (j > HZ) {
1613			j = HZ;
1614			jiffies_till_first_fqs = HZ;
1615		}
1616		ret = 0;
1617		for (;;) {
1618			if (!ret)
1619				rsp->jiffies_force_qs = jiffies + j;
1620			trace_rcu_grace_period(rsp->name,
1621					       ACCESS_ONCE(rsp->gpnum),
1622					       TPS("fqswait"));
1623			ret = wait_event_interruptible_timeout(rsp->gp_wq,
1624					((gf = ACCESS_ONCE(rsp->gp_flags)) &
1625					 RCU_GP_FLAG_FQS) ||
1626					(!ACCESS_ONCE(rnp->qsmask) &&
1627					 !rcu_preempt_blocked_readers_cgp(rnp)),
1628					j);
1629			/* Locking provides needed memory barriers. */
1630			/* If grace period done, leave loop. */
1631			if (!ACCESS_ONCE(rnp->qsmask) &&
1632			    !rcu_preempt_blocked_readers_cgp(rnp))
1633				break;
1634			/* If time for quiescent-state forcing, do it. */
1635			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
1636			    (gf & RCU_GP_FLAG_FQS)) {
1637				trace_rcu_grace_period(rsp->name,
1638						       ACCESS_ONCE(rsp->gpnum),
1639						       TPS("fqsstart"));
1640				fqs_state = rcu_gp_fqs(rsp, fqs_state);
1641				trace_rcu_grace_period(rsp->name,
1642						       ACCESS_ONCE(rsp->gpnum),
1643						       TPS("fqsend"));
1644				cond_resched();
1645			} else {
1646				/* Deal with stray signal. */
1647				cond_resched();
1648				flush_signals(current);
1649				trace_rcu_grace_period(rsp->name,
1650						       ACCESS_ONCE(rsp->gpnum),
1651						       TPS("fqswaitsig"));
1652			}
1653			j = jiffies_till_next_fqs;
1654			if (j > HZ) {
1655				j = HZ;
1656				jiffies_till_next_fqs = HZ;
1657			} else if (j < 1) {
1658				j = 1;
1659				jiffies_till_next_fqs = 1;
1660			}
1661		}
1662
1663		/* Handle grace-period end. */
1664		rcu_gp_cleanup(rsp);
 
 
1665	}
1666}
1667
1668static void rsp_wakeup(struct irq_work *work)
1669{
1670	struct rcu_state *rsp = container_of(work, struct rcu_state, wakeup_work);
1671
1672	/* Wake up rcu_gp_kthread() to start the grace period. */
1673	wake_up(&rsp->gp_wq);
1674}
1675
1676/*
1677 * Start a new RCU grace period if warranted, re-initializing the hierarchy
1678 * in preparation for detecting the next grace period.  The caller must hold
1679 * the root node's ->lock and hard irqs must be disabled.
1680 *
1681 * Note that it is legal for a dying CPU (which is marked as offline) to
1682 * invoke this function.  This can happen when the dying CPU reports its
1683 * quiescent state.
1684 */
1685static void
1686rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
1687		      struct rcu_data *rdp)
1688{
1689	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
1690		/*
1691		 * Either we have not yet spawned the grace-period
1692		 * task, this CPU does not need another grace period,
1693		 * or a grace period is already in progress.
1694		 * Either way, don't start a new grace period.
1695		 */
1696		return;
1697	}
1698	rsp->gp_flags = RCU_GP_FLAG_INIT;
1699	trace_rcu_grace_period(rsp->name, ACCESS_ONCE(rsp->gpnum),
1700			       TPS("newreq"));
1701
1702	/*
1703	 * We can't do wakeups while holding the rnp->lock, as that
1704	 * could cause possible deadlocks with the rq->lock. Defer
1705	 * the wakeup to interrupt context.  And don't bother waking
1706	 * up the running kthread.
1707	 */
1708	if (current != rsp->gp_kthread)
1709		irq_work_queue(&rsp->wakeup_work);
1710}
1711
1712/*
1713 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
1714 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
1715 * is invoked indirectly from rcu_advance_cbs(), which would result in
1716 * endless recursion -- or would do so if it wasn't for the self-deadlock
1717 * that is encountered beforehand.
1718 */
1719static void
1720rcu_start_gp(struct rcu_state *rsp)
1721{
1722	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1723	struct rcu_node *rnp = rcu_get_root(rsp);
1724
1725	/*
1726	 * If there is no grace period in progress right now, any
1727	 * callbacks we have up to this point will be satisfied by the
1728	 * next grace period.  Also, advancing the callbacks reduces the
1729	 * probability of false positives from cpu_needs_another_gp()
1730	 * resulting in pointless grace periods.  So, advance callbacks
1731	 * then start the grace period!
1732	 */
1733	rcu_advance_cbs(rsp, rnp, rdp);
1734	rcu_start_gp_advanced(rsp, rnp, rdp);
1735}
1736
1737/*
1738 * Report a full set of quiescent states to the specified rcu_state
1739 * data structure.  This involves cleaning up after the prior grace
1740 * period and letting rcu_start_gp() start up the next grace period
1741 * if one is needed.  Note that the caller must hold rnp->lock, which
1742 * is released before return.
1743 */
1744static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
1745	__releases(rcu_get_root(rsp)->lock)
1746{
1747	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
1748	raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
1749	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
1750}
1751
1752/*
1753 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1754 * Allows quiescent states for a group of CPUs to be reported at one go
1755 * to the specified rcu_node structure, though all the CPUs in the group
1756 * must be represented by the same rcu_node structure (which need not be
1757 * a leaf rcu_node structure, though it often will be).  That structure's
1758 * lock must be held upon entry, and it is released before return.
 
 
 
 
 
 
1759 */
1760static void
1761rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
1762		  struct rcu_node *rnp, unsigned long flags)
1763	__releases(rnp->lock)
1764{
 
1765	struct rcu_node *rnp_c;
1766
 
 
1767	/* Walk up the rcu_node hierarchy. */
1768	for (;;) {
1769		if (!(rnp->qsmask & mask)) {
1770
1771			/* Our bit has already been cleared, so done. */
1772			raw_spin_unlock_irqrestore(&rnp->lock, flags);
 
 
 
1773			return;
1774		}
1775		rnp->qsmask &= ~mask;
1776		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
 
 
 
1777						 mask, rnp->qsmask, rnp->level,
1778						 rnp->grplo, rnp->grphi,
1779						 !!rnp->gp_tasks);
1780		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1781
1782			/* Other bits still set at this level, so done. */
1783			raw_spin_unlock_irqrestore(&rnp->lock, flags);
1784			return;
1785		}
 
1786		mask = rnp->grpmask;
1787		if (rnp->parent == NULL) {
1788
1789			/* No more levels.  Exit loop holding root lock. */
1790
1791			break;
1792		}
1793		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1794		rnp_c = rnp;
1795		rnp = rnp->parent;
1796		raw_spin_lock_irqsave(&rnp->lock, flags);
1797		smp_mb__after_unlock_lock();
1798		WARN_ON_ONCE(rnp_c->qsmask);
1799	}
1800
1801	/*
1802	 * Get here if we are the last CPU to pass through a quiescent
1803	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1804	 * to clean up and start the next grace period if one is needed.
1805	 */
1806	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1807}
1808
1809/*
1810 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1811 * structure.  This must be either called from the specified CPU, or
1812 * called when the specified CPU is known to be offline (and when it is
1813 * also known that no other CPU is concurrently trying to help the offline
1814 * CPU).  The lastcomp argument is used to make sure we are still in the
1815 * grace period of interest.  We don't want to end the current grace period
1816 * based on quiescent states detected in an earlier grace period!
1817 */
1818static void
1819rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
1820{
1821	unsigned long flags;
1822	unsigned long mask;
 
 
1823	struct rcu_node *rnp;
1824
 
1825	rnp = rdp->mynode;
1826	raw_spin_lock_irqsave(&rnp->lock, flags);
1827	smp_mb__after_unlock_lock();
1828	if (rdp->passed_quiesce == 0 || rdp->gpnum != rnp->gpnum ||
1829	    rnp->completed == rnp->gpnum) {
1830
1831		/*
1832		 * The grace period in which this quiescent state was
1833		 * recorded has ended, so don't report it upwards.
1834		 * We will instead need a new quiescent state that lies
1835		 * within the current grace period.
1836		 */
1837		rdp->passed_quiesce = 0;	/* need qs for new gp. */
1838		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1839		return;
1840	}
1841	mask = rdp->grpmask;
 
1842	if ((rnp->qsmask & mask) == 0) {
1843		raw_spin_unlock_irqrestore(&rnp->lock, flags);
1844	} else {
1845		rdp->qs_pending = 0;
1846
1847		/*
1848		 * This GP can't end until cpu checks in, so all of our
1849		 * callbacks can be processed during the next GP.
 
