Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
 
  34#include <linux/moduleparam.h>
  35#include <linux/panic.h>
  36#include <linux/panic_notifier.h>
  37#include <linux/percpu.h>
  38#include <linux/notifier.h>
  39#include <linux/cpu.h>
  40#include <linux/mutex.h>
  41#include <linux/time.h>
  42#include <linux/kernel_stat.h>
  43#include <linux/wait.h>
  44#include <linux/kthread.h>
  45#include <uapi/linux/sched/types.h>
  46#include <linux/prefetch.h>
  47#include <linux/delay.h>
  48#include <linux/random.h>
  49#include <linux/trace_events.h>
  50#include <linux/suspend.h>
  51#include <linux/ftrace.h>
  52#include <linux/tick.h>
  53#include <linux/sysrq.h>
  54#include <linux/kprobes.h>
  55#include <linux/gfp.h>
  56#include <linux/oom.h>
  57#include <linux/smpboot.h>
  58#include <linux/jiffies.h>
  59#include <linux/slab.h>
  60#include <linux/sched/isolation.h>
  61#include <linux/sched/clock.h>
  62#include <linux/vmalloc.h>
  63#include <linux/mm.h>
  64#include <linux/kasan.h>
  65#include <linux/context_tracking.h>
  66#include "../time/tick-internal.h"
  67
  68#include "tree.h"
  69#include "rcu.h"
  70
  71#ifdef MODULE_PARAM_PREFIX
  72#undef MODULE_PARAM_PREFIX
  73#endif
  74#define MODULE_PARAM_PREFIX "rcutree."
  75
  76/* Data structures. */
 
  77
  78static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  79	.gpwrap = true,
  80#ifdef CONFIG_RCU_NOCB_CPU
  81	.cblist.flags = SEGCBLIST_RCU_CORE,
  82#endif
  83};
  84static struct rcu_state rcu_state = {
  85	.level = { &rcu_state.node[0] },
  86	.gp_state = RCU_GP_IDLE,
  87	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  88	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  89	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
  90	.name = RCU_NAME,
  91	.abbr = RCU_ABBR,
  92	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  93	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  94	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
 
 
 
 
 
 
  95};
  96
  97/* Dump rcu_node combining tree at boot to verify correct setup. */
  98static bool dump_tree;
  99module_param(dump_tree, bool, 0444);
 100/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 101static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 102#ifndef CONFIG_PREEMPT_RT
 103module_param(use_softirq, bool, 0444);
 104#endif
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146			      unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 152static void sync_sched_exp_online_cleanup(int cpu);
 153static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 154static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 
 
 
 
 155
 156/*
 157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 158 * real-time priority(enabling/disabling) is controlled by
 159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 160 */
 161static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 162module_param(kthread_prio, int, 0444);
 163
 164/* Delay in jiffies for grace-period initialization delays, debug only. */
 165
 166static int gp_preinit_delay;
 167module_param(gp_preinit_delay, int, 0444);
 168static int gp_init_delay;
 169module_param(gp_init_delay, int, 0444);
 170static int gp_cleanup_delay;
 171module_param(gp_cleanup_delay, int, 0444);
 
 
 
 172
 173// Add delay to rcu_read_unlock() for strict grace periods.
 174static int rcu_unlock_delay;
 175#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 176module_param(rcu_unlock_delay, int, 0444);
 177#endif
 178
 179/*
 180 * This rcu parameter is runtime-read-only. It reflects
 181 * a minimum allowed number of objects which can be cached
 182 * per-CPU. Object size is equal to one page. This value
 183 * can be changed at boot time.
 184 */
 185static int rcu_min_cached_objs = 5;
 186module_param(rcu_min_cached_objs, int, 0444);
 187
 188// A page shrinker can ask for pages to be freed to make them
 189// available for other parts of the system. This usually happens
 190// under low memory conditions, and in that case we should also
 191// defer page-cache filling for a short time period.
 192//
 193// The default value is 5 seconds, which is long enough to reduce
 194// interference with the shrinker while it asks other systems to
 195// drain their caches.
 196static int rcu_delay_page_cache_fill_msec = 5000;
 197module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 198
 199/* Retrieve RCU kthreads priority for rcutorture */
 200int rcu_get_gp_kthreads_prio(void)
 201{
 202	return kthread_prio;
 203}
 204EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 205
 206/*
 207 * Number of grace periods between delays, normalized by the duration of
 208 * the delay.  The longer the delay, the more the grace periods between
 209 * each delay.  The reason for this normalization is that it means that,
 210 * for non-zero delays, the overall slowdown of grace periods is constant
 211 * regardless of the duration of the delay.  This arrangement balances
 212 * the need for long delays to increase some race probabilities with the
 213 * need for fast grace periods to increase other race probabilities.
 214 */
 215#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 216
 217/*
 218 * Compute the mask of online CPUs for the specified rcu_node structure.
 219 * This will not be stable unless the rcu_node structure's ->lock is
 220 * held, but the bit corresponding to the current CPU will be stable
 221 * in most contexts.
 222 */
 223static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 224{
 225	return READ_ONCE(rnp->qsmaskinitnext);
 226}
 227
 228/*
 229 * Is the CPU corresponding to the specified rcu_data structure online
 230 * from RCU's perspective?  This perspective is given by that structure's
 231 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
 232 */
 233static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
 234{
 235	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
 236}
 237
 238/*
 239 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 240 * permit this function to be invoked without holding the root rcu_node
 241 * structure's ->lock, but of course results can be subject to change.
 242 */
 243static int rcu_gp_in_progress(void)
 244{
 245	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 246}
 247
 248/*
 249 * Return the number of callbacks queued on the specified CPU.
 250 * Handles both the nocbs and normal cases.
 251 */
 252static long rcu_get_n_cbs_cpu(int cpu)
 253{
 254	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 255
 256	if (rcu_segcblist_is_enabled(&rdp->cblist))
 257		return rcu_segcblist_n_cbs(&rdp->cblist);
 258	return 0;
 259}
 260
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 261void rcu_softirq_qs(void)
 262{
 
 
 
 
 263	rcu_qs();
 264	rcu_preempt_deferred_qs(current);
 265	rcu_tasks_qs(current, false);
 266}
 267
 268/*
 269 * Reset the current CPU's ->dynticks counter to indicate that the
 270 * newly onlined CPU is no longer in an extended quiescent state.
 271 * This will either leave the counter unchanged, or increment it
 272 * to the next non-quiescent value.
 273 *
 274 * The non-atomic test/increment sequence works because the upper bits
 275 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 276 * or when the corresponding CPU is offline.
 277 */
 278static void rcu_dynticks_eqs_online(void)
 279{
 280	if (ct_dynticks() & RCU_DYNTICKS_IDX)
 281		return;
 282	ct_state_inc(RCU_DYNTICKS_IDX);
 283}
 284
 285/*
 286 * Snapshot the ->dynticks counter with full ordering so as to allow
 287 * stable comparison of this counter with past and future snapshots.
 288 */
 289static int rcu_dynticks_snap(int cpu)
 290{
 291	smp_mb();  // Fundamental RCU ordering guarantee.
 292	return ct_dynticks_cpu_acquire(cpu);
 293}
 294
 295/*
 296 * Return true if the snapshot returned from rcu_dynticks_snap()
 297 * indicates that RCU is in an extended quiescent state.
 298 */
 299static bool rcu_dynticks_in_eqs(int snap)
 300{
 301	return !(snap & RCU_DYNTICKS_IDX);
 302}
 303
 304/*
 305 * Return true if the CPU corresponding to the specified rcu_data
 306 * structure has spent some time in an extended quiescent state since
 307 * rcu_dynticks_snap() returned the specified snapshot.
 
 
 
 
 
 
 
 
 308 */
 309static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 310{
 311	return snap != rcu_dynticks_snap(rdp->cpu);
 
 
 
 
 
 
 
 
 
 
 
 312}
 313
 314/*
 315 * Return true if the referenced integer is zero while the specified
 316 * CPU remains within a single extended quiescent state.
 317 */
 318bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 319{
 320	int snap;
 321
 322	// If not quiescent, force back to earlier extended quiescent state.
 323	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
 324	smp_rmb(); // Order ->dynticks and *vp reads.
 325	if (READ_ONCE(*vp))
 326		return false;  // Non-zero, so report failure;
 327	smp_rmb(); // Order *vp read and ->dynticks re-read.
 328
 329	// If still in the same extended quiescent state, we are good!
 330	return snap == ct_dynticks_cpu(cpu);
 331}
 332
 333/*
 334 * Let the RCU core know that this CPU has gone through the scheduler,
 335 * which is a quiescent state.  This is called when the need for a
 336 * quiescent state is urgent, so we burn an atomic operation and full
 337 * memory barriers to let the RCU core know about it, regardless of what
 338 * this CPU might (or might not) do in the near future.
 339 *
 340 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 341 *
 342 * The caller must have disabled interrupts and must not be idle.
 343 */
 344notrace void rcu_momentary_dyntick_idle(void)
 345{
 346	int seq;
 347
 348	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 349	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
 350	/* It is illegal to call this from idle state. */
 351	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
 352	rcu_preempt_deferred_qs(current);
 353}
 354EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 355
 356/**
 357 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 358 *
 359 * If the current CPU is idle and running at a first-level (not nested)
 360 * interrupt, or directly, from idle, return true.
 361 *
 362 * The caller must have at least disabled IRQs.
 363 */
 364static int rcu_is_cpu_rrupt_from_idle(void)
 365{
 366	long nesting;
 367
 368	/*
 369	 * Usually called from the tick; but also used from smp_function_call()
 370	 * for expedited grace periods. This latter can result in running from
 371	 * the idle task, instead of an actual IPI.
 372	 */
 373	lockdep_assert_irqs_disabled();
 374
 375	/* Check for counter underflows */
 376	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
 377			 "RCU dynticks_nesting counter underflow!");
 378	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
 379			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 380
 381	/* Are we at first interrupt nesting level? */
 382	nesting = ct_dynticks_nmi_nesting();
 383	if (nesting > 1)
 384		return false;
 385
 386	/*
 387	 * If we're not in an interrupt, we must be in the idle task!
 388	 */
 389	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 390
 391	/* Does CPU appear to be idle from an RCU standpoint? */
 392	return ct_dynticks_nesting() == 0;
 393}
 394
 395#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 396				// Maximum callbacks per rcu_do_batch ...
 397#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 398static long blimit = DEFAULT_RCU_BLIMIT;
 399#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 400static long qhimark = DEFAULT_RCU_QHIMARK;
 401#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 402static long qlowmark = DEFAULT_RCU_QLOMARK;
 403#define DEFAULT_RCU_QOVLD_MULT 2
 404#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 405static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 406static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 407
 408module_param(blimit, long, 0444);
 409module_param(qhimark, long, 0444);
 410module_param(qlowmark, long, 0444);
 411module_param(qovld, long, 0444);
 412
 413static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 414static ulong jiffies_till_next_fqs = ULONG_MAX;
 415static bool rcu_kick_kthreads;
 416static int rcu_divisor = 7;
 417module_param(rcu_divisor, int, 0644);
 418
 419/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 420static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 421module_param(rcu_resched_ns, long, 0644);
 422
 423/*
 424 * How long the grace period must be before we start recruiting
 425 * quiescent-state help from rcu_note_context_switch().
 426 */
 427static ulong jiffies_till_sched_qs = ULONG_MAX;
 428module_param(jiffies_till_sched_qs, ulong, 0444);
 429static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 430module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 431
 432/*
 433 * Make sure that we give the grace-period kthread time to detect any
 434 * idle CPUs before taking active measures to force quiescent states.
 435 * However, don't go below 100 milliseconds, adjusted upwards for really
 436 * large systems.
 437 */
 438static void adjust_jiffies_till_sched_qs(void)
 439{
 440	unsigned long j;
 441
 442	/* If jiffies_till_sched_qs was specified, respect the request. */
 443	if (jiffies_till_sched_qs != ULONG_MAX) {
 444		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 445		return;
 446	}
 447	/* Otherwise, set to third fqs scan, but bound below on large system. */
 448	j = READ_ONCE(jiffies_till_first_fqs) +
 449		      2 * READ_ONCE(jiffies_till_next_fqs);
 450	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 451		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 452	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 453	WRITE_ONCE(jiffies_to_sched_qs, j);
 454}
 455
 456static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 457{
 458	ulong j;
 459	int ret = kstrtoul(val, 0, &j);
 460
 461	if (!ret) {
 462		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 463		adjust_jiffies_till_sched_qs();
 464	}
 465	return ret;
 466}
 467
 468static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 469{
 470	ulong j;
 471	int ret = kstrtoul(val, 0, &j);
 472
 473	if (!ret) {
 474		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 475		adjust_jiffies_till_sched_qs();
 476	}
 477	return ret;
 478}
 479
 480static const struct kernel_param_ops first_fqs_jiffies_ops = {
 481	.set = param_set_first_fqs_jiffies,
 482	.get = param_get_ulong,
 483};
 484
 485static const struct kernel_param_ops next_fqs_jiffies_ops = {
 486	.set = param_set_next_fqs_jiffies,
 487	.get = param_get_ulong,
 488};
 489
 490module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 491module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 492module_param(rcu_kick_kthreads, bool, 0644);
 493
 494static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 495static int rcu_pending(int user);
 496
 497/*
 498 * Return the number of RCU GPs completed thus far for debug & stats.
 499 */
 500unsigned long rcu_get_gp_seq(void)
 501{
 502	return READ_ONCE(rcu_state.gp_seq);
 503}
 504EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 505
 506/*
 507 * Return the number of RCU expedited batches completed thus far for
 508 * debug & stats.  Odd numbers mean that a batch is in progress, even
 509 * numbers mean idle.  The value returned will thus be roughly double
 510 * the cumulative batches since boot.
 511 */
 512unsigned long rcu_exp_batches_completed(void)
 513{
 514	return rcu_state.expedited_sequence;
 515}
 516EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 517
 518/*
 519 * Return the root node of the rcu_state structure.
 520 */
 521static struct rcu_node *rcu_get_root(void)
 522{
 523	return &rcu_state.node[0];
 524}
 525
 526/*
 527 * Send along grace-period-related data for rcutorture diagnostics.
 528 */
 529void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 530			    unsigned long *gp_seq)
 531{
 532	switch (test_type) {
 533	case RCU_FLAVOR:
 534		*flags = READ_ONCE(rcu_state.gp_flags);
 535		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 536		break;
 537	default:
 538		break;
 539	}
 540}
 541EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 542
 543#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 544/*
 545 * An empty function that will trigger a reschedule on
 546 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 547 */
 548static void late_wakeup_func(struct irq_work *work)
 549{
 550}
 551
 552static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 553	IRQ_WORK_INIT(late_wakeup_func);
 554
 555/*
 556 * If either:
 557 *
 558 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 559 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 560 *
 561 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 562 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 563 * get re-enabled again.
 564 */
 565noinstr void rcu_irq_work_resched(void)
 566{
 567	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 568
 569	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 570		return;
 571
 572	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 573		return;
 574
 575	instrumentation_begin();
 576	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 577		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 578	}
 579	instrumentation_end();
 580}
 581#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 582
 583#ifdef CONFIG_PROVE_RCU
 584/**
 585 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 586 */
 587void rcu_irq_exit_check_preempt(void)
 588{
 589	lockdep_assert_irqs_disabled();
 590
 591	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
 592			 "RCU dynticks_nesting counter underflow/zero!");
 593	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
 594			 DYNTICK_IRQ_NONIDLE,
 595			 "Bad RCU  dynticks_nmi_nesting counter\n");
 596	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 597			 "RCU in extended quiescent state!");
 598}
 599#endif /* #ifdef CONFIG_PROVE_RCU */
 600
 601#ifdef CONFIG_NO_HZ_FULL
 602/**
 603 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 604 *
 605 * The scheduler tick is not normally enabled when CPUs enter the kernel
 606 * from nohz_full userspace execution.  After all, nohz_full userspace
 607 * execution is an RCU quiescent state and the time executing in the kernel
 608 * is quite short.  Except of course when it isn't.  And it is not hard to
 609 * cause a large system to spend tens of seconds or even minutes looping
 610 * in the kernel, which can cause a number of problems, include RCU CPU
 611 * stall warnings.
 612 *
 613 * Therefore, if a nohz_full CPU fails to report a quiescent state
 614 * in a timely manner, the RCU grace-period kthread sets that CPU's
 615 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 616 * exception will invoke this function, which will turn on the scheduler
 617 * tick, which will enable RCU to detect that CPU's quiescent states,
 618 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 619 * The tick will be disabled once a quiescent state is reported for
 620 * this CPU.
 621 *
 622 * Of course, in carefully tuned systems, there might never be an
 623 * interrupt or exception.  In that case, the RCU grace-period kthread
 624 * will eventually cause one to happen.  However, in less carefully
 625 * controlled environments, this function allows RCU to get what it
 626 * needs without creating otherwise useless interruptions.
 627 */
 628void __rcu_irq_enter_check_tick(void)
 629{
 630	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 631
 632	// If we're here from NMI there's nothing to do.
 633	if (in_nmi())
 634		return;
 635
 636	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 637			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 638
 639	if (!tick_nohz_full_cpu(rdp->cpu) ||
 640	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 641	    READ_ONCE(rdp->rcu_forced_tick)) {
 642		// RCU doesn't need nohz_full help from this CPU, or it is
 643		// already getting that help.
 644		return;
 645	}
 646
 647	// We get here only when not in an extended quiescent state and
 648	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 649	// already watching and (2) The fact that we are in an interrupt
 650	// handler and that the rcu_node lock is an irq-disabled lock
 651	// prevents self-deadlock.  So we can safely recheck under the lock.
 652	// Note that the nohz_full state currently cannot change.
 653	raw_spin_lock_rcu_node(rdp->mynode);
 654	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
 655		// A nohz_full CPU is in the kernel and RCU needs a
 656		// quiescent state.  Turn on the tick!
 657		WRITE_ONCE(rdp->rcu_forced_tick, true);
 658		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 659	}
 660	raw_spin_unlock_rcu_node(rdp->mynode);
 661}
 
 662#endif /* CONFIG_NO_HZ_FULL */
 663
 664/*
 665 * Check to see if any future non-offloaded RCU-related work will need
 666 * to be done by the current CPU, even if none need be done immediately,
 667 * returning 1 if so.  This function is part of the RCU implementation;
 668 * it is -not- an exported member of the RCU API.  This is used by
 669 * the idle-entry code to figure out whether it is safe to disable the
 670 * scheduler-clock interrupt.
 671 *
 672 * Just check whether or not this CPU has non-offloaded RCU callbacks
 673 * queued.
 674 */
 675int rcu_needs_cpu(void)
 676{
 677	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 678		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 679}
 680
 681/*
 682 * If any sort of urgency was applied to the current CPU (for example,
 683 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 684 * to get to a quiescent state, disable it.
 685 */
 686static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 687{
 688	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 689	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 690	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 691	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 692		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 693		WRITE_ONCE(rdp->rcu_forced_tick, false);
 694	}
 695}
 696
 697/**
 698 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 699 *
 700 * Return true if RCU is watching the running CPU, which means that this
 701 * CPU can safely enter RCU read-side critical sections.  In other words,
 702 * if the current CPU is not in its idle loop or is in an interrupt or
 703 * NMI handler, return true.
 
 
 
 
 704 *
 705 * Make notrace because it can be called by the internal functions of
 706 * ftrace, and making this notrace removes unnecessary recursion calls.
 707 */
 708notrace bool rcu_is_watching(void)
 709{
 710	bool ret;
 711
 712	preempt_disable_notrace();
 713	ret = !rcu_dynticks_curr_cpu_in_eqs();
 714	preempt_enable_notrace();
 715	return ret;
 716}
 717EXPORT_SYMBOL_GPL(rcu_is_watching);
 718
 719/*
 720 * If a holdout task is actually running, request an urgent quiescent
 721 * state from its CPU.  This is unsynchronized, so migrations can cause
 722 * the request to go to the wrong CPU.  Which is OK, all that will happen
 723 * is that the CPU's next context switch will be a bit slower and next
 724 * time around this task will generate another request.
 725 */
 726void rcu_request_urgent_qs_task(struct task_struct *t)
 727{
 728	int cpu;
 729
 730	barrier();
 731	cpu = task_cpu(t);
 732	if (!task_curr(t))
 733		return; /* This task is not running on that CPU. */
 734	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 735}
 736
 737#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 738
 739/*
 740 * Is the current CPU online as far as RCU is concerned?
 741 *
 742 * Disable preemption to avoid false positives that could otherwise
 743 * happen due to the current CPU number being sampled, this task being
 744 * preempted, its old CPU being taken offline, resuming on some other CPU,
 745 * then determining that its old CPU is now offline.
 746 *
 747 * Disable checking if in an NMI handler because we cannot safely
 748 * report errors from NMI handlers anyway.  In addition, it is OK to use
 749 * RCU on an offline processor during initial boot, hence the check for
 750 * rcu_scheduler_fully_active.
 751 */
 752bool rcu_lockdep_current_cpu_online(void)
 753{
 754	struct rcu_data *rdp;
 755	bool ret = false;
 756
 757	if (in_nmi() || !rcu_scheduler_fully_active)
 758		return true;
 759	preempt_disable_notrace();
 760	rdp = this_cpu_ptr(&rcu_data);
 761	/*
 762	 * Strictly, we care here about the case where the current CPU is
 763	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
 764	 * not being up to date. So arch_spin_is_locked() might have a
 765	 * false positive if it's held by some *other* CPU, but that's
 766	 * OK because that just means a false *negative* on the warning.
 767	 */
 768	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
 769		ret = true;
 770	preempt_enable_notrace();
 771	return ret;
 772}
 773EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 774
 775#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 776
 777/*
 778 * When trying to report a quiescent state on behalf of some other CPU,
 779 * it is our responsibility to check for and handle potential overflow
 780 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 781 * After all, the CPU might be in deep idle state, and thus executing no
 782 * code whatsoever.
 783 */
 784static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 785{
 786	raw_lockdep_assert_held_rcu_node(rnp);
 787	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 788			 rnp->gp_seq))
 789		WRITE_ONCE(rdp->gpwrap, true);
 790	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 791		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 792}
 793
 794/*
 795 * Snapshot the specified CPU's dynticks counter so that we can later
 796 * credit them with an implicit quiescent state.  Return 1 if this CPU
 797 * is in dynticks idle mode, which is an extended quiescent state.
 798 */
 799static int dyntick_save_progress_counter(struct rcu_data *rdp)
 800{
 801	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
 802	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 
 
 
 
 
 
 
 
 
 
 
 803		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 804		rcu_gpnum_ovf(rdp->mynode, rdp);
 805		return 1;
 806	}
 807	return 0;
 808}
 809
 810/*
 811 * Return true if the specified CPU has passed through a quiescent
 812 * state by virtue of being in or having passed through an dynticks
 813 * idle state since the last call to dyntick_save_progress_counter()
 814 * for this same CPU, or by virtue of having been offline.
 
 
 
 
 815 */
 816static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 817{
 818	unsigned long jtsq;
 
 819	struct rcu_node *rnp = rdp->mynode;
 820
 821	/*
 822	 * If the CPU passed through or entered a dynticks idle phase with
 823	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 824	 * already acknowledged the request to pass through a quiescent
 825	 * state.  Either way, that CPU cannot possibly be in an RCU
 826	 * read-side critical section that started before the beginning
 827	 * of the current RCU grace period.
 828	 */
 829	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
 830		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 831		rcu_gpnum_ovf(rnp, rdp);
 832		return 1;
 833	}
 834
 835	/*
 836	 * Complain if a CPU that is considered to be offline from RCU's
 837	 * perspective has not yet reported a quiescent state.  After all,
 838	 * the offline CPU should have reported a quiescent state during
 839	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 840	 * if it ran concurrently with either the CPU going offline or the
 841	 * last task on a leaf rcu_node structure exiting its RCU read-side
 842	 * critical section while all CPUs corresponding to that structure
 843	 * are offline.  This added warning detects bugs in any of these
 844	 * code paths.
 845	 *
 846	 * The rcu_node structure's ->lock is held here, which excludes
 847	 * the relevant portions the CPU-hotplug code, the grace-period
 848	 * initialization code, and the rcu_read_unlock() code paths.
 849	 *
 850	 * For more detail, please refer to the "Hotplug CPU" section
 851	 * of RCU's Requirements documentation.
 852	 */
 853	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 854		struct rcu_node *rnp1;
 855
 856		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 857			__func__, rnp->grplo, rnp->grphi, rnp->level,
 858			(long)rnp->gp_seq, (long)rnp->completedqs);
 859		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 860			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 861				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 862		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 863			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 864			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 865			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 866		return 1; /* Break things loose after complaining. */
 867	}
 868
 869	/*
 870	 * A CPU running for an extended time within the kernel can
 871	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 872	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 873	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 874	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 875	 * variable are safe because the assignments are repeated if this
 876	 * CPU failed to pass through a quiescent state.  This code
 877	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 878	 * is set way high.
 879	 */
 880	jtsq = READ_ONCE(jiffies_to_sched_qs);
 881	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 882	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 883	     time_after(jiffies, rcu_state.jiffies_resched) ||
 884	     rcu_state.cbovld)) {
 885		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 886		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 887		smp_store_release(&rdp->rcu_urgent_qs, true);
 888	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 889		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 890	}
 891
 892	/*
 893	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 894	 * The above code handles this, but only for straight cond_resched().
 895	 * And some in-kernel loops check need_resched() before calling
 896	 * cond_resched(), which defeats the above code for CPUs that are
 897	 * running in-kernel with scheduling-clock interrupts disabled.
 898	 * So hit them over the head with the resched_cpu() hammer!
 899	 */
 900	if (tick_nohz_full_cpu(rdp->cpu) &&
 901	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 902	     rcu_state.cbovld)) {
 903		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 904		resched_cpu(rdp->cpu);
 905		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 
 906	}
 907
 908	/*
 909	 * If more than halfway to RCU CPU stall-warning time, invoke
 910	 * resched_cpu() more frequently to try to loosen things up a bit.
 911	 * Also check to see if the CPU is getting hammered with interrupts,
 912	 * but only once per grace period, just to keep the IPIs down to
 913	 * a dull roar.
 914	 */
 915	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 916		if (time_after(jiffies,
 917			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 918			resched_cpu(rdp->cpu);
 919			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 
 920		}
 921		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 922		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 923		    (rnp->ffmask & rdp->grpmask)) {
 924			rdp->rcu_iw_pending = true;
 925			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 926			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 927		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 928	}
 929
 930	return 0;
 931}
 932
 933/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 934static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 935			      unsigned long gp_seq_req, const char *s)
 936{
 937	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 938				      gp_seq_req, rnp->level,
 939				      rnp->grplo, rnp->grphi, s);
 940}
 941
 942/*
 943 * rcu_start_this_gp - Request the start of a particular grace period
 944 * @rnp_start: The leaf node of the CPU from which to start.
 945 * @rdp: The rcu_data corresponding to the CPU from which to start.
 946 * @gp_seq_req: The gp_seq of the grace period to start.
 947 *
 948 * Start the specified grace period, as needed to handle newly arrived
 949 * callbacks.  The required future grace periods are recorded in each
 950 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 951 * is reason to awaken the grace-period kthread.
 952 *
 953 * The caller must hold the specified rcu_node structure's ->lock, which
 954 * is why the caller is responsible for waking the grace-period kthread.
 955 *
 956 * Returns true if the GP thread needs to be awakened else false.
 957 */
 958static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 959			      unsigned long gp_seq_req)
 960{
 961	bool ret = false;
 962	struct rcu_node *rnp;
 963
 964	/*
 965	 * Use funnel locking to either acquire the root rcu_node
 966	 * structure's lock or bail out if the need for this grace period
 967	 * has already been recorded -- or if that grace period has in
 968	 * fact already started.  If there is already a grace period in
 969	 * progress in a non-leaf node, no recording is needed because the
 970	 * end of the grace period will scan the leaf rcu_node structures.
 971	 * Note that rnp_start->lock must not be released.
 972	 */
 973	raw_lockdep_assert_held_rcu_node(rnp_start);
 974	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 975	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 976		if (rnp != rnp_start)
 977			raw_spin_lock_rcu_node(rnp);
 978		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 979		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 980		    (rnp != rnp_start &&
 981		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
 982			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
 983					  TPS("Prestarted"));
 984			goto unlock_out;
 985		}
 986		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
 987		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
 988			/*
 989			 * We just marked the leaf or internal node, and a
 990			 * grace period is in progress, which means that
 991			 * rcu_gp_cleanup() will see the marking.  Bail to
 992			 * reduce contention.
 993			 */
 994			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
 995					  TPS("Startedleaf"));
 996			goto unlock_out;
 997		}
 998		if (rnp != rnp_start && rnp->parent != NULL)
 999			raw_spin_unlock_rcu_node(rnp);
1000		if (!rnp->parent)
1001			break;  /* At root, and perhaps also leaf. */
1002	}
1003
1004	/* If GP already in progress, just leave, otherwise start one. */
1005	if (rcu_gp_in_progress()) {
1006		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1007		goto unlock_out;
1008	}
1009	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1010	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1011	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1012	if (!READ_ONCE(rcu_state.gp_kthread)) {
1013		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1014		goto unlock_out;
1015	}
1016	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1017	ret = true;  /* Caller must wake GP kthread. */
1018unlock_out:
1019	/* Push furthest requested GP to leaf node and rcu_data structure. */
1020	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1021		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1022		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1023	}
1024	if (rnp != rnp_start)
1025		raw_spin_unlock_rcu_node(rnp);
1026	return ret;
1027}
1028
1029/*
1030 * Clean up any old requests for the just-ended grace period.  Also return
1031 * whether any additional grace periods have been requested.
1032 */
1033static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1034{
1035	bool needmore;
1036	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1037
1038	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1039	if (!needmore)
1040		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1041	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1042			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1043	return needmore;
1044}
1045
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1046/*
1047 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1048 * interrupt or softirq handler, in which case we just might immediately
1049 * sleep upon return, resulting in a grace-period hang), and don't bother
1050 * awakening when there is nothing for the grace-period kthread to do
1051 * (as in several CPUs raced to awaken, we lost), and finally don't try
1052 * to awaken a kthread that has not yet been created.  If all those checks
1053 * are passed, track some debug information and awaken.
1054 *
1055 * So why do the self-wakeup when in an interrupt or softirq handler
1056 * in the grace-period kthread's context?  Because the kthread might have
1057 * been interrupted just as it was going to sleep, and just after the final
1058 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1059 * is required, and is therefore supplied.
1060 */
1061static void rcu_gp_kthread_wake(void)
1062{
1063	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1064
1065	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1066	    !READ_ONCE(rcu_state.gp_flags) || !t)
1067		return;
1068	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1069	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1070	swake_up_one(&rcu_state.gp_wq);
1071}
1072
1073/*
1074 * If there is room, assign a ->gp_seq number to any callbacks on this
1075 * CPU that have not already been assigned.  Also accelerate any callbacks
1076 * that were previously assigned a ->gp_seq number that has since proven
1077 * to be too conservative, which can happen if callbacks get assigned a
1078 * ->gp_seq number while RCU is idle, but with reference to a non-root
1079 * rcu_node structure.  This function is idempotent, so it does not hurt
1080 * to call it repeatedly.  Returns an flag saying that we should awaken
1081 * the RCU grace-period kthread.
1082 *
1083 * The caller must hold rnp->lock with interrupts disabled.
1084 */
1085static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1086{
1087	unsigned long gp_seq_req;
1088	bool ret = false;
1089
1090	rcu_lockdep_assert_cblist_protected(rdp);
1091	raw_lockdep_assert_held_rcu_node(rnp);
1092
1093	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1094	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1095		return false;
1096
1097	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1098
1099	/*
1100	 * Callbacks are often registered with incomplete grace-period
1101	 * information.  Something about the fact that getting exact
1102	 * information requires acquiring a global lock...  RCU therefore
1103	 * makes a conservative estimate of the grace period number at which
1104	 * a given callback will become ready to invoke.	The following
1105	 * code checks this estimate and improves it when possible, thus
1106	 * accelerating callback invocation to an earlier grace-period
1107	 * number.
1108	 */
1109	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1110	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1111		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1112
1113	/* Trace depending on how much we were able to accelerate. */
1114	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1115		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1116	else
1117		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1118
1119	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1120
1121	return ret;
1122}
1123
1124/*
1125 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1126 * rcu_node structure's ->lock be held.  It consults the cached value
1127 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1128 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1129 * while holding the leaf rcu_node structure's ->lock.
1130 */
1131static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1132					struct rcu_data *rdp)
1133{
1134	unsigned long c;
1135	bool needwake;
1136
1137	rcu_lockdep_assert_cblist_protected(rdp);
1138	c = rcu_seq_snap(&rcu_state.gp_seq);
1139	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1140		/* Old request still live, so mark recent callbacks. */
1141		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1142		return;
1143	}
1144	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1145	needwake = rcu_accelerate_cbs(rnp, rdp);
1146	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1147	if (needwake)
1148		rcu_gp_kthread_wake();
1149}
1150
1151/*
1152 * Move any callbacks whose grace period has completed to the
1153 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1154 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1155 * sublist.  This function is idempotent, so it does not hurt to
1156 * invoke it repeatedly.  As long as it is not invoked -too- often...
1157 * Returns true if the RCU grace-period kthread needs to be awakened.
1158 *
1159 * The caller must hold rnp->lock with interrupts disabled.
1160 */
1161static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1162{
1163	rcu_lockdep_assert_cblist_protected(rdp);
1164	raw_lockdep_assert_held_rcu_node(rnp);
1165
1166	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1167	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1168		return false;
1169
1170	/*
1171	 * Find all callbacks whose ->gp_seq numbers indicate that they
1172	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1173	 */
1174	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1175
1176	/* Classify any remaining callbacks. */
1177	return rcu_accelerate_cbs(rnp, rdp);
1178}
1179
1180/*
1181 * Move and classify callbacks, but only if doing so won't require
1182 * that the RCU grace-period kthread be awakened.
1183 */
1184static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1185						  struct rcu_data *rdp)
1186{
1187	rcu_lockdep_assert_cblist_protected(rdp);
1188	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1189		return;
1190	// The grace period cannot end while we hold the rcu_node lock.
1191	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1192		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1193	raw_spin_unlock_rcu_node(rnp);
1194}
1195
1196/*
1197 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1198 * quiescent state.  This is intended to be invoked when the CPU notices
1199 * a new grace period.
1200 */
1201static void rcu_strict_gp_check_qs(void)
1202{
1203	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1204		rcu_read_lock();
1205		rcu_read_unlock();
1206	}
1207}
1208
1209/*
1210 * Update CPU-local rcu_data state to record the beginnings and ends of
1211 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1212 * structure corresponding to the current CPU, and must have irqs disabled.
1213 * Returns true if the grace-period kthread needs to be awakened.
1214 */
1215static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1216{
1217	bool ret = false;
1218	bool need_qs;
1219	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1220
1221	raw_lockdep_assert_held_rcu_node(rnp);
1222
1223	if (rdp->gp_seq == rnp->gp_seq)
1224		return false; /* Nothing to do. */
1225
1226	/* Handle the ends of any preceding grace periods first. */
1227	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1228	    unlikely(READ_ONCE(rdp->gpwrap))) {
1229		if (!offloaded)
1230			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1231		rdp->core_needs_qs = false;
1232		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1233	} else {
1234		if (!offloaded)
1235			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1236		if (rdp->core_needs_qs)
1237			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1238	}
1239
1240	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1241	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1242	    unlikely(READ_ONCE(rdp->gpwrap))) {
1243		/*
1244		 * If the current grace period is waiting for this CPU,
1245		 * set up to detect a quiescent state, otherwise don't
1246		 * go looking for one.
1247		 */
1248		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1249		need_qs = !!(rnp->qsmask & rdp->grpmask);
1250		rdp->cpu_no_qs.b.norm = need_qs;
1251		rdp->core_needs_qs = need_qs;
1252		zero_cpu_stall_ticks(rdp);
1253	}
1254	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1255	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1256		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1257	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1258		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1259	WRITE_ONCE(rdp->gpwrap, false);
1260	rcu_gpnum_ovf(rnp, rdp);
1261	return ret;
1262}
1263
1264static void note_gp_changes(struct rcu_data *rdp)
1265{
1266	unsigned long flags;
1267	bool needwake;
1268	struct rcu_node *rnp;
1269
1270	local_irq_save(flags);
1271	rnp = rdp->mynode;
1272	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1273	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1274	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1275		local_irq_restore(flags);
1276		return;
1277	}
1278	needwake = __note_gp_changes(rnp, rdp);
1279	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1280	rcu_strict_gp_check_qs();
1281	if (needwake)
1282		rcu_gp_kthread_wake();
1283}
1284
1285static atomic_t *rcu_gp_slow_suppress;
1286
1287/* Register a counter to suppress debugging grace-period delays. */
1288void rcu_gp_slow_register(atomic_t *rgssp)
1289{
1290	WARN_ON_ONCE(rcu_gp_slow_suppress);
1291
1292	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1293}
1294EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1295
1296/* Unregister a counter, with NULL for not caring which. */
1297void rcu_gp_slow_unregister(atomic_t *rgssp)
1298{
1299	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1300
1301	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1302}
1303EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1304
1305static bool rcu_gp_slow_is_suppressed(void)
1306{
1307	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1308
1309	return rgssp && atomic_read(rgssp);
1310}
1311
1312static void rcu_gp_slow(int delay)
1313{
1314	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1315	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1316		schedule_timeout_idle(delay);
1317}
1318
1319static unsigned long sleep_duration;
1320
1321/* Allow rcutorture to stall the grace-period kthread. */
1322void rcu_gp_set_torture_wait(int duration)
1323{
1324	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1325		WRITE_ONCE(sleep_duration, duration);
1326}
1327EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1328
1329/* Actually implement the aforementioned wait. */
1330static void rcu_gp_torture_wait(void)
1331{
1332	unsigned long duration;
1333
1334	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1335		return;
1336	duration = xchg(&sleep_duration, 0UL);
1337	if (duration > 0) {
1338		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1339		schedule_timeout_idle(duration);
1340		pr_alert("%s: Wait complete\n", __func__);
1341	}
1342}
1343
1344/*
1345 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1346 * processing.
1347 */
1348static void rcu_strict_gp_boundary(void *unused)
1349{
1350	invoke_rcu_core();
1351}
1352
1353// Has rcu_init() been invoked?  This is used (for example) to determine
1354// whether spinlocks may be acquired safely.
1355static bool rcu_init_invoked(void)
1356{
1357	return !!rcu_state.n_online_cpus;
1358}
1359
1360// Make the polled API aware of the beginning of a grace period.
1361static void rcu_poll_gp_seq_start(unsigned long *snap)
1362{
1363	struct rcu_node *rnp = rcu_get_root();
1364
1365	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1366		raw_lockdep_assert_held_rcu_node(rnp);
1367
1368	// If RCU was idle, note beginning of GP.
1369	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1370		rcu_seq_start(&rcu_state.gp_seq_polled);
1371
1372	// Either way, record current state.
1373	*snap = rcu_state.gp_seq_polled;
1374}
1375
1376// Make the polled API aware of the end of a grace period.
1377static void rcu_poll_gp_seq_end(unsigned long *snap)
1378{
1379	struct rcu_node *rnp = rcu_get_root();
1380
1381	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1382		raw_lockdep_assert_held_rcu_node(rnp);
1383
1384	// If the previously noted GP is still in effect, record the
1385	// end of that GP.  Either way, zero counter to avoid counter-wrap
1386	// problems.
1387	if (*snap && *snap == rcu_state.gp_seq_polled) {
1388		rcu_seq_end(&rcu_state.gp_seq_polled);
1389		rcu_state.gp_seq_polled_snap = 0;
1390		rcu_state.gp_seq_polled_exp_snap = 0;
1391	} else {
1392		*snap = 0;
1393	}
1394}
1395
1396// Make the polled API aware of the beginning of a grace period, but
1397// where caller does not hold the root rcu_node structure's lock.
1398static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1399{
1400	unsigned long flags;
1401	struct rcu_node *rnp = rcu_get_root();
1402
1403	if (rcu_init_invoked()) {
1404		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1405			lockdep_assert_irqs_enabled();
1406		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1407	}
1408	rcu_poll_gp_seq_start(snap);
1409	if (rcu_init_invoked())
1410		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1411}
1412
1413// Make the polled API aware of the end of a grace period, but where
1414// caller does not hold the root rcu_node structure's lock.
1415static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1416{
1417	unsigned long flags;
1418	struct rcu_node *rnp = rcu_get_root();
1419
1420	if (rcu_init_invoked()) {
1421		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1422			lockdep_assert_irqs_enabled();
1423		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1424	}
1425	rcu_poll_gp_seq_end(snap);
1426	if (rcu_init_invoked())
1427		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1428}
1429
1430/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431 * Initialize a new grace period.  Return false if no grace period required.
1432 */
1433static noinline_for_stack bool rcu_gp_init(void)
1434{
1435	unsigned long flags;
1436	unsigned long oldmask;
1437	unsigned long mask;
1438	struct rcu_data *rdp;
1439	struct rcu_node *rnp = rcu_get_root();
 
1440
1441	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1442	raw_spin_lock_irq_rcu_node(rnp);
1443	if (!READ_ONCE(rcu_state.gp_flags)) {
1444		/* Spurious wakeup, tell caller to go back to sleep.  */
1445		raw_spin_unlock_irq_rcu_node(rnp);
1446		return false;
1447	}
1448	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1449
1450	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1451		/*
1452		 * Grace period already in progress, don't start another.
1453		 * Not supposed to be able to happen.
1454		 */
1455		raw_spin_unlock_irq_rcu_node(rnp);
1456		return false;
1457	}
1458
1459	/* Advance to a new grace period and initialize state. */
1460	record_gp_stall_check_time();
1461	/* Record GP times before starting GP, hence rcu_seq_start(). */
1462	rcu_seq_start(&rcu_state.gp_seq);
1463	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
 
