Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * Read-Copy Update mechanism for mutual exclusion (tree-based version)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   4 *
   5 * Copyright IBM Corporation, 2008
   6 *
   7 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
   8 *	    Manfred Spraul <manfred@colorfullife.com>
   9 *	    Paul E. McKenney <paulmck@linux.ibm.com>
  10 *
  11 * Based on the original work by Paul McKenney <paulmck@linux.ibm.com>
  12 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  13 *
  14 * For detailed explanation of Read-Copy Update mechanism see -
  15 *	Documentation/RCU
  16 */
  17
  18#define pr_fmt(fmt) "rcu: " fmt
  19
  20#include <linux/types.h>
  21#include <linux/kernel.h>
  22#include <linux/init.h>
  23#include <linux/spinlock.h>
  24#include <linux/smp.h>
  25#include <linux/rcupdate_wait.h>
  26#include <linux/interrupt.h>
  27#include <linux/sched.h>
  28#include <linux/sched/debug.h>
  29#include <linux/nmi.h>
  30#include <linux/atomic.h>
  31#include <linux/bitops.h>
  32#include <linux/export.h>
  33#include <linux/completion.h>
  34#include <linux/moduleparam.h>
  35#include <linux/panic.h>
  36#include <linux/panic_notifier.h>
  37#include <linux/percpu.h>
  38#include <linux/notifier.h>
  39#include <linux/cpu.h>
  40#include <linux/mutex.h>
  41#include <linux/time.h>
  42#include <linux/kernel_stat.h>
  43#include <linux/wait.h>
  44#include <linux/kthread.h>
  45#include <uapi/linux/sched/types.h>
  46#include <linux/prefetch.h>
  47#include <linux/delay.h>
 
  48#include <linux/random.h>
  49#include <linux/trace_events.h>
  50#include <linux/suspend.h>
  51#include <linux/ftrace.h>
  52#include <linux/tick.h>
  53#include <linux/sysrq.h>
  54#include <linux/kprobes.h>
  55#include <linux/gfp.h>
  56#include <linux/oom.h>
  57#include <linux/smpboot.h>
  58#include <linux/jiffies.h>
  59#include <linux/slab.h>
  60#include <linux/sched/isolation.h>
  61#include <linux/sched/clock.h>
  62#include <linux/vmalloc.h>
  63#include <linux/mm.h>
  64#include <linux/kasan.h>
  65#include <linux/context_tracking.h>
  66#include "../time/tick-internal.h"
  67
  68#include "tree.h"
  69#include "rcu.h"
  70
  71#ifdef MODULE_PARAM_PREFIX
  72#undef MODULE_PARAM_PREFIX
  73#endif
  74#define MODULE_PARAM_PREFIX "rcutree."
  75
  76/* Data structures. */
  77
  78static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, rcu_data) = {
  79	.gpwrap = true,
  80#ifdef CONFIG_RCU_NOCB_CPU
  81	.cblist.flags = SEGCBLIST_RCU_CORE,
 
 
 
 
 
 
 
 
 
 
 
 
  82#endif
  83};
  84static struct rcu_state rcu_state = {
  85	.level = { &rcu_state.node[0] },
  86	.gp_state = RCU_GP_IDLE,
  87	.gp_seq = (0UL - 300UL) << RCU_SEQ_CTR_SHIFT,
  88	.barrier_mutex = __MUTEX_INITIALIZER(rcu_state.barrier_mutex),
  89	.barrier_lock = __RAW_SPIN_LOCK_UNLOCKED(rcu_state.barrier_lock),
  90	.name = RCU_NAME,
  91	.abbr = RCU_ABBR,
  92	.exp_mutex = __MUTEX_INITIALIZER(rcu_state.exp_mutex),
  93	.exp_wake_mutex = __MUTEX_INITIALIZER(rcu_state.exp_wake_mutex),
  94	.ofl_lock = __ARCH_SPIN_LOCK_UNLOCKED,
  95};
 
 
 
 
 
 
 
 
 
 
  96
  97/* Dump rcu_node combining tree at boot to verify correct setup. */
  98static bool dump_tree;
  99module_param(dump_tree, bool, 0444);
 100/* By default, use RCU_SOFTIRQ instead of rcuc kthreads. */
 101static bool use_softirq = !IS_ENABLED(CONFIG_PREEMPT_RT);
 102#ifndef CONFIG_PREEMPT_RT
 103module_param(use_softirq, bool, 0444);
 104#endif
 105/* Control rcu_node-tree auto-balancing at boot time. */
 106static bool rcu_fanout_exact;
 107module_param(rcu_fanout_exact, bool, 0444);
 108/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 109static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 110module_param(rcu_fanout_leaf, int, 0444);
 111int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 112/* Number of rcu_nodes at specified level. */
 113int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 114int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 
 
 115
 116/*
 117 * The rcu_scheduler_active variable is initialized to the value
 118 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 119 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 120 * RCU can assume that there is but one task, allowing RCU to (for example)
 121 * optimize synchronize_rcu() to a simple barrier().  When this variable
 122 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 123 * to detect real grace periods.  This variable is also used to suppress
 124 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 125 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 126 * is fully initialized, including all of its kthreads having been spawned.
 127 */
 128int rcu_scheduler_active __read_mostly;
 129EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 130
 131/*
 132 * The rcu_scheduler_fully_active variable transitions from zero to one
 133 * during the early_initcall() processing, which is after the scheduler
 134 * is capable of creating new tasks.  So RCU processing (for example,
 135 * creating tasks for RCU priority boosting) must be delayed until after
 136 * rcu_scheduler_fully_active transitions from zero to one.  We also
 137 * currently delay invocation of any RCU callbacks until after this point.
 138 *
 139 * It might later prove better for people registering RCU callbacks during
 140 * early boot to take responsibility for these callbacks, but one step at
 141 * a time.
 142 */
 143static int rcu_scheduler_fully_active __read_mostly;
 144
 145static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
 146			      unsigned long gps, unsigned long flags);
 147static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 148static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 149static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 150static void invoke_rcu_core(void);
 151static void rcu_report_exp_rdp(struct rcu_data *rdp);
 
 
 152static void sync_sched_exp_online_cleanup(int cpu);
 153static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp);
 154static bool rcu_rdp_is_offloaded(struct rcu_data *rdp);
 155
 156/*
 157 * rcuc/rcub/rcuop kthread realtime priority. The "rcuop"
 158 * real-time priority(enabling/disabling) is controlled by
 159 * the extra CONFIG_RCU_NOCB_CPU_CB_BOOST configuration.
 160 */
 161static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 162module_param(kthread_prio, int, 0444);
 163
 164/* Delay in jiffies for grace-period initialization delays, debug only. */
 165
 166static int gp_preinit_delay;
 167module_param(gp_preinit_delay, int, 0444);
 168static int gp_init_delay;
 169module_param(gp_init_delay, int, 0444);
 170static int gp_cleanup_delay;
 171module_param(gp_cleanup_delay, int, 0444);
 172
 173// Add delay to rcu_read_unlock() for strict grace periods.
 174static int rcu_unlock_delay;
 175#ifdef CONFIG_RCU_STRICT_GRACE_PERIOD
 176module_param(rcu_unlock_delay, int, 0444);
 177#endif
 178
 179/*
 180 * This rcu parameter is runtime-read-only. It reflects
 181 * a minimum allowed number of objects which can be cached
 182 * per-CPU. Object size is equal to one page. This value
 183 * can be changed at boot time.
 184 */
 185static int rcu_min_cached_objs = 5;
 186module_param(rcu_min_cached_objs, int, 0444);
 187
 188// A page shrinker can ask for pages to be freed to make them
 189// available for other parts of the system. This usually happens
 190// under low memory conditions, and in that case we should also
 191// defer page-cache filling for a short time period.
 192//
 193// The default value is 5 seconds, which is long enough to reduce
 194// interference with the shrinker while it asks other systems to
 195// drain their caches.
 196static int rcu_delay_page_cache_fill_msec = 5000;
 197module_param(rcu_delay_page_cache_fill_msec, int, 0444);
 198
 199/* Retrieve RCU kthreads priority for rcutorture */
 200int rcu_get_gp_kthreads_prio(void)
 201{
 202	return kthread_prio;
 203}
 204EXPORT_SYMBOL_GPL(rcu_get_gp_kthreads_prio);
 205
 206/*
 207 * Number of grace periods between delays, normalized by the duration of
 208 * the delay.  The longer the delay, the more the grace periods between
 209 * each delay.  The reason for this normalization is that it means that,
 210 * for non-zero delays, the overall slowdown of grace periods is constant
 211 * regardless of the duration of the delay.  This arrangement balances
 212 * the need for long delays to increase some race probabilities with the
 213 * need for fast grace periods to increase other race probabilities.
 214 */
 215#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays for debugging. */
 
 
 
 
 
 
 
 
 
 
 
 
 216
 217/*
 218 * Compute the mask of online CPUs for the specified rcu_node structure.
 219 * This will not be stable unless the rcu_node structure's ->lock is
 220 * held, but the bit corresponding to the current CPU will be stable
 221 * in most contexts.
 222 */
 223static unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 224{
 225	return READ_ONCE(rnp->qsmaskinitnext);
 226}
 227
 228/*
 229 * Is the CPU corresponding to the specified rcu_data structure online
 230 * from RCU's perspective?  This perspective is given by that structure's
 231 * ->qsmaskinitnext field rather than by the global cpu_online_mask.
 232 */
 233static bool rcu_rdp_cpu_online(struct rcu_data *rdp)
 234{
 235	return !!(rdp->grpmask & rcu_rnp_online_cpus(rdp->mynode));
 236}
 237
 238/*
 239 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 240 * permit this function to be invoked without holding the root rcu_node
 241 * structure's ->lock, but of course results can be subject to change.
 
 242 */
 243static int rcu_gp_in_progress(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 244{
 245	return rcu_seq_state(rcu_seq_current(&rcu_state.gp_seq));
 
 
 
 
 
 
 246}
 247
 248/*
 249 * Return the number of callbacks queued on the specified CPU.
 250 * Handles both the nocbs and normal cases.
 251 */
 252static long rcu_get_n_cbs_cpu(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 253{
 254	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
 
 255
 256	if (rcu_segcblist_is_enabled(&rdp->cblist))
 257		return rcu_segcblist_n_cbs(&rdp->cblist);
 258	return 0;
 
 
 
 
 
 
 
 
 
 259}
 260
 261void rcu_softirq_qs(void)
 
 
 
 
 262{
 263	rcu_qs();
 264	rcu_preempt_deferred_qs(current);
 265	rcu_tasks_qs(current, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 266}
 267
 268/*
 269 * Reset the current CPU's ->dynticks counter to indicate that the
 270 * newly onlined CPU is no longer in an extended quiescent state.
 271 * This will either leave the counter unchanged, or increment it
 272 * to the next non-quiescent value.
 273 *
 274 * The non-atomic test/increment sequence works because the upper bits
 275 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 276 * or when the corresponding CPU is offline.
 277 */
 278static void rcu_dynticks_eqs_online(void)
 279{
 280	if (ct_dynticks() & RCU_DYNTICKS_IDX)
 
 
 281		return;
 282	ct_state_inc(RCU_DYNTICKS_IDX);
 
 
 
 
 
 
 
 
 
 
 
 
 283}
 284
 285/*
 286 * Snapshot the ->dynticks counter with full ordering so as to allow
 287 * stable comparison of this counter with past and future snapshots.
 288 */
 289static int rcu_dynticks_snap(int cpu)
 290{
 291	smp_mb();  // Fundamental RCU ordering guarantee.
 292	return ct_dynticks_cpu_acquire(cpu);
 
 293}
 294
 295/*
 296 * Return true if the snapshot returned from rcu_dynticks_snap()
 297 * indicates that RCU is in an extended quiescent state.
 298 */
 299static bool rcu_dynticks_in_eqs(int snap)
 300{
 301	return !(snap & RCU_DYNTICKS_IDX);
 302}
 303
 304/*
 305 * Return true if the CPU corresponding to the specified rcu_data
 306 * structure has spent some time in an extended quiescent state since
 307 * rcu_dynticks_snap() returned the specified snapshot.
 308 */
 309static bool rcu_dynticks_in_eqs_since(struct rcu_data *rdp, int snap)
 310{
 311	return snap != rcu_dynticks_snap(rdp->cpu);
 312}
 313
 314/*
 315 * Return true if the referenced integer is zero while the specified
 316 * CPU remains within a single extended quiescent state.
 317 */
 318bool rcu_dynticks_zero_in_eqs(int cpu, int *vp)
 319{
 320	int snap;
 
 
 321
 322	// If not quiescent, force back to earlier extended quiescent state.
 323	snap = ct_dynticks_cpu(cpu) & ~RCU_DYNTICKS_IDX;
 324	smp_rmb(); // Order ->dynticks and *vp reads.
 325	if (READ_ONCE(*vp))
 326		return false;  // Non-zero, so report failure;
 327	smp_rmb(); // Order *vp read and ->dynticks re-read.
 
 
 
 
 
 
 
 
 
 
 328
 329	// If still in the same extended quiescent state, we are good!
 330	return snap == ct_dynticks_cpu(cpu);
 
 
 
 
 
 331}
 332
 333/*
 334 * Let the RCU core know that this CPU has gone through the scheduler,
 335 * which is a quiescent state.  This is called when the need for a
 336 * quiescent state is urgent, so we burn an atomic operation and full
 337 * memory barriers to let the RCU core know about it, regardless of what
 338 * this CPU might (or might not) do in the near future.
 339 *
 340 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 341 *
 342 * The caller must have disabled interrupts and must not be idle.
 343 */
 344notrace void rcu_momentary_dyntick_idle(void)
 345{
 346	int seq;
 
 
 347
 348	raw_cpu_write(rcu_data.rcu_need_heavy_qs, false);
 349	seq = ct_state_inc(2 * RCU_DYNTICKS_IDX);
 350	/* It is illegal to call this from idle state. */
 351	WARN_ON_ONCE(!(seq & RCU_DYNTICKS_IDX));
 352	rcu_preempt_deferred_qs(current);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 353}
 354EXPORT_SYMBOL_GPL(rcu_momentary_dyntick_idle);
 355
 356/**
 357 * rcu_is_cpu_rrupt_from_idle - see if 'interrupted' from idle
 
 
 
 
 
 358 *
 359 * If the current CPU is idle and running at a first-level (not nested)
 360 * interrupt, or directly, from idle, return true.
 
 361 *
 362 * The caller must have at least disabled IRQs.
 363 */
 364static int rcu_is_cpu_rrupt_from_idle(void)
 365{
 366	long nesting;
 367
 368	/*
 369	 * Usually called from the tick; but also used from smp_function_call()
 370	 * for expedited grace periods. This latter can result in running from
 371	 * the idle task, instead of an actual IPI.
 372	 */
 373	lockdep_assert_irqs_disabled();
 374
 375	/* Check for counter underflows */
 376	RCU_LOCKDEP_WARN(ct_dynticks_nesting() < 0,
 377			 "RCU dynticks_nesting counter underflow!");
 378	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() <= 0,
 379			 "RCU dynticks_nmi_nesting counter underflow/zero!");
 380
 381	/* Are we at first interrupt nesting level? */
 382	nesting = ct_dynticks_nmi_nesting();
 383	if (nesting > 1)
 384		return false;
 385
 386	/*
 387	 * If we're not in an interrupt, we must be in the idle task!
 388	 */
 389	WARN_ON_ONCE(!nesting && !is_idle_task(current));
 390
 391	/* Does CPU appear to be idle from an RCU standpoint? */
 392	return ct_dynticks_nesting() == 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 393}
 
 394
 395#define DEFAULT_RCU_BLIMIT (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 1000 : 10)
 396				// Maximum callbacks per rcu_do_batch ...
 397#define DEFAULT_MAX_RCU_BLIMIT 10000 // ... even during callback flood.
 398static long blimit = DEFAULT_RCU_BLIMIT;
 399#define DEFAULT_RCU_QHIMARK 10000 // If this many pending, ignore blimit.
 400static long qhimark = DEFAULT_RCU_QHIMARK;
 401#define DEFAULT_RCU_QLOMARK 100   // Once only this many pending, use blimit.
 402static long qlowmark = DEFAULT_RCU_QLOMARK;
 403#define DEFAULT_RCU_QOVLD_MULT 2
 404#define DEFAULT_RCU_QOVLD (DEFAULT_RCU_QOVLD_MULT * DEFAULT_RCU_QHIMARK)
 405static long qovld = DEFAULT_RCU_QOVLD; // If this many pending, hammer QS.
 406static long qovld_calc = -1;	  // No pre-initialization lock acquisitions!
 407
 408module_param(blimit, long, 0444);
 409module_param(qhimark, long, 0444);
 410module_param(qlowmark, long, 0444);
 411module_param(qovld, long, 0444);
 412
 413static ulong jiffies_till_first_fqs = IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD) ? 0 : ULONG_MAX;
 414static ulong jiffies_till_next_fqs = ULONG_MAX;
 415static bool rcu_kick_kthreads;
 416static int rcu_divisor = 7;
 417module_param(rcu_divisor, int, 0644);
 418
 419/* Force an exit from rcu_do_batch() after 3 milliseconds. */
 420static long rcu_resched_ns = 3 * NSEC_PER_MSEC;
 421module_param(rcu_resched_ns, long, 0644);
 422
 423/*
 424 * How long the grace period must be before we start recruiting
 425 * quiescent-state help from rcu_note_context_switch().
 426 */
 427static ulong jiffies_till_sched_qs = ULONG_MAX;
 428module_param(jiffies_till_sched_qs, ulong, 0444);
 429static ulong jiffies_to_sched_qs; /* See adjust_jiffies_till_sched_qs(). */
 430module_param(jiffies_to_sched_qs, ulong, 0444); /* Display only! */
 
 
 
 
 431
 432/*
 433 * Make sure that we give the grace-period kthread time to detect any
 434 * idle CPUs before taking active measures to force quiescent states.
 435 * However, don't go below 100 milliseconds, adjusted upwards for really
 436 * large systems.
 437 */
 438static void adjust_jiffies_till_sched_qs(void)
 439{
 440	unsigned long j;
 441
 442	/* If jiffies_till_sched_qs was specified, respect the request. */
 443	if (jiffies_till_sched_qs != ULONG_MAX) {
 444		WRITE_ONCE(jiffies_to_sched_qs, jiffies_till_sched_qs);
 445		return;
 446	}
 447	/* Otherwise, set to third fqs scan, but bound below on large system. */
 448	j = READ_ONCE(jiffies_till_first_fqs) +
 449		      2 * READ_ONCE(jiffies_till_next_fqs);
 450	if (j < HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV)
 451		j = HZ / 10 + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
 452	pr_info("RCU calculated value of scheduler-enlistment delay is %ld jiffies.\n", j);
 453	WRITE_ONCE(jiffies_to_sched_qs, j);
 454}
 455
 456static int param_set_first_fqs_jiffies(const char *val, const struct kernel_param *kp)
 457{
 458	ulong j;
 459	int ret = kstrtoul(val, 0, &j);
 460
 461	if (!ret) {
 462		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : j);
 463		adjust_jiffies_till_sched_qs();
 464	}
 465	return ret;
 466}
 
 467
 468static int param_set_next_fqs_jiffies(const char *val, const struct kernel_param *kp)
 
 
 
 469{
 470	ulong j;
 471	int ret = kstrtoul(val, 0, &j);
 472
 473	if (!ret) {
 474		WRITE_ONCE(*(ulong *)kp->arg, (j > HZ) ? HZ : (j ?: 1));
 475		adjust_jiffies_till_sched_qs();
 476	}
 477	return ret;
 478}
 
 479
 480static const struct kernel_param_ops first_fqs_jiffies_ops = {
 481	.set = param_set_first_fqs_jiffies,
 482	.get = param_get_ulong,
 483};
 484
 485static const struct kernel_param_ops next_fqs_jiffies_ops = {
 486	.set = param_set_next_fqs_jiffies,
 487	.get = param_get_ulong,
 488};
 489
 490module_param_cb(jiffies_till_first_fqs, &first_fqs_jiffies_ops, &jiffies_till_first_fqs, 0644);
 491module_param_cb(jiffies_till_next_fqs, &next_fqs_jiffies_ops, &jiffies_till_next_fqs, 0644);
 492module_param(rcu_kick_kthreads, bool, 0644);
 
 
 
 
 
 493
 494static void force_qs_rnp(int (*f)(struct rcu_data *rdp));
 495static int rcu_pending(int user);
 
 
 
 
 
 
 496
 497/*
 498 * Return the number of RCU GPs completed thus far for debug & stats.
 499 */
 500unsigned long rcu_get_gp_seq(void)
 501{
 502	return READ_ONCE(rcu_state.gp_seq);
 503}
 504EXPORT_SYMBOL_GPL(rcu_get_gp_seq);
 505
 506/*
 507 * Return the number of RCU expedited batches completed thus far for
 508 * debug & stats.  Odd numbers mean that a batch is in progress, even
 509 * numbers mean idle.  The value returned will thus be roughly double
 510 * the cumulative batches since boot.
 511 */
 512unsigned long rcu_exp_batches_completed(void)
 513{
 514	return rcu_state.expedited_sequence;
 515}
 516EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 517
 518/*
 519 * Return the root node of the rcu_state structure.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520 */
 521static struct rcu_node *rcu_get_root(void)
 522{
 523	return &rcu_state.node[0];
 
 
 
 
 
 
 524}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 525
 526/*
 527 * Send along grace-period-related data for rcutorture diagnostics.
 528 */
 529void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 530			    unsigned long *gp_seq)
 531{
 
 
 532	switch (test_type) {
 533	case RCU_FLAVOR:
 534		*flags = READ_ONCE(rcu_state.gp_flags);
 535		*gp_seq = rcu_seq_current(&rcu_state.gp_seq);
 
 
 
 
 
 536		break;
 537	default:
 538		break;
 539	}
 
 
 
 
 
 540}
 541EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 542
 543#if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK))
 544/*
 545 * An empty function that will trigger a reschedule on
 546 * IRQ tail once IRQs get re-enabled on userspace/guest resume.
 
 547 */
 548static void late_wakeup_func(struct irq_work *work)
 549{
 
 550}
 
 551
 552static DEFINE_PER_CPU(struct irq_work, late_wakeup_work) =
 553	IRQ_WORK_INIT(late_wakeup_func);
 
 
 
 
 
 554
 555/*
 556 * If either:
 557 *
 558 * 1) the task is about to enter in guest mode and $ARCH doesn't support KVM generic work
 559 * 2) the task is about to enter in user mode and $ARCH doesn't support generic entry.
 560 *
 561 * In these cases the late RCU wake ups aren't supported in the resched loops and our
 562 * last resort is to fire a local irq_work that will trigger a reschedule once IRQs
 563 * get re-enabled again.
 564 */
 565noinstr void rcu_irq_work_resched(void)
 566{
 567	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 568
 569	if (IS_ENABLED(CONFIG_GENERIC_ENTRY) && !(current->flags & PF_VCPU))
 570		return;
 
 571
 572	if (IS_ENABLED(CONFIG_KVM_XFER_TO_GUEST_WORK) && (current->flags & PF_VCPU))
 573		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574
 575	instrumentation_begin();
 576	if (do_nocb_deferred_wakeup(rdp) && need_resched()) {
 577		irq_work_queue(this_cpu_ptr(&late_wakeup_work));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 578	}
 579	instrumentation_end();
 
 
 
 
 
 
 
 
 
 
 
 580}
 581#endif /* #if defined(CONFIG_NO_HZ_FULL) && (!defined(CONFIG_GENERIC_ENTRY) || !defined(CONFIG_KVM_XFER_TO_GUEST_WORK)) */
 582
 583#ifdef CONFIG_PROVE_RCU
 584/**
 585 * rcu_irq_exit_check_preempt - Validate that scheduling is possible
 
 
 
 
 
 
 
 
 586 */
 587void rcu_irq_exit_check_preempt(void)
 588{
 589	lockdep_assert_irqs_disabled();
 590
 591	RCU_LOCKDEP_WARN(ct_dynticks_nesting() <= 0,
 592			 "RCU dynticks_nesting counter underflow/zero!");
 593	RCU_LOCKDEP_WARN(ct_dynticks_nmi_nesting() !=
 594			 DYNTICK_IRQ_NONIDLE,
 595			 "Bad RCU  dynticks_nmi_nesting counter\n");
 596	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 597			 "RCU in extended quiescent state!");
 598}
 599#endif /* #ifdef CONFIG_PROVE_RCU */
 600
 601#ifdef CONFIG_NO_HZ_FULL
 602/**
 603 * __rcu_irq_enter_check_tick - Enable scheduler tick on CPU if RCU needs it.
 604 *
 605 * The scheduler tick is not normally enabled when CPUs enter the kernel
 606 * from nohz_full userspace execution.  After all, nohz_full userspace
 607 * execution is an RCU quiescent state and the time executing in the kernel
 608 * is quite short.  Except of course when it isn't.  And it is not hard to
 609 * cause a large system to spend tens of seconds or even minutes looping
 610 * in the kernel, which can cause a number of problems, include RCU CPU
 611 * stall warnings.
 612 *
 613 * Therefore, if a nohz_full CPU fails to report a quiescent state
 614 * in a timely manner, the RCU grace-period kthread sets that CPU's
 615 * ->rcu_urgent_qs flag with the expectation that the next interrupt or
 616 * exception will invoke this function, which will turn on the scheduler
 617 * tick, which will enable RCU to detect that CPU's quiescent states,
 618 * for example, due to cond_resched() calls in CONFIG_PREEMPT=n kernels.
 619 * The tick will be disabled once a quiescent state is reported for
 620 * this CPU.
 621 *
 622 * Of course, in carefully tuned systems, there might never be an
 623 * interrupt or exception.  In that case, the RCU grace-period kthread
 624 * will eventually cause one to happen.  However, in less carefully
 625 * controlled environments, this function allows RCU to get what it
 626 * needs without creating otherwise useless interruptions.
 627 */
 628void __rcu_irq_enter_check_tick(void)
 629{
 630	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 631
 632	// If we're here from NMI there's nothing to do.
 633	if (in_nmi())
 634		return;
 
 
 
 
 
 
 
 
 
 
 
 635
 636	RCU_LOCKDEP_WARN(rcu_dynticks_curr_cpu_in_eqs(),
 637			 "Illegal rcu_irq_enter_check_tick() from extended quiescent state");
 
 
 
 
 
 638
 639	if (!tick_nohz_full_cpu(rdp->cpu) ||
 640	    !READ_ONCE(rdp->rcu_urgent_qs) ||
 641	    READ_ONCE(rdp->rcu_forced_tick)) {
 642		// RCU doesn't need nohz_full help from this CPU, or it is
 643		// already getting that help.
 
 
 
 644		return;
 645	}
 646
 647	// We get here only when not in an extended quiescent state and
 648	// from interrupts (as opposed to NMIs).  Therefore, (1) RCU is
 649	// already watching and (2) The fact that we are in an interrupt
 650	// handler and that the rcu_node lock is an irq-disabled lock
 651	// prevents self-deadlock.  So we can safely recheck under the lock.
 652	// Note that the nohz_full state currently cannot change.
 653	raw_spin_lock_rcu_node(rdp->mynode);
 654	if (rdp->rcu_urgent_qs && !rdp->rcu_forced_tick) {
 655		// A nohz_full CPU is in the kernel and RCU needs a
 656		// quiescent state.  Turn on the tick!
 657		WRITE_ONCE(rdp->rcu_forced_tick, true);
 658		tick_dep_set_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 659	}
 660	raw_spin_unlock_rcu_node(rdp->mynode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 661}
 662#endif /* CONFIG_NO_HZ_FULL */
 663
 664/*
 665 * Check to see if any future non-offloaded RCU-related work will need
 666 * to be done by the current CPU, even if none need be done immediately,
 667 * returning 1 if so.  This function is part of the RCU implementation;
 668 * it is -not- an exported member of the RCU API.  This is used by
 669 * the idle-entry code to figure out whether it is safe to disable the
 670 * scheduler-clock interrupt.
 671 *
 672 * Just check whether or not this CPU has non-offloaded RCU callbacks
 673 * queued.
 674 */
 675int rcu_needs_cpu(void)
 676{
 677	return !rcu_segcblist_empty(&this_cpu_ptr(&rcu_data)->cblist) &&
 678		!rcu_rdp_is_offloaded(this_cpu_ptr(&rcu_data));
 
 
 
 679}
 680
 681/*
 682 * If any sort of urgency was applied to the current CPU (for example,
 683 * the scheduler-clock interrupt was enabled on a nohz_full CPU) in order
 684 * to get to a quiescent state, disable it.
 
 
 
 685 */
 686static void rcu_disable_urgency_upon_qs(struct rcu_data *rdp)
 687{
 688	raw_lockdep_assert_held_rcu_node(rdp->mynode);
 689	WRITE_ONCE(rdp->rcu_urgent_qs, false);
 690	WRITE_ONCE(rdp->rcu_need_heavy_qs, false);
 691	if (tick_nohz_full_cpu(rdp->cpu) && rdp->rcu_forced_tick) {
 692		tick_dep_clear_cpu(rdp->cpu, TICK_DEP_BIT_RCU);
 693		WRITE_ONCE(rdp->rcu_forced_tick, false);
 
 
 
 
 694	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 695}
 696
 697/**
 698 * rcu_is_watching - see if RCU thinks that the current CPU is not idle
 699 *
 700 * Return true if RCU is watching the running CPU, which means that this
 701 * CPU can safely enter RCU read-side critical sections.  In other words,
 702 * if the current CPU is not in its idle loop or is in an interrupt or
 703 * NMI handler, return true.
 704 *
 705 * Make notrace because it can be called by the internal functions of
 706 * ftrace, and making this notrace removes unnecessary recursion calls.
 707 */
 708notrace bool rcu_is_watching(void)
 709{
 710	bool ret;
 711
 712	preempt_disable_notrace();
 713	ret = !rcu_dynticks_curr_cpu_in_eqs();
 714	preempt_enable_notrace();
 715	return ret;
 716}
 717EXPORT_SYMBOL_GPL(rcu_is_watching);
 718
 719/*
 720 * If a holdout task is actually running, request an urgent quiescent
 721 * state from its CPU.  This is unsynchronized, so migrations can cause
 722 * the request to go to the wrong CPU.  Which is OK, all that will happen
 723 * is that the CPU's next context switch will be a bit slower and next
 724 * time around this task will generate another request.
 725 */
 726void rcu_request_urgent_qs_task(struct task_struct *t)
 727{
 728	int cpu;
 729
 730	barrier();
 731	cpu = task_cpu(t);
 732	if (!task_curr(t))
 733		return; /* This task is not running on that CPU. */
 734	smp_store_release(per_cpu_ptr(&rcu_data.rcu_urgent_qs, cpu), true);
 735}
 736
 737#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
 738
 739/*
 740 * Is the current CPU online as far as RCU is concerned?
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 741 *
 742 * Disable preemption to avoid false positives that could otherwise
 743 * happen due to the current CPU number being sampled, this task being
 744 * preempted, its old CPU being taken offline, resuming on some other CPU,
 745 * then determining that its old CPU is now offline.
 746 *
 747 * Disable checking if in an NMI handler because we cannot safely
 748 * report errors from NMI handlers anyway.  In addition, it is OK to use
 749 * RCU on an offline processor during initial boot, hence the check for
 750 * rcu_scheduler_fully_active.
 751 */
 752bool rcu_lockdep_current_cpu_online(void)
 753{
 754	struct rcu_data *rdp;
 755	bool ret = false;
 
 756
 757	if (in_nmi() || !rcu_scheduler_fully_active)
 758		return true;
 759	preempt_disable_notrace();
 760	rdp = this_cpu_ptr(&rcu_data);
 761	/*
 762	 * Strictly, we care here about the case where the current CPU is
 763	 * in rcu_cpu_starting() and thus has an excuse for rdp->grpmask
 764	 * not being up to date. So arch_spin_is_locked() might have a
 765	 * false positive if it's held by some *other* CPU, but that's
 766	 * OK because that just means a false *negative* on the warning.
 767	 */
 768	if (rcu_rdp_cpu_online(rdp) || arch_spin_is_locked(&rcu_state.ofl_lock))
 769		ret = true;
 770	preempt_enable_notrace();
 771	return ret;
 772}
 773EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
 774
 775#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
 776
 
 
 
 
 
 
 
 
 
 
 
 
 
 777/*
 778 * When trying to report a quiescent state on behalf of some other CPU,
 779 * it is our responsibility to check for and handle potential overflow
 780 * of the rcu_node ->gp_seq counter with respect to the rcu_data counters.
 781 * After all, the CPU might be in deep idle state, and thus executing no
 782 * code whatsoever.
 783 */
 784static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
 785{
 786	raw_lockdep_assert_held_rcu_node(rnp);
 787	if (ULONG_CMP_LT(rcu_seq_current(&rdp->gp_seq) + ULONG_MAX / 4,
 788			 rnp->gp_seq))
 789		WRITE_ONCE(rdp->gpwrap, true);
 790	if (ULONG_CMP_LT(rdp->rcu_iw_gp_seq + ULONG_MAX / 4, rnp->gp_seq))
 791		rdp->rcu_iw_gp_seq = rnp->gp_seq + ULONG_MAX / 4;
 792}
 793
 794/*
 795 * Snapshot the specified CPU's dynticks counter so that we can later
 796 * credit them with an implicit quiescent state.  Return 1 if this CPU
 797 * is in dynticks idle mode, which is an extended quiescent state.
 798 */
 799static int dyntick_save_progress_counter(struct rcu_data *rdp)
 800{
 801	rdp->dynticks_snap = rcu_dynticks_snap(rdp->cpu);
 802	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
 803		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 804		rcu_gpnum_ovf(rdp->mynode, rdp);
 805		return 1;
 806	}
 807	return 0;
 808}
 809
 810/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 811 * Return true if the specified CPU has passed through a quiescent
 812 * state by virtue of being in or having passed through an dynticks
 813 * idle state since the last call to dyntick_save_progress_counter()
 814 * for this same CPU, or by virtue of having been offline.
 815 */
 816static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
 817{
 818	unsigned long jtsq;
 
 
 819	struct rcu_node *rnp = rdp->mynode;
 820
 821	/*
 822	 * If the CPU passed through or entered a dynticks idle phase with
 823	 * no active irq/NMI handlers, then we can safely pretend that the CPU
 824	 * already acknowledged the request to pass through a quiescent
 825	 * state.  Either way, that CPU cannot possibly be in an RCU
 826	 * read-side critical section that started before the beginning
 827	 * of the current RCU grace period.
 828	 */
 829	if (rcu_dynticks_in_eqs_since(rdp, rdp->dynticks_snap)) {
 830		trace_rcu_fqs(rcu_state.name, rdp->gp_seq, rdp->cpu, TPS("dti"));
 
 831		rcu_gpnum_ovf(rnp, rdp);
 832		return 1;
 833	}
 834
 835	/*
 836	 * Complain if a CPU that is considered to be offline from RCU's
 837	 * perspective has not yet reported a quiescent state.  After all,
 838	 * the offline CPU should have reported a quiescent state during
 839	 * the CPU-offline process, or, failing that, by rcu_gp_init()
 840	 * if it ran concurrently with either the CPU going offline or the
 841	 * last task on a leaf rcu_node structure exiting its RCU read-side
 842	 * critical section while all CPUs corresponding to that structure
 843	 * are offline.  This added warning detects bugs in any of these
 844	 * code paths.
 845	 *
 846	 * The rcu_node structure's ->lock is held here, which excludes
 847	 * the relevant portions the CPU-hotplug code, the grace-period
 848	 * initialization code, and the rcu_read_unlock() code paths.
 849	 *
 850	 * For more detail, please refer to the "Hotplug CPU" section
 851	 * of RCU's Requirements documentation.
 852	 */
 853	if (WARN_ON_ONCE(!rcu_rdp_cpu_online(rdp))) {
 854		struct rcu_node *rnp1;
 855
 856		pr_info("%s: grp: %d-%d level: %d ->gp_seq %ld ->completedqs %ld\n",
 857			__func__, rnp->grplo, rnp->grphi, rnp->level,
 858			(long)rnp->gp_seq, (long)rnp->completedqs);
 859		for (rnp1 = rnp; rnp1; rnp1 = rnp1->parent)
 860			pr_info("%s: %d:%d ->qsmask %#lx ->qsmaskinit %#lx ->qsmaskinitnext %#lx ->rcu_gp_init_mask %#lx\n",
 861				__func__, rnp1->grplo, rnp1->grphi, rnp1->qsmask, rnp1->qsmaskinit, rnp1->qsmaskinitnext, rnp1->rcu_gp_init_mask);
 862		pr_info("%s %d: %c online: %ld(%d) offline: %ld(%d)\n",
 863			__func__, rdp->cpu, ".o"[rcu_rdp_cpu_online(rdp)],
 864			(long)rdp->rcu_onl_gp_seq, rdp->rcu_onl_gp_flags,
 865			(long)rdp->rcu_ofl_gp_seq, rdp->rcu_ofl_gp_flags);
 866		return 1; /* Break things loose after complaining. */
 867	}
 868
 869	/*
 870	 * A CPU running for an extended time within the kernel can
 871	 * delay RCU grace periods: (1) At age jiffies_to_sched_qs,
 872	 * set .rcu_urgent_qs, (2) At age 2*jiffies_to_sched_qs, set
 873	 * both .rcu_need_heavy_qs and .rcu_urgent_qs.  Note that the
 874	 * unsynchronized assignments to the per-CPU rcu_need_heavy_qs
 875	 * variable are safe because the assignments are repeated if this
 876	 * CPU failed to pass through a quiescent state.  This code
 877	 * also checks .jiffies_resched in case jiffies_to_sched_qs
 878	 * is set way high.
 879	 */
 880	jtsq = READ_ONCE(jiffies_to_sched_qs);
 881	if (!READ_ONCE(rdp->rcu_need_heavy_qs) &&
 882	    (time_after(jiffies, rcu_state.gp_start + jtsq * 2) ||
 883	     time_after(jiffies, rcu_state.jiffies_resched) ||
 884	     rcu_state.cbovld)) {
 885		WRITE_ONCE(rdp->rcu_need_heavy_qs, true);
 
 
 
 
 
 886		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
 887		smp_store_release(&rdp->rcu_urgent_qs, true);
 888	} else if (time_after(jiffies, rcu_state.gp_start + jtsq)) {
 889		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 890	}
 891
 892	/*
 893	 * NO_HZ_FULL CPUs can run in-kernel without rcu_sched_clock_irq!
 894	 * The above code handles this, but only for straight cond_resched().
 895	 * And some in-kernel loops check need_resched() before calling
 896	 * cond_resched(), which defeats the above code for CPUs that are
 897	 * running in-kernel with scheduling-clock interrupts disabled.
 898	 * So hit them over the head with the resched_cpu() hammer!
 899	 */
 900	if (tick_nohz_full_cpu(rdp->cpu) &&
 901	    (time_after(jiffies, READ_ONCE(rdp->last_fqs_resched) + jtsq * 3) ||
 902	     rcu_state.cbovld)) {
 903		WRITE_ONCE(rdp->rcu_urgent_qs, true);
 904		resched_cpu(rdp->cpu);
 905		WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 906	}
 907
 908	/*
 909	 * If more than halfway to RCU CPU stall-warning time, invoke
 910	 * resched_cpu() more frequently to try to loosen things up a bit.
 911	 * Also check to see if the CPU is getting hammered with interrupts,
 912	 * but only once per grace period, just to keep the IPIs down to
 913	 * a dull roar.
 914	 */
 915	if (time_after(jiffies, rcu_state.jiffies_resched)) {
 916		if (time_after(jiffies,
 917			       READ_ONCE(rdp->last_fqs_resched) + jtsq)) {
 918			resched_cpu(rdp->cpu);
 919			WRITE_ONCE(rdp->last_fqs_resched, jiffies);
 920		}
 921		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
 922		    !rdp->rcu_iw_pending && rdp->rcu_iw_gp_seq != rnp->gp_seq &&
 923		    (rnp->ffmask & rdp->grpmask)) {
 
 924			rdp->rcu_iw_pending = true;
 925			rdp->rcu_iw_gp_seq = rnp->gp_seq;
 926			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
 927		}
 928	}
 929
 930	return 0;
 931}
 932
 933/* Trace-event wrapper function for trace_rcu_future_grace_period.  */
 934static void trace_rcu_this_gp(struct rcu_node *rnp, struct rcu_data *rdp,
 935			      unsigned long gp_seq_req, const char *s)
 936{
 937	trace_rcu_future_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
 938				      gp_seq_req, rnp->level,
 939				      rnp->grplo, rnp->grphi, s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940}
 941
 942/*
 943 * rcu_start_this_gp - Request the start of a particular grace period
 944 * @rnp_start: The leaf node of the CPU from which to start.
 945 * @rdp: The rcu_data corresponding to the CPU from which to start.
 946 * @gp_seq_req: The gp_seq of the grace period to start.
 