 
1850		 */
1851		rcu_accelerate_cbs(rsp, rnp, rdp);
 
 
 
 
 
 
 
 
1852
1853		rcu_report_qs_rnp(mask, rsp, rnp, flags); /* rlses rnp->lock */
 
 
 
 
 
 
 
 
 
 
1854	}
1855}
1856
1857/*
1858 * Check to see if there is a new grace period of which this CPU
1859 * is not yet aware, and if so, set up local rcu_data state for it.
1860 * Otherwise, see if this CPU has just passed through its first
1861 * quiescent state for this grace period, and record that fact if so.
1862 */
1863static void
1864rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
1865{
1866	/* Check for grace-period ends and beginnings. */
1867	note_gp_changes(rsp, rdp);
1868
1869	/*
1870	 * Does this CPU still need to do its part for current grace period?
1871	 * If no, return and let the other CPUs do their part as well.
1872	 */
1873	if (!rdp->qs_pending)
1874		return;
1875
1876	/*
1877	 * Was there a quiescent state since the beginning of the grace
1878	 * period? If no, then exit and wait for the next call.
1879	 */
1880	if (!rdp->passed_quiesce)
1881		return;
1882
1883	/*
1884	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
1885	 * judge of that).
1886	 */
1887	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
1888}
1889
1890#ifdef CONFIG_HOTPLUG_CPU
1891
1892/*
1893 * Send the specified CPU's RCU callbacks to the orphanage.  The
1894 * specified CPU must be offline, and the caller must hold the
1895 * ->orphan_lock.
1896 */
1897static void
1898rcu_send_cbs_to_orphanage(int cpu, struct rcu_state *rsp,
1899			  struct rcu_node *rnp, struct rcu_data *rdp)
1900{
1901	/* No-CBs CPUs do not have orphanable callbacks. */
1902	if (rcu_is_nocb_cpu(rdp->cpu))
1903		return;
1904
1905	/*
1906	 * Orphan the callbacks.  First adjust the counts.  This is safe
1907	 * because _rcu_barrier() excludes CPU-hotplug operations, so it
1908	 * cannot be running now.  Thus no memory barrier is required.
1909	 */
1910	if (rdp->nxtlist != NULL) {
1911		rsp->qlen_lazy += rdp->qlen_lazy;
1912		rsp->qlen += rdp->qlen;
1913		rdp->n_cbs_orphaned += rdp->qlen;
1914		rdp->qlen_lazy = 0;
1915		ACCESS_ONCE(rdp->qlen) = 0;
1916	}
1917
1918	/*
1919	 * Next, move those callbacks still needing a grace period to
1920	 * the orphanage, where some other CPU will pick them up.
1921	 * Some of the callbacks might have gone partway through a grace
1922	 * period, but that is too bad.  They get to start over because we
1923	 * cannot assume that grace periods are synchronized across CPUs.
1924	 * We don't bother updating the ->nxttail[] array yet, instead
1925	 * we just reset the whole thing later on.
1926	 */
1927	if (*rdp->nxttail[RCU_DONE_TAIL] != NULL) {
1928		*rsp->orphan_nxttail = *rdp->nxttail[RCU_DONE_TAIL];
1929		rsp->orphan_nxttail = rdp->nxttail[RCU_NEXT_TAIL];
1930		*rdp->nxttail[RCU_DONE_TAIL] = NULL;
1931	}
1932
1933	/*
1934	 * Then move the ready-to-invoke callbacks to the orphanage,
1935	 * where some other CPU will pick them up.  These will not be
1936	 * required to pass though another grace period: They are done.
1937	 */
1938	if (rdp->nxtlist != NULL) {
1939		*rsp->orphan_donetail = rdp->nxtlist;
1940		rsp->orphan_donetail = rdp->nxttail[RCU_DONE_TAIL];
1941	}
1942
1943	/* Finally, initialize the rcu_data structure's list to empty.  */
1944	init_callback_list(rdp);
1945}
1946
1947/*
1948 * Adopt the RCU callbacks from the specified rcu_state structure's
1949 * orphanage.  The caller must hold the ->orphan_lock.
1950 */
1951static void rcu_adopt_orphan_cbs(struct rcu_state *rsp, unsigned long flags)
1952{
1953	int i;
1954	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
1955
1956	/* No-CBs CPUs are handled specially. */
1957	if (rcu_nocb_adopt_orphan_cbs(rsp, rdp, flags))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1958		return;
1959
1960	/* Do the accounting first. */
1961	rdp->qlen_lazy += rsp->qlen_lazy;
1962	rdp->qlen += rsp->qlen;
1963	rdp->n_cbs_adopted += rsp->qlen;
1964	if (rsp->qlen_lazy != rsp->qlen)
1965		rcu_idle_count_callbacks_posted();
1966	rsp->qlen_lazy = 0;
1967	rsp->qlen = 0;
1968
1969	/*
1970	 * We do not need a memory barrier here because the only way we
1971	 * can get here if there is an rcu_barrier() in flight is if
1972	 * we are the task doing the rcu_barrier().
1973	 */
1974
1975	/* First adopt the ready-to-invoke callbacks. */
1976	if (rsp->orphan_donelist != NULL) {
1977		*rsp->orphan_donetail = *rdp->nxttail[RCU_DONE_TAIL];
1978		*rdp->nxttail[RCU_DONE_TAIL] = rsp->orphan_donelist;
1979		for (i = RCU_NEXT_SIZE - 1; i >= RCU_DONE_TAIL; i--)
1980			if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
1981				rdp->nxttail[i] = rsp->orphan_donetail;
1982		rsp->orphan_donelist = NULL;
1983		rsp->orphan_donetail = &rsp->orphan_donelist;
1984	}
1985
1986	/* And then adopt the callbacks that still need a grace period. */
1987	if (rsp->orphan_nxtlist != NULL) {
1988		*rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxtlist;
1989		rdp->nxttail[RCU_NEXT_TAIL] = rsp->orphan_nxttail;
1990		rsp->orphan_nxtlist = NULL;
1991		rsp->orphan_nxttail = &rsp->orphan_nxtlist;
1992	}
1993}
1994
1995/*
1996 * Trace the fact that this CPU is going offline.
1997 */
1998static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
1999{
2000	RCU_TRACE(unsigned long mask);
2001	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda));
2002	RCU_TRACE(struct rcu_node *rnp = rdp->mynode);
2003
2004	RCU_TRACE(mask = rdp->grpmask);
2005	trace_rcu_grace_period(rsp->name,
2006			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2007			       TPS("cpuofl"));
2008}
2009
2010/*
2011 * The CPU has been completely removed, and some other CPU is reporting
2012 * this fact from process context.  Do the remainder of the cleanup,
2013 * including orphaning the outgoing CPU's RCU callbacks, and also
2014 * adopting them.  There can only be one CPU hotplug operation at a time,
2015 * so no other CPU can be attempting to update rcu_cpu_kthread_task.
2016 */
2017static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2018{
2019	unsigned long flags;
2020	unsigned long mask;
2021	int need_report = 0;
2022	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2023	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2024
 
 
 
 
2025	/* Adjust any no-longer-needed kthreads. */
2026	rcu_boost_kthread_setaffinity(rnp, -1);
2027
2028	/* Remove the dead CPU from the bitmasks in the rcu_node hierarchy. */
2029
2030	/* Exclude any attempts to start a new grace period. */
2031	mutex_lock(&rsp->onoff_mutex);
2032	raw_spin_lock_irqsave(&rsp->orphan_lock, flags);
2033
2034	/* Orphan the dead CPU's callbacks, and adopt them if appropriate. */
2035	rcu_send_cbs_to_orphanage(cpu, rsp, rnp, rdp);
2036	rcu_adopt_orphan_cbs(rsp, flags);
2037
2038	/* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
2039	mask = rdp->grpmask;	/* rnp->grplo is constant. */
2040	do {
2041		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
2042		smp_mb__after_unlock_lock();
2043		rnp->qsmaskinit &= ~mask;
2044		if (rnp->qsmaskinit != 0) {
2045			if (rnp != rdp->mynode)
2046				raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2047			break;
2048		}
2049		if (rnp == rdp->mynode)
2050			need_report = rcu_preempt_offline_tasks(rsp, rnp, rdp);
2051		else
2052			raw_spin_unlock(&rnp->lock); /* irqs remain disabled. */
2053		mask = rnp->grpmask;
2054		rnp = rnp->parent;
2055	} while (rnp != NULL);
2056
2057	/*
2058	 * We still hold the leaf rcu_node structure lock here, and
2059	 * irqs are still disabled.  The reason for this subterfuge is
2060	 * because invoking rcu_report_unblock_qs_rnp() with ->orphan_lock
2061	 * held leads to deadlock.
2062	 */
2063	raw_spin_unlock(&rsp->orphan_lock); /* irqs remain disabled. */
2064	rnp = rdp->mynode;
2065	if (need_report & RCU_OFL_TASKS_NORM_GP)
2066		rcu_report_unblock_qs_rnp(rnp, flags);
2067	else
2068		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2069	if (need_report & RCU_OFL_TASKS_EXP_GP)
2070		rcu_report_exp_rnp(rsp, rnp, true);
2071	WARN_ONCE(rdp->qlen != 0 || rdp->nxtlist != NULL,
2072		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, nxtlist=%p\n",
2073		  cpu, rdp->qlen, rdp->nxtlist);
2074	init_callback_list(rdp);
2075	/* Disallow further callbacks on this CPU. */
2076	rdp->nxttail[RCU_NEXT_TAIL] = NULL;
2077	mutex_unlock(&rsp->onoff_mutex);
2078}
2079
2080#else /* #ifdef CONFIG_HOTPLUG_CPU */
2081
2082static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2083{
2084}
2085
2086static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2087{
2088}
2089
2090#endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
2091
2092/*
2093 * Invoke any RCU callbacks that have made it to the end of their grace
2094 * period.  Thottle as specified by rdp->blimit.
2095 */
2096static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2097{
 
 
2098	unsigned long flags;
2099	struct rcu_head *next, *list, **tail;
2100	long bl, count, count_lazy;
2101	int i;
 
2102
2103	/* If no callbacks are ready, just return. */
2104	if (!cpu_has_callbacks_ready_to_invoke(rdp)) {
2105		trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, 0);
2106		trace_rcu_batch_end(rsp->name, 0, !!ACCESS_ONCE(rdp->nxtlist),
 
 
2107				    need_resched(), is_idle_task(current),
2108				    rcu_is_callbacks_kthread());
2109		return;
2110	}
2111
2112	/*
2113	 * Extract the list of ready callbacks, disabling to prevent
2114	 * races with call_rcu() from interrupt handlers.
 