1464	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1465	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1466	raw_spin_unlock_irq_rcu_node(rnp);
1467
1468	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
1469	 * Apply per-leaf buffered online and offline operations to
1470	 * the rcu_node tree. Note that this new grace period need not
1471	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1472	 * offlining path, when combined with checks in this function,
1473	 * will handle CPUs that are currently going offline or that will
1474	 * go offline later.  Please also refer to "Hotplug CPU" section
1475	 * of RCU's Requirements documentation.
1476	 */
1477	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1478	/* Exclude CPU hotplug operations. */
1479	rcu_for_each_leaf_node(rnp) {
1480		local_irq_save(flags);
1481		arch_spin_lock(&rcu_state.ofl_lock);
1482		raw_spin_lock_rcu_node(rnp);
1483		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1484		    !rnp->wait_blkd_tasks) {
1485			/* Nothing to do on this leaf rcu_node structure. */
1486			raw_spin_unlock_rcu_node(rnp);
1487			arch_spin_unlock(&rcu_state.ofl_lock);
1488			local_irq_restore(flags);
1489			continue;
1490		}
1491
1492		/* Record old state, apply changes to ->qsmaskinit field. */
1493		oldmask = rnp->qsmaskinit;
1494		rnp->qsmaskinit = rnp->qsmaskinitnext;
1495
1496		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1497		if (!oldmask != !rnp->qsmaskinit) {
1498			if (!oldmask) { /* First online CPU for rcu_node. */
1499				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1500					rcu_init_new_rnp(rnp);
1501			} else if (rcu_preempt_has_tasks(rnp)) {
1502				rnp->wait_blkd_tasks = true; /* blocked tasks */
1503			} else { /* Last offline CPU and can propagate. */
1504				rcu_cleanup_dead_rnp(rnp);
1505			}
1506		}
1507
1508		/*
1509		 * If all waited-on tasks from prior grace period are
1510		 * done, and if all this rcu_node structure's CPUs are
1511		 * still offline, propagate up the rcu_node tree and
1512		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1513		 * rcu_node structure's CPUs has since come back online,
1514		 * simply clear ->wait_blkd_tasks.
1515		 */
1516		if (rnp->wait_blkd_tasks &&
1517		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1518			rnp->wait_blkd_tasks = false;
1519			if (!rnp->qsmaskinit)
1520				rcu_cleanup_dead_rnp(rnp);
1521		}
1522
1523		raw_spin_unlock_rcu_node(rnp);
1524		arch_spin_unlock(&rcu_state.ofl_lock);
1525		local_irq_restore(flags);
1526	}
1527	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1528
1529	/*
1530	 * Set the quiescent-state-needed bits in all the rcu_node
1531	 * structures for all currently online CPUs in breadth-first
1532	 * order, starting from the root rcu_node structure, relying on the
1533	 * layout of the tree within the rcu_state.node[] array.  Note that
1534	 * other CPUs will access only the leaves of the hierarchy, thus
1535	 * seeing that no grace period is in progress, at least until the
1536	 * corresponding leaf node has been initialized.
1537	 *
1538	 * The grace period cannot complete until the initialization
1539	 * process finishes, because this kthread handles both.
1540	 */
1541	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1542	rcu_for_each_node_breadth_first(rnp) {
1543		rcu_gp_slow(gp_init_delay);
1544		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545		rdp = this_cpu_ptr(&rcu_data);
1546		rcu_preempt_check_blocked_tasks(rnp);
1547		rnp->qsmask = rnp->qsmaskinit;
1548		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1549		if (rnp == rdp->mynode)
1550			(void)__note_gp_changes(rnp, rdp);
1551		rcu_preempt_boost_start_gp(rnp);
1552		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1553					    rnp->level, rnp->grplo,
1554					    rnp->grphi, rnp->qsmask);
1555		/* Quiescent states for tasks on any now-offline CPUs. */
1556		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1557		rnp->rcu_gp_init_mask = mask;
1558		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1559			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1560		else
1561			raw_spin_unlock_irq_rcu_node(rnp);
1562		cond_resched_tasks_rcu_qs();
1563		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1564	}
1565
1566	// If strict, make all CPUs aware of new grace period.
1567	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1568		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1569
1570	return true;
1571}
1572
1573/*
1574 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1575 * time.
1576 */
1577static bool rcu_gp_fqs_check_wake(int *gfp)
1578{
1579	struct rcu_node *rnp = rcu_get_root();
1580
1581	// If under overload conditions, force an immediate FQS scan.
1582	if (*gfp & RCU_GP_FLAG_OVLD)
1583		return true;
1584
1585	// Someone like call_rcu() requested a force-quiescent-state scan.
1586	*gfp = READ_ONCE(rcu_state.gp_flags);
1587	if (*gfp & RCU_GP_FLAG_FQS)
1588		return true;
1589
1590	// The current grace period has completed.
1591	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1592		return true;
1593
1594	return false;
1595}
1596
1597/*
1598 * Do one round of quiescent-state forcing.
1599 */
1600static void rcu_gp_fqs(bool first_time)
1601{
 
1602	struct rcu_node *rnp = rcu_get_root();
1603
1604	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1605	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
 
 
 
 
 
 
 
 
 
 
 
1606	if (first_time) {
1607		/* Collect dyntick-idle snapshots. */
1608		force_qs_rnp(dyntick_save_progress_counter);
1609	} else {
1610		/* Handle dyntick-idle and offline CPUs. */
1611		force_qs_rnp(rcu_implicit_dynticks_qs);
1612	}
1613	/* Clear flag to prevent immediate re-entry. */
1614	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1615		raw_spin_lock_irq_rcu_node(rnp);
1616		WRITE_ONCE(rcu_state.gp_flags,
1617			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1618		raw_spin_unlock_irq_rcu_node(rnp);
1619	}
1620}
1621
1622/*
1623 * Loop doing repeated quiescent-state forcing until the grace period ends.
1624 */
1625static noinline_for_stack void rcu_gp_fqs_loop(void)
1626{
1627	bool first_gp_fqs = true;
1628	int gf = 0;
1629	unsigned long j;
1630	int ret;
1631	struct rcu_node *rnp = rcu_get_root();
1632
1633	j = READ_ONCE(jiffies_till_first_fqs);
1634	if (rcu_state.cbovld)
1635		gf = RCU_GP_FLAG_OVLD;
1636	ret = 0;
1637	for (;;) {
1638		if (rcu_state.cbovld) {
1639			j = (j + 2) / 3;
1640			if (j <= 0)
1641				j = 1;
1642		}
1643		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1644			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1645			/*
1646			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1647			 * update; required for stall checks.
1648			 */
1649			smp_wmb();
1650			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1651				   jiffies + (j ? 3 * j : 2));
1652		}
1653		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1654				       TPS("fqswait"));
1655		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1656		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1657				 rcu_gp_fqs_check_wake(&gf), j);
1658		rcu_gp_torture_wait();
1659		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1660		/* Locking provides needed memory barriers. */
1661		/*
1662		 * Exit the loop if the root rcu_node structure indicates that the grace period
1663		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1664		 * is required only for single-node rcu_node trees because readers blocking
1665		 * the current grace period are queued only on leaf rcu_node structures.
1666		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1667		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1668		 * the corresponding leaf nodes have passed through their quiescent state.
1669		 */
1670		if (!READ_ONCE(rnp->qsmask) &&
1671		    !rcu_preempt_blocked_readers_cgp(rnp))
1672			break;
1673		/* If time for quiescent-state forcing, do it. */
1674		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1675		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1676			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1677					       TPS("fqsstart"));
1678			rcu_gp_fqs(first_gp_fqs);
1679			gf = 0;
1680			if (first_gp_fqs) {
1681				first_gp_fqs = false;
1682				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1683			}
1684			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1685					       TPS("fqsend"));
1686			cond_resched_tasks_rcu_qs();
1687			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1688			ret = 0; /* Force full wait till next FQS. */
1689			j = READ_ONCE(jiffies_till_next_fqs);
1690		} else {
1691			/* Deal with stray signal. */
1692			cond_resched_tasks_rcu_qs();
1693			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694			WARN_ON(signal_pending(current));
1695			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1696					       TPS("fqswaitsig"));
1697			ret = 1; /* Keep old FQS timing. */
1698			j = jiffies;
1699			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1700				j = 1;
1701			else
1702				j = rcu_state.jiffies_force_qs - j;
1703			gf = 0;
1704		}
1705	}
1706}
1707
1708/*
1709 * Clean up after the old grace period.
1710 */
1711static noinline void rcu_gp_cleanup(void)
1712{
1713	int cpu;
1714	bool needgp = false;
1715	unsigned long gp_duration;
1716	unsigned long new_gp_seq;
1717	bool offloaded;
1718	struct rcu_data *rdp;
1719	struct rcu_node *rnp = rcu_get_root();
1720	struct swait_queue_head *sq;
1721
1722	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1723	raw_spin_lock_irq_rcu_node(rnp);
1724	rcu_state.gp_end = jiffies;
1725	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1726	if (gp_duration > rcu_state.gp_max)
1727		rcu_state.gp_max = gp_duration;
1728
1729	/*
1730	 * We know the grace period is complete, but to everyone else
1731	 * it appears to still be ongoing.  But it is also the case
1732	 * that to everyone else it looks like there is nothing that
1733	 * they can do to advance the grace period.  It is therefore
1734	 * safe for us to drop the lock in order to mark the grace
1735	 * period as completed in all of the rcu_node structures.
1736	 */
1737	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1738	raw_spin_unlock_irq_rcu_node(rnp);
1739
1740	/*
1741	 * Propagate new ->gp_seq value to rcu_node structures so that
1742	 * other CPUs don't have to wait until the start of the next grace
1743	 * period to process their callbacks.  This also avoids some nasty
1744	 * RCU grace-period initialization races by forcing the end of
1745	 * the current grace period to be completely recorded in all of
1746	 * the rcu_node structures before the beginning of the next grace
1747	 * period is recorded in any of the rcu_node structures.
1748	 */
1749	new_gp_seq = rcu_state.gp_seq;
1750	rcu_seq_end(&new_gp_seq);
1751	rcu_for_each_node_breadth_first(rnp) {
1752		raw_spin_lock_irq_rcu_node(rnp);
1753		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1754			dump_blkd_tasks(rnp, 10);
1755		WARN_ON_ONCE(rnp->qsmask);
1756		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1757		if (!rnp->parent)
1758			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1759		rdp = this_cpu_ptr(&rcu_data);
1760		if (rnp == rdp->mynode)
1761			needgp = __note_gp_changes(rnp, rdp) || needgp;
1762		/* smp_mb() provided by prior unlock-lock pair. */
1763		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1764		// Reset overload indication for CPUs no longer overloaded
1765		if (rcu_is_leaf_node(rnp))
1766			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1767				rdp = per_cpu_ptr(&rcu_data, cpu);
1768				check_cb_ovld_locked(rdp, rnp);
1769			}
1770		sq = rcu_nocb_gp_get(rnp);
1771		raw_spin_unlock_irq_rcu_node(rnp);
1772		rcu_nocb_gp_cleanup(sq);
1773		cond_resched_tasks_rcu_qs();
1774		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1775		rcu_gp_slow(gp_cleanup_delay);
1776	}
1777	rnp = rcu_get_root();
1778	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1779
1780	/* Declare grace period done, trace first to use old GP number. */
1781	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1782	rcu_seq_end(&rcu_state.gp_seq);
1783	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1784	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1785	/* Check for GP requests since above loop. */
1786	rdp = this_cpu_ptr(&rcu_data);
1787	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1788		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1789				  TPS("CleanupMore"));
1790		needgp = true;
1791	}
1792	/* Advance CBs to reduce false positives below. */
1793	offloaded = rcu_rdp_is_offloaded(rdp);
1794	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1795
1796		// We get here if a grace period was needed (“needgp”)
1797		// and the above call to rcu_accelerate_cbs() did not set
1798		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1799		// the need for another grace period).  The purpose
1800		// of the “offloaded” check is to avoid invoking
1801		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1802		// hold the ->nocb_lock needed to safely access an offloaded
1803		// ->cblist.  We do not want to acquire that lock because
1804		// it can be heavily contended during callback floods.
1805
1806		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1807		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1808		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1809	} else {
1810
1811		// We get here either if there is no need for an
1812		// additional grace period or if rcu_accelerate_cbs() has
1813		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1814		// So all we need to do is to clear all of the other
1815		// ->gp_flags bits.
1816
1817		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1818	}
1819	raw_spin_unlock_irq_rcu_node(rnp);
1820
 
 
 
1821	// If strict, make all CPUs aware of the end of the old grace period.
1822	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1823		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1824}
1825
1826/*
1827 * Body of kthread that handles grace periods.
1828 */
1829static int __noreturn rcu_gp_kthread(void *unused)
1830{
1831	rcu_bind_gp_kthread();
1832	for (;;) {
1833
1834		/* Handle grace-period start. */
1835		for (;;) {
1836			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1837					       TPS("reqwait"));
1838			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1839			swait_event_idle_exclusive(rcu_state.gp_wq,
1840					 READ_ONCE(rcu_state.gp_flags) &
1841					 RCU_GP_FLAG_INIT);
1842			rcu_gp_torture_wait();
1843			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1844			/* Locking provides needed memory barrier. */
1845			if (rcu_gp_init())
1846				break;
1847			cond_resched_tasks_rcu_qs();
1848			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1849			WARN_ON(signal_pending(current));
1850			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1851					       TPS("reqwaitsig"));
1852		}
1853
1854		/* Handle quiescent-state forcing. */
1855		rcu_gp_fqs_loop();
1856
1857		/* Handle grace-period end. */
1858		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1859		rcu_gp_cleanup();
1860		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
1861	}
1862}
1863
1864/*
1865 * Report a full set of quiescent states to the rcu_state data structure.
1866 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1867 * another grace period is required.  Whether we wake the grace-period
1868 * kthread or it awakens itself for the next round of quiescent-state
1869 * forcing, that kthread will clean up after the just-completed grace
1870 * period.  Note that the caller must hold rnp->lock, which is released
1871 * before return.
1872 */
1873static void rcu_report_qs_rsp(unsigned long flags)
1874	__releases(rcu_get_root()->lock)
1875{
1876	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1877	WARN_ON_ONCE(!rcu_gp_in_progress());
1878	WRITE_ONCE(rcu_state.gp_flags,
1879		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1880	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1881	rcu_gp_kthread_wake();
1882}
1883
1884/*
1885 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1886 * Allows quiescent states for a group of CPUs to be reported at one go
1887 * to the specified rcu_node structure, though all the CPUs in the group
1888 * must be represented by the same rcu_node structure (which need not be a
1889 * leaf rcu_node structure, though it often will be).  The gps parameter
1890 * is the grace-period snapshot, which means that the quiescent states
1891 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1892 * must be held upon entry, and it is released before return.
1893 *
1894 * As a special case, if mask is zero, the bit-already-cleared check is
1895 * disabled.  This allows propagating quiescent state due to resumed tasks
1896 * during grace-period initialization.
1897 */
1898static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1899			      unsigned long gps, unsigned long flags)
1900	__releases(rnp->lock)
1901{
1902	unsigned long oldmask = 0;
1903	struct rcu_node *rnp_c;
1904
1905	raw_lockdep_assert_held_rcu_node(rnp);
1906
1907	/* Walk up the rcu_node hierarchy. */
1908	for (;;) {
1909		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1910
1911			/*
1912			 * Our bit has already been cleared, or the
1913			 * relevant grace period is already over, so done.
1914			 */
1915			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916			return;
1917		}
1918		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1919		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1920			     rcu_preempt_blocked_readers_cgp(rnp));
1921		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1922		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1923						 mask, rnp->qsmask, rnp->level,
1924						 rnp->grplo, rnp->grphi,
1925						 !!rnp->gp_tasks);
1926		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1927
1928			/* Other bits still set at this level, so done. */
1929			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1930			return;
1931		}
1932		rnp->completedqs = rnp->gp_seq;
1933		mask = rnp->grpmask;
1934		if (rnp->parent == NULL) {
1935
1936			/* No more levels.  Exit loop holding root lock. */
1937
1938			break;
1939		}
1940		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941		rnp_c = rnp;
1942		rnp = rnp->parent;
1943		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1944		oldmask = READ_ONCE(rnp_c->qsmask);
1945	}
1946
1947	/*
1948	 * Get here if we are the last CPU to pass through a quiescent
1949	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1950	 * to clean up and start the next grace period if one is needed.
1951	 */
1952	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1953}
1954
1955/*
1956 * Record a quiescent state for all tasks that were previously queued
1957 * on the specified rcu_node structure and that were blocking the current
1958 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1959 * irqs disabled, and this lock is released upon return, but irqs remain
1960 * disabled.
1961 */
1962static void __maybe_unused
1963rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1964	__releases(rnp->lock)
1965{
1966	unsigned long gps;
1967	unsigned long mask;
1968	struct rcu_node *rnp_p;
1969
1970	raw_lockdep_assert_held_rcu_node(rnp);
1971	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1972	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1973	    rnp->qsmask != 0) {
1974		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975		return;  /* Still need more quiescent states! */
1976	}
1977
1978	rnp->completedqs = rnp->gp_seq;
1979	rnp_p = rnp->parent;
1980	if (rnp_p == NULL) {
1981		/*
1982		 * Only one rcu_node structure in the tree, so don't
1983		 * try to report up to its nonexistent parent!
1984		 */
1985		rcu_report_qs_rsp(flags);
1986		return;
1987	}
1988
1989	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1990	gps = rnp->gp_seq;
1991	mask = rnp->grpmask;
1992	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1993	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1994	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1995}
1996
1997/*
1998 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1999 * structure.  This must be called from the specified CPU.
2000 */
2001static void
2002rcu_report_qs_rdp(struct rcu_data *rdp)
2003{
2004	unsigned long flags;
2005	unsigned long mask;
2006	bool needwake = false;
2007	bool needacc = false;
2008	struct rcu_node *rnp;
2009
2010	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2011	rnp = rdp->mynode;
2012	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2013	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2014	    rdp->gpwrap) {
2015
2016		/*
2017		 * The grace period in which this quiescent state was
2018		 * recorded has ended, so don't report it upwards.
2019		 * We will instead need a new quiescent state that lies
2020		 * within the current grace period.
2021		 */
2022		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2023		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2024		return;
2025	}
2026	mask = rdp->grpmask;
2027	rdp->core_needs_qs = false;
2028	if ((rnp->qsmask & mask) == 0) {
2029		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030	} else {
2031		/*
2032		 * This GP can't end until cpu checks in, so all of our
2033		 * callbacks can be processed during the next GP.
2034		 *
2035		 * NOCB kthreads have their own way to deal with that...
2036		 */
2037		if (!rcu_rdp_is_offloaded(rdp)) {
2038			needwake = rcu_accelerate_cbs(rnp, rdp);
2039		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2040			/*
2041			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2042			 * if in the middle of a (de-)offloading process.
 
2043			 */
2044			needacc = true;
2045		}
2046
2047		rcu_disable_urgency_upon_qs(rdp);
2048		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2049		/* ^^^ Released rnp->lock */
2050		if (needwake)
2051			rcu_gp_kthread_wake();
2052
2053		if (needacc) {
2054			rcu_nocb_lock_irqsave(rdp, flags);
2055			rcu_accelerate_cbs_unlocked(rnp, rdp);
2056			rcu_nocb_unlock_irqrestore(rdp, flags);
2057		}
2058	}
2059}
2060
2061/*
2062 * Check to see if there is a new grace period of which this CPU
2063 * is not yet aware, and if so, set up local rcu_data state for it.
2064 * Otherwise, see if this CPU has just passed through its first
2065 * quiescent state for this grace period, and record that fact if so.
2066 */
2067static void
2068rcu_check_quiescent_state(struct rcu_data *rdp)
2069{
2070	/* Check for grace-period ends and beginnings. */
2071	note_gp_changes(rdp);
2072
2073	/*
2074	 * Does this CPU still need to do its part for current grace period?
2075	 * If no, return and let the other CPUs do their part as well.
2076	 */
2077	if (!rdp->core_needs_qs)
2078		return;
2079
2080	/*
2081	 * Was there a quiescent state since the beginning of the grace
2082	 * period? If no, then exit and wait for the next call.
2083	 */
2084	if (rdp->cpu_no_qs.b.norm)
2085		return;
2086
2087	/*
2088	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2089	 * judge of that).
2090	 */
2091	rcu_report_qs_rdp(rdp);
2092}
2093
2094/*
2095 * Near the end of the offline process.  Trace the fact that this CPU
2096 * is going offline.
2097 */
2098int rcutree_dying_cpu(unsigned int cpu)
2099{
2100	bool blkd;
2101	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2102	struct rcu_node *rnp = rdp->mynode;
2103
2104	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2105		return 0;
2106
2107	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
2108	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2109			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2110	return 0;
2111}
2112
2113/*
2114 * All CPUs for the specified rcu_node structure have gone offline,
2115 * and all tasks that were preempted within an RCU read-side critical
2116 * section while running on one of those CPUs have since exited their RCU
2117 * read-side critical section.  Some other CPU is reporting this fact with
2118 * the specified rcu_node structure's ->lock held and interrupts disabled.
2119 * This function therefore goes up the tree of rcu_node structures,
2120 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2121 * the leaf rcu_node structure's ->qsmaskinit field has already been
2122 * updated.
2123 *
2124 * This function does check that the specified rcu_node structure has
2125 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2126 * prematurely.  That said, invoking it after the fact will cost you
2127 * a needless lock acquisition.  So once it has done its work, don't
2128 * invoke it again.
2129 */
2130static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2131{
2132	long mask;
2133	struct rcu_node *rnp = rnp_leaf;
2134
2135	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2136	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2137	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2138	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2139		return;
2140	for (;;) {
2141		mask = rnp->grpmask;
2142		rnp = rnp->parent;
2143		if (!rnp)
2144			break;
2145		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2146		rnp->qsmaskinit &= ~mask;
2147		/* Between grace periods, so better already be zero! */
2148		WARN_ON_ONCE(rnp->qsmask);
2149		if (rnp->qsmaskinit) {
2150			raw_spin_unlock_rcu_node(rnp);
2151			/* irqs remain disabled. */
2152			return;
2153		}
2154		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2155	}
2156}
2157
2158/*
2159 * The CPU has been completely removed, and some other CPU is reporting
2160 * this fact from process context.  Do the remainder of the cleanup.
2161 * There can only be one CPU hotplug operation at a time, so no need for
2162 * explicit locking.
2163 */
2164int rcutree_dead_cpu(unsigned int cpu)
2165{
2166	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2167	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2168
2169	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2170		return 0;
2171
2172	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2173	/* Adjust any no-longer-needed kthreads. */
2174	rcu_boost_kthread_setaffinity(rnp, -1);
2175	// Stop-machine done, so allow nohz_full to disable tick.
2176	tick_dep_clear(TICK_DEP_BIT_RCU);
2177	return 0;
2178}
2179
2180/*
2181 * Invoke any RCU callbacks that have made it to the end of their grace
2182 * period.  Throttle as specified by rdp->blimit.
2183 */
2184static void rcu_do_batch(struct rcu_data *rdp)
2185{
 
 
2186	int div;
2187	bool __maybe_unused empty;
2188	unsigned long flags;
2189	struct rcu_head *rhp;
 
 
2190	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2191	long bl, count = 0;
2192	long pending, tlimit = 0;
2193
2194	/* If no callbacks are ready, just return. */
2195	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2196		trace_rcu_batch_start(rcu_state.name,
2197				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2198		trace_rcu_batch_end(rcu_state.name, 0,
2199				    !rcu_segcblist_empty(&rdp->cblist),
2200				    need_resched(), is_idle_task(current),
2201				    rcu_is_callbacks_kthread(rdp));
2202		return;
2203	}
2204
2205	/*
2206	 * Extract the list of ready callbacks, disabling IRQs to prevent
2207	 * races with call_rcu() from interrupt handlers.  Leave the
2208	 * callback counts, as rcu_barrier() needs to be conservative.
 
 
 
 
 
 
2209	 */
2210	rcu_nocb_lock_irqsave(rdp, flags);
2211	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2212	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2213	div = READ_ONCE(rcu_divisor);
2214	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2215	bl = max(rdp->blimit, pending >> div);
2216	if (in_serving_softirq() && unlikely(bl > 100)) {
 
 
2217		long rrn = READ_ONCE(rcu_resched_ns);
2218
2219		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2220		tlimit = local_clock() + rrn;
 
 
2221	}
2222	trace_rcu_batch_start(rcu_state.name,
2223			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2224	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2225	if (rcu_rdp_is_offloaded(rdp))
2226		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2227
2228	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2229	rcu_nocb_unlock_irqrestore(rdp, flags);
2230
2231	/* Invoke callbacks. */
2232	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2233	rhp = rcu_cblist_dequeue(&rcl);
2234
2235	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2236		rcu_callback_t f;
2237
2238		count++;
2239		debug_rcu_head_unqueue(rhp);
2240
2241		rcu_lock_acquire(&rcu_callback_map);
2242		trace_rcu_invoke_callback(rcu_state.name, rhp);
2243
2244		f = rhp->func;
 
2245		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2246		f(rhp);
2247
2248		rcu_lock_release(&rcu_callback_map);
2249
2250		/*
2251		 * Stop only if limit reached and CPU has something to do.
2252		 */
2253		if (in_serving_softirq()) {
2254			if (count >= bl && (need_resched() || !is_idle_task(current)))
2255				break;
2256			/*
2257			 * Make sure we don't spend too much time here and deprive other
2258			 * softirq vectors of CPU cycles.
2259			 */
2260			if (unlikely(tlimit)) {
2261				/* only call local_clock() every 32 callbacks */
2262				if (likely((count & 31) || local_clock() < tlimit))
2263					continue;
2264				/* Exceeded the time limit, so leave. */
2265				break;
2266			}
2267		} else {
 
 
2268			local_bh_enable();
2269			lockdep_assert_irqs_enabled();
2270			cond_resched_tasks_rcu_qs();
2271			lockdep_assert_irqs_enabled();
2272			local_bh_disable();
 
 
 
 
 
 
 
2273		}
2274	}
2275
2276	rcu_nocb_lock_irqsave(rdp, flags);
2277	rdp->n_cbs_invoked += count;
2278	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2279			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2280
2281	/* Update counts and requeue any remaining callbacks. */
2282	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2283	rcu_segcblist_add_len(&rdp->cblist, -count);
2284
2285	/* Reinstate batch limit if we have worked down the excess. */
2286	count = rcu_segcblist_n_cbs(&rdp->cblist);
2287	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2288		rdp->blimit = blimit;
2289
2290	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2291	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2292		rdp->qlen_last_fqs_check = 0;
2293		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2294	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2295		rdp->qlen_last_fqs_check = count;
2296
2297	/*
2298	 * The following usually indicates a double call_rcu().  To track
2299	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2300	 */
2301	empty = rcu_segcblist_empty(&rdp->cblist);
2302	WARN_ON_ONCE(count == 0 && !empty);
2303	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2304		     count != 0 && empty);
2305	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2306	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2307
2308	rcu_nocb_unlock_irqrestore(rdp, flags);
2309
2310	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2311}
2312
2313/*
2314 * This function is invoked from each scheduling-clock interrupt,
2315 * and checks to see if this CPU is in a non-context-switch quiescent
2316 * state, for example, user mode or idle loop.  It also schedules RCU
2317 * core processing.  If the current grace period has gone on too long,
2318 * it will ask the scheduler to manufacture a context switch for the sole
2319 * purpose of providing the needed quiescent state.
2320 */
2321void rcu_sched_clock_irq(int user)
2322{
2323	unsigned long j;
2324
2325	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2326		j = jiffies;
2327		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2328		__this_cpu_write(rcu_data.last_sched_clock, j);
2329	}
2330	trace_rcu_utilization(TPS("Start scheduler-tick"));
2331	lockdep_assert_irqs_disabled();
2332	raw_cpu_inc(rcu_data.ticks_this_gp);
2333	/* The load-acquire pairs with the store-release setting to true. */
2334	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2335		/* Idle and userspace execution already are quiescent states. */
2336		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2337			set_tsk_need_resched(current);
2338			set_preempt_need_resched();
2339		}
2340		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2341	}
2342	rcu_flavor_sched_clock_irq(user);
2343	if (rcu_pending(user))
2344		invoke_rcu_core();
2345	if (user || rcu_is_cpu_rrupt_from_idle())
2346		rcu_note_voluntary_context_switch(current);
2347	lockdep_assert_irqs_disabled();
2348
2349	trace_rcu_utilization(TPS("End scheduler-tick"));
2350}
2351
2352/*
2353 * Scan the leaf rcu_node structures.  For each structure on which all
2354 * CPUs have reported a quiescent state and on which there are tasks
2355 * blocking the current grace period, initiate RCU priority boosting.
2356 * Otherwise, invoke the specified function to check dyntick state for
2357 * each CPU that has not yet reported a quiescent state.
2358 */
2359static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2360{
2361	int cpu;
2362	unsigned long flags;
2363	unsigned long mask;
2364	struct rcu_data *rdp;
2365	struct rcu_node *rnp;
2366
2367	rcu_state.cbovld = rcu_state.cbovldnext;
2368	rcu_state.cbovldnext = false;
2369	rcu_for_each_leaf_node(rnp) {
 
 
 
2370		cond_resched_tasks_rcu_qs();
2371		mask = 0;
2372		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2374		if (rnp->qsmask == 0) {
2375			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2376				/*
2377				 * No point in scanning bits because they
2378				 * are all zero.  But we might need to
2379				 * priority-boost blocked readers.
2380				 */
2381				rcu_initiate_boost(rnp, flags);
2382				/* rcu_initiate_boost() releases rnp->lock */
2383				continue;
2384			}
2385			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2386			continue;
2387		}
2388		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
 
 
 
2389			rdp = per_cpu_ptr(&rcu_data, cpu);
2390			if (f(rdp)) {
 
2391				mask |= rdp->grpmask;
2392				rcu_disable_urgency_upon_qs(rdp);
2393			}
 
 
2394		}
2395		if (mask != 0) {
2396			/* Idle/offline CPUs, report (releases rnp->lock). */
2397			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2398		} else {
2399			/* Nothing to do here, so just drop the lock. */
2400			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2401		}
 
 
 
2402	}
2403}
2404
2405/*
2406 * Force quiescent states on reluctant CPUs, and also detect which
2407 * CPUs are in dyntick-idle mode.
2408 */
2409void rcu_force_quiescent_state(void)
2410{
2411	unsigned long flags;
2412	bool ret;
2413	struct rcu_node *rnp;
2414	struct rcu_node *rnp_old = NULL;
2415
 
 
2416	/* Funnel through hierarchy to reduce memory contention. */
2417	rnp = raw_cpu_read(rcu_data.mynode);
2418	for (; rnp != NULL; rnp = rnp->parent) {
2419		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2420		       !raw_spin_trylock(&rnp->fqslock);
2421		if (rnp_old != NULL)
2422			raw_spin_unlock(&rnp_old->fqslock);
2423		if (ret)
2424			return;
2425		rnp_old = rnp;
2426	}
2427	/* rnp_old == rcu_get_root(), rnp == NULL. */
2428
2429	/* Reached the root of the rcu_node tree, acquire lock. */
2430	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2431	raw_spin_unlock(&rnp_old->fqslock);
2432	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2433		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2434		return;  /* Someone beat us to it. */
2435	}
2436	WRITE_ONCE(rcu_state.gp_flags,
2437		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2438	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2439	rcu_gp_kthread_wake();
2440}
2441EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2442
2443// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2444// grace periods.
2445static void strict_work_handler(struct work_struct *work)
2446{
2447	rcu_read_lock();
2448	rcu_read_unlock();
2449}
2450
2451/* Perform RCU core processing work for the current CPU.  */
2452static __latent_entropy void rcu_core(void)
2453{
2454	unsigned long flags;
2455	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2456	struct rcu_node *rnp = rdp->mynode;
2457	/*
2458	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2459	 * Therefore this function can race with concurrent NOCB (de-)offloading
2460	 * on this CPU and the below condition must be considered volatile.
2461	 * However if we race with:
2462	 *
2463	 * _ Offloading:   In the worst case we accelerate or process callbacks
2464	 *                 concurrently with NOCB kthreads. We are guaranteed to
2465	 *                 call rcu_nocb_lock() if that happens.
2466	 *
2467	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2468	 *                 processing. This is fine because the early stage
2469	 *                 of deoffloading invokes rcu_core() after setting
2470	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2471	 *                 what could have been dismissed without the need to wait
2472	 *                 for the next rcu_pending() check in the next jiffy.
2473	 */
2474	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2475
2476	if (cpu_is_offline(smp_processor_id()))
2477		return;
2478	trace_rcu_utilization(TPS("Start RCU core"));
2479	WARN_ON_ONCE(!rdp->beenonline);
2480
2481	/* Report any deferred quiescent states if preemption enabled. */
2482	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2483		rcu_preempt_deferred_qs(current);
2484	} else if (rcu_preempt_need_deferred_qs(current)) {
2485		set_tsk_need_resched(current);
2486		set_preempt_need_resched();
2487	}
2488
2489	/* Update RCU state based on any recent quiescent states. */
2490	rcu_check_quiescent_state(rdp);
2491
2492	/* No grace period and unregistered callbacks? */
2493	if (!rcu_gp_in_progress() &&
2494	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2495		rcu_nocb_lock_irqsave(rdp, flags);
2496		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2497			rcu_accelerate_cbs_unlocked(rnp, rdp);
2498		rcu_nocb_unlock_irqrestore(rdp, flags);
2499	}
2500
2501	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2502
2503	/* If there are callbacks ready, invoke them. */
2504	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2505	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2506		rcu_do_batch(rdp);
2507		/* Re-invoke RCU core processing if there are callbacks remaining. */
2508		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2509			invoke_rcu_core();
2510	}
2511
2512	/* Do any needed deferred wakeups of rcuo kthreads. */
2513	do_nocb_deferred_wakeup(rdp);
2514	trace_rcu_utilization(TPS("End RCU core"));
2515
2516	// If strict GPs, schedule an RCU reader in a clean environment.
2517	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2518		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2519}
2520
2521static void rcu_core_si(struct softirq_action *h)
2522{
2523	rcu_core();
2524}
2525
2526static void rcu_wake_cond(struct task_struct *t, int status)
2527{
2528	/*
2529	 * If the thread is yielding, only wake it when this
2530	 * is invoked from idle
2531	 */
2532	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2533		wake_up_process(t);
2534}
2535
2536static void invoke_rcu_core_kthread(void)
2537{
2538	struct task_struct *t;
2539	unsigned long flags;
2540
2541	local_irq_save(flags);
2542	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2543	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2544	if (t != NULL && t != current)
2545		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2546	local_irq_restore(flags);
2547}
2548
2549/*
2550 * Wake up this CPU's rcuc kthread to do RCU core processing.
2551 */
2552static void invoke_rcu_core(void)
2553{
2554	if (!cpu_online(smp_processor_id()))
2555		return;
2556	if (use_softirq)
2557		raise_softirq(RCU_SOFTIRQ);
2558	else
2559		invoke_rcu_core_kthread();
2560}
2561
2562static void rcu_cpu_kthread_park(unsigned int cpu)
2563{
2564	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2565}
2566
2567static int rcu_cpu_kthread_should_run(unsigned int cpu)
2568{
2569	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2570}
2571
2572/*
2573 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2574 * the RCU softirq used in configurations of RCU that do not support RCU
2575 * priority boosting.
2576 */
2577static void rcu_cpu_kthread(unsigned int cpu)
2578{
2579	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2580	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2581	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2582	int spincnt;
2583
2584	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2585	for (spincnt = 0; spincnt < 10; spincnt++) {
2586		WRITE_ONCE(*j, jiffies);
2587		local_bh_disable();
2588		*statusp = RCU_KTHREAD_RUNNING;
2589		local_irq_disable();
2590		work = *workp;
2591		*workp = 0;
2592		local_irq_enable();
2593		if (work)
2594			rcu_core();
2595		local_bh_enable();
2596		if (*workp == 0) {
2597			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2598			*statusp = RCU_KTHREAD_WAITING;
2599			return;
2600		}
2601	}
2602	*statusp = RCU_KTHREAD_YIELDING;
2603	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2604	schedule_timeout_idle(2);
2605	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2606	*statusp = RCU_KTHREAD_WAITING;
2607	WRITE_ONCE(*j, jiffies);
2608}
2609
2610static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2611	.store			= &rcu_data.rcu_cpu_kthread_task,
2612	.thread_should_run	= rcu_cpu_kthread_should_run,
2613	.thread_fn		= rcu_cpu_kthread,
2614	.thread_comm		= "rcuc/%u",
2615	.setup			= rcu_cpu_kthread_setup,
2616	.park			= rcu_cpu_kthread_park,
2617};
2618
2619/*
2620 * Spawn per-CPU RCU core processing kthreads.
2621 */
2622static int __init rcu_spawn_core_kthreads(void)
2623{
2624	int cpu;
2625
2626	for_each_possible_cpu(cpu)
2627		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2628	if (use_softirq)
2629		return 0;
2630	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2631		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2632	return 0;
2633}
2634
 
 
 
 
 
 
 
 
 
 
 
 
 
2635/*
2636 * Handle any core-RCU processing required by a call_rcu() invocation.
2637 */
2638static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2639			    unsigned long flags)
2640{
 
2641	/*
2642	 * If called from an extended quiescent state, invoke the RCU
2643	 * core in order to force a re-evaluation of RCU's idleness.
2644	 */
2645	if (!rcu_is_watching())
2646		invoke_rcu_core();
2647
2648	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2649	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2650		return;
2651
2652	/*
2653	 * Force the grace period if too many callbacks or too long waiting.
2654	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2655	 * if some other CPU has recently done so.  Also, don't bother
2656	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2657	 * is the only one waiting for a grace period to complete.
2658	 */
2659	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2660		     rdp->qlen_last_fqs_check + qhimark)) {
2661
2662		/* Are we ignoring a completed grace period? */
2663		note_gp_changes(rdp);
2664
2665		/* Start a new grace period if one not already started. */
2666		if (!rcu_gp_in_progress()) {
2667			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2668		} else {
2669			/* Give the grace period a kick. */
2670			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2671			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2672			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2673				rcu_force_quiescent_state();
2674			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2675			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2676		}
2677	}
2678}
2679
2680/*
2681 * RCU callback function to leak a callback.
2682 */
2683static void rcu_leak_callback(struct rcu_head *rhp)
2684{
2685}
2686
2687/*
2688 * Check and if necessary update the leaf rcu_node structure's
2689 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2690 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2691 * structure's ->lock.
2692 */
2693static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2694{
2695	raw_lockdep_assert_held_rcu_node(rnp);
2696	if (qovld_calc <= 0)
2697		return; // Early boot and wildcard value set.
2698	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2699		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2700	else
2701		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2702}
2703
2704/*
2705 * Check and if necessary update the leaf rcu_node structure's
2706 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2707 * number of queued RCU callbacks.  No locks need be held, but the
2708 * caller must have disabled interrupts.
2709 *
2710 * Note that this function ignores the possibility that there are a lot
2711 * of callbacks all of which have already seen the end of their respective
2712 * grace periods.  This omission is due to the need for no-CBs CPUs to
2713 * be holding ->nocb_lock to do this check, which is too heavy for a
2714 * common-case operation.
2715 */
2716static void check_cb_ovld(struct rcu_data *rdp)
2717{
2718	struct rcu_node *const rnp = rdp->mynode;
2719
2720	if (qovld_calc <= 0 ||
2721	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2722	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2723		return; // Early boot wildcard value or already set correctly.
2724	raw_spin_lock_rcu_node(rnp);
2725	check_cb_ovld_locked(rdp, rnp);
2726	raw_spin_unlock_rcu_node(rnp);
2727}
2728
2729static void
2730__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy)
2731{
2732	static atomic_t doublefrees;
2733	unsigned long flags;
 
2734	struct rcu_data *rdp;
2735	bool was_alldone;
2736
2737	/* Misaligned rcu_head! */
2738	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2739
2740	if (debug_rcu_head_queue(head)) {
2741		/*
2742		 * Probable double call_rcu(), so leak the callback.
2743		 * Use rcu:rcu_callback trace event to find the previous
2744		 * time callback was passed to call_rcu().
2745		 */
2746		if (atomic_inc_return(&doublefrees) < 4) {
2747			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2748			mem_dump_obj(head);
2749		}
2750		WRITE_ONCE(head->func, rcu_leak_callback);
2751		return;
2752	}
2753	head->func = func;
2754	head->next = NULL;
2755	kasan_record_aux_stack_noalloc(head);
2756	local_irq_save(flags);
2757	rdp = this_cpu_ptr(&rcu_data);
 
2758
2759	/* Add the callback to our list. */
2760	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2761		// This can trigger due to call_rcu() from offline CPU:
2762		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
2763		WARN_ON_ONCE(!rcu_is_watching());
2764		// Very early boot, before rcu_init().  Initialize if needed
2765		// and then drop through to queue the callback.
2766		if (rcu_segcblist_empty(&rdp->cblist))
2767			rcu_segcblist_init(&rdp->cblist);
2768	}
2769
2770	check_cb_ovld(rdp);
2771	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2772		return; // Enqueued onto ->nocb_bypass, so just leave.
2773	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2774	rcu_segcblist_enqueue(&rdp->cblist, head);
2775	if (__is_kvfree_rcu_offset((unsigned long)func))
2776		trace_rcu_kvfree_callback(rcu_state.name, head,
2777					 (unsigned long)func,
2778					 rcu_segcblist_n_cbs(&rdp->cblist));
2779	else
2780		trace_rcu_callback(rcu_state.name, head,
2781				   rcu_segcblist_n_cbs(&rdp->cblist));
2782
2783	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2784
2785	/* Go handle any RCU core processing required. */
2786	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2787		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2788	} else {
2789		__call_rcu_core(rdp, head, flags);
2790		local_irq_restore(flags);
2791	}
2792}
2793
2794#ifdef CONFIG_RCU_LAZY
 
 
 
2795/**
2796 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2797 * flush all lazy callbacks (including the new one) to the main ->cblist while
2798 * doing so.
2799 *
2800 * @head: structure to be used for queueing the RCU updates.
2801 * @func: actual callback function to be invoked after the grace period
2802 *
2803 * The callback function will be invoked some time after a full grace
2804 * period elapses, in other words after all pre-existing RCU read-side
2805 * critical sections have completed.
2806 *
2807 * Use this API instead of call_rcu() if you don't want the callback to be
2808 * invoked after very long periods of time, which can happen on systems without
2809 * memory pressure and on systems which are lightly loaded or mostly idle.
2810 * This function will cause callbacks to be invoked sooner than later at the
2811 * expense of extra power. Other than that, this function is identical to, and
2812 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2813 * ordering and other functionality.
2814 */
2815void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2816{
2817	return __call_rcu_common(head, func, false);
2818}
2819EXPORT_SYMBOL_GPL(call_rcu_hurry);
 