 947 *
 948 * Start the specified grace period, as needed to handle newly arrived
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 949 * callbacks.  The required future grace periods are recorded in each
 950 * rcu_node structure's ->gp_seq_needed field.  Returns true if there
 951 * is reason to awaken the grace-period kthread.
 952 *
 953 * The caller must hold the specified rcu_node structure's ->lock, which
 954 * is why the caller is responsible for waking the grace-period kthread.
 955 *
 956 * Returns true if the GP thread needs to be awakened else false.
 957 */
 958static bool rcu_start_this_gp(struct rcu_node *rnp_start, struct rcu_data *rdp,
 959			      unsigned long gp_seq_req)
 
 960{
 
 961	bool ret = false;
 962	struct rcu_node *rnp;
 
 
 963
 964	/*
 965	 * Use funnel locking to either acquire the root rcu_node
 966	 * structure's lock or bail out if the need for this grace period
 967	 * has already been recorded -- or if that grace period has in
 968	 * fact already started.  If there is already a grace period in
 969	 * progress in a non-leaf node, no recording is needed because the
 970	 * end of the grace period will scan the leaf rcu_node structures.
 971	 * Note that rnp_start->lock must not be released.
 972	 */
 973	raw_lockdep_assert_held_rcu_node(rnp_start);
 974	trace_rcu_this_gp(rnp_start, rdp, gp_seq_req, TPS("Startleaf"));
 975	for (rnp = rnp_start; 1; rnp = rnp->parent) {
 976		if (rnp != rnp_start)
 977			raw_spin_lock_rcu_node(rnp);
 978		if (ULONG_CMP_GE(rnp->gp_seq_needed, gp_seq_req) ||
 979		    rcu_seq_started(&rnp->gp_seq, gp_seq_req) ||
 980		    (rnp != rnp_start &&
 981		     rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))) {
 982			trace_rcu_this_gp(rnp, rdp, gp_seq_req,
 983					  TPS("Prestarted"));
 984			goto unlock_out;
 985		}
 986		WRITE_ONCE(rnp->gp_seq_needed, gp_seq_req);
 987		if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq))) {
 988			/*
 989			 * We just marked the leaf or internal node, and a
 990			 * grace period is in progress, which means that
 991			 * rcu_gp_cleanup() will see the marking.  Bail to
 992			 * reduce contention.
 993			 */
 994			trace_rcu_this_gp(rnp_start, rdp, gp_seq_req,
 995					  TPS("Startedleaf"));
 996			goto unlock_out;
 997		}
 998		if (rnp != rnp_start && rnp->parent != NULL)
 999			raw_spin_unlock_rcu_node(rnp);
1000		if (!rnp->parent)
1001			break;  /* At root, and perhaps also leaf. */
1002	}
1003
1004	/* If GP already in progress, just leave, otherwise start one. */
1005	if (rcu_gp_in_progress()) {
1006		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedleafroot"));
1007		goto unlock_out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1008	}
1009	trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("Startedroot"));
1010	WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags | RCU_GP_FLAG_INIT);
1011	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1012	if (!READ_ONCE(rcu_state.gp_kthread)) {
1013		trace_rcu_this_gp(rnp, rdp, gp_seq_req, TPS("NoGPkthread"));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1014		goto unlock_out;
1015	}
1016	trace_rcu_grace_period(rcu_state.name, data_race(rcu_state.gp_seq), TPS("newreq"));
1017	ret = true;  /* Caller must wake GP kthread. */
1018unlock_out:
1019	/* Push furthest requested GP to leaf node and rcu_data structure. */
1020	if (ULONG_CMP_LT(gp_seq_req, rnp->gp_seq_needed)) {
1021		WRITE_ONCE(rnp_start->gp_seq_needed, rnp->gp_seq_needed);
1022		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
 
 
 
1023	}
1024	if (rnp != rnp_start)
1025		raw_spin_unlock_rcu_node(rnp);
 
 
 
 
1026	return ret;
1027}
1028
1029/*
1030 * Clean up any old requests for the just-ended grace period.  Also return
1031 * whether any additional grace periods have been requested.
1032 */
1033static bool rcu_future_gp_cleanup(struct rcu_node *rnp)
1034{
1035	bool needmore;
1036	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
1037
1038	needmore = ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed);
1039	if (!needmore)
1040		rnp->gp_seq_needed = rnp->gp_seq; /* Avoid counter wrap. */
1041	trace_rcu_this_gp(rnp, rdp, rnp->gp_seq,
1042			  needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1043	return needmore;
1044}
1045
1046/*
1047 * Awaken the grace-period kthread.  Don't do a self-awaken (unless in an
1048 * interrupt or softirq handler, in which case we just might immediately
1049 * sleep upon return, resulting in a grace-period hang), and don't bother
1050 * awakening when there is nothing for the grace-period kthread to do
1051 * (as in several CPUs raced to awaken, we lost), and finally don't try
1052 * to awaken a kthread that has not yet been created.  If all those checks
1053 * are passed, track some debug information and awaken.
1054 *
1055 * So why do the self-wakeup when in an interrupt or softirq handler
1056 * in the grace-period kthread's context?  Because the kthread might have
1057 * been interrupted just as it was going to sleep, and just after the final
1058 * pre-sleep check of the awaken condition.  In this case, a wakeup really
1059 * is required, and is therefore supplied.
1060 */
1061static void rcu_gp_kthread_wake(void)
1062{
1063	struct task_struct *t = READ_ONCE(rcu_state.gp_kthread);
1064
1065	if ((current == t && !in_hardirq() && !in_serving_softirq()) ||
1066	    !READ_ONCE(rcu_state.gp_flags) || !t)
1067		return;
1068	WRITE_ONCE(rcu_state.gp_wake_time, jiffies);
1069	WRITE_ONCE(rcu_state.gp_wake_seq, READ_ONCE(rcu_state.gp_seq));
1070	swake_up_one(&rcu_state.gp_wq);
1071}
1072
1073/*
1074 * If there is room, assign a ->gp_seq number to any callbacks on this
1075 * CPU that have not already been assigned.  Also accelerate any callbacks
1076 * that were previously assigned a ->gp_seq number that has since proven
1077 * to be too conservative, which can happen if callbacks get assigned a
1078 * ->gp_seq number while RCU is idle, but with reference to a non-root
1079 * rcu_node structure.  This function is idempotent, so it does not hurt
1080 * to call it repeatedly.  Returns an flag saying that we should awaken
1081 * the RCU grace-period kthread.
1082 *
1083 * The caller must hold rnp->lock with interrupts disabled.
1084 */
1085static bool rcu_accelerate_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 
1086{
1087	unsigned long gp_seq_req;
1088	bool ret = false;
1089
1090	rcu_lockdep_assert_cblist_protected(rdp);
1091	raw_lockdep_assert_held_rcu_node(rnp);
1092
1093	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1094	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1095		return false;
1096
1097	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPreAcc"));
1098
1099	/*
1100	 * Callbacks are often registered with incomplete grace-period
1101	 * information.  Something about the fact that getting exact
1102	 * information requires acquiring a global lock...  RCU therefore
1103	 * makes a conservative estimate of the grace period number at which
1104	 * a given callback will become ready to invoke.	The following
1105	 * code checks this estimate and improves it when possible, thus
1106	 * accelerating callback invocation to an earlier grace-period
1107	 * number.
1108	 */
1109	gp_seq_req = rcu_seq_snap(&rcu_state.gp_seq);
1110	if (rcu_segcblist_accelerate(&rdp->cblist, gp_seq_req))
1111		ret = rcu_start_this_gp(rnp, rdp, gp_seq_req);
1112
1113	/* Trace depending on how much we were able to accelerate. */
1114	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1115		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccWaitCB"));
1116	else
1117		trace_rcu_grace_period(rcu_state.name, gp_seq_req, TPS("AccReadyCB"));
1118
1119	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbPostAcc"));
1120
1121	return ret;
1122}
1123
1124/*
1125 * Similar to rcu_accelerate_cbs(), but does not require that the leaf
1126 * rcu_node structure's ->lock be held.  It consults the cached value
1127 * of ->gp_seq_needed in the rcu_data structure, and if that indicates
1128 * that a new grace-period request be made, invokes rcu_accelerate_cbs()
1129 * while holding the leaf rcu_node structure's ->lock.
1130 */
1131static void rcu_accelerate_cbs_unlocked(struct rcu_node *rnp,
1132					struct rcu_data *rdp)
1133{
1134	unsigned long c;
1135	bool needwake;
1136
1137	rcu_lockdep_assert_cblist_protected(rdp);
1138	c = rcu_seq_snap(&rcu_state.gp_seq);
1139	if (!READ_ONCE(rdp->gpwrap) && ULONG_CMP_GE(rdp->gp_seq_needed, c)) {
1140		/* Old request still live, so mark recent callbacks. */
1141		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1142		return;
1143	}
1144	raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
1145	needwake = rcu_accelerate_cbs(rnp, rdp);
1146	raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
1147	if (needwake)
1148		rcu_gp_kthread_wake();
1149}
1150
1151/*
1152 * Move any callbacks whose grace period has completed to the
1153 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1154 * assign ->gp_seq numbers to any callbacks in the RCU_NEXT_TAIL
1155 * sublist.  This function is idempotent, so it does not hurt to
1156 * invoke it repeatedly.  As long as it is not invoked -too- often...
1157 * Returns true if the RCU grace-period kthread needs to be awakened.
1158 *
1159 * The caller must hold rnp->lock with interrupts disabled.
1160 */
1161static bool rcu_advance_cbs(struct rcu_node *rnp, struct rcu_data *rdp)
 
1162{
1163	rcu_lockdep_assert_cblist_protected(rdp);
1164	raw_lockdep_assert_held_rcu_node(rnp);
1165
1166	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1167	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1168		return false;
1169
1170	/*
1171	 * Find all callbacks whose ->gp_seq numbers indicate that they
1172	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1173	 */
1174	rcu_segcblist_advance(&rdp->cblist, rnp->gp_seq);
1175
1176	/* Classify any remaining callbacks. */
1177	return rcu_accelerate_cbs(rnp, rdp);
1178}
1179
1180/*
1181 * Move and classify callbacks, but only if doing so won't require
1182 * that the RCU grace-period kthread be awakened.
1183 */
1184static void __maybe_unused rcu_advance_cbs_nowake(struct rcu_node *rnp,
1185						  struct rcu_data *rdp)
1186{
1187	rcu_lockdep_assert_cblist_protected(rdp);
1188	if (!rcu_seq_state(rcu_seq_current(&rnp->gp_seq)) || !raw_spin_trylock_rcu_node(rnp))
1189		return;
1190	// The grace period cannot end while we hold the rcu_node lock.
1191	if (rcu_seq_state(rcu_seq_current(&rnp->gp_seq)))
1192		WARN_ON_ONCE(rcu_advance_cbs(rnp, rdp));
1193	raw_spin_unlock_rcu_node(rnp);
1194}
1195
1196/*
1197 * In CONFIG_RCU_STRICT_GRACE_PERIOD=y kernels, attempt to generate a
1198 * quiescent state.  This is intended to be invoked when the CPU notices
1199 * a new grace period.
1200 */
1201static void rcu_strict_gp_check_qs(void)
1202{
1203	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD)) {
1204		rcu_read_lock();
1205		rcu_read_unlock();
1206	}
1207}
1208
1209/*
1210 * Update CPU-local rcu_data state to record the beginnings and ends of
1211 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1212 * structure corresponding to the current CPU, and must have irqs disabled.
1213 * Returns true if the grace-period kthread needs to be awakened.
1214 */
1215static bool __note_gp_changes(struct rcu_node *rnp, struct rcu_data *rdp)
 
1216{
1217	bool ret = false;
1218	bool need_qs;
1219	const bool offloaded = rcu_rdp_is_offloaded(rdp);
1220
1221	raw_lockdep_assert_held_rcu_node(rnp);
1222
1223	if (rdp->gp_seq == rnp->gp_seq)
1224		return false; /* Nothing to do. */
1225
1226	/* Handle the ends of any preceding grace periods first. */
1227	if (rcu_seq_completed_gp(rdp->gp_seq, rnp->gp_seq) ||
1228	    unlikely(READ_ONCE(rdp->gpwrap))) {
1229		if (!offloaded)
1230			ret = rcu_advance_cbs(rnp, rdp); /* Advance CBs. */
1231		rdp->core_needs_qs = false;
1232		trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuend"));
1233	} else {
1234		if (!offloaded)
1235			ret = rcu_accelerate_cbs(rnp, rdp); /* Recent CBs. */
1236		if (rdp->core_needs_qs)
1237			rdp->core_needs_qs = !!(rnp->qsmask & rdp->grpmask);
 
 
 
1238	}
1239
1240	/* Now handle the beginnings of any new-to-this-CPU grace periods. */
1241	if (rcu_seq_new_gp(rdp->gp_seq, rnp->gp_seq) ||
1242	    unlikely(READ_ONCE(rdp->gpwrap))) {
1243		/*
1244		 * If the current grace period is waiting for this CPU,
1245		 * set up to detect a quiescent state, otherwise don't
1246		 * go looking for one.
1247		 */
1248		trace_rcu_grace_period(rcu_state.name, rnp->gp_seq, TPS("cpustart"));
1249		need_qs = !!(rnp->qsmask & rdp->grpmask);
1250		rdp->cpu_no_qs.b.norm = need_qs;
1251		rdp->core_needs_qs = need_qs;
 
 
1252		zero_cpu_stall_ticks(rdp);
 
 
1253	}
1254	rdp->gp_seq = rnp->gp_seq;  /* Remember new grace-period state. */
1255	if (ULONG_CMP_LT(rdp->gp_seq_needed, rnp->gp_seq_needed) || rdp->gpwrap)
1256		WRITE_ONCE(rdp->gp_seq_needed, rnp->gp_seq_needed);
1257	if (IS_ENABLED(CONFIG_PROVE_RCU) && READ_ONCE(rdp->gpwrap))
1258		WRITE_ONCE(rdp->last_sched_clock, jiffies);
1259	WRITE_ONCE(rdp->gpwrap, false);
1260	rcu_gpnum_ovf(rnp, rdp);
1261	return ret;
1262}
1263
1264static void note_gp_changes(struct rcu_data *rdp)
1265{
1266	unsigned long flags;
1267	bool needwake;
1268	struct rcu_node *rnp;
1269
1270	local_irq_save(flags);
1271	rnp = rdp->mynode;
1272	if ((rdp->gp_seq == rcu_seq_current(&rnp->gp_seq) &&
 
1273	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1274	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1275		local_irq_restore(flags);
1276		return;
1277	}
1278	needwake = __note_gp_changes(rnp, rdp);
1279	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1280	rcu_strict_gp_check_qs();
1281	if (needwake)
1282		rcu_gp_kthread_wake();
1283}
1284
1285static atomic_t *rcu_gp_slow_suppress;
1286
1287/* Register a counter to suppress debugging grace-period delays. */
1288void rcu_gp_slow_register(atomic_t *rgssp)
1289{
1290	WARN_ON_ONCE(rcu_gp_slow_suppress);
1291
1292	WRITE_ONCE(rcu_gp_slow_suppress, rgssp);
1293}
1294EXPORT_SYMBOL_GPL(rcu_gp_slow_register);
1295
1296/* Unregister a counter, with NULL for not caring which. */
1297void rcu_gp_slow_unregister(atomic_t *rgssp)
1298{
1299	WARN_ON_ONCE(rgssp && rgssp != rcu_gp_slow_suppress);
1300
1301	WRITE_ONCE(rcu_gp_slow_suppress, NULL);
1302}
1303EXPORT_SYMBOL_GPL(rcu_gp_slow_unregister);
1304
1305static bool rcu_gp_slow_is_suppressed(void)
1306{
1307	atomic_t *rgssp = READ_ONCE(rcu_gp_slow_suppress);
1308
1309	return rgssp && atomic_read(rgssp);
1310}
1311
1312static void rcu_gp_slow(int delay)
1313{
1314	if (!rcu_gp_slow_is_suppressed() && delay > 0 &&
1315	    !(rcu_seq_ctr(rcu_state.gp_seq) % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1316		schedule_timeout_idle(delay);
1317}
1318
1319static unsigned long sleep_duration;
1320
1321/* Allow rcutorture to stall the grace-period kthread. */
1322void rcu_gp_set_torture_wait(int duration)
1323{
1324	if (IS_ENABLED(CONFIG_RCU_TORTURE_TEST) && duration > 0)
1325		WRITE_ONCE(sleep_duration, duration);
1326}
1327EXPORT_SYMBOL_GPL(rcu_gp_set_torture_wait);
1328
1329/* Actually implement the aforementioned wait. */
1330static void rcu_gp_torture_wait(void)
1331{
1332	unsigned long duration;
1333
1334	if (!IS_ENABLED(CONFIG_RCU_TORTURE_TEST))
1335		return;
1336	duration = xchg(&sleep_duration, 0UL);
1337	if (duration > 0) {
1338		pr_alert("%s: Waiting %lu jiffies\n", __func__, duration);
1339		schedule_timeout_idle(duration);
1340		pr_alert("%s: Wait complete\n", __func__);
1341	}
1342}
1343
1344/*
1345 * Handler for on_each_cpu() to invoke the target CPU's RCU core
1346 * processing.
1347 */
1348static void rcu_strict_gp_boundary(void *unused)
1349{
1350	invoke_rcu_core();
1351}
1352
1353// Has rcu_init() been invoked?  This is used (for example) to determine
1354// whether spinlocks may be acquired safely.
1355static bool rcu_init_invoked(void)
1356{
1357	return !!rcu_state.n_online_cpus;
1358}
1359
1360// Make the polled API aware of the beginning of a grace period.
1361static void rcu_poll_gp_seq_start(unsigned long *snap)
1362{
1363	struct rcu_node *rnp = rcu_get_root();
1364
1365	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1366		raw_lockdep_assert_held_rcu_node(rnp);
1367
1368	// If RCU was idle, note beginning of GP.
1369	if (!rcu_seq_state(rcu_state.gp_seq_polled))
1370		rcu_seq_start(&rcu_state.gp_seq_polled);
1371
1372	// Either way, record current state.
1373	*snap = rcu_state.gp_seq_polled;
1374}
1375
1376// Make the polled API aware of the end of a grace period.
1377static void rcu_poll_gp_seq_end(unsigned long *snap)
1378{
1379	struct rcu_node *rnp = rcu_get_root();
1380
1381	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1382		raw_lockdep_assert_held_rcu_node(rnp);
1383
1384	// If the previously noted GP is still in effect, record the
1385	// end of that GP.  Either way, zero counter to avoid counter-wrap
1386	// problems.
1387	if (*snap && *snap == rcu_state.gp_seq_polled) {
1388		rcu_seq_end(&rcu_state.gp_seq_polled);
1389		rcu_state.gp_seq_polled_snap = 0;
1390		rcu_state.gp_seq_polled_exp_snap = 0;
1391	} else {
1392		*snap = 0;
1393	}
1394}
1395
1396// Make the polled API aware of the beginning of a grace period, but
1397// where caller does not hold the root rcu_node structure's lock.
1398static void rcu_poll_gp_seq_start_unlocked(unsigned long *snap)
1399{
1400	unsigned long flags;
1401	struct rcu_node *rnp = rcu_get_root();
1402
1403	if (rcu_init_invoked()) {
1404		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1405			lockdep_assert_irqs_enabled();
1406		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1407	}
1408	rcu_poll_gp_seq_start(snap);
1409	if (rcu_init_invoked())
1410		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1411}
1412
1413// Make the polled API aware of the end of a grace period, but where
1414// caller does not hold the root rcu_node structure's lock.
1415static void rcu_poll_gp_seq_end_unlocked(unsigned long *snap)
1416{
1417	unsigned long flags;
1418	struct rcu_node *rnp = rcu_get_root();
1419
1420	if (rcu_init_invoked()) {
1421		if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
1422			lockdep_assert_irqs_enabled();
1423		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1424	}
1425	rcu_poll_gp_seq_end(snap);
1426	if (rcu_init_invoked())
1427		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1428}
1429
1430/*
1431 * Initialize a new grace period.  Return false if no grace period required.
1432 */
1433static noinline_for_stack bool rcu_gp_init(void)
1434{
1435	unsigned long flags;
1436	unsigned long oldmask;
1437	unsigned long mask;
1438	struct rcu_data *rdp;
1439	struct rcu_node *rnp = rcu_get_root();
1440
1441	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1442	raw_spin_lock_irq_rcu_node(rnp);
1443	if (!READ_ONCE(rcu_state.gp_flags)) {
1444		/* Spurious wakeup, tell caller to go back to sleep.  */
1445		raw_spin_unlock_irq_rcu_node(rnp);
1446		return false;
1447	}
1448	WRITE_ONCE(rcu_state.gp_flags, 0); /* Clear all flags: New GP. */
1449
1450	if (WARN_ON_ONCE(rcu_gp_in_progress())) {
1451		/*
1452		 * Grace period already in progress, don't start another.
1453		 * Not supposed to be able to happen.
1454		 */
1455		raw_spin_unlock_irq_rcu_node(rnp);
1456		return false;
1457	}
1458
1459	/* Advance to a new grace period and initialize state. */
1460	record_gp_stall_check_time();
1461	/* Record GP times before starting GP, hence rcu_seq_start(). */
1462	rcu_seq_start(&rcu_state.gp_seq);
1463	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1464	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("start"));
1465	rcu_poll_gp_seq_start(&rcu_state.gp_seq_polled_snap);
1466	raw_spin_unlock_irq_rcu_node(rnp);
1467
1468	/*
1469	 * Apply per-leaf buffered online and offline operations to
1470	 * the rcu_node tree. Note that this new grace period need not
1471	 * wait for subsequent online CPUs, and that RCU hooks in the CPU
1472	 * offlining path, when combined with checks in this function,
1473	 * will handle CPUs that are currently going offline or that will
1474	 * go offline later.  Please also refer to "Hotplug CPU" section
1475	 * of RCU's Requirements documentation.
1476	 */
1477	WRITE_ONCE(rcu_state.gp_state, RCU_GP_ONOFF);
1478	/* Exclude CPU hotplug operations. */
1479	rcu_for_each_leaf_node(rnp) {
1480		local_irq_save(flags);
1481		arch_spin_lock(&rcu_state.ofl_lock);
1482		raw_spin_lock_rcu_node(rnp);
1483		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1484		    !rnp->wait_blkd_tasks) {
1485			/* Nothing to do on this leaf rcu_node structure. */
1486			raw_spin_unlock_rcu_node(rnp);
1487			arch_spin_unlock(&rcu_state.ofl_lock);
1488			local_irq_restore(flags);
1489			continue;
1490		}
1491
1492		/* Record old state, apply changes to ->qsmaskinit field. */
1493		oldmask = rnp->qsmaskinit;
1494		rnp->qsmaskinit = rnp->qsmaskinitnext;
1495
1496		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1497		if (!oldmask != !rnp->qsmaskinit) {
1498			if (!oldmask) { /* First online CPU for rcu_node. */
1499				if (!rnp->wait_blkd_tasks) /* Ever offline? */
1500					rcu_init_new_rnp(rnp);
1501			} else if (rcu_preempt_has_tasks(rnp)) {
1502				rnp->wait_blkd_tasks = true; /* blocked tasks */
1503			} else { /* Last offline CPU and can propagate. */
1504				rcu_cleanup_dead_rnp(rnp);
1505			}
1506		}
1507
1508		/*
1509		 * If all waited-on tasks from prior grace period are
1510		 * done, and if all this rcu_node structure's CPUs are
1511		 * still offline, propagate up the rcu_node tree and
1512		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
1513		 * rcu_node structure's CPUs has since come back online,
1514		 * simply clear ->wait_blkd_tasks.
 
1515		 */
1516		if (rnp->wait_blkd_tasks &&
1517		    (!rcu_preempt_has_tasks(rnp) || rnp->qsmaskinit)) {
 
1518			rnp->wait_blkd_tasks = false;
1519			if (!rnp->qsmaskinit)
1520				rcu_cleanup_dead_rnp(rnp);
1521		}
1522
1523		raw_spin_unlock_rcu_node(rnp);
1524		arch_spin_unlock(&rcu_state.ofl_lock);
1525		local_irq_restore(flags);
1526	}
1527	rcu_gp_slow(gp_preinit_delay); /* Races with CPU hotplug. */
1528
1529	/*
1530	 * Set the quiescent-state-needed bits in all the rcu_node
1531	 * structures for all currently online CPUs in breadth-first
1532	 * order, starting from the root rcu_node structure, relying on the
1533	 * layout of the tree within the rcu_state.node[] array.  Note that
1534	 * other CPUs will access only the leaves of the hierarchy, thus
1535	 * seeing that no grace period is in progress, at least until the
1536	 * corresponding leaf node has been initialized.
1537	 *
1538	 * The grace period cannot complete until the initialization
1539	 * process finishes, because this kthread handles both.
1540	 */
1541	WRITE_ONCE(rcu_state.gp_state, RCU_GP_INIT);
1542	rcu_for_each_node_breadth_first(rnp) {
1543		rcu_gp_slow(gp_init_delay);
1544		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1545		rdp = this_cpu_ptr(&rcu_data);
1546		rcu_preempt_check_blocked_tasks(rnp);
1547		rnp->qsmask = rnp->qsmaskinit;
1548		WRITE_ONCE(rnp->gp_seq, rcu_state.gp_seq);
 
 
1549		if (rnp == rdp->mynode)
1550			(void)__note_gp_changes(rnp, rdp);
1551		rcu_preempt_boost_start_gp(rnp);
1552		trace_rcu_grace_period_init(rcu_state.name, rnp->gp_seq,
1553					    rnp->level, rnp->grplo,
1554					    rnp->grphi, rnp->qsmask);
1555		/* Quiescent states for tasks on any now-offline CPUs. */
1556		mask = rnp->qsmask & ~rnp->qsmaskinitnext;
1557		rnp->rcu_gp_init_mask = mask;
1558		if ((mask || rnp->wait_blkd_tasks) && rcu_is_leaf_node(rnp))
1559			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
1560		else
1561			raw_spin_unlock_irq_rcu_node(rnp);
1562		cond_resched_tasks_rcu_qs();
1563		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1564	}
1565
1566	// If strict, make all CPUs aware of new grace period.
1567	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1568		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1569
1570	return true;
1571}
1572
1573/*
1574 * Helper function for swait_event_idle_exclusive() wakeup at force-quiescent-state
1575 * time.
1576 */
1577static bool rcu_gp_fqs_check_wake(int *gfp)
1578{
1579	struct rcu_node *rnp = rcu_get_root();
1580
1581	// If under overload conditions, force an immediate FQS scan.
1582	if (*gfp & RCU_GP_FLAG_OVLD)
1583		return true;
1584
1585	// Someone like call_rcu() requested a force-quiescent-state scan.
1586	*gfp = READ_ONCE(rcu_state.gp_flags);
1587	if (*gfp & RCU_GP_FLAG_FQS)
1588		return true;
1589
1590	// The current grace period has completed.
1591	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
1592		return true;
1593
1594	return false;
1595}
1596
1597/*
1598 * Do one round of quiescent-state forcing.
1599 */
1600static void rcu_gp_fqs(bool first_time)
1601{
1602	struct rcu_node *rnp = rcu_get_root();
1603
1604	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1605	WRITE_ONCE(rcu_state.n_force_qs, rcu_state.n_force_qs + 1);
1606	if (first_time) {
1607		/* Collect dyntick-idle snapshots. */
1608		force_qs_rnp(dyntick_save_progress_counter);
1609	} else {
1610		/* Handle dyntick-idle and offline CPUs. */
1611		force_qs_rnp(rcu_implicit_dynticks_qs);
1612	}
1613	/* Clear flag to prevent immediate re-entry. */
1614	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
1615		raw_spin_lock_irq_rcu_node(rnp);
1616		WRITE_ONCE(rcu_state.gp_flags,
1617			   READ_ONCE(rcu_state.gp_flags) & ~RCU_GP_FLAG_FQS);
1618		raw_spin_unlock_irq_rcu_node(rnp);
1619	}
1620}
1621
1622/*
1623 * Loop doing repeated quiescent-state forcing until the grace period ends.
1624 */
1625static noinline_for_stack void rcu_gp_fqs_loop(void)
1626{
1627	bool first_gp_fqs = true;
1628	int gf = 0;
1629	unsigned long j;
1630	int ret;
1631	struct rcu_node *rnp = rcu_get_root();
1632
1633	j = READ_ONCE(jiffies_till_first_fqs);
1634	if (rcu_state.cbovld)
1635		gf = RCU_GP_FLAG_OVLD;
1636	ret = 0;
1637	for (;;) {
1638		if (rcu_state.cbovld) {
1639			j = (j + 2) / 3;
1640			if (j <= 0)
1641				j = 1;
1642		}
1643		if (!ret || time_before(jiffies + j, rcu_state.jiffies_force_qs)) {
1644			WRITE_ONCE(rcu_state.jiffies_force_qs, jiffies + j);
1645			/*
1646			 * jiffies_force_qs before RCU_GP_WAIT_FQS state
1647			 * update; required for stall checks.
1648			 */
1649			smp_wmb();
1650			WRITE_ONCE(rcu_state.jiffies_kick_kthreads,
1651				   jiffies + (j ? 3 * j : 2));
1652		}
1653		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1654				       TPS("fqswait"));
1655		WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_FQS);
1656		(void)swait_event_idle_timeout_exclusive(rcu_state.gp_wq,
1657				 rcu_gp_fqs_check_wake(&gf), j);
1658		rcu_gp_torture_wait();
1659		WRITE_ONCE(rcu_state.gp_state, RCU_GP_DOING_FQS);
1660		/* Locking provides needed memory barriers. */
1661		/*
1662		 * Exit the loop if the root rcu_node structure indicates that the grace period
1663		 * has ended, leave the loop.  The rcu_preempt_blocked_readers_cgp(rnp) check
1664		 * is required only for single-node rcu_node trees because readers blocking
1665		 * the current grace period are queued only on leaf rcu_node structures.
1666		 * For multi-node trees, checking the root node's ->qsmask suffices, because a
1667		 * given root node's ->qsmask bit is cleared only when all CPUs and tasks from
1668		 * the corresponding leaf nodes have passed through their quiescent state.
1669		 */
1670		if (!READ_ONCE(rnp->qsmask) &&
1671		    !rcu_preempt_blocked_readers_cgp(rnp))
1672			break;
1673		/* If time for quiescent-state forcing, do it. */
1674		if (!time_after(rcu_state.jiffies_force_qs, jiffies) ||
1675		    (gf & (RCU_GP_FLAG_FQS | RCU_GP_FLAG_OVLD))) {
1676			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1677					       TPS("fqsstart"));
1678			rcu_gp_fqs(first_gp_fqs);
1679			gf = 0;
1680			if (first_gp_fqs) {
1681				first_gp_fqs = false;
1682				gf = rcu_state.cbovld ? RCU_GP_FLAG_OVLD : 0;
1683			}
1684			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1685					       TPS("fqsend"));
1686			cond_resched_tasks_rcu_qs();
1687			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1688			ret = 0; /* Force full wait till next FQS. */
1689			j = READ_ONCE(jiffies_till_next_fqs);
1690		} else {
1691			/* Deal with stray signal. */
1692			cond_resched_tasks_rcu_qs();
1693			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1694			WARN_ON(signal_pending(current));
1695			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
1696					       TPS("fqswaitsig"));
1697			ret = 1; /* Keep old FQS timing. */
1698			j = jiffies;
1699			if (time_after(jiffies, rcu_state.jiffies_force_qs))
1700				j = 1;
1701			else
1702				j = rcu_state.jiffies_force_qs - j;
1703			gf = 0;
1704		}
1705	}
1706}
1707
1708/*
1709 * Clean up after the old grace period.
1710 */
1711static noinline void rcu_gp_cleanup(void)
1712{
1713	int cpu;
1714	bool needgp = false;
1715	unsigned long gp_duration;
1716	unsigned long new_gp_seq;
1717	bool offloaded;
1718	struct rcu_data *rdp;
1719	struct rcu_node *rnp = rcu_get_root();
1720	struct swait_queue_head *sq;
1721
1722	WRITE_ONCE(rcu_state.gp_activity, jiffies);
1723	raw_spin_lock_irq_rcu_node(rnp);
1724	rcu_state.gp_end = jiffies;
1725	gp_duration = rcu_state.gp_end - rcu_state.gp_start;
1726	if (gp_duration > rcu_state.gp_max)
1727		rcu_state.gp_max = gp_duration;
1728
1729	/*
1730	 * We know the grace period is complete, but to everyone else
1731	 * it appears to still be ongoing.  But it is also the case
1732	 * that to everyone else it looks like there is nothing that
1733	 * they can do to advance the grace period.  It is therefore
1734	 * safe for us to drop the lock in order to mark the grace
1735	 * period as completed in all of the rcu_node structures.
1736	 */
1737	rcu_poll_gp_seq_end(&rcu_state.gp_seq_polled_snap);
1738	raw_spin_unlock_irq_rcu_node(rnp);
1739
1740	/*
1741	 * Propagate new ->gp_seq value to rcu_node structures so that
1742	 * other CPUs don't have to wait until the start of the next grace
1743	 * period to process their callbacks.  This also avoids some nasty
1744	 * RCU grace-period initialization races by forcing the end of
1745	 * the current grace period to be completely recorded in all of
1746	 * the rcu_node structures before the beginning of the next grace
1747	 * period is recorded in any of the rcu_node structures.
1748	 */
1749	new_gp_seq = rcu_state.gp_seq;
1750	rcu_seq_end(&new_gp_seq);
1751	rcu_for_each_node_breadth_first(rnp) {
1752		raw_spin_lock_irq_rcu_node(rnp);
1753		if (WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)))
1754			dump_blkd_tasks(rnp, 10);
1755		WARN_ON_ONCE(rnp->qsmask);
1756		WRITE_ONCE(rnp->gp_seq, new_gp_seq);
1757		if (!rnp->parent)
1758			smp_mb(); // Order against failing poll_state_synchronize_rcu_full().
1759		rdp = this_cpu_ptr(&rcu_data);
1760		if (rnp == rdp->mynode)
1761			needgp = __note_gp_changes(rnp, rdp) || needgp;
1762		/* smp_mb() provided by prior unlock-lock pair. */
1763		needgp = rcu_future_gp_cleanup(rnp) || needgp;
1764		// Reset overload indication for CPUs no longer overloaded
1765		if (rcu_is_leaf_node(rnp))
1766			for_each_leaf_node_cpu_mask(rnp, cpu, rnp->cbovldmask) {
1767				rdp = per_cpu_ptr(&rcu_data, cpu);
1768				check_cb_ovld_locked(rdp, rnp);
1769			}
1770		sq = rcu_nocb_gp_get(rnp);
1771		raw_spin_unlock_irq_rcu_node(rnp);
1772		rcu_nocb_gp_cleanup(sq);
1773		cond_resched_tasks_rcu_qs();
1774		WRITE_ONCE(rcu_state.gp_activity, jiffies);
1775		rcu_gp_slow(gp_cleanup_delay);
1776	}
1777	rnp = rcu_get_root();
1778	raw_spin_lock_irq_rcu_node(rnp); /* GP before ->gp_seq update. */
1779
1780	/* Declare grace period done, trace first to use old GP number. */
1781	trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("end"));
1782	rcu_seq_end(&rcu_state.gp_seq);
1783	ASSERT_EXCLUSIVE_WRITER(rcu_state.gp_seq);
1784	WRITE_ONCE(rcu_state.gp_state, RCU_GP_IDLE);
1785	/* Check for GP requests since above loop. */
1786	rdp = this_cpu_ptr(&rcu_data);
1787	if (!needgp && ULONG_CMP_LT(rnp->gp_seq, rnp->gp_seq_needed)) {
1788		trace_rcu_this_gp(rnp, rdp, rnp->gp_seq_needed,
1789				  TPS("CleanupMore"));
1790		needgp = true;
1791	}
1792	/* Advance CBs to reduce false positives below. */
1793	offloaded = rcu_rdp_is_offloaded(rdp);
1794	if ((offloaded || !rcu_accelerate_cbs(rnp, rdp)) && needgp) {
1795
1796		// We get here if a grace period was needed (“needgp”)
1797		// and the above call to rcu_accelerate_cbs() did not set
1798		// the RCU_GP_FLAG_INIT bit in ->gp_state (which records
1799		// the need for another grace period).  The purpose
1800		// of the “offloaded” check is to avoid invoking
1801		// rcu_accelerate_cbs() on an offloaded CPU because we do not
1802		// hold the ->nocb_lock needed to safely access an offloaded
1803		// ->cblist.  We do not want to acquire that lock because
1804		// it can be heavily contended during callback floods.
1805
1806		WRITE_ONCE(rcu_state.gp_flags, RCU_GP_FLAG_INIT);
1807		WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
1808		trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq, TPS("newreq"));
1809	} else {
1810
1811		// We get here either if there is no need for an
1812		// additional grace period or if rcu_accelerate_cbs() has
1813		// already set the RCU_GP_FLAG_INIT bit in ->gp_flags. 
1814		// So all we need to do is to clear all of the other
1815		// ->gp_flags bits.
1816
1817		WRITE_ONCE(rcu_state.gp_flags, rcu_state.gp_flags & RCU_GP_FLAG_INIT);
1818	}
1819	raw_spin_unlock_irq_rcu_node(rnp);
1820
1821	// If strict, make all CPUs aware of the end of the old grace period.
1822	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
1823		on_each_cpu(rcu_strict_gp_boundary, NULL, 0);
1824}
1825
1826/*
1827 * Body of kthread that handles grace periods.
1828 */
1829static int __noreturn rcu_gp_kthread(void *unused)
1830{
 