2115	 */
2116	local_irq_save(flags);
2117	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2118	bl = rdp->blimit;
2119	trace_rcu_batch_start(rsp->name, rdp->qlen_lazy, rdp->qlen, bl);
2120	list = rdp->nxtlist;
2121	rdp->nxtlist = *rdp->nxttail[RCU_DONE_TAIL];
2122	*rdp->nxttail[RCU_DONE_TAIL] = NULL;
2123	tail = rdp->nxttail[RCU_DONE_TAIL];
2124	for (i = RCU_NEXT_SIZE - 1; i >= 0; i--)
2125		if (rdp->nxttail[i] == rdp->nxttail[RCU_DONE_TAIL])
2126			rdp->nxttail[i] = &rdp->nxtlist;
2127	local_irq_restore(flags);
 
 
 
 
 
 
 
 
2128
2129	/* Invoke callbacks. */
2130	count = count_lazy = 0;
2131	while (list) {
2132		next = list->next;
2133		prefetch(next);
2134		debug_rcu_head_unqueue(list);
2135		if (__rcu_reclaim(rsp->name, list))
2136			count_lazy++;
2137		list = next;
2138		/* Stop only if limit reached and CPU has something to do. */
2139		if (++count >= bl &&
2140		    (need_resched() ||
2141		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2142			break;
2143	}
 
 
 
2144
2145	local_irq_save(flags);
2146	trace_rcu_batch_end(rsp->name, count, !!list, need_resched(),
2147			    is_idle_task(current),
2148			    rcu_is_callbacks_kthread());
2149
2150	/* Update count, and requeue any remaining callbacks. */
2151	if (list != NULL) {
2152		*tail = rdp->nxtlist;
2153		rdp->nxtlist = list;
2154		for (i = 0; i < RCU_NEXT_SIZE; i++)
2155			if (&rdp->nxtlist == rdp->nxttail[i])
2156				rdp->nxttail[i] = tail;
2157			else
 
 
2158				break;
 
 
 
 
 
 
 
 
2159	}
2160	smp_mb(); /* List handling before counting for rcu_barrier(). */
2161	rdp->qlen_lazy -= count_lazy;
2162	ACCESS_ONCE(rdp->qlen) -= count;
2163	rdp->n_cbs_invoked += count;
 
 
 
 
 
 
2164
2165	/* Reinstate batch limit if we have worked down the excess. */
2166	if (rdp->blimit == LONG_MAX && rdp->qlen <= qlowmark)
 
2167		rdp->blimit = blimit;
2168
2169	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2170	if (rdp->qlen == 0 && rdp->qlen_last_fqs_check != 0) {
2171		rdp->qlen_last_fqs_check = 0;
2172		rdp->n_force_qs_snap = rsp->n_force_qs;
2173	} else if (rdp->qlen < rdp->qlen_last_fqs_check - qhimark)
2174		rdp->qlen_last_fqs_check = rdp->qlen;
2175	WARN_ON_ONCE((rdp->nxtlist == NULL) != (rdp->qlen == 0));
2176
2177	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
2178
2179	/* Re-invoke RCU core processing if there are callbacks remaining. */
2180	if (cpu_has_callbacks_ready_to_invoke(rdp))
2181		invoke_rcu_core();
2182}
2183
2184/*
2185 * Check to see if this CPU is in a non-context-switch quiescent state
2186 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2187 * Also schedule RCU core processing.
2188 *
2189 * This function must be called from hardirq context.  It is normally
2190 * invoked from the scheduling-clock interrupt.  If rcu_pending returns
2191 * false, there is no point in invoking rcu_check_callbacks().
2192 */
2193void rcu_check_callbacks(int cpu, int user)
2194{
 
 
 
 
 
 
 
2195	trace_rcu_utilization(TPS("Start scheduler-tick"));
2196	increment_cpu_stall_ticks();
2197	if (user || rcu_is_cpu_rrupt_from_idle()) {
2198
2199		/*
2200		 * Get here if this CPU took its interrupt from user
2201		 * mode or from the idle loop, and if this is not a
2202		 * nested interrupt.  In this case, the CPU is in
2203		 * a quiescent state, so note it.
2204		 *
2205		 * No memory barrier is required here because both
2206		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2207		 * variables that other CPUs neither access nor modify,
2208		 * at least not while the corresponding CPU is online.
2209		 */
2210
2211		rcu_sched_qs(cpu);
2212		rcu_bh_qs(cpu);
2213
2214	} else if (!in_softirq()) {
2215
2216		/*
2217		 * Get here if this CPU did not take its interrupt from
2218		 * softirq, in other words, if it is not interrupting
2219		 * a rcu_bh read-side critical section.  This is an _bh
2220		 * critical section, so note it.
2221		 */
2222
2223		rcu_bh_qs(cpu);
2224	}
2225	rcu_preempt_check_callbacks(cpu);
2226	if (rcu_pending(cpu))
2227		invoke_rcu_core();
 
 
 
 
2228	trace_rcu_utilization(TPS("End scheduler-tick"));
2229}
2230
2231/*
2232 * Scan the leaf rcu_node structures, processing dyntick state for any that
2233 * have not yet encountered a quiescent state, using the function specified.
2234 * Also initiate boosting for any threads blocked on the root rcu_node.
2235 *
2236 * The caller must have suppressed start of new grace periods.
2237 */
2238static void force_qs_rnp(struct rcu_state *rsp,
2239			 int (*f)(struct rcu_data *rsp, bool *isidle,
2240				  unsigned long *maxj),
2241			 bool *isidle, unsigned long *maxj)
2242{
2243	unsigned long bit;
2244	int cpu;
2245	unsigned long flags;
2246	unsigned long mask;
 
2247	struct rcu_node *rnp;
2248
2249	rcu_for_each_leaf_node(rsp, rnp) {
2250		cond_resched();
 
 
2251		mask = 0;
2252		raw_spin_lock_irqsave(&rnp->lock, flags);
2253		smp_mb__after_unlock_lock();
2254		if (!rcu_gp_in_progress(rsp)) {
2255			raw_spin_unlock_irqrestore(&rnp->lock, flags);
2256			return;
2257		}
2258		if (rnp->qsmask == 0) {
2259			rcu_initiate_boost(rnp, flags); /* releases rnp->lock */
 
 
 
 
 
 
 
 
 
 
2260			continue;
2261		}
2262		cpu = rnp->grplo;
2263		bit = 1;
2264		for (; cpu <= rnp->grphi; cpu++, bit <<= 1) {
2265			if ((rnp->qsmask & bit) != 0) {
2266				if ((rnp->qsmaskinit & bit) != 0)
2267					*isidle = 0;
2268				if (f(per_cpu_ptr(rsp->rda, cpu), isidle, maxj))
2269					mask |= bit;
2270			}
2271		}
2272		if (mask != 0) {
2273
2274			/* rcu_report_qs_rnp() releases rnp->lock. */
2275			rcu_report_qs_rnp(mask, rsp, rnp, flags);
2276			continue;
 
2277		}
2278		raw_spin_unlock_irqrestore(&rnp->lock, flags);
2279	}
2280	rnp = rcu_get_root(rsp);
2281	if (rnp->qsmask == 0) {
2282		raw_spin_lock_irqsave(&rnp->lock, flags);
2283		smp_mb__after_unlock_lock();
2284		rcu_initiate_boost(rnp, flags); /* releases rnp->lock. */
2285	}
2286}
2287
2288/*
2289 * Force quiescent states on reluctant CPUs, and also detect which
2290 * CPUs are in dyntick-idle mode.
2291 */
2292static void force_quiescent_state(struct rcu_state *rsp)
2293{
2294	unsigned long flags;
2295	bool ret;
2296	struct rcu_node *rnp;
2297	struct rcu_node *rnp_old = NULL;
2298
2299	/* Funnel through hierarchy to reduce memory contention. */
2300	rnp = per_cpu_ptr(rsp->rda, raw_smp_processor_id())->mynode;
2301	for (; rnp != NULL; rnp = rnp->parent) {
2302		ret = (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2303		      !raw_spin_trylock(&rnp->fqslock);
2304		if (rnp_old != NULL)
2305			raw_spin_unlock(&rnp_old->fqslock);
2306		if (ret) {
2307			ACCESS_ONCE(rsp->n_force_qs_lh)++;
2308			return;
2309		}
2310		rnp_old = rnp;
2311	}
2312	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2313
2314	/* Reached the root of the rcu_node tree, acquire lock. */
2315	raw_spin_lock_irqsave(&rnp_old->lock, flags);
2316	smp_mb__after_unlock_lock();
2317	raw_spin_unlock(&rnp_old->fqslock);
2318	if (ACCESS_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2319		ACCESS_ONCE(rsp->n_force_qs_lh)++;
2320		raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2321		return;  /* Someone beat us to it. */
2322	}
2323	rsp->gp_flags |= RCU_GP_FLAG_FQS;
2324	raw_spin_unlock_irqrestore(&rnp_old->lock, flags);
2325	wake_up(&rsp->gp_wq);  /* Memory barrier implied by wake_up() path. */
 
2326}
 
2327
2328/*
2329 * This does the RCU core processing work for the specified rcu_state
2330 * and rcu_data structures.  This may be called only from the CPU to
2331 * whom the rdp belongs.
2332 */
2333static void
2334__rcu_process_callbacks(struct rcu_state *rsp)
 
 
 
2335{
2336	unsigned long flags;
2337	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2338
2339	WARN_ON_ONCE(rdp->beenonline == 0);
 
 
 
 
 
 
 
 
 
 
 