 
2820#endif
2821
2822/**
2823 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2824 * By default the callbacks are 'lazy' and are kept hidden from the main
2825 * ->cblist to prevent starting of grace periods too soon.
2826 * If you desire grace periods to start very soon, use call_rcu_hurry().
2827 *
2828 * @head: structure to be used for queueing the RCU updates.
2829 * @func: actual callback function to be invoked after the grace period
2830 *
2831 * The callback function will be invoked some time after a full grace
2832 * period elapses, in other words after all pre-existing RCU read-side
2833 * critical sections have completed.  However, the callback function
2834 * might well execute concurrently with RCU read-side critical sections
2835 * that started after call_rcu() was invoked.
2836 *
2837 * RCU read-side critical sections are delimited by rcu_read_lock()
2838 * and rcu_read_unlock(), and may be nested.  In addition, but only in
2839 * v5.0 and later, regions of code across which interrupts, preemption,
2840 * or softirqs have been disabled also serve as RCU read-side critical
2841 * sections.  This includes hardware interrupt handlers, softirq handlers,
2842 * and NMI handlers.
2843 *
2844 * Note that all CPUs must agree that the grace period extended beyond
2845 * all pre-existing RCU read-side critical section.  On systems with more
2846 * than one CPU, this means that when "func()" is invoked, each CPU is
2847 * guaranteed to have executed a full memory barrier since the end of its
2848 * last RCU read-side critical section whose beginning preceded the call
2849 * to call_rcu().  It also means that each CPU executing an RCU read-side
2850 * critical section that continues beyond the start of "func()" must have
2851 * executed a memory barrier after the call_rcu() but before the beginning
2852 * of that RCU read-side critical section.  Note that these guarantees
2853 * include CPUs that are offline, idle, or executing in user mode, as
2854 * well as CPUs that are executing in the kernel.
2855 *
2856 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2857 * resulting RCU callback function "func()", then both CPU A and CPU B are
2858 * guaranteed to execute a full memory barrier during the time interval
2859 * between the call to call_rcu() and the invocation of "func()" -- even
2860 * if CPU A and CPU B are the same CPU (but again only if the system has
2861 * more than one CPU).
2862 *
2863 * Implementation of these memory-ordering guarantees is described here:
2864 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2865 */
2866void call_rcu(struct rcu_head *head, rcu_callback_t func)
2867{
2868	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2869}
2870EXPORT_SYMBOL_GPL(call_rcu);
2871
2872/* Maximum number of jiffies to wait before draining a batch. */
2873#define KFREE_DRAIN_JIFFIES (5 * HZ)
2874#define KFREE_N_BATCHES 2
2875#define FREE_N_CHANNELS 2
2876
2877/**
2878 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
 
 
2879 * @nr_records: Number of active pointers in the array
2880 * @next: Next bulk object in the block chain
2881 * @records: Array of the kvfree_rcu() pointers
2882 */
2883struct kvfree_rcu_bulk_data {
 
 
2884	unsigned long nr_records;
2885	struct kvfree_rcu_bulk_data *next;
2886	void *records[];
2887};
2888
2889/*
2890 * This macro defines how many entries the "records" array
2891 * will contain. It is based on the fact that the size of
2892 * kvfree_rcu_bulk_data structure becomes exactly one page.
2893 */
2894#define KVFREE_BULK_MAX_ENTR \
2895	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2896
2897/**
2898 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2899 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2900 * @head_free: List of kfree_rcu() objects waiting for a grace period
2901 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
 
2902 * @krcp: Pointer to @kfree_rcu_cpu structure
2903 */
2904
2905struct kfree_rcu_cpu_work {
2906	struct rcu_work rcu_work;
2907	struct rcu_head *head_free;
2908	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
 
2909	struct kfree_rcu_cpu *krcp;
2910};
2911
2912/**
2913 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2914 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2915 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
 
2916 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2917 * @lock: Synchronize access to this structure
2918 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2919 * @initialized: The @rcu_work fields have been initialized
2920 * @count: Number of objects for which GP not started
 
2921 * @bkvcache:
2922 *	A simple cache list that contains objects for reuse purpose.
2923 *	In order to save some per-cpu space the list is singular.
2924 *	Even though it is lockless an access has to be protected by the
2925 *	per-cpu lock.
2926 * @page_cache_work: A work to refill the cache when it is empty
2927 * @backoff_page_cache_fill: Delay cache refills
2928 * @work_in_progress: Indicates that page_cache_work is running
2929 * @hrtimer: A hrtimer for scheduling a page_cache_work
2930 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2931 *
2932 * This is a per-CPU structure.  The reason that it is not included in
2933 * the rcu_data structure is to permit this code to be extracted from
2934 * the RCU files.  Such extraction could allow further optimization of
2935 * the interactions with the slab allocators.
2936 */
2937struct kfree_rcu_cpu {
 
 
2938	struct rcu_head *head;
2939	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
 
 
 
 
 
 
2940	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2941	raw_spinlock_t lock;
2942	struct delayed_work monitor_work;
2943	bool initialized;
2944	int count;
2945
2946	struct delayed_work page_cache_work;
2947	atomic_t backoff_page_cache_fill;
2948	atomic_t work_in_progress;
2949	struct hrtimer hrtimer;
2950
2951	struct llist_head bkvcache;
2952	int nr_bkv_objs;
2953};
2954
2955static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2956	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2957};
2958
2959static __always_inline void
2960debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2961{
2962#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2963	int i;
2964
2965	for (i = 0; i < bhead->nr_records; i++)
2966		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2967#endif
2968}
2969
2970static inline struct kfree_rcu_cpu *
2971krc_this_cpu_lock(unsigned long *flags)
2972{
2973	struct kfree_rcu_cpu *krcp;
2974
2975	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2976	krcp = this_cpu_ptr(&krc);
2977	raw_spin_lock(&krcp->lock);
2978
2979	return krcp;
2980}
2981
2982static inline void
2983krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2984{
2985	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2986}
2987
2988static inline struct kvfree_rcu_bulk_data *
2989get_cached_bnode(struct kfree_rcu_cpu *krcp)
2990{
2991	if (!krcp->nr_bkv_objs)
2992		return NULL;
2993
2994	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2995	return (struct kvfree_rcu_bulk_data *)
2996		llist_del_first(&krcp->bkvcache);
2997}
2998
2999static inline bool
3000put_cached_bnode(struct kfree_rcu_cpu *krcp,
3001	struct kvfree_rcu_bulk_data *bnode)
3002{
3003	// Check the limit.
3004	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3005		return false;
3006
3007	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3008	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3009	return true;
3010}
3011
3012static int
3013drain_page_cache(struct kfree_rcu_cpu *krcp)
3014{
3015	unsigned long flags;
3016	struct llist_node *page_list, *pos, *n;
3017	int freed = 0;
3018
 
 
 
3019	raw_spin_lock_irqsave(&krcp->lock, flags);
3020	page_list = llist_del_all(&krcp->bkvcache);
3021	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3022	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3023
3024	llist_for_each_safe(pos, n, page_list) {
3025		free_page((unsigned long)pos);
3026		freed++;
3027	}
3028
3029	return freed;
3030}
3031
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3032/*
3033 * This function is invoked in workqueue context after a grace period.
3034 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3035 */
3036static void kfree_rcu_work(struct work_struct *work)
3037{
3038	unsigned long flags;
3039	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3040	struct rcu_head *head, *next;
 
3041	struct kfree_rcu_cpu *krcp;
3042	struct kfree_rcu_cpu_work *krwp;
3043	int i, j;
 
3044
3045	krwp = container_of(to_rcu_work(work),
3046			    struct kfree_rcu_cpu_work, rcu_work);
3047	krcp = krwp->krcp;
3048
3049	raw_spin_lock_irqsave(&krcp->lock, flags);
3050	// Channels 1 and 2.
3051	for (i = 0; i < FREE_N_CHANNELS; i++) {
3052		bkvhead[i] = krwp->bkvhead_free[i];
3053		krwp->bkvhead_free[i] = NULL;
3054	}
3055
3056	// Channel 3.
3057	head = krwp->head_free;
3058	krwp->head_free = NULL;
 
3059	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3060
3061	// Handle the first two channels.
3062	for (i = 0; i < FREE_N_CHANNELS; i++) {
3063		for (; bkvhead[i]; bkvhead[i] = bnext) {
3064			bnext = bkvhead[i]->next;
3065			debug_rcu_bhead_unqueue(bkvhead[i]);
3066
3067			rcu_lock_acquire(&rcu_callback_map);
3068			if (i == 0) { // kmalloc() / kfree().
3069				trace_rcu_invoke_kfree_bulk_callback(
3070					rcu_state.name, bkvhead[i]->nr_records,
3071					bkvhead[i]->records);
3072
3073				kfree_bulk(bkvhead[i]->nr_records,
3074					bkvhead[i]->records);
3075			} else { // vmalloc() / vfree().
3076				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3077					trace_rcu_invoke_kvfree_callback(
3078						rcu_state.name,
3079						bkvhead[i]->records[j], 0);
3080
3081					vfree(bkvhead[i]->records[j]);
3082				}
3083			}
3084			rcu_lock_release(&rcu_callback_map);
3085
3086			raw_spin_lock_irqsave(&krcp->lock, flags);
3087			if (put_cached_bnode(krcp, bkvhead[i]))
3088				bkvhead[i] = NULL;
3089			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3090
3091			if (bkvhead[i])
3092				free_page((unsigned long) bkvhead[i]);
3093
3094			cond_resched_tasks_rcu_qs();
3095		}
3096	}
3097
3098	/*
3099	 * This is used when the "bulk" path can not be used for the
3100	 * double-argument of kvfree_rcu().  This happens when the
3101	 * page-cache is empty, which means that objects are instead
3102	 * queued on a linked list through their rcu_head structures.
3103	 * This list is named "Channel 3".
3104	 */
3105	for (; head; head = next) {
3106		unsigned long offset = (unsigned long)head->func;
3107		void *ptr = (void *)head - offset;
3108
3109		next = head->next;
3110		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3111		rcu_lock_acquire(&rcu_callback_map);
3112		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3113
3114		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3115			kvfree(ptr);
 
3116
3117		rcu_lock_release(&rcu_callback_map);
3118		cond_resched_tasks_rcu_qs();
3119	}
3120}
3121
3122static bool
3123need_offload_krc(struct kfree_rcu_cpu *krcp)
3124{
3125	int i;
3126
3127	for (i = 0; i < FREE_N_CHANNELS; i++)
3128		if (krcp->bkvhead[i])
3129			return true;
3130
3131	return !!krcp->head;
 
 
 
 
 
 
 
 
 
 
 
3132}
3133
3134static void
3135schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3136{
3137	long delay, delay_left;
3138
3139	delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3140	if (delayed_work_pending(&krcp->monitor_work)) {
3141		delay_left = krcp->monitor_work.timer.expires - jiffies;
3142		if (delay < delay_left)
3143			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3144		return;
3145	}
3146	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3147}
3148
3149/*
3150 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3151 */
3152static void kfree_rcu_monitor(struct work_struct *work)
 
3153{
3154	struct kfree_rcu_cpu *krcp = container_of(work,
3155		struct kfree_rcu_cpu, monitor_work.work);
3156	unsigned long flags;
 
3157	int i, j;
3158
3159	raw_spin_lock_irqsave(&krcp->lock, flags);
3160
3161	// Attempt to start a new batch.
3162	for (i = 0; i < KFREE_N_BATCHES; i++) {
3163		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3164
3165		// Try to detach bkvhead or head and attach it over any
3166		// available corresponding free channel. It can be that
3167		// a previous RCU batch is in progress, it means that
3168		// immediately to queue another one is not possible so
3169		// in that case the monitor work is rearmed.
3170		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3171			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3172				(krcp->head && !krwp->head_free)) {
3173			// Channel 1 corresponds to the SLAB-pointer bulk path.
3174			// Channel 2 corresponds to vmalloc-pointer bulk path.
3175			for (j = 0; j < FREE_N_CHANNELS; j++) {
3176				if (!krwp->bkvhead_free[j]) {
3177					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3178					krcp->bkvhead[j] = NULL;
 
3179				}
3180			}
3181
3182			// Channel 3 corresponds to both SLAB and vmalloc
3183			// objects queued on the linked list.
3184			if (!krwp->head_free) {
3185				krwp->head_free = krcp->head;
3186				krcp->head = NULL;
 
 
3187			}
3188
3189			WRITE_ONCE(krcp->count, 0);
3190
3191			// One work is per one batch, so there are three
3192			// "free channels", the batch can handle. It can
3193			// be that the work is in the pending state when
3194			// channels have been detached following by each
3195			// other.
3196			queue_rcu_work(system_wq, &krwp->rcu_work);
 
3197		}
3198	}
3199
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3200	// If there is nothing to detach, it means that our job is
3201	// successfully done here. In case of having at least one
3202	// of the channels that is still busy we should rearm the
3203	// work to repeat an attempt. Because previous batches are
3204	// still in progress.
3205	if (need_offload_krc(krcp))
3206		schedule_delayed_monitor_work(krcp);
3207
3208	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3209}
3210
3211static enum hrtimer_restart
3212schedule_page_work_fn(struct hrtimer *t)
3213{
3214	struct kfree_rcu_cpu *krcp =
3215		container_of(t, struct kfree_rcu_cpu, hrtimer);
3216
3217	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3218	return HRTIMER_NORESTART;
3219}
3220
3221static void fill_page_cache_func(struct work_struct *work)
3222{
3223	struct kvfree_rcu_bulk_data *bnode;
3224	struct kfree_rcu_cpu *krcp =
3225		container_of(work, struct kfree_rcu_cpu,
3226			page_cache_work.work);
3227	unsigned long flags;
3228	int nr_pages;
3229	bool pushed;
3230	int i;
3231
3232	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3233		1 : rcu_min_cached_objs;
3234
3235	for (i = 0; i < nr_pages; i++) {
3236		bnode = (struct kvfree_rcu_bulk_data *)
3237			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3238
3239		if (!bnode)
3240			break;
3241
3242		raw_spin_lock_irqsave(&krcp->lock, flags);
3243		pushed = put_cached_bnode(krcp, bnode);
3244		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3245
3246		if (!pushed) {
3247			free_page((unsigned long) bnode);
3248			break;
3249		}
3250	}
3251
3252	atomic_set(&krcp->work_in_progress, 0);
3253	atomic_set(&krcp->backoff_page_cache_fill, 0);
3254}
3255
3256static void
3257run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3258{
 
 
 
 
3259	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3260			!atomic_xchg(&krcp->work_in_progress, 1)) {
3261		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3262			queue_delayed_work(system_wq,
3263				&krcp->page_cache_work,
3264					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3265		} else {
3266			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3267			krcp->hrtimer.function = schedule_page_work_fn;
3268			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3269		}
3270	}
3271}
3272
3273// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3274// state specified by flags.  If can_alloc is true, the caller must
3275// be schedulable and not be holding any locks or mutexes that might be
3276// acquired by the memory allocator or anything that it might invoke.
3277// Returns true if ptr was successfully recorded, else the caller must
3278// use a fallback.
3279static inline bool
3280add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3281	unsigned long *flags, void *ptr, bool can_alloc)
3282{
3283	struct kvfree_rcu_bulk_data *bnode;
3284	int idx;
3285
3286	*krcp = krc_this_cpu_lock(flags);
3287	if (unlikely(!(*krcp)->initialized))
3288		return false;
3289
3290	idx = !!is_vmalloc_addr(ptr);
 
 
3291
3292	/* Check if a new block is required. */
3293	if (!(*krcp)->bkvhead[idx] ||
3294			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3295		bnode = get_cached_bnode(*krcp);
3296		if (!bnode && can_alloc) {
3297			krc_this_cpu_unlock(*krcp, *flags);
3298
3299			// __GFP_NORETRY - allows a light-weight direct reclaim
3300			// what is OK from minimizing of fallback hitting point of
3301			// view. Apart of that it forbids any OOM invoking what is
3302			// also beneficial since we are about to release memory soon.
3303			//
3304			// __GFP_NOMEMALLOC - prevents from consuming of all the
3305			// memory reserves. Please note we have a fallback path.
3306			//
3307			// __GFP_NOWARN - it is supposed that an allocation can
3308			// be failed under low memory or high memory pressure
3309			// scenarios.
3310			bnode = (struct kvfree_rcu_bulk_data *)
3311				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3312			*krcp = krc_this_cpu_lock(flags);
3313		}
3314
3315		if (!bnode)
3316			return false;
3317
3318		/* Initialize the new block. */
3319		bnode->nr_records = 0;
3320		bnode->next = (*krcp)->bkvhead[idx];
3321
3322		/* Attach it to the head. */
3323		(*krcp)->bkvhead[idx] = bnode;
3324	}
3325
3326	/* Finally insert. */
3327	(*krcp)->bkvhead[idx]->records
3328		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
 
 
3329
3330	return true;
3331}
3332
3333/*
3334 * Queue a request for lazy invocation of the appropriate free routine
3335 * after a grace period.  Please note that three paths are maintained,
3336 * two for the common case using arrays of pointers and a third one that
3337 * is used only when the main paths cannot be used, for example, due to
3338 * memory pressure.
3339 *
3340 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3341 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3342 * be free'd in workqueue context. This allows us to: batch requests together to
3343 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3344 */
3345void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3346{
3347	unsigned long flags;
3348	struct kfree_rcu_cpu *krcp;
3349	bool success;
3350	void *ptr;
3351
3352	if (head) {
3353		ptr = (void *) head - (unsigned long) func;
3354	} else {
3355		/*
3356		 * Please note there is a limitation for the head-less
3357		 * variant, that is why there is a clear rule for such
3358		 * objects: it can be used from might_sleep() context
3359		 * only. For other places please embed an rcu_head to
3360		 * your data.
3361		 */
3362		might_sleep();
3363		ptr = (unsigned long *) func;
3364	}
3365
3366	// Queue the object but don't yet schedule the batch.
3367	if (debug_rcu_head_queue(ptr)) {
3368		// Probable double kfree_rcu(), just leak.
3369		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3370			  __func__, head);
3371
3372		// Mark as success and leave.
3373		return;
3374	}
3375
3376	kasan_record_aux_stack_noalloc(ptr);
3377	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3378	if (!success) {
3379		run_page_cache_worker(krcp);
3380
3381		if (head == NULL)
3382			// Inline if kvfree_rcu(one_arg) call.
3383			goto unlock_return;
3384
3385		head->func = func;
3386		head->next = krcp->head;
3387		krcp->head = head;
 
 
 
 
3388		success = true;
3389	}
3390
3391	WRITE_ONCE(krcp->count, krcp->count + 1);
 
 
 
 
 
 
3392
3393	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3394	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3395		schedule_delayed_monitor_work(krcp);
3396
3397unlock_return:
3398	krc_this_cpu_unlock(krcp, flags);
3399
3400	/*
3401	 * Inline kvfree() after synchronize_rcu(). We can do
3402	 * it from might_sleep() context only, so the current
3403	 * CPU can pass the QS state.
3404	 */
3405	if (!success) {
3406		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3407		synchronize_rcu();
3408		kvfree(ptr);
3409	}
3410}
3411EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3413static unsigned long
3414kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3415{
3416	int cpu;
3417	unsigned long count = 0;
3418
3419	/* Snapshot count of all CPUs */
3420	for_each_possible_cpu(cpu) {
3421		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3422
3423		count += READ_ONCE(krcp->count);
3424		count += READ_ONCE(krcp->nr_bkv_objs);
3425		atomic_set(&krcp->backoff_page_cache_fill, 1);
3426	}
3427
3428	return count == 0 ? SHRINK_EMPTY : count;
3429}
3430
3431static unsigned long
3432kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3433{
3434	int cpu, freed = 0;
3435
3436	for_each_possible_cpu(cpu) {
3437		int count;
3438		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3439
3440		count = krcp->count;
3441		count += drain_page_cache(krcp);
3442		kfree_rcu_monitor(&krcp->monitor_work.work);
3443
3444		sc->nr_to_scan -= count;
3445		freed += count;
3446
3447		if (sc->nr_to_scan <= 0)
3448			break;
3449	}
3450
3451	return freed == 0 ? SHRINK_STOP : freed;
3452}
3453
3454static struct shrinker kfree_rcu_shrinker = {
3455	.count_objects = kfree_rcu_shrink_count,
3456	.scan_objects = kfree_rcu_shrink_scan,
3457	.batch = 0,
3458	.seeks = DEFAULT_SEEKS,
3459};
3460
3461void __init kfree_rcu_scheduler_running(void)
3462{
3463	int cpu;
3464	unsigned long flags;
3465
3466	for_each_possible_cpu(cpu) {
3467		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3468
3469		raw_spin_lock_irqsave(&krcp->lock, flags);
3470		if (need_offload_krc(krcp))
3471			schedule_delayed_monitor_work(krcp);
3472		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3473	}
3474}
3475
3476/*
3477 * During early boot, any blocking grace-period wait automatically
3478 * implies a grace period.
3479 *
3480 * Later on, this could in theory be the case for kernels built with
3481 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3482 * is not a common case.  Furthermore, this optimization would cause
3483 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3484 * grace-period optimization is ignored once the scheduler is running.
3485 */
3486static int rcu_blocking_is_gp(void)
3487{
3488	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
 
3489		return false;
3490	might_sleep();  /* Check for RCU read-side critical section. */
3491	return true;
3492}
3493
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3494/**
3495 * synchronize_rcu - wait until a grace period has elapsed.
3496 *
3497 * Control will return to the caller some time after a full grace
3498 * period has elapsed, in other words after all currently executing RCU
3499 * read-side critical sections have completed.  Note, however, that
3500 * upon return from synchronize_rcu(), the caller might well be executing
3501 * concurrently with new RCU read-side critical sections that began while
3502 * synchronize_rcu() was waiting.
3503 *
3504 * RCU read-side critical sections are delimited by rcu_read_lock()
3505 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3506 * v5.0 and later, regions of code across which interrupts, preemption,
3507 * or softirqs have been disabled also serve as RCU read-side critical
3508 * sections.  This includes hardware interrupt handlers, softirq handlers,
3509 * and NMI handlers.
3510 *
3511 * Note that this guarantee implies further memory-ordering guarantees.
3512 * On systems with more than one CPU, when synchronize_rcu() returns,
3513 * each CPU is guaranteed to have executed a full memory barrier since
3514 * the end of its last RCU read-side critical section whose beginning
3515 * preceded the call to synchronize_rcu().  In addition, each CPU having
3516 * an RCU read-side critical section that extends beyond the return from
3517 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3518 * after the beginning of synchronize_rcu() and before the beginning of
3519 * that RCU read-side critical section.  Note that these guarantees include
3520 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3521 * that are executing in the kernel.
3522 *
3523 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3524 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3525 * to have executed a full memory barrier during the execution of
3526 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3527 * again only if the system has more than one CPU).
3528 *
3529 * Implementation of these memory-ordering guarantees is described here:
3530 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3531 */
3532void synchronize_rcu(void)
3533{
3534	unsigned long flags;
3535	struct rcu_node *rnp;
3536
3537	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3538			 lock_is_held(&rcu_lock_map) ||
3539			 lock_is_held(&rcu_sched_lock_map),
3540			 "Illegal synchronize_rcu() in RCU read-side critical section");
3541	if (!rcu_blocking_is_gp()) {
3542		if (rcu_gp_is_expedited())
3543			synchronize_rcu_expedited();
3544		else
3545			wait_rcu_gp(call_rcu_hurry);
3546		return;
3547	}
3548
3549	// Context allows vacuous grace periods.
3550	// Note well that this code runs with !PREEMPT && !SMP.
3551	// In addition, all code that advances grace periods runs at
3552	// process level.  Therefore, this normal GP overlaps with other
3553	// normal GPs only by being fully nested within them, which allows
3554	// reuse of ->gp_seq_polled_snap.
3555	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3556	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3557
3558	// Update the normal grace-period counters to record
3559	// this grace period, but only those used by the boot CPU.
3560	// The rcu_scheduler_starting() will take care of the rest of
3561	// these counters.
3562	local_irq_save(flags);
3563	WARN_ON_ONCE(num_online_cpus() > 1);
3564	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3565	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3566		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3567	local_irq_restore(flags);
3568}
3569EXPORT_SYMBOL_GPL(synchronize_rcu);
3570
3571/**
3572 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3573 * @rgosp: Place to put state cookie
3574 *
3575 * Stores into @rgosp a value that will always be treated by functions
3576 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3577 * has already completed.
3578 */
3579void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3580{
3581	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3582	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
3583}
3584EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3585
3586/**
3587 * get_state_synchronize_rcu - Snapshot current RCU state
3588 *
3589 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3590 * or poll_state_synchronize_rcu() to determine whether or not a full
3591 * grace period has elapsed in the meantime.
3592 */
3593unsigned long get_state_synchronize_rcu(void)
3594{
3595	/*
3596	 * Any prior manipulation of RCU-protected data must happen
3597	 * before the load from ->gp_seq.
3598	 */
3599	smp_mb();  /* ^^^ */
3600	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3601}
3602EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3603
3604/**
3605 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3606 * @rgosp: location to place combined normal/expedited grace-period state
3607 *
3608 * Places the normal and expedited grace-period states in @rgosp.  This
3609 * state value can be passed to a later call to cond_synchronize_rcu_full()
3610 * or poll_state_synchronize_rcu_full() to determine whether or not a
3611 * grace period (whether normal or expedited) has elapsed in the meantime.
3612 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3613 * long, but is guaranteed to see all grace periods.  In contrast, the
3614 * combined state occupies less memory, but can sometimes fail to take
3615 * grace periods into account.
3616 *
3617 * This does not guarantee that the needed grace period will actually
3618 * start.
3619 */
3620void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3621{
3622	struct rcu_node *rnp = rcu_get_root();
3623
3624	/*
3625	 * Any prior manipulation of RCU-protected data must happen
3626	 * before the loads from ->gp_seq and ->expedited_sequence.
3627	 */
3628	smp_mb();  /* ^^^ */
3629	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3630	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3631}
3632EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3633
3634/*
3635 * Helper function for start_poll_synchronize_rcu() and
3636 * start_poll_synchronize_rcu_full().
3637 */
3638static void start_poll_synchronize_rcu_common(void)
3639{
3640	unsigned long flags;
3641	bool needwake;
3642	struct rcu_data *rdp;
3643	struct rcu_node *rnp;
3644
3645	lockdep_assert_irqs_enabled();
3646	local_irq_save(flags);
3647	rdp = this_cpu_ptr(&rcu_data);
3648	rnp = rdp->mynode;
3649	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3650	// Note it is possible for a grace period to have elapsed between
3651	// the above call to get_state_synchronize_rcu() and the below call
3652	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3653	// get a grace period that no one needed.  These accesses are ordered
3654	// by smp_mb(), and we are accessing them in the opposite order
3655	// from which they are updated at grace-period start, as required.
3656	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3657	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3658	if (needwake)
3659		rcu_gp_kthread_wake();
3660}
3661
3662/**
3663 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3664 *
3665 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3666 * or poll_state_synchronize_rcu() to determine whether or not a full
3667 * grace period has elapsed in the meantime.  If the needed grace period
3668 * is not already slated to start, notifies RCU core of the need for that
3669 * grace period.
3670 *
3671 * Interrupts must be enabled for the case where it is necessary to awaken
3672 * the grace-period kthread.
3673 */
3674unsigned long start_poll_synchronize_rcu(void)
3675{
3676	unsigned long gp_seq = get_state_synchronize_rcu();
3677
3678	start_poll_synchronize_rcu_common();
3679	return gp_seq;
3680}
3681EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3682
3683/**
3684 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3685 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3686 *
3687 * Places the normal and expedited grace-period states in *@rgos.  This
3688 * state value can be passed to a later call to cond_synchronize_rcu_full()
3689 * or poll_state_synchronize_rcu_full() to determine whether or not a
3690 * grace period (whether normal or expedited) has elapsed in the meantime.
3691 * If the needed grace period is not already slated to start, notifies
3692 * RCU core of the need for that grace period.
3693 *
3694 * Interrupts must be enabled for the case where it is necessary to awaken
3695 * the grace-period kthread.
3696 */
3697void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3698{
3699	get_state_synchronize_rcu_full(rgosp);
3700
3701	start_poll_synchronize_rcu_common();
3702}
3703EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3704
3705/**
3706 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3707 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3708 *
3709 * If a full RCU grace period has elapsed since the earlier call from
3710 * which @oldstate was obtained, return @true, otherwise return @false.
3711 * If @false is returned, it is the caller's responsibility to invoke this
3712 * function later on until it does return @true.  Alternatively, the caller
3713 * can explicitly wait for a grace period, for example, by passing @oldstate
3714 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
 
 
3715 *
3716 * Yes, this function does not take counter wrap into account.
3717 * But counter wrap is harmless.  If the counter wraps, we have waited for
3718 * more than a billion grace periods (and way more on a 64-bit system!).
3719 * Those needing to keep old state values for very long time periods
3720 * (many hours even on 32-bit systems) should check them occasionally and
3721 * either refresh them or set a flag indicating that the grace period has
3722 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3723 * to get a guaranteed-completed grace-period state.
3724 *
 
 
 
 
 
 
3725 * This function provides the same memory-ordering guarantees that
3726 * would be provided by a synchronize_rcu() that was invoked at the call
3727 * to the function that provided @oldstate, and that returned at the end
3728 * of this function.
3729 */
3730bool poll_state_synchronize_rcu(unsigned long oldstate)
3731{
3732	if (oldstate == RCU_GET_STATE_COMPLETED ||
3733	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3734		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3735		return true;
3736	}
3737	return false;
3738}
3739EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3740
3741/**
3742 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3743 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3744 *
3745 * If a full RCU grace period has elapsed since the earlier call from
3746 * which *rgosp was obtained, return @true, otherwise return @false.
3747 * If @false is returned, it is the caller's responsibility to invoke this
3748 * function later on until it does return @true.  Alternatively, the caller
3749 * can explicitly wait for a grace period, for example, by passing @rgosp
3750 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3751 *
3752 * Yes, this function does not take counter wrap into account.
3753 * But counter wrap is harmless.  If the counter wraps, we have waited
3754 * for more than a billion grace periods (and way more on a 64-bit
3755 * system!).  Those needing to keep rcu_gp_oldstate values for very
3756 * long time periods (many hours even on 32-bit systems) should check
3757 * them occasionally and either refresh them or set a flag indicating
3758 * that the grace period has completed.  Alternatively, they can use
3759 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3760 * grace-period state.
3761 *
3762 * This function provides the same memory-ordering guarantees that would
3763 * be provided by a synchronize_rcu() that was invoked at the call to
3764 * the function that provided @rgosp, and that returned at the end of this
3765 * function.  And this guarantee requires that the root rcu_node structure's
3766 * ->gp_seq field be checked instead of that of the rcu_state structure.
3767 * The problem is that the just-ending grace-period's callbacks can be
3768 * invoked between the time that the root rcu_node structure's ->gp_seq
3769 * field is updated and the time that the rcu_state structure's ->gp_seq
3770 * field is updated.  Therefore, if a single synchronize_rcu() is to
3771 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3772 * then the root rcu_node structure is the one that needs to be polled.
3773 */
3774bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3775{
3776	struct rcu_node *rnp = rcu_get_root();
3777
3778	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3779	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3780	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3781	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3782	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3783		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3784		return true;
3785	}
3786	return false;
3787}
3788EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3789
3790/**
3791 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3792 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3793 *
3794 * If a full RCU grace period has elapsed since the earlier call to
3795 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3796 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3797 *
3798 * Yes, this function does not take counter wrap into account.
3799 * But counter wrap is harmless.  If the counter wraps, we have waited for
3800 * more than 2 billion grace periods (and way more on a 64-bit system!),
3801 * so waiting for a couple of additional grace periods should be just fine.
3802 *
3803 * This function provides the same memory-ordering guarantees that
3804 * would be provided by a synchronize_rcu() that was invoked at the call
3805 * to the function that provided @oldstate and that returned at the end
3806 * of this function.
3807 */
3808void cond_synchronize_rcu(unsigned long oldstate)
3809{
3810	if (!poll_state_synchronize_rcu(oldstate))
3811		synchronize_rcu();
3812}
3813EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3814
3815/**
3816 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3817 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3818 *
3819 * If a full RCU grace period has elapsed since the call to
3820 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3821 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3822 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3823 * for a full grace period.
3824 *
3825 * Yes, this function does not take counter wrap into account.
3826 * But counter wrap is harmless.  If the counter wraps, we have waited for
3827 * more than 2 billion grace periods (and way more on a 64-bit system!),
3828 * so waiting for a couple of additional grace periods should be just fine.
3829 *
3830 * This function provides the same memory-ordering guarantees that
3831 * would be provided by a synchronize_rcu() that was invoked at the call
3832 * to the function that provided @rgosp and that returned at the end of
3833 * this function.
3834 */
3835void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3836{
3837	if (!poll_state_synchronize_rcu_full(rgosp))
3838		synchronize_rcu();
3839}
3840EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3841
3842/*
3843 * Check to see if there is any immediate RCU-related work to be done by
3844 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3845 * in order of increasing expense: checks that can be carried out against
3846 * CPU-local state are performed first.  However, we must check for CPU
3847 * stalls first, else we might not get a chance.
3848 */
3849static int rcu_pending(int user)
3850{
3851	bool gp_in_progress;
3852	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3853	struct rcu_node *rnp = rdp->mynode;
3854
3855	lockdep_assert_irqs_disabled();
3856
3857	/* Check for CPU stalls, if enabled. */
3858	check_cpu_stall(rdp);
3859
3860	/* Does this CPU need a deferred NOCB wakeup? */
3861	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3862		return 1;
3863
3864	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3865	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
 
 
 
 
 
3866		return 0;
3867
3868	/* Is the RCU core waiting for a quiescent state from this CPU? */
3869	gp_in_progress = rcu_gp_in_progress();
3870	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3871		return 1;
3872
3873	/* Does this CPU have callbacks ready to invoke? */
3874	if (!rcu_rdp_is_offloaded(rdp) &&
3875	    rcu_segcblist_ready_cbs(&rdp->cblist))
3876		return 1;
3877
3878	/* Has RCU gone idle with this CPU needing another grace period? */
3879	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3880	    !rcu_rdp_is_offloaded(rdp) &&
3881	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
3882		return 1;
3883
3884	/* Have RCU grace period completed or started?  */
3885	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3886	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3887		return 1;
3888
3889	/* nothing to do */
3890	return 0;
3891}
3892
3893/*
3894 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3895 * the compiler is expected to optimize this away.
3896 */
3897static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3898{
3899	trace_rcu_barrier(rcu_state.name, s, cpu,
3900			  atomic_read(&rcu_state.barrier_cpu_count), done);
3901}
3902
3903/*
3904 * RCU callback function for rcu_barrier().  If we are last, wake
3905 * up the task executing rcu_barrier().
3906 *
3907 * Note that the value of rcu_state.barrier_sequence must be captured
3908 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3909 * other CPUs might count the value down to zero before this CPU gets
3910 * around to invoking rcu_barrier_trace(), which might result in bogus
3911 * data from the next instance of rcu_barrier().
3912 */
3913static void rcu_barrier_callback(struct rcu_head *rhp)
3914{
3915	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
3916
 
3917	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3918		rcu_barrier_trace(TPS("LastCB"), -1, s);
3919		complete(&rcu_state.barrier_completion);
3920	} else {
3921		rcu_barrier_trace(TPS("CB"), -1, s);
3922	}
3923}
3924
3925/*
3926 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
3927 */
3928static void rcu_barrier_entrain(struct rcu_data *rdp)
3929{
3930	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3931	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3932	bool wake_nocb = false;
3933	bool was_alldone = false;
3934
3935	lockdep_assert_held(&rcu_state.barrier_lock);
3936	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3937		return;
3938	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3939	rdp->barrier_head.func = rcu_barrier_callback;
3940	debug_rcu_head_queue(&rdp->barrier_head);
3941	rcu_nocb_lock(rdp);
3942	/*
3943	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3944	 * queue. This way we don't wait for bypass timer that can reach seconds
3945	 * if it's fully lazy.
3946	 */
3947	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3948	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3949	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3950	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3951		atomic_inc(&rcu_state.barrier_cpu_count);
3952	} else {
3953		debug_rcu_head_unqueue(&rdp->barrier_head);
3954		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3955	}
3956	rcu_nocb_unlock(rdp);
3957	if (wake_nocb)
3958		wake_nocb_gp(rdp, false);
3959	smp_store_release(&rdp->barrier_seq_snap, gseq);
3960}
3961
3962/*
3963 * Called with preemption disabled, and from cross-cpu IRQ context.
3964 */
3965static void rcu_barrier_handler(void *cpu_in)
3966{
3967	uintptr_t cpu = (uintptr_t)cpu_in;
3968	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3969
3970	lockdep_assert_irqs_disabled();
3971	WARN_ON_ONCE(cpu != rdp->cpu);
3972	WARN_ON_ONCE(cpu != smp_processor_id());
3973	raw_spin_lock(&rcu_state.barrier_lock);
3974	rcu_barrier_entrain(rdp);
3975	raw_spin_unlock(&rcu_state.barrier_lock);
3976}
3977
3978/**
3979 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3980 *
3981 * Note that this primitive does not necessarily wait for an RCU grace period
3982 * to complete.  For example, if there are no RCU callbacks queued anywhere
3983 * in the system, then rcu_barrier() is within its rights to return
3984 * immediately, without waiting for anything, much less an RCU grace period.
3985 */
3986void rcu_barrier(void)
3987{
3988	uintptr_t cpu;
3989	unsigned long flags;
3990	unsigned long gseq;
3991	struct rcu_data *rdp;
3992	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3993
3994	rcu_barrier_trace(TPS("Begin"), -1, s);
3995
3996	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3997	mutex_lock(&rcu_state.barrier_mutex);
3998
3999	/* Did someone else do our work for us? */
4000	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4001		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4002		smp_mb(); /* caller's subsequent code after above check. */
4003		mutex_unlock(&rcu_state.barrier_mutex);
4004		return;
4005	}
4006
4007	/* Mark the start of the barrier operation. */
4008	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4009	rcu_seq_start(&rcu_state.barrier_sequence);
4010	gseq = rcu_state.barrier_sequence;
4011	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4012
4013	/*
4014	 * Initialize the count to two rather than to zero in order
4015	 * to avoid a too-soon return to zero in case of an immediate
4016	 * invocation of the just-enqueued callback (or preemption of
4017	 * this task).  Exclude CPU-hotplug operations to ensure that no
4018	 * offline non-offloaded CPU has callbacks queued.
4019	 */
4020	init_completion(&rcu_state.barrier_completion);
4021	atomic_set(&rcu_state.barrier_cpu_count, 2);
4022	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4023
4024	/*
4025	 * Force each CPU with callbacks to register a new callback.
4026	 * When that callback is invoked, we will know that all of the
4027	 * corresponding CPU's preceding callbacks have been invoked.
4028	 */
4029	for_each_possible_cpu(cpu) {
4030		rdp = per_cpu_ptr(&rcu_data, cpu);
4031retry:
4032		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4033			continue;
4034		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4035		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4036			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4037			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4038			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4039			continue;
4040		}
4041		if (!rcu_rdp_cpu_online(rdp)) {
4042			rcu_barrier_entrain(rdp);
4043			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4044			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4045			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4046			continue;
4047		}
4048		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4049		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4050			schedule_timeout_uninterruptible(1);
4051			goto retry;
4052		}
4053		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4054		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4055	}
4056
4057	/*
4058	 * Now that we have an rcu_barrier_callback() callback on each
4059	 * CPU, and thus each counted, remove the initial count.
4060	 */
4061	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4062		complete(&rcu_state.barrier_completion);
4063
4064	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4065	wait_for_completion(&rcu_state.barrier_completion);
4066
4067	/* Mark the end of the barrier operation. */
4068	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4069	rcu_seq_end(&rcu_state.barrier_sequence);
4070	gseq = rcu_state.barrier_sequence;
4071	for_each_possible_cpu(cpu) {
4072		rdp = per_cpu_ptr(&rcu_data, cpu);
4073
4074		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4075	}
4076
4077	/* Other rcu_barrier() invocations can now safely proceed. */
4078	mutex_unlock(&rcu_state.barrier_mutex);
4079}
4080EXPORT_SYMBOL_GPL(rcu_barrier);
4081
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4082/*
4083 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4084 * first CPU in a given leaf rcu_node structure coming online.  The caller
4085 * must hold the corresponding leaf rcu_node ->lock with interrupts
4086 * disabled.
4087 */
4088static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4089{
4090	long mask;
4091	long oldmask;
4092	struct rcu_node *rnp = rnp_leaf;
4093
4094	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4095	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4096	for (;;) {
4097		mask = rnp->grpmask;
4098		rnp = rnp->parent;
4099		if (rnp == NULL)
4100			return;
4101		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4102		oldmask = rnp->qsmaskinit;
4103		rnp->qsmaskinit |= mask;
4104		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4105		if (oldmask)
4106			return;
4107	}
4108}
4109
4110/*
4111 * Do boot-time initialization of a CPU's per-CPU RCU data.
4112 */
4113static void __init
4114rcu_boot_init_percpu_data(int cpu)
4115{
4116	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4117	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4118
4119	/* Set up local state, ensuring consistent view of global state. */
4120	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4121	INIT_WORK(&rdp->strict_work, strict_work_handler);
4122	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4123	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4124	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4125	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4126	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4127	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4128	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4129	rdp->last_sched_clock = jiffies;
4130	rdp->cpu = cpu;
4131	rcu_boot_init_nocb_percpu_data(rdp);
4132}
4133
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4134/*
4135 * Invoked early in the CPU-online process, when pretty much all services
4136 * are available.  The incoming CPU is not present.
4137 *
4138 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4139 * offline event can be happening at a given time.  Note also that we can
4140 * accept some slop in the rsp->gp_seq access due to the fact that this
4141 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4142 * And any offloaded callbacks are being numbered elsewhere.
4143 */
4144int rcutree_prepare_cpu(unsigned int cpu)
4145{
4146	unsigned long flags;
4147	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4148	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4149	struct rcu_node *rnp = rcu_get_root();
4150
4151	/* Set up local state, ensuring consistent view of global state. */
4152	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4153	rdp->qlen_last_fqs_check = 0;
4154	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4155	rdp->blimit = blimit;
4156	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4157	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4158
4159	/*
4160	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4161	 * (re-)initialized.
4162	 */
4163	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4164		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4165
4166	/*
4167	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4168	 * propagation up the rcu_node tree will happen at the beginning
4169	 * of the next grace period.
4170	 */
4171	rnp = rdp->mynode;
4172	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4173	rdp->beenonline = true;	 /* We have now been online. */
4174	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4175	rdp->gp_seq_needed = rdp->gp_seq;
4176	rdp->cpu_no_qs.b.norm = true;
4177	rdp->core_needs_qs = false;
4178	rdp->rcu_iw_pending = false;
4179	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4180	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4181	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4182	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4183	rcu_spawn_one_boost_kthread(rnp);
4184	rcu_spawn_cpu_nocb_kthread(cpu);
 
4185	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
4186
4187	return 0;
4188}
4189
4190/*
4191 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4192 */
4193static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4194{
4195	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4196
4197	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4198}
4199
4200/*
4201 * Near the end of the CPU-online process.  Pretty much all services
4202 * enabled, and the CPU is now very much alive.
4203 */
4204int rcutree_online_cpu(unsigned int cpu)
4205{
4206	unsigned long flags;
4207	struct rcu_data *rdp;
4208	struct rcu_node *rnp;
4209
4210	rdp = per_cpu_ptr(&rcu_data, cpu);
4211	rnp = rdp->mynode;
4212	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4213	rnp->ffmask |= rdp->grpmask;
4214	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4215	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4216		return 0; /* Too early in boot for scheduler work. */
4217	sync_sched_exp_online_cleanup(cpu);
4218	rcutree_affinity_setting(cpu, -1);
4219
4220	// Stop-machine done, so allow nohz_full to disable tick.
4221	tick_dep_clear(TICK_DEP_BIT_RCU);
4222	return 0;
4223}
4224
4225/*
4226 * Near the beginning of the process.  The CPU is still very much alive
4227 * with pretty much all services enabled.
4228 */
4229int rcutree_offline_cpu(unsigned int cpu)
4230{
4231	unsigned long flags;
4232	struct rcu_data *rdp;
4233	struct rcu_node *rnp;
4234
4235	rdp = per_cpu_ptr(&rcu_data, cpu);
4236	rnp = rdp->mynode;
4237	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4238	rnp->ffmask &= ~rdp->grpmask;
4239	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4240
4241	rcutree_affinity_setting(cpu, cpu);
4242
4243	// nohz_full CPUs need the tick for stop-machine to work quickly
4244	tick_dep_set(TICK_DEP_BIT_RCU);
4245	return 0;
4246}
4247
4248/*
4249 * Mark the specified CPU as being online so that subsequent grace periods
4250 * (both expedited and normal) will wait on it.  Note that this means that
4251 * incoming CPUs are not allowed to use RCU read-side critical sections
4252 * until this function is called.  Failing to observe this restriction
4253 * will result in lockdep splats.
4254 *
4255 * Note that this function is special in that it is invoked directly
4256 * from the incoming CPU rather than from the cpuhp_step mechanism.
4257 * This is because this function must be invoked at a precise location.
 