 
 
 
 
 
 
1831	rcu_bind_gp_kthread();
1832	for (;;) {
1833
1834		/* Handle grace-period start. */
1835		for (;;) {
1836			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1837					       TPS("reqwait"));
1838			WRITE_ONCE(rcu_state.gp_state, RCU_GP_WAIT_GPS);
1839			swait_event_idle_exclusive(rcu_state.gp_wq,
1840					 READ_ONCE(rcu_state.gp_flags) &
1841					 RCU_GP_FLAG_INIT);
1842			rcu_gp_torture_wait();
1843			WRITE_ONCE(rcu_state.gp_state, RCU_GP_DONE_GPS);
1844			/* Locking provides needed memory barrier. */
1845			if (rcu_gp_init())
1846				break;
1847			cond_resched_tasks_rcu_qs();
1848			WRITE_ONCE(rcu_state.gp_activity, jiffies);
1849			WARN_ON(signal_pending(current));
1850			trace_rcu_grace_period(rcu_state.name, rcu_state.gp_seq,
 
1851					       TPS("reqwaitsig"));
1852		}
1853
1854		/* Handle quiescent-state forcing. */
1855		rcu_gp_fqs_loop();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1856
1857		/* Handle grace-period end. */
1858		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANUP);
1859		rcu_gp_cleanup();
1860		WRITE_ONCE(rcu_state.gp_state, RCU_GP_CLEANED);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861	}
 
 
 
 
 
 
 
 
 
 
1862}
1863
1864/*
1865 * Report a full set of quiescent states to the rcu_state data structure.
1866 * Invoke rcu_gp_kthread_wake() to awaken the grace-period kthread if
1867 * another grace period is required.  Whether we wake the grace-period
1868 * kthread or it awakens itself for the next round of quiescent-state
1869 * forcing, that kthread will clean up after the just-completed grace
1870 * period.  Note that the caller must hold rnp->lock, which is released
1871 * before return.
1872 */
1873static void rcu_report_qs_rsp(unsigned long flags)
1874	__releases(rcu_get_root()->lock)
1875{
1876	raw_lockdep_assert_held_rcu_node(rcu_get_root());
1877	WARN_ON_ONCE(!rcu_gp_in_progress());
1878	WRITE_ONCE(rcu_state.gp_flags,
1879		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
1880	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(), flags);
1881	rcu_gp_kthread_wake();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1882}
1883
1884/*
1885 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
1886 * Allows quiescent states for a group of CPUs to be reported at one go
1887 * to the specified rcu_node structure, though all the CPUs in the group
1888 * must be represented by the same rcu_node structure (which need not be a
1889 * leaf rcu_node structure, though it often will be).  The gps parameter
1890 * is the grace-period snapshot, which means that the quiescent states
1891 * are valid only if rnp->gp_seq is equal to gps.  That structure's lock
1892 * must be held upon entry, and it is released before return.
1893 *
1894 * As a special case, if mask is zero, the bit-already-cleared check is
1895 * disabled.  This allows propagating quiescent state due to resumed tasks
1896 * during grace-period initialization.
1897 */
1898static void rcu_report_qs_rnp(unsigned long mask, struct rcu_node *rnp,
1899			      unsigned long gps, unsigned long flags)
 
1900	__releases(rnp->lock)
1901{
1902	unsigned long oldmask = 0;
1903	struct rcu_node *rnp_c;
1904
1905	raw_lockdep_assert_held_rcu_node(rnp);
1906
1907	/* Walk up the rcu_node hierarchy. */
1908	for (;;) {
1909		if ((!(rnp->qsmask & mask) && mask) || rnp->gp_seq != gps) {
1910
1911			/*
1912			 * Our bit has already been cleared, or the
1913			 * relevant grace period is already over, so done.
1914			 */
1915			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1916			return;
1917		}
1918		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
1919		WARN_ON_ONCE(!rcu_is_leaf_node(rnp) &&
1920			     rcu_preempt_blocked_readers_cgp(rnp));
1921		WRITE_ONCE(rnp->qsmask, rnp->qsmask & ~mask);
1922		trace_rcu_quiescent_state_report(rcu_state.name, rnp->gp_seq,
1923						 mask, rnp->qsmask, rnp->level,
1924						 rnp->grplo, rnp->grphi,
1925						 !!rnp->gp_tasks);
1926		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
1927
1928			/* Other bits still set at this level, so done. */
1929			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1930			return;
1931		}
1932		rnp->completedqs = rnp->gp_seq;
1933		mask = rnp->grpmask;
1934		if (rnp->parent == NULL) {
1935
1936			/* No more levels.  Exit loop holding root lock. */
1937
1938			break;
1939		}
1940		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1941		rnp_c = rnp;
1942		rnp = rnp->parent;
1943		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1944		oldmask = READ_ONCE(rnp_c->qsmask);
1945	}
1946
1947	/*
1948	 * Get here if we are the last CPU to pass through a quiescent
1949	 * state for this grace period.  Invoke rcu_report_qs_rsp()
1950	 * to clean up and start the next grace period if one is needed.
1951	 */
1952	rcu_report_qs_rsp(flags); /* releases rnp->lock. */
1953}
1954
1955/*
1956 * Record a quiescent state for all tasks that were previously queued
1957 * on the specified rcu_node structure and that were blocking the current
1958 * RCU grace period.  The caller must hold the corresponding rnp->lock with
1959 * irqs disabled, and this lock is released upon return, but irqs remain
1960 * disabled.
1961 */
1962static void __maybe_unused
1963rcu_report_unblock_qs_rnp(struct rcu_node *rnp, unsigned long flags)
1964	__releases(rnp->lock)
1965{
1966	unsigned long gps;
1967	unsigned long mask;
1968	struct rcu_node *rnp_p;
1969
1970	raw_lockdep_assert_held_rcu_node(rnp);
1971	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT_RCU)) ||
1972	    WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp)) ||
1973	    rnp->qsmask != 0) {
1974		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1975		return;  /* Still need more quiescent states! */
1976	}
1977
1978	rnp->completedqs = rnp->gp_seq;
1979	rnp_p = rnp->parent;
1980	if (rnp_p == NULL) {
1981		/*
1982		 * Only one rcu_node structure in the tree, so don't
1983		 * try to report up to its nonexistent parent!
1984		 */
1985		rcu_report_qs_rsp(flags);
1986		return;
1987	}
1988
1989	/* Report up the rest of the hierarchy, tracking current ->gp_seq. */
1990	gps = rnp->gp_seq;
1991	mask = rnp->grpmask;
1992	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
1993	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
1994	rcu_report_qs_rnp(mask, rnp_p, gps, flags);
1995}
1996
1997/*
1998 * Record a quiescent state for the specified CPU to that CPU's rcu_data
1999 * structure.  This must be called from the specified CPU.
2000 */
2001static void
2002rcu_report_qs_rdp(struct rcu_data *rdp)
2003{
2004	unsigned long flags;
2005	unsigned long mask;
2006	bool needwake = false;
2007	bool needacc = false;
2008	struct rcu_node *rnp;
2009
2010	WARN_ON_ONCE(rdp->cpu != smp_processor_id());
2011	rnp = rdp->mynode;
2012	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2013	if (rdp->cpu_no_qs.b.norm || rdp->gp_seq != rnp->gp_seq ||
2014	    rdp->gpwrap) {
2015
2016		/*
2017		 * The grace period in which this quiescent state was
2018		 * recorded has ended, so don't report it upwards.
2019		 * We will instead need a new quiescent state that lies
2020		 * within the current grace period.
2021		 */
2022		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
 
2023		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2024		return;
2025	}
2026	mask = rdp->grpmask;
2027	rdp->core_needs_qs = false;
2028	if ((rnp->qsmask & mask) == 0) {
2029		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2030	} else {
 
 
2031		/*
2032		 * This GP can't end until cpu checks in, so all of our
2033		 * callbacks can be processed during the next GP.
2034		 *
2035		 * NOCB kthreads have their own way to deal with that...
2036		 */
2037		if (!rcu_rdp_is_offloaded(rdp)) {
2038			needwake = rcu_accelerate_cbs(rnp, rdp);
2039		} else if (!rcu_segcblist_completely_offloaded(&rdp->cblist)) {
2040			/*
2041			 * ...but NOCB kthreads may miss or delay callbacks acceleration
2042			 * if in the middle of a (de-)offloading process.
2043			 */
2044			needacc = true;
2045		}
2046
2047		rcu_disable_urgency_upon_qs(rdp);
2048		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2049		/* ^^^ Released rnp->lock */
2050		if (needwake)
2051			rcu_gp_kthread_wake();
2052
2053		if (needacc) {
2054			rcu_nocb_lock_irqsave(rdp, flags);
2055			rcu_accelerate_cbs_unlocked(rnp, rdp);
2056			rcu_nocb_unlock_irqrestore(rdp, flags);
2057		}
2058	}
2059}
2060
2061/*
2062 * Check to see if there is a new grace period of which this CPU
2063 * is not yet aware, and if so, set up local rcu_data state for it.
2064 * Otherwise, see if this CPU has just passed through its first
2065 * quiescent state for this grace period, and record that fact if so.
2066 */
2067static void
2068rcu_check_quiescent_state(struct rcu_data *rdp)
2069{
2070	/* Check for grace-period ends and beginnings. */
2071	note_gp_changes(rdp);
2072
2073	/*
2074	 * Does this CPU still need to do its part for current grace period?
2075	 * If no, return and let the other CPUs do their part as well.
2076	 */
2077	if (!rdp->core_needs_qs)
2078		return;
2079
2080	/*
2081	 * Was there a quiescent state since the beginning of the grace
2082	 * period? If no, then exit and wait for the next call.
2083	 */
2084	if (rdp->cpu_no_qs.b.norm)
2085		return;
2086
2087	/*
2088	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2089	 * judge of that).
2090	 */
2091	rcu_report_qs_rdp(rdp);
2092}
2093
2094/*
2095 * Near the end of the offline process.  Trace the fact that this CPU
2096 * is going offline.
2097 */
2098int rcutree_dying_cpu(unsigned int cpu)
2099{
2100	bool blkd;
2101	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2102	struct rcu_node *rnp = rdp->mynode;
2103
2104	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2105		return 0;
2106
2107	blkd = !!(READ_ONCE(rnp->qsmask) & rdp->grpmask);
2108	trace_rcu_grace_period(rcu_state.name, READ_ONCE(rnp->gp_seq),
2109			       blkd ? TPS("cpuofl-bgp") : TPS("cpuofl"));
2110	return 0;
2111}
2112
2113/*
2114 * All CPUs for the specified rcu_node structure have gone offline,
2115 * and all tasks that were preempted within an RCU read-side critical
2116 * section while running on one of those CPUs have since exited their RCU
2117 * read-side critical section.  Some other CPU is reporting this fact with
2118 * the specified rcu_node structure's ->lock held and interrupts disabled.
2119 * This function therefore goes up the tree of rcu_node structures,
2120 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2121 * the leaf rcu_node structure's ->qsmaskinit field has already been
2122 * updated.
2123 *
2124 * This function does check that the specified rcu_node structure has
2125 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2126 * prematurely.  That said, invoking it after the fact will cost you
2127 * a needless lock acquisition.  So once it has done its work, don't
2128 * invoke it again.
2129 */
2130static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2131{
2132	long mask;
2133	struct rcu_node *rnp = rnp_leaf;
2134
2135	raw_lockdep_assert_held_rcu_node(rnp_leaf);
2136	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2137	    WARN_ON_ONCE(rnp_leaf->qsmaskinit) ||
2138	    WARN_ON_ONCE(rcu_preempt_has_tasks(rnp_leaf)))
2139		return;
2140	for (;;) {
2141		mask = rnp->grpmask;
2142		rnp = rnp->parent;
2143		if (!rnp)
2144			break;
2145		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2146		rnp->qsmaskinit &= ~mask;
2147		/* Between grace periods, so better already be zero! */
2148		WARN_ON_ONCE(rnp->qsmask);
2149		if (rnp->qsmaskinit) {
2150			raw_spin_unlock_rcu_node(rnp);
2151			/* irqs remain disabled. */
2152			return;
2153		}
2154		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2155	}
2156}
2157
2158/*
2159 * The CPU has been completely removed, and some other CPU is reporting
2160 * this fact from process context.  Do the remainder of the cleanup.
2161 * There can only be one CPU hotplug operation at a time, so no need for
2162 * explicit locking.
2163 */
2164int rcutree_dead_cpu(unsigned int cpu)
2165{
2166	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
2167	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2168
2169	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2170		return 0;
2171
2172	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus - 1);
2173	/* Adjust any no-longer-needed kthreads. */
2174	rcu_boost_kthread_setaffinity(rnp, -1);
2175	// Stop-machine done, so allow nohz_full to disable tick.
2176	tick_dep_clear(TICK_DEP_BIT_RCU);
2177	return 0;
2178}
2179
2180/*
2181 * Invoke any RCU callbacks that have made it to the end of their grace
2182 * period.  Throttle as specified by rdp->blimit.
2183 */
2184static void rcu_do_batch(struct rcu_data *rdp)
2185{
2186	int div;
2187	bool __maybe_unused empty;
2188	unsigned long flags;
2189	struct rcu_head *rhp;
2190	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2191	long bl, count = 0;
2192	long pending, tlimit = 0;
2193
2194	/* If no callbacks are ready, just return. */
2195	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2196		trace_rcu_batch_start(rcu_state.name,
 
2197				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2198		trace_rcu_batch_end(rcu_state.name, 0,
2199				    !rcu_segcblist_empty(&rdp->cblist),
2200				    need_resched(), is_idle_task(current),
2201				    rcu_is_callbacks_kthread(rdp));
2202		return;
2203	}
2204
2205	/*
2206	 * Extract the list of ready callbacks, disabling IRQs to prevent
2207	 * races with call_rcu() from interrupt handlers.  Leave the
2208	 * callback counts, as rcu_barrier() needs to be conservative.
2209	 */
2210	rcu_nocb_lock_irqsave(rdp, flags);
2211	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2212	pending = rcu_segcblist_n_cbs(&rdp->cblist);
2213	div = READ_ONCE(rcu_divisor);
2214	div = div < 0 ? 7 : div > sizeof(long) * 8 - 2 ? sizeof(long) * 8 - 2 : div;
2215	bl = max(rdp->blimit, pending >> div);
2216	if (in_serving_softirq() && unlikely(bl > 100)) {
2217		long rrn = READ_ONCE(rcu_resched_ns);
2218
2219		rrn = rrn < NSEC_PER_MSEC ? NSEC_PER_MSEC : rrn > NSEC_PER_SEC ? NSEC_PER_SEC : rrn;
2220		tlimit = local_clock() + rrn;
2221	}
2222	trace_rcu_batch_start(rcu_state.name,
2223			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2224	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2225	if (rcu_rdp_is_offloaded(rdp))
2226		rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2227
2228	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCbDequeued"));
2229	rcu_nocb_unlock_irqrestore(rdp, flags);
2230
2231	/* Invoke callbacks. */
2232	tick_dep_set_task(current, TICK_DEP_BIT_RCU);
2233	rhp = rcu_cblist_dequeue(&rcl);
2234
2235	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
2236		rcu_callback_t f;
2237
2238		count++;
2239		debug_rcu_head_unqueue(rhp);
2240
2241		rcu_lock_acquire(&rcu_callback_map);
2242		trace_rcu_invoke_callback(rcu_state.name, rhp);
2243
2244		f = rhp->func;
2245		WRITE_ONCE(rhp->func, (rcu_callback_t)0L);
2246		f(rhp);
2247
2248		rcu_lock_release(&rcu_callback_map);
2249
2250		/*
2251		 * Stop only if limit reached and CPU has something to do.
 
2252		 */
2253		if (in_serving_softirq()) {
2254			if (count >= bl && (need_resched() || !is_idle_task(current)))
2255				break;
2256			/*
2257			 * Make sure we don't spend too much time here and deprive other
2258			 * softirq vectors of CPU cycles.
2259			 */
2260			if (unlikely(tlimit)) {
2261				/* only call local_clock() every 32 callbacks */
2262				if (likely((count & 31) || local_clock() < tlimit))
2263					continue;
2264				/* Exceeded the time limit, so leave. */
2265				break;
2266			}
2267		} else {
2268			local_bh_enable();
2269			lockdep_assert_irqs_enabled();
2270			cond_resched_tasks_rcu_qs();
2271			lockdep_assert_irqs_enabled();
2272			local_bh_disable();
2273		}
2274	}
2275
2276	rcu_nocb_lock_irqsave(rdp, flags);
2277	rdp->n_cbs_invoked += count;
2278	trace_rcu_batch_end(rcu_state.name, count, !!rcl.head, need_resched(),
2279			    is_idle_task(current), rcu_is_callbacks_kthread(rdp));
2280
2281	/* Update counts and requeue any remaining callbacks. */
2282	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2283	rcu_segcblist_add_len(&rdp->cblist, -count);
 
2284
2285	/* Reinstate batch limit if we have worked down the excess. */
2286	count = rcu_segcblist_n_cbs(&rdp->cblist);
2287	if (rdp->blimit >= DEFAULT_MAX_RCU_BLIMIT && count <= qlowmark)
2288		rdp->blimit = blimit;
2289
2290	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2291	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2292		rdp->qlen_last_fqs_check = 0;
2293		rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2294	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2295		rdp->qlen_last_fqs_check = count;
2296
2297	/*
2298	 * The following usually indicates a double call_rcu().  To track
2299	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2300	 */
2301	empty = rcu_segcblist_empty(&rdp->cblist);
2302	WARN_ON_ONCE(count == 0 && !empty);
2303	WARN_ON_ONCE(!IS_ENABLED(CONFIG_RCU_NOCB_CPU) &&
2304		     count != 0 && empty);
2305	WARN_ON_ONCE(count == 0 && rcu_segcblist_n_segment_cbs(&rdp->cblist) != 0);
2306	WARN_ON_ONCE(!empty && rcu_segcblist_n_segment_cbs(&rdp->cblist) == 0);
2307
2308	rcu_nocb_unlock_irqrestore(rdp, flags);
2309
2310	tick_dep_clear_task(current, TICK_DEP_BIT_RCU);
 
 
2311}
2312
2313/*
2314 * This function is invoked from each scheduling-clock interrupt,
2315 * and checks to see if this CPU is in a non-context-switch quiescent
2316 * state, for example, user mode or idle loop.  It also schedules RCU
2317 * core processing.  If the current grace period has gone on too long,
2318 * it will ask the scheduler to manufacture a context switch for the sole
2319 * purpose of providing the needed quiescent state.
2320 */
2321void rcu_sched_clock_irq(int user)
2322{
2323	unsigned long j;
2324
2325	if (IS_ENABLED(CONFIG_PROVE_RCU)) {
2326		j = jiffies;
2327		WARN_ON_ONCE(time_before(j, __this_cpu_read(rcu_data.last_sched_clock)));
2328		__this_cpu_write(rcu_data.last_sched_clock, j);
2329	}
2330	trace_rcu_utilization(TPS("Start scheduler-tick"));
2331	lockdep_assert_irqs_disabled();
2332	raw_cpu_inc(rcu_data.ticks_this_gp);
2333	/* The load-acquire pairs with the store-release setting to true. */
2334	if (smp_load_acquire(this_cpu_ptr(&rcu_data.rcu_urgent_qs))) {
2335		/* Idle and userspace execution already are quiescent states. */
2336		if (!rcu_is_cpu_rrupt_from_idle() && !user) {
2337			set_tsk_need_resched(current);
2338			set_preempt_need_resched();
2339		}
2340		__this_cpu_write(rcu_data.rcu_urgent_qs, false);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2341	}
2342	rcu_flavor_sched_clock_irq(user);
2343	if (rcu_pending(user))
2344		invoke_rcu_core();
2345	if (user || rcu_is_cpu_rrupt_from_idle())
2346		rcu_note_voluntary_context_switch(current);
2347	lockdep_assert_irqs_disabled();
2348
2349	trace_rcu_utilization(TPS("End scheduler-tick"));
2350}
2351
2352/*
2353 * Scan the leaf rcu_node structures.  For each structure on which all
2354 * CPUs have reported a quiescent state and on which there are tasks
2355 * blocking the current grace period, initiate RCU priority boosting.
2356 * Otherwise, invoke the specified function to check dyntick state for
2357 * each CPU that has not yet reported a quiescent state.
2358 */
2359static void force_qs_rnp(int (*f)(struct rcu_data *rdp))
2360{
2361	int cpu;
2362	unsigned long flags;
2363	unsigned long mask;
2364	struct rcu_data *rdp;
2365	struct rcu_node *rnp;
2366
2367	rcu_state.cbovld = rcu_state.cbovldnext;
2368	rcu_state.cbovldnext = false;
2369	rcu_for_each_leaf_node(rnp) {
2370		cond_resched_tasks_rcu_qs();
2371		mask = 0;
2372		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2373		rcu_state.cbovldnext |= !!rnp->cbovldmask;
2374		if (rnp->qsmask == 0) {
2375			if (rcu_preempt_blocked_readers_cgp(rnp)) {
 
 
2376				/*
2377				 * No point in scanning bits because they
2378				 * are all zero.  But we might need to
2379				 * priority-boost blocked readers.
2380				 */
2381				rcu_initiate_boost(rnp, flags);
2382				/* rcu_initiate_boost() releases rnp->lock */
2383				continue;
2384			}
2385			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2386			continue;
 
 
 
 
 
 
 
 
 
2387		}
2388		for_each_leaf_node_cpu_mask(rnp, cpu, rnp->qsmask) {
2389			rdp = per_cpu_ptr(&rcu_data, cpu);
2390			if (f(rdp)) {
2391				mask |= rdp->grpmask;
2392				rcu_disable_urgency_upon_qs(rdp);
2393			}
2394		}
2395		if (mask != 0) {
2396			/* Idle/offline CPUs, report (releases rnp->lock). */
2397			rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
2398		} else {
2399			/* Nothing to do here, so just drop the lock. */
2400			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2401		}
2402	}
2403}
2404
2405/*
2406 * Force quiescent states on reluctant CPUs, and also detect which
2407 * CPUs are in dyntick-idle mode.
2408 */
2409void rcu_force_quiescent_state(void)
2410{
2411	unsigned long flags;
2412	bool ret;
2413	struct rcu_node *rnp;
2414	struct rcu_node *rnp_old = NULL;
2415
2416	/* Funnel through hierarchy to reduce memory contention. */
2417	rnp = raw_cpu_read(rcu_data.mynode);
2418	for (; rnp != NULL; rnp = rnp->parent) {
2419		ret = (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) ||
2420		       !raw_spin_trylock(&rnp->fqslock);
2421		if (rnp_old != NULL)
2422			raw_spin_unlock(&rnp_old->fqslock);
2423		if (ret)
2424			return;
2425		rnp_old = rnp;
2426	}
2427	/* rnp_old == rcu_get_root(), rnp == NULL. */
2428
2429	/* Reached the root of the rcu_node tree, acquire lock. */
2430	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2431	raw_spin_unlock(&rnp_old->fqslock);
2432	if (READ_ONCE(rcu_state.gp_flags) & RCU_GP_FLAG_FQS) {
2433		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2434		return;  /* Someone beat us to it. */
2435	}
2436	WRITE_ONCE(rcu_state.gp_flags,
2437		   READ_ONCE(rcu_state.gp_flags) | RCU_GP_FLAG_FQS);
2438	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2439	rcu_gp_kthread_wake();
2440}
2441EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
2442
2443// Workqueue handler for an RCU reader for kernels enforcing struct RCU
2444// grace periods.
2445static void strict_work_handler(struct work_struct *work)
2446{
2447	rcu_read_lock();
2448	rcu_read_unlock();
2449}
2450
2451/* Perform RCU core processing work for the current CPU.  */
2452static __latent_entropy void rcu_core(void)
 
 
 
 
 
2453{
2454	unsigned long flags;
2455	struct rcu_data *rdp = raw_cpu_ptr(&rcu_data);
2456	struct rcu_node *rnp = rdp->mynode;
2457	/*
2458	 * On RT rcu_core() can be preempted when IRQs aren't disabled.
2459	 * Therefore this function can race with concurrent NOCB (de-)offloading
2460	 * on this CPU and the below condition must be considered volatile.
2461	 * However if we race with:
2462	 *
2463	 * _ Offloading:   In the worst case we accelerate or process callbacks
2464	 *                 concurrently with NOCB kthreads. We are guaranteed to
2465	 *                 call rcu_nocb_lock() if that happens.
2466	 *
2467	 * _ Deoffloading: In the worst case we miss callbacks acceleration or
2468	 *                 processing. This is fine because the early stage
2469	 *                 of deoffloading invokes rcu_core() after setting
2470	 *                 SEGCBLIST_RCU_CORE. So we guarantee that we'll process
2471	 *                 what could have been dismissed without the need to wait
2472	 *                 for the next rcu_pending() check in the next jiffy.
2473	 */
2474	const bool do_batch = !rcu_segcblist_completely_offloaded(&rdp->cblist);
2475
2476	if (cpu_is_offline(smp_processor_id()))
2477		return;
2478	trace_rcu_utilization(TPS("Start RCU core"));
2479	WARN_ON_ONCE(!rdp->beenonline);
2480
2481	/* Report any deferred quiescent states if preemption enabled. */
2482	if (IS_ENABLED(CONFIG_PREEMPT_COUNT) && (!(preempt_count() & PREEMPT_MASK))) {
2483		rcu_preempt_deferred_qs(current);
2484	} else if (rcu_preempt_need_deferred_qs(current)) {
2485		set_tsk_need_resched(current);
2486		set_preempt_need_resched();
2487	}
2488
2489	/* Update RCU state based on any recent quiescent states. */
2490	rcu_check_quiescent_state(rdp);
2491
2492	/* No grace period and unregistered callbacks? */
2493	if (!rcu_gp_in_progress() &&
2494	    rcu_segcblist_is_enabled(&rdp->cblist) && do_batch) {
2495		rcu_nocb_lock_irqsave(rdp, flags);
2496		if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
2497			rcu_accelerate_cbs_unlocked(rnp, rdp);
2498		rcu_nocb_unlock_irqrestore(rdp, flags);
 
 
 
2499	}
2500
2501	rcu_check_gp_start_stall(rnp, rdp, rcu_jiffies_till_stall_check());
2502
2503	/* If there are callbacks ready, invoke them. */
2504	if (do_batch && rcu_segcblist_ready_cbs(&rdp->cblist) &&
2505	    likely(READ_ONCE(rcu_scheduler_fully_active))) {
2506		rcu_do_batch(rdp);
2507		/* Re-invoke RCU core processing if there are callbacks remaining. */
2508		if (rcu_segcblist_ready_cbs(&rdp->cblist))
2509			invoke_rcu_core();
2510	}
2511
2512	/* Do any needed deferred wakeups of rcuo kthreads. */
2513	do_nocb_deferred_wakeup(rdp);
2514	trace_rcu_utilization(TPS("End RCU core"));
2515
2516	// If strict GPs, schedule an RCU reader in a clean environment.
2517	if (IS_ENABLED(CONFIG_RCU_STRICT_GRACE_PERIOD))
2518		queue_work_on(rdp->cpu, rcu_gp_wq, &rdp->strict_work);
2519}
2520
2521static void rcu_core_si(struct softirq_action *h)
2522{
2523	rcu_core();
2524}
2525
2526static void rcu_wake_cond(struct task_struct *t, int status)
2527{
2528	/*
2529	 * If the thread is yielding, only wake it when this
2530	 * is invoked from idle
2531	 */
2532	if (t && (status != RCU_KTHREAD_YIELDING || is_idle_task(current)))
2533		wake_up_process(t);
2534}
2535
2536static void invoke_rcu_core_kthread(void)
2537{
2538	struct task_struct *t;
2539	unsigned long flags;
2540
2541	local_irq_save(flags);
2542	__this_cpu_write(rcu_data.rcu_cpu_has_work, 1);
2543	t = __this_cpu_read(rcu_data.rcu_cpu_kthread_task);
2544	if (t != NULL && t != current)
2545		rcu_wake_cond(t, __this_cpu_read(rcu_data.rcu_cpu_kthread_status));
2546	local_irq_restore(flags);
2547}
2548
2549/*
2550 * Wake up this CPU's rcuc kthread to do RCU core processing.
2551 */
2552static void invoke_rcu_core(void)
2553{
2554	if (!cpu_online(smp_processor_id()))
2555		return;
2556	if (use_softirq)
2557		raise_softirq(RCU_SOFTIRQ);
2558	else
2559		invoke_rcu_core_kthread();
2560}
2561
2562static void rcu_cpu_kthread_park(unsigned int cpu)
2563{
2564	per_cpu(rcu_data.rcu_cpu_kthread_status, cpu) = RCU_KTHREAD_OFFCPU;
2565}
2566
2567static int rcu_cpu_kthread_should_run(unsigned int cpu)
2568{
2569	return __this_cpu_read(rcu_data.rcu_cpu_has_work);
 
 
 
2570}
2571
2572/*
2573 * Per-CPU kernel thread that invokes RCU callbacks.  This replaces
2574 * the RCU softirq used in configurations of RCU that do not support RCU
2575 * priority boosting.
 