2340
2341	/* Update RCU state based on any recent quiescent states. */
2342	rcu_check_quiescent_state(rsp, rdp);
2343
2344	/* Does this CPU require a not-yet-started grace period? */
2345	local_irq_save(flags);
2346	if (cpu_needs_another_gp(rsp, rdp)) {
2347		raw_spin_lock(&rcu_get_root(rsp)->lock); /* irqs disabled. */
2348		rcu_start_gp(rsp);
2349		raw_spin_unlock_irqrestore(&rcu_get_root(rsp)->lock, flags);
2350	} else {
2351		local_irq_restore(flags);
2352	}
2353
 
 
2354	/* If there are callbacks ready, invoke them. */
2355	if (cpu_has_callbacks_ready_to_invoke(rdp))
2356		invoke_rcu_callbacks(rsp, rdp);
 
 
 
 
 
2357
2358	/* Do any needed deferred wakeups of rcuo kthreads. */
2359	do_nocb_deferred_wakeup(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2360}
2361
2362/*
2363 * Do RCU core processing for the current CPU.
2364 */
2365static void rcu_process_callbacks(struct softirq_action *unused)
2366{
2367	struct rcu_state *rsp;
 
 
 
 
 
 
 
 
 
 
 
2368
2369	if (cpu_is_offline(smp_processor_id()))
2370		return;
2371	trace_rcu_utilization(TPS("Start RCU core"));
2372	for_each_rcu_flavor(rsp)
2373		__rcu_process_callbacks(rsp);
2374	trace_rcu_utilization(TPS("End RCU core"));
2375}
2376
2377/*
2378 * Schedule RCU callback invocation.  If the specified type of RCU
2379 * does not support RCU priority boosting, just do a direct call,
2380 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2381 * are running on the current CPU with interrupts disabled, the
2382 * rcu_cpu_kthread_task cannot disappear out from under us.
2383 */
2384static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2385{
2386	if (unlikely(!ACCESS_ONCE(rcu_scheduler_fully_active)))
2387		return;
2388	if (likely(!rsp->boost)) {
2389		rcu_do_batch(rsp, rdp);
2390		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2391	}
2392	invoke_rcu_callbacks_kthread();
 
 
 
 
 
2393}
2394
2395static void invoke_rcu_core(void)
 
 
 
 
 
 
 
 
 
 
 
 
2396{
2397	if (cpu_online(smp_processor_id()))
2398		raise_softirq(RCU_SOFTIRQ);
 
 
 
 
 
 
 
2399}
2400
2401/*
2402 * Handle any core-RCU processing required by a call_rcu() invocation.
2403 */
2404static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2405			    struct rcu_head *head, unsigned long flags)
2406{
2407	/*
2408	 * If called from an extended quiescent state, invoke the RCU
2409	 * core in order to force a re-evaluation of RCU's idleness.
2410	 */
2411	if (!rcu_is_watching() && cpu_online(smp_processor_id()))
2412		invoke_rcu_core();
2413
2414	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2415	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2416		return;
2417
2418	/*
2419	 * Force the grace period if too many callbacks or too long waiting.
2420	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2421	 * if some other CPU has recently done so.  Also, don't bother
2422	 * invoking force_quiescent_state() if the newly enqueued callback
2423	 * is the only one waiting for a grace period to complete.
2424	 */
2425	if (unlikely(rdp->qlen > rdp->qlen_last_fqs_check + qhimark)) {
 
2426
2427		/* Are we ignoring a completed grace period? */
2428		note_gp_changes(rsp, rdp);
2429
2430		/* Start a new grace period if one not already started. */
2431		if (!rcu_gp_in_progress(rsp)) {
2432			struct rcu_node *rnp_root = rcu_get_root(rsp);
2433
2434			raw_spin_lock(&rnp_root->lock);
2435			smp_mb__after_unlock_lock();
2436			rcu_start_gp(rsp);
2437			raw_spin_unlock(&rnp_root->lock);
2438		} else {
2439			/* Give the grace period a kick. */
2440			rdp->blimit = LONG_MAX;
2441			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2442			    *rdp->nxttail[RCU_DONE_TAIL] != head)
2443				force_quiescent_state(rsp);
2444			rdp->n_force_qs_snap = rsp->n_force_qs;
2445			rdp->qlen_last_fqs_check = rdp->qlen;
2446		}
2447	}
2448}
2449
2450/*
2451 * RCU callback function to leak a callback.
2452 */
2453static void rcu_leak_callback(struct rcu_head *rhp)
2454{
2455}
2456
2457/*
2458 * Helper function for call_rcu() and friends.  The cpu argument will
2459 * normally be -1, indicating "currently running CPU".  It may specify
2460 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
2461 * is expected to specify a CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2462 */
 
 
 
 
 
 
 
 
 
 
 
 
 
2463static void
2464__call_rcu(struct rcu_head *head, void (*func)(struct rcu_head *rcu),
2465	   struct rcu_state *rsp, int cpu, bool lazy)
2466{
 
2467	unsigned long flags;
2468	struct rcu_data *rdp;
 
 
 
 
2469
2470	WARN_ON_ONCE((unsigned long)head & 0x3); /* Misaligned rcu_head! */
2471	if (debug_rcu_head_queue(head)) {
2472		/* Probable double call_rcu(), so leak the callback. */
2473		ACCESS_ONCE(head->func) = rcu_leak_callback;
2474		WARN_ONCE(1, "__call_rcu(): Leaked duplicate callback\n");
 
 
 
 
 
 
 
2475		return;
2476	}
2477	head->func = func;
2478	head->next = NULL;
2479
2480	/*
2481	 * Opportunistically note grace-period endings and beginnings.
2482	 * Note that we might see a beginning right after we see an
2483	 * end, but never vice versa, since this CPU has to pass through
2484	 * a quiescent state betweentimes.
2485	 */
2486	local_irq_save(flags);
2487	rdp = this_cpu_ptr(rsp->rda);
2488
2489	/* Add the callback to our list. */
2490	if (unlikely(rdp->nxttail[RCU_NEXT_TAIL] == NULL) || cpu != -1) {
2491		int offline;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2492
2493		if (cpu != -1)
2494			rdp = per_cpu_ptr(rsp->rda, cpu);
2495		offline = !__call_rcu_nocb(rdp, head, lazy, flags);
2496		WARN_ON_ONCE(offline);
2497		/* _call_rcu() is illegal on offline CPU; leak the callback. */
 
 
2498		local_irq_restore(flags);
2499		return;
2500	}
2501	ACCESS_ONCE(rdp->qlen)++;
2502	if (lazy)
2503		rdp->qlen_lazy++;
2504	else
2505		rcu_idle_count_callbacks_posted();
2506	smp_mb();  /* Count before adding callback for rcu_barrier(). */
2507	*rdp->nxttail[RCU_NEXT_TAIL] = head;
2508	rdp->nxttail[RCU_NEXT_TAIL] = &head->next;
2509
2510	if (__is_kfree_rcu_offset((unsigned long)func))
2511		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
2512					 rdp->qlen_lazy, rdp->qlen);
2513	else
2514		trace_rcu_callback(rsp->name, head, rdp->qlen_lazy, rdp->qlen);
2515
2516	/* Go handle any RCU core processing required. */
2517	__call_rcu_core(rsp, rdp, head, flags);
2518	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2519}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2520
2521/*
2522 * Queue an RCU-sched callback for invocation after a grace period.
 
 
2523 */
2524void call_rcu_sched(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2525{
2526	__call_rcu(head, func, &rcu_sched_state, -1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2527}
2528EXPORT_SYMBOL_GPL(call_rcu_sched);
2529
2530/*
2531 * Queue an RCU callback for invocation after a quicker grace period.
 
2532 */
2533void call_rcu_bh(struct rcu_head *head, void (*func)(struct rcu_head *rcu))
2534{
2535	__call_rcu(head, func, &rcu_bh_state, -1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2536}
2537EXPORT_SYMBOL_GPL(call_rcu_bh);
2538
2539/*
2540 * Because a context switch is a grace period for RCU-sched and RCU-bh,
2541 * any blocking grace-period wait automatically implies a grace period
2542 * if there is only one CPU online at any point time during execution
2543 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
2544 * occasionally incorrectly indicate that there are multiple CPUs online
2545 * when there was in fact only one the whole time, as this just adds
2546 * some overhead: RCU still operates correctly.
 
 
 
2547 */
2548static inline int rcu_blocking_is_gp(void)
2549{
2550	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2551
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2552	might_sleep();  /* Check for RCU read-side critical section. */
2553	preempt_disable();
2554	ret = num_online_cpus() <= 1;
2555	preempt_enable();
2556	return ret;
2557}
2558
2559/**
2560 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
2561 *
2562 * Control will return to the caller some time after a full rcu-sched
2563 * grace period has elapsed, in other words after all currently executing
2564 * rcu-sched read-side critical sections have completed.   These read-side
2565 * critical sections are delimited by rcu_read_lock_sched() and
2566 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
2567 * local_irq_disable(), and so on may be used in place of
2568 * rcu_read_lock_sched().
2569 *
2570 * This means that all preempt_disable code sequences, including NMI and
2571 * non-threaded hardware-interrupt handlers, in progress on entry will
2572 * have completed before this primitive returns.  However, this does not
2573 * guarantee that softirq handlers will have completed, since in some
2574 * kernels, these handlers can run in process context, and can block.
2575 *
2576 * Note that this guarantee implies further memory-ordering guarantees.
2577 * On systems with more than one CPU, when synchronize_sched() returns,
2578 * each CPU is guaranteed to have executed a full memory barrier since the
2579 * end of its last RCU-sched read-side critical section whose beginning
2580 * preceded the call to synchronize_sched().  In addition, each CPU having
2581 * an RCU read-side critical section that extends beyond the return from
2582 * synchronize_sched() is guaranteed to have executed a full memory barrier
2583 * after the beginning of synchronize_sched() and before the beginning of
2584 * that RCU read-side critical section.  Note that these guarantees include
2585 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
2586 * that are executing in the kernel.
2587 *
2588 * Furthermore, if CPU A invoked synchronize_sched(), which returned
2589 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
2590 * to have executed a full memory barrier during the execution of
2591 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
2592 * again only if the system has more than one CPU).
2593 *
2594 * This primitive provides the guarantees made by the (now removed)
2595 * synchronize_kernel() API.  In contrast, synchronize_rcu() only
2596 * guarantees that rcu_read_lock() sections will have completed.
2597 * In "classic RCU", these two guarantees happen to be one and
2598 * the same, but can differ in realtime RCU implementations.
2599 */
2600void synchronize_sched(void)
2601{
2602	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2603			   !lock_is_held(&rcu_lock_map) &&
2604			   !lock_is_held(&rcu_sched_lock_map),
2605			   "Illegal synchronize_sched() in RCU-sched read-side critical section");
2606	if (rcu_blocking_is_gp())
 