 
 
4258 */
4259void rcu_cpu_starting(unsigned int cpu)
4260{
4261	unsigned long flags;
4262	unsigned long mask;
4263	struct rcu_data *rdp;
4264	struct rcu_node *rnp;
4265	bool newcpu;
4266
 
4267	rdp = per_cpu_ptr(&rcu_data, cpu);
4268	if (rdp->cpu_started)
4269		return;
4270	rdp->cpu_started = true;
4271
4272	rnp = rdp->mynode;
4273	mask = rdp->grpmask;
4274	local_irq_save(flags);
4275	arch_spin_lock(&rcu_state.ofl_lock);
4276	rcu_dynticks_eqs_online();
4277	raw_spin_lock(&rcu_state.barrier_lock);
4278	raw_spin_lock_rcu_node(rnp);
4279	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4280	raw_spin_unlock(&rcu_state.barrier_lock);
4281	newcpu = !(rnp->expmaskinitnext & mask);
4282	rnp->expmaskinitnext |= mask;
4283	/* Allow lockless access for expedited grace periods. */
4284	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4285	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4286	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4287	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4288	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4289
4290	/* An incoming CPU should never be blocking a grace period. */
4291	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4292		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4293		unsigned long flags2;
4294
4295		local_irq_save(flags2);
4296		rcu_disable_urgency_upon_qs(rdp);
4297		/* Report QS -after- changing ->qsmaskinitnext! */
4298		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4299	} else {
4300		raw_spin_unlock_rcu_node(rnp);
4301	}
4302	arch_spin_unlock(&rcu_state.ofl_lock);
4303	local_irq_restore(flags);
4304	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4305}
4306
4307/*
4308 * The outgoing function has no further need of RCU, so remove it from
4309 * the rcu_node tree's ->qsmaskinitnext bit masks.
4310 *
4311 * Note that this function is special in that it is invoked directly
4312 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4313 * This is because this function must be invoked at a precise location.
 
 
4314 */
4315void rcu_report_dead(unsigned int cpu)
4316{
4317	unsigned long flags, seq_flags;
4318	unsigned long mask;
4319	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4320	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4321
 
 
 
 
 
4322	// Do any dangling deferred wakeups.
4323	do_nocb_deferred_wakeup(rdp);
4324
4325	rcu_preempt_deferred_qs(current);
4326
4327	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4328	mask = rdp->grpmask;
4329	local_irq_save(seq_flags);
4330	arch_spin_lock(&rcu_state.ofl_lock);
4331	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4332	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4333	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4334	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4335		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4336		rcu_disable_urgency_upon_qs(rdp);
4337		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4338		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4339	}
4340	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4341	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4342	arch_spin_unlock(&rcu_state.ofl_lock);
4343	local_irq_restore(seq_flags);
4344
4345	rdp->cpu_started = false;
4346}
4347
4348#ifdef CONFIG_HOTPLUG_CPU
4349/*
4350 * The outgoing CPU has just passed through the dying-idle state, and we
4351 * are being invoked from the CPU that was IPIed to continue the offline
4352 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
4353 */
4354void rcutree_migrate_callbacks(int cpu)
4355{
4356	unsigned long flags;
4357	struct rcu_data *my_rdp;
4358	struct rcu_node *my_rnp;
4359	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4360	bool needwake;
4361
4362	if (rcu_rdp_is_offloaded(rdp) ||
4363	    rcu_segcblist_empty(&rdp->cblist))
4364		return;  /* No callbacks to migrate. */
4365
4366	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
 
 
 
 
 
4367	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4368	rcu_barrier_entrain(rdp);
4369	my_rdp = this_cpu_ptr(&rcu_data);
4370	my_rnp = my_rdp->mynode;
4371	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4372	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4373	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4374	/* Leverage recent GPs and set GP for new callbacks. */
4375	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4376		   rcu_advance_cbs(my_rnp, my_rdp);
4377	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4378	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4379	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4380	rcu_segcblist_disable(&rdp->cblist);
4381	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4382	check_cb_ovld_locked(my_rdp, my_rnp);
4383	if (rcu_rdp_is_offloaded(my_rdp)) {
4384		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4385		__call_rcu_nocb_wake(my_rdp, true, flags);
4386	} else {
4387		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4388		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4389	}
 
4390	if (needwake)
4391		rcu_gp_kthread_wake();
4392	lockdep_assert_irqs_enabled();
4393	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4394		  !rcu_segcblist_empty(&rdp->cblist),
4395		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4396		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4397		  rcu_segcblist_first_cb(&rdp->cblist));
4398}
4399#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4400
4401/*
4402 * On non-huge systems, use expedited RCU grace periods to make suspend
4403 * and hibernation run faster.
4404 */
4405static int rcu_pm_notify(struct notifier_block *self,
4406			 unsigned long action, void *hcpu)
4407{
4408	switch (action) {
4409	case PM_HIBERNATION_PREPARE:
4410	case PM_SUSPEND_PREPARE:
 
4411		rcu_expedite_gp();
4412		break;
4413	case PM_POST_HIBERNATION:
4414	case PM_POST_SUSPEND:
4415		rcu_unexpedite_gp();
 
4416		break;
4417	default:
4418		break;
4419	}
4420	return NOTIFY_OK;
4421}
4422
4423#ifdef CONFIG_RCU_EXP_KTHREAD
4424struct kthread_worker *rcu_exp_gp_kworker;
4425struct kthread_worker *rcu_exp_par_gp_kworker;
4426
4427static void __init rcu_start_exp_gp_kworkers(void)
4428{
4429	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4430	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4431	struct sched_param param = { .sched_priority = kthread_prio };
4432
4433	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4434	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4435		pr_err("Failed to create %s!\n", gp_kworker_name);
4436		return;
4437	}
4438
4439	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4440	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4441		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4442		kthread_destroy_worker(rcu_exp_gp_kworker);
4443		return;
4444	}
4445
4446	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4447	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4448				   &param);
4449}
4450
4451static inline void rcu_alloc_par_gp_wq(void)
4452{
4453}
4454#else /* !CONFIG_RCU_EXP_KTHREAD */
4455struct workqueue_struct *rcu_par_gp_wq;
4456
4457static void __init rcu_start_exp_gp_kworkers(void)
4458{
4459}
4460
4461static inline void rcu_alloc_par_gp_wq(void)
4462{
4463	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4464	WARN_ON(!rcu_par_gp_wq);
4465}
4466#endif /* CONFIG_RCU_EXP_KTHREAD */
4467
4468/*
4469 * Spawn the kthreads that handle RCU's grace periods.
4470 */
4471static int __init rcu_spawn_gp_kthread(void)
4472{
4473	unsigned long flags;
4474	struct rcu_node *rnp;
4475	struct sched_param sp;
4476	struct task_struct *t;
4477	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4478
4479	rcu_scheduler_fully_active = 1;
4480	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4481	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4482		return 0;
4483	if (kthread_prio) {
4484		sp.sched_priority = kthread_prio;
4485		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
4486	}
4487	rnp = rcu_get_root();
4488	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4489	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4490	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4491	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4492	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4493	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4494	wake_up_process(t);
4495	/* This is a pre-SMP initcall, we expect a single CPU */
4496	WARN_ON(num_online_cpus() > 1);
4497	/*
4498	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4499	 * due to rcu_scheduler_fully_active.
4500	 */
4501	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4502	rcu_spawn_one_boost_kthread(rdp->mynode);
4503	rcu_spawn_core_kthreads();
4504	/* Create kthread worker for expedited GPs */
4505	rcu_start_exp_gp_kworkers();
4506	return 0;
4507}
4508early_initcall(rcu_spawn_gp_kthread);
4509
4510/*
4511 * This function is invoked towards the end of the scheduler's
4512 * initialization process.  Before this is called, the idle task might
4513 * contain synchronous grace-period primitives (during which time, this idle
4514 * task is booting the system, and such primitives are no-ops).  After this
4515 * function is called, any synchronous grace-period primitives are run as
4516 * expedited, with the requesting task driving the grace period forward.
4517 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4518 * runtime RCU functionality.
4519 */
4520void rcu_scheduler_starting(void)
4521{
4522	unsigned long flags;
4523	struct rcu_node *rnp;
4524
4525	WARN_ON(num_online_cpus() != 1);
4526	WARN_ON(nr_context_switches() > 0);
4527	rcu_test_sync_prims();
4528
4529	// Fix up the ->gp_seq counters.
4530	local_irq_save(flags);
4531	rcu_for_each_node_breadth_first(rnp)
4532		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4533	local_irq_restore(flags);
4534
4535	// Switch out of early boot mode.
4536	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4537	rcu_test_sync_prims();
4538}
4539
4540/*
4541 * Helper function for rcu_init() that initializes the rcu_state structure.
4542 */
4543static void __init rcu_init_one(void)
4544{
4545	static const char * const buf[] = RCU_NODE_NAME_INIT;
4546	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4547	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4548	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4549
4550	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4551	int cpustride = 1;
4552	int i;
4553	int j;
4554	struct rcu_node *rnp;
4555
4556	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4557
4558	/* Silence gcc 4.8 false positive about array index out of range. */
4559	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4560		panic("rcu_init_one: rcu_num_lvls out of range");
4561
4562	/* Initialize the level-tracking arrays. */
4563
4564	for (i = 1; i < rcu_num_lvls; i++)
4565		rcu_state.level[i] =
4566			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4567	rcu_init_levelspread(levelspread, num_rcu_lvl);
4568
4569	/* Initialize the elements themselves, starting from the leaves. */
4570
4571	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4572		cpustride *= levelspread[i];
4573		rnp = rcu_state.level[i];
4574		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4575			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4576			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4577						   &rcu_node_class[i], buf[i]);
4578			raw_spin_lock_init(&rnp->fqslock);
4579			lockdep_set_class_and_name(&rnp->fqslock,
4580						   &rcu_fqs_class[i], fqs[i]);
4581			rnp->gp_seq = rcu_state.gp_seq;
4582			rnp->gp_seq_needed = rcu_state.gp_seq;
4583			rnp->completedqs = rcu_state.gp_seq;
4584			rnp->qsmask = 0;
4585			rnp->qsmaskinit = 0;
4586			rnp->grplo = j * cpustride;
4587			rnp->grphi = (j + 1) * cpustride - 1;
4588			if (rnp->grphi >= nr_cpu_ids)
4589				rnp->grphi = nr_cpu_ids - 1;
4590			if (i == 0) {
4591				rnp->grpnum = 0;
4592				rnp->grpmask = 0;
4593				rnp->parent = NULL;
4594			} else {
4595				rnp->grpnum = j % levelspread[i - 1];
4596				rnp->grpmask = BIT(rnp->grpnum);
4597				rnp->parent = rcu_state.level[i - 1] +
4598					      j / levelspread[i - 1];
4599			}
4600			rnp->level = i;
4601			INIT_LIST_HEAD(&rnp->blkd_tasks);
4602			rcu_init_one_nocb(rnp);
4603			init_waitqueue_head(&rnp->exp_wq[0]);
4604			init_waitqueue_head(&rnp->exp_wq[1]);
4605			init_waitqueue_head(&rnp->exp_wq[2]);
4606			init_waitqueue_head(&rnp->exp_wq[3]);
4607			spin_lock_init(&rnp->exp_lock);
4608			mutex_init(&rnp->boost_kthread_mutex);
4609			raw_spin_lock_init(&rnp->exp_poll_lock);
4610			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4611			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4612		}
4613	}
4614
4615	init_swait_queue_head(&rcu_state.gp_wq);
4616	init_swait_queue_head(&rcu_state.expedited_wq);
4617	rnp = rcu_first_leaf_node();
4618	for_each_possible_cpu(i) {
4619		while (i > rnp->grphi)
4620			rnp++;
4621		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
 
 
4622		rcu_boot_init_percpu_data(i);
4623	}
4624}
4625
4626/*
4627 * Force priority from the kernel command-line into range.
4628 */
4629static void __init sanitize_kthread_prio(void)
4630{
4631	int kthread_prio_in = kthread_prio;
4632
4633	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4634	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4635		kthread_prio = 2;
4636	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4637		kthread_prio = 1;
4638	else if (kthread_prio < 0)
4639		kthread_prio = 0;
4640	else if (kthread_prio > 99)
4641		kthread_prio = 99;
4642
4643	if (kthread_prio != kthread_prio_in)
4644		pr_alert("%s: Limited prio to %d from %d\n",
4645			 __func__, kthread_prio, kthread_prio_in);
4646}
4647
4648/*
4649 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4650 * replace the definitions in tree.h because those are needed to size
4651 * the ->node array in the rcu_state structure.
4652 */
4653void rcu_init_geometry(void)
4654{
4655	ulong d;
4656	int i;
4657	static unsigned long old_nr_cpu_ids;
4658	int rcu_capacity[RCU_NUM_LVLS];
4659	static bool initialized;
4660
4661	if (initialized) {
4662		/*
4663		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4664		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4665		 */
4666		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4667		return;
4668	}
4669
4670	old_nr_cpu_ids = nr_cpu_ids;
4671	initialized = true;
4672
4673	/*
4674	 * Initialize any unspecified boot parameters.
4675	 * The default values of jiffies_till_first_fqs and
4676	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4677	 * value, which is a function of HZ, then adding one for each
4678	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4679	 */
4680	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4681	if (jiffies_till_first_fqs == ULONG_MAX)
4682		jiffies_till_first_fqs = d;
4683	if (jiffies_till_next_fqs == ULONG_MAX)
4684		jiffies_till_next_fqs = d;
4685	adjust_jiffies_till_sched_qs();
4686
4687	/* If the compile-time values are accurate, just leave. */
4688	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4689	    nr_cpu_ids == NR_CPUS)
4690		return;
4691	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4692		rcu_fanout_leaf, nr_cpu_ids);
4693
4694	/*
4695	 * The boot-time rcu_fanout_leaf parameter must be at least two
4696	 * and cannot exceed the number of bits in the rcu_node masks.
4697	 * Complain and fall back to the compile-time values if this
4698	 * limit is exceeded.
4699	 */
4700	if (rcu_fanout_leaf < 2 ||
4701	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4702		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4703		WARN_ON(1);
4704		return;
4705	}
4706
4707	/*
4708	 * Compute number of nodes that can be handled an rcu_node tree
4709	 * with the given number of levels.
4710	 */
4711	rcu_capacity[0] = rcu_fanout_leaf;
4712	for (i = 1; i < RCU_NUM_LVLS; i++)
4713		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4714
4715	/*
4716	 * The tree must be able to accommodate the configured number of CPUs.
4717	 * If this limit is exceeded, fall back to the compile-time values.
4718	 */
4719	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4720		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4721		WARN_ON(1);
4722		return;
4723	}
4724
4725	/* Calculate the number of levels in the tree. */
4726	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4727	}
4728	rcu_num_lvls = i + 1;
4729
4730	/* Calculate the number of rcu_nodes at each level of the tree. */
4731	for (i = 0; i < rcu_num_lvls; i++) {
4732		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4733		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4734	}
4735
4736	/* Calculate the total number of rcu_node structures. */
4737	rcu_num_nodes = 0;
4738	for (i = 0; i < rcu_num_lvls; i++)
4739		rcu_num_nodes += num_rcu_lvl[i];
4740}
4741
4742/*
4743 * Dump out the structure of the rcu_node combining tree associated
4744 * with the rcu_state structure.
4745 */
4746static void __init rcu_dump_rcu_node_tree(void)
4747{
4748	int level = 0;
4749	struct rcu_node *rnp;
4750
4751	pr_info("rcu_node tree layout dump\n");
4752	pr_info(" ");
4753	rcu_for_each_node_breadth_first(rnp) {
4754		if (rnp->level != level) {
4755			pr_cont("\n");
4756			pr_info(" ");
4757			level = rnp->level;
4758		}
4759		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4760	}
4761	pr_cont("\n");
4762}
4763
4764struct workqueue_struct *rcu_gp_wq;
4765
4766static void __init kfree_rcu_batch_init(void)
4767{
4768	int cpu;
4769	int i;
 
4770
4771	/* Clamp it to [0:100] seconds interval. */
4772	if (rcu_delay_page_cache_fill_msec < 0 ||
4773		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4774
4775		rcu_delay_page_cache_fill_msec =
4776			clamp(rcu_delay_page_cache_fill_msec, 0,
4777				(int) (100 * MSEC_PER_SEC));
4778
4779		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4780			rcu_delay_page_cache_fill_msec);
4781	}
4782
4783	for_each_possible_cpu(cpu) {
4784		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4785
4786		for (i = 0; i < KFREE_N_BATCHES; i++) {
4787			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4788			krcp->krw_arr[i].krcp = krcp;
 
 
 
4789		}
4790
 
 
 
4791		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4792		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4793		krcp->initialized = true;
4794	}
4795	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4796		pr_err("Failed to register kfree_rcu() shrinker!\n");
 
 
 
 
 
 
 
 
 
4797}
4798
4799void __init rcu_init(void)
4800{
4801	int cpu = smp_processor_id();
4802
4803	rcu_early_boot_tests();
4804
4805	kfree_rcu_batch_init();
4806	rcu_bootup_announce();
4807	sanitize_kthread_prio();
4808	rcu_init_geometry();
4809	rcu_init_one();
4810	if (dump_tree)
4811		rcu_dump_rcu_node_tree();
4812	if (use_softirq)
4813		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4814
4815	/*
4816	 * We don't need protection against CPU-hotplug here because
4817	 * this is called early in boot, before either interrupts
4818	 * or the scheduler are operational.
4819	 */
4820	pm_notifier(rcu_pm_notify, 0);
4821	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4822	rcutree_prepare_cpu(cpu);
4823	rcu_cpu_starting(cpu);
4824	rcutree_online_cpu(cpu);
4825
4826	/* Create workqueue for Tree SRCU and for expedited GPs. */
4827	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4828	WARN_ON(!rcu_gp_wq);
4829	rcu_alloc_par_gp_wq();
 
 
4830
4831	/* Fill in default value for rcutree.qovld boot parameter. */
4832	/* -After- the rcu_node ->lock fields are initialized! */
4833	if (qovld < 0)
4834		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4835	else
4836		qovld_calc = qovld;
4837
4838	// Kick-start any polled grace periods that started early.
4839	if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4840		(void)start_poll_synchronize_rcu_expedited();
 
 
 
4841}
4842
4843#include "tree_stall.h"
4844#include "tree_exp.h"
4845#include "tree_nocb.h"
4846#include "tree_plugin.h"
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/kmemleak.h>
  35#include <linux/moduleparam.h>
  36#include <linux/panic.h>
  37#include <linux/panic_notifier.h>
  38#include <linux/percpu.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/mutex.h>
  42#include <linux/time.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/wait.h>
  45#include <linux/kthread.h>
  46#include <uapi/linux/sched/types.h>
  47#include <linux/prefetch.h>
  48#include <linux/delay.h>
  49#include <linux/random.h>
  50#include <linux/trace_events.h>
  51#include <linux/suspend.h>
  52#include <linux/ftrace.h>
  53#include <linux/tick.h>
  54#include <linux/sysrq.h>
  55#include <linux/kprobes.h>
  56#include <linux/gfp.h>
  57#include <linux/oom.h>
  58#include <linux/smpboot.h>
  59#include <linux/jiffies.h>
  60#include <linux/slab.h>
  61#include <linux/sched/isolation.h>
  62#include <linux/sched/clock.h>
  63#include <linux/vmalloc.h>
  64#include <linux/mm.h>
  65#include <linux/kasan.h>
  66#include <linux/context_tracking.h>
  67#include "../time/tick-internal.h"
  68
  69#include "tree.h"
  70#include "rcu.h"
  71
  72#ifdef MODULE_PARAM_PREFIX
  73#undef MODULE_PARAM_PREFIX
  74#endif
  75#define MODULE_PARAM_PREFIX "rcutree."
  76
  77/* Data structures. */
  78static void rcu_sr_normal_gp_cleanup_work(struct work_struct *);
  79
  80static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  81	.gpwrap = true,
 
 
 
  82};
  83static struct rcu_state rcu_state = {
  84	.level = { &rcu_state.node[0] },
  85	.gp_state = RCU_GP_IDLE,
  86	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  87	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  88	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
  89	.name = RCU_NAME,
  90	.abbr = RCU_ABBR,
  91	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  92	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  93	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
  94	.srs_cleanup_work = __WORK_INITIALIZER(rcu_state.srs_cleanup_work,
  95		rcu_sr_normal_gp_cleanup_work),
  96	.srs_cleanups_pending = ATOMIC_INIT(0),
  97#ifdef CONFIG_RCU_NOCB_CPU
  98	.nocb_mutex = __MUTEX_INITIALIZER(rcu_state.nocb_mutex),
  99#endif
 100};
 101
 102/* Dump rcu_node combining tree at boot to verify correct setup. */
 103static bool dump_tree;
 104module_param(dump_tree, bool, 0444);
 105/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 106static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 107#ifndef CONFIG_PREEMPT_RT
 108module_param(use_softirq, bool, 0444);
 109#endif
 110/* Control rcu_node-tree auto-balancing at boot time. */
 111static bool rcu_fanout_exact;
 112module_param(rcu_fanout_exact, bool, 0444);
 113/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 114static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 115module_param(rcu_fanout_leaf, int, 0444);
 116int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 117/* Number of rcu_nodes at specified level. */
 118int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 119int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 120
 121/*
 122 * The rcu_scheduler_active variable is initialized to the value
 123 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 124 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 125 * RCU can assume that there is but one task, allowing RCU to (for example)
 126 * optimize synchronize_rcu() to a simple barrier().  When this variable
 127 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 128 * to detect real grace periods.  This variable is also used to suppress
 129 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 130 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 131 * is fully initialized, including all of its kthreads having been spawned.
 132 */
 133int rcu_scheduler_active __read_mostly;
 134EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 135
 136/*
 137 * The rcu_scheduler_fully_active variable transitions from zero to one
 138 * during the early_initcall() processing, which is after the scheduler
 139 * is capable of creating new tasks.  So RCU processing (for example,
 140 * creating tasks for RCU priority boosting) must be delayed until after
 141 * rcu_scheduler_fully_active transitions from zero to one.  We also
 142 * currently delay invocation of any RCU callbacks until after this point.
 143 *
 144 * It might later prove better for people registering RCU callbacks during
 145 * early boot to take responsibility for these callbacks, but one step at
 146 * a time.
 147 */
 148static int rcu_scheduler_fully_active __read_mostly;
 149
 150static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 151			      unsigned long gps, unsigned long flags);
 152static struct task_struct *rcu_boost_task(struct rcu_node *rnp);
 
 
 153static void invoke_rcu_core(void);
 154static void rcu_report_exp_rdp(struct rcu_data *rdp);
 155static void sync_sched_exp_online_cleanup(int cpu);
 156static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 157static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 158static bool rcu_rdp_cpu_online(struct rcu_data *rdp);
 159static bool rcu_init_invoked(void);
 160static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 161static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 162
 163/*
 164 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 165 * real-time priority(enabling/disabling) is controlled by
 166 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 167 */
 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 169module_param(kthread_prio, int, 0444);
 170
 171/* Delay in jiffies for grace-period initialization delays, debug only. */
 172
 173static int gp_preinit_delay;
 174module_param(gp_preinit_delay, int, 0444);
 175static int gp_init_delay;
 176module_param(gp_init_delay, int, 0444);
 177static int gp_cleanup_delay;
 178module_param(gp_cleanup_delay, int, 0444);
 179static int nohz_full_patience_delay;
 180module_param(nohz_full_patience_delay, int, 0444);
 181static int nohz_full_patience_delay_jiffies;
 182
 183// Add delay to rcu_read_unlock() for strict grace periods.
 184static int rcu_unlock_delay;
 185#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 186module_param(rcu_unlock_delay, int, 0444);
 187#endif
 188
 189/*
 190 * This rcu parameter is runtime-read-only. It reflects
 191 * a minimum allowed number of objects which can be cached
 192 * per-CPU. Object size is equal to one page. This value
 193 * can be changed at boot time.
 194 */
 195static int rcu_min_cached_objs = 5;
 196module_param(rcu_min_cached_objs, int, 0444);
 197
 198// A page shrinker can ask for pages to be freed to make them
 199// available for other parts of the system. This usually happens
 200// under low memory conditions, and in that case we should also
 201// defer page-cache filling for a short time period.
 202//
 203// The default value is 5 seconds, which is long enough to reduce
 204// interference with the shrinker while it asks other systems to
 205// drain their caches.
 206static int rcu_delay_page_cache_fill_msec = 5000;
 207module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 208
 209/* Retrieve RCU kthreads priority for rcutorture */
 210int rcu_get_gp_kthreads_prio(void)
 211{
 212	return kthread_prio;
 213}
 214EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 215
 216/*
 217 * Number of grace periods between delays, normalized by the duration of
 218 * the delay.  The longer the delay, the more the grace periods between
 219 * each delay.  The reason for this normalization is that it means that,
 220 * for non-zero delays, the overall slowdown of grace periods is constant
 221 * regardless of the duration of the delay.  This arrangement balances
 222 * the need for long delays to increase some race probabilities with the
 223 * need for fast grace periods to increase other race probabilities.
 224 */
 225#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 226
 227/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 228 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 229 * permit this function to be invoked without holding the root rcu_node
 230 * structure's ->lock, but of course results can be subject to change.
 231 */
 232static int rcu_gp_in_progress(void)
 233{
 234	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 235}
 236
 237/*
 238 * Return the number of callbacks queued on the specified CPU.
 239 * Handles both the nocbs and normal cases.
 240 */
 241static long rcu_get_n_cbs_cpu(int cpu)
 242{
 243	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 244
 245	if (rcu_segcblist_is_enabled(&rdp->cblist))
 246		return rcu_segcblist_n_cbs(&rdp->cblist);
 247	return 0;
 248}
 249
 250/**
 251 * rcu_softirq_qs - Provide a set of RCU quiescent states in softirq processing
 252 *
 253 * Mark a quiescent state for RCU, Tasks RCU, and Tasks Trace RCU.
 254 * This is a special-purpose function to be used in the softirq
 255 * infrastructure and perhaps the occasional long-running softirq
 256 * handler.
 257 *
 258 * Note that from RCU's viewpoint, a call to rcu_softirq_qs() is
 259 * equivalent to momentarily completely enabling preemption.  For
 260 * example, given this code::
 261 *
 262 *	local_bh_disable();
 263 *	do_something();
 264 *	rcu_softirq_qs();  // A
 265 *	do_something_else();
 266 *	local_bh_enable();  // B
 267 *
 268 * A call to synchronize_rcu() that began concurrently with the
 269 * call to do_something() would be guaranteed to wait only until
 270 * execution reached statement A.  Without that rcu_softirq_qs(),
 271 * that same synchronize_rcu() would instead be guaranteed to wait
 272 * until execution reached statement B.
 273 */
 274void rcu_softirq_qs(void)
 275{
 276	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
 277			 lock_is_held(&rcu_lock_map) ||
 278			 lock_is_held(&rcu_sched_lock_map),
 279			 "Illegal rcu_softirq_qs() in RCU read-side critical section");
 280	rcu_qs();
 281	rcu_preempt_deferred_qs(current);
 282	rcu_tasks_qs(current, false);
 283}
 284
 285/*
 286 * Reset the current CPU's RCU_WATCHING counter to indicate that the
 287 * newly onlined CPU is no longer in an extended quiescent state.
 288 * This will either leave the counter unchanged, or increment it
 289 * to the next non-quiescent value.
 290 *
 291 * The non-atomic test/increment sequence works because the upper bits
 292 * of the ->state variable are manipulated only by the corresponding CPU,
 293 * or when the corresponding CPU is offline.
 294 */
 295static void rcu_watching_online(void)
 296{
 297	if (ct_rcu_watching() & CT_RCU_WATCHING)
 298		return;
 299	ct_state_inc(CT_RCU_WATCHING);
 300}
 301
 302/*
 303 * Return true if the snapshot returned from ct_rcu_watching()
 
 
 
 
 
 
 
 
 
 
 304 * indicates that RCU is in an extended quiescent state.
 305 */
 306static bool rcu_watching_snap_in_eqs(int snap)
 307{
 308	return !(snap & CT_RCU_WATCHING);
 309}
 310
 311/**
 312 * rcu_watching_snap_stopped_since() - Has RCU stopped watching a given CPU
 313 * since the specified @snap?
 314 *
 315 * @rdp: The rcu_data corresponding to the CPU for which to check EQS.
 316 * @snap: rcu_watching snapshot taken when the CPU wasn't in an EQS.
 317 *
 318 * Returns true if the CPU corresponding to @rdp has spent some time in an
 319 * extended quiescent state since @snap. Note that this doesn't check if it
 320 * /still/ is in an EQS, just that it went through one since @snap.
 321 *
 322 * This is meant to be used in a loop waiting for a CPU to go through an EQS.
 323 */
 324static bool rcu_watching_snap_stopped_since(struct rcu_data *rdp, int snap)
 325{
 326	/*
 327	 * The first failing snapshot is already ordered against the accesses
 328	 * performed by the remote CPU after it exits idle.
 329	 *
 330	 * The second snapshot therefore only needs to order against accesses
 331	 * performed by the remote CPU prior to entering idle and therefore can
 332	 * rely solely on acquire semantics.
 333	 */
 334	if (WARN_ON_ONCE(rcu_watching_snap_in_eqs(snap)))
 335		return true;
 336
 337	return snap != ct_rcu_watching_cpu_acquire(rdp->cpu);
 338}
 339
 340/*
 341 * Return true if the referenced integer is zero while the specified
 342 * CPU remains within a single extended quiescent state.
 343 */
 344bool rcu_watching_zero_in_eqs(int cpu, int *vp)
 345{
 346	int snap;
 347
 348	// If not quiescent, force back to earlier extended quiescent state.
 349	snap = ct_rcu_watching_cpu(cpu) & ~CT_RCU_WATCHING;
 350	smp_rmb(); // Order CT state and *vp reads.
 351	if (READ_ONCE(*vp))
 352		return false;  // Non-zero, so report failure;
 353	smp_rmb(); // Order *vp read and CT state re-read.
 354
 355	// If still in the same extended quiescent state, we are good!
 356	return snap == ct_rcu_watching_cpu(cpu);
 357}
 358
 359/*
 360 * Let the RCU core know that this CPU has gone through the scheduler,
 361 * which is a quiescent state.  This is called when the need for a
 362 * quiescent state is urgent, so we burn an atomic operation and full
 363 * memory barriers to let the RCU core know about it, regardless of what
 364 * this CPU might (or might not) do in the near future.
 365 *
 366 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 367 *
 368 * The caller must have disabled interrupts and must not be idle.
 369 */
 370notrace void rcu_momentary_eqs(void)
 371{
 372	int seq;
 373
 374	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 375	seq = ct_state_inc(2 * CT_RCU_WATCHING);
 376	/* It is illegal to call this from idle state. */
 377	WARN_ON_ONCE(!(seq & CT_RCU_WATCHING));
 378	rcu_preempt_deferred_qs(current);
 379}
 380EXPORT_SYMBOL_GPL(rcu_momentary_eqs);
 381
 382/**
 383 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 384 *
 385 * If the current CPU is idle and running at a first-level (not nested)
 386 * interrupt, or directly, from idle, return true.
 387 *
 388 * The caller must have at least disabled IRQs.
 389 */
 390static int rcu_is_cpu_rrupt_from_idle(void)
 391{
 392	long nesting;
 393
 394	/*
 395	 * Usually called from the tick; but also used from smp_function_call()
 396	 * for expedited grace periods. This latter can result in running from
 397	 * the idle task, instead of an actual IPI.
 398	 */
 399	lockdep_assert_irqs_disabled();
 400
 401	/* Check for counter underflows */
 402	RCU_LOCKDEP_WARN(ct_nesting() < 0,
 403			 "RCU nesting counter underflow!");
 404	RCU_LOCKDEP_WARN(ct_nmi_nesting() <= 0,
 405			 "RCU nmi_nesting counter underflow/zero!");
 406
 407	/* Are we at first interrupt nesting level? */
 408	nesting = ct_nmi_nesting();
 409	if (nesting > 1)
 410		return false;
 411
 412	/*
 413	 * If we're not in an interrupt, we must be in the idle task!
 414	 */
 415	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 416
 417	/* Does CPU appear to be idle from an RCU standpoint? */
 418	return ct_nesting() == 0;
 419}
 420
 421#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 422				// Maximum callbacks per rcu_do_batch ...
 423#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 424static long blimit = DEFAULT_RCU_BLIMIT;
 425#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 426static long qhimark = DEFAULT_RCU_QHIMARK;
 427#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 428static long qlowmark = DEFAULT_RCU_QLOMARK;
 429#define DEFAULT_RCU_QOVLD_MULT 2
 430#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 431static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 432static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 433
 434module_param(blimit, long, 0444);
 435module_param(qhimark, long, 0444);
 436module_param(qlowmark, long, 0444);
 437module_param(qovld, long, 0444);
 438
 439static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 440static ulong jiffies_till_next_fqs = ULONG_MAX;
 441static bool rcu_kick_kthreads;
 442static int rcu_divisor = 7;
 443module_param(rcu_divisor, int, 0644);
 444
 445/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 446static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 447module_param(rcu_resched_ns, long, 0644);
 448
 449/*
 450 * How long the grace period must be before we start recruiting
 451 * quiescent-state help from rcu_note_context_switch().
 452 */
 453static ulong jiffies_till_sched_qs = ULONG_MAX;
 454module_param(jiffies_till_sched_qs, ulong, 0444);
 455static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 456module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 457
 458/*
 459 * Make sure that we give the grace-period kthread time to detect any
 460 * idle CPUs before taking active measures to force quiescent states.
 461 * However, don't go below 100 milliseconds, adjusted upwards for really
 462 * large systems.
 463 */
 464static void adjust_jiffies_till_sched_qs(void)
 465{
 466	unsigned long j;
 467
 468	/* If jiffies_till_sched_qs was specified, respect the request. */
 469	if (jiffies_till_sched_qs != ULONG_MAX) {
 470		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 471		return;
 472	}
 473	/* Otherwise, set to third fqs scan, but bound below on large system. */
 474	j = READ_ONCE(jiffies_till_first_fqs) +
 475		      2 * READ_ONCE(jiffies_till_next_fqs);
 476	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 477		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 478	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 479	WRITE_ONCE(jiffies_to_sched_qs, j);
 480}
 481
 482static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 483{
 484	ulong j;
 485	int ret = kstrtoul(val, 0, &j);
 486
 487	if (!ret) {
 488		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 489		adjust_jiffies_till_sched_qs();
 490	}
 491	return ret;
 492}
 493
 494static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 495{
 496	ulong j;
 497	int ret = kstrtoul(val, 0, &j);
 498
 499	if (!ret) {
 500		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 501		adjust_jiffies_till_sched_qs();
 502	}
 503	return ret;
 504}
 505
 506static const struct kernel_param_ops first_fqs_jiffies_ops = {
 507	.set = param_set_first_fqs_jiffies,
 508	.get = param_get_ulong,
 509};
 510
 511static const struct kernel_param_ops next_fqs_jiffies_ops = {
 512	.set = param_set_next_fqs_jiffies,
 513	.get = param_get_ulong,
 514};
 515
 516module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 517module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 518module_param(rcu_kick_kthreads, bool, 0644);
 519
 520static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 521static int rcu_pending(int user);
 522
 523/*
 524 * Return the number of RCU GPs completed thus far for debug & stats.
 525 */
 526unsigned long rcu_get_gp_seq(void)
 527{
 528	return READ_ONCE(rcu_state.gp_seq);
 529}
 530EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 531
 532/*
 533 * Return the number of RCU expedited batches completed thus far for
 534 * debug & stats.  Odd numbers mean that a batch is in progress, even
 535 * numbers mean idle.  The value returned will thus be roughly double
 536 * the cumulative batches since boot.
 537 */
 538unsigned long rcu_exp_batches_completed(void)
 539{
 540	return rcu_state.expedited_sequence;
 541}
 542EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 543
 544/*
 545 * Return the root node of the rcu_state structure.
 546 */
 547static struct rcu_node *rcu_get_root(void)
 548{
 549	return &rcu_state.node[0];
 550}
 551
 552/*
 553 * Send along grace-period-related data for rcutorture diagnostics.
 554 */
 555void rcutorture_get_gp_data(int *flags, unsigned long *gp_seq)
 
 556{
 557	*flags = READ_ONCE(rcu_state.gp_flags);
 558	*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 
 
 
 
 
 