 
2576 */
2577static void rcu_cpu_kthread(unsigned int cpu)
2578{
2579	unsigned int *statusp = this_cpu_ptr(&rcu_data.rcu_cpu_kthread_status);
2580	char work, *workp = this_cpu_ptr(&rcu_data.rcu_cpu_has_work);
2581	unsigned long *j = this_cpu_ptr(&rcu_data.rcuc_activity);
2582	int spincnt;
2583
2584	trace_rcu_utilization(TPS("Start CPU kthread@rcu_run"));
2585	for (spincnt = 0; spincnt < 10; spincnt++) {
2586		WRITE_ONCE(*j, jiffies);
2587		local_bh_disable();
2588		*statusp = RCU_KTHREAD_RUNNING;
2589		local_irq_disable();
2590		work = *workp;
2591		*workp = 0;
2592		local_irq_enable();
2593		if (work)
2594			rcu_core();
2595		local_bh_enable();
2596		if (*workp == 0) {
2597			trace_rcu_utilization(TPS("End CPU kthread@rcu_wait"));
2598			*statusp = RCU_KTHREAD_WAITING;
2599			return;
2600		}
2601	}
2602	*statusp = RCU_KTHREAD_YIELDING;
2603	trace_rcu_utilization(TPS("Start CPU kthread@rcu_yield"));
2604	schedule_timeout_idle(2);
2605	trace_rcu_utilization(TPS("End CPU kthread@rcu_yield"));
2606	*statusp = RCU_KTHREAD_WAITING;
2607	WRITE_ONCE(*j, jiffies);
2608}
2609
2610static struct smp_hotplug_thread rcu_cpu_thread_spec = {
2611	.store			= &rcu_data.rcu_cpu_kthread_task,
2612	.thread_should_run	= rcu_cpu_kthread_should_run,
2613	.thread_fn		= rcu_cpu_kthread,
2614	.thread_comm		= "rcuc/%u",
2615	.setup			= rcu_cpu_kthread_setup,
2616	.park			= rcu_cpu_kthread_park,
2617};
2618
2619/*
2620 * Spawn per-CPU RCU core processing kthreads.
2621 */
2622static int __init rcu_spawn_core_kthreads(void)
2623{
2624	int cpu;
2625
2626	for_each_possible_cpu(cpu)
2627		per_cpu(rcu_data.rcu_cpu_has_work, cpu) = 0;
2628	if (use_softirq)
2629		return 0;
2630	WARN_ONCE(smpboot_register_percpu_thread(&rcu_cpu_thread_spec),
2631		  "%s: Could not start rcuc kthread, OOM is now expected behavior\n", __func__);
2632	return 0;
2633}
2634
2635/*
2636 * Handle any core-RCU processing required by a call_rcu() invocation.
2637 */
2638static void __call_rcu_core(struct rcu_data *rdp, struct rcu_head *head,
2639			    unsigned long flags)
2640{
 
 
2641	/*
2642	 * If called from an extended quiescent state, invoke the RCU
2643	 * core in order to force a re-evaluation of RCU's idleness.
2644	 */
2645	if (!rcu_is_watching())
2646		invoke_rcu_core();
2647
2648	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2649	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2650		return;
2651
2652	/*
2653	 * Force the grace period if too many callbacks or too long waiting.
2654	 * Enforce hysteresis, and don't invoke rcu_force_quiescent_state()
2655	 * if some other CPU has recently done so.  Also, don't bother
2656	 * invoking rcu_force_quiescent_state() if the newly enqueued callback
2657	 * is the only one waiting for a grace period to complete.
2658	 */
2659	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2660		     rdp->qlen_last_fqs_check + qhimark)) {
2661
2662		/* Are we ignoring a completed grace period? */
2663		note_gp_changes(rdp);
2664
2665		/* Start a new grace period if one not already started. */
2666		if (!rcu_gp_in_progress()) {
2667			rcu_accelerate_cbs_unlocked(rdp->mynode, rdp);
 
 
 
 
 
 
2668		} else {
2669			/* Give the grace period a kick. */
2670			rdp->blimit = DEFAULT_MAX_RCU_BLIMIT;
2671			if (READ_ONCE(rcu_state.n_force_qs) == rdp->n_force_qs_snap &&
2672			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2673				rcu_force_quiescent_state();
2674			rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
2675			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2676		}
2677	}
2678}
2679
2680/*
2681 * RCU callback function to leak a callback.
2682 */
2683static void rcu_leak_callback(struct rcu_head *rhp)
2684{
2685}
2686
2687/*
2688 * Check and if necessary update the leaf rcu_node structure's
2689 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2690 * number of queued RCU callbacks.  The caller must hold the leaf rcu_node
2691 * structure's ->lock.
2692 */
2693static void check_cb_ovld_locked(struct rcu_data *rdp, struct rcu_node *rnp)
2694{
2695	raw_lockdep_assert_held_rcu_node(rnp);
2696	if (qovld_calc <= 0)
2697		return; // Early boot and wildcard value set.
2698	if (rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc)
2699		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask | rdp->grpmask);
2700	else
2701		WRITE_ONCE(rnp->cbovldmask, rnp->cbovldmask & ~rdp->grpmask);
2702}
2703
2704/*
2705 * Check and if necessary update the leaf rcu_node structure's
2706 * ->cbovldmask bit corresponding to the current CPU based on that CPU's
2707 * number of queued RCU callbacks.  No locks need be held, but the
2708 * caller must have disabled interrupts.
2709 *
2710 * Note that this function ignores the possibility that there are a lot
2711 * of callbacks all of which have already seen the end of their respective
2712 * grace periods.  This omission is due to the need for no-CBs CPUs to
2713 * be holding ->nocb_lock to do this check, which is too heavy for a
2714 * common-case operation.
2715 */
2716static void check_cb_ovld(struct rcu_data *rdp)
2717{
2718	struct rcu_node *const rnp = rdp->mynode;
2719
2720	if (qovld_calc <= 0 ||
2721	    ((rcu_segcblist_n_cbs(&rdp->cblist) >= qovld_calc) ==
2722	     !!(READ_ONCE(rnp->cbovldmask) & rdp->grpmask)))
2723		return; // Early boot wildcard value or already set correctly.
2724	raw_spin_lock_rcu_node(rnp);
2725	check_cb_ovld_locked(rdp, rnp);
2726	raw_spin_unlock_rcu_node(rnp);
2727}
2728
2729static void
2730__call_rcu_common(struct rcu_head *head, rcu_callback_t func, bool lazy)
 
2731{
2732	static atomic_t doublefrees;
2733	unsigned long flags;
2734	struct rcu_data *rdp;
2735	bool was_alldone;
2736
2737	/* Misaligned rcu_head! */
2738	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
2739
2740	if (debug_rcu_head_queue(head)) {
2741		/*
2742		 * Probable double call_rcu(), so leak the callback.
2743		 * Use rcu:rcu_callback trace event to find the previous
2744		 * time callback was passed to call_rcu().
2745		 */
2746		if (atomic_inc_return(&doublefrees) < 4) {
2747			pr_err("%s(): Double-freed CB %p->%pS()!!!  ", __func__, head, head->func);
2748			mem_dump_obj(head);
2749		}
2750		WRITE_ONCE(head->func, rcu_leak_callback);
2751		return;
2752	}
2753	head->func = func;
2754	head->next = NULL;
2755	kasan_record_aux_stack_noalloc(head);
2756	local_irq_save(flags);
2757	rdp = this_cpu_ptr(&rcu_data);
2758
2759	/* Add the callback to our list. */
2760	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist))) {
2761		// This can trigger due to call_rcu() from offline CPU:
2762		WARN_ON_ONCE(rcu_scheduler_active != RCU_SCHEDULER_INACTIVE);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2763		WARN_ON_ONCE(!rcu_is_watching());
2764		// Very early boot, before rcu_init().  Initialize if needed
2765		// and then drop through to queue the callback.
2766		if (rcu_segcblist_empty(&rdp->cblist))
2767			rcu_segcblist_init(&rdp->cblist);
2768	}
2769
2770	check_cb_ovld(rdp);
2771	if (rcu_nocb_try_bypass(rdp, head, &was_alldone, flags, lazy))
2772		return; // Enqueued onto ->nocb_bypass, so just leave.
2773	// If no-CBs CPU gets here, rcu_nocb_try_bypass() acquired ->nocb_lock.
2774	rcu_segcblist_enqueue(&rdp->cblist, head);
2775	if (__is_kvfree_rcu_offset((unsigned long)func))
2776		trace_rcu_kvfree_callback(rcu_state.name, head,
2777					 (unsigned long)func,
2778					 rcu_segcblist_n_cbs(&rdp->cblist));
2779	else
2780		trace_rcu_callback(rcu_state.name, head,
 
2781				   rcu_segcblist_n_cbs(&rdp->cblist));
2782
2783	trace_rcu_segcb_stats(&rdp->cblist, TPS("SegCBQueued"));
2784
2785	/* Go handle any RCU core processing required. */
2786	if (unlikely(rcu_rdp_is_offloaded(rdp))) {
2787		__call_rcu_nocb_wake(rdp, was_alldone, flags); /* unlocks */
2788	} else {
2789		__call_rcu_core(rdp, head, flags);
2790		local_irq_restore(flags);
2791	}
2792}
2793
2794#ifdef CONFIG_RCU_LAZY
2795/**
2796 * call_rcu_hurry() - Queue RCU callback for invocation after grace period, and
2797 * flush all lazy callbacks (including the new one) to the main ->cblist while
2798 * doing so.
2799 *
2800 * @head: structure to be used for queueing the RCU updates.
2801 * @func: actual callback function to be invoked after the grace period
2802 *
2803 * The callback function will be invoked some time after a full grace
2804 * period elapses, in other words after all pre-existing RCU read-side
2805 * critical sections have completed.
 
 
 
2806 *
2807 * Use this API instead of call_rcu() if you don't want the callback to be
2808 * invoked after very long periods of time, which can happen on systems without
2809 * memory pressure and on systems which are lightly loaded or mostly idle.
2810 * This function will cause callbacks to be invoked sooner than later at the
2811 * expense of extra power. Other than that, this function is identical to, and
2812 * reuses call_rcu()'s logic. Refer to call_rcu() for more details about memory
2813 * ordering and other functionality.
2814 */
2815void call_rcu_hurry(struct rcu_head *head, rcu_callback_t func)
2816{
2817	return __call_rcu_common(head, func, false);
2818}
2819EXPORT_SYMBOL_GPL(call_rcu_hurry);
2820#endif
2821
2822/**
2823 * call_rcu() - Queue an RCU callback for invocation after a grace period.
2824 * By default the callbacks are 'lazy' and are kept hidden from the main
2825 * ->cblist to prevent starting of grace periods too soon.
2826 * If you desire grace periods to start very soon, use call_rcu_hurry().
2827 *
2828 * @head: structure to be used for queueing the RCU updates.
2829 * @func: actual callback function to be invoked after the grace period
2830 *
2831 * The callback function will be invoked some time after a full grace
2832 * period elapses, in other words after all pre-existing RCU read-side
2833 * critical sections have completed.  However, the callback function
2834 * might well execute concurrently with RCU read-side critical sections
2835 * that started after call_rcu() was invoked.
2836 *
2837 * RCU read-side critical sections are delimited by rcu_read_lock()
2838 * and rcu_read_unlock(), and may be nested.  In addition, but only in
2839 * v5.0 and later, regions of code across which interrupts, preemption,
2840 * or softirqs have been disabled also serve as RCU read-side critical
2841 * sections.  This includes hardware interrupt handlers, softirq handlers,
2842 * and NMI handlers.
2843 *
2844 * Note that all CPUs must agree that the grace period extended beyond
2845 * all pre-existing RCU read-side critical section.  On systems with more
2846 * than one CPU, this means that when "func()" is invoked, each CPU is
2847 * guaranteed to have executed a full memory barrier since the end of its
2848 * last RCU read-side critical section whose beginning preceded the call
2849 * to call_rcu().  It also means that each CPU executing an RCU read-side
2850 * critical section that continues beyond the start of "func()" must have
2851 * executed a memory barrier after the call_rcu() but before the beginning
2852 * of that RCU read-side critical section.  Note that these guarantees
2853 * include CPUs that are offline, idle, or executing in user mode, as
2854 * well as CPUs that are executing in the kernel.
2855 *
2856 * Furthermore, if CPU A invoked call_rcu() and CPU B invoked the
2857 * resulting RCU callback function "func()", then both CPU A and CPU B are
2858 * guaranteed to execute a full memory barrier during the time interval
2859 * between the call to call_rcu() and the invocation of "func()" -- even
2860 * if CPU A and CPU B are the same CPU (but again only if the system has
2861 * more than one CPU).
2862 *
2863 * Implementation of these memory-ordering guarantees is described here:
2864 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
2865 */
2866void call_rcu(struct rcu_head *head, rcu_callback_t func)
2867{
2868	return __call_rcu_common(head, func, IS_ENABLED(CONFIG_RCU_LAZY));
2869}
2870EXPORT_SYMBOL_GPL(call_rcu);
2871
2872/* Maximum number of jiffies to wait before draining a batch. */
2873#define KFREE_DRAIN_JIFFIES (5 * HZ)
2874#define KFREE_N_BATCHES 2
2875#define FREE_N_CHANNELS 2
2876
2877/**
2878 * struct kvfree_rcu_bulk_data - single block to store kvfree_rcu() pointers
2879 * @nr_records: Number of active pointers in the array
2880 * @next: Next bulk object in the block chain
2881 * @records: Array of the kvfree_rcu() pointers
2882 */
2883struct kvfree_rcu_bulk_data {
2884	unsigned long nr_records;
2885	struct kvfree_rcu_bulk_data *next;
2886	void *records[];
2887};
2888
2889/*
2890 * This macro defines how many entries the "records" array
2891 * will contain. It is based on the fact that the size of
2892 * kvfree_rcu_bulk_data structure becomes exactly one page.
2893 */
2894#define KVFREE_BULK_MAX_ENTR \
2895	((PAGE_SIZE - sizeof(struct kvfree_rcu_bulk_data)) / sizeof(void *))
2896
2897/**
2898 * struct kfree_rcu_cpu_work - single batch of kfree_rcu() requests
2899 * @rcu_work: Let queue_rcu_work() invoke workqueue handler after grace period
2900 * @head_free: List of kfree_rcu() objects waiting for a grace period
2901 * @bkvhead_free: Bulk-List of kvfree_rcu() objects waiting for a grace period
2902 * @krcp: Pointer to @kfree_rcu_cpu structure
2903 */
2904
2905struct kfree_rcu_cpu_work {
2906	struct rcu_work rcu_work;
2907	struct rcu_head *head_free;
2908	struct kvfree_rcu_bulk_data *bkvhead_free[FREE_N_CHANNELS];
2909	struct kfree_rcu_cpu *krcp;
2910};
2911
2912/**
2913 * struct kfree_rcu_cpu - batch up kfree_rcu() requests for RCU grace period
2914 * @head: List of kfree_rcu() objects not yet waiting for a grace period
2915 * @bkvhead: Bulk-List of kvfree_rcu() objects not yet waiting for a grace period
2916 * @krw_arr: Array of batches of kfree_rcu() objects waiting for a grace period
2917 * @lock: Synchronize access to this structure
2918 * @monitor_work: Promote @head to @head_free after KFREE_DRAIN_JIFFIES
2919 * @initialized: The @rcu_work fields have been initialized
2920 * @count: Number of objects for which GP not started
2921 * @bkvcache:
2922 *	A simple cache list that contains objects for reuse purpose.
2923 *	In order to save some per-cpu space the list is singular.
2924 *	Even though it is lockless an access has to be protected by the
2925 *	per-cpu lock.
2926 * @page_cache_work: A work to refill the cache when it is empty
2927 * @backoff_page_cache_fill: Delay cache refills
2928 * @work_in_progress: Indicates that page_cache_work is running
2929 * @hrtimer: A hrtimer for scheduling a page_cache_work
2930 * @nr_bkv_objs: number of allocated objects at @bkvcache.
2931 *
2932 * This is a per-CPU structure.  The reason that it is not included in
2933 * the rcu_data structure is to permit this code to be extracted from
2934 * the RCU files.  Such extraction could allow further optimization of
2935 * the interactions with the slab allocators.
2936 */
2937struct kfree_rcu_cpu {
2938	struct rcu_head *head;
2939	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS];
2940	struct kfree_rcu_cpu_work krw_arr[KFREE_N_BATCHES];
2941	raw_spinlock_t lock;
2942	struct delayed_work monitor_work;
2943	bool initialized;
2944	int count;
2945
2946	struct delayed_work page_cache_work;
2947	atomic_t backoff_page_cache_fill;
2948	atomic_t work_in_progress;
2949	struct hrtimer hrtimer;
2950
2951	struct llist_head bkvcache;
2952	int nr_bkv_objs;
2953};
2954
2955static DEFINE_PER_CPU(struct kfree_rcu_cpu, krc) = {
2956	.lock = __RAW_SPIN_LOCK_UNLOCKED(krc.lock),
2957};
2958
2959static __always_inline void
2960debug_rcu_bhead_unqueue(struct kvfree_rcu_bulk_data *bhead)
2961{
2962#ifdef CONFIG_DEBUG_OBJECTS_RCU_HEAD
2963	int i;
2964
2965	for (i = 0; i < bhead->nr_records; i++)
2966		debug_rcu_head_unqueue((struct rcu_head *)(bhead->records[i]));
2967#endif
2968}
2969
2970static inline struct kfree_rcu_cpu *
2971krc_this_cpu_lock(unsigned long *flags)
2972{
2973	struct kfree_rcu_cpu *krcp;
2974
2975	local_irq_save(*flags);	// For safely calling this_cpu_ptr().
2976	krcp = this_cpu_ptr(&krc);
2977	raw_spin_lock(&krcp->lock);
2978
2979	return krcp;
2980}
2981
2982static inline void
2983krc_this_cpu_unlock(struct kfree_rcu_cpu *krcp, unsigned long flags)
2984{
2985	raw_spin_unlock_irqrestore(&krcp->lock, flags);
2986}
2987
2988static inline struct kvfree_rcu_bulk_data *
2989get_cached_bnode(struct kfree_rcu_cpu *krcp)
2990{
2991	if (!krcp->nr_bkv_objs)
2992		return NULL;
2993
2994	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs - 1);
2995	return (struct kvfree_rcu_bulk_data *)
2996		llist_del_first(&krcp->bkvcache);
2997}
2998
2999static inline bool
3000put_cached_bnode(struct kfree_rcu_cpu *krcp,
3001	struct kvfree_rcu_bulk_data *bnode)
3002{
3003	// Check the limit.
3004	if (krcp->nr_bkv_objs >= rcu_min_cached_objs)
3005		return false;
3006
3007	llist_add((struct llist_node *) bnode, &krcp->bkvcache);
3008	WRITE_ONCE(krcp->nr_bkv_objs, krcp->nr_bkv_objs + 1);
3009	return true;
3010}
3011
3012static int
3013drain_page_cache(struct kfree_rcu_cpu *krcp)
3014{
3015	unsigned long flags;
3016	struct llist_node *page_list, *pos, *n;
3017	int freed = 0;
3018
3019	raw_spin_lock_irqsave(&krcp->lock, flags);
3020	page_list = llist_del_all(&krcp->bkvcache);
3021	WRITE_ONCE(krcp->nr_bkv_objs, 0);
3022	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3023
3024	llist_for_each_safe(pos, n, page_list) {
3025		free_page((unsigned long)pos);
3026		freed++;
3027	}
3028
3029	return freed;
3030}
3031
3032/*
3033 * This function is invoked in workqueue context after a grace period.
3034 * It frees all the objects queued on ->bkvhead_free or ->head_free.
3035 */
3036static void kfree_rcu_work(struct work_struct *work)
3037{
3038	unsigned long flags;
3039	struct kvfree_rcu_bulk_data *bkvhead[FREE_N_CHANNELS], *bnext;
3040	struct rcu_head *head, *next;
3041	struct kfree_rcu_cpu *krcp;
3042	struct kfree_rcu_cpu_work *krwp;
3043	int i, j;
3044
3045	krwp = container_of(to_rcu_work(work),
3046			    struct kfree_rcu_cpu_work, rcu_work);
3047	krcp = krwp->krcp;
3048
3049	raw_spin_lock_irqsave(&krcp->lock, flags);
3050	// Channels 1 and 2.
3051	for (i = 0; i < FREE_N_CHANNELS; i++) {
3052		bkvhead[i] = krwp->bkvhead_free[i];
3053		krwp->bkvhead_free[i] = NULL;
3054	}
3055
3056	// Channel 3.
3057	head = krwp->head_free;
3058	krwp->head_free = NULL;
3059	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3060
3061	// Handle the first two channels.
3062	for (i = 0; i < FREE_N_CHANNELS; i++) {
3063		for (; bkvhead[i]; bkvhead[i] = bnext) {
3064			bnext = bkvhead[i]->next;
3065			debug_rcu_bhead_unqueue(bkvhead[i]);
3066
3067			rcu_lock_acquire(&rcu_callback_map);
3068			if (i == 0) { // kmalloc() / kfree().
3069				trace_rcu_invoke_kfree_bulk_callback(
3070					rcu_state.name, bkvhead[i]->nr_records,
3071					bkvhead[i]->records);
3072
3073				kfree_bulk(bkvhead[i]->nr_records,
3074					bkvhead[i]->records);
3075			} else { // vmalloc() / vfree().
3076				for (j = 0; j < bkvhead[i]->nr_records; j++) {
3077					trace_rcu_invoke_kvfree_callback(
3078						rcu_state.name,
3079						bkvhead[i]->records[j], 0);
3080
3081					vfree(bkvhead[i]->records[j]);
3082				}
3083			}
3084			rcu_lock_release(&rcu_callback_map);
3085
3086			raw_spin_lock_irqsave(&krcp->lock, flags);
3087			if (put_cached_bnode(krcp, bkvhead[i]))
3088				bkvhead[i] = NULL;
3089			raw_spin_unlock_irqrestore(&krcp->lock, flags);
3090
3091			if (bkvhead[i])
3092				free_page((unsigned long) bkvhead[i]);
3093
3094			cond_resched_tasks_rcu_qs();
3095		}
3096	}
3097
3098	/*
3099	 * This is used when the "bulk" path can not be used for the
3100	 * double-argument of kvfree_rcu().  This happens when the
3101	 * page-cache is empty, which means that objects are instead
3102	 * queued on a linked list through their rcu_head structures.
3103	 * This list is named "Channel 3".
3104	 */
3105	for (; head; head = next) {
3106		unsigned long offset = (unsigned long)head->func;
3107		void *ptr = (void *)head - offset;
3108
3109		next = head->next;
3110		debug_rcu_head_unqueue((struct rcu_head *)ptr);
3111		rcu_lock_acquire(&rcu_callback_map);
3112		trace_rcu_invoke_kvfree_callback(rcu_state.name, head, offset);
3113
3114		if (!WARN_ON_ONCE(!__is_kvfree_rcu_offset(offset)))
3115			kvfree(ptr);
3116
3117		rcu_lock_release(&rcu_callback_map);
3118		cond_resched_tasks_rcu_qs();
3119	}
3120}
3121
3122static bool
3123need_offload_krc(struct kfree_rcu_cpu *krcp)
3124{
3125	int i;
3126
3127	for (i = 0; i < FREE_N_CHANNELS; i++)
3128		if (krcp->bkvhead[i])
3129			return true;
3130
3131	return !!krcp->head;
3132}
3133
3134static void
3135schedule_delayed_monitor_work(struct kfree_rcu_cpu *krcp)
3136{
3137	long delay, delay_left;
3138
3139	delay = READ_ONCE(krcp->count) >= KVFREE_BULK_MAX_ENTR ? 1:KFREE_DRAIN_JIFFIES;
3140	if (delayed_work_pending(&krcp->monitor_work)) {
3141		delay_left = krcp->monitor_work.timer.expires - jiffies;
3142		if (delay < delay_left)
3143			mod_delayed_work(system_wq, &krcp->monitor_work, delay);
3144		return;
3145	}
3146	queue_delayed_work(system_wq, &krcp->monitor_work, delay);
3147}
 
3148
3149/*
3150 * This function is invoked after the KFREE_DRAIN_JIFFIES timeout.
 
 
 
 
3151 */
3152static void kfree_rcu_monitor(struct work_struct *work)
3153{
3154	struct kfree_rcu_cpu *krcp = container_of(work,
3155		struct kfree_rcu_cpu, monitor_work.work);
3156	unsigned long flags;
3157	int i, j;
3158
3159	raw_spin_lock_irqsave(&krcp->lock, flags);
3160
3161	// Attempt to start a new batch.
3162	for (i = 0; i < KFREE_N_BATCHES; i++) {
3163		struct kfree_rcu_cpu_work *krwp = &(krcp->krw_arr[i]);
3164
3165		// Try to detach bkvhead or head and attach it over any
3166		// available corresponding free channel. It can be that
3167		// a previous RCU batch is in progress, it means that
3168		// immediately to queue another one is not possible so
3169		// in that case the monitor work is rearmed.
3170		if ((krcp->bkvhead[0] && !krwp->bkvhead_free[0]) ||
3171			(krcp->bkvhead[1] && !krwp->bkvhead_free[1]) ||
3172				(krcp->head && !krwp->head_free)) {
3173			// Channel 1 corresponds to the SLAB-pointer bulk path.
3174			// Channel 2 corresponds to vmalloc-pointer bulk path.
3175			for (j = 0; j < FREE_N_CHANNELS; j++) {
3176				if (!krwp->bkvhead_free[j]) {
3177					krwp->bkvhead_free[j] = krcp->bkvhead[j];
3178					krcp->bkvhead[j] = NULL;
3179				}
3180			}
3181
3182			// Channel 3 corresponds to both SLAB and vmalloc
3183			// objects queued on the linked list.
3184			if (!krwp->head_free) {
3185				krwp->head_free = krcp->head;
3186				krcp->head = NULL;
3187			}
3188
3189			WRITE_ONCE(krcp->count, 0);
3190
3191			// One work is per one batch, so there are three
3192			// "free channels", the batch can handle. It can
3193			// be that the work is in the pending state when
3194			// channels have been detached following by each
3195			// other.
3196			queue_rcu_work(system_wq, &krwp->rcu_work);
3197		}
3198	}
3199
3200	// If there is nothing to detach, it means that our job is
3201	// successfully done here. In case of having at least one
3202	// of the channels that is still busy we should rearm the
3203	// work to repeat an attempt. Because previous batches are
3204	// still in progress.
3205	if (need_offload_krc(krcp))
3206		schedule_delayed_monitor_work(krcp);
3207
3208	raw_spin_unlock_irqrestore(&krcp->lock, flags);
3209}
3210
3211static enum hrtimer_restart
3212schedule_page_work_fn(struct hrtimer *t)
3213{
3214	struct kfree_rcu_cpu *krcp =
3215		container_of(t, struct kfree_rcu_cpu, hrtimer);
3216
3217	queue_delayed_work(system_highpri_wq, &krcp->page_cache_work, 0);
3218	return HRTIMER_NORESTART;
3219}
3220
3221static void fill_page_cache_func(struct work_struct *work)
3222{
3223	struct kvfree_rcu_bulk_data *bnode;
3224	struct kfree_rcu_cpu *krcp =
3225		container_of(work, struct kfree_rcu_cpu,
3226			page_cache_work.work);
3227	unsigned long flags;
3228	int nr_pages;
3229	bool pushed;
3230	int i;
3231
3232	nr_pages = atomic_read(&krcp->backoff_page_cache_fill) ?
3233		1 : rcu_min_cached_objs;
3234
3235	for (i = 0; i < nr_pages; i++) {
3236		bnode = (struct kvfree_rcu_bulk_data *)
3237			__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3238
3239		if (!bnode)
3240			break;
3241
3242		raw_spin_lock_irqsave(&krcp->lock, flags);
3243		pushed = put_cached_bnode(krcp, bnode);
3244		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3245
3246		if (!pushed) {
3247			free_page((unsigned long) bnode);
3248			break;
3249		}
3250	}
3251
3252	atomic_set(&krcp->work_in_progress, 0);
3253	atomic_set(&krcp->backoff_page_cache_fill, 0);
3254}
3255
3256static void
3257run_page_cache_worker(struct kfree_rcu_cpu *krcp)
3258{
3259	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING &&
3260			!atomic_xchg(&krcp->work_in_progress, 1)) {
3261		if (atomic_read(&krcp->backoff_page_cache_fill)) {
3262			queue_delayed_work(system_wq,
3263				&krcp->page_cache_work,
3264					msecs_to_jiffies(rcu_delay_page_cache_fill_msec));
3265		} else {
3266			hrtimer_init(&krcp->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
3267			krcp->hrtimer.function = schedule_page_work_fn;
3268			hrtimer_start(&krcp->hrtimer, 0, HRTIMER_MODE_REL);
3269		}
3270	}
3271}
3272
3273// Record ptr in a page managed by krcp, with the pre-krc_this_cpu_lock()
3274// state specified by flags.  If can_alloc is true, the caller must
3275// be schedulable and not be holding any locks or mutexes that might be
3276// acquired by the memory allocator or anything that it might invoke.
3277// Returns true if ptr was successfully recorded, else the caller must
3278// use a fallback.
3279static inline bool
3280add_ptr_to_bulk_krc_lock(struct kfree_rcu_cpu **krcp,
3281	unsigned long *flags, void *ptr, bool can_alloc)
3282{
3283	struct kvfree_rcu_bulk_data *bnode;
3284	int idx;
3285
3286	*krcp = krc_this_cpu_lock(flags);
3287	if (unlikely(!(*krcp)->initialized))
3288		return false;
3289
3290	idx = !!is_vmalloc_addr(ptr);
3291
3292	/* Check if a new block is required. */
3293	if (!(*krcp)->bkvhead[idx] ||
3294			(*krcp)->bkvhead[idx]->nr_records == KVFREE_BULK_MAX_ENTR) {
3295		bnode = get_cached_bnode(*krcp);
3296		if (!bnode && can_alloc) {
3297			krc_this_cpu_unlock(*krcp, *flags);
3298
3299			// __GFP_NORETRY - allows a light-weight direct reclaim
3300			// what is OK from minimizing of fallback hitting point of
3301			// view. Apart of that it forbids any OOM invoking what is
3302			// also beneficial since we are about to release memory soon.
3303			//
3304			// __GFP_NOMEMALLOC - prevents from consuming of all the
3305			// memory reserves. Please note we have a fallback path.
3306			//
3307			// __GFP_NOWARN - it is supposed that an allocation can
3308			// be failed under low memory or high memory pressure
3309			// scenarios.
3310			bnode = (struct kvfree_rcu_bulk_data *)
3311				__get_free_page(GFP_KERNEL | __GFP_NORETRY | __GFP_NOMEMALLOC | __GFP_NOWARN);
3312			*krcp = krc_this_cpu_lock(flags);
3313		}
3314
3315		if (!bnode)
3316			return false;
3317
3318		/* Initialize the new block. */
3319		bnode->nr_records = 0;
3320		bnode->next = (*krcp)->bkvhead[idx];
3321
3322		/* Attach it to the head. */
3323		(*krcp)->bkvhead[idx] = bnode;
3324	}
3325
3326	/* Finally insert. */
3327	(*krcp)->bkvhead[idx]->records
3328		[(*krcp)->bkvhead[idx]->nr_records++] = ptr;
3329
3330	return true;
3331}
 
3332
3333/*
3334 * Queue a request for lazy invocation of the appropriate free routine
3335 * after a grace period.  Please note that three paths are maintained,
3336 * two for the common case using arrays of pointers and a third one that
3337 * is used only when the main paths cannot be used, for example, due to
3338 * memory pressure.
3339 *
3340 * Each kvfree_call_rcu() request is added to a batch. The batch will be drained
3341 * every KFREE_DRAIN_JIFFIES number of jiffies. All the objects in the batch will
3342 * be free'd in workqueue context. This allows us to: batch requests together to
3343 * reduce the number of grace periods during heavy kfree_rcu()/kvfree_rcu() load.
3344 */
3345void kvfree_call_rcu(struct rcu_head *head, rcu_callback_t func)
3346{
3347	unsigned long flags;
3348	struct kfree_rcu_cpu *krcp;
3349	bool success;
3350	void *ptr;
3351
3352	if (head) {
3353		ptr = (void *) head - (unsigned long) func;
3354	} else {
3355		/*
3356		 * Please note there is a limitation for the head-less
3357		 * variant, that is why there is a clear rule for such
3358		 * objects: it can be used from might_sleep() context
3359		 * only. For other places please embed an rcu_head to
3360		 * your data.
3361		 */
3362		might_sleep();
3363		ptr = (unsigned long *) func;
3364	}
3365
3366	// Queue the object but don't yet schedule the batch.
3367	if (debug_rcu_head_queue(ptr)) {
3368		// Probable double kfree_rcu(), just leak.
3369		WARN_ONCE(1, "%s(): Double-freed call. rcu_head %p\n",
3370			  __func__, head);
3371
3372		// Mark as success and leave.
3373		return;
3374	}
3375
3376	kasan_record_aux_stack_noalloc(ptr);
3377	success = add_ptr_to_bulk_krc_lock(&krcp, &flags, ptr, !head);
3378	if (!success) {
3379		run_page_cache_worker(krcp);
3380
3381		if (head == NULL)
3382			// Inline if kvfree_rcu(one_arg) call.
3383			goto unlock_return;
3384
3385		head->func = func;
3386		head->next = krcp->head;
3387		krcp->head = head;
3388		success = true;
3389	}
3390
3391	WRITE_ONCE(krcp->count, krcp->count + 1);
3392
3393	// Set timer to drain after KFREE_DRAIN_JIFFIES.
3394	if (rcu_scheduler_active == RCU_SCHEDULER_RUNNING)
3395		schedule_delayed_monitor_work(krcp);
3396
3397unlock_return:
3398	krc_this_cpu_unlock(krcp, flags);
3399
3400	/*
3401	 * Inline kvfree() after synchronize_rcu(). We can do
3402	 * it from might_sleep() context only, so the current
3403	 * CPU can pass the QS state.
3404	 */
3405	if (!success) {
3406		debug_rcu_head_unqueue((struct rcu_head *) ptr);
3407		synchronize_rcu();
3408		kvfree(ptr);
3409	}
3410}
3411EXPORT_SYMBOL_GPL(kvfree_call_rcu);
3412
3413static unsigned long
3414kfree_rcu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
3415{
3416	int cpu;
3417	unsigned long count = 0;
3418
3419	/* Snapshot count of all CPUs */
3420	for_each_possible_cpu(cpu) {
3421		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3422
3423		count += READ_ONCE(krcp->count);
3424		count += READ_ONCE(krcp->nr_bkv_objs);
3425		atomic_set(&krcp->backoff_page_cache_fill, 1);
3426	}
3427
3428	return count == 0 ? SHRINK_EMPTY : count;
3429}
3430
3431static unsigned long
3432kfree_rcu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3433{
3434	int cpu, freed = 0;
3435
3436	for_each_possible_cpu(cpu) {
3437		int count;
3438		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3439
3440		count = krcp->count;
3441		count += drain_page_cache(krcp);
3442		kfree_rcu_monitor(&krcp->monitor_work.work);
3443
3444		sc->nr_to_scan -= count;
3445		freed += count;
3446
3447		if (sc->nr_to_scan <= 0)
3448			break;
3449	}
3450
3451	return freed == 0 ? SHRINK_STOP : freed;
3452}
3453
3454static struct shrinker kfree_rcu_shrinker = {
3455	.count_objects = kfree_rcu_shrink_count,
3456	.scan_objects = kfree_rcu_shrink_scan,
3457	.batch = 0,
3458	.seeks = DEFAULT_SEEKS,
3459};
3460
3461void __init kfree_rcu_scheduler_running(void)
3462{
3463	int cpu;
3464	unsigned long flags;
3465
3466	for_each_possible_cpu(cpu) {
3467		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
3468
3469		raw_spin_lock_irqsave(&krcp->lock, flags);
3470		if (need_offload_krc(krcp))
3471			schedule_delayed_monitor_work(krcp);
3472		raw_spin_unlock_irqrestore(&krcp->lock, flags);
3473	}
3474}
3475
3476/*
3477 * During early boot, any blocking grace-period wait automatically
3478 * implies a grace period.
3479 *
3480 * Later on, this could in theory be the case for kernels built with
3481 * CONFIG_SMP=y && CONFIG_PREEMPTION=y running on a single CPU, but this
3482 * is not a common case.  Furthermore, this optimization would cause
3483 * the rcu_gp_oldstate structure to expand by 50%, so this potential
3484 * grace-period optimization is ignored once the scheduler is running.
3485 */
3486static int rcu_blocking_is_gp(void)
3487{
3488	if (rcu_scheduler_active != RCU_SCHEDULER_INACTIVE)
3489		return false;
3490	might_sleep();  /* Check for RCU read-side critical section. */
3491	return true;
 
 
 
3492}
3493
3494/**
3495 * synchronize_rcu - wait until a grace period has elapsed.
3496 *
3497 * Control will return to the caller some time after a full grace
3498 * period has elapsed, in other words after all currently executing RCU
3499 * read-side critical sections have completed.  Note, however, that
3500 * upon return from synchronize_rcu(), the caller might well be executing
3501 * concurrently with new RCU read-side critical sections that began while
3502 * synchronize_rcu() was waiting.
3503 *
3504 * RCU read-side critical sections are delimited by rcu_read_lock()
3505 * and rcu_read_unlock(), and may be nested.  In addition, but only in
3506 * v5.0 and later, regions of code across which interrupts, preemption,
3507 * or softirqs have been disabled also serve as RCU read-side critical
3508 * sections.  This includes hardware interrupt handlers, softirq handlers,
3509 * and NMI handlers.
3510 *
3511 * Note that this guarantee implies further memory-ordering guarantees.
3512 * On systems with more than one CPU, when synchronize_rcu() returns,
3513 * each CPU is guaranteed to have executed a full memory barrier since
3514 * the end of its last RCU read-side critical section whose beginning
3515 * preceded the call to synchronize_rcu().  In addition, each CPU having
3516 * an RCU read-side critical section that extends beyond the return from
3517 * synchronize_rcu() is guaranteed to have executed a full memory barrier
3518 * after the beginning of synchronize_rcu() and before the beginning of
3519 * that RCU read-side critical section.  Note that these guarantees include
3520 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3521 * that are executing in the kernel.
3522 *
3523 * Furthermore, if CPU A invoked synchronize_rcu(), which returned
3524 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3525 * to have executed a full memory barrier during the execution of
3526 * synchronize_rcu() -- even if CPU A and CPU B are the same CPU (but
3527 * again only if the system has more than one CPU).
3528 *
3529 * Implementation of these memory-ordering guarantees is described here:
3530 * Documentation/RCU/Design/Memory-Ordering/Tree-RCU-Memory-Ordering.rst.
3531 */
3532void synchronize_rcu(void)
3533{
3534	unsigned long flags;
3535	struct rcu_node *rnp;
3536
3537	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3538			 lock_is_held(&rcu_lock_map) ||
3539			 lock_is_held(&rcu_sched_lock_map),
3540			 "Illegal synchronize_rcu() in RCU read-side critical section");
3541	if (!rcu_blocking_is_gp()) {
3542		if (rcu_gp_is_expedited())
3543			synchronize_rcu_expedited();
3544		else
3545			wait_rcu_gp(call_rcu_hurry);
3546		return;
3547	}
3548
3549	// Context allows vacuous grace periods.
3550	// Note well that this code runs with !PREEMPT && !SMP.
3551	// In addition, all code that advances grace periods runs at
3552	// process level.  Therefore, this normal GP overlaps with other
3553	// normal GPs only by being fully nested within them, which allows
3554	// reuse of ->gp_seq_polled_snap.
3555	rcu_poll_gp_seq_start_unlocked(&rcu_state.gp_seq_polled_snap);
3556	rcu_poll_gp_seq_end_unlocked(&rcu_state.gp_seq_polled_snap);
3557
3558	// Update the normal grace-period counters to record
3559	// this grace period, but only those used by the boot CPU.
3560	// The rcu_scheduler_starting() will take care of the rest of
3561	// these counters.
3562	local_irq_save(flags);
3563	WARN_ON_ONCE(num_online_cpus() > 1);
3564	rcu_state.gp_seq += (1 << RCU_SEQ_CTR_SHIFT);
3565	for (rnp = this_cpu_ptr(&rcu_data)->mynode; rnp; rnp = rnp->parent)
3566		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
3567	local_irq_restore(flags);
3568}
3569EXPORT_SYMBOL_GPL(synchronize_rcu);
3570
3571/**
3572 * get_completed_synchronize_rcu_full - Return a full pre-completed polled state cookie
3573 * @rgosp: Place to put state cookie
3574 *
3575 * Stores into @rgosp a value that will always be treated by functions
3576 * like poll_state_synchronize_rcu_full() as a cookie whose grace period
3577 * has already completed.
 