 
 
 
2607		return;
2608	if (rcu_expedited)
2609		synchronize_sched_expedited();
2610	else
2611		wait_rcu_gp(call_rcu_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2612}
2613EXPORT_SYMBOL_GPL(synchronize_sched);
2614
2615/**
2616 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 
2617 *
2618 * Control will return to the caller some time after a full rcu_bh grace
2619 * period has elapsed, in other words after all currently executing rcu_bh
2620 * read-side critical sections have completed.  RCU read-side critical
2621 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
2622 * and may be nested.
2623 *
2624 * See the description of synchronize_sched() for more detailed information
2625 * on memory ordering guarantees.
2626 */
2627void synchronize_rcu_bh(void)
2628{
2629	rcu_lockdep_assert(!lock_is_held(&rcu_bh_lock_map) &&
2630			   !lock_is_held(&rcu_lock_map) &&
2631			   !lock_is_held(&rcu_sched_lock_map),
2632			   "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
2633	if (rcu_blocking_is_gp())
2634		return;
2635	if (rcu_expedited)
2636		synchronize_rcu_bh_expedited();
2637	else
2638		wait_rcu_gp(call_rcu_bh);
2639}
2640EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
2641
2642/**
2643 * get_state_synchronize_rcu - Snapshot current RCU state
2644 *
2645 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
2646 * to determine whether or not a full grace period has elapsed in the
2647 * meantime.
2648 */
2649unsigned long get_state_synchronize_rcu(void)
2650{
2651	/*
2652	 * Any prior manipulation of RCU-protected data must happen
2653	 * before the load from ->gpnum.
2654	 */
2655	smp_mb();  /* ^^^ */
2656
2657	/*
2658	 * Make sure this load happens before the purportedly
2659	 * time-consuming work between get_state_synchronize_rcu()
2660	 * and cond_synchronize_rcu().
2661	 */
2662	return smp_load_acquire(&rcu_state->gpnum);
2663}
2664EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
2665
2666/**
2667 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
 
2668 *
2669 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 
 
 
 
 
 
 
2670 *
2671 * If a full RCU grace period has elapsed since the earlier call to
2672 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
2673 * synchronize_rcu() to wait for a full grace period.
2674 *
2675 * Yes, this function does not take counter wrap into account.  But
2676 * counter wrap is harmless.  If the counter wraps, we have waited for
2677 * more than 2 billion grace periods (and way more on a 64-bit system!),
2678 * so waiting for one additional grace period should be just fine.
2679 */
2680void cond_synchronize_rcu(unsigned long oldstate)
2681{
2682	unsigned long newstate;
2683
2684	/*
2685	 * Ensure that this load happens before any RCU-destructive
2686	 * actions the caller might carry out after we return.
2687	 */
2688	newstate = smp_load_acquire(&rcu_state->completed);
2689	if (ULONG_CMP_GE(oldstate, newstate))
2690		synchronize_rcu();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2691}
2692EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
2693
2694static int synchronize_sched_expedited_cpu_stop(void *data)
 
 
 
 
 
 
 
 
 
 
 
 
2695{
2696	/*
2697	 * There must be a full memory barrier on each affected CPU
2698	 * between the time that try_stop_cpus() is called and the
2699	 * time that it returns.
2700	 *
2701	 * In the current initial implementation of cpu_stop, the
2702	 * above condition is already met when the control reaches
2703	 * this point and the following smp_mb() is not strictly
2704	 * necessary.  Do smp_mb() anyway for documentation and
2705	 * robustness against future implementation changes.
2706	 */
2707	smp_mb(); /* See above comment block. */
2708	return 0;
2709}
 
2710
2711/**
2712 * synchronize_sched_expedited - Brute-force RCU-sched grace period
 
2713 *
2714 * Wait for an RCU-sched grace period to elapse, but use a "big hammer"
2715 * approach to force the grace period to end quickly.  This consumes
2716 * significant time on all CPUs and is unfriendly to real-time workloads,
2717 * so is thus not recommended for any sort of common-case code.  In fact,
2718 * if you are using synchronize_sched_expedited() in a loop, please
2719 * restructure your code to batch your updates, and then use a single
2720 * synchronize_sched() instead.
2721 *
2722 * Note that it is illegal to call this function while holding any lock
2723 * that is acquired by a CPU-hotplug notifier.  And yes, it is also illegal
2724 * to call this function from a CPU-hotplug notifier.  Failing to observe
2725 * these restriction will result in deadlock.
2726 *
2727 * This implementation can be thought of as an application of ticket
2728 * locking to RCU, with sync_sched_expedited_started and
2729 * sync_sched_expedited_done taking on the roles of the halves
2730 * of the ticket-lock word.  Each task atomically increments
2731 * sync_sched_expedited_started upon entry, snapshotting the old value,
2732 * then attempts to stop all the CPUs.  If this succeeds, then each
2733 * CPU will have executed a context switch, resulting in an RCU-sched
2734 * grace period.  We are then done, so we use atomic_cmpxchg() to
2735 * update sync_sched_expedited_done to match our snapshot -- but
2736 * only if someone else has not already advanced past our snapshot.
2737 *
2738 * On the other hand, if try_stop_cpus() fails, we check the value
2739 * of sync_sched_expedited_done.  If it has advanced past our
2740 * initial snapshot, then someone else must have forced a grace period
2741 * some time after we took our snapshot.  In this case, our work is
2742 * done for us, and we can simply return.  Otherwise, we try again,
2743 * but keep our initial snapshot for purposes of checking for someone
2744 * doing our work for us.
2745 *
2746 * If we fail too many times in a row, we fall back to synchronize_sched().
2747 */
2748void synchronize_sched_expedited(void)
2749{
2750	long firstsnap, s, snap;
2751	int trycount = 0;
2752	struct rcu_state *rsp = &rcu_sched_state;
2753
2754	/*
2755	 * If we are in danger of counter wrap, just do synchronize_sched().
2756	 * By allowing sync_sched_expedited_started to advance no more than
2757	 * ULONG_MAX/8 ahead of sync_sched_expedited_done, we are ensuring
2758	 * that more than 3.5 billion CPUs would be required to force a
2759	 * counter wrap on a 32-bit system.  Quite a few more CPUs would of
2760	 * course be required on a 64-bit system.
2761	 */
2762	if (ULONG_CMP_GE((ulong)atomic_long_read(&rsp->expedited_start),
2763			 (ulong)atomic_long_read(&rsp->expedited_done) +
2764			 ULONG_MAX / 8)) {
2765		synchronize_sched();
2766		atomic_long_inc(&rsp->expedited_wrap);
2767		return;
2768	}
2769
2770	/*
2771	 * Take a ticket.  Note that atomic_inc_return() implies a
2772	 * full memory barrier.
2773	 */
2774	snap = atomic_long_inc_return(&rsp->expedited_start);
2775	firstsnap = snap;
2776	get_online_cpus();
2777	WARN_ON_ONCE(cpu_is_offline(raw_smp_processor_id()));
2778
2779	/*
2780	 * Each pass through the following loop attempts to force a
2781	 * context switch on each CPU.
2782	 */
2783	while (try_stop_cpus(cpu_online_mask,
2784			     synchronize_sched_expedited_cpu_stop,
2785			     NULL) == -EAGAIN) {
2786		put_online_cpus();
2787		atomic_long_inc(&rsp->expedited_tryfail);
2788
2789		/* Check to see if someone else did our work for us. */
2790		s = atomic_long_read(&rsp->expedited_done);
2791		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2792			/* ensure test happens before caller kfree */
2793			smp_mb__before_atomic_inc(); /* ^^^ */
2794			atomic_long_inc(&rsp->expedited_workdone1);
2795			return;
2796		}
2797
2798		/* No joy, try again later.  Or just synchronize_sched(). */
2799		if (trycount++ < 10) {
2800			udelay(trycount * num_online_cpus());
2801		} else {
2802			wait_rcu_gp(call_rcu_sched);
2803			atomic_long_inc(&rsp->expedited_normal);
2804			return;
2805		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2806
2807		/* Recheck to see if someone else did our work for us. */
2808		s = atomic_long_read(&rsp->expedited_done);
2809		if (ULONG_CMP_GE((ulong)s, (ulong)firstsnap)) {
2810			/* ensure test happens before caller kfree */
2811			smp_mb__before_atomic_inc(); /* ^^^ */
2812			atomic_long_inc(&rsp->expedited_workdone2);
2813			return;
2814		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2815
2816		/*
2817		 * Refetching sync_sched_expedited_started allows later
2818		 * callers to piggyback on our grace period.  We retry
2819		 * after they started, so our grace period works for them,
2820		 * and they started after our first try, so their grace
2821		 * period works for us.
2822		 */
2823		get_online_cpus();
2824		snap = atomic_long_read(&rsp->expedited_start);
2825		smp_mb(); /* ensure read is before try_stop_cpus(). */
2826	}
2827	atomic_long_inc(&rsp->expedited_stoppedcpus);
2828
2829	/*
2830	 * Everyone up to our most recent fetch is covered by our grace
2831	 * period.  Update the counter, but only if our work is still
2832	 * relevant -- which it won't be if someone who started later
2833	 * than we did already did their update.
2834	 */
2835	do {
2836		atomic_long_inc(&rsp->expedited_done_tries);
2837		s = atomic_long_read(&rsp->expedited_done);
2838		if (ULONG_CMP_GE((ulong)s, (ulong)snap)) {
2839			/* ensure test happens before caller kfree */
2840			smp_mb__before_atomic_inc(); /* ^^^ */
2841			atomic_long_inc(&rsp->expedited_done_lost);
2842			break;
2843		}
2844	} while (atomic_long_cmpxchg(&rsp->expedited_done, s, snap) != s);
2845	atomic_long_inc(&rsp->expedited_done_exit);
2846
2847	put_online_cpus();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2848}
2849EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
2850
2851/*
2852 * Check to see if there is any immediate RCU-related work to be done
2853 * by the current CPU, for the specified type of RCU, returning 1 if so.
2854 * The checks are in order of increasing expense: checks that can be
2855 * carried out against CPU-local state are performed first.  However,
2856 * we must check for CPU stalls first, else we might not get a chance.
2857 */
2858static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
2859{
 