 559}
 560EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 561
 562#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 563/*
 564 * An empty function that will trigger a reschedule on
 565 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 566 */
 567static void late_wakeup_func(struct irq_work *work)
 568{
 569}
 570
 571static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 572	IRQ_WORK_INIT(late_wakeup_func);
 573
 574/*
 575 * If either:
 576 *
 577 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 578 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 579 *
 580 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 581 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 582 * get re-enabled again.
 583 */
 584noinstr void rcu_irq_work_resched(void)
 585{
 586	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 587
 588	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 589		return;
 590
 591	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 592		return;
 593
 594	instrumentation_begin();
 595	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 596		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 597	}
 598	instrumentation_end();
 599}
 600#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 601
 602#ifdef CONFIG_PROVE_RCU
 603/**
 604 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 605 */
 606void rcu_irq_exit_check_preempt(void)
 607{
 608	lockdep_assert_irqs_disabled();
 609
 610	RCU_LOCKDEP_WARN(ct_nesting() <= 0,
 611			 "RCU nesting counter underflow/zero!");
 612	RCU_LOCKDEP_WARN(ct_nmi_nesting() !=
 613			 CT_NESTING_IRQ_NONIDLE,
 614			 "Bad RCU  nmi_nesting counter\n");
 615	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
 616			 "RCU in extended quiescent state!");
 617}
 618#endif /* #ifdef CONFIG_PROVE_RCU */
 619
 620#ifdef CONFIG_NO_HZ_FULL
 621/**
 622 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 623 *
 624 * The scheduler tick is not normally enabled when CPUs enter the kernel
 625 * from nohz_full userspace execution.  After all, nohz_full userspace
 626 * execution is an RCU quiescent state and the time executing in the kernel
 627 * is quite short.  Except of course when it isn't.  And it is not hard to
 628 * cause a large system to spend tens of seconds or even minutes looping
 629 * in the kernel, which can cause a number of problems, include RCU CPU
 630 * stall warnings.
 631 *
 632 * Therefore, if a nohz_full CPU fails to report a quiescent state
 633 * in a timely manner, the RCU grace-period kthread sets that CPU's
 634 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 635 * exception will invoke this function, which will turn on the scheduler
 636 * tick, which will enable RCU to detect that CPU's quiescent states,
 637 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 638 * The tick will be disabled once a quiescent state is reported for
 639 * this CPU.
 640 *
 641 * Of course, in carefully tuned systems, there might never be an
 642 * interrupt or exception.  In that case, the RCU grace-period kthread
 643 * will eventually cause one to happen.  However, in less carefully
 644 * controlled environments, this function allows RCU to get what it
 645 * needs without creating otherwise useless interruptions.
 646 */
 647void __rcu_irq_enter_check_tick(void)
 648{
 649	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 650
 651	// If we're here from NMI there's nothing to do.
 652	if (in_nmi())
 653		return;
 654
 655	RCU_LOCKDEP_WARN(!rcu_is_watching_curr_cpu(),
 656			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 657
 658	if (!tick_nohz_full_cpu(rdp->cpu) ||
 659	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 660	    READ_ONCE(rdp->rcu_forced_tick)) {
 661		// RCU doesn't need nohz_full help from this CPU, or it is
 662		// already getting that help.
 663		return;
 664	}
 665
 666	// We get here only when not in an extended quiescent state and
 667	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 668	// already watching and (2) The fact that we are in an interrupt
 669	// handler and that the rcu_node lock is an irq-disabled lock
 670	// prevents self-deadlock.  So we can safely recheck under the lock.
 671	// Note that the nohz_full state currently cannot change.
 672	raw_spin_lock_rcu_node(rdp->mynode);
 673	if (READ_ONCE(rdp->rcu_urgent_qs) && !rdp->rcu_forced_tick) {
 674		// A nohz_full CPU is in the kernel and RCU needs a
 675		// quiescent state.  Turn on the tick!
 676		WRITE_ONCE(rdp->rcu_forced_tick, true);
 677		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 678	}
 679	raw_spin_unlock_rcu_node(rdp->mynode);
 680}
 681NOKPROBE_SYMBOL(__rcu_irq_enter_check_tick);
 682#endif /* CONFIG_NO_HZ_FULL */
 683
 684/*
 685 * Check to see if any future non-offloaded RCU-related work will need
 686 * to be done by the current CPU, even if none need be done immediately,
 687 * returning 1 if so.  This function is part of the RCU implementation;
 688 * it is -not- an exported member of the RCU API.  This is used by
 689 * the idle-entry code to figure out whether it is safe to disable the
 690 * scheduler-clock interrupt.
 691 *
 692 * Just check whether or not this CPU has non-offloaded RCU callbacks
 693 * queued.
 694 */
 695int rcu_needs_cpu(void)
 696{
 697	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 698		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 699}
 700
 701/*
 702 * If any sort of urgency was applied to the current CPU (for example,
 703 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 704 * to get to a quiescent state, disable it.
 705 */
 706static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 707{
 708	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 709	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 710	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 711	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 712		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 713		WRITE_ONCE(rdp->rcu_forced_tick, false);
 714	}
 715}
 716
 717/**
 718 * rcu_is_watching - RCU read-side critical sections permitted on current CPU?
 719 *
 720 * Return @true if RCU is watching the running CPU and @false otherwise.
 721 * An @true return means that this CPU can safely enter RCU read-side
 722 * critical sections.
 723 *
 724 * Although calls to rcu_is_watching() from most parts of the kernel
 725 * will return @true, there are important exceptions.  For example, if the
 726 * current CPU is deep within its idle loop, in kernel entry/exit code,
 727 * or offline, rcu_is_watching() will return @false.
 728 *
 729 * Make notrace because it can be called by the internal functions of
 730 * ftrace, and making this notrace removes unnecessary recursion calls.
 731 */
 732notrace bool rcu_is_watching(void)
 733{
 734	bool ret;
 735
 736	preempt_disable_notrace();
 737	ret = rcu_is_watching_curr_cpu();
 738	preempt_enable_notrace();
 739	return ret;
 740}
 741EXPORT_SYMBOL_GPL(rcu_is_watching);
 742
 743/*
 744 * If a holdout task is actually running, request an urgent quiescent
 745 * state from its CPU.  This is unsynchronized, so migrations can cause
 746 * the request to go to the wrong CPU.  Which is OK, all that will happen
 747 * is that the CPU's next context switch will be a bit slower and next
 748 * time around this task will generate another request.
 749 */
 750void rcu_request_urgent_qs_task(struct task_struct *t)
 751{
 752	int cpu;
 753
 754	barrier();
 755	cpu = task_cpu(t);
 756	if (!task_curr(t))
 757		return; /* This task is not running on that CPU. */
 758	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 759}
 760
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 761/*
 762 * When trying to report a quiescent state on behalf of some other CPU,
 763 * it is our responsibility to check for and handle potential overflow
 764 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 765 * After all, the CPU might be in deep idle state, and thus executing no
 766 * code whatsoever.
 767 */
 768static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 769{
 770	raw_lockdep_assert_held_rcu_node(rnp);
 771	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 772			 rnp->gp_seq))
 773		WRITE_ONCE(rdp->gpwrap, true);
 774	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 775		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 776}
 777
 778/*
 779 * Snapshot the specified CPU's RCU_WATCHING counter so that we can later
 780 * credit them with an implicit quiescent state.  Return 1 if this CPU
 781 * is in dynticks idle mode, which is an extended quiescent state.
 782 */
 783static int rcu_watching_snap_save(struct rcu_data *rdp)
 784{
 785	/*
 786	 * Full ordering between remote CPU's post idle accesses and updater's
 787	 * accesses prior to current GP (and also the started GP sequence number)
 788	 * is enforced by rcu_seq_start() implicit barrier and even further by
 789	 * smp_mb__after_unlock_lock() barriers chained all the way throughout the
 790	 * rnp locking tree since rcu_gp_init() and up to the current leaf rnp
 791	 * locking.
 792	 *
 793	 * Ordering between remote CPU's pre idle accesses and post grace period
 794	 * updater's accesses is enforced by the below acquire semantic.
 795	 */
 796	rdp->watching_snap = ct_rcu_watching_cpu_acquire(rdp->cpu);
 797	if (rcu_watching_snap_in_eqs(rdp->watching_snap)) {
 798		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 799		rcu_gpnum_ovf(rdp->mynode, rdp);
 800		return 1;
 801	}
 802	return 0;
 803}
 804
 805/*
 806 * Returns positive if the specified CPU has passed through a quiescent state
 807 * by virtue of being in or having passed through an dynticks idle state since
 808 * the last call to rcu_watching_snap_save() for this same CPU, or by
 809 * virtue of having been offline.
 810 *
 811 * Returns negative if the specified CPU needs a force resched.
 812 *
 813 * Returns zero otherwise.
 814 */
 815static int rcu_watching_snap_recheck(struct rcu_data *rdp)
 816{
 817	unsigned long jtsq;
 818	int ret = 0;
 819	struct rcu_node *rnp = rdp->mynode;
 820
 821	/*
 822	 * If the CPU passed through or entered a dynticks idle phase with
 823	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 824	 * already acknowledged the request to pass through a quiescent
 825	 * state.  Either way, that CPU cannot possibly be in an RCU
 826	 * read-side critical section that started before the beginning
 827	 * of the current RCU grace period.
 828	 */
 829	if (rcu_watching_snap_stopped_since(rdp, rdp->watching_snap)) {
 830		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 831		rcu_gpnum_ovf(rnp, rdp);
 832		return 1;
 833	}
 834
 835	/*
 836	 * Complain if a CPU that is considered to be offline from RCU's
 837	 * perspective has not yet reported a quiescent state.  After all,
 838	 * the offline CPU should have reported a quiescent state during
 839	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 840	 * if it ran concurrently with either the CPU going offline or the
 841	 * last task on a leaf rcu_node structure exiting its RCU read-side
 842	 * critical section while all CPUs corresponding to that structure
 843	 * are offline.  This added warning detects bugs in any of these
 844	 * code paths.
 845	 *
 846	 * The rcu_node structure's ->lock is held here, which excludes
 847	 * the relevant portions the CPU-hotplug code, the grace-period
 848	 * initialization code, and the rcu_read_unlock() code paths.
 849	 *
 850	 * For more detail, please refer to the "Hotplug CPU" section
 851	 * of RCU's Requirements documentation.
 852	 */
 853	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 854		struct rcu_node *rnp1;
 855
 856		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 857			__func__, rnp->grplo, rnp->grphi, rnp->level,
 858			(long)rnp->gp_seq, (long)rnp->completedqs);
 859		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 860			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 861				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 862		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 863			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 864			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_state,
 865			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_state);
 866		return 1; /* Break things loose after complaining. */
 867	}
 868
 869	/*
 870	 * A CPU running for an extended time within the kernel can
 871	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 872	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 873	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 874	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 875	 * variable are safe because the assignments are repeated if this
 876	 * CPU failed to pass through a quiescent state.  This code
 877	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 878	 * is set way high.
 879	 */
 880	jtsq = READ_ONCE(jiffies_to_sched_qs);
 881	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 882	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 883	     time_after(jiffies, rcu_state.jiffies_resched) ||
 884	     rcu_state.cbovld)) {
 885		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 886		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 887		smp_store_release(&rdp->rcu_urgent_qs, true);
 888	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 889		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 890	}
 891
 892	/*
 893	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 894	 * The above code handles this, but only for straight cond_resched().
 895	 * And some in-kernel loops check need_resched() before calling
 896	 * cond_resched(), which defeats the above code for CPUs that are
 897	 * running in-kernel with scheduling-clock interrupts disabled.
 898	 * So hit them over the head with the resched_cpu() hammer!
 899	 */
 900	if (tick_nohz_full_cpu(rdp->cpu) &&
 901	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 902	     rcu_state.cbovld)) {
 903		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 
 904		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 905		ret = -1;
 906	}
 907
 908	/*
 909	 * If more than halfway to RCU CPU stall-warning time, invoke
 910	 * resched_cpu() more frequently to try to loosen things up a bit.
 911	 * Also check to see if the CPU is getting hammered with interrupts,
 912	 * but only once per grace period, just to keep the IPIs down to
 913	 * a dull roar.
 914	 */
 915	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 916		if (time_after(jiffies,
 917			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 
 918			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 919			ret = -1;
 920		}
 921		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 922		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 923		    (rnp->ffmask & rdp->grpmask)) {
 924			rdp->rcu_iw_pending = true;
 925			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 926			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 927		}
 928
 929		if (rcu_cpu_stall_cputime && rdp->snap_record.gp_seq != rdp->gp_seq) {
 930			int cpu = rdp->cpu;
 931			struct rcu_snap_record *rsrp;
 932			struct kernel_cpustat *kcsp;
 933
 934			kcsp = &kcpustat_cpu(cpu);
 935
 936			rsrp = &rdp->snap_record;
 937			rsrp->cputime_irq     = kcpustat_field(kcsp, CPUTIME_IRQ, cpu);
 938			rsrp->cputime_softirq = kcpustat_field(kcsp, CPUTIME_SOFTIRQ, cpu);
 939			rsrp->cputime_system  = kcpustat_field(kcsp, CPUTIME_SYSTEM, cpu);
 940			rsrp->nr_hardirqs = kstat_cpu_irqs_sum(rdp->cpu);
 941			rsrp->nr_softirqs = kstat_cpu_softirqs_sum(rdp->cpu);
 942			rsrp->nr_csw = nr_context_switches_cpu(rdp->cpu);
 943			rsrp->jiffies = jiffies;
 944			rsrp->gp_seq = rdp->gp_seq;
 945		}
 946	}
 947
 948	return ret;
 949}
 950
 951/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 952static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 953			      unsigned long gp_seq_req, const char *s)
 954{
 955	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 956				      gp_seq_req, rnp->level,
 957				      rnp->grplo, rnp->grphi, s);
 958}
 959
 960/*
 961 * rcu_start_this_gp - Request the start of a particular grace period
 962 * @rnp_start: The leaf node of the CPU from which to start.
 963 * @rdp: The rcu_data corresponding to the CPU from which to start.
 964 * @gp_seq_req: The gp_seq of the grace period to start.
 965 *
 966 * Start the specified grace period, as needed to handle newly arrived
 967 * callbacks.  The required future grace periods are recorded in each
 968 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 969 * is reason to awaken the grace-period kthread.
 970 *
 971 * The caller must hold the specified rcu_node structure's ->lock, which
 972 * is why the caller is responsible for waking the grace-period kthread.
 973 *
 974 * Returns true if the GP thread needs to be awakened else false.
 975 */
 976static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 977			      unsigned long gp_seq_req)
 978{
 979	bool ret = false;
 980	struct rcu_node *rnp;
 981
 982	/*
 983	 * Use funnel locking to either acquire the root rcu_node
 984	 * structure's lock or bail out if the need for this grace period
 985	 * has already been recorded -- or if that grace period has in
 986	 * fact already started.  If there is already a grace period in
 987	 * progress in a non-leaf node, no recording is needed because the
 988	 * end of the grace period will scan the leaf rcu_node structures.
 989	 * Note that rnp_start->lock must not be released.
 990	 */
 991	raw_lockdep_assert_held_rcu_node(rnp_start);
 992	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 993	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 994		if (rnp != rnp_start)
 995			raw_spin_lock_rcu_node(rnp);
 996		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 997		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 998		    (rnp != rnp_start &&
 999		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
1000			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
1001					  TPS("Prestarted"));
1002			goto unlock_out;
1003		}
1004		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
1005		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
1006			/*
1007			 * We just marked the leaf or internal node, and a
1008			 * grace period is in progress, which means that
1009			 * rcu_gp_cleanup() will see the marking.  Bail to
1010			 * reduce contention.
1011			 */
1012			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
1013					  TPS("Startedleaf"));
1014			goto unlock_out;
1015		}
1016		if (rnp != rnp_start && rnp->parent != NULL)
1017			raw_spin_unlock_rcu_node(rnp);
1018		if (!rnp->parent)
1019			break;  /* At root, and perhaps also leaf. */
1020	}
1021
1022	/* If GP already in progress, just leave, otherwise start one. */
1023	if (rcu_gp_in_progress()) {
1024		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1025		goto unlock_out;
1026	}
1027	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1028	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1029	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1030	if (!READ_ONCE(rcu_state.gp_kthread)) {
1031		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
1032		goto unlock_out;
1033	}
1034	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1035	ret = true;  /* Caller must wake GP kthread. */
1036unlock_out:
1037	/* Push furthest requested GP to leaf node and rcu_data structure. */
1038	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1039		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1040		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1041	}
1042	if (rnp != rnp_start)
1043		raw_spin_unlock_rcu_node(rnp);
1044	return ret;
1045}
1046
1047/*
1048 * Clean up any old requests for the just-ended grace period.  Also return
1049 * whether any additional grace periods have been requested.
1050 */
1051static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1052{
1053	bool needmore;
1054	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1055
1056	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1057	if (!needmore)
1058		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1059	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1060			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1061	return needmore;
1062}
1063
1064static void swake_up_one_online_ipi(void *arg)
1065{
1066	struct swait_queue_head *wqh = arg;
1067
1068	swake_up_one(wqh);
1069}
1070
1071static void swake_up_one_online(struct swait_queue_head *wqh)
1072{
1073	int cpu = get_cpu();
1074
1075	/*
1076	 * If called from rcutree_report_cpu_starting(), wake up
1077	 * is dangerous that late in the CPU-down hotplug process. The
1078	 * scheduler might queue an ignored hrtimer. Defer the wake up
1079	 * to an online CPU instead.
1080	 */
1081	if (unlikely(cpu_is_offline(cpu))) {
1082		int target;
1083
1084		target = cpumask_any_and(housekeeping_cpumask(HK_TYPE_RCU),
1085					 cpu_online_mask);
1086
1087		smp_call_function_single(target, swake_up_one_online_ipi,
1088					 wqh, 0);
1089		put_cpu();
1090	} else {
1091		put_cpu();
1092		swake_up_one(wqh);
1093	}
1094}
1095
1096/*
1097 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1098 * interrupt or softirq handler, in which case we just might immediately
1099 * sleep upon return, resulting in a grace-period hang), and don't bother
1100 * awakening when there is nothing for the grace-period kthread to do
1101 * (as in several CPUs raced to awaken, we lost), and finally don't try
1102 * to awaken a kthread that has not yet been created.  If all those checks
1103 * are passed, track some debug information and awaken.
1104 *
1105 * So why do the self-wakeup when in an interrupt or softirq handler
1106 * in the grace-period kthread's context?  Because the kthread might have
1107 * been interrupted just as it was going to sleep, and just after the final
1108 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1109 * is required, and is therefore supplied.
1110 */
1111static void rcu_gp_kthread_wake(void)
1112{
1113	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1114
1115	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1116	    !READ_ONCE(rcu_state.gp_flags) || !t)
1117		return;
1118	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1119	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1120	swake_up_one_online(&rcu_state.gp_wq);
1121}
1122
1123/*
1124 * If there is room, assign a ->gp_seq number to any callbacks on this
1125 * CPU that have not already been assigned.  Also accelerate any callbacks
1126 * that were previously assigned a ->gp_seq number that has since proven
1127 * to be too conservative, which can happen if callbacks get assigned a
1128 * ->gp_seq number while RCU is idle, but with reference to a non-root
1129 * rcu_node structure.  This function is idempotent, so it does not hurt
1130 * to call it repeatedly.  Returns an flag saying that we should awaken
1131 * the RCU grace-period kthread.
1132 *
1133 * The caller must hold rnp->lock with interrupts disabled.
1134 */
1135static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1136{
1137	unsigned long gp_seq_req;
1138	bool ret = false;
1139
1140	rcu_lockdep_assert_cblist_protected(rdp);
1141	raw_lockdep_assert_held_rcu_node(rnp);
1142
1143	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1144	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1145		return false;
1146
1147	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1148
1149	/*
1150	 * Callbacks are often registered with incomplete grace-period
1151	 * information.  Something about the fact that getting exact
1152	 * information requires acquiring a global lock...  RCU therefore
1153	 * makes a conservative estimate of the grace period number at which
1154	 * a given callback will become ready to invoke.	The following
1155	 * code checks this estimate and improves it when possible, thus
1156	 * accelerating callback invocation to an earlier grace-period
1157	 * number.
1158	 */
1159	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1160	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1161		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1162
1163	/* Trace depending on how much we were able to accelerate. */
1164	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1165		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1166	else
1167		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1168
1169	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1170
1171	return ret;
1172}
1173
1174/*
1175 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1176 * rcu_node structure's ->lock be held.  It consults the cached value
1177 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1178 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1179 * while holding the leaf rcu_node structure's ->lock.
1180 */
1181static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1182					struct rcu_data *rdp)
1183{
1184	unsigned long c;
1185	bool needwake;
1186
1187	rcu_lockdep_assert_cblist_protected(rdp);
1188	c = rcu_seq_snap(&rcu_state.gp_seq);
1189	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1190		/* Old request still live, so mark recent callbacks. */
1191		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1192		return;
1193	}
1194	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1195	needwake = rcu_accelerate_cbs(rnp, rdp);
1196	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1197	if (needwake)
1198		rcu_gp_kthread_wake();
1199}
1200
1201/*
1202 * Move any callbacks whose grace period has completed to the
1203 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1204 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1205 * sublist.  This function is idempotent, so it does not hurt to
1206 * invoke it repeatedly.  As long as it is not invoked -too- often...
1207 * Returns true if the RCU grace-period kthread needs to be awakened.
1208 *
1209 * The caller must hold rnp->lock with interrupts disabled.
1210 */
1211static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
1212{
1213	rcu_lockdep_assert_cblist_protected(rdp);
1214	raw_lockdep_assert_held_rcu_node(rnp);
1215
1216	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1217	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1218		return false;
1219
1220	/*
1221	 * Find all callbacks whose ->gp_seq numbers indicate that they
1222	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1223	 */
1224	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1225
1226	/* Classify any remaining callbacks. */
1227	return rcu_accelerate_cbs(rnp, rdp);
1228}
1229
1230/*
1231 * Move and classify callbacks, but only if doing so won't require
1232 * that the RCU grace-period kthread be awakened.
1233 */
1234static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1235						  struct rcu_data *rdp)
1236{
1237	rcu_lockdep_assert_cblist_protected(rdp);
1238	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1239		return;
1240	// The grace period cannot end while we hold the rcu_node lock.
1241	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1242		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1243	raw_spin_unlock_rcu_node(rnp);
1244}
1245
1246/*
1247 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1248 * quiescent state.  This is intended to be invoked when the CPU notices
1249 * a new grace period.
1250 */
1251static void rcu_strict_gp_check_qs(void)
1252{
1253	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1254		rcu_read_lock();
1255		rcu_read_unlock();
1256	}
1257}
1258
1259/*
1260 * Update CPU-local rcu_data state to record the beginnings and ends of
1261 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1262 * structure corresponding to the current CPU, and must have irqs disabled.
1263 * Returns true if the grace-period kthread needs to be awakened.
1264 */
1265static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
1266{
1267	bool ret = false;
1268	bool need_qs;
1269	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1270
1271	raw_lockdep_assert_held_rcu_node(rnp);
1272
1273	if (rdp->gp_seq == rnp->gp_seq)
1274		return false; /* Nothing to do. */
1275
1276	/* Handle the ends of any preceding grace periods first. */
1277	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1278	    unlikely(READ_ONCE(rdp->gpwrap))) {
1279		if (!offloaded)
1280			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1281		rdp->core_needs_qs = false;
1282		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1283	} else {
1284		if (!offloaded)
1285			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1286		if (rdp->core_needs_qs)
1287			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
1288	}
1289
1290	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1291	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1292	    unlikely(READ_ONCE(rdp->gpwrap))) {
1293		/*
1294		 * If the current grace period is waiting for this CPU,
1295		 * set up to detect a quiescent state, otherwise don't
1296		 * go looking for one.
1297		 */
1298		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1299		need_qs = !!(rnp->qsmask & rdp->grpmask);
1300		rdp->cpu_no_qs.b.norm = need_qs;
1301		rdp->core_needs_qs = need_qs;
1302		zero_cpu_stall_ticks(rdp);
1303	}
1304	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1305	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1306		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1307	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1308		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1309	WRITE_ONCE(rdp->gpwrap, false);
1310	rcu_gpnum_ovf(rnp, rdp);
1311	return ret;
1312}
1313
1314static void note_gp_changes(struct rcu_data *rdp)
1315{
1316	unsigned long flags;
1317	bool needwake;
1318	struct rcu_node *rnp;
1319
1320	local_irq_save(flags);
1321	rnp = rdp->mynode;
1322	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
1323	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1324	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1325		local_irq_restore(flags);
1326		return;
1327	}
1328	needwake = __note_gp_changes(rnp, rdp);
1329	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1330	rcu_strict_gp_check_qs();
1331	if (needwake)
1332		rcu_gp_kthread_wake();
1333}
1334
1335static atomic_t *rcu_gp_slow_suppress;
1336
1337/* Register a counter to suppress debugging grace-period delays. */
1338void rcu_gp_slow_register(atomic_t *rgssp)
1339{
1340	WARN_ON_ONCE(rcu_gp_slow_suppress);
1341
1342	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1343}
1344EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1345
1346/* Unregister a counter, with NULL for not caring which. */
1347void rcu_gp_slow_unregister(atomic_t *rgssp)
1348{
1349	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress && rcu_gp_slow_suppress != NULL);
1350
1351	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1352}
1353EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1354
1355static bool rcu_gp_slow_is_suppressed(void)
1356{
1357	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1358
1359	return rgssp && atomic_read(rgssp);
1360}
1361
1362static void rcu_gp_slow(int delay)
1363{
1364	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1365	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1366		schedule_timeout_idle(delay);
1367}
1368
1369static unsigned long sleep_duration;
1370
1371/* Allow rcutorture to stall the grace-period kthread. */
1372void rcu_gp_set_torture_wait(int duration)
1373{
1374	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1375		WRITE_ONCE(sleep_duration, duration);
1376}
1377EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1378
1379/* Actually implement the aforementioned wait. */
1380static void rcu_gp_torture_wait(void)
1381{
1382	unsigned long duration;
1383
1384	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1385		return;
1386	duration = xchg(&sleep_duration, 0UL);
1387	if (duration > 0) {
1388		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1389		schedule_timeout_idle(duration);
1390		pr_alert("%s: Wait complete\n", __func__);
1391	}
1392}
1393
1394/*
1395 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1396 * processing.
1397 */
1398static void rcu_strict_gp_boundary(void *unused)
1399{
1400	invoke_rcu_core();
1401}
1402
 
 
 
 
 
 
 
1403// Make the polled API aware of the beginning of a grace period.
1404static void rcu_poll_gp_seq_start(unsigned long *snap)
1405{
1406	struct rcu_node *rnp = rcu_get_root();
1407
1408	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1409		raw_lockdep_assert_held_rcu_node(rnp);
1410
1411	// If RCU was idle, note beginning of GP.
1412	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1413		rcu_seq_start(&rcu_state.gp_seq_polled);
1414
1415	// Either way, record current state.
1416	*snap = rcu_state.gp_seq_polled;
1417}
1418
1419// Make the polled API aware of the end of a grace period.
1420static void rcu_poll_gp_seq_end(unsigned long *snap)
1421{
1422	struct rcu_node *rnp = rcu_get_root();
1423
1424	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1425		raw_lockdep_assert_held_rcu_node(rnp);
1426
1427	// If the previously noted GP is still in effect, record the
1428	// end of that GP.  Either way, zero counter to avoid counter-wrap
1429	// problems.
1430	if (*snap && *snap == rcu_state.gp_seq_polled) {
1431		rcu_seq_end(&rcu_state.gp_seq_polled);
1432		rcu_state.gp_seq_polled_snap = 0;
1433		rcu_state.gp_seq_polled_exp_snap = 0;
1434	} else {
1435		*snap = 0;
1436	}
1437}
1438
1439// Make the polled API aware of the beginning of a grace period, but
1440// where caller does not hold the root rcu_node structure's lock.
1441static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1442{
1443	unsigned long flags;
1444	struct rcu_node *rnp = rcu_get_root();
1445
1446	if (rcu_init_invoked()) {
1447		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1448			lockdep_assert_irqs_enabled();
1449		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1450	}
1451	rcu_poll_gp_seq_start(snap);
1452	if (rcu_init_invoked())
1453		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1454}
1455
1456// Make the polled API aware of the end of a grace period, but where
1457// caller does not hold the root rcu_node structure's lock.
1458static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1459{
1460	unsigned long flags;
1461	struct rcu_node *rnp = rcu_get_root();
1462
1463	if (rcu_init_invoked()) {
1464		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1465			lockdep_assert_irqs_enabled();
1466		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1467	}
1468	rcu_poll_gp_seq_end(snap);
1469	if (rcu_init_invoked())
1470		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1471}
1472
1473/*
1474 * There is a single llist, which is used for handling
1475 * synchronize_rcu() users' enqueued rcu_synchronize nodes.
1476 * Within this llist, there are two tail pointers:
1477 *
1478 * wait tail: Tracks the set of nodes, which need to
1479 *            wait for the current GP to complete.
1480 * done tail: Tracks the set of nodes, for which grace
1481 *            period has elapsed. These nodes processing
1482 *            will be done as part of the cleanup work
1483 *            execution by a kworker.
1484 *
1485 * At every grace period init, a new wait node is added
1486 * to the llist. This wait node is used as wait tail
1487 * for this new grace period. Given that there are a fixed
1488 * number of wait nodes, if all wait nodes are in use
1489 * (which can happen when kworker callback processing
1490 * is delayed) and additional grace period is requested.
1491 * This means, a system is slow in processing callbacks.
1492 *
1493 * TODO: If a slow processing is detected, a first node
1494 * in the llist should be used as a wait-tail for this
1495 * grace period, therefore users which should wait due
1496 * to a slow process are handled by _this_ grace period
1497 * and not next.
1498 *
1499 * Below is an illustration of how the done and wait
1500 * tail pointers move from one set of rcu_synchronize nodes
1501 * to the other, as grace periods start and finish and
1502 * nodes are processed by kworker.
1503 *
1504 *
1505 * a. Initial llist callbacks list:
1506 *
1507 * +----------+           +--------+          +-------+
1508 * |          |           |        |          |       |
1509 * |   head   |---------> |   cb2  |--------->| cb1   |
1510 * |          |           |        |          |       |
1511 * +----------+           +--------+          +-------+
1512 *
1513 *
1514 *
1515 * b. New GP1 Start:
1516 *
1517 *                    WAIT TAIL
1518 *                      |
1519 *                      |
1520 *                      v
1521 * +----------+     +--------+      +--------+        +-------+
1522 * |          |     |        |      |        |        |       |
1523 * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1524 * |          |     | head1  |      |        |        |       |
1525 * +----------+     +--------+      +--------+        +-------+
1526 *
1527 *
1528 *
1529 * c. GP completion:
1530 *
1531 * WAIT_TAIL == DONE_TAIL
1532 *
1533 *                   DONE TAIL
1534 *                     |
1535 *                     |
1536 *                     v
1537 * +----------+     +--------+      +--------+        +-------+
1538 * |          |     |        |      |        |        |       |
1539 * |   head   ------> wait   |------>   cb2  |------> |  cb1  |
1540 * |          |     | head1  |      |        |        |       |
1541 * +----------+     +--------+      +--------+        +-------+
1542 *
1543 *
1544 *
1545 * d. New callbacks and GP2 start:
1546 *
1547 *                    WAIT TAIL                          DONE TAIL
1548 *                      |                                 |
1549 *                      |                                 |
1550 *                      v                                 v
1551 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1552 * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1553 * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1554 * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1555 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1556 *
1557 *
1558 *
1559 * e. GP2 completion:
1560 *
1561 * WAIT_TAIL == DONE_TAIL
1562 *                   DONE TAIL
1563 *                      |
1564 *                      |
1565 *                      v
1566 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1567 * |          |     |      |    |      |    |      |    |     |    |     |    |     |
1568 * |   head   ------> wait |--->|  cb4 |--->| cb3  |--->|wait |--->| cb2 |--->| cb1 |
1569 * |          |     | head2|    |      |    |      |    |head1|    |     |    |     |
1570 * +----------+     +------+    +------+    +------+    +-----+    +-----+    +-----+
1571 *
1572 *
1573 * While the llist state transitions from d to e, a kworker
1574 * can start executing rcu_sr_normal_gp_cleanup_work() and
1575 * can observe either the old done tail (@c) or the new
1576 * done tail (@e). So, done tail updates and reads need
1577 * to use the rel-acq semantics. If the concurrent kworker
1578 * observes the old done tail, the newly queued work
1579 * execution will process the updated done tail. If the
1580 * concurrent kworker observes the new done tail, then
1581 * the newly queued work will skip processing the done
1582 * tail, as workqueue semantics guarantees that the new
1583 * work is executed only after the previous one completes.
1584 *
1585 * f. kworker callbacks processing complete:
1586 *
1587 *
1588 *                   DONE TAIL
1589 *                     |
1590 *                     |
1591 *                     v
1592 * +----------+     +--------+
1593 * |          |     |        |
1594 * |   head   ------> wait   |
1595 * |          |     | head2  |
1596 * +----------+     +--------+
1597 *
1598 */
1599static bool rcu_sr_is_wait_head(struct llist_node *node)
1600{
1601	return &(rcu_state.srs_wait_nodes)[0].node <= node &&
1602		node <= &(rcu_state.srs_wait_nodes)[SR_NORMAL_GP_WAIT_HEAD_MAX - 1].node;
1603}
1604
1605static struct llist_node *rcu_sr_get_wait_head(void)
1606{
1607	struct sr_wait_node *sr_wn;
1608	int i;
1609
1610	for (i = 0; i < SR_NORMAL_GP_WAIT_HEAD_MAX; i++) {
1611		sr_wn = &(rcu_state.srs_wait_nodes)[i];
1612
1613		if (!atomic_cmpxchg_acquire(&sr_wn->inuse, 0, 1))
1614			return &sr_wn->node;
1615	}
1616
1617	return NULL;
1618}
1619
1620static void rcu_sr_put_wait_head(struct llist_node *node)
1621{
1622	struct sr_wait_node *sr_wn = container_of(node, struct sr_wait_node, node);
1623
1624	atomic_set_release(&sr_wn->inuse, 0);
1625}
1626
1627/* Disabled by default. */
1628static int rcu_normal_wake_from_gp;
1629module_param(rcu_normal_wake_from_gp, int, 0644);
1630static struct workqueue_struct *sync_wq;
1631
1632static void rcu_sr_normal_complete(struct llist_node *node)
1633{
1634	struct rcu_synchronize *rs = container_of(
1635		(struct rcu_head *) node, struct rcu_synchronize, head);
1636	unsigned long oldstate = (unsigned long) rs->head.func;
1637
1638	WARN_ONCE(IS_ENABLED(CONFIG_PROVE_RCU) &&
1639		!poll_state_synchronize_rcu(oldstate),
1640		"A full grace period is not passed yet: %lu",
1641		rcu_seq_diff(get_state_synchronize_rcu(), oldstate));
1642
1643	/* Finally. */
1644	complete(&rs->completion);
1645}
1646
1647static void rcu_sr_normal_gp_cleanup_work(struct work_struct *work)
1648{
1649	struct llist_node *done, *rcu, *next, *head;
1650
1651	/*
1652	 * This work execution can potentially execute
1653	 * while a new done tail is being updated by
1654	 * grace period kthread in rcu_sr_normal_gp_cleanup().
1655	 * So, read and updates of done tail need to
1656	 * follow acq-rel semantics.
1657	 *
1658	 * Given that wq semantics guarantees that a single work
1659	 * cannot execute concurrently by multiple kworkers,
1660	 * the done tail list manipulations are protected here.
1661	 */
1662	done = smp_load_acquire(&rcu_state.srs_done_tail);
1663	if (WARN_ON_ONCE(!done))
1664		return;
1665
1666	WARN_ON_ONCE(!rcu_sr_is_wait_head(done));
1667	head = done->next;
1668	done->next = NULL;
1669
1670	/*
1671	 * The dummy node, which is pointed to by the
1672	 * done tail which is acq-read above is not removed
1673	 * here.  This allows lockless additions of new
1674	 * rcu_synchronize nodes in rcu_sr_normal_add_req(),
1675	 * while the cleanup work executes. The dummy
1676	 * nodes is removed, in next round of cleanup
1677	 * work execution.
1678	 */
1679	llist_for_each_safe(rcu, next, head) {
1680		if (!rcu_sr_is_wait_head(rcu)) {
1681			rcu_sr_normal_complete(rcu);
1682			continue;
1683		}
1684
1685		rcu_sr_put_wait_head(rcu);
1686	}
1687
1688	/* Order list manipulations with atomic access. */
1689	atomic_dec_return_release(&rcu_state.srs_cleanups_pending);
1690}
1691
1692/*
1693 * Helper function for rcu_gp_cleanup().
1694 */
1695static void rcu_sr_normal_gp_cleanup(void)
1696{
1697	struct llist_node *wait_tail, *next = NULL, *rcu = NULL;
1698	int done = 0;
1699
1700	wait_tail = rcu_state.srs_wait_tail;
1701	if (wait_tail == NULL)
1702		return;
1703
1704	rcu_state.srs_wait_tail = NULL;
1705	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1706	WARN_ON_ONCE(!rcu_sr_is_wait_head(wait_tail));
1707
1708	/*
1709	 * Process (a) and (d) cases. See an illustration.
1710	 */
1711	llist_for_each_safe(rcu, next, wait_tail->next) {
1712		if (rcu_sr_is_wait_head(rcu))
1713			break;
1714
1715		rcu_sr_normal_complete(rcu);
1716		// It can be last, update a next on this step.
1717		wait_tail->next = next;
1718
1719		if (++done == SR_MAX_USERS_WAKE_FROM_GP)
1720			break;
1721	}
1722
1723	/*
1724	 * Fast path, no more users to process except putting the second last
1725	 * wait head if no inflight-workers. If there are in-flight workers,
1726	 * they will remove the last wait head.
1727	 *
1728	 * Note that the ACQUIRE orders atomic access with list manipulation.
1729	 */
1730	if (wait_tail->next && wait_tail->next->next == NULL &&
1731	    rcu_sr_is_wait_head(wait_tail->next) &&
1732	    !atomic_read_acquire(&rcu_state.srs_cleanups_pending)) {
1733		rcu_sr_put_wait_head(wait_tail->next);
1734		wait_tail->next = NULL;
1735	}
1736
1737	/* Concurrent sr_normal_gp_cleanup work might observe this update. */
1738	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_done_tail);
1739	smp_store_release(&rcu_state.srs_done_tail, wait_tail);
1740
1741	/*
1742	 * We schedule a work in order to perform a final processing
1743	 * of outstanding users(if still left) and releasing wait-heads
1744	 * added by rcu_sr_normal_gp_init() call.
1745	 */
1746	if (wait_tail->next) {
1747		atomic_inc(&rcu_state.srs_cleanups_pending);
1748		if (!queue_work(sync_wq, &rcu_state.srs_cleanup_work))
1749			atomic_dec(&rcu_state.srs_cleanups_pending);
1750	}
1751}
1752
1753/*
1754 * Helper function for rcu_gp_init().
1755 */
1756static bool rcu_sr_normal_gp_init(void)
1757{
1758	struct llist_node *first;
1759	struct llist_node *wait_head;
1760	bool start_new_poll = false;
1761
1762	first = READ_ONCE(rcu_state.srs_next.first);
1763	if (!first || rcu_sr_is_wait_head(first))
1764		return start_new_poll;
1765
1766	wait_head = rcu_sr_get_wait_head();
1767	if (!wait_head) {
1768		// Kick another GP to retry.
1769		start_new_poll = true;
1770		return start_new_poll;
1771	}
1772
1773	/* Inject a wait-dummy-node. */
1774	llist_add(wait_head, &rcu_state.srs_next);
1775
1776	/*
1777	 * A waiting list of rcu_synchronize nodes should be empty on
1778	 * this step, since a GP-kthread, rcu_gp_init() -> gp_cleanup(),
1779	 * rolls it over. If not, it is a BUG, warn a user.
1780	 */
1781	WARN_ON_ONCE(rcu_state.srs_wait_tail != NULL);
1782	rcu_state.srs_wait_tail = wait_head;
1783	ASSERT_EXCLUSIVE_WRITER(rcu_state.srs_wait_tail);
1784
1785	return start_new_poll;
1786}
1787
1788static void rcu_sr_normal_add_req(struct rcu_synchronize *rs)
1789{
1790	llist_add((struct llist_node *) &rs->head, &rcu_state.srs_next);
1791}
1792
1793/*
1794 * Initialize a new grace period.  Return false if no grace period required.
1795 */
1796static noinline_for_stack bool rcu_gp_init(void)
1797{
1798	unsigned long flags;
1799	unsigned long oldmask;
1800	unsigned long mask;
1801	struct rcu_data *rdp;
1802	struct rcu_node *rnp = rcu_get_root();
1803	bool start_new_poll;
1804
1805	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1806	raw_spin_lock_irq_rcu_node(rnp);
1807	if (!rcu_state.gp_flags) {
1808		/* Spurious wakeup, tell caller to go back to sleep.  */
1809		raw_spin_unlock_irq_rcu_node(rnp);
1810		return false;
1811	}
1812	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1813
1814	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1815		/*
1816		 * Grace period already in progress, don't start another.
1817		 * Not supposed to be able to happen.
1818		 */
1819		raw_spin_unlock_irq_rcu_node(rnp);
1820		return false;
1821	}
1822
1823	/* Advance to a new grace period and initialize state. */
1824	record_gp_stall_check_time();
1825	/* Record GP times before starting GP, hence rcu_seq_start(). */
1826	rcu_seq_start(&rcu_state.gp_seq);
1827	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1828	start_new_poll = rcu_sr_normal_gp_init();
1829	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1830	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1831	raw_spin_unlock_irq_rcu_node(rnp);
1832
1833	/*
1834	 * The "start_new_poll" is set to true, only when this GP is not able
1835	 * to handle anything and there are outstanding users. It happens when
1836	 * the rcu_sr_normal_gp_init() function was not able to insert a dummy
1837	 * separator to the llist, because there were no left any dummy-nodes.
1838	 *
1839	 * Number of dummy-nodes is fixed, it could be that we are run out of
1840	 * them, if so we start a new pool request to repeat a try. It is rare
1841	 * and it means that a system is doing a slow processing of callbacks.
1842	 */
1843	if (start_new_poll)
1844		(void) start_poll_synchronize_rcu();
1845
1846	/*
1847	 * Apply per-leaf buffered online and offline operations to
1848	 * the rcu_node tree. Note that this new grace period need not
1849	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1850	 * offlining path, when combined with checks in this function,
1851	 * will handle CPUs that are currently going offline or that will
1852	 * go offline later.  Please also refer to "Hotplug CPU" section
1853	 * of RCU's Requirements documentation.
1854	 */
1855	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1856	/* Exclude CPU hotplug operations. */
1857	rcu_for_each_leaf_node(rnp) {
1858		local_irq_disable();
1859		arch_spin_lock(&rcu_state.ofl_lock);
1860		raw_spin_lock_rcu_node(rnp);
1861		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1862		    !rnp->wait_blkd_tasks) {
1863			/* Nothing to do on this leaf rcu_node structure. */
1864			raw_spin_unlock_rcu_node(rnp);
1865			arch_spin_unlock(&rcu_state.ofl_lock);
1866			local_irq_enable();
1867			continue;
1868		}
1869
1870		/* Record old state, apply changes to ->qsmaskinit field. */
1871		oldmask = rnp->qsmaskinit;
1872		rnp->qsmaskinit = rnp->qsmaskinitnext;
1873
1874		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1875		if (!oldmask != !rnp->qsmaskinit) {
1876			if (!oldmask) { /* First online CPU for rcu_node. */
1877				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1878					rcu_init_new_rnp(rnp);
1879			} else if (rcu_preempt_has_tasks(rnp)) {
1880				rnp->wait_blkd_tasks = true; /* blocked tasks */
1881			} else { /* Last offline CPU and can propagate. */
1882				rcu_cleanup_dead_rnp(rnp);
1883			}
1884		}
1885
1886		/*
1887		 * If all waited-on tasks from prior grace period are
1888		 * done, and if all this rcu_node structure's CPUs are
1889		 * still offline, propagate up the rcu_node tree and
1890		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1891		 * rcu_node structure's CPUs has since come back online,
1892		 * simply clear ->wait_blkd_tasks.
1893		 */
1894		if (rnp->wait_blkd_tasks &&
1895		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
1896			rnp->wait_blkd_tasks = false;
1897			if (!rnp->qsmaskinit)
1898				rcu_cleanup_dead_rnp(rnp);
1899		}
1900
1901		raw_spin_unlock_rcu_node(rnp);
1902		arch_spin_unlock(&rcu_state.ofl_lock);
1903		local_irq_enable();
1904	}
1905	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1906
1907	/*
1908	 * Set the quiescent-state-needed bits in all the rcu_node
1909	 * structures for all currently online CPUs in breadth-first
1910	 * order, starting from the root rcu_node structure, relying on the
1911	 * layout of the tree within the rcu_state.node[] array.  Note that
1912	 * other CPUs will access only the leaves of the hierarchy, thus
1913	 * seeing that no grace period is in progress, at least until the
1914	 * corresponding leaf node has been initialized.
1915	 *
1916	 * The grace period cannot complete until the initialization
1917	 * process finishes, because this kthread handles both.
1918	 */
1919	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1920	rcu_for_each_node_breadth_first(rnp) {
1921		rcu_gp_slow(gp_init_delay);
1922		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1923		rdp = this_cpu_ptr(&rcu_data);
1924		rcu_preempt_check_blocked_tasks(rnp);
1925		rnp->qsmask = rnp->qsmaskinit;
1926		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
1927		if (rnp == rdp->mynode)
1928			(void)__note_gp_changes(rnp, rdp);
1929		rcu_preempt_boost_start_gp(rnp);
1930		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1931					    rnp->level, rnp->grplo,
1932					    rnp->grphi, rnp->qsmask);
1933		/* Quiescent states for tasks on any now-offline CPUs. */
1934		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1935		rnp->rcu_gp_init_mask = mask;
1936		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1937			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1938		else
1939			raw_spin_unlock_irq_rcu_node(rnp);
1940		cond_resched_tasks_rcu_qs();
1941		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1942	}
1943
1944	// If strict, make all CPUs aware of new grace period.
1945	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1946		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1947
1948	return true;
1949}
1950
1951/*
1952 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1953 * time.
1954 */
1955static bool rcu_gp_fqs_check_wake(int *gfp)
1956{
1957	struct rcu_node *rnp = rcu_get_root();
1958
1959	// If under overload conditions, force an immediate FQS scan.
1960	if (*gfp & RCU_GP_FLAG_OVLD)
1961		return true;
1962
1963	// Someone like call_rcu() requested a force-quiescent-state scan.
1964	*gfp = READ_ONCE(rcu_state.gp_flags);
1965	if (*gfp & RCU_GP_FLAG_FQS)
1966		return true;
1967
1968	// The current grace period has completed.
1969	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1970		return true;
1971
1972	return false;
1973}
1974
1975/*
1976 * Do one round of quiescent-state forcing.
1977 */
1978static void rcu_gp_fqs(bool first_time)
1979{
1980	int nr_fqs = READ_ONCE(rcu_state.nr_fqs_jiffies_stall);
1981	struct rcu_node *rnp = rcu_get_root();
1982
1983	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1984	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1985
1986	WARN_ON_ONCE(nr_fqs > 3);
1987	/* Only countdown nr_fqs for stall purposes if jiffies moves. */
1988	if (nr_fqs) {
1989		if (nr_fqs == 1) {
1990			WRITE_ONCE(rcu_state.jiffies_stall,
1991				   jiffies + rcu_jiffies_till_stall_check());
1992		}
1993		WRITE_ONCE(rcu_state.nr_fqs_jiffies_stall, --nr_fqs);
1994	}
1995
1996	if (first_time) {
1997		/* Collect dyntick-idle snapshots. */
1998		force_qs_rnp(rcu_watching_snap_save);
1999	} else {
2000		/* Handle dyntick-idle and offline CPUs. */
2001		force_qs_rnp(rcu_watching_snap_recheck);
2002	}
2003	/* Clear flag to prevent immediate re-entry. */
2004	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2005		raw_spin_lock_irq_rcu_node(rnp);
2006		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & ~RCU_GP_FLAG_FQS);
 