 
 
 
 
3578 */
3579void get_completed_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3580{
3581	rgosp->rgos_norm = RCU_GET_STATE_COMPLETED;
3582	rgosp->rgos_exp = RCU_GET_STATE_COMPLETED;
 
 
 
 
 
 
 
 
3583}
3584EXPORT_SYMBOL_GPL(get_completed_synchronize_rcu_full);
3585
3586/**
3587 * get_state_synchronize_rcu - Snapshot current RCU state
3588 *
3589 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3590 * or poll_state_synchronize_rcu() to determine whether or not a full
3591 * grace period has elapsed in the meantime.
3592 */
3593unsigned long get_state_synchronize_rcu(void)
3594{
3595	/*
3596	 * Any prior manipulation of RCU-protected data must happen
3597	 * before the load from ->gp_seq.
3598	 */
3599	smp_mb();  /* ^^^ */
3600	return rcu_seq_snap(&rcu_state.gp_seq_polled);
3601}
3602EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3603
3604/**
3605 * get_state_synchronize_rcu_full - Snapshot RCU state, both normal and expedited
3606 * @rgosp: location to place combined normal/expedited grace-period state
3607 *
3608 * Places the normal and expedited grace-period states in @rgosp.  This
3609 * state value can be passed to a later call to cond_synchronize_rcu_full()
3610 * or poll_state_synchronize_rcu_full() to determine whether or not a
3611 * grace period (whether normal or expedited) has elapsed in the meantime.
3612 * The rcu_gp_oldstate structure takes up twice the memory of an unsigned
3613 * long, but is guaranteed to see all grace periods.  In contrast, the
3614 * combined state occupies less memory, but can sometimes fail to take
3615 * grace periods into account.
3616 *
3617 * This does not guarantee that the needed grace period will actually
3618 * start.
3619 */
3620void get_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3621{
3622	struct rcu_node *rnp = rcu_get_root();
3623
3624	/*
3625	 * Any prior manipulation of RCU-protected data must happen
3626	 * before the loads from ->gp_seq and ->expedited_sequence.
 
3627	 */
3628	smp_mb();  /* ^^^ */
3629	rgosp->rgos_norm = rcu_seq_snap(&rnp->gp_seq);
3630	rgosp->rgos_exp = rcu_seq_snap(&rcu_state.expedited_sequence);
3631}
3632EXPORT_SYMBOL_GPL(get_state_synchronize_rcu_full);
3633
3634/*
3635 * Helper function for start_poll_synchronize_rcu() and
3636 * start_poll_synchronize_rcu_full().
3637 */
3638static void start_poll_synchronize_rcu_common(void)
3639{
3640	unsigned long flags;
3641	bool needwake;
3642	struct rcu_data *rdp;
3643	struct rcu_node *rnp;
3644
3645	lockdep_assert_irqs_enabled();
3646	local_irq_save(flags);
3647	rdp = this_cpu_ptr(&rcu_data);
3648	rnp = rdp->mynode;
3649	raw_spin_lock_rcu_node(rnp); // irqs already disabled.
3650	// Note it is possible for a grace period to have elapsed between
3651	// the above call to get_state_synchronize_rcu() and the below call
3652	// to rcu_seq_snap.  This is OK, the worst that happens is that we
3653	// get a grace period that no one needed.  These accesses are ordered
3654	// by smp_mb(), and we are accessing them in the opposite order
3655	// from which they are updated at grace-period start, as required.
3656	needwake = rcu_start_this_gp(rnp, rdp, rcu_seq_snap(&rcu_state.gp_seq));
3657	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3658	if (needwake)
3659		rcu_gp_kthread_wake();
3660}
 
3661
3662/**
3663 * start_poll_synchronize_rcu - Snapshot and start RCU grace period
3664 *
3665 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3666 * or poll_state_synchronize_rcu() to determine whether or not a full
3667 * grace period has elapsed in the meantime.  If the needed grace period
3668 * is not already slated to start, notifies RCU core of the need for that
3669 * grace period.
3670 *
3671 * Interrupts must be enabled for the case where it is necessary to awaken
3672 * the grace-period kthread.
 
 
 
 
 
 
3673 */
3674unsigned long start_poll_synchronize_rcu(void)
3675{
3676	unsigned long gp_seq = get_state_synchronize_rcu();
3677
3678	start_poll_synchronize_rcu_common();
3679	return gp_seq;
 
 
 
 
 
3680}
3681EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu);
3682
3683/**
3684 * start_poll_synchronize_rcu_full - Take a full snapshot and start RCU grace period
3685 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3686 *
3687 * Places the normal and expedited grace-period states in *@rgos.  This
3688 * state value can be passed to a later call to cond_synchronize_rcu_full()
3689 * or poll_state_synchronize_rcu_full() to determine whether or not a
3690 * grace period (whether normal or expedited) has elapsed in the meantime.
3691 * If the needed grace period is not already slated to start, notifies
3692 * RCU core of the need for that grace period.
3693 *
3694 * Interrupts must be enabled for the case where it is necessary to awaken
3695 * the grace-period kthread.
 
3696 */
3697void start_poll_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3698{
3699	get_state_synchronize_rcu_full(rgosp);
3700
3701	start_poll_synchronize_rcu_common();
3702}
3703EXPORT_SYMBOL_GPL(start_poll_synchronize_rcu_full);
3704
3705/**
3706 * poll_state_synchronize_rcu - Has the specified RCU grace period completed?
3707 * @oldstate: value from get_state_synchronize_rcu() or start_poll_synchronize_rcu()
3708 *
3709 * If a full RCU grace period has elapsed since the earlier call from
3710 * which @oldstate was obtained, return @true, otherwise return @false.
3711 * If @false is returned, it is the caller's responsibility to invoke this
3712 * function later on until it does return @true.  Alternatively, the caller
3713 * can explicitly wait for a grace period, for example, by passing @oldstate
3714 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3715 *
3716 * Yes, this function does not take counter wrap into account.
3717 * But counter wrap is harmless.  If the counter wraps, we have waited for
3718 * more than a billion grace periods (and way more on a 64-bit system!).
3719 * Those needing to keep old state values for very long time periods
3720 * (many hours even on 32-bit systems) should check them occasionally and
3721 * either refresh them or set a flag indicating that the grace period has
3722 * completed.  Alternatively, they can use get_completed_synchronize_rcu()
3723 * to get a guaranteed-completed grace-period state.
3724 *
3725 * This function provides the same memory-ordering guarantees that
3726 * would be provided by a synchronize_rcu() that was invoked at the call
3727 * to the function that provided @oldstate, and that returned at the end
3728 * of this function.
3729 */
3730bool poll_state_synchronize_rcu(unsigned long oldstate)
3731{
3732	if (oldstate == RCU_GET_STATE_COMPLETED ||
3733	    rcu_seq_done_exact(&rcu_state.gp_seq_polled, oldstate)) {
3734		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3735		return true;
3736	}
3737	return false;
3738}
3739EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu);
3740
3741/**
3742 * poll_state_synchronize_rcu_full - Has the specified RCU grace period completed?
3743 * @rgosp: value from get_state_synchronize_rcu_full() or start_poll_synchronize_rcu_full()
3744 *
3745 * If a full RCU grace period has elapsed since the earlier call from
3746 * which *rgosp was obtained, return @true, otherwise return @false.
3747 * If @false is returned, it is the caller's responsibility to invoke this
3748 * function later on until it does return @true.  Alternatively, the caller
3749 * can explicitly wait for a grace period, for example, by passing @rgosp
3750 * to cond_synchronize_rcu() or by directly invoking synchronize_rcu().
3751 *
3752 * Yes, this function does not take counter wrap into account.
3753 * But counter wrap is harmless.  If the counter wraps, we have waited
3754 * for more than a billion grace periods (and way more on a 64-bit
3755 * system!).  Those needing to keep rcu_gp_oldstate values for very
3756 * long time periods (many hours even on 32-bit systems) should check
3757 * them occasionally and either refresh them or set a flag indicating
3758 * that the grace period has completed.  Alternatively, they can use
3759 * get_completed_synchronize_rcu_full() to get a guaranteed-completed
3760 * grace-period state.
3761 *
3762 * This function provides the same memory-ordering guarantees that would
3763 * be provided by a synchronize_rcu() that was invoked at the call to
3764 * the function that provided @rgosp, and that returned at the end of this
3765 * function.  And this guarantee requires that the root rcu_node structure's
3766 * ->gp_seq field be checked instead of that of the rcu_state structure.
3767 * The problem is that the just-ending grace-period's callbacks can be
3768 * invoked between the time that the root rcu_node structure's ->gp_seq
3769 * field is updated and the time that the rcu_state structure's ->gp_seq
3770 * field is updated.  Therefore, if a single synchronize_rcu() is to
3771 * cause a subsequent poll_state_synchronize_rcu_full() to return @true,
3772 * then the root rcu_node structure is the one that needs to be polled.
3773 */
3774bool poll_state_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3775{
3776	struct rcu_node *rnp = rcu_get_root();
3777
3778	smp_mb(); // Order against root rcu_node structure grace-period cleanup.
3779	if (rgosp->rgos_norm == RCU_GET_STATE_COMPLETED ||
3780	    rcu_seq_done_exact(&rnp->gp_seq, rgosp->rgos_norm) ||
3781	    rgosp->rgos_exp == RCU_GET_STATE_COMPLETED ||
3782	    rcu_seq_done_exact(&rcu_state.expedited_sequence, rgosp->rgos_exp)) {
3783		smp_mb(); /* Ensure GP ends before subsequent accesses. */
3784		return true;
3785	}
3786	return false;
3787}
3788EXPORT_SYMBOL_GPL(poll_state_synchronize_rcu_full);
3789
3790/**
3791 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3792 * @oldstate: value from get_state_synchronize_rcu(), start_poll_synchronize_rcu(), or start_poll_synchronize_rcu_expedited()
3793 *
3794 * If a full RCU grace period has elapsed since the earlier call to
3795 * get_state_synchronize_rcu() or start_poll_synchronize_rcu(), just return.
3796 * Otherwise, invoke synchronize_rcu() to wait for a full grace period.
3797 *
3798 * Yes, this function does not take counter wrap into account.
3799 * But counter wrap is harmless.  If the counter wraps, we have waited for
3800 * more than 2 billion grace periods (and way more on a 64-bit system!),
3801 * so waiting for a couple of additional grace periods should be just fine.
3802 *
3803 * This function provides the same memory-ordering guarantees that
3804 * would be provided by a synchronize_rcu() that was invoked at the call
3805 * to the function that provided @oldstate and that returned at the end
3806 * of this function.
3807 */
3808void cond_synchronize_rcu(unsigned long oldstate)
3809{
3810	if (!poll_state_synchronize_rcu(oldstate))
3811		synchronize_rcu();
3812}
3813EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3814
3815/**
3816 * cond_synchronize_rcu_full - Conditionally wait for an RCU grace period
3817 * @rgosp: value from get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(), or start_poll_synchronize_rcu_expedited_full()
3818 *
3819 * If a full RCU grace period has elapsed since the call to
3820 * get_state_synchronize_rcu_full(), start_poll_synchronize_rcu_full(),
3821 * or start_poll_synchronize_rcu_expedited_full() from which @rgosp was
3822 * obtained, just return.  Otherwise, invoke synchronize_rcu() to wait
3823 * for a full grace period.
3824 *
3825 * Yes, this function does not take counter wrap into account.
3826 * But counter wrap is harmless.  If the counter wraps, we have waited for
3827 * more than 2 billion grace periods (and way more on a 64-bit system!),
3828 * so waiting for a couple of additional grace periods should be just fine.
3829 *
3830 * This function provides the same memory-ordering guarantees that
3831 * would be provided by a synchronize_rcu() that was invoked at the call
3832 * to the function that provided @rgosp and that returned at the end of
3833 * this function.
3834 */
3835void cond_synchronize_rcu_full(struct rcu_gp_oldstate *rgosp)
3836{
3837	if (!poll_state_synchronize_rcu_full(rgosp))
3838		synchronize_rcu();
3839}
3840EXPORT_SYMBOL_GPL(cond_synchronize_rcu_full);
3841
3842/*
3843 * Check to see if there is any immediate RCU-related work to be done by
3844 * the current CPU, returning 1 if so and zero otherwise.  The checks are
3845 * in order of increasing expense: checks that can be carried out against
3846 * CPU-local state are performed first.  However, we must check for CPU
3847 * stalls first, else we might not get a chance.
3848 */
3849static int rcu_pending(int user)
3850{
3851	bool gp_in_progress;
3852	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
3853	struct rcu_node *rnp = rdp->mynode;
3854
3855	lockdep_assert_irqs_disabled();
3856
3857	/* Check for CPU stalls, if enabled. */
3858	check_cpu_stall(rdp);
3859
3860	/* Does this CPU need a deferred NOCB wakeup? */
3861	if (rcu_nocb_need_deferred_wakeup(rdp, RCU_NOCB_WAKE))
3862		return 1;
3863
3864	/* Is this a nohz_full CPU in userspace or idle?  (Ignore RCU if so.) */
3865	if ((user || rcu_is_cpu_rrupt_from_idle()) && rcu_nohz_full_cpu())
3866		return 0;
3867
3868	/* Is the RCU core waiting for a quiescent state from this CPU? */
3869	gp_in_progress = rcu_gp_in_progress();
3870	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm && gp_in_progress)
3871		return 1;
3872
3873	/* Does this CPU have callbacks ready to invoke? */
3874	if (!rcu_rdp_is_offloaded(rdp) &&
3875	    rcu_segcblist_ready_cbs(&rdp->cblist))
3876		return 1;
3877
3878	/* Has RCU gone idle with this CPU needing another grace period? */
3879	if (!gp_in_progress && rcu_segcblist_is_enabled(&rdp->cblist) &&
3880	    !rcu_rdp_is_offloaded(rdp) &&
3881	    !rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 
 
3882		return 1;
3883
3884	/* Have RCU grace period completed or started?  */
3885	if (rcu_seq_current(&rnp->gp_seq) != rdp->gp_seq ||
3886	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3887		return 1;
3888
 
 
 
 
3889	/* nothing to do */
3890	return 0;
3891}
3892
3893/*
3894 * Helper function for rcu_barrier() tracing.  If tracing is disabled,
3895 * the compiler is expected to optimize this away.
 
3896 */
3897static void rcu_barrier_trace(const char *s, int cpu, unsigned long done)
3898{
3899	trace_rcu_barrier(rcu_state.name, s, cpu,
3900			  atomic_read(&rcu_state.barrier_cpu_count), done);
 
 
 
 
3901}
3902
3903/*
3904 * RCU callback function for rcu_barrier().  If we are last, wake
3905 * up the task executing rcu_barrier().
3906 *
3907 * Note that the value of rcu_state.barrier_sequence must be captured
3908 * before the atomic_dec_and_test().  Otherwise, if this CPU is not last,
3909 * other CPUs might count the value down to zero before this CPU gets
3910 * around to invoking rcu_barrier_trace(), which might result in bogus
3911 * data from the next instance of rcu_barrier().
3912 */
3913static void rcu_barrier_callback(struct rcu_head *rhp)
3914{
3915	unsigned long __maybe_unused s = rcu_state.barrier_sequence;
 
 
 
3916
3917	if (atomic_dec_and_test(&rcu_state.barrier_cpu_count)) {
3918		rcu_barrier_trace(TPS("LastCB"), -1, s);
3919		complete(&rcu_state.barrier_completion);
3920	} else {
3921		rcu_barrier_trace(TPS("CB"), -1, s);
 
 
 
 
3922	}
 
 
 
3923}
3924
3925/*
3926 * If needed, entrain an rcu_barrier() callback on rdp->cblist.
 
3927 */
3928static void rcu_barrier_entrain(struct rcu_data *rdp)
 
3929{
3930	unsigned long gseq = READ_ONCE(rcu_state.barrier_sequence);
3931	unsigned long lseq = READ_ONCE(rdp->barrier_seq_snap);
3932	bool wake_nocb = false;
3933	bool was_alldone = false;
3934
3935	lockdep_assert_held(&rcu_state.barrier_lock);
3936	if (rcu_seq_state(lseq) || !rcu_seq_state(gseq) || rcu_seq_ctr(lseq) != rcu_seq_ctr(gseq))
3937		return;
3938	rcu_barrier_trace(TPS("IRQ"), -1, rcu_state.barrier_sequence);
3939	rdp->barrier_head.func = rcu_barrier_callback;
3940	debug_rcu_head_queue(&rdp->barrier_head);
3941	rcu_nocb_lock(rdp);
3942	/*
3943	 * Flush bypass and wakeup rcuog if we add callbacks to an empty regular
3944	 * queue. This way we don't wait for bypass timer that can reach seconds
3945	 * if it's fully lazy.
3946	 */
3947	was_alldone = rcu_rdp_is_offloaded(rdp) && !rcu_segcblist_pend_cbs(&rdp->cblist);
3948	WARN_ON_ONCE(!rcu_nocb_flush_bypass(rdp, NULL, jiffies, false));
3949	wake_nocb = was_alldone && rcu_segcblist_pend_cbs(&rdp->cblist);
3950	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head)) {
3951		atomic_inc(&rcu_state.barrier_cpu_count);
3952	} else {
3953		debug_rcu_head_unqueue(&rdp->barrier_head);
3954		rcu_barrier_trace(TPS("IRQNQ"), -1, rcu_state.barrier_sequence);
3955	}
3956	rcu_nocb_unlock(rdp);
3957	if (wake_nocb)
3958		wake_nocb_gp(rdp, false);
3959	smp_store_release(&rdp->barrier_seq_snap, gseq);
3960}
3961
3962/*
3963 * Called with preemption disabled, and from cross-cpu IRQ context.
3964 */
3965static void rcu_barrier_handler(void *cpu_in)
3966{
3967	uintptr_t cpu = (uintptr_t)cpu_in;
3968	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
3969
3970	lockdep_assert_irqs_disabled();
3971	WARN_ON_ONCE(cpu != rdp->cpu);
3972	WARN_ON_ONCE(cpu != smp_processor_id());
3973	raw_spin_lock(&rcu_state.barrier_lock);
3974	rcu_barrier_entrain(rdp);
3975	raw_spin_unlock(&rcu_state.barrier_lock);
 
 
 
 
3976}
3977
3978/**
3979 * rcu_barrier - Wait until all in-flight call_rcu() callbacks complete.
3980 *
3981 * Note that this primitive does not necessarily wait for an RCU grace period
3982 * to complete.  For example, if there are no RCU callbacks queued anywhere
3983 * in the system, then rcu_barrier() is within its rights to return
3984 * immediately, without waiting for anything, much less an RCU grace period.
3985 */
3986void rcu_barrier(void)
3987{
3988	uintptr_t cpu;
3989	unsigned long flags;
3990	unsigned long gseq;
3991	struct rcu_data *rdp;
3992	unsigned long s = rcu_seq_snap(&rcu_state.barrier_sequence);
3993
3994	rcu_barrier_trace(TPS("Begin"), -1, s);
3995
3996	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3997	mutex_lock(&rcu_state.barrier_mutex);
3998
3999	/* Did someone else do our work for us? */
4000	if (rcu_seq_done(&rcu_state.barrier_sequence, s)) {
4001		rcu_barrier_trace(TPS("EarlyExit"), -1, rcu_state.barrier_sequence);
 
4002		smp_mb(); /* caller's subsequent code after above check. */
4003		mutex_unlock(&rcu_state.barrier_mutex);
4004		return;
4005	}
4006
4007	/* Mark the start of the barrier operation. */
4008	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4009	rcu_seq_start(&rcu_state.barrier_sequence);
4010	gseq = rcu_state.barrier_sequence;
4011	rcu_barrier_trace(TPS("Inc1"), -1, rcu_state.barrier_sequence);
4012
4013	/*
4014	 * Initialize the count to two rather than to zero in order
4015	 * to avoid a too-soon return to zero in case of an immediate
4016	 * invocation of the just-enqueued callback (or preemption of
4017	 * this task).  Exclude CPU-hotplug operations to ensure that no
4018	 * offline non-offloaded CPU has callbacks queued.
4019	 */
4020	init_completion(&rcu_state.barrier_completion);
4021	atomic_set(&rcu_state.barrier_cpu_count, 2);
4022	raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4023
4024	/*
4025	 * Force each CPU with callbacks to register a new callback.
4026	 * When that callback is invoked, we will know that all of the
4027	 * corresponding CPU's preceding callbacks have been invoked.
4028	 */
4029	for_each_possible_cpu(cpu) {
4030		rdp = per_cpu_ptr(&rcu_data, cpu);
4031retry:
4032		if (smp_load_acquire(&rdp->barrier_seq_snap) == gseq)
4033			continue;
4034		raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4035		if (!rcu_segcblist_n_cbs(&rdp->cblist)) {
4036			WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4037			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4038			rcu_barrier_trace(TPS("NQ"), cpu, rcu_state.barrier_sequence);
4039			continue;
4040		}
4041		if (!rcu_rdp_cpu_online(rdp)) {
4042			rcu_barrier_entrain(rdp);
4043			WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4044			raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4045			rcu_barrier_trace(TPS("OfflineNoCBQ"), cpu, rcu_state.barrier_sequence);
4046			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4047		}
4048		raw_spin_unlock_irqrestore(&rcu_state.barrier_lock, flags);
4049		if (smp_call_function_single(cpu, rcu_barrier_handler, (void *)cpu, 1)) {
4050			schedule_timeout_uninterruptible(1);
4051			goto retry;
4052		}
4053		WARN_ON_ONCE(READ_ONCE(rdp->barrier_seq_snap) != gseq);
4054		rcu_barrier_trace(TPS("OnlineQ"), cpu, rcu_state.barrier_sequence);
4055	}
 
4056
4057	/*
4058	 * Now that we have an rcu_barrier_callback() callback on each
4059	 * CPU, and thus each counted, remove the initial count.
4060	 */
4061	if (atomic_sub_and_test(2, &rcu_state.barrier_cpu_count))
4062		complete(&rcu_state.barrier_completion);
4063
4064	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
4065	wait_for_completion(&rcu_state.barrier_completion);
4066
4067	/* Mark the end of the barrier operation. */
4068	rcu_barrier_trace(TPS("Inc2"), -1, rcu_state.barrier_sequence);
4069	rcu_seq_end(&rcu_state.barrier_sequence);
4070	gseq = rcu_state.barrier_sequence;
4071	for_each_possible_cpu(cpu) {
4072		rdp = per_cpu_ptr(&rcu_data, cpu);
4073
4074		WRITE_ONCE(rdp->barrier_seq_snap, gseq);
4075	}
4076
4077	/* Other rcu_barrier() invocations can now safely proceed. */
4078	mutex_unlock(&rcu_state.barrier_mutex);
4079}
4080EXPORT_SYMBOL_GPL(rcu_barrier);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4081
4082/*
4083 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
4084 * first CPU in a given leaf rcu_node structure coming online.  The caller
4085 * must hold the corresponding leaf rcu_node ->lock with interrupts
4086 * disabled.
4087 */
4088static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
4089{
4090	long mask;
4091	long oldmask;
4092	struct rcu_node *rnp = rnp_leaf;
4093
4094	raw_lockdep_assert_held_rcu_node(rnp_leaf);
4095	WARN_ON_ONCE(rnp->wait_blkd_tasks);
4096	for (;;) {
4097		mask = rnp->grpmask;
4098		rnp = rnp->parent;
4099		if (rnp == NULL)
4100			return;
4101		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
4102		oldmask = rnp->qsmaskinit;
4103		rnp->qsmaskinit |= mask;
4104		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
4105		if (oldmask)
4106			return;
4107	}
4108}
4109
4110/*
4111 * Do boot-time initialization of a CPU's per-CPU RCU data.
4112 */
4113static void __init
4114rcu_boot_init_percpu_data(int cpu)
4115{
4116	struct context_tracking *ct = this_cpu_ptr(&context_tracking);
4117	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4118
4119	/* Set up local state, ensuring consistent view of global state. */
4120	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
4121	INIT_WORK(&rdp->strict_work, strict_work_handler);
4122	WARN_ON_ONCE(ct->dynticks_nesting != 1);
4123	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(cpu)));
4124	rdp->barrier_seq_snap = rcu_state.barrier_sequence;
4125	rdp->rcu_ofl_gp_seq = rcu_state.gp_seq;
4126	rdp->rcu_ofl_gp_flags = RCU_GP_CLEANED;
4127	rdp->rcu_onl_gp_seq = rcu_state.gp_seq;
4128	rdp->rcu_onl_gp_flags = RCU_GP_CLEANED;
4129	rdp->last_sched_clock = jiffies;
4130	rdp->cpu = cpu;
 
4131	rcu_boot_init_nocb_percpu_data(rdp);
4132}
4133
4134/*
4135 * Invoked early in the CPU-online process, when pretty much all services
4136 * are available.  The incoming CPU is not present.
4137 *
4138 * Initializes a CPU's per-CPU RCU data.  Note that only one online or
4139 * offline event can be happening at a given time.  Note also that we can
4140 * accept some slop in the rsp->gp_seq access due to the fact that this
4141 * CPU cannot possibly have any non-offloaded RCU callbacks in flight yet.
4142 * And any offloaded callbacks are being numbered elsewhere.
4143 */
4144int rcutree_prepare_cpu(unsigned int cpu)
 
4145{
4146	unsigned long flags;
4147	struct context_tracking *ct = per_cpu_ptr(&context_tracking, cpu);
4148	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4149	struct rcu_node *rnp = rcu_get_root();
4150
4151	/* Set up local state, ensuring consistent view of global state. */
4152	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4153	rdp->qlen_last_fqs_check = 0;
4154	rdp->n_force_qs_snap = READ_ONCE(rcu_state.n_force_qs);
4155	rdp->blimit = blimit;
4156	ct->dynticks_nesting = 1;	/* CPU not up, no tearing. */
4157	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
4158
4159	/*
4160	 * Only non-NOCB CPUs that didn't have early-boot callbacks need to be
4161	 * (re-)initialized.
4162	 */
4163	if (!rcu_segcblist_is_enabled(&rdp->cblist))
4164		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
 
 
 
4165
4166	/*
4167	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
4168	 * propagation up the rcu_node tree will happen at the beginning
4169	 * of the next grace period.
4170	 */
4171	rnp = rdp->mynode;
4172	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
4173	rdp->beenonline = true;	 /* We have now been online. */
4174	rdp->gp_seq = READ_ONCE(rnp->gp_seq);
4175	rdp->gp_seq_needed = rdp->gp_seq;
4176	rdp->cpu_no_qs.b.norm = true;
 
4177	rdp->core_needs_qs = false;
4178	rdp->rcu_iw_pending = false;
4179	rdp->rcu_iw = IRQ_WORK_INIT_HARD(rcu_iw_handler);
4180	rdp->rcu_iw_gp_seq = rdp->gp_seq - 1;
4181	trace_rcu_grace_period(rcu_state.name, rdp->gp_seq, TPS("cpuonl"));
4182	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4183	rcu_spawn_one_boost_kthread(rnp);
4184	rcu_spawn_cpu_nocb_kthread(cpu);
4185	WRITE_ONCE(rcu_state.n_online_cpus, rcu_state.n_online_cpus + 1);
 
 
 
 
 
 
 
 
 
 
 
 
4186
4187	return 0;
4188}
4189
4190/*
4191 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
4192 */
4193static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
4194{
4195	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4196
4197	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
4198}
4199
4200/*
4201 * Near the end of the CPU-online process.  Pretty much all services
4202 * enabled, and the CPU is now very much alive.
4203 */
4204int rcutree_online_cpu(unsigned int cpu)
4205{
4206	unsigned long flags;
4207	struct rcu_data *rdp;
4208	struct rcu_node *rnp;
 
4209
4210	rdp = per_cpu_ptr(&rcu_data, cpu);
4211	rnp = rdp->mynode;
4212	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4213	rnp->ffmask |= rdp->grpmask;
4214	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
4215	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
4216		return 0; /* Too early in boot for scheduler work. */
4217	sync_sched_exp_online_cleanup(cpu);
4218	rcutree_affinity_setting(cpu, -1);
4219
4220	// Stop-machine done, so allow nohz_full to disable tick.
4221	tick_dep_clear(TICK_DEP_BIT_RCU);
4222	return 0;
4223}
4224
4225/*
4226 * Near the beginning of the process.  The CPU is still very much alive
4227 * with pretty much all services enabled.
4228 */
4229int rcutree_offline_cpu(unsigned int cpu)
4230{
4231	unsigned long flags;
4232	struct rcu_data *rdp;
4233	struct rcu_node *rnp;
 
4234
4235	rdp = per_cpu_ptr(&rcu_data, cpu);
4236	rnp = rdp->mynode;
4237	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4238	rnp->ffmask &= ~rdp->grpmask;
4239	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
4240
4241	rcutree_affinity_setting(cpu, cpu);
 
 
 
 
4242
4243	// nohz_full CPUs need the tick for stop-machine to work quickly
4244	tick_dep_set(TICK_DEP_BIT_RCU);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4245	return 0;
4246}
4247
4248/*
4249 * Mark the specified CPU as being online so that subsequent grace periods
4250 * (both expedited and normal) will wait on it.  Note that this means that
4251 * incoming CPUs are not allowed to use RCU read-side critical sections
4252 * until this function is called.  Failing to observe this restriction
4253 * will result in lockdep splats.
4254 *
4255 * Note that this function is special in that it is invoked directly
4256 * from the incoming CPU rather than from the cpuhp_step mechanism.
4257 * This is because this function must be invoked at a precise location.
4258 */
4259void rcu_cpu_starting(unsigned int cpu)
4260{
4261	unsigned long flags;
4262	unsigned long mask;
 
 
4263	struct rcu_data *rdp;
4264	struct rcu_node *rnp;
4265	bool newcpu;
4266
4267	rdp = per_cpu_ptr(&rcu_data, cpu);
4268	if (rdp->cpu_started)
4269		return;
4270	rdp->cpu_started = true;
4271
4272	rnp = rdp->mynode;
4273	mask = rdp->grpmask;
4274	local_irq_save(flags);
4275	arch_spin_lock(&rcu_state.ofl_lock);
4276	rcu_dynticks_eqs_online();
4277	raw_spin_lock(&rcu_state.barrier_lock);
4278	raw_spin_lock_rcu_node(rnp);
4279	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext | mask);
4280	raw_spin_unlock(&rcu_state.barrier_lock);
4281	newcpu = !(rnp->expmaskinitnext & mask);
4282	rnp->expmaskinitnext |= mask;
4283	/* Allow lockless access for expedited grace periods. */
4284	smp_store_release(&rcu_state.ncpus, rcu_state.ncpus + newcpu); /* ^^^ */
4285	ASSERT_EXCLUSIVE_WRITER(rcu_state.ncpus);
4286	rcu_gpnum_ovf(rnp, rdp); /* Offline-induced counter wrap? */
4287	rdp->rcu_onl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4288	rdp->rcu_onl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4289
4290	/* An incoming CPU should never be blocking a grace period. */
4291	if (WARN_ON_ONCE(rnp->qsmask & mask)) { /* RCU waiting on incoming CPU? */
4292		/* rcu_report_qs_rnp() *really* wants some flags to restore */
4293		unsigned long flags2;
4294
4295		local_irq_save(flags2);
4296		rcu_disable_urgency_upon_qs(rdp);
4297		/* Report QS -after- changing ->qsmaskinitnext! */
4298		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags2);
4299	} else {
4300		raw_spin_unlock_rcu_node(rnp);
4301	}
4302	arch_spin_unlock(&rcu_state.ofl_lock);
4303	local_irq_restore(flags);
4304	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
4305}
4306
 
4307/*
4308 * The outgoing function has no further need of RCU, so remove it from
4309 * the rcu_node tree's ->qsmaskinitnext bit masks.
4310 *
4311 * Note that this function is special in that it is invoked directly
4312 * from the outgoing CPU rather than from the cpuhp_step mechanism.
4313 * This is because this function must be invoked at a precise location.
4314 */
4315void rcu_report_dead(unsigned int cpu)
4316{
4317	unsigned long flags, seq_flags;
4318	unsigned long mask;
4319	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4320	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
4321
4322	// Do any dangling deferred wakeups.
4323	do_nocb_deferred_wakeup(rdp);
4324
4325	rcu_preempt_deferred_qs(current);
4326
4327	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
4328	mask = rdp->grpmask;
4329	local_irq_save(seq_flags);
4330	arch_spin_lock(&rcu_state.ofl_lock);
4331	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
4332	rdp->rcu_ofl_gp_seq = READ_ONCE(rcu_state.gp_seq);
4333	rdp->rcu_ofl_gp_flags = READ_ONCE(rcu_state.gp_flags);
4334	if (rnp->qsmask & mask) { /* RCU waiting on outgoing CPU? */
4335		/* Report quiescent state -before- changing ->qsmaskinitnext! */
4336		rcu_disable_urgency_upon_qs(rdp);
4337		rcu_report_qs_rnp(mask, rnp, rnp->gp_seq, flags);
4338		raw_spin_lock_irqsave_rcu_node(rnp, flags);
4339	}
4340	WRITE_ONCE(rnp->qsmaskinitnext, rnp->qsmaskinitnext & ~mask);
4341	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4342	arch_spin_unlock(&rcu_state.ofl_lock);
4343	local_irq_restore(seq_flags);
4344
4345	rdp->cpu_started = false;
4346}
4347
4348#ifdef CONFIG_HOTPLUG_CPU
4349/*
4350 * The outgoing CPU has just passed through the dying-idle state, and we
4351 * are being invoked from the CPU that was IPIed to continue the offline
4352 * operation.  Migrate the outgoing CPU's callbacks to the current CPU.
 