 
2860	struct rcu_node *rnp = rdp->mynode;
2861
2862	rdp->n_rcu_pending++;
2863
2864	/* Check for CPU stalls, if enabled. */
2865	check_cpu_stall(rsp, rdp);
2866
2867	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
2868	if (rcu_nohz_full_cpu(rsp))
 
 
 
 
2869		return 0;
2870
2871	/* Is the RCU core waiting for a quiescent state from this CPU? */
2872	if (rcu_scheduler_fully_active &&
2873	    rdp->qs_pending && !rdp->passed_quiesce) {
2874		rdp->n_rp_qs_pending++;
2875	} else if (rdp->qs_pending && rdp->passed_quiesce) {
2876		rdp->n_rp_report_qs++;
2877		return 1;
2878	}
2879
2880	/* Does this CPU have callbacks ready to invoke? */
2881	if (cpu_has_callbacks_ready_to_invoke(rdp)) {
2882		rdp->n_rp_cb_ready++;
2883		return 1;
2884	}
2885
2886	/* Has RCU gone idle with this CPU needing another grace period? */
2887	if (cpu_needs_another_gp(rsp, rdp)) {
2888		rdp->n_rp_cpu_needs_gp++;
2889		return 1;
2890	}
2891
2892	/* Has another RCU grace period completed?  */
2893	if (ACCESS_ONCE(rnp->completed) != rdp->completed) { /* outside lock */
2894		rdp->n_rp_gp_completed++;
2895		return 1;
2896	}
2897
2898	/* Has a new RCU grace period started? */
2899	if (ACCESS_ONCE(rnp->gpnum) != rdp->gpnum) { /* outside lock */
2900		rdp->n_rp_gp_started++;
2901		return 1;
2902	}
2903
2904	/* Does this CPU need a deferred NOCB wakeup? */
2905	if (rcu_nocb_need_deferred_wakeup(rdp)) {
2906		rdp->n_rp_nocb_defer_wakeup++;
2907		return 1;
2908	}
2909
2910	/* nothing to do */
2911	rdp->n_rp_need_nothing++;
2912	return 0;
2913}
2914
2915/*
2916 * Check to see if there is any immediate RCU-related work to be done
2917 * by the current CPU, returning 1 if so.  This function is part of the
2918 * RCU implementation; it is -not- an exported member of the RCU API.
2919 */
2920static int rcu_pending(int cpu)
2921{
2922	struct rcu_state *rsp;
2923
2924	for_each_rcu_flavor(rsp)
2925		if (__rcu_pending(rsp, per_cpu_ptr(rsp->rda, cpu)))
2926			return 1;
2927	return 0;
2928}
2929
2930/*
2931 * Return true if the specified CPU has any callback.  If all_lazy is
2932 * non-NULL, store an indication of whether all callbacks are lazy.
2933 * (If there are no callbacks, all of them are deemed to be lazy.)
 
 
 
 
 
2934 */
2935static int __maybe_unused rcu_cpu_has_callbacks(int cpu, bool *all_lazy)
2936{
2937	bool al = true;
2938	bool hc = false;
2939	struct rcu_data *rdp;
2940	struct rcu_state *rsp;
2941
2942	for_each_rcu_flavor(rsp) {
2943		rdp = per_cpu_ptr(rsp->rda, cpu);
2944		if (!rdp->nxtlist)
2945			continue;
2946		hc = true;
2947		if (rdp->qlen != rdp->qlen_lazy || !all_lazy) {
2948			al = false;
2949			break;
2950		}
2951	}
2952	if (all_lazy)
2953		*all_lazy = al;
2954	return hc;
2955}
2956
2957/*
2958 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
2959 * the compiler is expected to optimize this away.
2960 */
2961static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
2962			       int cpu, unsigned long done)
2963{
2964	trace_rcu_barrier(rsp->name, s, cpu,
2965			  atomic_read(&rsp->barrier_cpu_count), done);
2966}
 
2967
2968/*
2969 * RCU callback function for _rcu_barrier().  If we are last, wake
2970 * up the task executing _rcu_barrier().
2971 */
2972static void rcu_barrier_callback(struct rcu_head *rhp)
2973{
2974	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
2975	struct rcu_state *rsp = rdp->rsp;
2976
2977	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
2978		_rcu_barrier_trace(rsp, "LastCB", -1, rsp->n_barrier_done);
2979		complete(&rsp->barrier_completion);
 
 
 
 
 
2980	} else {
2981		_rcu_barrier_trace(rsp, "CB", -1, rsp->n_barrier_done);
 
2982	}
 
 
 
 
2983}
2984
2985/*
2986 * Called with preemption disabled, and from cross-cpu IRQ context.
2987 */
2988static void rcu_barrier_func(void *type)
2989{
2990	struct rcu_state *rsp = type;
2991	struct rcu_data *rdp = __this_cpu_ptr(rsp->rda);
2992
2993	_rcu_barrier_trace(rsp, "IRQ", -1, rsp->n_barrier_done);
2994	atomic_inc(&rsp->barrier_cpu_count);
2995	rsp->call(&rdp->barrier_head, rcu_barrier_callback);
 
 
 
2996}
2997
2998/*
2999 * Orchestrate the specified type of RCU barrier, waiting for all
3000 * RCU callbacks of the specified type to complete.
 
 
 
 
3001 */
3002static void _rcu_barrier(struct rcu_state *rsp)
3003{
3004	int cpu;
 
 
3005	struct rcu_data *rdp;
3006	unsigned long snap = ACCESS_ONCE(rsp->n_barrier_done);
3007	unsigned long snap_done;
3008
3009	_rcu_barrier_trace(rsp, "Begin", -1, snap);
3010
3011	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3012	mutex_lock(&rsp->barrier_mutex);
3013
3014	/*
3015	 * Ensure that all prior references, including to ->n_barrier_done,
3016	 * are ordered before the _rcu_barrier() machinery.
3017	 */
3018	smp_mb();  /* See above block comment. */
3019
3020	/*
3021	 * Recheck ->n_barrier_done to see if others did our work for us.
3022	 * This means checking ->n_barrier_done for an even-to-odd-to-even
3023	 * transition.  The "if" expression below therefore rounds the old
3024	 * value up to the next even number and adds two before comparing.
3025	 */
3026	snap_done = rsp->n_barrier_done;
3027	_rcu_barrier_trace(rsp, "Check", -1, snap_done);
3028
3029	/*
3030	 * If the value in snap is odd, we needed to wait for the current
3031	 * rcu_barrier() to complete, then wait for the next one, in other
3032	 * words, we need the value of snap_done to be three larger than
3033	 * the value of snap.  On the other hand, if the value in snap is
3034	 * even, we only had to wait for the next rcu_barrier() to complete,
3035	 * in other words, we need the value of snap_done to be only two
3036	 * greater than the value of snap.  The "(snap + 3) & ~0x1" computes
3037	 * this for us (thank you, Linus!).
3038	 */
3039	if (ULONG_CMP_GE(snap_done, (snap + 3) & ~0x1)) {
3040		_rcu_barrier_trace(rsp, "EarlyExit", -1, snap_done);
3041		smp_mb(); /* caller's subsequent code after above check. */
3042		mutex_unlock(&rsp->barrier_mutex);
3043		return;
3044	}
3045
3046	/*
3047	 * Increment ->n_barrier_done to avoid duplicate work.  Use
3048	 * ACCESS_ONCE() to prevent the compiler from speculating
3049	 * the increment to precede the early-exit check.
3050	 */
3051	ACCESS_ONCE(rsp->n_barrier_done)++;
3052	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 1);
3053	_rcu_barrier_trace(rsp, "Inc1", -1, rsp->n_barrier_done);
3054	smp_mb(); /* Order ->n_barrier_done increment with below mechanism. */
3055
3056	/*
3057	 * Initialize the count to one rather than to zero in order to
3058	 * avoid a too-soon return to zero in case of a short grace period
3059	 * (or preemption of this task).  Exclude CPU-hotplug operations
3060	 * to ensure that no offline CPU has callbacks queued.
3061	 */
3062	init_completion(&rsp->barrier_completion);
3063	atomic_set(&rsp->barrier_cpu_count, 1);
3064	get_online_cpus();
3065
3066	/*
3067	 * Force each CPU with callbacks to register a new callback.
3068	 * When that callback is invoked, we will know that all of the
3069	 * corresponding CPU's preceding callbacks have been invoked.
3070	 */
3071	for_each_possible_cpu(cpu) {
3072		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
 