2007		raw_spin_unlock_irq_rcu_node(rnp);
2008	}
2009}
2010
2011/*
2012 * Loop doing repeated quiescent-state forcing until the grace period ends.
2013 */
2014static noinline_for_stack void rcu_gp_fqs_loop(void)
2015{
2016	bool first_gp_fqs = true;
2017	int gf = 0;
2018	unsigned long j;
2019	int ret;
2020	struct rcu_node *rnp = rcu_get_root();
2021
2022	j = READ_ONCE(jiffies_till_first_fqs);
2023	if (rcu_state.cbovld)
2024		gf = RCU_GP_FLAG_OVLD;
2025	ret = 0;
2026	for (;;) {
2027		if (rcu_state.cbovld) {
2028			j = (j + 2) / 3;
2029			if (j <= 0)
2030				j = 1;
2031		}
2032		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
2033			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
2034			/*
2035			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
2036			 * update; required for stall checks.
2037			 */
2038			smp_wmb();
2039			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
2040				   jiffies + (j ? 3 * j : 2));
2041		}
2042		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2043				       TPS("fqswait"));
2044		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
2045		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
2046				 rcu_gp_fqs_check_wake(&gf), j);
2047		rcu_gp_torture_wait();
2048		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
2049		/* Locking provides needed memory barriers. */
2050		/*
2051		 * Exit the loop if the root rcu_node structure indicates that the grace period
2052		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
2053		 * is required only for single-node rcu_node trees because readers blocking
2054		 * the current grace period are queued only on leaf rcu_node structures.
2055		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
2056		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
2057		 * the corresponding leaf nodes have passed through their quiescent state.
2058		 */
2059		if (!READ_ONCE(rnp->qsmask) &&
2060		    !rcu_preempt_blocked_readers_cgp(rnp))
2061			break;
2062		/* If time for quiescent-state forcing, do it. */
2063		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
2064		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
2065			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2066					       TPS("fqsstart"));
2067			rcu_gp_fqs(first_gp_fqs);
2068			gf = 0;
2069			if (first_gp_fqs) {
2070				first_gp_fqs = false;
2071				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
2072			}
2073			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2074					       TPS("fqsend"));
2075			cond_resched_tasks_rcu_qs();
2076			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2077			ret = 0; /* Force full wait till next FQS. */
2078			j = READ_ONCE(jiffies_till_next_fqs);
2079		} else {
2080			/* Deal with stray signal. */
2081			cond_resched_tasks_rcu_qs();
2082			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2083			WARN_ON(signal_pending(current));
2084			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2085					       TPS("fqswaitsig"));
2086			ret = 1; /* Keep old FQS timing. */
2087			j = jiffies;
2088			if (time_after(jiffies, rcu_state.jiffies_force_qs))
2089				j = 1;
2090			else
2091				j = rcu_state.jiffies_force_qs - j;
2092			gf = 0;
2093		}
2094	}
2095}
2096
2097/*
2098 * Clean up after the old grace period.
2099 */
2100static noinline void rcu_gp_cleanup(void)
2101{
2102	int cpu;
2103	bool needgp = false;
2104	unsigned long gp_duration;
2105	unsigned long new_gp_seq;
2106	bool offloaded;
2107	struct rcu_data *rdp;
2108	struct rcu_node *rnp = rcu_get_root();
2109	struct swait_queue_head *sq;
2110
2111	WRITE_ONCE(rcu_state.gp_activity, jiffies);
2112	raw_spin_lock_irq_rcu_node(rnp);
2113	rcu_state.gp_end = jiffies;
2114	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
2115	if (gp_duration > rcu_state.gp_max)
2116		rcu_state.gp_max = gp_duration;
2117
2118	/*
2119	 * We know the grace period is complete, but to everyone else
2120	 * it appears to still be ongoing.  But it is also the case
2121	 * that to everyone else it looks like there is nothing that
2122	 * they can do to advance the grace period.  It is therefore
2123	 * safe for us to drop the lock in order to mark the grace
2124	 * period as completed in all of the rcu_node structures.
2125	 */
2126	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
2127	raw_spin_unlock_irq_rcu_node(rnp);
2128
2129	/*
2130	 * Propagate new ->gp_seq value to rcu_node structures so that
2131	 * other CPUs don't have to wait until the start of the next grace
2132	 * period to process their callbacks.  This also avoids some nasty
2133	 * RCU grace-period initialization races by forcing the end of
2134	 * the current grace period to be completely recorded in all of
2135	 * the rcu_node structures before the beginning of the next grace
2136	 * period is recorded in any of the rcu_node structures.
2137	 */
2138	new_gp_seq = rcu_state.gp_seq;
2139	rcu_seq_end(&new_gp_seq);
2140	rcu_for_each_node_breadth_first(rnp) {
2141		raw_spin_lock_irq_rcu_node(rnp);
2142		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
2143			dump_blkd_tasks(rnp, 10);
2144		WARN_ON_ONCE(rnp->qsmask);
2145		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
2146		if (!rnp->parent)
2147			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
2148		rdp = this_cpu_ptr(&rcu_data);
2149		if (rnp == rdp->mynode)
2150			needgp = __note_gp_changes(rnp, rdp) || needgp;
2151		/* smp_mb() provided by prior unlock-lock pair. */
2152		needgp = rcu_future_gp_cleanup(rnp) || needgp;
2153		// Reset overload indication for CPUs no longer overloaded
2154		if (rcu_is_leaf_node(rnp))
2155			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
2156				rdp = per_cpu_ptr(&rcu_data, cpu);
2157				check_cb_ovld_locked(rdp, rnp);
2158			}
2159		sq = rcu_nocb_gp_get(rnp);
2160		raw_spin_unlock_irq_rcu_node(rnp);
2161		rcu_nocb_gp_cleanup(sq);
2162		cond_resched_tasks_rcu_qs();
2163		WRITE_ONCE(rcu_state.gp_activity, jiffies);
2164		rcu_gp_slow(gp_cleanup_delay);
2165	}
2166	rnp = rcu_get_root();
2167	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
2168
2169	/* Declare grace period done, trace first to use old GP number. */
2170	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
2171	rcu_seq_end(&rcu_state.gp_seq);
2172	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
2173	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
2174	/* Check for GP requests since above loop. */
2175	rdp = this_cpu_ptr(&rcu_data);
2176	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
2177		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
2178				  TPS("CleanupMore"));
2179		needgp = true;
2180	}
2181	/* Advance CBs to reduce false positives below. */
2182	offloaded = rcu_rdp_is_offloaded(rdp);
2183	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
2184
2185		// We get here if a grace period was needed (“needgp”)
2186		// and the above call to rcu_accelerate_cbs() did not set
2187		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
2188		// the need for another grace period).  The purpose
2189		// of the “offloaded” check is to avoid invoking
2190		// rcu_accelerate_cbs() on an offloaded CPU because we do not
2191		// hold the ->nocb_lock needed to safely access an offloaded
2192		// ->cblist.  We do not want to acquire that lock because
2193		// it can be heavily contended during callback floods.
2194
2195		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
2196		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
2197		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
2198	} else {
2199
2200		// We get here either if there is no need for an
2201		// additional grace period or if rcu_accelerate_cbs() has
2202		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
2203		// So all we need to do is to clear all of the other
2204		// ->gp_flags bits.
2205
2206		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
2207	}
2208	raw_spin_unlock_irq_rcu_node(rnp);
2209
2210	// Make synchronize_rcu() users aware of the end of old grace period.
2211	rcu_sr_normal_gp_cleanup();
2212
2213	// If strict, make all CPUs aware of the end of the old grace period.
2214	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2215		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
2216}
2217
2218/*
2219 * Body of kthread that handles grace periods.
2220 */
2221static int __noreturn rcu_gp_kthread(void *unused)
2222{
2223	rcu_bind_gp_kthread();
2224	for (;;) {
2225
2226		/* Handle grace-period start. */
2227		for (;;) {
2228			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2229					       TPS("reqwait"));
2230			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
2231			swait_event_idle_exclusive(rcu_state.gp_wq,
2232					 READ_ONCE(rcu_state.gp_flags) &
2233					 RCU_GP_FLAG_INIT);
2234			rcu_gp_torture_wait();
2235			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
2236			/* Locking provides needed memory barrier. */
2237			if (rcu_gp_init())
2238				break;
2239			cond_resched_tasks_rcu_qs();
2240			WRITE_ONCE(rcu_state.gp_activity, jiffies);
2241			WARN_ON(signal_pending(current));
2242			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
2243					       TPS("reqwaitsig"));
2244		}
2245
2246		/* Handle quiescent-state forcing. */
2247		rcu_gp_fqs_loop();
2248
2249		/* Handle grace-period end. */
2250		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
2251		rcu_gp_cleanup();
2252		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
2253	}
2254}
2255
2256/*
2257 * Report a full set of quiescent states to the rcu_state data structure.
2258 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
2259 * another grace period is required.  Whether we wake the grace-period
2260 * kthread or it awakens itself for the next round of quiescent-state
2261 * forcing, that kthread will clean up after the just-completed grace
2262 * period.  Note that the caller must hold rnp->lock, which is released
2263 * before return.
2264 */
2265static void rcu_report_qs_rsp(unsigned long flags)
2266	__releases(rcu_get_root()->lock)
2267{
2268	raw_lockdep_assert_held_rcu_node(rcu_get_root());
2269	WARN_ON_ONCE(!rcu_gp_in_progress());
2270	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
 
2271	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
2272	rcu_gp_kthread_wake();
2273}
2274
2275/*
2276 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2277 * Allows quiescent states for a group of CPUs to be reported at one go
2278 * to the specified rcu_node structure, though all the CPUs in the group
2279 * must be represented by the same rcu_node structure (which need not be a
2280 * leaf rcu_node structure, though it often will be).  The gps parameter
2281 * is the grace-period snapshot, which means that the quiescent states
2282 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
2283 * must be held upon entry, and it is released before return.
2284 *
2285 * As a special case, if mask is zero, the bit-already-cleared check is
2286 * disabled.  This allows propagating quiescent state due to resumed tasks
2287 * during grace-period initialization.
2288 */
2289static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
2290			      unsigned long gps, unsigned long flags)
2291	__releases(rnp->lock)
2292{
2293	unsigned long oldmask = 0;
2294	struct rcu_node *rnp_c;
2295
2296	raw_lockdep_assert_held_rcu_node(rnp);
2297
2298	/* Walk up the rcu_node hierarchy. */
2299	for (;;) {
2300		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
2301
2302			/*
2303			 * Our bit has already been cleared, or the
2304			 * relevant grace period is already over, so done.
2305			 */
2306			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2307			return;
2308		}
2309		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2310		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
2311			     rcu_preempt_blocked_readers_cgp(rnp));
2312		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
2313		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
2314						 mask, rnp->qsmask, rnp->level,
2315						 rnp->grplo, rnp->grphi,
2316						 !!rnp->gp_tasks);
2317		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2318
2319			/* Other bits still set at this level, so done. */
2320			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2321			return;
2322		}
2323		rnp->completedqs = rnp->gp_seq;
2324		mask = rnp->grpmask;
2325		if (rnp->parent == NULL) {
2326
2327			/* No more levels.  Exit loop holding root lock. */
2328
2329			break;
2330		}
2331		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2332		rnp_c = rnp;
2333		rnp = rnp->parent;
2334		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2335		oldmask = READ_ONCE(rnp_c->qsmask);
2336	}
2337
2338	/*
2339	 * Get here if we are the last CPU to pass through a quiescent
2340	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2341	 * to clean up and start the next grace period if one is needed.
2342	 */
2343	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
2344}
2345
2346/*
2347 * Record a quiescent state for all tasks that were previously queued
2348 * on the specified rcu_node structure and that were blocking the current
2349 * RCU grace period.  The caller must hold the corresponding rnp->lock with
2350 * irqs disabled, and this lock is released upon return, but irqs remain
2351 * disabled.
2352 */
2353static void __maybe_unused
2354rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
2355	__releases(rnp->lock)
2356{
2357	unsigned long gps;
2358	unsigned long mask;
2359	struct rcu_node *rnp_p;
2360
2361	raw_lockdep_assert_held_rcu_node(rnp);
2362	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
2363	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
2364	    rnp->qsmask != 0) {
2365		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2366		return;  /* Still need more quiescent states! */
2367	}
2368
2369	rnp->completedqs = rnp->gp_seq;
2370	rnp_p = rnp->parent;
2371	if (rnp_p == NULL) {
2372		/*
2373		 * Only one rcu_node structure in the tree, so don't
2374		 * try to report up to its nonexistent parent!
2375		 */
2376		rcu_report_qs_rsp(flags);
2377		return;
2378	}
2379
2380	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
2381	gps = rnp->gp_seq;
2382	mask = rnp->grpmask;
2383	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2384	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2385	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
2386}
2387
2388/*
2389 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2390 * structure.  This must be called from the specified CPU.
2391 */
2392static void
2393rcu_report_qs_rdp(struct rcu_data *rdp)
2394{
2395	unsigned long flags;
2396	unsigned long mask;
 
 
2397	struct rcu_node *rnp;
2398
2399	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2400	rnp = rdp->mynode;
2401	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2402	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2403	    rdp->gpwrap) {
2404
2405		/*
2406		 * The grace period in which this quiescent state was
2407		 * recorded has ended, so don't report it upwards.
2408		 * We will instead need a new quiescent state that lies
2409		 * within the current grace period.
2410		 */
2411		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2412		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2413		return;
2414	}
2415	mask = rdp->grpmask;
2416	rdp->core_needs_qs = false;
2417	if ((rnp->qsmask & mask) == 0) {
2418		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2419	} else {
2420		/*
2421		 * This GP can't end until cpu checks in, so all of our
2422		 * callbacks can be processed during the next GP.
2423		 *
2424		 * NOCB kthreads have their own way to deal with that...
2425		 */
2426		if (!rcu_rdp_is_offloaded(rdp)) {
 
 
2427			/*
2428			 * The current GP has not yet ended, so it
2429			 * should not be possible for rcu_accelerate_cbs()
2430			 * to return true.  So complain, but don't awaken.
2431			 */
2432			WARN_ON_ONCE(rcu_accelerate_cbs(rnp, rdp));
2433		}
2434
2435		rcu_disable_urgency_upon_qs(rdp);
2436		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2437		/* ^^^ Released rnp->lock */
 
 
 
 
 
 
 
 
2438	}
2439}
2440
2441/*
2442 * Check to see if there is a new grace period of which this CPU
2443 * is not yet aware, and if so, set up local rcu_data state for it.
2444 * Otherwise, see if this CPU has just passed through its first
2445 * quiescent state for this grace period, and record that fact if so.
2446 */
2447static void
2448rcu_check_quiescent_state(struct rcu_data *rdp)
2449{
2450	/* Check for grace-period ends and beginnings. */
2451	note_gp_changes(rdp);
2452
2453	/*
2454	 * Does this CPU still need to do its part for current grace period?
2455	 * If no, return and let the other CPUs do their part as well.
2456	 */
2457	if (!rdp->core_needs_qs)
2458		return;
2459
2460	/*
2461	 * Was there a quiescent state since the beginning of the grace
2462	 * period? If no, then exit and wait for the next call.
2463	 */
2464	if (rdp->cpu_no_qs.b.norm)
2465		return;
2466
2467	/*
2468	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2469	 * judge of that).
2470	 */
2471	rcu_report_qs_rdp(rdp);
2472}
2473
2474/* Return true if callback-invocation time limit exceeded. */
2475static bool rcu_do_batch_check_time(long count, long tlimit,
2476				    bool jlimit_check, unsigned long jlimit)
2477{
2478	// Invoke local_clock() only once per 32 consecutive callbacks.
2479	return unlikely(tlimit) &&
2480	       (!likely(count & 31) ||
2481		(IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) &&
2482		 jlimit_check && time_after(jiffies, jlimit))) &&
2483	       local_clock() >= tlimit;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2484}
2485
2486/*
2487 * Invoke any RCU callbacks that have made it to the end of their grace
2488 * period.  Throttle as specified by rdp->blimit.
2489 */
2490static void rcu_do_batch(struct rcu_data *rdp)
2491{
2492	long bl;
2493	long count = 0;
2494	int div;
2495	bool __maybe_unused empty;
2496	unsigned long flags;
2497	unsigned long jlimit;
2498	bool jlimit_check = false;
2499	long pending;
2500	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2501	struct rcu_head *rhp;
2502	long tlimit = 0;
2503
2504	/* If no callbacks are ready, just return. */
2505	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2506		trace_rcu_batch_start(rcu_state.name,
2507				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2508		trace_rcu_batch_end(rcu_state.name, 0,
2509				    !rcu_segcblist_empty(&rdp->cblist),
2510				    need_resched(), is_idle_task(current),
2511				    rcu_is_callbacks_kthread(rdp));
2512		return;
2513	}
2514
2515	/*
2516	 * Extract the list of ready callbacks, disabling IRQs to prevent
2517	 * races with call_rcu() from interrupt handlers.  Leave the
2518	 * callback counts, as rcu_barrier() needs to be conservative.
2519	 *
2520	 * Callbacks execution is fully ordered against preceding grace period
2521	 * completion (materialized by rnp->gp_seq update) thanks to the
2522	 * smp_mb__after_unlock_lock() upon node locking required for callbacks
2523	 * advancing. In NOCB mode this ordering is then further relayed through
2524	 * the nocb locking that protects both callbacks advancing and extraction.
2525	 */
2526	rcu_nocb_lock_irqsave(rdp, flags);
2527	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2528	pending = rcu_segcblist_get_seglen(&rdp->cblist, RCU_DONE_TAIL);
2529	div = READ_ONCE(rcu_divisor);
2530	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2531	bl = max(rdp->blimit, pending >> div);
2532	if ((in_serving_softirq() || rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING) &&
2533	    (IS_ENABLED(CONFIG_RCU_DOUBLE_CHECK_CB_TIME) || unlikely(bl > 100))) {
2534		const long npj = NSEC_PER_SEC / HZ;
2535		long rrn = READ_ONCE(rcu_resched_ns);
2536
2537		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2538		tlimit = local_clock() + rrn;
2539		jlimit = jiffies + (rrn + npj + 1) / npj;
2540		jlimit_check = true;
2541	}
2542	trace_rcu_batch_start(rcu_state.name,
2543			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2544	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2545	if (rcu_rdp_is_offloaded(rdp))
2546		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2547
2548	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2549	rcu_nocb_unlock_irqrestore(rdp, flags);
2550
2551	/* Invoke callbacks. */
2552	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2553	rhp = rcu_cblist_dequeue(&rcl);
2554
2555	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2556		rcu_callback_t f;
2557
2558		count++;
2559		debug_rcu_head_unqueue(rhp);
2560
2561		rcu_lock_acquire(&rcu_callback_map);
2562		trace_rcu_invoke_callback(rcu_state.name, rhp);
2563
2564		f = rhp->func;
2565		debug_rcu_head_callback(rhp);
2566		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2567		f(rhp);
2568
2569		rcu_lock_release(&rcu_callback_map);
2570
2571		/*
2572		 * Stop only if limit reached and CPU has something to do.
2573		 */
2574		if (in_serving_softirq()) {
2575			if (count >= bl && (need_resched() || !is_idle_task(current)))
2576				break;
2577			/*
2578			 * Make sure we don't spend too much time here and deprive other
2579			 * softirq vectors of CPU cycles.
2580			 */
2581			if (rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit))
 
 
 
 
2582				break;
 
2583		} else {
2584			// In rcuc/rcuoc context, so no worries about
2585			// depriving other softirq vectors of CPU cycles.
2586			local_bh_enable();
2587			lockdep_assert_irqs_enabled();
2588			cond_resched_tasks_rcu_qs();
2589			lockdep_assert_irqs_enabled();
2590			local_bh_disable();
2591			// But rcuc kthreads can delay quiescent-state
2592			// reporting, so check time limits for them.
2593			if (rdp->rcu_cpu_kthread_status == RCU_KTHREAD_RUNNING &&
2594			    rcu_do_batch_check_time(count, tlimit, jlimit_check, jlimit)) {
2595				rdp->rcu_cpu_has_work = 1;
2596				break;
2597			}
2598		}
2599	}
2600
2601	rcu_nocb_lock_irqsave(rdp, flags);
2602	rdp->n_cbs_invoked += count;
2603	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2604			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2605
2606	/* Update counts and requeue any remaining callbacks. */
2607	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2608	rcu_segcblist_add_len(&rdp->cblist, -count);
2609
2610	/* Reinstate batch limit if we have worked down the excess. */
2611	count = rcu_segcblist_n_cbs(&rdp->cblist);
2612	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2613		rdp->blimit = blimit;
2614
2615	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2616	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2617		rdp->qlen_last_fqs_check = 0;
2618		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2619	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2620		rdp->qlen_last_fqs_check = count;
2621
2622	/*
2623	 * The following usually indicates a double call_rcu().  To track
2624	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2625	 */
2626	empty = rcu_segcblist_empty(&rdp->cblist);
2627	WARN_ON_ONCE(count == 0 && !empty);
2628	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2629		     count != 0 && empty);
2630	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2631	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2632
2633	rcu_nocb_unlock_irqrestore(rdp, flags);
2634
2635	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
2636}
2637
2638/*
2639 * This function is invoked from each scheduling-clock interrupt,
2640 * and checks to see if this CPU is in a non-context-switch quiescent
2641 * state, for example, user mode or idle loop.  It also schedules RCU
2642 * core processing.  If the current grace period has gone on too long,
2643 * it will ask the scheduler to manufacture a context switch for the sole
2644 * purpose of providing the needed quiescent state.
2645 */
2646void rcu_sched_clock_irq(int user)
2647{
2648	unsigned long j;
2649
2650	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2651		j = jiffies;
2652		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2653		__this_cpu_write(rcu_data.last_sched_clock, j);
2654	}
2655	trace_rcu_utilization(TPS("Start scheduler-tick"));
2656	lockdep_assert_irqs_disabled();
2657	raw_cpu_inc(rcu_data.ticks_this_gp);
2658	/* The load-acquire pairs with the store-release setting to true. */
2659	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2660		/* Idle and userspace execution already are quiescent states. */
2661		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2662			set_tsk_need_resched(current);
2663			set_preempt_need_resched();
2664		}
2665		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
2666	}
2667	rcu_flavor_sched_clock_irq(user);
2668	if (rcu_pending(user))
2669		invoke_rcu_core();
2670	if (user || rcu_is_cpu_rrupt_from_idle())
2671		rcu_note_voluntary_context_switch(current);
2672	lockdep_assert_irqs_disabled();
2673
2674	trace_rcu_utilization(TPS("End scheduler-tick"));
2675}
2676
2677/*
2678 * Scan the leaf rcu_node structures.  For each structure on which all
2679 * CPUs have reported a quiescent state and on which there are tasks
2680 * blocking the current grace period, initiate RCU priority boosting.
2681 * Otherwise, invoke the specified function to check dyntick state for
2682 * each CPU that has not yet reported a quiescent state.
2683 */
2684static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2685{
2686	int cpu;
2687	unsigned long flags;
 
 
2688	struct rcu_node *rnp;
2689
2690	rcu_state.cbovld = rcu_state.cbovldnext;
2691	rcu_state.cbovldnext = false;
2692	rcu_for_each_leaf_node(rnp) {
2693		unsigned long mask = 0;
2694		unsigned long rsmask = 0;
2695
2696		cond_resched_tasks_rcu_qs();
 
2697		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2698		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2699		if (rnp->qsmask == 0) {
2700			if (rcu_preempt_blocked_readers_cgp(rnp)) {
2701				/*
2702				 * No point in scanning bits because they
2703				 * are all zero.  But we might need to
2704				 * priority-boost blocked readers.
2705				 */
2706				rcu_initiate_boost(rnp, flags);
2707				/* rcu_initiate_boost() releases rnp->lock */
2708				continue;
2709			}
2710			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2711			continue;
2712		}
2713		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2714			struct rcu_data *rdp;
2715			int ret;
2716
2717			rdp = per_cpu_ptr(&rcu_data, cpu);
2718			ret = f(rdp);
2719			if (ret > 0) {
2720				mask |= rdp->grpmask;
2721				rcu_disable_urgency_upon_qs(rdp);
2722			}
2723			if (ret < 0)
2724				rsmask |= rdp->grpmask;
2725		}
2726		if (mask != 0) {
2727			/* Idle/offline CPUs, report (releases rnp->lock). */
2728			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2729		} else {
2730			/* Nothing to do here, so just drop the lock. */
2731			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2732		}
2733
2734		for_each_leaf_node_cpu_mask(rnp, cpu, rsmask)
2735			resched_cpu(cpu);
2736	}
2737}
2738
2739/*
2740 * Force quiescent states on reluctant CPUs, and also detect which
2741 * CPUs are in dyntick-idle mode.
2742 */
2743void rcu_force_quiescent_state(void)
2744{
2745	unsigned long flags;
2746	bool ret;
2747	struct rcu_node *rnp;
2748	struct rcu_node *rnp_old = NULL;
2749
2750	if (!rcu_gp_in_progress())
2751		return;
2752	/* Funnel through hierarchy to reduce memory contention. */
2753	rnp = raw_cpu_read(rcu_data.mynode);
2754	for (; rnp != NULL; rnp = rnp->parent) {
2755		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2756		       !raw_spin_trylock(&rnp->fqslock);
2757		if (rnp_old != NULL)
2758			raw_spin_unlock(&rnp_old->fqslock);
2759		if (ret)
2760			return;
2761		rnp_old = rnp;
2762	}
2763	/* rnp_old == rcu_get_root(), rnp == NULL. */
2764
2765	/* Reached the root of the rcu_node tree, acquire lock. */
2766	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2767	raw_spin_unlock(&rnp_old->fqslock);
2768	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2769		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2770		return;  /* Someone beat us to it. */
2771	}
2772	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_FQS);
 
2773	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2774	rcu_gp_kthread_wake();
2775}
2776EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2777
2778// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2779// grace periods.
2780static void strict_work_handler(struct work_struct *work)
2781{
2782	rcu_read_lock();
2783	rcu_read_unlock();
2784}
2785
2786/* Perform RCU core processing work for the current CPU.  */
2787static __latent_entropy void rcu_core(void)
2788{
2789	unsigned long flags;
2790	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2791	struct rcu_node *rnp = rdp->mynode;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2792
2793	if (cpu_is_offline(smp_processor_id()))
2794		return;
2795	trace_rcu_utilization(TPS("Start RCU core"));
2796	WARN_ON_ONCE(!rdp->beenonline);
2797
2798	/* Report any deferred quiescent states if preemption enabled. */
2799	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2800		rcu_preempt_deferred_qs(current);
2801	} else if (rcu_preempt_need_deferred_qs(current)) {
2802		set_tsk_need_resched(current);
2803		set_preempt_need_resched();
2804	}
2805
2806	/* Update RCU state based on any recent quiescent states. */
2807	rcu_check_quiescent_state(rdp);
2808
2809	/* No grace period and unregistered callbacks? */
2810	if (!rcu_gp_in_progress() &&
2811	    rcu_segcblist_is_enabled(&rdp->cblist) && !rcu_rdp_is_offloaded(rdp)) {
2812		local_irq_save(flags);
2813		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2814			rcu_accelerate_cbs_unlocked(rnp, rdp);
2815		local_irq_restore(flags);
2816	}
2817
2818	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2819
2820	/* If there are callbacks ready, invoke them. */
2821	if (!rcu_rdp_is_offloaded(rdp) && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2822	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2823		rcu_do_batch(rdp);
2824		/* Re-invoke RCU core processing if there are callbacks remaining. */
2825		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2826			invoke_rcu_core();
2827	}
2828
2829	/* Do any needed deferred wakeups of rcuo kthreads. */
2830	do_nocb_deferred_wakeup(rdp);
2831	trace_rcu_utilization(TPS("End RCU core"));
2832
2833	// If strict GPs, schedule an RCU reader in a clean environment.
2834	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2835		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2836}
2837
2838static void rcu_core_si(void)
2839{
2840	rcu_core();
2841}
2842
2843static void rcu_wake_cond(struct task_struct *t, int status)
2844{
2845	/*
2846	 * If the thread is yielding, only wake it when this
2847	 * is invoked from idle
2848	 */
2849	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2850		wake_up_process(t);
2851}
2852
2853static void invoke_rcu_core_kthread(void)
2854{
2855	struct task_struct *t;
2856	unsigned long flags;
2857
2858	local_irq_save(flags);
2859	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2860	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2861	if (t != NULL && t != current)
2862		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2863	local_irq_restore(flags);
2864}
2865
2866/*
2867 * Wake up this CPU's rcuc kthread to do RCU core processing.
2868 */
2869static void invoke_rcu_core(void)
2870{
2871	if (!cpu_online(smp_processor_id()))
2872		return;
2873	if (use_softirq)
2874		raise_softirq(RCU_SOFTIRQ);
2875	else
2876		invoke_rcu_core_kthread();
2877}
2878
2879static void rcu_cpu_kthread_park(unsigned int cpu)
2880{
2881	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2882}
2883
2884static int rcu_cpu_kthread_should_run(unsigned int cpu)
2885{
2886	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
2887}
2888
2889/*
2890 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2891 * the RCU softirq used in configurations of RCU that do not support RCU
2892 * priority boosting.
2893 */
2894static void rcu_cpu_kthread(unsigned int cpu)
2895{
2896	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2897	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2898	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2899	int spincnt;
2900
2901	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2902	for (spincnt = 0; spincnt < 10; spincnt++) {
2903		WRITE_ONCE(*j, jiffies);
2904		local_bh_disable();
2905		*statusp = RCU_KTHREAD_RUNNING;
2906		local_irq_disable();
2907		work = *workp;
2908		WRITE_ONCE(*workp, 0);
2909		local_irq_enable();
2910		if (work)
2911			rcu_core();
2912		local_bh_enable();
2913		if (!READ_ONCE(*workp)) {
2914			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2915			*statusp = RCU_KTHREAD_WAITING;
2916			return;
2917		}
2918	}
2919	*statusp = RCU_KTHREAD_YIELDING;
2920	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2921	schedule_timeout_idle(2);
2922	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2923	*statusp = RCU_KTHREAD_WAITING;
2924	WRITE_ONCE(*j, jiffies);
2925}
2926
2927static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2928	.store			= &rcu_data.rcu_cpu_kthread_task,
2929	.thread_should_run	= rcu_cpu_kthread_should_run,
2930	.thread_fn		= rcu_cpu_kthread,
2931	.thread_comm		= "rcuc/%u",
2932	.setup			= rcu_cpu_kthread_setup,
2933	.park			= rcu_cpu_kthread_park,
2934};
2935
2936/*
2937 * Spawn per-CPU RCU core processing kthreads.
2938 */
2939static int __init rcu_spawn_core_kthreads(void)
2940{
2941	int cpu;
2942
2943	for_each_possible_cpu(cpu)
2944		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2945	if (use_softirq)
2946		return 0;
2947	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2948		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2949	return 0;
2950}
2951
2952static void rcutree_enqueue(struct rcu_data *rdp, struct rcu_head *head, rcu_callback_t func)
2953{
2954	rcu_segcblist_enqueue(&rdp->cblist, head);
2955	if (__is_kvfree_rcu_offset((unsigned long)func))
2956		trace_rcu_kvfree_callback(rcu_state.name, head,
2957					 (unsigned long)func,
2958					 rcu_segcblist_n_cbs(&rdp->cblist));
2959	else
2960		trace_rcu_callback(rcu_state.name, head,
2961				   rcu_segcblist_n_cbs(&rdp->cblist));
2962	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2963}
2964
2965/*
2966 * Handle any core-RCU processing required by a call_rcu() invocation.
2967 */
2968static void call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2969			  rcu_callback_t func, unsigned long flags)
2970{
2971	rcutree_enqueue(rdp, head, func);
2972	/*
2973	 * If called from an extended quiescent state, invoke the RCU
2974	 * core in order to force a re-evaluation of RCU's idleness.
2975	 */
2976	if (!rcu_is_watching())
2977		invoke_rcu_core();
2978
2979	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2980	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2981		return;
2982
2983	/*
2984	 * Force the grace period if too many callbacks or too long waiting.
2985	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2986	 * if some other CPU has recently done so.  Also, don't bother
2987	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2988	 * is the only one waiting for a grace period to complete.
2989	 */
2990	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2991		     rdp->qlen_last_fqs_check + qhimark)) {
2992
2993		/* Are we ignoring a completed grace period? */
2994		note_gp_changes(rdp);
2995
2996		/* Start a new grace period if one not already started. */
2997		if (!rcu_gp_in_progress()) {
2998			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
2999		} else {
3000			/* Give the grace period a kick. */
3001			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
3002			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
3003			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
3004				rcu_force_quiescent_state();
3005			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
3006			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
3007		}
3008	}
3009}
3010
3011/*
3012 * RCU callback function to leak a callback.
3013 */
3014static void rcu_leak_callback(struct rcu_head *rhp)
3015{
3016}
3017
3018/*
3019 * Check and if necessary update the leaf rcu_node structure's
3020 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3021 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
3022 * structure's ->lock.
3023 */
3024static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
3025{
3026	raw_lockdep_assert_held_rcu_node(rnp);
3027	if (qovld_calc <= 0)
3028		return; // Early boot and wildcard value set.
3029	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
3030		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
3031	else
3032		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
3033}
3034
3035/*
3036 * Check and if necessary update the leaf rcu_node structure's
3037 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
3038 * number of queued RCU callbacks.  No locks need be held, but the
3039 * caller must have disabled interrupts.
3040 *
3041 * Note that this function ignores the possibility that there are a lot
3042 * of callbacks all of which have already seen the end of their respective
3043 * grace periods.  This omission is due to the need for no-CBs CPUs to
3044 * be holding ->nocb_lock to do this check, which is too heavy for a
3045 * common-case operation.
3046 */
3047static void check_cb_ovld(struct rcu_data *rdp)
3048{
3049	struct rcu_node *const rnp = rdp->mynode;
3050
3051	if (qovld_calc <= 0 ||
3052	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
3053	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
3054		return; // Early boot wildcard value or already set correctly.
3055	raw_spin_lock_rcu_node(rnp);
3056	check_cb_ovld_locked(rdp, rnp);
3057	raw_spin_unlock_rcu_node(rnp);
3058}
3059
3060static void
3061__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy_in)
3062{
3063	static atomic_t doublefrees;
3064	unsigned long flags;
3065	bool lazy;
3066	struct rcu_data *rdp;
 
3067
3068	/* Misaligned rcu_head! */
3069	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3070
3071	if (debug_rcu_head_queue(head)) {
3072		/*
3073		 * Probable double call_rcu(), so leak the callback.
3074		 * Use rcu:rcu_callback trace event to find the previous
3075		 * time callback was passed to call_rcu().
3076		 */
3077		if (atomic_inc_return(&doublefrees) < 4) {
3078			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
3079			mem_dump_obj(head);
3080		}
3081		WRITE_ONCE(head->func, rcu_leak_callback);
3082		return;
3083	}
3084	head->func = func;
3085	head->next = NULL;
3086	kasan_record_aux_stack_noalloc(head);
3087	local_irq_save(flags);
3088	rdp = this_cpu_ptr(&rcu_data);
3089	lazy = lazy_in && !rcu_async_should_hurry();
3090
3091	/* Add the callback to our list. */
3092	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
3093		// This can trigger due to call_rcu() from offline CPU:
3094		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
3095		WARN_ON_ONCE(!rcu_is_watching());
3096		// Very early boot, before rcu_init().  Initialize if needed
3097		// and then drop through to queue the callback.
3098		if (rcu_segcblist_empty(&rdp->cblist))
3099			rcu_segcblist_init(&rdp->cblist);
3100	}
3101
3102	check_cb_ovld(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
3103
3104	if (unlikely(rcu_rdp_is_offloaded(rdp)))
3105		call_rcu_nocb(rdp, head, func, flags, lazy);
3106	else
3107		call_rcu_core(rdp, head, func, flags);
3108	local_irq_restore(flags);
 
 
3109}
3110
3111#ifdef CONFIG_RCU_LAZY
3112static bool enable_rcu_lazy __read_mostly = !IS_ENABLED(CONFIG_RCU_LAZY_DEFAULT_OFF);
3113module_param(enable_rcu_lazy, bool, 0444);
3114
3115/**
3116 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
3117 * flush all lazy callbacks (including the new one) to the main ->cblist while
3118 * doing so.
3119 *
3120 * @head: structure to be used for queueing the RCU updates.
3121 * @func: actual callback function to be invoked after the grace period
3122 *
3123 * The callback function will be invoked some time after a full grace
3124 * period elapses, in other words after all pre-existing RCU read-side
3125 * critical sections have completed.
3126 *
3127 * Use this API instead of call_rcu() if you don't want the callback to be
3128 * invoked after very long periods of time, which can happen on systems without
3129 * memory pressure and on systems which are lightly loaded or mostly idle.
3130 * This function will cause callbacks to be invoked sooner than later at the
3131 * expense of extra power. Other than that, this function is identical to, and
3132 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
3133 * ordering and other functionality.
3134 */
3135void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
3136{
3137	__call_rcu_common(head, func, false);
3138}
3139EXPORT_SYMBOL_GPL(call_rcu_hurry);
3140#else
3141#define enable_rcu_lazy		false
3142#endif
3143
3144/**
3145 * call_rcu() - Queue an RCU callback for invocation after a grace period.
3146 * By default the callbacks are 'lazy' and are kept hidden from the main
3147 * ->cblist to prevent starting of grace periods too soon.
3148 * If you desire grace periods to start very soon, use call_rcu_hurry().
3149 *
3150 * @head: structure to be used for queueing the RCU updates.
3151 * @func: actual callback function to be invoked after the grace period
3152 *
3153 * The callback function will be invoked some time after a full grace
3154 * period elapses, in other words after all pre-existing RCU read-side
3155 * critical sections have completed.  However, the callback function
3156 * might well execute concurrently with RCU read-side critical sections
3157 * that started after call_rcu() was invoked.
3158 *
3159 * RCU read-side critical sections are delimited by rcu_read_lock()
3160 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3161 * v5.0 and later, regions of code across which interrupts, preemption,
3162 * or softirqs have been disabled also serve as RCU read-side critical
3163 * sections.  This includes hardware interrupt handlers, softirq handlers,
3164 * and NMI handlers.
3165 *
3166 * Note that all CPUs must agree that the grace period extended beyond
3167 * all pre-existing RCU read-side critical section.  On systems with more
3168 * than one CPU, this means that when "func()" is invoked, each CPU is
3169 * guaranteed to have executed a full memory barrier since the end of its
3170 * last RCU read-side critical section whose beginning preceded the call
3171 * to call_rcu().  It also means that each CPU executing an RCU read-side
3172 * critical section that continues beyond the start of "func()" must have
3173 * executed a memory barrier after the call_rcu() but before the beginning
3174 * of that RCU read-side critical section.  Note that these guarantees
3175 * include CPUs that are offline, idle, or executing in user mode, as
3176 * well as CPUs that are executing in the kernel.
3177 *
3178 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
3179 * resulting RCU callback function "func()", then both CPU A and CPU B are
3180 * guaranteed to execute a full memory barrier during the time interval
3181 * between the call to call_rcu() and the invocation of "func()" -- even
3182 * if CPU A and CPU B are the same CPU (but again only if the system has
3183 * more than one CPU).
3184 *
3185 * Implementation of these memory-ordering guarantees is described here:
3186 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3187 */
3188void call_rcu(struct rcu_head *head, rcu_callback_t func)
3189{
3190	__call_rcu_common(head, func, enable_rcu_lazy);
3191}
3192EXPORT_SYMBOL_GPL(call_rcu);
3193
3194/* Maximum number of jiffies to wait before draining a batch. */
3195#define KFREE_DRAIN_JIFFIES (5 * HZ)
3196#define KFREE_N_BATCHES 2
3197#define FREE_N_CHANNELS 2
3198
3199/**
3200 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
3201 * @list: List node. All blocks are linked between each other
3202 * @gp_snap: Snapshot of RCU state for objects placed to this bulk
3203 * @nr_records: Number of active pointers in the array
 
3204 * @records: Array of the kvfree_rcu() pointers
3205 */
3206struct kvfree_rcu_bulk_data {
3207	struct list_head list;
3208	struct rcu_gp_oldstate gp_snap;
3209	unsigned long nr_records;
3210	void *records[] __counted_by(nr_records);
 