 
 
4353 */
4354void rcutree_migrate_callbacks(int cpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4355{
4356	unsigned long flags;
4357	struct rcu_data *my_rdp;
4358	struct rcu_node *my_rnp;
4359	struct rcu_data *rdp = per_cpu_ptr(&rcu_data, cpu);
4360	bool needwake;
4361
4362	if (rcu_rdp_is_offloaded(rdp) ||
4363	    rcu_segcblist_empty(&rdp->cblist))
4364		return;  /* No callbacks to migrate. */
4365
4366	raw_spin_lock_irqsave(&rcu_state.barrier_lock, flags);
4367	WARN_ON_ONCE(rcu_rdp_cpu_online(rdp));
4368	rcu_barrier_entrain(rdp);
4369	my_rdp = this_cpu_ptr(&rcu_data);
4370	my_rnp = my_rdp->mynode;
4371	rcu_nocb_lock(my_rdp); /* irqs already disabled. */
4372	WARN_ON_ONCE(!rcu_nocb_flush_bypass(my_rdp, NULL, jiffies, false));
4373	raw_spin_lock_rcu_node(my_rnp); /* irqs already disabled. */
4374	/* Leverage recent GPs and set GP for new callbacks. */
4375	needwake = rcu_advance_cbs(my_rnp, rdp) ||
4376		   rcu_advance_cbs(my_rnp, my_rdp);
4377	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
4378	raw_spin_unlock(&rcu_state.barrier_lock); /* irqs remain disabled. */
4379	needwake = needwake || rcu_advance_cbs(my_rnp, my_rdp);
4380	rcu_segcblist_disable(&rdp->cblist);
4381	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) != !rcu_segcblist_n_cbs(&my_rdp->cblist));
4382	check_cb_ovld_locked(my_rdp, my_rnp);
4383	if (rcu_rdp_is_offloaded(my_rdp)) {
4384		raw_spin_unlock_rcu_node(my_rnp); /* irqs remain disabled. */
4385		__call_rcu_nocb_wake(my_rdp, true, flags);
4386	} else {
4387		rcu_nocb_unlock(my_rdp); /* irqs remain disabled. */
4388		raw_spin_unlock_irqrestore_rcu_node(my_rnp, flags);
4389	}
4390	if (needwake)
4391		rcu_gp_kthread_wake();
4392	lockdep_assert_irqs_enabled();
 
 
 
 
4393	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
4394		  !rcu_segcblist_empty(&rdp->cblist),
4395		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
4396		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
4397		  rcu_segcblist_first_cb(&rdp->cblist));
4398}
 
 
 
 
 
 
 
 
 
 
 
 
 
4399#endif
4400
4401/*
4402 * On non-huge systems, use expedited RCU grace periods to make suspend
4403 * and hibernation run faster.
4404 */
4405static int rcu_pm_notify(struct notifier_block *self,
4406			 unsigned long action, void *hcpu)
4407{
4408	switch (action) {
4409	case PM_HIBERNATION_PREPARE:
4410	case PM_SUSPEND_PREPARE:
4411		rcu_expedite_gp();
 
4412		break;
4413	case PM_POST_HIBERNATION:
4414	case PM_POST_SUSPEND:
4415		rcu_unexpedite_gp();
 
4416		break;
4417	default:
4418		break;
4419	}
4420	return NOTIFY_OK;
4421}
4422
4423#ifdef CONFIG_RCU_EXP_KTHREAD
4424struct kthread_worker *rcu_exp_gp_kworker;
4425struct kthread_worker *rcu_exp_par_gp_kworker;
4426
4427static void __init rcu_start_exp_gp_kworkers(void)
4428{
4429	const char *par_gp_kworker_name = "rcu_exp_par_gp_kthread_worker";
4430	const char *gp_kworker_name = "rcu_exp_gp_kthread_worker";
4431	struct sched_param param = { .sched_priority = kthread_prio };
4432
4433	rcu_exp_gp_kworker = kthread_create_worker(0, gp_kworker_name);
4434	if (IS_ERR_OR_NULL(rcu_exp_gp_kworker)) {
4435		pr_err("Failed to create %s!\n", gp_kworker_name);
4436		return;
4437	}
4438
4439	rcu_exp_par_gp_kworker = kthread_create_worker(0, par_gp_kworker_name);
4440	if (IS_ERR_OR_NULL(rcu_exp_par_gp_kworker)) {
4441		pr_err("Failed to create %s!\n", par_gp_kworker_name);
4442		kthread_destroy_worker(rcu_exp_gp_kworker);
4443		return;
4444	}
4445
4446	sched_setscheduler_nocheck(rcu_exp_gp_kworker->task, SCHED_FIFO, &param);
4447	sched_setscheduler_nocheck(rcu_exp_par_gp_kworker->task, SCHED_FIFO,
4448				   &param);
4449}
4450
4451static inline void rcu_alloc_par_gp_wq(void)
4452{
4453}
4454#else /* !CONFIG_RCU_EXP_KTHREAD */
4455struct workqueue_struct *rcu_par_gp_wq;
4456
4457static void __init rcu_start_exp_gp_kworkers(void)
4458{
4459}
4460
4461static inline void rcu_alloc_par_gp_wq(void)
4462{
4463	rcu_par_gp_wq = alloc_workqueue("rcu_par_gp", WQ_MEM_RECLAIM, 0);
4464	WARN_ON(!rcu_par_gp_wq);
4465}
4466#endif /* CONFIG_RCU_EXP_KTHREAD */
4467
4468/*
4469 * Spawn the kthreads that handle RCU's grace periods.
4470 */
4471static int __init rcu_spawn_gp_kthread(void)
4472{
4473	unsigned long flags;
 
4474	struct rcu_node *rnp;
 
4475	struct sched_param sp;
4476	struct task_struct *t;
4477	struct rcu_data *rdp = this_cpu_ptr(&rcu_data);
 
 
 
 
 
 
 
 
 
 
4478
4479	rcu_scheduler_fully_active = 1;
4480	t = kthread_create(rcu_gp_kthread, NULL, "%s", rcu_state.name);
4481	if (WARN_ONCE(IS_ERR(t), "%s: Could not start grace-period kthread, OOM is now expected behavior\n", __func__))
4482		return 0;
4483	if (kthread_prio) {
4484		sp.sched_priority = kthread_prio;
4485		sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
 
 
 
 
 
 
4486	}
4487	rnp = rcu_get_root();
4488	raw_spin_lock_irqsave_rcu_node(rnp, flags);
4489	WRITE_ONCE(rcu_state.gp_activity, jiffies);
4490	WRITE_ONCE(rcu_state.gp_req_activity, jiffies);
4491	// Reset .gp_activity and .gp_req_activity before setting .gp_kthread.
4492	smp_store_release(&rcu_state.gp_kthread, t);  /* ^^^ */
4493	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
4494	wake_up_process(t);
4495	/* This is a pre-SMP initcall, we expect a single CPU */
4496	WARN_ON(num_online_cpus() > 1);
4497	/*
4498	 * Those kthreads couldn't be created on rcu_init() -> rcutree_prepare_cpu()
4499	 * due to rcu_scheduler_fully_active.
4500	 */
4501	rcu_spawn_cpu_nocb_kthread(smp_processor_id());
4502	rcu_spawn_one_boost_kthread(rdp->mynode);
4503	rcu_spawn_core_kthreads();
4504	/* Create kthread worker for expedited GPs */
4505	rcu_start_exp_gp_kworkers();
4506	return 0;
4507}
4508early_initcall(rcu_spawn_gp_kthread);
4509
4510/*
4511 * This function is invoked towards the end of the scheduler's
4512 * initialization process.  Before this is called, the idle task might
4513 * contain synchronous grace-period primitives (during which time, this idle
4514 * task is booting the system, and such primitives are no-ops).  After this
4515 * function is called, any synchronous grace-period primitives are run as
4516 * expedited, with the requesting task driving the grace period forward.
4517 * A later core_initcall() rcu_set_runtime_mode() will switch to full
4518 * runtime RCU functionality.
4519 */
4520void rcu_scheduler_starting(void)
4521{
4522	unsigned long flags;
4523	struct rcu_node *rnp;
4524
4525	WARN_ON(num_online_cpus() != 1);
4526	WARN_ON(nr_context_switches() > 0);
4527	rcu_test_sync_prims();
4528
4529	// Fix up the ->gp_seq counters.
4530	local_irq_save(flags);
4531	rcu_for_each_node_breadth_first(rnp)
4532		rnp->gp_seq_needed = rnp->gp_seq = rcu_state.gp_seq;
4533	local_irq_restore(flags);
4534
4535	// Switch out of early boot mode.
4536	rcu_scheduler_active = RCU_SCHEDULER_INIT;
4537	rcu_test_sync_prims();
4538}
4539
4540/*
4541 * Helper function for rcu_init() that initializes the rcu_state structure.
4542 */
4543static void __init rcu_init_one(void)
4544{
4545	static const char * const buf[] = RCU_NODE_NAME_INIT;
4546	static const char * const fqs[] = RCU_FQS_NAME_INIT;
4547	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
4548	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
4549
4550	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
4551	int cpustride = 1;
4552	int i;
4553	int j;
4554	struct rcu_node *rnp;
4555
4556	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4557
4558	/* Silence gcc 4.8 false positive about array index out of range. */
4559	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4560		panic("rcu_init_one: rcu_num_lvls out of range");
4561
4562	/* Initialize the level-tracking arrays. */
4563
4564	for (i = 1; i < rcu_num_lvls; i++)
4565		rcu_state.level[i] =
4566			rcu_state.level[i - 1] + num_rcu_lvl[i - 1];
4567	rcu_init_levelspread(levelspread, num_rcu_lvl);
4568
4569	/* Initialize the elements themselves, starting from the leaves. */
4570
4571	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4572		cpustride *= levelspread[i];
4573		rnp = rcu_state.level[i];
4574		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4575			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4576			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4577						   &rcu_node_class[i], buf[i]);
4578			raw_spin_lock_init(&rnp->fqslock);
4579			lockdep_set_class_and_name(&rnp->fqslock,
4580						   &rcu_fqs_class[i], fqs[i]);
4581			rnp->gp_seq = rcu_state.gp_seq;
4582			rnp->gp_seq_needed = rcu_state.gp_seq;
4583			rnp->completedqs = rcu_state.gp_seq;
4584			rnp->qsmask = 0;
4585			rnp->qsmaskinit = 0;
4586			rnp->grplo = j * cpustride;
4587			rnp->grphi = (j + 1) * cpustride - 1;
4588			if (rnp->grphi >= nr_cpu_ids)
4589				rnp->grphi = nr_cpu_ids - 1;
4590			if (i == 0) {
4591				rnp->grpnum = 0;
4592				rnp->grpmask = 0;
4593				rnp->parent = NULL;
4594			} else {
4595				rnp->grpnum = j % levelspread[i - 1];
4596				rnp->grpmask = BIT(rnp->grpnum);
4597				rnp->parent = rcu_state.level[i - 1] +
4598					      j / levelspread[i - 1];
4599			}
4600			rnp->level = i;
4601			INIT_LIST_HEAD(&rnp->blkd_tasks);
4602			rcu_init_one_nocb(rnp);
4603			init_waitqueue_head(&rnp->exp_wq[0]);
4604			init_waitqueue_head(&rnp->exp_wq[1]);
4605			init_waitqueue_head(&rnp->exp_wq[2]);
4606			init_waitqueue_head(&rnp->exp_wq[3]);
4607			spin_lock_init(&rnp->exp_lock);
4608			mutex_init(&rnp->boost_kthread_mutex);
4609			raw_spin_lock_init(&rnp->exp_poll_lock);
4610			rnp->exp_seq_poll_rq = RCU_GET_STATE_COMPLETED;
4611			INIT_WORK(&rnp->exp_poll_wq, sync_rcu_do_polled_gp);
4612		}
4613	}
4614
4615	init_swait_queue_head(&rcu_state.gp_wq);
4616	init_swait_queue_head(&rcu_state.expedited_wq);
4617	rnp = rcu_first_leaf_node();
4618	for_each_possible_cpu(i) {
4619		while (i > rnp->grphi)
4620			rnp++;
4621		per_cpu_ptr(&rcu_data, i)->mynode = rnp;
4622		rcu_boot_init_percpu_data(i);
4623	}
4624}
4625
4626/*
4627 * Force priority from the kernel command-line into range.
4628 */
4629static void __init sanitize_kthread_prio(void)
4630{
4631	int kthread_prio_in = kthread_prio;
4632
4633	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 2
4634	    && IS_BUILTIN(CONFIG_RCU_TORTURE_TEST))
4635		kthread_prio = 2;
4636	else if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
4637		kthread_prio = 1;
4638	else if (kthread_prio < 0)
4639		kthread_prio = 0;
4640	else if (kthread_prio > 99)
4641		kthread_prio = 99;
4642
4643	if (kthread_prio != kthread_prio_in)
4644		pr_alert("%s: Limited prio to %d from %d\n",
4645			 __func__, kthread_prio, kthread_prio_in);
4646}
4647
4648/*
4649 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4650 * replace the definitions in tree.h because those are needed to size
4651 * the ->node array in the rcu_state structure.
4652 */
4653void rcu_init_geometry(void)
4654{
4655	ulong d;
4656	int i;
4657	static unsigned long old_nr_cpu_ids;
4658	int rcu_capacity[RCU_NUM_LVLS];
4659	static bool initialized;
4660
4661	if (initialized) {
4662		/*
4663		 * Warn if setup_nr_cpu_ids() had not yet been invoked,
4664		 * unless nr_cpus_ids == NR_CPUS, in which case who cares?
4665		 */
4666		WARN_ON_ONCE(old_nr_cpu_ids != nr_cpu_ids);
4667		return;
4668	}
4669
4670	old_nr_cpu_ids = nr_cpu_ids;
4671	initialized = true;
4672
4673	/*
4674	 * Initialize any unspecified boot parameters.
4675	 * The default values of jiffies_till_first_fqs and
4676	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4677	 * value, which is a function of HZ, then adding one for each
4678	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4679	 */
4680	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4681	if (jiffies_till_first_fqs == ULONG_MAX)
4682		jiffies_till_first_fqs = d;
4683	if (jiffies_till_next_fqs == ULONG_MAX)
4684		jiffies_till_next_fqs = d;
4685	adjust_jiffies_till_sched_qs();
4686
4687	/* If the compile-time values are accurate, just leave. */
4688	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4689	    nr_cpu_ids == NR_CPUS)
4690		return;
4691	pr_info("Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4692		rcu_fanout_leaf, nr_cpu_ids);
4693
4694	/*
4695	 * The boot-time rcu_fanout_leaf parameter must be at least two
4696	 * and cannot exceed the number of bits in the rcu_node masks.
4697	 * Complain and fall back to the compile-time values if this
4698	 * limit is exceeded.
4699	 */
4700	if (rcu_fanout_leaf < 2 ||
4701	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4702		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4703		WARN_ON(1);
4704		return;
4705	}
4706
4707	/*
4708	 * Compute number of nodes that can be handled an rcu_node tree
4709	 * with the given number of levels.
4710	 */
4711	rcu_capacity[0] = rcu_fanout_leaf;
4712	for (i = 1; i < RCU_NUM_LVLS; i++)
4713		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4714
4715	/*
4716	 * The tree must be able to accommodate the configured number of CPUs.
4717	 * If this limit is exceeded, fall back to the compile-time values.
4718	 */
4719	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4720		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4721		WARN_ON(1);
4722		return;
4723	}
4724
4725	/* Calculate the number of levels in the tree. */
4726	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4727	}
4728	rcu_num_lvls = i + 1;
4729
4730	/* Calculate the number of rcu_nodes at each level of the tree. */
4731	for (i = 0; i < rcu_num_lvls; i++) {
4732		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4733		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4734	}
4735
4736	/* Calculate the total number of rcu_node structures. */
4737	rcu_num_nodes = 0;
4738	for (i = 0; i < rcu_num_lvls; i++)
4739		rcu_num_nodes += num_rcu_lvl[i];
4740}
4741
4742/*
4743 * Dump out the structure of the rcu_node combining tree associated
4744 * with the rcu_state structure.
4745 */
4746static void __init rcu_dump_rcu_node_tree(void)
4747{
4748	int level = 0;
4749	struct rcu_node *rnp;
4750
4751	pr_info("rcu_node tree layout dump\n");
4752	pr_info(" ");
4753	rcu_for_each_node_breadth_first(rnp) {
4754		if (rnp->level != level) {
4755			pr_cont("\n");
4756			pr_info(" ");
4757			level = rnp->level;
4758		}
4759		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4760	}
4761	pr_cont("\n");
4762}
4763
4764struct workqueue_struct *rcu_gp_wq;
4765
4766static void __init kfree_rcu_batch_init(void)
4767{
4768	int cpu;
4769	int i;
4770
4771	/* Clamp it to [0:100] seconds interval. */
4772	if (rcu_delay_page_cache_fill_msec < 0 ||
4773		rcu_delay_page_cache_fill_msec > 100 * MSEC_PER_SEC) {
4774
4775		rcu_delay_page_cache_fill_msec =
4776			clamp(rcu_delay_page_cache_fill_msec, 0,
4777				(int) (100 * MSEC_PER_SEC));
4778
4779		pr_info("Adjusting rcutree.rcu_delay_page_cache_fill_msec to %d ms.\n",
4780			rcu_delay_page_cache_fill_msec);
4781	}
4782
4783	for_each_possible_cpu(cpu) {
4784		struct kfree_rcu_cpu *krcp = per_cpu_ptr(&krc, cpu);
4785
4786		for (i = 0; i < KFREE_N_BATCHES; i++) {
4787			INIT_RCU_WORK(&krcp->krw_arr[i].rcu_work, kfree_rcu_work);
4788			krcp->krw_arr[i].krcp = krcp;
4789		}
4790
4791		INIT_DELAYED_WORK(&krcp->monitor_work, kfree_rcu_monitor);
4792		INIT_DELAYED_WORK(&krcp->page_cache_work, fill_page_cache_func);
4793		krcp->initialized = true;
4794	}
4795	if (register_shrinker(&kfree_rcu_shrinker, "rcu-kfree"))
4796		pr_err("Failed to register kfree_rcu() shrinker!\n");
4797}
4798
4799void __init rcu_init(void)
4800{
4801	int cpu = smp_processor_id();
4802
4803	rcu_early_boot_tests();
4804
4805	kfree_rcu_batch_init();
4806	rcu_bootup_announce();
4807	sanitize_kthread_prio();
4808	rcu_init_geometry();
4809	rcu_init_one();
 
4810	if (dump_tree)
4811		rcu_dump_rcu_node_tree();
4812	if (use_softirq)
4813		open_softirq(RCU_SOFTIRQ, rcu_core_si);
4814
4815	/*
4816	 * We don't need protection against CPU-hotplug here because
4817	 * this is called early in boot, before either interrupts
4818	 * or the scheduler are operational.
4819	 */
4820	pm_notifier(rcu_pm_notify, 0);
4821	WARN_ON(num_online_cpus() > 1); // Only one CPU this early in boot.
4822	rcutree_prepare_cpu(cpu);
4823	rcu_cpu_starting(cpu);
4824	rcutree_online_cpu(cpu);
 
4825
4826	/* Create workqueue for Tree SRCU and for expedited GPs. */
4827	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4828	WARN_ON(!rcu_gp_wq);
4829	rcu_alloc_par_gp_wq();
4830
4831	/* Fill in default value for rcutree.qovld boot parameter. */
4832	/* -After- the rcu_node ->lock fields are initialized! */
4833	if (qovld < 0)
4834		qovld_calc = DEFAULT_RCU_QOVLD_MULT * qhimark;
4835	else
4836		qovld_calc = qovld;
4837
4838	// Kick-start any polled grace periods that started early.
4839	if (!(per_cpu_ptr(&rcu_data, cpu)->mynode->exp_seq_poll_rq & 0x1))
4840		(void)start_poll_synchronize_rcu_expedited();
4841}
4842
4843#include "tree_stall.h"
4844#include "tree_exp.h"
4845#include "tree_nocb.h"
4846#include "tree_plugin.h"
v4.17
 
   1/*
   2 * Read-Copy Update mechanism for mutual exclusion
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, you can access it online at
  16 * http://www.gnu.org/licenses/gpl-2.0.html.
  17 *
  18 * Copyright IBM Corporation, 2008
  19 *
  20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
  21 *	    Manfred Spraul <manfred@colorfullife.com>
  22 *	    Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
  23 *
  24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
  25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
  26 *
  27 * For detailed explanation of Read-Copy Update mechanism see -
  28 *	Documentation/RCU
  29 */
 
 
 
  30#include <linux/types.h>
  31#include <linux/kernel.h>
  32#include <linux/init.h>
  33#include <linux/spinlock.h>
  34#include <linux/smp.h>
  35#include <linux/rcupdate_wait.h>
  36#include <linux/interrupt.h>
  37#include <linux/sched.h>
  38#include <linux/sched/debug.h>
  39#include <linux/nmi.h>
  40#include <linux/atomic.h>
  41#include <linux/bitops.h>
  42#include <linux/export.h>
  43#include <linux/completion.h>
  44#include <linux/moduleparam.h>
 
 
  45#include <linux/percpu.h>
  46#include <linux/notifier.h>
  47#include <linux/cpu.h>
  48#include <linux/mutex.h>
  49#include <linux/time.h>
  50#include <linux/kernel_stat.h>
  51#include <linux/wait.h>
  52#include <linux/kthread.h>
  53#include <uapi/linux/sched/types.h>
  54#include <linux/prefetch.h>
  55#include <linux/delay.h>
  56#include <linux/stop_machine.h>
  57#include <linux/random.h>
  58#include <linux/trace_events.h>
  59#include <linux/suspend.h>
  60#include <linux/ftrace.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  61
  62#include "tree.h"
  63#include "rcu.h"
  64
  65#ifdef MODULE_PARAM_PREFIX
  66#undef MODULE_PARAM_PREFIX
  67#endif
  68#define MODULE_PARAM_PREFIX "rcutree."
  69
  70/* Data structures. */
  71
  72/*
  73 * In order to export the rcu_state name to the tracing tools, it
  74 * needs to be added in the __tracepoint_string section.
  75 * This requires defining a separate variable tp_<sname>_varname
  76 * that points to the string being used, and this will allow
  77 * the tracing userspace tools to be able to decipher the string
  78 * address to the matching string.
  79 */
  80#ifdef CONFIG_TRACING
  81# define DEFINE_RCU_TPS(sname) \
  82static char sname##_varname[] = #sname; \
  83static const char *tp_##sname##_varname __used __tracepoint_string = sname##_varname;
  84# define RCU_STATE_NAME(sname) sname##_varname
  85#else
  86# define DEFINE_RCU_TPS(sname)
  87# define RCU_STATE_NAME(sname) __stringify(sname)
  88#endif
  89
  90#define RCU_STATE_INITIALIZER(sname, sabbr, cr) \
  91DEFINE_RCU_TPS(sname) \
  92static DEFINE_PER_CPU_SHARED_ALIGNED(struct rcu_data, sname##_data); \
  93struct rcu_state sname##_state = { \
  94	.level = { &sname##_state.node[0] }, \
  95	.rda = &sname##_data, \
  96	.call = cr, \
  97	.gp_state = RCU_GP_IDLE, \
  98	.gpnum = 0UL - 300UL, \
  99	.completed = 0UL - 300UL, \
 100	.barrier_mutex = __MUTEX_INITIALIZER(sname##_state.barrier_mutex), \
 101	.name = RCU_STATE_NAME(sname), \
 102	.abbr = sabbr, \
 103	.exp_mutex = __MUTEX_INITIALIZER(sname##_state.exp_mutex), \
 104	.exp_wake_mutex = __MUTEX_INITIALIZER(sname##_state.exp_wake_mutex), \
 105}
 106
 107RCU_STATE_INITIALIZER(rcu_sched, 's', call_rcu_sched);
 108RCU_STATE_INITIALIZER(rcu_bh, 'b', call_rcu_bh);
 109
 110static struct rcu_state *const rcu_state_p;
 111LIST_HEAD(rcu_struct_flavors);
 112
 113/* Dump rcu_node combining tree at boot to verify correct setup. */
 114static bool dump_tree;
 115module_param(dump_tree, bool, 0444);
 
 
 
 
 
 116/* Control rcu_node-tree auto-balancing at boot time. */
 117static bool rcu_fanout_exact;
 118module_param(rcu_fanout_exact, bool, 0444);
 119/* Increase (but not decrease) the RCU_FANOUT_LEAF at boot time. */
 120static int rcu_fanout_leaf = RCU_FANOUT_LEAF;
 121module_param(rcu_fanout_leaf, int, 0444);
 122int rcu_num_lvls __read_mostly = RCU_NUM_LVLS;
 123/* Number of rcu_nodes at specified level. */
 124int num_rcu_lvl[] = NUM_RCU_LVL_INIT;
 125int rcu_num_nodes __read_mostly = NUM_RCU_NODES; /* Total # rcu_nodes in use. */
 126/* panic() on RCU Stall sysctl. */
 127int sysctl_panic_on_rcu_stall __read_mostly;
 128
 129/*
 130 * The rcu_scheduler_active variable is initialized to the value
 131 * RCU_SCHEDULER_INACTIVE and transitions RCU_SCHEDULER_INIT just before the
 132 * first task is spawned.  So when this variable is RCU_SCHEDULER_INACTIVE,
 133 * RCU can assume that there is but one task, allowing RCU to (for example)
 134 * optimize synchronize_rcu() to a simple barrier().  When this variable
 135 * is RCU_SCHEDULER_INIT, RCU must actually do all the hard work required
 136 * to detect real grace periods.  This variable is also used to suppress
 137 * boot-time false positives from lockdep-RCU error checking.  Finally, it
 138 * transitions from RCU_SCHEDULER_INIT to RCU_SCHEDULER_RUNNING after RCU
 139 * is fully initialized, including all of its kthreads having been spawned.
 140 */
 141int rcu_scheduler_active __read_mostly;
 142EXPORT_SYMBOL_GPL(rcu_scheduler_active);
 143
 144/*
 145 * The rcu_scheduler_fully_active variable transitions from zero to one
 146 * during the early_initcall() processing, which is after the scheduler
 147 * is capable of creating new tasks.  So RCU processing (for example,
 148 * creating tasks for RCU priority boosting) must be delayed until after
 149 * rcu_scheduler_fully_active transitions from zero to one.  We also
 150 * currently delay invocation of any RCU callbacks until after this point.
 151 *
 152 * It might later prove better for people registering RCU callbacks during
 153 * early boot to take responsibility for these callbacks, but one step at
 154 * a time.
 155 */
 156static int rcu_scheduler_fully_active __read_mostly;
 157
 
 
 158static void rcu_init_new_rnp(struct rcu_node *rnp_leaf);
 159static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf);
 160static void rcu_boost_kthread_setaffinity(struct rcu_node *rnp, int outgoingcpu);
 161static void invoke_rcu_core(void);
 162static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp);
 163static void rcu_report_exp_rdp(struct rcu_state *rsp,
 164			       struct rcu_data *rdp, bool wake);
 165static void sync_sched_exp_online_cleanup(int cpu);
 
 
 166
 167/* rcuc/rcub kthread realtime priority */
 
 
 
 
 168static int kthread_prio = IS_ENABLED(CONFIG_RCU_BOOST) ? 1 : 0;
 169module_param(kthread_prio, int, 0644);
 170
 171/* Delay in jiffies for grace-period initialization delays, debug only. */
 172
 173static int gp_preinit_delay;
 174module_param(gp_preinit_delay, int, 0444);
 175static int gp_init_delay;
 176module_param(gp_init_delay, int, 0444);
 177static int gp_cleanup_delay;
 178module_param(gp_cleanup_delay, int, 0444);
 179
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 180/*
 181 * Number of grace periods between delays, normalized by the duration of
 182 * the delay.  The longer the delay, the more the grace periods between
 183 * each delay.  The reason for this normalization is that it means that,
 184 * for non-zero delays, the overall slowdown of grace periods is constant
 185 * regardless of the duration of the delay.  This arrangement balances
 186 * the need for long delays to increase some race probabilities with the
 187 * need for fast grace periods to increase other race probabilities.
 188 */
 189#define PER_RCU_NODE_PERIOD 3	/* Number of grace periods between delays. */
 190
 191/*
 192 * Track the rcutorture test sequence number and the update version
 193 * number within a given test.  The rcutorture_testseq is incremented
 194 * on every rcutorture module load and unload, so has an odd value
 195 * when a test is running.  The rcutorture_vernum is set to zero
 196 * when rcutorture starts and is incremented on each rcutorture update.
 197 * These variables enable correlating rcutorture output with the
 198 * RCU tracing information.
 199 */
 200unsigned long rcutorture_testseq;
 201unsigned long rcutorture_vernum;
 202
 203/*
 204 * Compute the mask of online CPUs for the specified rcu_node structure.
 205 * This will not be stable unless the rcu_node structure's ->lock is
 206 * held, but the bit corresponding to the current CPU will be stable
 207 * in most contexts.
 208 */
 209unsigned long rcu_rnp_online_cpus(struct rcu_node *rnp)
 210{
 211	return READ_ONCE(rnp->qsmaskinitnext);
 212}
 213
 214/*
 215 * Return true if an RCU grace period is in progress.  The READ_ONCE()s
 216 * permit this function to be invoked without holding the root rcu_node
 217 * structure's ->lock, but of course results can be subject to change.
 218 */
 219static int rcu_gp_in_progress(struct rcu_state *rsp)
 220{
 221	return READ_ONCE(rsp->completed) != READ_ONCE(rsp->gpnum);
 222}
 223
 224/*
 225 * Note a quiescent state.  Because we do not need to know
 226 * how many quiescent states passed, just if there was at least
 227 * one since the start of the grace period, this just sets a flag.
 228 * The caller must have disabled preemption.
 229 */
 230void rcu_sched_qs(void)
 231{
 232	RCU_LOCKDEP_WARN(preemptible(), "rcu_sched_qs() invoked with preemption enabled!!!");
 233	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.s))
 234		return;
 235	trace_rcu_grace_period(TPS("rcu_sched"),
 236			       __this_cpu_read(rcu_sched_data.gpnum),
 237			       TPS("cpuqs"));
 238	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.norm, false);
 239	if (!__this_cpu_read(rcu_sched_data.cpu_no_qs.b.exp))
 240		return;
 241	__this_cpu_write(rcu_sched_data.cpu_no_qs.b.exp, false);
 242	rcu_report_exp_rdp(&rcu_sched_state,
 243			   this_cpu_ptr(&rcu_sched_data), true);
 244}
 245
 246void rcu_bh_qs(void)
 247{
 248	RCU_LOCKDEP_WARN(preemptible(), "rcu_bh_qs() invoked with preemption enabled!!!");
 249	if (__this_cpu_read(rcu_bh_data.cpu_no_qs.s)) {
 250		trace_rcu_grace_period(TPS("rcu_bh"),
 251				       __this_cpu_read(rcu_bh_data.gpnum),
 252				       TPS("cpuqs"));
 253		__this_cpu_write(rcu_bh_data.cpu_no_qs.b.norm, false);
 254	}
 255}
 256
 257/*
 258 * Steal a bit from the bottom of ->dynticks for idle entry/exit
 259 * control.  Initially this is for TLB flushing.
 260 */
 261#define RCU_DYNTICK_CTRL_MASK 0x1
 262#define RCU_DYNTICK_CTRL_CTR  (RCU_DYNTICK_CTRL_MASK + 1)
 263#ifndef rcu_eqs_special_exit
 264#define rcu_eqs_special_exit() do { } while (0)
 265#endif
 266
 267static DEFINE_PER_CPU(struct rcu_dynticks, rcu_dynticks) = {
 268	.dynticks_nesting = 1,
 269	.dynticks_nmi_nesting = DYNTICK_IRQ_NONIDLE,
 270	.dynticks = ATOMIC_INIT(RCU_DYNTICK_CTRL_CTR),
 271};
 272
 273/*
 274 * Record entry into an extended quiescent state.  This is only to be
 275 * called when not already in an extended quiescent state.
 276 */
 277static void rcu_dynticks_eqs_enter(void)
 278{
 279	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 280	int seq;
 281
 282	/*
 283	 * CPUs seeing atomic_add_return() must see prior RCU read-side
 284	 * critical sections, and we also must force ordering with the
 285	 * next idle sojourn.
 286	 */
 287	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 288	/* Better be in an extended quiescent state! */
 289	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 290		     (seq & RCU_DYNTICK_CTRL_CTR));
 291	/* Better not have special action (TLB flush) pending! */
 292	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 293		     (seq & RCU_DYNTICK_CTRL_MASK));
 294}
 295
 296/*
 297 * Record exit from an extended quiescent state.  This is only to be
 298 * called from an extended quiescent state.
 299 */
 300static void rcu_dynticks_eqs_exit(void)
 301{
 302	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 303	int seq;
 304
 305	/*
 306	 * CPUs seeing atomic_add_return() must see prior idle sojourns,
 307	 * and we also must force ordering with the next RCU read-side
 308	 * critical section.
 309	 */
 310	seq = atomic_add_return(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 311	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 312		     !(seq & RCU_DYNTICK_CTRL_CTR));
 313	if (seq & RCU_DYNTICK_CTRL_MASK) {
 314		atomic_andnot(RCU_DYNTICK_CTRL_MASK, &rdtp->dynticks);
 315		smp_mb__after_atomic(); /* _exit after clearing mask. */
 316		/* Prefer duplicate flushes to losing a flush. */
 317		rcu_eqs_special_exit();
 318	}
 319}
 320
 321/*
 322 * Reset the current CPU's ->dynticks counter to indicate that the
 323 * newly onlined CPU is no longer in an extended quiescent state.
 324 * This will either leave the counter unchanged, or increment it
 325 * to the next non-quiescent value.
 326 *
 327 * The non-atomic test/increment sequence works because the upper bits
 328 * of the ->dynticks counter are manipulated only by the corresponding CPU,
 329 * or when the corresponding CPU is offline.
 330 */
 331static void rcu_dynticks_eqs_online(void)
 332{
 333	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 334
 335	if (atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR)
 336		return;
 337	atomic_add(RCU_DYNTICK_CTRL_CTR, &rdtp->dynticks);
 338}
 339
 340/*
 341 * Is the current CPU in an extended quiescent state?
 342 *
 343 * No ordering, as we are sampling CPU-local information.
 344 */
 345bool rcu_dynticks_curr_cpu_in_eqs(void)
 346{
 347	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 348
 349	return !(atomic_read(&rdtp->dynticks) & RCU_DYNTICK_CTRL_CTR);
 350}
 351
 352/*
 353 * Snapshot the ->dynticks counter with full ordering so as to allow
 354 * stable comparison of this counter with past and future snapshots.
 355 */
 356int rcu_dynticks_snap(struct rcu_dynticks *rdtp)
 357{
 358	int snap = atomic_add_return(0, &rdtp->dynticks);
 359
 360	return snap & ~RCU_DYNTICK_CTRL_MASK;
 361}
 362
 363/*
 364 * Return true if the snapshot returned from rcu_dynticks_snap()
 365 * indicates that RCU is in an extended quiescent state.
 366 */
 367static bool rcu_dynticks_in_eqs(int snap)
 368{
 369	return !(snap & RCU_DYNTICK_CTRL_CTR);
 370}
 371
 372/*
 373 * Return true if the CPU corresponding to the specified rcu_dynticks
 374 * structure has spent some time in an extended quiescent state since
 375 * rcu_dynticks_snap() returned the specified snapshot.
 376 */
 377static bool rcu_dynticks_in_eqs_since(struct rcu_dynticks *rdtp, int snap)
 378{
 379	return snap != rcu_dynticks_snap(rdtp);
 380}
 381
 382/*
 383 * Do a double-increment of the ->dynticks counter to emulate a
 384 * momentary idle-CPU quiescent state.
 385 */
 386static void rcu_dynticks_momentary_idle(void)
 387{
 388	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 389	int special = atomic_add_return(2 * RCU_DYNTICK_CTRL_CTR,
 390					&rdtp->dynticks);
 391
 392	/* It is illegal to call this from idle state. */
 393	WARN_ON_ONCE(!(special & RCU_DYNTICK_CTRL_CTR));
 394}
 395
 396/*
 397 * Set the special (bottom) bit of the specified CPU so that it
 398 * will take special action (such as flushing its TLB) on the
 399 * next exit from an extended quiescent state.  Returns true if
 400 * the bit was successfully set, or false if the CPU was not in
 401 * an extended quiescent state.
 402 */
 403bool rcu_eqs_special_set(int cpu)
 404{
 405	int old;
 406	int new;
 407	struct rcu_dynticks *rdtp = &per_cpu(rcu_dynticks, cpu);
 408
 409	do {
 410		old = atomic_read(&rdtp->dynticks);
 411		if (old & RCU_DYNTICK_CTRL_CTR)
 412			return false;
 413		new = old | RCU_DYNTICK_CTRL_MASK;
 414	} while (atomic_cmpxchg(&rdtp->dynticks, old, new) != old);
 415	return true;
 416}
 417
 418/*
 419 * Let the RCU core know that this CPU has gone through the scheduler,
 420 * which is a quiescent state.  This is called when the need for a
 421 * quiescent state is urgent, so we burn an atomic operation and full
 422 * memory barriers to let the RCU core know about it, regardless of what
 423 * this CPU might (or might not) do in the near future.
 424 *
 425 * We inform the RCU core by emulating a zero-duration dyntick-idle period.
 426 *
 427 * The caller must have disabled interrupts.
 428 */
 429static void rcu_momentary_dyntick_idle(void)
 430{
 431	raw_cpu_write(rcu_dynticks.rcu_need_heavy_qs, false);
 432	rcu_dynticks_momentary_idle();
 433}
 434
 435/*
 436 * Note a context switch.  This is a quiescent state for RCU-sched,
 437 * and requires special handling for preemptible RCU.
 438 * The caller must have disabled interrupts.
 439 */
 440void rcu_note_context_switch(bool preempt)
 441{
 442	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 443	trace_rcu_utilization(TPS("Start context switch"));
 444	rcu_sched_qs();
 445	rcu_preempt_note_context_switch(preempt);
 446	/* Load rcu_urgent_qs before other flags. */
 447	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs)))
 448		goto out;
 449	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 450	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs)))
 451		rcu_momentary_dyntick_idle();
 452	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 453	if (!preempt)
 454		rcu_note_voluntary_context_switch_lite(current);
 455out:
 456	trace_rcu_utilization(TPS("End context switch"));
 457	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 458}
 459EXPORT_SYMBOL_GPL(rcu_note_context_switch);
 460
 461/*
 462 * Register a quiescent state for all RCU flavors.  If there is an
 463 * emergency, invoke rcu_momentary_dyntick_idle() to do a heavy-weight
 464 * dyntick-idle quiescent state visible to other CPUs (but only for those
 465 * RCU flavors in desperate need of a quiescent state, which will normally
 466 * be none of them).  Either way, do a lightweight quiescent state for
 467 * all RCU flavors.
 468 *
 469 * The barrier() calls are redundant in the common case when this is
 470 * called externally, but just in case this is called from within this
 471 * file.
 472 *
 