 
3073			continue;
3074		rdp = per_cpu_ptr(rsp->rda, cpu);
3075		if (rcu_is_nocb_cpu(cpu)) {
3076			_rcu_barrier_trace(rsp, "OnlineNoCB", cpu,
3077					   rsp->n_barrier_done);
3078			atomic_inc(&rsp->barrier_cpu_count);
3079			__call_rcu(&rdp->barrier_head, rcu_barrier_callback,
3080				   rsp, cpu, 0);
3081		} else if (ACCESS_ONCE(rdp->qlen)) {
3082			_rcu_barrier_trace(rsp, "OnlineQ", cpu,
3083					   rsp->n_barrier_done);
3084			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3085		} else {
3086			_rcu_barrier_trace(rsp, "OnlineNQ", cpu,
3087					   rsp->n_barrier_done);
 
 
 
 
3088		}
 
 
3089	}
3090	put_online_cpus();
3091
3092	/*
3093	 * Now that we have an rcu_barrier_callback() callback on each
3094	 * CPU, and thus each counted, remove the initial count.
3095	 */
3096	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3097		complete(&rsp->barrier_completion);
3098
3099	/* Increment ->n_barrier_done to prevent duplicate work. */
3100	smp_mb(); /* Keep increment after above mechanism. */
3101	ACCESS_ONCE(rsp->n_barrier_done)++;
3102	WARN_ON_ONCE((rsp->n_barrier_done & 0x1) != 0);
3103	_rcu_barrier_trace(rsp, "Inc2", -1, rsp->n_barrier_done);
3104	smp_mb(); /* Keep increment before caller's subsequent code. */
 
 
 
3105
3106	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3107	wait_for_completion(&rsp->barrier_completion);
3108
3109	/* Other rcu_barrier() invocations can now safely proceed. */
3110	mutex_unlock(&rsp->barrier_mutex);
3111}
 
3112
3113/**
3114 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
 
 
 
3115 */
3116void rcu_barrier_bh(void)
3117{
3118	_rcu_barrier(&rcu_bh_state);
3119}
3120EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3121
3122/**
3123 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3124 */
3125void rcu_barrier_sched(void)
3126{
3127	_rcu_barrier(&rcu_sched_state);
 
 
 
 
 
 
 
 
3128}
3129EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3130
3131/*
3132 * Do boot-time initialization of a CPU's per-CPU RCU data.
3133 */
3134static void __init
3135rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3136{
3137	unsigned long flags;
3138	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3139	struct rcu_node *rnp = rcu_get_root(rsp);
3140
3141	/* Set up local state, ensuring consistent view of global state. */
3142	raw_spin_lock_irqsave(&rnp->lock, flags);
3143	rdp->grpmask = 1UL << (cpu - rdp->mynode->grplo);
3144	init_callback_list(rdp);
3145	rdp->qlen_lazy = 0;
3146	ACCESS_ONCE(rdp->qlen) = 0;
3147	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3148	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != DYNTICK_TASK_EXIT_IDLE);
3149	WARN_ON_ONCE(atomic_read(&rdp->dynticks->dynticks) != 1);
 
 
3150	rdp->cpu = cpu;
3151	rdp->rsp = rsp;
3152	rcu_boot_init_nocb_percpu_data(rdp);
3153	raw_spin_unlock_irqrestore(&rnp->lock, flags);
3154}
3155
3156/*
3157 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3158 * offline event can be happening at a given time.  Note also that we
3159 * can accept some slop in the rsp->completed access due to the fact
3160 * that this CPU cannot possibly have any RCU callbacks in flight yet.
 
 
 
 
3161 */
3162static void
3163rcu_init_percpu_data(int cpu, struct rcu_state *rsp, int preemptible)
3164{
3165	unsigned long flags;
3166	unsigned long mask;
3167	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3168	struct rcu_node *rnp = rcu_get_root(rsp);
3169
3170	/* Exclude new grace periods. */
3171	mutex_lock(&rsp->onoff_mutex);
3172
3173	/* Set up local state, ensuring consistent view of global state. */
3174	raw_spin_lock_irqsave(&rnp->lock, flags);
3175	rdp->beenonline = 1;	 /* We have now been online. */
3176	rdp->preemptible = preemptible;
3177	rdp->qlen_last_fqs_check = 0;
3178	rdp->n_force_qs_snap = rsp->n_force_qs;
3179	rdp->blimit = blimit;
3180	init_callback_list(rdp);  /* Re-enable callbacks on this CPU. */
3181	rdp->dynticks->dynticks_nesting = DYNTICK_TASK_EXIT_IDLE;
3182	rcu_sysidle_init_percpu_data(rdp->dynticks);
3183	atomic_set(&rdp->dynticks->dynticks,
3184		   (atomic_read(&rdp->dynticks->dynticks) & ~0x1) + 1);
3185	raw_spin_unlock(&rnp->lock);		/* irqs remain disabled. */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3186
3187	/* Add CPU to rcu_node bitmasks. */
3188	rnp = rdp->mynode;
3189	mask = rdp->grpmask;
3190	do {
3191		/* Exclude any attempts to start a new GP on small systems. */
3192		raw_spin_lock(&rnp->lock);	/* irqs already disabled. */
3193		rnp->qsmaskinit |= mask;
3194		mask = rnp->grpmask;
3195		if (rnp == rdp->mynode) {
3196			/*
3197			 * If there is a grace period in progress, we will
3198			 * set up to wait for it next time we run the
3199			 * RCU core code.
3200			 */
3201			rdp->gpnum = rnp->completed;
3202			rdp->completed = rnp->completed;
3203			rdp->passed_quiesce = 0;
3204			rdp->qs_pending = 0;
3205			trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
3206		}
3207		raw_spin_unlock(&rnp->lock); /* irqs already disabled. */
3208		rnp = rnp->parent;
3209	} while (rnp != NULL && !(rnp->qsmaskinit & mask));
 
 
 
 
 
 
 
 
 
3210	local_irq_restore(flags);
3211
3212	mutex_unlock(&rsp->onoff_mutex);
3213}
3214
3215static void rcu_prepare_cpu(int cpu)
 
 
 
 
 
 
 
 
3216{
3217	struct rcu_state *rsp;
 
 
 
 
 
 
3218
3219	for_each_rcu_flavor(rsp)
3220		rcu_init_percpu_data(cpu, rsp,
3221				     strcmp(rsp->name, "rcu_preempt") == 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3222}
3223
 
3224/*
3225 * Handle CPU online/offline notification events.
 
 
3226 */
3227static int rcu_cpu_notify(struct notifier_block *self,
3228				    unsigned long action, void *hcpu)
3229{
3230	long cpu = (long)hcpu;
3231	struct rcu_data *rdp = per_cpu_ptr(rcu_state->rda, cpu);
3232	struct rcu_node *rnp = rdp->mynode;
3233	struct rcu_state *rsp;
3234
3235	trace_rcu_utilization(TPS("Start CPU hotplug"));
3236	switch (action) {
3237	case CPU_UP_PREPARE:
3238	case CPU_UP_PREPARE_FROZEN:
3239		rcu_prepare_cpu(cpu);
3240		rcu_prepare_kthreads(cpu);
3241		break;
3242	case CPU_ONLINE:
3243	case CPU_DOWN_FAILED:
3244		rcu_boost_kthread_setaffinity(rnp, -1);
3245		break;
3246	case CPU_DOWN_PREPARE:
3247		rcu_boost_kthread_setaffinity(rnp, cpu);
3248		break;
3249	case CPU_DYING:
3250	case CPU_DYING_FROZEN:
3251		for_each_rcu_flavor(rsp)
3252			rcu_cleanup_dying_cpu(rsp);
3253		break;
3254	case CPU_DEAD:
3255	case CPU_DEAD_FROZEN:
3256	case CPU_UP_CANCELED:
3257	case CPU_UP_CANCELED_FROZEN:
3258		for_each_rcu_flavor(rsp)
3259			rcu_cleanup_dead_cpu(cpu, rsp);
3260		break;
3261	default:
3262		break;
3263	}
3264	trace_rcu_utilization(TPS("End CPU hotplug"));
3265	return NOTIFY_OK;
 
 
 
 
 
 
3266}
 
3267
 
 
 
 
3268static int rcu_pm_notify(struct notifier_block *self,
3269			 unsigned long action, void *hcpu)
3270{
3271	switch (action) {
3272	case PM_HIBERNATION_PREPARE:
3273	case PM_SUSPEND_PREPARE:
3274		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3275			rcu_expedited = 1;
3276		break;
3277	case PM_POST_HIBERNATION:
3278	case PM_POST_SUSPEND:
3279		rcu_expedited = 0;
3280		break;
3281	default:
3282		break;
3283	}
3284	return NOTIFY_OK;
3285}
3286
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3287/*
3288 * Spawn the kthread that handles this RCU flavor's grace periods.
3289 */
3290static int __init rcu_spawn_gp_kthread(void)
3291{
3292	unsigned long flags;
3293	struct rcu_node *rnp;
3294	struct rcu_state *rsp;
3295	struct task_struct *t;
 
3296
3297	for_each_rcu_flavor(rsp) {
3298		t = kthread_run(rcu_gp_kthread, rsp, "%s", rsp->name);
3299		BUG_ON(IS_ERR(t));
3300		rnp = rcu_get_root(rsp);
3301		raw_spin_lock_irqsave(&rnp->lock, flags);
3302		rsp->gp_kthread = t;
3303		raw_spin_unlock_irqrestore(&rnp->lock, flags);
3304		rcu_spawn_nocb_kthreads(rsp);
3305	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3306	return 0;
3307}
3308early_initcall(rcu_spawn_gp_kthread);
3309
3310/*
3311 * This function is invoked towards the end of the scheduler's initialization
3312 * process.  Before this is called, the idle task might contain
3313 * RCU read-side critical sections (during which time, this idle
3314 * task is booting the system).  After this function is called, the
3315 * idle tasks are prohibited from containing RCU read-side critical
3316 * sections.  This function also enables RCU lockdep checking.
 