3211};
3212
3213/*
3214 * This macro defines how many entries the "records" array
3215 * will contain. It is based on the fact that the size of
3216 * kvfree_rcu_bulk_data structure becomes exactly one page.
3217 */
3218#define KVFREE_BULK_MAX_ENTR \
3219	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
3220
3221/**
3222 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
3223 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
3224 * @head_free: List of kfree_rcu() objects waiting for a grace period
3225 * @head_free_gp_snap: Grace-period snapshot to check for attempted premature frees.
3226 * @bulk_head_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
3227 * @krcp: Pointer to @kfree_rcu_cpu structure
3228 */
3229
3230struct kfree_rcu_cpu_work {
3231	struct rcu_work rcu_work;
3232	struct rcu_head *head_free;
3233	struct rcu_gp_oldstate head_free_gp_snap;
3234	struct list_head bulk_head_free[FREE_N_CHANNELS];
3235	struct kfree_rcu_cpu *krcp;
3236};
3237
3238/**
3239 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
3240 * @head: List of kfree_rcu() objects not yet waiting for a grace period
3241 * @head_gp_snap: Snapshot of RCU state for objects placed to "@head"
3242 * @bulk_head: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
3243 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
3244 * @lock: Synchronize access to this structure
3245 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
3246 * @initialized: The @rcu_work fields have been initialized
3247 * @head_count: Number of objects in rcu_head singular list
3248 * @bulk_count: Number of objects in bulk-list
3249 * @bkvcache:
3250 *	A simple cache list that contains objects for reuse purpose.
3251 *	In order to save some per-cpu space the list is singular.
3252 *	Even though it is lockless an access has to be protected by the
3253 *	per-cpu lock.
3254 * @page_cache_work: A work to refill the cache when it is empty
3255 * @backoff_page_cache_fill: Delay cache refills
3256 * @work_in_progress: Indicates that page_cache_work is running
3257 * @hrtimer: A hrtimer for scheduling a page_cache_work
3258 * @nr_bkv_objs: number of allocated objects at @bkvcache.
3259 *
3260 * This is a per-CPU structure.  The reason that it is not included in
3261 * the rcu_data structure is to permit this code to be extracted from
3262 * the RCU files.  Such extraction could allow further optimization of
3263 * the interactions with the slab allocators.
3264 */
3265struct kfree_rcu_cpu {
3266	// Objects queued on a linked list
3267	// through their rcu_head structures.
3268	struct rcu_head *head;
3269	unsigned long head_gp_snap;
3270	atomic_t head_count;
3271
3272	// Objects queued on a bulk-list.
3273	struct list_head bulk_head[FREE_N_CHANNELS];
3274	atomic_t bulk_count[FREE_N_CHANNELS];
3275
3276	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
3277	raw_spinlock_t lock;
3278	struct delayed_work monitor_work;
3279	bool initialized;
 
3280
3281	struct delayed_work page_cache_work;
3282	atomic_t backoff_page_cache_fill;
3283	atomic_t work_in_progress;
3284	struct hrtimer hrtimer;
3285
3286	struct llist_head bkvcache;
3287	int nr_bkv_objs;
3288};
3289
3290static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
3291	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
3292};
3293
3294static __always_inline void
3295debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
3296{
3297#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
3298	int i;
3299
3300	for (i = 0; i < bhead->nr_records; i++)
3301		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
3302#endif
3303}
3304
3305static inline struct kfree_rcu_cpu *
3306krc_this_cpu_lock(unsigned long *flags)
3307{
3308	struct kfree_rcu_cpu *krcp;
3309
3310	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
3311	krcp = this_cpu_ptr(&krc);
3312	raw_spin_lock(&krcp->lock);
3313
3314	return krcp;
3315}
3316
3317static inline void
3318krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
3319{
3320	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3321}
3322
3323static inline struct kvfree_rcu_bulk_data *
3324get_cached_bnode(struct kfree_rcu_cpu *krcp)
3325{
3326	if (!krcp->nr_bkv_objs)
3327		return NULL;
3328
3329	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
3330	return (struct kvfree_rcu_bulk_data *)
3331		llist_del_first(&krcp->bkvcache);
3332}
3333
3334static inline bool
3335put_cached_bnode(struct kfree_rcu_cpu *krcp,
3336	struct kvfree_rcu_bulk_data *bnode)
3337{
3338	// Check the limit.
3339	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3340		return false;
3341
3342	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3343	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3344	return true;
3345}
3346
3347static int
3348drain_page_cache(struct kfree_rcu_cpu *krcp)
3349{
3350	unsigned long flags;
3351	struct llist_node *page_list, *pos, *n;
3352	int freed = 0;
3353
3354	if (!rcu_min_cached_objs)
3355		return 0;
3356
3357	raw_spin_lock_irqsave(&krcp->lock, flags);
3358	page_list = llist_del_all(&krcp->bkvcache);
3359	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3360	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3361
3362	llist_for_each_safe(pos, n, page_list) {
3363		free_page((unsigned long)pos);
3364		freed++;
3365	}
3366
3367	return freed;
3368}
3369
3370static void
3371kvfree_rcu_bulk(struct kfree_rcu_cpu *krcp,
3372	struct kvfree_rcu_bulk_data *bnode, int idx)
3373{
3374	unsigned long flags;
3375	int i;
3376
3377	if (!WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&bnode->gp_snap))) {
3378		debug_rcu_bhead_unqueue(bnode);
3379		rcu_lock_acquire(&rcu_callback_map);
3380		if (idx == 0) { // kmalloc() / kfree().
3381			trace_rcu_invoke_kfree_bulk_callback(
3382				rcu_state.name, bnode->nr_records,
3383				bnode->records);
3384
3385			kfree_bulk(bnode->nr_records, bnode->records);
3386		} else { // vmalloc() / vfree().
3387			for (i = 0; i < bnode->nr_records; i++) {
3388				trace_rcu_invoke_kvfree_callback(
3389					rcu_state.name, bnode->records[i], 0);
3390
3391				vfree(bnode->records[i]);
3392			}
3393		}
3394		rcu_lock_release(&rcu_callback_map);
3395	}
3396
3397	raw_spin_lock_irqsave(&krcp->lock, flags);
3398	if (put_cached_bnode(krcp, bnode))
3399		bnode = NULL;
3400	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3401
3402	if (bnode)
3403		free_page((unsigned long) bnode);
3404
3405	cond_resched_tasks_rcu_qs();
3406}
3407
3408static void
3409kvfree_rcu_list(struct rcu_head *head)
3410{
3411	struct rcu_head *next;
3412
3413	for (; head; head = next) {
3414		void *ptr = (void *) head->func;
3415		unsigned long offset = (void *) head - ptr;
3416
3417		next = head->next;
3418		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3419		rcu_lock_acquire(&rcu_callback_map);
3420		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3421
3422		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3423			kvfree(ptr);
3424
3425		rcu_lock_release(&rcu_callback_map);
3426		cond_resched_tasks_rcu_qs();
3427	}
3428}
3429
3430/*
3431 * This function is invoked in workqueue context after a grace period.
3432 * It frees all the objects queued on ->bulk_head_free or ->head_free.
3433 */
3434static void kfree_rcu_work(struct work_struct *work)
3435{
3436	unsigned long flags;
3437	struct kvfree_rcu_bulk_data *bnode, *n;
3438	struct list_head bulk_head[FREE_N_CHANNELS];
3439	struct rcu_head *head;
3440	struct kfree_rcu_cpu *krcp;
3441	struct kfree_rcu_cpu_work *krwp;
3442	struct rcu_gp_oldstate head_gp_snap;
3443	int i;
3444
3445	krwp = container_of(to_rcu_work(work),
3446		struct kfree_rcu_cpu_work, rcu_work);
3447	krcp = krwp->krcp;
3448
3449	raw_spin_lock_irqsave(&krcp->lock, flags);
3450	// Channels 1 and 2.
3451	for (i = 0; i < FREE_N_CHANNELS; i++)
3452		list_replace_init(&krwp->bulk_head_free[i], &bulk_head[i]);
 
 
3453
3454	// Channel 3.
3455	head = krwp->head_free;
3456	krwp->head_free = NULL;
3457	head_gp_snap = krwp->head_free_gp_snap;
3458	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3459
3460	// Handle the first two channels.
3461	for (i = 0; i < FREE_N_CHANNELS; i++) {
3462		// Start from the tail page, so a GP is likely passed for it.
3463		list_for_each_entry_safe(bnode, n, &bulk_head[i], list)
3464			kvfree_rcu_bulk(krcp, bnode, i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3465	}
3466
3467	/*
3468	 * This is used when the "bulk" path can not be used for the
3469	 * double-argument of kvfree_rcu().  This happens when the
3470	 * page-cache is empty, which means that objects are instead
3471	 * queued on a linked list through their rcu_head structures.
3472	 * This list is named "Channel 3".
3473	 */
3474	if (head && !WARN_ON_ONCE(!poll_state_synchronize_rcu_full(&head_gp_snap)))
3475		kvfree_rcu_list(head);
3476}
3477
3478static bool
3479need_offload_krc(struct kfree_rcu_cpu *krcp)
3480{
3481	int i;
3482
3483	for (i = 0; i < FREE_N_CHANNELS; i++)
3484		if (!list_empty(&krcp->bulk_head[i]))
3485			return true;
3486
3487	return !!READ_ONCE(krcp->head);
 
 
3488}
3489
3490static bool
3491need_wait_for_krwp_work(struct kfree_rcu_cpu_work *krwp)
3492{
3493	int i;
3494
3495	for (i = 0; i < FREE_N_CHANNELS; i++)
3496		if (!list_empty(&krwp->bulk_head_free[i]))
3497			return true;
3498
3499	return !!krwp->head_free;
3500}
3501
3502static int krc_count(struct kfree_rcu_cpu *krcp)
3503{
3504	int sum = atomic_read(&krcp->head_count);
3505	int i;
3506
3507	for (i = 0; i < FREE_N_CHANNELS; i++)
3508		sum += atomic_read(&krcp->bulk_count[i]);
3509
3510	return sum;
3511}
3512
3513static void
3514__schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3515{
3516	long delay, delay_left;
3517
3518	delay = krc_count(krcp) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3519	if (delayed_work_pending(&krcp->monitor_work)) {
3520		delay_left = krcp->monitor_work.timer.expires - jiffies;
3521		if (delay < delay_left)
3522			mod_delayed_work(system_unbound_wq, &krcp->monitor_work, delay);
3523		return;
3524	}
3525	queue_delayed_work(system_unbound_wq, &krcp->monitor_work, delay);
3526}
3527
3528static void
3529schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3530{
3531	unsigned long flags;
3532
3533	raw_spin_lock_irqsave(&krcp->lock, flags);
3534	__schedule_delayed_monitor_work(krcp);
3535	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3536}
3537
3538static void
3539kvfree_rcu_drain_ready(struct kfree_rcu_cpu *krcp)
3540{
3541	struct list_head bulk_ready[FREE_N_CHANNELS];
3542	struct kvfree_rcu_bulk_data *bnode, *n;
3543	struct rcu_head *head_ready = NULL;
3544	unsigned long flags;
3545	int i;
3546
3547	raw_spin_lock_irqsave(&krcp->lock, flags);
3548	for (i = 0; i < FREE_N_CHANNELS; i++) {
3549		INIT_LIST_HEAD(&bulk_ready[i]);
3550
3551		list_for_each_entry_safe_reverse(bnode, n, &krcp->bulk_head[i], list) {
3552			if (!poll_state_synchronize_rcu_full(&bnode->gp_snap))
3553				break;
3554
3555			atomic_sub(bnode->nr_records, &krcp->bulk_count[i]);
3556			list_move(&bnode->list, &bulk_ready[i]);
3557		}
3558	}
3559
3560	if (krcp->head && poll_state_synchronize_rcu(krcp->head_gp_snap)) {
3561		head_ready = krcp->head;
3562		atomic_set(&krcp->head_count, 0);
3563		WRITE_ONCE(krcp->head, NULL);
3564	}
3565	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3566
3567	for (i = 0; i < FREE_N_CHANNELS; i++) {
3568		list_for_each_entry_safe(bnode, n, &bulk_ready[i], list)
3569			kvfree_rcu_bulk(krcp, bnode, i);
3570	}
3571
3572	if (head_ready)
3573		kvfree_rcu_list(head_ready);
3574}
3575
3576/*
3577 * Return: %true if a work is queued, %false otherwise.
3578 */
3579static bool
3580kvfree_rcu_queue_batch(struct kfree_rcu_cpu *krcp)
3581{
 
 
3582	unsigned long flags;
3583	bool queued = false;
3584	int i, j;
3585
3586	raw_spin_lock_irqsave(&krcp->lock, flags);
3587
3588	// Attempt to start a new batch.
3589	for (i = 0; i < KFREE_N_BATCHES; i++) {
3590		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3591
3592		// Try to detach bulk_head or head and attach it, only when
3593		// all channels are free.  Any channel is not free means at krwp
3594		// there is on-going rcu work to handle krwp's free business.
3595		if (need_wait_for_krwp_work(krwp))
3596			continue;
3597
3598		// kvfree_rcu_drain_ready() might handle this krcp, if so give up.
3599		if (need_offload_krc(krcp)) {
3600			// Channel 1 corresponds to the SLAB-pointer bulk path.
3601			// Channel 2 corresponds to vmalloc-pointer bulk path.
3602			for (j = 0; j < FREE_N_CHANNELS; j++) {
3603				if (list_empty(&krwp->bulk_head_free[j])) {
3604					atomic_set(&krcp->bulk_count[j], 0);
3605					list_replace_init(&krcp->bulk_head[j],
3606						&krwp->bulk_head_free[j]);
3607				}
3608			}
3609
3610			// Channel 3 corresponds to both SLAB and vmalloc
3611			// objects queued on the linked list.
3612			if (!krwp->head_free) {
3613				krwp->head_free = krcp->head;
3614				get_state_synchronize_rcu_full(&krwp->head_free_gp_snap);
3615				atomic_set(&krcp->head_count, 0);
3616				WRITE_ONCE(krcp->head, NULL);
3617			}
3618
 
 
3619			// One work is per one batch, so there are three
3620			// "free channels", the batch can handle. Break
3621			// the loop since it is done with this CPU thus
3622			// queuing an RCU work is _always_ success here.
3623			queued = queue_rcu_work(system_unbound_wq, &krwp->rcu_work);
3624			WARN_ON_ONCE(!queued);
3625			break;
3626		}
3627	}
3628
3629	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3630	return queued;
3631}
3632
3633/*
3634 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
3635 */
3636static void kfree_rcu_monitor(struct work_struct *work)
3637{
3638	struct kfree_rcu_cpu *krcp = container_of(work,
3639		struct kfree_rcu_cpu, monitor_work.work);
3640
3641	// Drain ready for reclaim.
3642	kvfree_rcu_drain_ready(krcp);
3643
3644	// Queue a batch for a rest.
3645	kvfree_rcu_queue_batch(krcp);
3646
3647	// If there is nothing to detach, it means that our job is
3648	// successfully done here. In case of having at least one
3649	// of the channels that is still busy we should rearm the
3650	// work to repeat an attempt. Because previous batches are
3651	// still in progress.
3652	if (need_offload_krc(krcp))
3653		schedule_delayed_monitor_work(krcp);
 
 
3654}
3655
3656static enum hrtimer_restart
3657schedule_page_work_fn(struct hrtimer *t)
3658{
3659	struct kfree_rcu_cpu *krcp =
3660		container_of(t, struct kfree_rcu_cpu, hrtimer);
3661
3662	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3663	return HRTIMER_NORESTART;
3664}
3665
3666static void fill_page_cache_func(struct work_struct *work)
3667{
3668	struct kvfree_rcu_bulk_data *bnode;
3669	struct kfree_rcu_cpu *krcp =
3670		container_of(work, struct kfree_rcu_cpu,
3671			page_cache_work.work);
3672	unsigned long flags;
3673	int nr_pages;
3674	bool pushed;
3675	int i;
3676
3677	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3678		1 : rcu_min_cached_objs;
3679
3680	for (i = READ_ONCE(krcp->nr_bkv_objs); i < nr_pages; i++) {
3681		bnode = (struct kvfree_rcu_bulk_data *)
3682			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3683
3684		if (!bnode)
3685			break;
3686
3687		raw_spin_lock_irqsave(&krcp->lock, flags);
3688		pushed = put_cached_bnode(krcp, bnode);
3689		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3690
3691		if (!pushed) {
3692			free_page((unsigned long) bnode);
3693			break;
3694		}
3695	}
3696
3697	atomic_set(&krcp->work_in_progress, 0);
3698	atomic_set(&krcp->backoff_page_cache_fill, 0);
3699}
3700
3701static void
3702run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3703{
3704	// If cache disabled, bail out.
3705	if (!rcu_min_cached_objs)
3706		return;
3707
3708	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3709			!atomic_xchg(&krcp->work_in_progress, 1)) {
3710		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3711			queue_delayed_work(system_unbound_wq,
3712				&krcp->page_cache_work,
3713					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3714		} else {
3715			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3716			krcp->hrtimer.function = schedule_page_work_fn;
3717			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3718		}
3719	}
3720}
3721
3722// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3723// state specified by flags.  If can_alloc is true, the caller must
3724// be schedulable and not be holding any locks or mutexes that might be
3725// acquired by the memory allocator or anything that it might invoke.
3726// Returns true if ptr was successfully recorded, else the caller must
3727// use a fallback.
3728static inline bool
3729add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3730	unsigned long *flags, void *ptr, bool can_alloc)
3731{
3732	struct kvfree_rcu_bulk_data *bnode;
3733	int idx;
3734
3735	*krcp = krc_this_cpu_lock(flags);
3736	if (unlikely(!(*krcp)->initialized))
3737		return false;
3738
3739	idx = !!is_vmalloc_addr(ptr);
3740	bnode = list_first_entry_or_null(&(*krcp)->bulk_head[idx],
3741		struct kvfree_rcu_bulk_data, list);
3742
3743	/* Check if a new block is required. */
3744	if (!bnode || bnode->nr_records == KVFREE_BULK_MAX_ENTR) {
 
3745		bnode = get_cached_bnode(*krcp);
3746		if (!bnode && can_alloc) {
3747			krc_this_cpu_unlock(*krcp, *flags);
3748
3749			// __GFP_NORETRY - allows a light-weight direct reclaim
3750			// what is OK from minimizing of fallback hitting point of
3751			// view. Apart of that it forbids any OOM invoking what is
3752			// also beneficial since we are about to release memory soon.
3753			//
3754			// __GFP_NOMEMALLOC - prevents from consuming of all the
3755			// memory reserves. Please note we have a fallback path.
3756			//
3757			// __GFP_NOWARN - it is supposed that an allocation can
3758			// be failed under low memory or high memory pressure
3759			// scenarios.
3760			bnode = (struct kvfree_rcu_bulk_data *)
3761				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3762			raw_spin_lock_irqsave(&(*krcp)->lock, *flags);
3763		}
3764
3765		if (!bnode)
3766			return false;
3767
3768		// Initialize the new block and attach it.
3769		bnode->nr_records = 0;
3770		list_add(&bnode->list, &(*krcp)->bulk_head[idx]);
 
 
 
3771	}
3772
3773	// Finally insert and update the GP for this page.
3774	bnode->nr_records++;
3775	bnode->records[bnode->nr_records - 1] = ptr;
3776	get_state_synchronize_rcu_full(&bnode->gp_snap);
3777	atomic_inc(&(*krcp)->bulk_count[idx]);
3778
3779	return true;
3780}
3781
3782/*
3783 * Queue a request for lazy invocation of the appropriate free routine
3784 * after a grace period.  Please note that three paths are maintained,
3785 * two for the common case using arrays of pointers and a third one that
3786 * is used only when the main paths cannot be used, for example, due to
3787 * memory pressure.
3788 *
3789 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3790 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3791 * be free'd in workqueue context. This allows us to: batch requests together to
3792 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3793 */
3794void kvfree_call_rcu(struct rcu_head *head, void *ptr)
3795{
3796	unsigned long flags;
3797	struct kfree_rcu_cpu *krcp;
3798	bool success;
 
3799
3800	/*
3801	 * Please note there is a limitation for the head-less
3802	 * variant, that is why there is a clear rule for such
3803	 * objects: it can be used from might_sleep() context
3804	 * only. For other places please embed an rcu_head to
3805	 * your data.
3806	 */
3807	if (!head)
 
 
3808		might_sleep();
 
 
3809
3810	// Queue the object but don't yet schedule the batch.
3811	if (debug_rcu_head_queue(ptr)) {
3812		// Probable double kfree_rcu(), just leak.
3813		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3814			  __func__, head);
3815
3816		// Mark as success and leave.
3817		return;
3818	}
3819
3820	kasan_record_aux_stack_noalloc(ptr);
3821	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3822	if (!success) {
3823		run_page_cache_worker(krcp);
3824
3825		if (head == NULL)
3826			// Inline if kvfree_rcu(one_arg) call.
3827			goto unlock_return;
3828
3829		head->func = ptr;
3830		head->next = krcp->head;
3831		WRITE_ONCE(krcp->head, head);
3832		atomic_inc(&krcp->head_count);
3833
3834		// Take a snapshot for this krcp.
3835		krcp->head_gp_snap = get_state_synchronize_rcu();
3836		success = true;
3837	}
3838
3839	/*
3840	 * The kvfree_rcu() caller considers the pointer freed at this point
3841	 * and likely removes any references to it. Since the actual slab
3842	 * freeing (and kmemleak_free()) is deferred, tell kmemleak to ignore
3843	 * this object (no scanning or false positives reporting).
3844	 */
3845	kmemleak_ignore(ptr);
3846
3847	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3848	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3849		__schedule_delayed_monitor_work(krcp);
3850
3851unlock_return:
3852	krc_this_cpu_unlock(krcp, flags);
3853
3854	/*
3855	 * Inline kvfree() after synchronize_rcu(). We can do
3856	 * it from might_sleep() context only, so the current
3857	 * CPU can pass the QS state.
3858	 */
3859	if (!success) {
3860		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3861		synchronize_rcu();
3862		kvfree(ptr);
3863	}
3864}
3865EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3866
3867/**
3868 * kvfree_rcu_barrier - Wait until all in-flight kvfree_rcu() complete.
3869 *
3870 * Note that a single argument of kvfree_rcu() call has a slow path that
3871 * triggers synchronize_rcu() following by freeing a pointer. It is done
3872 * before the return from the function. Therefore for any single-argument
3873 * call that will result in a kfree() to a cache that is to be destroyed
3874 * during module exit, it is developer's responsibility to ensure that all
3875 * such calls have returned before the call to kmem_cache_destroy().
3876 */
3877void kvfree_rcu_barrier(void)
3878{
3879	struct kfree_rcu_cpu_work *krwp;
3880	struct kfree_rcu_cpu *krcp;
3881	bool queued;
3882	int i, cpu;
3883
3884	/*
3885	 * Firstly we detach objects and queue them over an RCU-batch
3886	 * for all CPUs. Finally queued works are flushed for each CPU.
3887	 *
3888	 * Please note. If there are outstanding batches for a particular
3889	 * CPU, those have to be finished first following by queuing a new.
3890	 */
3891	for_each_possible_cpu(cpu) {
3892		krcp = per_cpu_ptr(&krc, cpu);
3893
3894		/*
3895		 * Check if this CPU has any objects which have been queued for a
3896		 * new GP completion. If not(means nothing to detach), we are done
3897		 * with it. If any batch is pending/running for this "krcp", below
3898		 * per-cpu flush_rcu_work() waits its completion(see last step).
3899		 */
3900		if (!need_offload_krc(krcp))
3901			continue;
3902
3903		while (1) {
3904			/*
3905			 * If we are not able to queue a new RCU work it means:
3906			 * - batches for this CPU are still in flight which should
3907			 *   be flushed first and then repeat;
3908			 * - no objects to detach, because of concurrency.
3909			 */
3910			queued = kvfree_rcu_queue_batch(krcp);
3911
3912			/*
3913			 * Bail out, if there is no need to offload this "krcp"
3914			 * anymore. As noted earlier it can run concurrently.
3915			 */
3916			if (queued || !need_offload_krc(krcp))
3917				break;
3918
3919			/* There are ongoing batches. */
3920			for (i = 0; i < KFREE_N_BATCHES; i++) {
3921				krwp = &(krcp->krw_arr[i]);
3922				flush_rcu_work(&krwp->rcu_work);
3923			}
3924		}
3925	}
3926
3927	/*
3928	 * Now we guarantee that all objects are flushed.
3929	 */
3930	for_each_possible_cpu(cpu) {
3931		krcp = per_cpu_ptr(&krc, cpu);
3932
3933		/*
3934		 * A monitor work can drain ready to reclaim objects
3935		 * directly. Wait its completion if running or pending.
3936		 */
3937		cancel_delayed_work_sync(&krcp->monitor_work);
3938
3939		for (i = 0; i < KFREE_N_BATCHES; i++) {
3940			krwp = &(krcp->krw_arr[i]);
3941			flush_rcu_work(&krwp->rcu_work);
3942		}
3943	}
3944}
3945EXPORT_SYMBOL_GPL(kvfree_rcu_barrier);
3946
3947static unsigned long
3948kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3949{
3950	int cpu;
3951	unsigned long count = 0;
3952
3953	/* Snapshot count of all CPUs */
3954	for_each_possible_cpu(cpu) {
3955		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3956
3957		count += krc_count(krcp);
3958		count += READ_ONCE(krcp->nr_bkv_objs);
3959		atomic_set(&krcp->backoff_page_cache_fill, 1);
3960	}
3961
3962	return count == 0 ? SHRINK_EMPTY : count;
3963}
3964
3965static unsigned long
3966kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3967{
3968	int cpu, freed = 0;
3969
3970	for_each_possible_cpu(cpu) {
3971		int count;
3972		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3973
3974		count = krc_count(krcp);
3975		count += drain_page_cache(krcp);
3976		kfree_rcu_monitor(&krcp->monitor_work.work);
3977
3978		sc->nr_to_scan -= count;
3979		freed += count;
3980
3981		if (sc->nr_to_scan <= 0)
3982			break;
3983	}
3984
3985	return freed == 0 ? SHRINK_STOP : freed;
3986}
3987
 
 
 
 
 
 
 
3988void __init kfree_rcu_scheduler_running(void)
3989{
3990	int cpu;
 
3991
3992	for_each_possible_cpu(cpu) {
3993		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3994
 
3995		if (need_offload_krc(krcp))
3996			schedule_delayed_monitor_work(krcp);
 
3997	}
3998}
3999
4000/*
4001 * During early boot, any blocking grace-period wait automatically
4002 * implies a grace period.
4003 *
4004 * Later on, this could in theory be the case for kernels built with
4005 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
4006 * is not a common case.  Furthermore, this optimization would cause
4007 * the rcu_gp_oldstate structure to expand by 50%, so this potential
4008 * grace-period optimization is ignored once the scheduler is running.
4009 */
4010static int rcu_blocking_is_gp(void)
4011{
4012	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE) {
4013		might_sleep();
4014		return false;
4015	}
4016	return true;
4017}
4018
4019/*
4020 * Helper function for the synchronize_rcu() API.
4021 */
4022static void synchronize_rcu_normal(void)
4023{
4024	struct rcu_synchronize rs;
4025
4026	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("request"));
4027
4028	if (!READ_ONCE(rcu_normal_wake_from_gp)) {
4029		wait_rcu_gp(call_rcu_hurry);
4030		goto trace_complete_out;
4031	}
4032
4033	init_rcu_head_on_stack(&rs.head);
4034	init_completion(&rs.completion);
4035
4036	/*
4037	 * This code might be preempted, therefore take a GP
4038	 * snapshot before adding a request.
4039	 */
4040	if (IS_ENABLED(CONFIG_PROVE_RCU))
4041		rs.head.func = (void *) get_state_synchronize_rcu();
4042
4043	rcu_sr_normal_add_req(&rs);
4044
4045	/* Kick a GP and start waiting. */
4046	(void) start_poll_synchronize_rcu();
4047
4048	/* Now we can wait. */
4049	wait_for_completion(&rs.completion);
4050	destroy_rcu_head_on_stack(&rs.head);
4051
4052trace_complete_out:
4053	trace_rcu_sr_normal(rcu_state.name, &rs.head, TPS("complete"));
4054}
4055
4056/**
4057 * synchronize_rcu - wait until a grace period has elapsed.
4058 *
4059 * Control will return to the caller some time after a full grace
4060 * period has elapsed, in other words after all currently executing RCU
4061 * read-side critical sections have completed.  Note, however, that
4062 * upon return from synchronize_rcu(), the caller might well be executing
4063 * concurrently with new RCU read-side critical sections that began while
4064 * synchronize_rcu() was waiting.
4065 *
4066 * RCU read-side critical sections are delimited by rcu_read_lock()
4067 * and rcu_read_unlock(), and may be nested.  In addition, but only in
4068 * v5.0 and later, regions of code across which interrupts, preemption,
4069 * or softirqs have been disabled also serve as RCU read-side critical
4070 * sections.  This includes hardware interrupt handlers, softirq handlers,
4071 * and NMI handlers.
4072 *
4073 * Note that this guarantee implies further memory-ordering guarantees.
4074 * On systems with more than one CPU, when synchronize_rcu() returns,
4075 * each CPU is guaranteed to have executed a full memory barrier since
4076 * the end of its last RCU read-side critical section whose beginning
4077 * preceded the call to synchronize_rcu().  In addition, each CPU having
4078 * an RCU read-side critical section that extends beyond the return from
4079 * synchronize_rcu() is guaranteed to have executed a full memory barrier
4080 * after the beginning of synchronize_rcu() and before the beginning of
4081 * that RCU read-side critical section.  Note that these guarantees include
4082 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
4083 * that are executing in the kernel.
4084 *
4085 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
4086 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
4087 * to have executed a full memory barrier during the execution of
4088 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
4089 * again only if the system has more than one CPU).
4090 *
4091 * Implementation of these memory-ordering guarantees is described here:
4092 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
4093 */
4094void synchronize_rcu(void)
4095{
4096	unsigned long flags;
4097	struct rcu_node *rnp;
4098
4099	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
4100			 lock_is_held(&rcu_lock_map) ||
4101			 lock_is_held(&rcu_sched_lock_map),
4102			 "Illegal synchronize_rcu() in RCU read-side critical section");
4103	if (!rcu_blocking_is_gp()) {
4104		if (rcu_gp_is_expedited())
4105			synchronize_rcu_expedited();
4106		else
4107			synchronize_rcu_normal();
4108		return;
4109	}
4110
4111	// Context allows vacuous grace periods.
4112	// Note well that this code runs with !PREEMPT && !SMP.
4113	// In addition, all code that advances grace periods runs at
4114	// process level.  Therefore, this normal GP overlaps with other
4115	// normal GPs only by being fully nested within them, which allows
4116	// reuse of ->gp_seq_polled_snap.
4117	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
4118	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
4119
4120	// Update the normal grace-period counters to record
4121	// this grace period, but only those used by the boot CPU.
4122	// The rcu_scheduler_starting() will take care of the rest of
4123	// these counters.
4124	local_irq_save(flags);
4125	WARN_ON_ONCE(num_online_cpus() > 1);
4126	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
4127	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
4128		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4129	local_irq_restore(flags);
4130}
4131EXPORT_SYMBOL_GPL(synchronize_rcu);
4132
4133/**
4134 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
4135 * @rgosp: Place to put state cookie
4136 *
4137 * Stores into @rgosp a value that will always be treated by functions
4138 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
4139 * has already completed.
4140 */
4141void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4142{
4143	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
4144	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
4145}
4146EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
4147
4148/**
4149 * get_state_synchronize_rcu - Snapshot current RCU state
4150 *
4151 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4152 * or poll_state_synchronize_rcu() to determine whether or not a full
4153 * grace period has elapsed in the meantime.
4154 */
4155unsigned long get_state_synchronize_rcu(void)
4156{
4157	/*
4158	 * Any prior manipulation of RCU-protected data must happen
4159	 * before the load from ->gp_seq.
4160	 */
4161	smp_mb();  /* ^^^ */
4162	return rcu_seq_snap(&rcu_state.gp_seq_polled);
4163}
4164EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
4165
4166/**
4167 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
4168 * @rgosp: location to place combined normal/expedited grace-period state
4169 *
4170 * Places the normal and expedited grace-period states in @rgosp.  This
4171 * state value can be passed to a later call to cond_synchronize_rcu_full()
4172 * or poll_state_synchronize_rcu_full() to determine whether or not a
4173 * grace period (whether normal or expedited) has elapsed in the meantime.
4174 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
4175 * long, but is guaranteed to see all grace periods.  In contrast, the
4176 * combined state occupies less memory, but can sometimes fail to take
4177 * grace periods into account.
4178 *
4179 * This does not guarantee that the needed grace period will actually
4180 * start.
4181 */
4182void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4183{
4184	struct rcu_node *rnp = rcu_get_root();
4185
4186	/*
4187	 * Any prior manipulation of RCU-protected data must happen
4188	 * before the loads from ->gp_seq and ->expedited_sequence.
4189	 */
4190	smp_mb();  /* ^^^ */
4191	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
4192	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
4193}
4194EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
4195
4196/*
4197 * Helper function for start_poll_synchronize_rcu() and
4198 * start_poll_synchronize_rcu_full().
4199 */
4200static void start_poll_synchronize_rcu_common(void)
4201{
4202	unsigned long flags;
4203	bool needwake;
4204	struct rcu_data *rdp;
4205	struct rcu_node *rnp;
4206
 
4207	local_irq_save(flags);
4208	rdp = this_cpu_ptr(&rcu_data);
4209	rnp = rdp->mynode;
4210	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
4211	// Note it is possible for a grace period to have elapsed between
4212	// the above call to get_state_synchronize_rcu() and the below call
4213	// to rcu_seq_snap.  This is OK, the worst that happens is that we
4214	// get a grace period that no one needed.  These accesses are ordered
4215	// by smp_mb(), and we are accessing them in the opposite order
4216	// from which they are updated at grace-period start, as required.
4217	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
4218	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4219	if (needwake)
4220		rcu_gp_kthread_wake();
4221}
4222
4223/**
4224 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
4225 *
4226 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
4227 * or poll_state_synchronize_rcu() to determine whether or not a full
4228 * grace period has elapsed in the meantime.  If the needed grace period
4229 * is not already slated to start, notifies RCU core of the need for that
4230 * grace period.
 
 
 
4231 */
4232unsigned long start_poll_synchronize_rcu(void)
4233{
4234	unsigned long gp_seq = get_state_synchronize_rcu();
4235
4236	start_poll_synchronize_rcu_common();
4237	return gp_seq;
4238}
4239EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
4240
4241/**
4242 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
4243 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4244 *
4245 * Places the normal and expedited grace-period states in *@rgos.  This
4246 * state value can be passed to a later call to cond_synchronize_rcu_full()
4247 * or poll_state_synchronize_rcu_full() to determine whether or not a
4248 * grace period (whether normal or expedited) has elapsed in the meantime.
4249 * If the needed grace period is not already slated to start, notifies
4250 * RCU core of the need for that grace period.
 
 
 
4251 */
4252void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4253{
4254	get_state_synchronize_rcu_full(rgosp);
4255
4256	start_poll_synchronize_rcu_common();
4257}
4258EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
4259
4260/**
4261 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
4262 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
4263 *
4264 * If a full RCU grace period has elapsed since the earlier call from
4265 * which @oldstate was obtained, return @true, otherwise return @false.
4266 * If @false is returned, it is the caller's responsibility to invoke this
4267 * function later on until it does return @true.  Alternatively, the caller
4268 * can explicitly wait for a grace period, for example, by passing @oldstate
4269 * to either cond_synchronize_rcu() or cond_synchronize_rcu_expedited()
4270 * on the one hand or by directly invoking either synchronize_rcu() or
4271 * synchronize_rcu_expedited() on the other.
4272 *
4273 * Yes, this function does not take counter wrap into account.
4274 * But counter wrap is harmless.  If the counter wraps, we have waited for
4275 * more than a billion grace periods (and way more on a 64-bit system!).
4276 * Those needing to keep old state values for very long time periods
4277 * (many hours even on 32-bit systems) should check them occasionally and
4278 * either refresh them or set a flag indicating that the grace period has
4279 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
4280 * to get a guaranteed-completed grace-period state.
4281 *
4282 * In addition, because oldstate compresses the grace-period state for
4283 * both normal and expedited grace periods into a single unsigned long,
4284 * it can miss a grace period when synchronize_rcu() runs concurrently
4285 * with synchronize_rcu_expedited().  If this is unacceptable, please
4286 * instead use the _full() variant of these polling APIs.
4287 *
4288 * This function provides the same memory-ordering guarantees that
4289 * would be provided by a synchronize_rcu() that was invoked at the call
4290 * to the function that provided @oldstate, and that returned at the end
4291 * of this function.
4292 */
4293bool poll_state_synchronize_rcu(unsigned long oldstate)
4294{
4295	if (oldstate == RCU_GET_STATE_COMPLETED ||
4296	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
4297		smp_mb(); /* Ensure GP ends before subsequent accesses. */
4298		return true;
4299	}
4300	return false;
4301}
4302EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
4303
4304/**
4305 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
4306 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
4307 *
4308 * If a full RCU grace period has elapsed since the earlier call from
4309 * which *rgosp was obtained, return @true, otherwise return @false.
4310 * If @false is returned, it is the caller's responsibility to invoke this
4311 * function later on until it does return @true.  Alternatively, the caller
4312 * can explicitly wait for a grace period, for example, by passing @rgosp
4313 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
4314 *
4315 * Yes, this function does not take counter wrap into account.
4316 * But counter wrap is harmless.  If the counter wraps, we have waited
4317 * for more than a billion grace periods (and way more on a 64-bit
4318 * system!).  Those needing to keep rcu_gp_oldstate values for very
4319 * long time periods (many hours even on 32-bit systems) should check
4320 * them occasionally and either refresh them or set a flag indicating
4321 * that the grace period has completed.  Alternatively, they can use
4322 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
4323 * grace-period state.
4324 *
4325 * This function provides the same memory-ordering guarantees that would
4326 * be provided by a synchronize_rcu() that was invoked at the call to
4327 * the function that provided @rgosp, and that returned at the end of this
4328 * function.  And this guarantee requires that the root rcu_node structure's
4329 * ->gp_seq field be checked instead of that of the rcu_state structure.
4330 * The problem is that the just-ending grace-period's callbacks can be
4331 * invoked between the time that the root rcu_node structure's ->gp_seq
4332 * field is updated and the time that the rcu_state structure's ->gp_seq
4333 * field is updated.  Therefore, if a single synchronize_rcu() is to
4334 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
4335 * then the root rcu_node structure is the one that needs to be polled.
4336 */
4337bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4338{
4339	struct rcu_node *rnp = rcu_get_root();
4340
4341	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
4342	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
4343	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
4344	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
4345	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
4346		smp_mb(); /* Ensure GP ends before subsequent accesses. */
4347		return true;
4348	}
4349	return false;
4350}
4351EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
4352
4353/**
4354 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
4355 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
4356 *
4357 * If a full RCU grace period has elapsed since the earlier call to
4358 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
4359 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
4360 *
4361 * Yes, this function does not take counter wrap into account.
4362 * But counter wrap is harmless.  If the counter wraps, we have waited for
4363 * more than 2 billion grace periods (and way more on a 64-bit system!),
4364 * so waiting for a couple of additional grace periods should be just fine.
4365 *
4366 * This function provides the same memory-ordering guarantees that
4367 * would be provided by a synchronize_rcu() that was invoked at the call
4368 * to the function that provided @oldstate and that returned at the end
4369 * of this function.
4370 */
4371void cond_synchronize_rcu(unsigned long oldstate)
4372{
4373	if (!poll_state_synchronize_rcu(oldstate))
4374		synchronize_rcu();
4375}
4376EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
4377
4378/**
4379 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
4380 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
4381 *
4382 * If a full RCU grace period has elapsed since the call to
4383 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
4384 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
4385 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
4386 * for a full grace period.
4387 *
4388 * Yes, this function does not take counter wrap into account.
4389 * But counter wrap is harmless.  If the counter wraps, we have waited for
4390 * more than 2 billion grace periods (and way more on a 64-bit system!),
4391 * so waiting for a couple of additional grace periods should be just fine.
4392 *
4393 * This function provides the same memory-ordering guarantees that
4394 * would be provided by a synchronize_rcu() that was invoked at the call
4395 * to the function that provided @rgosp and that returned at the end of
4396 * this function.
4397 */
4398void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
4399{
4400	if (!poll_state_synchronize_rcu_full(rgosp))
4401		synchronize_rcu();
4402}
4403EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
4404
4405/*
4406 * Check to see if there is any immediate RCU-related work to be done by
4407 * the current CPU, returning 1 if so and zero otherwise.  The checks are
4408 * in order of increasing expense: checks that can be carried out against
4409 * CPU-local state are performed first.  However, we must check for CPU
4410 * stalls first, else we might not get a chance.
4411 */
4412static int rcu_pending(int user)
4413{
4414	bool gp_in_progress;
4415	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
4416	struct rcu_node *rnp = rdp->mynode;
4417
4418	lockdep_assert_irqs_disabled();
4419
4420	/* Check for CPU stalls, if enabled. */
4421	check_cpu_stall(rdp);
4422
4423	/* Does this CPU need a deferred NOCB wakeup? */
4424	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
4425		return 1;
4426
4427	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
4428	gp_in_progress = rcu_gp_in_progress();
4429	if ((user || rcu_is_cpu_rrupt_from_idle() ||
4430	     (gp_in_progress &&
4431	      time_before(jiffies, READ_ONCE(rcu_state.gp_start) +
4432			  nohz_full_patience_delay_jiffies))) &&
4433	    rcu_nohz_full_cpu())
4434		return 0;
4435
4436	/* Is the RCU core waiting for a quiescent state from this CPU? */
 