 473 */
 474void rcu_all_qs(void)
 475{
 476	unsigned long flags;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 477
 478	if (!raw_cpu_read(rcu_dynticks.rcu_urgent_qs))
 479		return;
 480	preempt_disable();
 481	/* Load rcu_urgent_qs before other flags. */
 482	if (!smp_load_acquire(this_cpu_ptr(&rcu_dynticks.rcu_urgent_qs))) {
 483		preempt_enable();
 484		return;
 485	}
 486	this_cpu_write(rcu_dynticks.rcu_urgent_qs, false);
 487	barrier(); /* Avoid RCU read-side critical sections leaking down. */
 488	if (unlikely(raw_cpu_read(rcu_dynticks.rcu_need_heavy_qs))) {
 489		local_irq_save(flags);
 490		rcu_momentary_dyntick_idle();
 491		local_irq_restore(flags);
 492	}
 493	if (unlikely(raw_cpu_read(rcu_sched_data.cpu_no_qs.b.exp)))
 494		rcu_sched_qs();
 495	this_cpu_inc(rcu_dynticks.rcu_qs_ctr);
 496	barrier(); /* Avoid RCU read-side critical sections leaking up. */
 497	preempt_enable();
 498}
 499EXPORT_SYMBOL_GPL(rcu_all_qs);
 500
 501#define DEFAULT_RCU_BLIMIT 10     /* Maximum callbacks per rcu_do_batch. */
 
 
 502static long blimit = DEFAULT_RCU_BLIMIT;
 503#define DEFAULT_RCU_QHIMARK 10000 /* If this many pending, ignore blimit. */
 504static long qhimark = DEFAULT_RCU_QHIMARK;
 505#define DEFAULT_RCU_QLOMARK 100   /* Once only this many pending, use blimit. */
 506static long qlowmark = DEFAULT_RCU_QLOMARK;
 
 
 
 
 507
 508module_param(blimit, long, 0444);
 509module_param(qhimark, long, 0444);
 510module_param(qlowmark, long, 0444);
 
 511
 512static ulong jiffies_till_first_fqs = ULONG_MAX;
 513static ulong jiffies_till_next_fqs = ULONG_MAX;
 514static bool rcu_kick_kthreads;
 
 
 515
 516module_param(jiffies_till_first_fqs, ulong, 0644);
 517module_param(jiffies_till_next_fqs, ulong, 0644);
 518module_param(rcu_kick_kthreads, bool, 0644);
 519
 520/*
 521 * How long the grace period must be before we start recruiting
 522 * quiescent-state help from rcu_note_context_switch().
 523 */
 524static ulong jiffies_till_sched_qs = HZ / 10;
 525module_param(jiffies_till_sched_qs, ulong, 0444);
 526
 527static bool rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
 528				  struct rcu_data *rdp);
 529static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp));
 530static void force_quiescent_state(struct rcu_state *rsp);
 531static int rcu_pending(void);
 532
 533/*
 534 * Return the number of RCU batches started thus far for debug & stats.
 
 
 
 535 */
 536unsigned long rcu_batches_started(void)
 537{
 538	return rcu_state_p->gpnum;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 539}
 540EXPORT_SYMBOL_GPL(rcu_batches_started);
 541
 542/*
 543 * Return the number of RCU-sched batches started thus far for debug & stats.
 544 */
 545unsigned long rcu_batches_started_sched(void)
 546{
 547	return rcu_sched_state.gpnum;
 
 
 
 
 
 
 
 548}
 549EXPORT_SYMBOL_GPL(rcu_batches_started_sched);
 550
 551/*
 552 * Return the number of RCU BH batches started thus far for debug & stats.
 553 */
 554unsigned long rcu_batches_started_bh(void)
 555{
 556	return rcu_bh_state.gpnum;
 557}
 558EXPORT_SYMBOL_GPL(rcu_batches_started_bh);
 
 559
 560/*
 561 * Return the number of RCU batches completed thus far for debug & stats.
 562 */
 563unsigned long rcu_batches_completed(void)
 564{
 565	return rcu_state_p->completed;
 566}
 567EXPORT_SYMBOL_GPL(rcu_batches_completed);
 568
 569/*
 570 * Return the number of RCU-sched batches completed thus far for debug & stats.
 571 */
 572unsigned long rcu_batches_completed_sched(void)
 573{
 574	return rcu_sched_state.completed;
 575}
 576EXPORT_SYMBOL_GPL(rcu_batches_completed_sched);
 577
 578/*
 579 * Return the number of RCU BH batches completed thus far for debug & stats.
 580 */
 581unsigned long rcu_batches_completed_bh(void)
 582{
 583	return rcu_bh_state.completed;
 584}
 585EXPORT_SYMBOL_GPL(rcu_batches_completed_bh);
 586
 587/*
 588 * Return the number of RCU expedited batches completed thus far for
 589 * debug & stats.  Odd numbers mean that a batch is in progress, even
 590 * numbers mean idle.  The value returned will thus be roughly double
 591 * the cumulative batches since boot.
 592 */
 593unsigned long rcu_exp_batches_completed(void)
 594{
 595	return rcu_state_p->expedited_sequence;
 596}
 597EXPORT_SYMBOL_GPL(rcu_exp_batches_completed);
 598
 599/*
 600 * Return the number of RCU-sched expedited batches completed thus far
 601 * for debug & stats.  Similar to rcu_exp_batches_completed().
 602 */
 603unsigned long rcu_exp_batches_completed_sched(void)
 604{
 605	return rcu_sched_state.expedited_sequence;
 606}
 607EXPORT_SYMBOL_GPL(rcu_exp_batches_completed_sched);
 608
 609/*
 610 * Force a quiescent state.
 611 */
 612void rcu_force_quiescent_state(void)
 613{
 614	force_quiescent_state(rcu_state_p);
 615}
 616EXPORT_SYMBOL_GPL(rcu_force_quiescent_state);
 617
 618/*
 619 * Force a quiescent state for RCU BH.
 620 */
 621void rcu_bh_force_quiescent_state(void)
 622{
 623	force_quiescent_state(&rcu_bh_state);
 624}
 625EXPORT_SYMBOL_GPL(rcu_bh_force_quiescent_state);
 626
 627/*
 628 * Force a quiescent state for RCU-sched.
 629 */
 630void rcu_sched_force_quiescent_state(void)
 631{
 632	force_quiescent_state(&rcu_sched_state);
 633}
 634EXPORT_SYMBOL_GPL(rcu_sched_force_quiescent_state);
 635
 636/*
 637 * Show the state of the grace-period kthreads.
 638 */
 639void show_rcu_gp_kthreads(void)
 640{
 641	struct rcu_state *rsp;
 642
 643	for_each_rcu_flavor(rsp) {
 644		pr_info("%s: wait state: %d ->state: %#lx\n",
 645			rsp->name, rsp->gp_state, rsp->gp_kthread->state);
 646		/* sched_show_task(rsp->gp_kthread); */
 647	}
 648}
 649EXPORT_SYMBOL_GPL(show_rcu_gp_kthreads);
 650
 651/*
 652 * Record the number of times rcutorture tests have been initiated and
 653 * terminated.  This information allows the debugfs tracing stats to be
 654 * correlated to the rcutorture messages, even when the rcutorture module
 655 * is being repeatedly loaded and unloaded.  In other words, we cannot
 656 * store this state in rcutorture itself.
 657 */
 658void rcutorture_record_test_transition(void)
 659{
 660	rcutorture_testseq++;
 661	rcutorture_vernum = 0;
 662}
 663EXPORT_SYMBOL_GPL(rcutorture_record_test_transition);
 664
 665/*
 666 * Send along grace-period-related data for rcutorture diagnostics.
 667 */
 668void rcutorture_get_gp_data(enum rcutorture_type test_type, int *flags,
 669			    unsigned long *gpnum, unsigned long *completed)
 670{
 671	struct rcu_state *rsp = NULL;
 672
 673	switch (test_type) {
 674	case RCU_FLAVOR:
 675		rsp = rcu_state_p;
 676		break;
 677	case RCU_BH_FLAVOR:
 678		rsp = &rcu_bh_state;
 679		break;
 680	case RCU_SCHED_FLAVOR:
 681		rsp = &rcu_sched_state;
 682		break;
 683	default:
 684		break;
 685	}
 686	if (rsp == NULL)
 687		return;
 688	*flags = READ_ONCE(rsp->gp_flags);
 689	*gpnum = READ_ONCE(rsp->gpnum);
 690	*completed = READ_ONCE(rsp->completed);
 691}
 692EXPORT_SYMBOL_GPL(rcutorture_get_gp_data);
 693
 
 694/*
 695 * Record the number of writer passes through the current rcutorture test.
 696 * This is also used to correlate debugfs tracing stats with the rcutorture
 697 * messages.
 698 */
 699void rcutorture_record_progress(unsigned long vernum)
 700{
 701	rcutorture_vernum++;
 702}
 703EXPORT_SYMBOL_GPL(rcutorture_record_progress);
 704
 705/*
 706 * Return the root node of the specified rcu_state structure.
 707 */
 708static struct rcu_node *rcu_get_root(struct rcu_state *rsp)
 709{
 710	return &rsp->node[0];
 711}
 712
 713/*
 714 * Is there any need for future grace periods?
 715 * Interrupts must be disabled.  If the caller does not hold the root
 716 * rnp_node structure's ->lock, the results are advisory only.
 
 
 
 
 
 717 */
 718static int rcu_future_needs_gp(struct rcu_state *rsp)
 719{
 720	struct rcu_node *rnp = rcu_get_root(rsp);
 721	int idx = (READ_ONCE(rnp->completed) + 1) & 0x1;
 722	int *fp = &rnp->need_future_gp[idx];
 723
 724	lockdep_assert_irqs_disabled();
 725	return READ_ONCE(*fp);
 726}
 727
 728/*
 729 * Does the current CPU require a not-yet-started grace period?
 730 * The caller must have disabled interrupts to prevent races with
 731 * normal callback registry.
 732 */
 733static bool
 734cpu_needs_another_gp(struct rcu_state *rsp, struct rcu_data *rdp)
 735{
 736	lockdep_assert_irqs_disabled();
 737	if (rcu_gp_in_progress(rsp))
 738		return false;  /* No, a grace period is already in progress. */
 739	if (rcu_future_needs_gp(rsp))
 740		return true;  /* Yes, a no-CBs CPU needs one. */
 741	if (!rcu_segcblist_is_enabled(&rdp->cblist))
 742		return false;  /* No, this is a no-CBs (or offline) CPU. */
 743	if (!rcu_segcblist_restempty(&rdp->cblist, RCU_NEXT_READY_TAIL))
 744		return true;  /* Yes, CPU has newly registered callbacks. */
 745	if (rcu_segcblist_future_gp_needed(&rdp->cblist,
 746					   READ_ONCE(rsp->completed)))
 747		return true;  /* Yes, CBs for future grace period. */
 748	return false; /* No grace period needed. */
 749}
 750
 751/*
 752 * Enter an RCU extended quiescent state, which can be either the
 753 * idle loop or adaptive-tickless usermode execution.
 754 *
 755 * We crowbar the ->dynticks_nmi_nesting field to zero to allow for
 756 * the possibility of usermode upcalls having messed up our count
 757 * of interrupt nesting level during the prior busy period.
 758 */
 759static void rcu_eqs_enter(bool user)
 760{
 761	struct rcu_state *rsp;
 762	struct rcu_data *rdp;
 763	struct rcu_dynticks *rdtp;
 764
 765	rdtp = this_cpu_ptr(&rcu_dynticks);
 766	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0);
 767	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) &&
 768		     rdtp->dynticks_nesting == 0);
 769	if (rdtp->dynticks_nesting != 1) {
 770		rdtp->dynticks_nesting--;
 771		return;
 772	}
 773
 774	lockdep_assert_irqs_disabled();
 775	trace_rcu_dyntick(TPS("Start"), rdtp->dynticks_nesting, 0, rdtp->dynticks);
 776	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 777	for_each_rcu_flavor(rsp) {
 778		rdp = this_cpu_ptr(rsp->rda);
 779		do_nocb_deferred_wakeup(rdp);
 780	}
 781	rcu_prepare_for_idle();
 782	WRITE_ONCE(rdtp->dynticks_nesting, 0); /* Avoid irq-access tearing. */
 783	rcu_dynticks_eqs_enter();
 784	rcu_dynticks_task_enter();
 785}
 
 786
 
 787/**
 788 * rcu_idle_enter - inform RCU that current CPU is entering idle
 789 *
 790 * Enter idle mode, in other words, -leave- the mode in which RCU
 791 * read-side critical sections can occur.  (Though RCU read-side
 792 * critical sections can occur in irq handlers in idle, a possibility
 793 * handled by irq_enter() and irq_exit().)
 794 *
 795 * If you add or remove a call to rcu_idle_enter(), be sure to test with
 796 * CONFIG_RCU_EQS_DEBUG=y.
 797 */
 798void rcu_idle_enter(void)
 799{
 800	lockdep_assert_irqs_disabled();
 801	rcu_eqs_enter(false);
 
 
 
 
 
 
 
 802}
 
 803
 804#ifdef CONFIG_NO_HZ_FULL
 805/**
 806 * rcu_user_enter - inform RCU that we are resuming userspace.
 807 *
 808 * Enter RCU idle mode right before resuming userspace.  No use of RCU
 809 * is permitted between this call and rcu_user_exit(). This way the
 810 * CPU doesn't need to maintain the tick for RCU maintenance purposes
 811 * when the CPU runs in userspace.
 812 *
 813 * If you add or remove a call to rcu_user_enter(), be sure to test with
 814 * CONFIG_RCU_EQS_DEBUG=y.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815 */
 816void rcu_user_enter(void)
 817{
 818	lockdep_assert_irqs_disabled();
 819	rcu_eqs_enter(true);
 820}
 821#endif /* CONFIG_NO_HZ_FULL */
 822
 823/**
 824 * rcu_nmi_exit - inform RCU of exit from NMI context
 825 *
 826 * If we are returning from the outermost NMI handler that interrupted an
 827 * RCU-idle period, update rdtp->dynticks and rdtp->dynticks_nmi_nesting
 828 * to let the RCU grace-period handling know that the CPU is back to
 829 * being RCU-idle.
 830 *
 831 * If you add or remove a call to rcu_nmi_exit(), be sure to test
 832 * with CONFIG_RCU_EQS_DEBUG=y.
 833 */
 834void rcu_nmi_exit(void)
 835{
 836	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 837
 838	/*
 839	 * Check for ->dynticks_nmi_nesting underflow and bad ->dynticks.
 840	 * (We are exiting an NMI handler, so RCU better be paying attention
 841	 * to us!)
 842	 */
 843	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting <= 0);
 844	WARN_ON_ONCE(rcu_dynticks_curr_cpu_in_eqs());
 845
 846	/*
 847	 * If the nesting level is not 1, the CPU wasn't RCU-idle, so
 848	 * leave it in non-RCU-idle state.
 849	 */
 850	if (rdtp->dynticks_nmi_nesting != 1) {
 851		trace_rcu_dyntick(TPS("--="), rdtp->dynticks_nmi_nesting, rdtp->dynticks_nmi_nesting - 2, rdtp->dynticks);
 852		WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* No store tearing. */
 853			   rdtp->dynticks_nmi_nesting - 2);
 854		return;
 855	}
 856
 857	/* This NMI interrupted an RCU-idle CPU, restore RCU-idleness. */
 858	trace_rcu_dyntick(TPS("Startirq"), rdtp->dynticks_nmi_nesting, 0, rdtp->dynticks);
 859	WRITE_ONCE(rdtp->dynticks_nmi_nesting, 0); /* Avoid store tearing. */
 860	rcu_dynticks_eqs_enter();
 861}
 862
 863/**
 864 * rcu_irq_exit - inform RCU that current CPU is exiting irq towards idle
 865 *
 866 * Exit from an interrupt handler, which might possibly result in entering
 867 * idle mode, in other words, leaving the mode in which read-side critical
 868 * sections can occur.  The caller must have disabled interrupts.
 869 *
 870 * This code assumes that the idle loop never does anything that might
 871 * result in unbalanced calls to irq_enter() and irq_exit().  If your
 872 * architecture's idle loop violates this assumption, RCU will give you what
 873 * you deserve, good and hard.  But very infrequently and irreproducibly.
 874 *
 875 * Use things like work queues to work around this limitation.
 876 *
 877 * You have been warned.
 878 *
 879 * If you add or remove a call to rcu_irq_exit(), be sure to test with
 880 * CONFIG_RCU_EQS_DEBUG=y.
 881 */
 882void rcu_irq_exit(void)
 883{
 884	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 885
 886	lockdep_assert_irqs_disabled();
 887	if (rdtp->dynticks_nmi_nesting == 1)
 888		rcu_prepare_for_idle();
 889	rcu_nmi_exit();
 890	if (rdtp->dynticks_nmi_nesting == 0)
 891		rcu_dynticks_task_enter();
 892}
 
 893
 894/*
 895 * Wrapper for rcu_irq_exit() where interrupts are enabled.
 
 
 
 
 
 896 *
 897 * If you add or remove a call to rcu_irq_exit_irqson(), be sure to test
 898 * with CONFIG_RCU_EQS_DEBUG=y.
 899 */
 900void rcu_irq_exit_irqson(void)
 901{
 902	unsigned long flags;
 903
 904	local_irq_save(flags);
 905	rcu_irq_exit();
 906	local_irq_restore(flags);
 907}
 908
 909/*
 910 * Exit an RCU extended quiescent state, which can be either the
 911 * idle loop or adaptive-tickless usermode execution.
 912 *
 913 * We crowbar the ->dynticks_nmi_nesting field to DYNTICK_IRQ_NONIDLE to
 914 * allow for the possibility of usermode upcalls messing up our count of
 915 * interrupt nesting level during the busy period that is just now starting.
 916 */
 917static void rcu_eqs_exit(bool user)
 918{
 919	struct rcu_dynticks *rdtp;
 920	long oldval;
 921
 922	lockdep_assert_irqs_disabled();
 923	rdtp = this_cpu_ptr(&rcu_dynticks);
 924	oldval = rdtp->dynticks_nesting;
 925	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && oldval < 0);
 926	if (oldval) {
 927		rdtp->dynticks_nesting++;
 928		return;
 929	}
 930	rcu_dynticks_task_exit();
 931	rcu_dynticks_eqs_exit();
 932	rcu_cleanup_after_idle();
 933	trace_rcu_dyntick(TPS("End"), rdtp->dynticks_nesting, 1, rdtp->dynticks);
 934	WARN_ON_ONCE(IS_ENABLED(CONFIG_RCU_EQS_DEBUG) && !user && !is_idle_task(current));
 935	WRITE_ONCE(rdtp->dynticks_nesting, 1);
 936	WRITE_ONCE(rdtp->dynticks_nmi_nesting, DYNTICK_IRQ_NONIDLE);
 937}
 938
 939/**
 940 * rcu_idle_exit - inform RCU that current CPU is leaving idle
 941 *
 942 * Exit idle mode, in other words, -enter- the mode in which RCU
 943 * read-side critical sections can occur.
 944 *
 945 * If you add or remove a call to rcu_idle_exit(), be sure to test with
 946 * CONFIG_RCU_EQS_DEBUG=y.
 947 */
 948void rcu_idle_exit(void)
 949{
 950	unsigned long flags;
 951
 952	local_irq_save(flags);
 953	rcu_eqs_exit(false);
 954	local_irq_restore(flags);
 955}
 956
 957#ifdef CONFIG_NO_HZ_FULL
 958/**
 959 * rcu_user_exit - inform RCU that we are exiting userspace.
 960 *
 961 * Exit RCU idle mode while entering the kernel because it can
 962 * run a RCU read side critical section anytime.
 963 *
 964 * If you add or remove a call to rcu_user_exit(), be sure to test with
 965 * CONFIG_RCU_EQS_DEBUG=y.
 966 */
 967void rcu_user_exit(void)
 968{
 969	rcu_eqs_exit(1);
 970}
 971#endif /* CONFIG_NO_HZ_FULL */
 972
 973/**
 974 * rcu_nmi_enter - inform RCU of entry to NMI context
 975 *
 976 * If the CPU was idle from RCU's viewpoint, update rdtp->dynticks and
 977 * rdtp->dynticks_nmi_nesting to let the RCU grace-period handling know
 978 * that the CPU is active.  This implementation permits nested NMIs, as
 979 * long as the nesting level does not overflow an int.  (You will probably
 980 * run out of stack space first.)
 981 *
 982 * If you add or remove a call to rcu_nmi_enter(), be sure to test
 983 * with CONFIG_RCU_EQS_DEBUG=y.
 984 */
 985void rcu_nmi_enter(void)
 986{
 987	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
 988	long incby = 2;
 989
 990	/* Complain about underflow. */
 991	WARN_ON_ONCE(rdtp->dynticks_nmi_nesting < 0);
 992
 993	/*
 994	 * If idle from RCU viewpoint, atomically increment ->dynticks
 995	 * to mark non-idle and increment ->dynticks_nmi_nesting by one.
 996	 * Otherwise, increment ->dynticks_nmi_nesting by two.  This means
 997	 * if ->dynticks_nmi_nesting is equal to one, we are guaranteed
 998	 * to be in the outermost NMI handler that interrupted an RCU-idle
 999	 * period (observation due to Andy Lutomirski).
1000	 */
1001	if (rcu_dynticks_curr_cpu_in_eqs()) {
1002		rcu_dynticks_eqs_exit();
1003		incby = 1;
1004	}
1005	trace_rcu_dyntick(incby == 1 ? TPS("Endirq") : TPS("++="),
1006			  rdtp->dynticks_nmi_nesting,
1007			  rdtp->dynticks_nmi_nesting + incby, rdtp->dynticks);
1008	WRITE_ONCE(rdtp->dynticks_nmi_nesting, /* Prevent store tearing. */
1009		   rdtp->dynticks_nmi_nesting + incby);
1010	barrier();
1011}
1012
1013/**
1014 * rcu_irq_enter - inform RCU that current CPU is entering irq away from idle
1015 *
1016 * Enter an interrupt handler, which might possibly result in exiting
1017 * idle mode, in other words, entering the mode in which read-side critical
1018 * sections can occur.  The caller must have disabled interrupts.
1019 *
1020 * Note that the Linux kernel is fully capable of entering an interrupt
1021 * handler that it never exits, for example when doing upcalls to user mode!
1022 * This code assumes that the idle loop never does upcalls to user mode.
1023 * If your architecture's idle loop does do upcalls to user mode (or does
1024 * anything else that results in unbalanced calls to the irq_enter() and
1025 * irq_exit() functions), RCU will give you what you deserve, good and hard.
1026 * But very infrequently and irreproducibly.
1027 *
1028 * Use things like work queues to work around this limitation.
1029 *
1030 * You have been warned.
1031 *
1032 * If you add or remove a call to rcu_irq_enter(), be sure to test with
1033 * CONFIG_RCU_EQS_DEBUG=y.
1034 */
1035void rcu_irq_enter(void)
1036{
1037	struct rcu_dynticks *rdtp = this_cpu_ptr(&rcu_dynticks);
1038
1039	lockdep_assert_irqs_disabled();
1040	if (rdtp->dynticks_nmi_nesting == 0)
1041		rcu_dynticks_task_exit();
1042	rcu_nmi_enter();
1043	if (rdtp->dynticks_nmi_nesting == 1)
1044		rcu_cleanup_after_idle();
1045}
1046
1047/*
1048 * Wrapper for rcu_irq_enter() where interrupts are enabled.
1049 *
1050 * If you add or remove a call to rcu_irq_enter_irqson(), be sure to test
1051 * with CONFIG_RCU_EQS_DEBUG=y.
1052 */
1053void rcu_irq_enter_irqson(void)
1054{
1055	unsigned long flags;
1056
1057	local_irq_save(flags);
1058	rcu_irq_enter();
1059	local_irq_restore(flags);
1060}
1061
1062/**
1063 * rcu_is_watching - see if RCU thinks that the current CPU is idle
1064 *
1065 * Return true if RCU is watching the running CPU, which means that this
1066 * CPU can safely enter RCU read-side critical sections.  In other words,
1067 * if the current CPU is in its idle loop and is neither in an interrupt
1068 * or NMI handler, return true.
 
 
 
1069 */
1070bool notrace rcu_is_watching(void)
1071{
1072	bool ret;
1073
1074	preempt_disable_notrace();
1075	ret = !rcu_dynticks_curr_cpu_in_eqs();
1076	preempt_enable_notrace();
1077	return ret;
1078}
1079EXPORT_SYMBOL_GPL(rcu_is_watching);
1080
1081/*
1082 * If a holdout task is actually running, request an urgent quiescent
1083 * state from its CPU.  This is unsynchronized, so migrations can cause
1084 * the request to go to the wrong CPU.  Which is OK, all that will happen
1085 * is that the CPU's next context switch will be a bit slower and next
1086 * time around this task will generate another request.
1087 */
1088void rcu_request_urgent_qs_task(struct task_struct *t)
1089{
1090	int cpu;
1091
1092	barrier();
1093	cpu = task_cpu(t);
1094	if (!task_curr(t))
1095		return; /* This task is not running on that CPU. */
1096	smp_store_release(per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, cpu), true);
1097}
1098
1099#if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU)
1100
1101/*
1102 * Is the current CPU online?  Disable preemption to avoid false positives
1103 * that could otherwise happen due to the current CPU number being sampled,
1104 * this task being preempted, its old CPU being taken offline, resuming
1105 * on some other CPU, then determining that its old CPU is now offline.
1106 * It is OK to use RCU on an offline processor during initial boot, hence
1107 * the check for rcu_scheduler_fully_active.  Note also that it is OK
1108 * for a CPU coming online to use RCU for one jiffy prior to marking itself
1109 * online in the cpu_online_mask.  Similarly, it is OK for a CPU going
1110 * offline to continue to use RCU for one jiffy after marking itself
1111 * offline in the cpu_online_mask.  This leniency is necessary given the
1112 * non-atomic nature of the online and offline processing, for example,
1113 * the fact that a CPU enters the scheduler after completing the teardown
1114 * of the CPU.
1115 *
1116 * This is also why RCU internally marks CPUs online during in the
1117 * preparation phase and offline after the CPU has been taken down.
1118 *
1119 * Disable checking if in an NMI handler because we cannot safely report
1120 * errors from NMI handlers anyway.
 
 
 
 
 
 
 
1121 */
1122bool rcu_lockdep_current_cpu_online(void)
1123{
1124	struct rcu_data *rdp;
1125	struct rcu_node *rnp;
1126	bool ret;
1127
1128	if (in_nmi())
1129		return true;
1130	preempt_disable();
1131	rdp = this_cpu_ptr(&rcu_sched_data);
1132	rnp = rdp->mynode;
1133	ret = (rdp->grpmask & rcu_rnp_online_cpus(rnp)) ||
1134	      !rcu_scheduler_fully_active;
1135	preempt_enable();
 
 
 
 
 
 
1136	return ret;
1137}
1138EXPORT_SYMBOL_GPL(rcu_lockdep_current_cpu_online);
1139
1140#endif /* #if defined(CONFIG_PROVE_RCU) && defined(CONFIG_HOTPLUG_CPU) */
1141
1142/**
1143 * rcu_is_cpu_rrupt_from_idle - see if idle or immediately interrupted from idle
1144 *
1145 * If the current CPU is idle or running at a first-level (not nested)
1146 * interrupt from idle, return true.  The caller must have at least
1147 * disabled preemption.
1148 */
1149static int rcu_is_cpu_rrupt_from_idle(void)
1150{
1151	return __this_cpu_read(rcu_dynticks.dynticks_nesting) <= 0 &&
1152	       __this_cpu_read(rcu_dynticks.dynticks_nmi_nesting) <= 1;
1153}
1154
1155/*
1156 * We are reporting a quiescent state on behalf of some other CPU, so
1157 * it is our responsibility to check for and handle potential overflow
1158 * of the rcu_node ->gpnum counter with respect to the rcu_data counters.
1159 * After all, the CPU might be in deep idle state, and thus executing no
1160 * code whatsoever.
1161 */
1162static void rcu_gpnum_ovf(struct rcu_node *rnp, struct rcu_data *rdp)
1163{
1164	raw_lockdep_assert_held_rcu_node(rnp);
1165	if (ULONG_CMP_LT(READ_ONCE(rdp->gpnum) + ULONG_MAX / 4, rnp->gpnum))
 
1166		WRITE_ONCE(rdp->gpwrap, true);
1167	if (ULONG_CMP_LT(rdp->rcu_iw_gpnum + ULONG_MAX / 4, rnp->gpnum))
1168		rdp->rcu_iw_gpnum = rnp->gpnum + ULONG_MAX / 4;
1169}
1170
1171/*
1172 * Snapshot the specified CPU's dynticks counter so that we can later
1173 * credit them with an implicit quiescent state.  Return 1 if this CPU
1174 * is in dynticks idle mode, which is an extended quiescent state.
1175 */
1176static int dyntick_save_progress_counter(struct rcu_data *rdp)
1177{
1178	rdp->dynticks_snap = rcu_dynticks_snap(rdp->dynticks);
1179	if (rcu_dynticks_in_eqs(rdp->dynticks_snap)) {
1180		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1181		rcu_gpnum_ovf(rdp->mynode, rdp);
1182		return 1;
1183	}
1184	return 0;
1185}
1186
1187/*
1188 * Handler for the irq_work request posted when a grace period has
1189 * gone on for too long, but not yet long enough for an RCU CPU
1190 * stall warning.  Set state appropriately, but just complain if
1191 * there is unexpected state on entry.
1192 */
1193static void rcu_iw_handler(struct irq_work *iwp)
1194{
1195	struct rcu_data *rdp;
1196	struct rcu_node *rnp;
1197
1198	rdp = container_of(iwp, struct rcu_data, rcu_iw);
1199	rnp = rdp->mynode;
1200	raw_spin_lock_rcu_node(rnp);
1201	if (!WARN_ON_ONCE(!rdp->rcu_iw_pending)) {
1202		rdp->rcu_iw_gpnum = rnp->gpnum;
1203		rdp->rcu_iw_pending = false;
1204	}
1205	raw_spin_unlock_rcu_node(rnp);
1206}
1207
1208/*
1209 * Return true if the specified CPU has passed through a quiescent
1210 * state by virtue of being in or having passed through an dynticks
1211 * idle state since the last call to dyntick_save_progress_counter()
1212 * for this same CPU, or by virtue of having been offline.
1213 */
1214static int rcu_implicit_dynticks_qs(struct rcu_data *rdp)
1215{
1216	unsigned long jtsq;
1217	bool *rnhqp;
1218	bool *ruqp;
1219	struct rcu_node *rnp = rdp->mynode;
1220
1221	/*
1222	 * If the CPU passed through or entered a dynticks idle phase with
1223	 * no active irq/NMI handlers, then we can safely pretend that the CPU
1224	 * already acknowledged the request to pass through a quiescent
1225	 * state.  Either way, that CPU cannot possibly be in an RCU
1226	 * read-side critical section that started before the beginning
1227	 * of the current RCU grace period.
1228	 */
1229	if (rcu_dynticks_in_eqs_since(rdp->dynticks, rdp->dynticks_snap)) {
1230		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("dti"));
1231		rdp->dynticks_fqs++;
1232		rcu_gpnum_ovf(rnp, rdp);
1233		return 1;
1234	}
1235
1236	/*
1237	 * Has this CPU encountered a cond_resched_rcu_qs() since the
1238	 * beginning of the grace period?  For this to be the case,
1239	 * the CPU has to have noticed the current grace period.  This
1240	 * might not be the case for nohz_full CPUs looping in the kernel.
1241	 */
1242	jtsq = jiffies_till_sched_qs;
1243	ruqp = per_cpu_ptr(&rcu_dynticks.rcu_urgent_qs, rdp->cpu);
1244	if (time_after(jiffies, rdp->rsp->gp_start + jtsq) &&
1245	    READ_ONCE(rdp->rcu_qs_ctr_snap) != per_cpu(rcu_dynticks.rcu_qs_ctr, rdp->cpu) &&
1246	    READ_ONCE(rdp->gpnum) == rnp->gpnum && !rdp->gpwrap) {
1247		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("rqc"));
1248		rcu_gpnum_ovf(rnp, rdp);
1249		return 1;
1250	} else if (time_after(jiffies, rdp->rsp->gp_start + jtsq)) {
1251		/* Load rcu_qs_ctr before store to rcu_urgent_qs. */
1252		smp_store_release(ruqp, true);
1253	}
 
 
1254
1255	/* Check for the CPU being offline. */
1256	if (!(rdp->grpmask & rcu_rnp_online_cpus(rnp))) {
1257		trace_rcu_fqs(rdp->rsp->name, rdp->gpnum, rdp->cpu, TPS("ofl"));
1258		rdp->offline_fqs++;
1259		rcu_gpnum_ovf(rnp, rdp);
1260		return 1;
 
 
 
 
 