 
3317 */
3318void rcu_scheduler_starting(void)
3319{
 
 
 
3320	WARN_ON(num_online_cpus() != 1);
3321	WARN_ON(nr_context_switches() > 0);
3322	rcu_scheduler_active = 1;
3323}
3324
3325/*
3326 * Compute the per-level fanout, either using the exact fanout specified
3327 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
3328 */
3329#ifdef CONFIG_RCU_FANOUT_EXACT
3330static void __init rcu_init_levelspread(struct rcu_state *rsp)
3331{
3332	int i;
3333
3334	rsp->levelspread[rcu_num_lvls - 1] = rcu_fanout_leaf;
3335	for (i = rcu_num_lvls - 2; i >= 0; i--)
3336		rsp->levelspread[i] = CONFIG_RCU_FANOUT;
3337}
3338#else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
3339static void __init rcu_init_levelspread(struct rcu_state *rsp)
3340{
3341	int ccur;
3342	int cprv;
3343	int i;
3344
3345	cprv = nr_cpu_ids;
3346	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3347		ccur = rsp->levelcnt[i];
3348		rsp->levelspread[i] = (cprv + ccur - 1) / ccur;
3349		cprv = ccur;
3350	}
3351}
3352#endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
3353
3354/*
3355 * Helper function for rcu_init() that initializes one rcu_state structure.
3356 */
3357static void __init rcu_init_one(struct rcu_state *rsp,
3358		struct rcu_data __percpu *rda)
3359{
3360	static char *buf[] = { "rcu_node_0",
3361			       "rcu_node_1",
3362			       "rcu_node_2",
3363			       "rcu_node_3" };  /* Match MAX_RCU_LVLS */
3364	static char *fqs[] = { "rcu_node_fqs_0",
3365			       "rcu_node_fqs_1",
3366			       "rcu_node_fqs_2",
3367			       "rcu_node_fqs_3" };  /* Match MAX_RCU_LVLS */
3368	int cpustride = 1;
3369	int i;
3370	int j;
3371	struct rcu_node *rnp;
3372
3373	BUILD_BUG_ON(MAX_RCU_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
3374
3375	/* Silence gcc 4.8 warning about array index out of range. */
3376	if (rcu_num_lvls > RCU_NUM_LVLS)
3377		panic("rcu_init_one: rcu_num_lvls overflow");
3378
3379	/* Initialize the level-tracking arrays. */
3380
3381	for (i = 0; i < rcu_num_lvls; i++)
3382		rsp->levelcnt[i] = num_rcu_lvl[i];
3383	for (i = 1; i < rcu_num_lvls; i++)
3384		rsp->level[i] = rsp->level[i - 1] + rsp->levelcnt[i - 1];
3385	rcu_init_levelspread(rsp);
 
3386
3387	/* Initialize the elements themselves, starting from the leaves. */
3388
3389	for (i = rcu_num_lvls - 1; i >= 0; i--) {
3390		cpustride *= rsp->levelspread[i];
3391		rnp = rsp->level[i];
3392		for (j = 0; j < rsp->levelcnt[i]; j++, rnp++) {
3393			raw_spin_lock_init(&rnp->lock);
3394			lockdep_set_class_and_name(&rnp->lock,
3395						   &rcu_node_class[i], buf[i]);
3396			raw_spin_lock_init(&rnp->fqslock);
3397			lockdep_set_class_and_name(&rnp->fqslock,
3398						   &rcu_fqs_class[i], fqs[i]);
3399			rnp->gpnum = rsp->gpnum;
3400			rnp->completed = rsp->completed;
 
3401			rnp->qsmask = 0;
3402			rnp->qsmaskinit = 0;
3403			rnp->grplo = j * cpustride;
3404			rnp->grphi = (j + 1) * cpustride - 1;
3405			if (rnp->grphi >= NR_CPUS)
3406				rnp->grphi = NR_CPUS - 1;
3407			if (i == 0) {
3408				rnp->grpnum = 0;
3409				rnp->grpmask = 0;
3410				rnp->parent = NULL;
3411			} else {
3412				rnp->grpnum = j % rsp->levelspread[i - 1];
3413				rnp->grpmask = 1UL << rnp->grpnum;
3414				rnp->parent = rsp->level[i - 1] +
3415					      j / rsp->levelspread[i - 1];
3416			}
3417			rnp->level = i;
3418			INIT_LIST_HEAD(&rnp->blkd_tasks);
3419			rcu_init_one_nocb(rnp);
 
 
 
 
 
 
 
 
 
3420		}
3421	}
3422
3423	rsp->rda = rda;
3424	init_waitqueue_head(&rsp->gp_wq);
3425	init_irq_work(&rsp->wakeup_work, rsp_wakeup);
3426	rnp = rsp->level[rcu_num_lvls - 1];
3427	for_each_possible_cpu(i) {
3428		while (i > rnp->grphi)
3429			rnp++;
3430		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
3431		rcu_boot_init_percpu_data(i, rsp);
3432	}
3433	list_add(&rsp->flavors, &rcu_struct_flavors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3434}
3435
3436/*
3437 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
3438 * replace the definitions in tree.h because those are needed to size
3439 * the ->node array in the rcu_state structure.
3440 */
3441static void __init rcu_init_geometry(void)
3442{
3443	ulong d;
3444	int i;
3445	int j;
3446	int n = nr_cpu_ids;
3447	int rcu_capacity[MAX_RCU_LVLS + 1];
 
 
 
 
 
 
 
 
 
 
 
 
3448
3449	/*
3450	 * Initialize any unspecified boot parameters.
3451	 * The default values of jiffies_till_first_fqs and
3452	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
3453	 * value, which is a function of HZ, then adding one for each
3454	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
3455	 */
3456	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
3457	if (jiffies_till_first_fqs == ULONG_MAX)
3458		jiffies_till_first_fqs = d;
3459	if (jiffies_till_next_fqs == ULONG_MAX)
3460		jiffies_till_next_fqs = d;
 
3461
3462	/* If the compile-time values are accurate, just leave. */
3463	if (rcu_fanout_leaf == CONFIG_RCU_FANOUT_LEAF &&
3464	    nr_cpu_ids == NR_CPUS)
3465		return;
3466	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%d\n",
3467		rcu_fanout_leaf, nr_cpu_ids);
3468
3469	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
3470	 * Compute number of nodes that can be handled an rcu_node tree
3471	 * with the given number of levels.  Setting rcu_capacity[0] makes
3472	 * some of the arithmetic easier.
 
 
 
 
 
 
 
3473	 */
3474	rcu_capacity[0] = 1;
3475	rcu_capacity[1] = rcu_fanout_leaf;
3476	for (i = 2; i <= MAX_RCU_LVLS; i++)
3477		rcu_capacity[i] = rcu_capacity[i - 1] * CONFIG_RCU_FANOUT;
3478
3479	/*
3480	 * The boot-time rcu_fanout_leaf parameter is only permitted
3481	 * to increase the leaf-level fanout, not decrease it.  Of course,
3482	 * the leaf-level fanout cannot exceed the number of bits in
3483	 * the rcu_node masks.  Finally, the tree must be able to accommodate
3484	 * the configured number of CPUs.  Complain and fall back to the
3485	 * compile-time values if these limits are exceeded.
3486	 */
3487	if (rcu_fanout_leaf < CONFIG_RCU_FANOUT_LEAF ||
3488	    rcu_fanout_leaf > sizeof(unsigned long) * 8 ||
3489	    n > rcu_capacity[MAX_RCU_LVLS]) {
3490		WARN_ON(1);
3491		return;
3492	}
3493
 
 
 
 
 
3494	/* Calculate the number of rcu_nodes at each level of the tree. */
3495	for (i = 1; i <= MAX_RCU_LVLS; i++)
3496		if (n <= rcu_capacity[i]) {
3497			for (j = 0; j <= i; j++)
3498				num_rcu_lvl[j] =
3499					DIV_ROUND_UP(n, rcu_capacity[i - j]);
3500			rcu_num_lvls = i;
3501			for (j = i + 1; j <= MAX_RCU_LVLS; j++)
3502				num_rcu_lvl[j] = 0;
3503			break;
3504		}
3505
3506	/* Calculate the total number of rcu_node structures. */
3507	rcu_num_nodes = 0;
3508	for (i = 0; i <= MAX_RCU_LVLS; i++)
3509		rcu_num_nodes += num_rcu_lvl[i];
3510	rcu_num_nodes -= n;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3511}
3512
3513void __init rcu_init(void)
3514{
3515	int cpu;
 
 
3516
 
3517	rcu_bootup_announce();
 
3518	rcu_init_geometry();
3519	rcu_init_one(&rcu_bh_state, &rcu_bh_data);
3520	rcu_init_one(&rcu_sched_state, &rcu_sched_data);
3521	__rcu_init_preempt();
3522	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
 
3523
3524	/*
3525	 * We don't need protection against CPU-hotplug here because
3526	 * this is called early in boot, before either interrupts
3527	 * or the scheduler are operational.
3528	 */
3529	cpu_notifier(rcu_cpu_notify, 0);
3530	pm_notifier(rcu_pm_notify, 0);
3531	for_each_online_cpu(cpu)
3532		rcu_cpu_notify(NULL, CPU_UP_PREPARE, (void *)(long)cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3533}
3534
 
 
 
3535#include "tree_plugin.h"