4437	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
4438		return 1;
4439
4440	/* Does this CPU have callbacks ready to invoke? */
4441	if (!rcu_rdp_is_offloaded(rdp) &&
4442	    rcu_segcblist_ready_cbs(&rdp->cblist))
4443		return 1;
4444
4445	/* Has RCU gone idle with this CPU needing another grace period? */
4446	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
4447	    !rcu_rdp_is_offloaded(rdp) &&
4448	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
4449		return 1;
4450
4451	/* Have RCU grace period completed or started?  */
4452	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
4453	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
4454		return 1;
4455
4456	/* nothing to do */
4457	return 0;
4458}
4459
4460/*
4461 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
4462 * the compiler is expected to optimize this away.
4463 */
4464static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
4465{
4466	trace_rcu_barrier(rcu_state.name, s, cpu,
4467			  atomic_read(&rcu_state.barrier_cpu_count), done);
4468}
4469
4470/*
4471 * RCU callback function for rcu_barrier().  If we are last, wake
4472 * up the task executing rcu_barrier().
4473 *
4474 * Note that the value of rcu_state.barrier_sequence must be captured
4475 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
4476 * other CPUs might count the value down to zero before this CPU gets
4477 * around to invoking rcu_barrier_trace(), which might result in bogus
4478 * data from the next instance of rcu_barrier().
4479 */
4480static void rcu_barrier_callback(struct rcu_head *rhp)
4481{
4482	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
4483
4484	rhp->next = rhp; // Mark the callback as having been invoked.
4485	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
4486		rcu_barrier_trace(TPS("LastCB"), -1, s);
4487		complete(&rcu_state.barrier_completion);
4488	} else {
4489		rcu_barrier_trace(TPS("CB"), -1, s);
4490	}
4491}
4492
4493/*
4494 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
4495 */
4496static void rcu_barrier_entrain(struct rcu_data *rdp)
4497{
4498	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
4499	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
4500	bool wake_nocb = false;
4501	bool was_alldone = false;
4502
4503	lockdep_assert_held(&rcu_state.barrier_lock);
4504	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
4505		return;
4506	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
4507	rdp->barrier_head.func = rcu_barrier_callback;
4508	debug_rcu_head_queue(&rdp->barrier_head);
4509	rcu_nocb_lock(rdp);
4510	/*
4511	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
4512	 * queue. This way we don't wait for bypass timer that can reach seconds
4513	 * if it's fully lazy.
4514	 */
4515	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
4516	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
4517	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
4518	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
4519		atomic_inc(&rcu_state.barrier_cpu_count);
4520	} else {
4521		debug_rcu_head_unqueue(&rdp->barrier_head);
4522		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
4523	}
4524	rcu_nocb_unlock(rdp);
4525	if (wake_nocb)
4526		wake_nocb_gp(rdp, false);
4527	smp_store_release(&rdp->barrier_seq_snap, gseq);
4528}
4529
4530/*
4531 * Called with preemption disabled, and from cross-cpu IRQ context.
4532 */
4533static void rcu_barrier_handler(void *cpu_in)
4534{
4535	uintptr_t cpu = (uintptr_t)cpu_in;
4536	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4537
4538	lockdep_assert_irqs_disabled();
4539	WARN_ON_ONCE(cpu != rdp->cpu);
4540	WARN_ON_ONCE(cpu != smp_processor_id());
4541	raw_spin_lock(&rcu_state.barrier_lock);
4542	rcu_barrier_entrain(rdp);
4543	raw_spin_unlock(&rcu_state.barrier_lock);
4544}
4545
4546/**
4547 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
4548 *
4549 * Note that this primitive does not necessarily wait for an RCU grace period
4550 * to complete.  For example, if there are no RCU callbacks queued anywhere
4551 * in the system, then rcu_barrier() is within its rights to return
4552 * immediately, without waiting for anything, much less an RCU grace period.
4553 */
4554void rcu_barrier(void)
4555{
4556	uintptr_t cpu;
4557	unsigned long flags;
4558	unsigned long gseq;
4559	struct rcu_data *rdp;
4560	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4561
4562	rcu_barrier_trace(TPS("Begin"), -1, s);
4563
4564	/* Take mutex to serialize concurrent rcu_barrier() requests. */
4565	mutex_lock(&rcu_state.barrier_mutex);
4566
4567	/* Did someone else do our work for us? */
4568	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4569		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
4570		smp_mb(); /* caller's subsequent code after above check. */
4571		mutex_unlock(&rcu_state.barrier_mutex);
4572		return;
4573	}
4574
4575	/* Mark the start of the barrier operation. */
4576	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4577	rcu_seq_start(&rcu_state.barrier_sequence);
4578	gseq = rcu_state.barrier_sequence;
4579	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4580
4581	/*
4582	 * Initialize the count to two rather than to zero in order
4583	 * to avoid a too-soon return to zero in case of an immediate
4584	 * invocation of the just-enqueued callback (or preemption of
4585	 * this task).  Exclude CPU-hotplug operations to ensure that no
4586	 * offline non-offloaded CPU has callbacks queued.
4587	 */
4588	init_completion(&rcu_state.barrier_completion);
4589	atomic_set(&rcu_state.barrier_cpu_count, 2);
4590	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4591
4592	/*
4593	 * Force each CPU with callbacks to register a new callback.
4594	 * When that callback is invoked, we will know that all of the
4595	 * corresponding CPU's preceding callbacks have been invoked.
4596	 */
4597	for_each_possible_cpu(cpu) {
4598		rdp = per_cpu_ptr(&rcu_data, cpu);
4599retry:
4600		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4601			continue;
4602		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4603		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4604			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4605			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4606			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4607			continue;
4608		}
4609		if (!rcu_rdp_cpu_online(rdp)) {
4610			rcu_barrier_entrain(rdp);
4611			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4612			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4613			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4614			continue;
4615		}
4616		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4617		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4618			schedule_timeout_uninterruptible(1);
4619			goto retry;
4620		}
4621		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4622		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4623	}
4624
4625	/*
4626	 * Now that we have an rcu_barrier_callback() callback on each
4627	 * CPU, and thus each counted, remove the initial count.
4628	 */
4629	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4630		complete(&rcu_state.barrier_completion);
4631
4632	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4633	wait_for_completion(&rcu_state.barrier_completion);
4634
4635	/* Mark the end of the barrier operation. */
4636	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4637	rcu_seq_end(&rcu_state.barrier_sequence);
4638	gseq = rcu_state.barrier_sequence;
4639	for_each_possible_cpu(cpu) {
4640		rdp = per_cpu_ptr(&rcu_data, cpu);
4641
4642		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4643	}
4644
4645	/* Other rcu_barrier() invocations can now safely proceed. */
4646	mutex_unlock(&rcu_state.barrier_mutex);
4647}
4648EXPORT_SYMBOL_GPL(rcu_barrier);
4649
4650static unsigned long rcu_barrier_last_throttle;
4651
4652/**
4653 * rcu_barrier_throttled - Do rcu_barrier(), but limit to one per second
4654 *
4655 * This can be thought of as guard rails around rcu_barrier() that
4656 * permits unrestricted userspace use, at least assuming the hardware's
4657 * try_cmpxchg() is robust.  There will be at most one call per second to
4658 * rcu_barrier() system-wide from use of this function, which means that
4659 * callers might needlessly wait a second or three.
4660 *
4661 * This is intended for use by test suites to avoid OOM by flushing RCU
4662 * callbacks from the previous test before starting the next.  See the
4663 * rcutree.do_rcu_barrier module parameter for more information.
4664 *
4665 * Why not simply make rcu_barrier() more scalable?  That might be
4666 * the eventual endpoint, but let's keep it simple for the time being.
4667 * Note that the module parameter infrastructure serializes calls to a
4668 * given .set() function, but should concurrent .set() invocation ever be
4669 * possible, we are ready!
4670 */
4671static void rcu_barrier_throttled(void)
4672{
4673	unsigned long j = jiffies;
4674	unsigned long old = READ_ONCE(rcu_barrier_last_throttle);
4675	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
4676
4677	while (time_in_range(j, old, old + HZ / 16) ||
4678	       !try_cmpxchg(&rcu_barrier_last_throttle, &old, j)) {
4679		schedule_timeout_idle(HZ / 16);
4680		if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4681			smp_mb(); /* caller's subsequent code after above check. */
4682			return;
4683		}
4684		j = jiffies;
4685		old = READ_ONCE(rcu_barrier_last_throttle);
4686	}
4687	rcu_barrier();
4688}
4689
4690/*
4691 * Invoke rcu_barrier_throttled() when a rcutree.do_rcu_barrier
4692 * request arrives.  We insist on a true value to allow for possible
4693 * future expansion.
4694 */
4695static int param_set_do_rcu_barrier(const char *val, const struct kernel_param *kp)
4696{
4697	bool b;
4698	int ret;
4699
4700	if (rcu_scheduler_active != RCU_SCHEDULER_RUNNING)
4701		return -EAGAIN;
4702	ret = kstrtobool(val, &b);
4703	if (!ret && b) {
4704		atomic_inc((atomic_t *)kp->arg);
4705		rcu_barrier_throttled();
4706		atomic_dec((atomic_t *)kp->arg);
4707	}
4708	return ret;
4709}
4710
4711/*
4712 * Output the number of outstanding rcutree.do_rcu_barrier requests.
4713 */
4714static int param_get_do_rcu_barrier(char *buffer, const struct kernel_param *kp)
4715{
4716	return sprintf(buffer, "%d\n", atomic_read((atomic_t *)kp->arg));
4717}
4718
4719static const struct kernel_param_ops do_rcu_barrier_ops = {
4720	.set = param_set_do_rcu_barrier,
4721	.get = param_get_do_rcu_barrier,
4722};
4723static atomic_t do_rcu_barrier;
4724module_param_cb(do_rcu_barrier, &do_rcu_barrier_ops, &do_rcu_barrier, 0644);
4725
4726/*
4727 * Compute the mask of online CPUs for the specified rcu_node structure.
4728 * This will not be stable unless the rcu_node structure's ->lock is
4729 * held, but the bit corresponding to the current CPU will be stable
4730 * in most contexts.
4731 */
4732static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
4733{
4734	return READ_ONCE(rnp->qsmaskinitnext);
4735}
4736
4737/*
4738 * Is the CPU corresponding to the specified rcu_data structure online
4739 * from RCU's perspective?  This perspective is given by that structure's
4740 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
4741 */
4742static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
4743{
4744	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
4745}
4746
4747bool rcu_cpu_online(int cpu)
4748{
4749	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4750
4751	return rcu_rdp_cpu_online(rdp);
4752}
4753
4754#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
4755
4756/*
4757 * Is the current CPU online as far as RCU is concerned?
4758 *
4759 * Disable preemption to avoid false positives that could otherwise
4760 * happen due to the current CPU number being sampled, this task being
4761 * preempted, its old CPU being taken offline, resuming on some other CPU,
4762 * then determining that its old CPU is now offline.
4763 *
4764 * Disable checking if in an NMI handler because we cannot safely
4765 * report errors from NMI handlers anyway.  In addition, it is OK to use
4766 * RCU on an offline processor during initial boot, hence the check for
4767 * rcu_scheduler_fully_active.
4768 */
4769bool rcu_lockdep_current_cpu_online(void)
4770{
4771	struct rcu_data *rdp;
4772	bool ret = false;
4773
4774	if (in_nmi() || !rcu_scheduler_fully_active)
4775		return true;
4776	preempt_disable_notrace();
4777	rdp = this_cpu_ptr(&rcu_data);
4778	/*
4779	 * Strictly, we care here about the case where the current CPU is
4780	 * in rcutree_report_cpu_starting() and thus has an excuse for rdp->grpmask
4781	 * not being up to date. So arch_spin_is_locked() might have a
4782	 * false positive if it's held by some *other* CPU, but that's
4783	 * OK because that just means a false *negative* on the warning.
4784	 */
4785	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
4786		ret = true;
4787	preempt_enable_notrace();
4788	return ret;
4789}
4790EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
4791
4792#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
4793
4794// Has rcu_init() been invoked?  This is used (for example) to determine
4795// whether spinlocks may be acquired safely.
4796static bool rcu_init_invoked(void)
4797{
4798	return !!READ_ONCE(rcu_state.n_online_cpus);
4799}
4800
4801/*
4802 * All CPUs for the specified rcu_node structure have gone offline,
4803 * and all tasks that were preempted within an RCU read-side critical
4804 * section while running on one of those CPUs have since exited their RCU
4805 * read-side critical section.  Some other CPU is reporting this fact with
4806 * the specified rcu_node structure's ->lock held and interrupts disabled.
4807 * This function therefore goes up the tree of rcu_node structures,
4808 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
4809 * the leaf rcu_node structure's ->qsmaskinit field has already been
4810 * updated.
4811 *
4812 * This function does check that the specified rcu_node structure has
4813 * all CPUs offline and no blocked tasks, so it is OK to invoke it
4814 * prematurely.  That said, invoking it after the fact will cost you
4815 * a needless lock acquisition.  So once it has done its work, don't
4816 * invoke it again.
4817 */
4818static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
4819{
4820	long mask;
4821	struct rcu_node *rnp = rnp_leaf;
4822
4823	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4824	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
4825	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
4826	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
4827		return;
4828	for (;;) {
4829		mask = rnp->grpmask;
4830		rnp = rnp->parent;
4831		if (!rnp)
4832			break;
4833		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
4834		rnp->qsmaskinit &= ~mask;
4835		/* Between grace periods, so better already be zero! */
4836		WARN_ON_ONCE(rnp->qsmask);
4837		if (rnp->qsmaskinit) {
4838			raw_spin_unlock_rcu_node(rnp);
4839			/* irqs remain disabled. */
4840			return;
4841		}
4842		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
4843	}
4844}
4845
4846/*
4847 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4848 * first CPU in a given leaf rcu_node structure coming online.  The caller
4849 * must hold the corresponding leaf rcu_node ->lock with interrupts
4850 * disabled.
4851 */
4852static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4853{
4854	long mask;
4855	long oldmask;
4856	struct rcu_node *rnp = rnp_leaf;
4857
4858	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4859	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4860	for (;;) {
4861		mask = rnp->grpmask;
4862		rnp = rnp->parent;
4863		if (rnp == NULL)
4864			return;
4865		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4866		oldmask = rnp->qsmaskinit;
4867		rnp->qsmaskinit |= mask;
4868		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4869		if (oldmask)
4870			return;
4871	}
4872}
4873
4874/*
4875 * Do boot-time initialization of a CPU's per-CPU RCU data.
4876 */
4877static void __init
4878rcu_boot_init_percpu_data(int cpu)
4879{
4880	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4881	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4882
4883	/* Set up local state, ensuring consistent view of global state. */
4884	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4885	INIT_WORK(&rdp->strict_work, strict_work_handler);
4886	WARN_ON_ONCE(ct->nesting != 1);
4887	WARN_ON_ONCE(rcu_watching_snap_in_eqs(ct_rcu_watching_cpu(cpu)));
4888	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4889	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4890	rdp->rcu_ofl_gp_state = RCU_GP_CLEANED;
4891	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4892	rdp->rcu_onl_gp_state = RCU_GP_CLEANED;
4893	rdp->last_sched_clock = jiffies;
4894	rdp->cpu = cpu;
4895	rcu_boot_init_nocb_percpu_data(rdp);
4896}
4897
4898struct kthread_worker *rcu_exp_gp_kworker;
4899
4900static void rcu_spawn_exp_par_gp_kworker(struct rcu_node *rnp)
4901{
4902	struct kthread_worker *kworker;
4903	const char *name = "rcu_exp_par_gp_kthread_worker/%d";
4904	struct sched_param param = { .sched_priority = kthread_prio };
4905	int rnp_index = rnp - rcu_get_root();
4906
4907	if (rnp->exp_kworker)
4908		return;
4909
4910	kworker = kthread_create_worker(0, name, rnp_index);
4911	if (IS_ERR_OR_NULL(kworker)) {
4912		pr_err("Failed to create par gp kworker on %d/%d\n",
4913		       rnp->grplo, rnp->grphi);
4914		return;
4915	}
4916	WRITE_ONCE(rnp->exp_kworker, kworker);
4917
4918	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4919		sched_setscheduler_nocheck(kworker->task, SCHED_FIFO, &param);
4920}
4921
4922static struct task_struct *rcu_exp_par_gp_task(struct rcu_node *rnp)
4923{
4924	struct kthread_worker *kworker = READ_ONCE(rnp->exp_kworker);
4925
4926	if (!kworker)
4927		return NULL;
4928
4929	return kworker->task;
4930}
4931
4932static void __init rcu_start_exp_gp_kworker(void)
4933{
4934	const char *name = "rcu_exp_gp_kthread_worker";
4935	struct sched_param param = { .sched_priority = kthread_prio };
4936
4937	rcu_exp_gp_kworker = kthread_create_worker(0, name);
4938	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4939		pr_err("Failed to create %s!\n", name);
4940		rcu_exp_gp_kworker = NULL;
4941		return;
4942	}
4943
4944	if (IS_ENABLED(CONFIG_RCU_EXP_KTHREAD))
4945		sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4946}
4947
4948static void rcu_spawn_rnp_kthreads(struct rcu_node *rnp)
4949{
4950	if (rcu_scheduler_fully_active) {
4951		mutex_lock(&rnp->kthread_mutex);
4952		rcu_spawn_one_boost_kthread(rnp);
4953		rcu_spawn_exp_par_gp_kworker(rnp);
4954		mutex_unlock(&rnp->kthread_mutex);
4955	}
4956}
4957
4958/*
4959 * Invoked early in the CPU-online process, when pretty much all services
4960 * are available.  The incoming CPU is not present.
4961 *
4962 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4963 * offline event can be happening at a given time.  Note also that we can
4964 * accept some slop in the rsp->gp_seq access due to the fact that this
4965 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4966 * And any offloaded callbacks are being numbered elsewhere.
4967 */
4968int rcutree_prepare_cpu(unsigned int cpu)
4969{
4970	unsigned long flags;
4971	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4972	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4973	struct rcu_node *rnp = rcu_get_root();
4974
4975	/* Set up local state, ensuring consistent view of global state. */
4976	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4977	rdp->qlen_last_fqs_check = 0;
4978	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4979	rdp->blimit = blimit;
4980	ct->nesting = 1;	/* CPU not up, no tearing. */
4981	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4982
4983	/*
4984	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4985	 * (re-)initialized.
4986	 */
4987	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4988		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
4989
4990	/*
4991	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4992	 * propagation up the rcu_node tree will happen at the beginning
4993	 * of the next grace period.
4994	 */
4995	rnp = rdp->mynode;
4996	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
 
4997	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4998	rdp->gp_seq_needed = rdp->gp_seq;
4999	rdp->cpu_no_qs.b.norm = true;
5000	rdp->core_needs_qs = false;
5001	rdp->rcu_iw_pending = false;
5002	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
5003	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
5004	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
5005	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5006	rcu_spawn_rnp_kthreads(rnp);
5007	rcu_spawn_cpu_nocb_kthread(cpu);
5008	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5009	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
5010
5011	return 0;
5012}
5013
5014/*
5015 * Update kthreads affinity during CPU-hotplug changes.
5016 *
5017 * Set the per-rcu_node kthread's affinity to cover all CPUs that are
5018 * served by the rcu_node in question.  The CPU hotplug lock is still
5019 * held, so the value of rnp->qsmaskinit will be stable.
5020 *
5021 * We don't include outgoingcpu in the affinity set, use -1 if there is
5022 * no outgoing CPU.  If there are no CPUs left in the affinity set,
5023 * this function allows the kthread to execute on any CPU.
5024 *
5025 * Any future concurrent calls are serialized via ->kthread_mutex.
5026 */
5027static void rcutree_affinity_setting(unsigned int cpu, int outgoingcpu)
5028{
5029	cpumask_var_t cm;
5030	unsigned long mask;
5031	struct rcu_data *rdp;
5032	struct rcu_node *rnp;
5033	struct task_struct *task_boost, *task_exp;
5034
5035	rdp = per_cpu_ptr(&rcu_data, cpu);
5036	rnp = rdp->mynode;
5037
5038	task_boost = rcu_boost_task(rnp);
5039	task_exp = rcu_exp_par_gp_task(rnp);
5040
5041	/*
5042	 * If CPU is the boot one, those tasks are created later from early
5043	 * initcall since kthreadd must be created first.
5044	 */
5045	if (!task_boost && !task_exp)
5046		return;
5047
5048	if (!zalloc_cpumask_var(&cm, GFP_KERNEL))
5049		return;
5050
5051	mutex_lock(&rnp->kthread_mutex);
5052	mask = rcu_rnp_online_cpus(rnp);
5053	for_each_leaf_node_possible_cpu(rnp, cpu)
5054		if ((mask & leaf_node_cpu_bit(rnp, cpu)) &&
5055		    cpu != outgoingcpu)
5056			cpumask_set_cpu(cpu, cm);
5057	cpumask_and(cm, cm, housekeeping_cpumask(HK_TYPE_RCU));
5058	if (cpumask_empty(cm)) {
5059		cpumask_copy(cm, housekeeping_cpumask(HK_TYPE_RCU));
5060		if (outgoingcpu >= 0)
5061			cpumask_clear_cpu(outgoingcpu, cm);
5062	}
5063
5064	if (task_exp)
5065		set_cpus_allowed_ptr(task_exp, cm);
5066
5067	if (task_boost)
5068		set_cpus_allowed_ptr(task_boost, cm);
5069
5070	mutex_unlock(&rnp->kthread_mutex);
5071
5072	free_cpumask_var(cm);
5073}
5074
5075/*
5076 * Has the specified (known valid) CPU ever been fully online?
5077 */
5078bool rcu_cpu_beenfullyonline(int cpu)
5079{
5080	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5081
5082	return smp_load_acquire(&rdp->beenonline);
5083}
5084
5085/*
5086 * Near the end of the CPU-online process.  Pretty much all services
5087 * enabled, and the CPU is now very much alive.
5088 */
5089int rcutree_online_cpu(unsigned int cpu)
5090{
5091	unsigned long flags;
5092	struct rcu_data *rdp;
5093	struct rcu_node *rnp;
5094
5095	rdp = per_cpu_ptr(&rcu_data, cpu);
5096	rnp = rdp->mynode;
5097	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5098	rnp->ffmask |= rdp->grpmask;
5099	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5100	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
5101		return 0; /* Too early in boot for scheduler work. */
5102	sync_sched_exp_online_cleanup(cpu);
5103	rcutree_affinity_setting(cpu, -1);
5104
5105	// Stop-machine done, so allow nohz_full to disable tick.
5106	tick_dep_clear(TICK_DEP_BIT_RCU);
5107	return 0;
5108}
5109
5110/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5111 * Mark the specified CPU as being online so that subsequent grace periods
5112 * (both expedited and normal) will wait on it.  Note that this means that
5113 * incoming CPUs are not allowed to use RCU read-side critical sections
5114 * until this function is called.  Failing to observe this restriction
5115 * will result in lockdep splats.
5116 *
5117 * Note that this function is special in that it is invoked directly
5118 * from the incoming CPU rather than from the cpuhp_step mechanism.
5119 * This is because this function must be invoked at a precise location.
5120 * This incoming CPU must not have enabled interrupts yet.
5121 *
5122 * This mirrors the effects of rcutree_report_cpu_dead().
5123 */
5124void rcutree_report_cpu_starting(unsigned int cpu)
5125{
 
5126	unsigned long mask;
5127	struct rcu_data *rdp;
5128	struct rcu_node *rnp;
5129	bool newcpu;
5130
5131	lockdep_assert_irqs_disabled();
5132	rdp = per_cpu_ptr(&rcu_data, cpu);
5133	if (rdp->cpu_started)
5134		return;
5135	rdp->cpu_started = true;
5136
5137	rnp = rdp->mynode;
5138	mask = rdp->grpmask;
 
5139	arch_spin_lock(&rcu_state.ofl_lock);
5140	rcu_watching_online();
5141	raw_spin_lock(&rcu_state.barrier_lock);
5142	raw_spin_lock_rcu_node(rnp);
5143	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
5144	raw_spin_unlock(&rcu_state.barrier_lock);
5145	newcpu = !(rnp->expmaskinitnext & mask);
5146	rnp->expmaskinitnext |= mask;
5147	/* Allow lockless access for expedited grace periods. */
5148	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
5149	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
5150	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
5151	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5152	rdp->rcu_onl_gp_state = READ_ONCE(rcu_state.gp_state);
5153
5154	/* An incoming CPU should never be blocking a grace period. */
5155	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
5156		/* rcu_report_qs_rnp() *really* wants some flags to restore */
5157		unsigned long flags;
5158
5159		local_irq_save(flags);
5160		rcu_disable_urgency_upon_qs(rdp);
5161		/* Report QS -after- changing ->qsmaskinitnext! */
5162		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5163	} else {
5164		raw_spin_unlock_rcu_node(rnp);
5165	}
5166	arch_spin_unlock(&rcu_state.ofl_lock);
5167	smp_store_release(&rdp->beenonline, true);
5168	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
5169}
5170
5171/*
5172 * The outgoing function has no further need of RCU, so remove it from
5173 * the rcu_node tree's ->qsmaskinitnext bit masks.
5174 *
5175 * Note that this function is special in that it is invoked directly
5176 * from the outgoing CPU rather than from the cpuhp_step mechanism.
5177 * This is because this function must be invoked at a precise location.
5178 *
5179 * This mirrors the effect of rcutree_report_cpu_starting().
5180 */
5181void rcutree_report_cpu_dead(void)
5182{
5183	unsigned long flags;
5184	unsigned long mask;
5185	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
5186	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
5187
5188	/*
5189	 * IRQS must be disabled from now on and until the CPU dies, or an interrupt
5190	 * may introduce a new READ-side while it is actually off the QS masks.
5191	 */
5192	lockdep_assert_irqs_disabled();
5193	// Do any dangling deferred wakeups.
5194	do_nocb_deferred_wakeup(rdp);
5195
5196	rcu_preempt_deferred_qs(current);
5197
5198	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
5199	mask = rdp->grpmask;
 
5200	arch_spin_lock(&rcu_state.ofl_lock);
5201	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
5202	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
5203	rdp->rcu_ofl_gp_state = READ_ONCE(rcu_state.gp_state);
5204	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
5205		/* Report quiescent state -before- changing ->qsmaskinitnext! */
5206		rcu_disable_urgency_upon_qs(rdp);
5207		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
5208		raw_spin_lock_irqsave_rcu_node(rnp, flags);
5209	}
5210	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
5211	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5212	arch_spin_unlock(&rcu_state.ofl_lock);
 
 
5213	rdp->cpu_started = false;
5214}
5215
5216#ifdef CONFIG_HOTPLUG_CPU
5217/*
5218 * The outgoing CPU has just passed through the dying-idle state, and we
5219 * are being invoked from the CPU that was IPIed to continue the offline
5220 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
5221 */
5222void rcutree_migrate_callbacks(int cpu)
5223{
5224	unsigned long flags;
5225	struct rcu_data *my_rdp;
5226	struct rcu_node *my_rnp;
5227	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5228	bool needwake;
5229
5230	if (rcu_rdp_is_offloaded(rdp))
5231		return;
 
5232
5233	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
5234	if (rcu_segcblist_empty(&rdp->cblist)) {
5235		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
5236		return;  /* No callbacks to migrate. */
5237	}
5238
5239	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
5240	rcu_barrier_entrain(rdp);
5241	my_rdp = this_cpu_ptr(&rcu_data);
5242	my_rnp = my_rdp->mynode;
5243	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
5244	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
5245	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
5246	/* Leverage recent GPs and set GP for new callbacks. */
5247	needwake = rcu_advance_cbs(my_rnp, rdp) ||
5248		   rcu_advance_cbs(my_rnp, my_rdp);
5249	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
5250	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
5251	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
5252	rcu_segcblist_disable(&rdp->cblist);
5253	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
5254	check_cb_ovld_locked(my_rdp, my_rnp);
5255	if (rcu_rdp_is_offloaded(my_rdp)) {
5256		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5257		__call_rcu_nocb_wake(my_rdp, true, flags);
5258	} else {
5259		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
5260		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
5261	}
5262	local_irq_restore(flags);
5263	if (needwake)
5264		rcu_gp_kthread_wake();
5265	lockdep_assert_irqs_enabled();
5266	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
5267		  !rcu_segcblist_empty(&rdp->cblist),
5268		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
5269		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
5270		  rcu_segcblist_first_cb(&rdp->cblist));
5271}
5272
5273/*
5274 * The CPU has been completely removed, and some other CPU is reporting
5275 * this fact from process context.  Do the remainder of the cleanup.
5276 * There can only be one CPU hotplug operation at a time, so no need for
5277 * explicit locking.
5278 */
5279int rcutree_dead_cpu(unsigned int cpu)
5280{
5281	ASSERT_EXCLUSIVE_WRITER(rcu_state.n_online_cpus);
5282	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
5283	// Stop-machine done, so allow nohz_full to disable tick.
5284	tick_dep_clear(TICK_DEP_BIT_RCU);
5285	return 0;
5286}
5287
5288/*
5289 * Near the end of the offline process.  Trace the fact that this CPU
5290 * is going offline.
5291 */
5292int rcutree_dying_cpu(unsigned int cpu)
5293{
5294	bool blkd;
5295	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
5296	struct rcu_node *rnp = rdp->mynode;
5297
5298	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
5299	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
5300			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
5301	return 0;
5302}
5303
5304/*
5305 * Near the beginning of the process.  The CPU is still very much alive
5306 * with pretty much all services enabled.
5307 */
5308int rcutree_offline_cpu(unsigned int cpu)
5309{
5310	unsigned long flags;
5311	struct rcu_data *rdp;
5312	struct rcu_node *rnp;
5313
5314	rdp = per_cpu_ptr(&rcu_data, cpu);
5315	rnp = rdp->mynode;
5316	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5317	rnp->ffmask &= ~rdp->grpmask;
5318	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5319
5320	rcutree_affinity_setting(cpu, cpu);
5321
5322	// nohz_full CPUs need the tick for stop-machine to work quickly
5323	tick_dep_set(TICK_DEP_BIT_RCU);
5324	return 0;
5325}
5326#endif /* #ifdef CONFIG_HOTPLUG_CPU */
5327
5328/*
5329 * On non-huge systems, use expedited RCU grace periods to make suspend
5330 * and hibernation run faster.
5331 */
5332static int rcu_pm_notify(struct notifier_block *self,
5333			 unsigned long action, void *hcpu)
5334{
5335	switch (action) {
5336	case PM_HIBERNATION_PREPARE:
5337	case PM_SUSPEND_PREPARE:
5338		rcu_async_hurry();
5339		rcu_expedite_gp();
5340		break;
5341	case PM_POST_HIBERNATION:
5342	case PM_POST_SUSPEND:
5343		rcu_unexpedite_gp();
5344		rcu_async_relax();
5345		break;
5346	default:
5347		break;
5348	}
5349	return NOTIFY_OK;
5350}
5351
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5352/*
5353 * Spawn the kthreads that handle RCU's grace periods.
5354 */
5355static int __init rcu_spawn_gp_kthread(void)
5356{
5357	unsigned long flags;
5358	struct rcu_node *rnp;
5359	struct sched_param sp;
5360	struct task_struct *t;
5361	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
5362
5363	rcu_scheduler_fully_active = 1;
5364	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
5365	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
5366		return 0;
5367	if (kthread_prio) {
5368		sp.sched_priority = kthread_prio;
5369		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
5370	}
5371	rnp = rcu_get_root();
5372	raw_spin_lock_irqsave_rcu_node(rnp, flags);
5373	WRITE_ONCE(rcu_state.gp_activity, jiffies);
5374	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
5375	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
5376	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
5377	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
5378	wake_up_process(t);
5379	/* This is a pre-SMP initcall, we expect a single CPU */
5380	WARN_ON(num_online_cpus() > 1);
5381	/*
5382	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
5383	 * due to rcu_scheduler_fully_active.
5384	 */
5385	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
5386	rcu_spawn_rnp_kthreads(rdp->mynode);
5387	rcu_spawn_core_kthreads();
5388	/* Create kthread worker for expedited GPs */
5389	rcu_start_exp_gp_kworker();
5390	return 0;
5391}
5392early_initcall(rcu_spawn_gp_kthread);
5393
5394/*
5395 * This function is invoked towards the end of the scheduler's
5396 * initialization process.  Before this is called, the idle task might
5397 * contain synchronous grace-period primitives (during which time, this idle
5398 * task is booting the system, and such primitives are no-ops).  After this
5399 * function is called, any synchronous grace-period primitives are run as
5400 * expedited, with the requesting task driving the grace period forward.
5401 * A later core_initcall() rcu_set_runtime_mode() will switch to full
5402 * runtime RCU functionality.
5403 */
5404void rcu_scheduler_starting(void)
5405{
5406	unsigned long flags;
5407	struct rcu_node *rnp;
5408
5409	WARN_ON(num_online_cpus() != 1);
5410	WARN_ON(nr_context_switches() > 0);
5411	rcu_test_sync_prims();
5412
5413	// Fix up the ->gp_seq counters.
5414	local_irq_save(flags);
5415	rcu_for_each_node_breadth_first(rnp)
5416		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
5417	local_irq_restore(flags);
5418
5419	// Switch out of early boot mode.
5420	rcu_scheduler_active = RCU_SCHEDULER_INIT;
5421	rcu_test_sync_prims();
5422}
5423
5424/*
5425 * Helper function for rcu_init() that initializes the rcu_state structure.
5426 */
5427static void __init rcu_init_one(void)
5428{
5429	static const char * const buf[] = RCU_NODE_NAME_INIT;
5430	static const char * const fqs[] = RCU_FQS_NAME_INIT;
5431	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
5432	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
5433
5434	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
5435	int cpustride = 1;
5436	int i;
5437	int j;
5438	struct rcu_node *rnp;
5439
5440	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
5441
5442	/* Silence gcc 4.8 false positive about array index out of range. */
5443	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
5444		panic("rcu_init_one: rcu_num_lvls out of range");
5445
5446	/* Initialize the level-tracking arrays. */
5447
5448	for (i = 1; i < rcu_num_lvls; i++)
5449		rcu_state.level[i] =
5450			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
5451	rcu_init_levelspread(levelspread, num_rcu_lvl);
5452
5453	/* Initialize the elements themselves, starting from the leaves. */
5454
5455	for (i = rcu_num_lvls - 1; i >= 0; i--) {
5456		cpustride *= levelspread[i];
5457		rnp = rcu_state.level[i];
5458		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
5459			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
5460			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
5461						   &rcu_node_class[i], buf[i]);
5462			raw_spin_lock_init(&rnp->fqslock);
5463			lockdep_set_class_and_name(&rnp->fqslock,
5464						   &rcu_fqs_class[i], fqs[i]);
5465			rnp->gp_seq = rcu_state.gp_seq;
5466			rnp->gp_seq_needed = rcu_state.gp_seq;
5467			rnp->completedqs = rcu_state.gp_seq;
5468			rnp->qsmask = 0;
5469			rnp->qsmaskinit = 0;
5470			rnp->grplo = j * cpustride;
5471			rnp->grphi = (j + 1) * cpustride - 1;
5472			if (rnp->grphi >= nr_cpu_ids)
5473				rnp->grphi = nr_cpu_ids - 1;
5474			if (i == 0) {
5475				rnp->grpnum = 0;
5476				rnp->grpmask = 0;
5477				rnp->parent = NULL;
5478			} else {
5479				rnp->grpnum = j % levelspread[i - 1];
5480				rnp->grpmask = BIT(rnp->grpnum);
5481				rnp->parent = rcu_state.level[i - 1] +
5482					      j / levelspread[i - 1];
5483			}
5484			rnp->level = i;
5485			INIT_LIST_HEAD(&rnp->blkd_tasks);
5486			rcu_init_one_nocb(rnp);
5487			init_waitqueue_head(&rnp->exp_wq[0]);
5488			init_waitqueue_head(&rnp->exp_wq[1]);
5489			init_waitqueue_head(&rnp->exp_wq[2]);
5490			init_waitqueue_head(&rnp->exp_wq[3]);
5491			spin_lock_init(&rnp->exp_lock);
5492			mutex_init(&rnp->kthread_mutex);
5493			raw_spin_lock_init(&rnp->exp_poll_lock);
5494			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
5495			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
5496		}
5497	}
5498
5499	init_swait_queue_head(&rcu_state.gp_wq);
5500	init_swait_queue_head(&rcu_state.expedited_wq);
5501	rnp = rcu_first_leaf_node();
5502	for_each_possible_cpu(i) {
5503		while (i > rnp->grphi)
5504			rnp++;
5505		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
5506		per_cpu_ptr(&rcu_data, i)->barrier_head.next =
5507			&per_cpu_ptr(&rcu_data, i)->barrier_head;
5508		rcu_boot_init_percpu_data(i);
5509	}
5510}
5511
5512/*
5513 * Force priority from the kernel command-line into range.
5514 */
5515static void __init sanitize_kthread_prio(void)
5516{
5517	int kthread_prio_in = kthread_prio;
5518
5519	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
5520	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
5521		kthread_prio = 2;
5522	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
5523		kthread_prio = 1;
5524	else if (kthread_prio < 0)
5525		kthread_prio = 0;
5526	else if (kthread_prio > 99)
5527		kthread_prio = 99;
5528
5529	if (kthread_prio != kthread_prio_in)
5530		pr_alert("%s: Limited prio to %d from %d\n",
5531			 __func__, kthread_prio, kthread_prio_in);
5532}
5533
5534/*
5535 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
5536 * replace the definitions in tree.h because those are needed to size
5537 * the ->node array in the rcu_state structure.
5538 */
5539void rcu_init_geometry(void)
5540{
5541	ulong d;
5542	int i;
5543	static unsigned long old_nr_cpu_ids;
5544	int rcu_capacity[RCU_NUM_LVLS];
5545	static bool initialized;
5546
5547	if (initialized) {
5548		/*
5549		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
5550		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
5551		 */
5552		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
5553		return;
5554	}
5555
5556	old_nr_cpu_ids = nr_cpu_ids;
5557	initialized = true;
5558
5559	/*
5560	 * Initialize any unspecified boot parameters.
5561	 * The default values of jiffies_till_first_fqs and
5562	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
5563	 * value, which is a function of HZ, then adding one for each
5564	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
5565	 */
5566	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
5567	if (jiffies_till_first_fqs == ULONG_MAX)
5568		jiffies_till_first_fqs = d;
5569	if (jiffies_till_next_fqs == ULONG_MAX)
5570		jiffies_till_next_fqs = d;
5571	adjust_jiffies_till_sched_qs();
5572
5573	/* If the compile-time values are accurate, just leave. */
5574	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
5575	    nr_cpu_ids == NR_CPUS)
5576		return;
5577	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
5578		rcu_fanout_leaf, nr_cpu_ids);
5579
5580	/*
5581	 * The boot-time rcu_fanout_leaf parameter must be at least two
5582	 * and cannot exceed the number of bits in the rcu_node masks.
5583	 * Complain and fall back to the compile-time values if this
5584	 * limit is exceeded.
5585	 */
5586	if (rcu_fanout_leaf < 2 || rcu_fanout_leaf > BITS_PER_LONG) {
 
5587		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5588		WARN_ON(1);
5589		return;
5590	}
5591
5592	/*
5593	 * Compute number of nodes that can be handled an rcu_node tree
5594	 * with the given number of levels.
5595	 */
5596	rcu_capacity[0] = rcu_fanout_leaf;
5597	for (i = 1; i < RCU_NUM_LVLS; i++)
5598		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
5599
5600	/*
5601	 * The tree must be able to accommodate the configured number of CPUs.
5602	 * If this limit is exceeded, fall back to the compile-time values.
5603	 */
5604	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
5605		rcu_fanout_leaf = RCU_FANOUT_LEAF;
5606		WARN_ON(1);
5607		return;
5608	}
5609
5610	/* Calculate the number of levels in the tree. */
5611	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
5612	}
5613	rcu_num_lvls = i + 1;
5614
5615	/* Calculate the number of rcu_nodes at each level of the tree. */
5616	for (i = 0; i < rcu_num_lvls; i++) {
5617		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
5618		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
5619	}
5620
5621	/* Calculate the total number of rcu_node structures. */
5622	rcu_num_nodes = 0;
5623	for (i = 0; i < rcu_num_lvls; i++)
5624		rcu_num_nodes += num_rcu_lvl[i];
5625}
5626
5627/*
5628 * Dump out the structure of the rcu_node combining tree associated
5629 * with the rcu_state structure.
5630 */
5631static void __init rcu_dump_rcu_node_tree(void)
5632{
5633	int level = 0;
5634	struct rcu_node *rnp;
5635
5636	pr_info("rcu_node tree layout dump\n");
5637	pr_info(" ");
5638	rcu_for_each_node_breadth_first(rnp) {
5639		if (rnp->level != level) {
5640			pr_cont("\n");
5641			pr_info(" ");
5642			level = rnp->level;
5643		}
5644		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
5645	}
5646	pr_cont("\n");
5647}
5648
5649struct workqueue_struct *rcu_gp_wq;
5650
5651static void __init kfree_rcu_batch_init(void)
5652{
5653	int cpu;
5654	int i, j;
5655	struct shrinker *kfree_rcu_shrinker;
5656
5657	/* Clamp it to [0:100] seconds interval. */
5658	if (rcu_delay_page_cache_fill_msec < 0 ||
5659		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
5660
5661		rcu_delay_page_cache_fill_msec =
5662			clamp(rcu_delay_page_cache_fill_msec, 0,
5663				(int) (100 * MSEC_PER_SEC));
5664
5665		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
5666			rcu_delay_page_cache_fill_msec);
5667	}
5668
5669	for_each_possible_cpu(cpu) {
5670		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
5671
5672		for (i = 0; i < KFREE_N_BATCHES; i++) {
5673			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
5674			krcp->krw_arr[i].krcp = krcp;
5675
5676			for (j = 0; j < FREE_N_CHANNELS; j++)
5677				INIT_LIST_HEAD(&krcp->krw_arr[i].bulk_head_free[j]);
5678		}
5679
5680		for (i = 0; i < FREE_N_CHANNELS; i++)
5681			INIT_LIST_HEAD(&krcp->bulk_head[i]);
5682
5683		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
5684		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
5685		krcp->initialized = true;
5686	}
5687
5688	kfree_rcu_shrinker = shrinker_alloc(0, "rcu-kfree");
5689	if (!kfree_rcu_shrinker) {
5690		pr_err("Failed to allocate kfree_rcu() shrinker!\n");
5691		return;
5692	}
5693
5694	kfree_rcu_shrinker->count_objects = kfree_rcu_shrink_count;
5695	kfree_rcu_shrinker->scan_objects = kfree_rcu_shrink_scan;
5696
5697	shrinker_register(kfree_rcu_shrinker);
5698}
5699
5700void __init rcu_init(void)
5701{
5702	int cpu = smp_processor_id();
5703
5704	rcu_early_boot_tests();
5705
5706	kfree_rcu_batch_init();
5707	rcu_bootup_announce();
5708	sanitize_kthread_prio();
5709	rcu_init_geometry();
5710	rcu_init_one();
5711	if (dump_tree)
5712		rcu_dump_rcu_node_tree();
5713	if (use_softirq)
5714		open_softirq(RCU_SOFTIRQ, rcu_core_si);
5715
5716	/*
5717	 * We don't need protection against CPU-hotplug here because
5718	 * this is called early in boot, before either interrupts
5719	 * or the scheduler are operational.
5720	 */
5721	pm_notifier(rcu_pm_notify, 0);
5722	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
5723	rcutree_prepare_cpu(cpu);
5724	rcutree_report_cpu_starting(cpu);
5725	rcutree_online_cpu(cpu);
5726
5727	/* Create workqueue for Tree SRCU and for expedited GPs. */
5728	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
5729	WARN_ON(!rcu_gp_wq);
5730
5731	sync_wq = alloc_workqueue("sync_wq", WQ_MEM_RECLAIM, 0);
5732	WARN_ON(!sync_wq);
5733
5734	/* Fill in default value for rcutree.qovld boot parameter. */
5735	/* -After- the rcu_node ->lock fields are initialized! */
5736	if (qovld < 0)
5737		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
5738	else
5739		qovld_calc = qovld;
5740
5741	// Kick-start in case any polled grace periods started early.
5742	(void)start_poll_synchronize_rcu_expedited();
5743
5744	rcu_test_sync_prims();
5745
5746	tasks_cblist_init_generic();
5747}
5748
5749#include "tree_stall.h"
5750#include "tree_exp.h"
5751#include "tree_nocb.h"
5752#include "tree_plugin.h"