1261	}
1262
1263	/*
1264	 * A CPU running for an extended time within the kernel can
1265	 * delay RCU grace periods.  When the CPU is in NO_HZ_FULL mode,
1266	 * even context-switching back and forth between a pair of
1267	 * in-kernel CPU-bound tasks cannot advance grace periods.
1268	 * So if the grace period is old enough, make the CPU pay attention.
1269	 * Note that the unsynchronized assignments to the per-CPU
1270	 * rcu_need_heavy_qs variable are safe.  Yes, setting of
1271	 * bits can be lost, but they will be set again on the next
1272	 * force-quiescent-state pass.  So lost bit sets do not result
1273	 * in incorrect behavior, merely in a grace period lasting
1274	 * a few jiffies longer than it might otherwise.  Because
1275	 * there are at most four threads involved, and because the
1276	 * updates are only once every few jiffies, the probability of
1277	 * lossage (and thus of slight grace-period extension) is
1278	 * quite low.
1279	 */
1280	rnhqp = &per_cpu(rcu_dynticks.rcu_need_heavy_qs, rdp->cpu);
1281	if (!READ_ONCE(*rnhqp) &&
1282	    (time_after(jiffies, rdp->rsp->gp_start + jtsq) ||
1283	     time_after(jiffies, rdp->rsp->jiffies_resched))) {
1284		WRITE_ONCE(*rnhqp, true);
1285		/* Store rcu_need_heavy_qs before rcu_urgent_qs. */
1286		smp_store_release(ruqp, true);
1287		rdp->rsp->jiffies_resched += jtsq; /* Re-enable beating. */
 
1288	}
1289
1290	/*
1291	 * If more than halfway to RCU CPU stall-warning time, do a
1292	 * resched_cpu() to try to loosen things up a bit.  Also check to
1293	 * see if the CPU is getting hammered with interrupts, but only
1294	 * once per grace period, just to keep the IPIs down to a dull roar.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295	 */
1296	if (jiffies - rdp->rsp->gp_start > rcu_jiffies_till_stall_check() / 2) {
1297		resched_cpu(rdp->cpu);
 
 
 
 
1298		if (IS_ENABLED(CONFIG_IRQ_WORK) &&
1299		    !rdp->rcu_iw_pending && rdp->rcu_iw_gpnum != rnp->gpnum &&
1300		    (rnp->ffmask & rdp->grpmask)) {
1301			init_irq_work(&rdp->rcu_iw, rcu_iw_handler);
1302			rdp->rcu_iw_pending = true;
1303			rdp->rcu_iw_gpnum = rnp->gpnum;
1304			irq_work_queue_on(&rdp->rcu_iw, rdp->cpu);
1305		}
1306	}
1307
1308	return 0;
1309}
1310
1311static void record_gp_stall_check_time(struct rcu_state *rsp)
 
 
1312{
1313	unsigned long j = jiffies;
1314	unsigned long j1;
1315
1316	rsp->gp_start = j;
1317	smp_wmb(); /* Record start time before stall time. */
1318	j1 = rcu_jiffies_till_stall_check();
1319	WRITE_ONCE(rsp->jiffies_stall, j + j1);
1320	rsp->jiffies_resched = j + j1 / 2;
1321	rsp->n_force_qs_gpstart = READ_ONCE(rsp->n_force_qs);
1322}
1323
1324/*
1325 * Convert a ->gp_state value to a character string.
1326 */
1327static const char *gp_state_getname(short gs)
1328{
1329	if (gs < 0 || gs >= ARRAY_SIZE(gp_state_names))
1330		return "???";
1331	return gp_state_names[gs];
1332}
1333
1334/*
1335 * Complain about starvation of grace-period kthread.
1336 */
1337static void rcu_check_gp_kthread_starvation(struct rcu_state *rsp)
1338{
1339	unsigned long gpa;
1340	unsigned long j;
1341
1342	j = jiffies;
1343	gpa = READ_ONCE(rsp->gp_activity);
1344	if (j - gpa > 2 * HZ) {
1345		pr_err("%s kthread starved for %ld jiffies! g%lu c%lu f%#x %s(%d) ->state=%#lx ->cpu=%d\n",
1346		       rsp->name, j - gpa,
1347		       rsp->gpnum, rsp->completed,
1348		       rsp->gp_flags,
1349		       gp_state_getname(rsp->gp_state), rsp->gp_state,
1350		       rsp->gp_kthread ? rsp->gp_kthread->state : ~0,
1351		       rsp->gp_kthread ? task_cpu(rsp->gp_kthread) : -1);
1352		if (rsp->gp_kthread) {
1353			pr_err("RCU grace-period kthread stack dump:\n");
1354			sched_show_task(rsp->gp_kthread);
1355			wake_up_process(rsp->gp_kthread);
1356		}
1357	}
1358}
1359
1360/*
1361 * Dump stacks of all tasks running on stalled CPUs.  First try using
1362 * NMIs, but fall back to manual remote stack tracing on architectures
1363 * that don't support NMI-based stack dumps.  The NMI-triggered stack
1364 * traces are more accurate because they are printed by the target CPU.
1365 */
1366static void rcu_dump_cpu_stacks(struct rcu_state *rsp)
1367{
1368	int cpu;
1369	unsigned long flags;
1370	struct rcu_node *rnp;
1371
1372	rcu_for_each_leaf_node(rsp, rnp) {
1373		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1374		for_each_leaf_node_possible_cpu(rnp, cpu)
1375			if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu))
1376				if (!trigger_single_cpu_backtrace(cpu))
1377					dump_cpu_task(cpu);
1378		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1379	}
1380}
1381
1382/*
1383 * If too much time has passed in the current grace period, and if
1384 * so configured, go kick the relevant kthreads.
1385 */
1386static void rcu_stall_kick_kthreads(struct rcu_state *rsp)
1387{
1388	unsigned long j;
1389
1390	if (!rcu_kick_kthreads)
1391		return;
1392	j = READ_ONCE(rsp->jiffies_kick_kthreads);
1393	if (time_after(jiffies, j) && rsp->gp_kthread &&
1394	    (rcu_gp_in_progress(rsp) || READ_ONCE(rsp->gp_flags))) {
1395		WARN_ONCE(1, "Kicking %s grace-period kthread\n", rsp->name);
1396		rcu_ftrace_dump(DUMP_ALL);
1397		wake_up_process(rsp->gp_kthread);
1398		WRITE_ONCE(rsp->jiffies_kick_kthreads, j + HZ);
1399	}
1400}
1401
1402static inline void panic_on_rcu_stall(void)
1403{
1404	if (sysctl_panic_on_rcu_stall)
1405		panic("RCU Stall\n");
1406}
1407
1408static void print_other_cpu_stall(struct rcu_state *rsp, unsigned long gpnum)
1409{
1410	int cpu;
1411	long delta;
1412	unsigned long flags;
1413	unsigned long gpa;
1414	unsigned long j;
1415	int ndetected = 0;
1416	struct rcu_node *rnp = rcu_get_root(rsp);
1417	long totqlen = 0;
1418
1419	/* Kick and suppress, if so configured. */
1420	rcu_stall_kick_kthreads(rsp);
1421	if (rcu_cpu_stall_suppress)
1422		return;
1423
1424	/* Only let one CPU complain about others per time interval. */
1425
1426	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1427	delta = jiffies - READ_ONCE(rsp->jiffies_stall);
1428	if (delta < RCU_STALL_RAT_DELAY || !rcu_gp_in_progress(rsp)) {
1429		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1430		return;
1431	}
1432	WRITE_ONCE(rsp->jiffies_stall,
1433		   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1434	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1435
1436	/*
1437	 * OK, time to rat on our buddy...
1438	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1439	 * RCU CPU stall warnings.
1440	 */
1441	pr_err("INFO: %s detected stalls on CPUs/tasks:",
1442	       rsp->name);
1443	print_cpu_stall_info_begin();
1444	rcu_for_each_leaf_node(rsp, rnp) {
1445		raw_spin_lock_irqsave_rcu_node(rnp, flags);
1446		ndetected += rcu_print_task_stall(rnp);
1447		if (rnp->qsmask != 0) {
1448			for_each_leaf_node_possible_cpu(rnp, cpu)
1449				if (rnp->qsmask & leaf_node_cpu_bit(rnp, cpu)) {
1450					print_cpu_stall_info(rsp, cpu);
1451					ndetected++;
1452				}
1453		}
1454		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1455	}
1456
1457	print_cpu_stall_info_end();
1458	for_each_possible_cpu(cpu)
1459		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1460							    cpu)->cblist);
1461	pr_cont("(detected by %d, t=%ld jiffies, g=%ld, c=%ld, q=%lu)\n",
1462	       smp_processor_id(), (long)(jiffies - rsp->gp_start),
1463	       (long)rsp->gpnum, (long)rsp->completed, totqlen);
1464	if (ndetected) {
1465		rcu_dump_cpu_stacks(rsp);
1466
1467		/* Complain about tasks blocking the grace period. */
1468		rcu_print_detail_task_stall(rsp);
1469	} else {
1470		if (READ_ONCE(rsp->gpnum) != gpnum ||
1471		    READ_ONCE(rsp->completed) == gpnum) {
1472			pr_err("INFO: Stall ended before state dump start\n");
1473		} else {
1474			j = jiffies;
1475			gpa = READ_ONCE(rsp->gp_activity);
1476			pr_err("All QSes seen, last %s kthread activity %ld (%ld-%ld), jiffies_till_next_fqs=%ld, root ->qsmask %#lx\n",
1477			       rsp->name, j - gpa, j, gpa,
1478			       jiffies_till_next_fqs,
1479			       rcu_get_root(rsp)->qsmask);
1480			/* In this case, the current CPU might be at fault. */
1481			sched_show_task(current);
1482		}
1483	}
1484
1485	rcu_check_gp_kthread_starvation(rsp);
1486
1487	panic_on_rcu_stall();
1488
1489	force_quiescent_state(rsp);  /* Kick them all. */
1490}
1491
1492static void print_cpu_stall(struct rcu_state *rsp)
1493{
1494	int cpu;
1495	unsigned long flags;
1496	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1497	struct rcu_node *rnp = rcu_get_root(rsp);
1498	long totqlen = 0;
1499
1500	/* Kick and suppress, if so configured. */
1501	rcu_stall_kick_kthreads(rsp);
1502	if (rcu_cpu_stall_suppress)
1503		return;
1504
1505	/*
1506	 * OK, time to rat on ourselves...
1507	 * See Documentation/RCU/stallwarn.txt for info on how to debug
1508	 * RCU CPU stall warnings.
1509	 */
1510	pr_err("INFO: %s self-detected stall on CPU", rsp->name);
1511	print_cpu_stall_info_begin();
1512	raw_spin_lock_irqsave_rcu_node(rdp->mynode, flags);
1513	print_cpu_stall_info(rsp, smp_processor_id());
1514	raw_spin_unlock_irqrestore_rcu_node(rdp->mynode, flags);
1515	print_cpu_stall_info_end();
1516	for_each_possible_cpu(cpu)
1517		totqlen += rcu_segcblist_n_cbs(&per_cpu_ptr(rsp->rda,
1518							    cpu)->cblist);
1519	pr_cont(" (t=%lu jiffies g=%ld c=%ld q=%lu)\n",
1520		jiffies - rsp->gp_start,
1521		(long)rsp->gpnum, (long)rsp->completed, totqlen);
1522
1523	rcu_check_gp_kthread_starvation(rsp);
1524
1525	rcu_dump_cpu_stacks(rsp);
1526
1527	raw_spin_lock_irqsave_rcu_node(rnp, flags);
1528	if (ULONG_CMP_GE(jiffies, READ_ONCE(rsp->jiffies_stall)))
1529		WRITE_ONCE(rsp->jiffies_stall,
1530			   jiffies + 3 * rcu_jiffies_till_stall_check() + 3);
1531	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
1532
1533	panic_on_rcu_stall();
1534
1535	/*
1536	 * Attempt to revive the RCU machinery by forcing a context switch.
1537	 *
1538	 * A context switch would normally allow the RCU state machine to make
1539	 * progress and it could be we're stuck in kernel space without context
1540	 * switches for an entirely unreasonable amount of time.
1541	 */
1542	resched_cpu(smp_processor_id());
1543}
1544
1545static void check_cpu_stall(struct rcu_state *rsp, struct rcu_data *rdp)
1546{
1547	unsigned long completed;
1548	unsigned long gpnum;
1549	unsigned long gps;
1550	unsigned long j;
1551	unsigned long js;
1552	struct rcu_node *rnp;
1553
1554	if ((rcu_cpu_stall_suppress && !rcu_kick_kthreads) ||
1555	    !rcu_gp_in_progress(rsp))
1556		return;
1557	rcu_stall_kick_kthreads(rsp);
1558	j = jiffies;
1559
1560	/*
1561	 * Lots of memory barriers to reject false positives.
1562	 *
1563	 * The idea is to pick up rsp->gpnum, then rsp->jiffies_stall,
1564	 * then rsp->gp_start, and finally rsp->completed.  These values
1565	 * are updated in the opposite order with memory barriers (or
1566	 * equivalent) during grace-period initialization and cleanup.
1567	 * Now, a false positive can occur if we get an new value of
1568	 * rsp->gp_start and a old value of rsp->jiffies_stall.  But given
1569	 * the memory barriers, the only way that this can happen is if one
1570	 * grace period ends and another starts between these two fetches.
1571	 * Detect this by comparing rsp->completed with the previous fetch
1572	 * from rsp->gpnum.
1573	 *
1574	 * Given this check, comparisons of jiffies, rsp->jiffies_stall,
1575	 * and rsp->gp_start suffice to forestall false positives.
1576	 */
1577	gpnum = READ_ONCE(rsp->gpnum);
1578	smp_rmb(); /* Pick up ->gpnum first... */
1579	js = READ_ONCE(rsp->jiffies_stall);
1580	smp_rmb(); /* ...then ->jiffies_stall before the rest... */
1581	gps = READ_ONCE(rsp->gp_start);
1582	smp_rmb(); /* ...and finally ->gp_start before ->completed. */
1583	completed = READ_ONCE(rsp->completed);
1584	if (ULONG_CMP_GE(completed, gpnum) ||
1585	    ULONG_CMP_LT(j, js) ||
1586	    ULONG_CMP_GE(gps, js))
1587		return; /* No stall or GP completed since entering function. */
1588	rnp = rdp->mynode;
1589	if (rcu_gp_in_progress(rsp) &&
1590	    (READ_ONCE(rnp->qsmask) & rdp->grpmask)) {
1591
1592		/* We haven't checked in, so go dump stack. */
1593		print_cpu_stall(rsp);
1594
1595	} else if (rcu_gp_in_progress(rsp) &&
1596		   ULONG_CMP_GE(j, js + RCU_STALL_RAT_DELAY)) {
1597
1598		/* They had a few time units to dump stack, so complain. */
1599		print_other_cpu_stall(rsp, gpnum);
1600	}
1601}
1602
1603/**
1604 * rcu_cpu_stall_reset - prevent further stall warnings in current grace period
1605 *
1606 * Set the stall-warning timeout way off into the future, thus preventing
1607 * any RCU CPU stall-warning messages from appearing in the current set of
1608 * RCU grace periods.
1609 *
1610 * The caller must disable hard irqs.
1611 */
1612void rcu_cpu_stall_reset(void)
1613{
1614	struct rcu_state *rsp;
1615
1616	for_each_rcu_flavor(rsp)
1617		WRITE_ONCE(rsp->jiffies_stall, jiffies + ULONG_MAX / 2);
1618}
1619
1620/*
1621 * Determine the value that ->completed will have at the end of the
1622 * next subsequent grace period.  This is used to tag callbacks so that
1623 * a CPU can invoke callbacks in a timely fashion even if that CPU has
1624 * been dyntick-idle for an extended period with callbacks under the
1625 * influence of RCU_FAST_NO_HZ.
1626 *
1627 * The caller must hold rnp->lock with interrupts disabled.
1628 */
1629static unsigned long rcu_cbs_completed(struct rcu_state *rsp,
1630				       struct rcu_node *rnp)
1631{
1632	raw_lockdep_assert_held_rcu_node(rnp);
1633
1634	/*
1635	 * If RCU is idle, we just wait for the next grace period.
1636	 * But we can only be sure that RCU is idle if we are looking
1637	 * at the root rcu_node structure -- otherwise, a new grace
1638	 * period might have started, but just not yet gotten around
1639	 * to initializing the current non-root rcu_node structure.
1640	 */
1641	if (rcu_get_root(rsp) == rnp && rnp->gpnum == rnp->completed)
1642		return rnp->completed + 1;
1643
1644	/*
1645	 * Otherwise, wait for a possible partial grace period and
1646	 * then the subsequent full grace period.
1647	 */
1648	return rnp->completed + 2;
1649}
1650
1651/*
1652 * Trace-event helper function for rcu_start_future_gp() and
1653 * rcu_nocb_wait_gp().
1654 */
1655static void trace_rcu_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1656				unsigned long c, const char *s)
1657{
1658	trace_rcu_future_grace_period(rdp->rsp->name, rnp->gpnum,
1659				      rnp->completed, c, rnp->level,
1660				      rnp->grplo, rnp->grphi, s);
1661}
1662
1663/*
1664 * Start some future grace period, as needed to handle newly arrived
1665 * callbacks.  The required future grace periods are recorded in each
1666 * rcu_node structure's ->need_future_gp field.  Returns true if there
1667 * is reason to awaken the grace-period kthread.
1668 *
1669 * The caller must hold the specified rcu_node structure's ->lock.
 
 
 
1670 */
1671static bool __maybe_unused
1672rcu_start_future_gp(struct rcu_node *rnp, struct rcu_data *rdp,
1673		    unsigned long *c_out)
1674{
1675	unsigned long c;
1676	bool ret = false;
1677	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
1678
1679	raw_lockdep_assert_held_rcu_node(rnp);
1680
1681	/*
1682	 * Pick up grace-period number for new callbacks.  If this
1683	 * grace period is already marked as needed, return to the caller.
1684	 */
1685	c = rcu_cbs_completed(rdp->rsp, rnp);
1686	trace_rcu_future_gp(rnp, rdp, c, TPS("Startleaf"));
1687	if (rnp->need_future_gp[c & 0x1]) {
1688		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartleaf"));
1689		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1690	}
1691
1692	/*
1693	 * If either this rcu_node structure or the root rcu_node structure
1694	 * believe that a grace period is in progress, then we must wait
1695	 * for the one following, which is in "c".  Because our request
1696	 * will be noticed at the end of the current grace period, we don't
1697	 * need to explicitly start one.  We only do the lockless check
1698	 * of rnp_root's fields if the current rcu_node structure thinks
1699	 * there is no grace period in flight, and because we hold rnp->lock,
1700	 * the only possible change is when rnp_root's two fields are
1701	 * equal, in which case rnp_root->gpnum might be concurrently
1702	 * incremented.  But that is OK, as it will just result in our
1703	 * doing some extra useless work.
1704	 */
1705	if (rnp->gpnum != rnp->completed ||
1706	    READ_ONCE(rnp_root->gpnum) != READ_ONCE(rnp_root->completed)) {
1707		rnp->need_future_gp[c & 0x1]++;
1708		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleaf"));
1709		goto out;
1710	}
1711
1712	/*
1713	 * There might be no grace period in progress.  If we don't already
1714	 * hold it, acquire the root rcu_node structure's lock in order to
1715	 * start one (if needed).
1716	 */
1717	if (rnp != rnp_root)
1718		raw_spin_lock_rcu_node(rnp_root);
1719
1720	/*
1721	 * Get a new grace-period number.  If there really is no grace
1722	 * period in progress, it will be smaller than the one we obtained
1723	 * earlier.  Adjust callbacks as needed.
1724	 */
1725	c = rcu_cbs_completed(rdp->rsp, rnp_root);
1726	if (!rcu_is_nocb_cpu(rdp->cpu))
1727		(void)rcu_segcblist_accelerate(&rdp->cblist, c);
1728
1729	/*
1730	 * If the needed for the required grace period is already
1731	 * recorded, trace and leave.
1732	 */
1733	if (rnp_root->need_future_gp[c & 0x1]) {
1734		trace_rcu_future_gp(rnp, rdp, c, TPS("Prestartedroot"));
1735		goto unlock_out;
1736	}
1737
1738	/* Record the need for the future grace period. */
1739	rnp_root->need_future_gp[c & 0x1]++;
1740
1741	/* If a grace period is not already in progress, start one. */
1742	if (rnp_root->gpnum != rnp_root->completed) {
1743		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedleafroot"));
1744	} else {
1745		trace_rcu_future_gp(rnp, rdp, c, TPS("Startedroot"));
1746		ret = rcu_start_gp_advanced(rdp->rsp, rnp_root, rdp);
1747	}
1748unlock_out:
1749	if (rnp != rnp_root)
1750		raw_spin_unlock_rcu_node(rnp_root);
1751out:
1752	if (c_out != NULL)
1753		*c_out = c;
1754	return ret;
1755}
1756
1757/*
1758 * Clean up any old requests for the just-ended grace period.  Also return
1759 * whether any additional grace periods have been requested.
1760 */
1761static int rcu_future_gp_cleanup(struct rcu_state *rsp, struct rcu_node *rnp)
1762{
1763	int c = rnp->completed;
1764	int needmore;
1765	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
1766
1767	rnp->need_future_gp[c & 0x1] = 0;
1768	needmore = rnp->need_future_gp[(c + 1) & 0x1];
1769	trace_rcu_future_gp(rnp, rdp, c,
1770			    needmore ? TPS("CleanupMore") : TPS("Cleanup"));
1771	return needmore;
1772}
1773
1774/*
1775 * Awaken the grace-period kthread for the specified flavor of RCU.
1776 * Don't do a self-awaken, and don't bother awakening when there is
1777 * nothing for the grace-period kthread to do (as in several CPUs
1778 * raced to awaken, and we lost), and finally don't try to awaken
1779 * a kthread that has not yet been created.
1780 */
1781static void rcu_gp_kthread_wake(struct rcu_state *rsp)
1782{
1783	if (current == rsp->gp_kthread ||
1784	    !READ_ONCE(rsp->gp_flags) ||
1785	    !rsp->gp_kthread)
 
 
 
 
 
 
 
 
 
1786		return;
1787	swake_up(&rsp->gp_wq);
 
 
1788}
1789
1790/*
1791 * If there is room, assign a ->completed number to any callbacks on
1792 * this CPU that have not already been assigned.  Also accelerate any
1793 * callbacks that were previously assigned a ->completed number that has
1794 * since proven to be too conservative, which can happen if callbacks get
1795 * assigned a ->completed number while RCU is idle, but with reference to
1796 * a non-root rcu_node structure.  This function is idempotent, so it does
1797 * not hurt to call it repeatedly.  Returns an flag saying that we should
1798 * awaken the RCU grace-period kthread.
1799 *
1800 * The caller must hold rnp->lock with interrupts disabled.
1801 */
1802static bool rcu_accelerate_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1803			       struct rcu_data *rdp)
1804{
 
1805	bool ret = false;
1806
 
1807	raw_lockdep_assert_held_rcu_node(rnp);
1808
1809	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1810	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1811		return false;
1812
 
 
1813	/*
1814	 * Callbacks are often registered with incomplete grace-period
1815	 * information.  Something about the fact that getting exact
1816	 * information requires acquiring a global lock...  RCU therefore
1817	 * makes a conservative estimate of the grace period number at which
1818	 * a given callback will become ready to invoke.	The following
1819	 * code checks this estimate and improves it when possible, thus
1820	 * accelerating callback invocation to an earlier grace-period
1821	 * number.
1822	 */
1823	if (rcu_segcblist_accelerate(&rdp->cblist, rcu_cbs_completed(rsp, rnp)))
1824		ret = rcu_start_future_gp(rnp, rdp, NULL);
 
1825
1826	/* Trace depending on how much we were able to accelerate. */
1827	if (rcu_segcblist_restempty(&rdp->cblist, RCU_WAIT_TAIL))
1828		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccWaitCB"));
1829	else
1830		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("AccReadyCB"));
 
 
 
1831	return ret;
1832}
1833
1834/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1835 * Move any callbacks whose grace period has completed to the
1836 * RCU_DONE_TAIL sublist, then compact the remaining sublists and
1837 * assign ->completed numbers to any callbacks in the RCU_NEXT_TAIL
1838 * sublist.  This function is idempotent, so it does not hurt to
1839 * invoke it repeatedly.  As long as it is not invoked -too- often...
1840 * Returns true if the RCU grace-period kthread needs to be awakened.
1841 *
1842 * The caller must hold rnp->lock with interrupts disabled.
1843 */
1844static bool rcu_advance_cbs(struct rcu_state *rsp, struct rcu_node *rnp,
1845			    struct rcu_data *rdp)
1846{
 
1847	raw_lockdep_assert_held_rcu_node(rnp);
1848
1849	/* If no pending (not yet ready to invoke) callbacks, nothing to do. */
1850	if (!rcu_segcblist_pend_cbs(&rdp->cblist))
1851		return false;
1852
1853	/*
1854	 * Find all callbacks whose ->completed numbers indicate that they
1855	 * are ready to invoke, and put them into the RCU_DONE_TAIL sublist.
1856	 */
1857	rcu_segcblist_advance(&rdp->cblist, rnp->completed);
1858
1859	/* Classify any remaining callbacks. */
1860	return rcu_accelerate_cbs(rsp, rnp, rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861}
1862
1863/*
1864 * Update CPU-local rcu_data state to record the beginnings and ends of
1865 * grace periods.  The caller must hold the ->lock of the leaf rcu_node
1866 * structure corresponding to the current CPU, and must have irqs disabled.
1867 * Returns true if the grace-period kthread needs to be awakened.
1868 */
1869static bool __note_gp_changes(struct rcu_state *rsp, struct rcu_node *rnp,
1870			      struct rcu_data *rdp)
1871{
1872	bool ret;
1873	bool need_gp;
 
1874
1875	raw_lockdep_assert_held_rcu_node(rnp);
1876
 
 
 
1877	/* Handle the ends of any preceding grace periods first. */
1878	if (rdp->completed == rnp->completed &&
1879	    !unlikely(READ_ONCE(rdp->gpwrap))) {
1880
1881		/* No grace period end, so just accelerate recent callbacks. */
1882		ret = rcu_accelerate_cbs(rsp, rnp, rdp);
1883
1884	} else {
1885
1886		/* Advance callbacks. */
1887		ret = rcu_advance_cbs(rsp, rnp, rdp);
1888
1889		/* Remember that we saw this grace-period completion. */
1890		rdp->completed = rnp->completed;
1891		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuend"));
1892	}
1893
1894	if (rdp->gpnum != rnp->gpnum || unlikely(READ_ONCE(rdp->gpwrap))) {
 
 
1895		/*
1896		 * If the current grace period is waiting for this CPU,
1897		 * set up to detect a quiescent state, otherwise don't
1898		 * go looking for one.
1899		 */
1900		rdp->gpnum = rnp->gpnum;
1901		trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpustart"));
1902		need_gp = !!(rnp->qsmask & rdp->grpmask);
1903		rdp->cpu_no_qs.b.norm = need_gp;
1904		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
1905		rdp->core_needs_qs = need_gp;
1906		zero_cpu_stall_ticks(rdp);
1907		WRITE_ONCE(rdp->gpwrap, false);
1908		rcu_gpnum_ovf(rnp, rdp);
1909	}
 
 
 
 
 
 
 
1910	return ret;
1911}
1912
1913static void note_gp_changes(struct rcu_state *rsp, struct rcu_data *rdp)
1914{
1915	unsigned long flags;
1916	bool needwake;
1917	struct rcu_node *rnp;
1918
1919	local_irq_save(flags);
1920	rnp = rdp->mynode;
1921	if ((rdp->gpnum == READ_ONCE(rnp->gpnum) &&
1922	     rdp->completed == READ_ONCE(rnp->completed) &&
1923	     !unlikely(READ_ONCE(rdp->gpwrap))) || /* w/out lock. */
1924	    !raw_spin_trylock_rcu_node(rnp)) { /* irqs already off, so later. */
1925		local_irq_restore(flags);
1926		return;
1927	}
1928	needwake = __note_gp_changes(rsp, rnp, rdp);
1929	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
1930	if (needwake)
1931		rcu_gp_kthread_wake(rsp);
1932}
1933
1934static void rcu_gp_slow(struct rcu_state *rsp, int delay)
 
 
 
1935{
1936	if (delay > 0 &&
1937	    !(rsp->gpnum % (rcu_num_nodes * PER_RCU_NODE_PERIOD * delay)))
1938		schedule_timeout_uninterruptible(delay);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1939}
1940
1941/*
1942 * Initialize a new grace period.  Return false if no grace period required.
1943 */
1944static bool rcu_gp_init(struct rcu_state *rsp)
1945{
 
1946	unsigned long oldmask;
 
1947	struct rcu_data *rdp;
1948	struct rcu_node *rnp = rcu_get_root(rsp);
1949
1950	WRITE_ONCE(rsp->gp_activity, jiffies);
1951	raw_spin_lock_irq_rcu_node(rnp);
1952	if (!READ_ONCE(rsp->gp_flags)) {
1953		/* Spurious wakeup, tell caller to go back to sleep.  */
1954		raw_spin_unlock_irq_rcu_node(rnp);
1955		return false;
1956	}
1957	WRITE_ONCE(rsp->gp_flags, 0); /* Clear all flags: New grace period. */
1958
1959	if (WARN_ON_ONCE(rcu_gp_in_progress(rsp))) {
1960		/*
1961		 * Grace period already in progress, don't start another.
1962		 * Not supposed to be able to happen.
1963		 */
1964		raw_spin_unlock_irq_rcu_node(rnp);
1965		return false;
1966	}
1967
1968	/* Advance to a new grace period and initialize state. */
1969	record_gp_stall_check_time(rsp);
1970	/* Record GP times before starting GP, hence smp_store_release(). */
1971	smp_store_release(&rsp->gpnum, rsp->gpnum + 1);
1972	trace_rcu_grace_period(rsp->name, rsp->gpnum, TPS("start"));
 
 
1973	raw_spin_unlock_irq_rcu_node(rnp);
1974
1975	/*
1976	 * Apply per-leaf buffered online and offline operations to the
1977	 * rcu_node tree.  Note that this new grace period need not wait
1978	 * for subsequent online CPUs, and that quiescent-state forcing
1979	 * will handle subsequent offline CPUs.
1980	 */
1981	rcu_for_each_leaf_node(rsp, rnp) {
1982		rcu_gp_slow(rsp, gp_preinit_delay);
1983		raw_spin_lock_irq_rcu_node(rnp);
 
 
 
 
 
 
1984		if (rnp->qsmaskinit == rnp->qsmaskinitnext &&
1985		    !rnp->wait_blkd_tasks) {
1986			/* Nothing to do on this leaf rcu_node structure. */
1987			raw_spin_unlock_irq_rcu_node(rnp);
 
 
1988			continue;
1989		}
1990
1991		/* Record old state, apply changes to ->qsmaskinit field. */
1992		oldmask = rnp->qsmaskinit;
1993		rnp->qsmaskinit = rnp->qsmaskinitnext;
1994
1995		/* If zero-ness of ->qsmaskinit changed, propagate up tree. */
1996		if (!oldmask != !rnp->qsmaskinit) {
1997			if (!oldmask) /* First online CPU for this rcu_node. */
1998				rcu_init_new_rnp(rnp);
1999			else if (rcu_preempt_has_tasks(rnp)) /* blocked tasks */
2000				rnp->wait_blkd_tasks = true;
2001			else /* Last offline CPU and can propagate. */
 
2002				rcu_cleanup_dead_rnp(rnp);
 
2003		}
2004
2005		/*
2006		 * If all waited-on tasks from prior grace period are
2007		 * done, and if all this rcu_node structure's CPUs are
2008		 * still offline, propagate up the rcu_node tree and
2009		 * clear ->wait_blkd_tasks.  Otherwise, if one of this
2010		 * rcu_node structure's CPUs has since come back online,
2011		 * simply clear ->wait_blkd_tasks (but rcu_cleanup_dead_rnp()
2012		 * checks for this, so just call it unconditionally).
2013		 */
2014		if (rnp->wait_blkd_tasks &&
2015		    (!rcu_preempt_has_tasks(rnp) ||
2016		     rnp->qsmaskinit)) {
2017			rnp->wait_blkd_tasks = false;
2018			rcu_cleanup_dead_rnp(rnp);
 
2019		}
2020
2021		raw_spin_unlock_irq_rcu_node(rnp);
 
 
2022	}
 
2023
2024	/*
2025	 * Set the quiescent-state-needed bits in all the rcu_node
2026	 * structures for all currently online CPUs in breadth-first order,
2027	 * starting from the root rcu_node structure, relying on the layout
2028	 * of the tree within the rsp->node[] array.  Note that other CPUs
2029	 * will access only the leaves of the hierarchy, thus seeing that no
2030	 * grace period is in progress, at least until the corresponding
2031	 * leaf node has been initialized.
2032	 *
2033	 * The grace period cannot complete until the initialization
2034	 * process finishes, because this kthread handles both.
2035	 */
2036	rcu_for_each_node_breadth_first(rsp, rnp) {
2037		rcu_gp_slow(rsp, gp_init_delay);
2038		raw_spin_lock_irq_rcu_node(rnp);
2039		rdp = this_cpu_ptr(rsp->rda);
 
2040		rcu_preempt_check_blocked_tasks(rnp);
2041		rnp->qsmask = rnp->qsmaskinit;
2042		WRITE_ONCE(rnp->gpnum, rsp->gpnum);
2043		if (WARN_ON_ONCE(rnp->completed != rsp->completed))
2044			WRITE_ONCE(rnp->completed, rsp->completed);
2045		if (rnp == rdp->mynode)
2046			(void)__note_gp_changes(rsp, rnp, rdp);
2047		rcu_preempt_boost_start_gp(rnp);
2048		trace_rcu_grace_period_init(rsp->name, rnp->gpnum,
2049					    rnp->level, rnp->grplo,
2050					    rnp->grphi, rnp->qsmask);
2051		raw_spin_unlock_irq_rcu_node(rnp);
2052		cond_resched_rcu_qs();
2053		WRITE_ONCE(rsp->gp_activity, jiffies);
 
 
 
 
 
 
2054	}
2055
 
 
 
 
2056	return true;
2057}
2058
2059/*
2060 * Helper function for swait_event_idle() wakeup at force-quiescent-state
2061 * time.
2062 */
2063static bool rcu_gp_fqs_check_wake(struct rcu_state *rsp, int *gfp)
2064{
2065	struct rcu_node *rnp = rcu_get_root(rsp);
2066
2067	/* Someone like call_rcu() requested a force-quiescent-state scan. */
2068	*gfp = READ_ONCE(rsp->gp_flags);
 
 
 
 
2069	if (*gfp & RCU_GP_FLAG_FQS)
2070		return true;
2071
2072	/* The current grace period has completed. */
2073	if (!READ_ONCE(rnp->qsmask) && !rcu_preempt_blocked_readers_cgp(rnp))
2074		return true;
2075
2076	return false;
2077}
2078
2079/*
2080 * Do one round of quiescent-state forcing.
2081 */
2082static void rcu_gp_fqs(struct rcu_state *rsp, bool first_time)
2083{
2084	struct rcu_node *rnp = rcu_get_root(rsp);
2085
2086	WRITE_ONCE(rsp->gp_activity, jiffies);
2087	rsp->n_force_qs++;
2088	if (first_time) {
2089		/* Collect dyntick-idle snapshots. */
2090		force_qs_rnp(rsp, dyntick_save_progress_counter);
2091	} else {
2092		/* Handle dyntick-idle and offline CPUs. */
2093		force_qs_rnp(rsp, rcu_implicit_dynticks_qs);
2094	}
2095	/* Clear flag to prevent immediate re-entry. */
2096	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2097		raw_spin_lock_irq_rcu_node(rnp);
2098		WRITE_ONCE(rsp->gp_flags,
2099			   READ_ONCE(rsp->gp_flags) & ~RCU_GP_FLAG_FQS);
2100		raw_spin_unlock_irq_rcu_node(rnp);
2101	}
2102}
2103
2104/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2105 * Clean up after the old grace period.
2106 */
2107static void rcu_gp_cleanup(struct rcu_state *rsp)
2108{
 
 
2109	unsigned long gp_duration;
2110	bool needgp = false;
2111	int nocb = 0;
2112	struct rcu_data *rdp;
2113	struct rcu_node *rnp = rcu_get_root(rsp);
2114	struct swait_queue_head *sq;
2115
2116	WRITE_ONCE(rsp->gp_activity, jiffies);
2117	raw_spin_lock_irq_rcu_node(rnp);
2118	gp_duration = jiffies - rsp->gp_start;
2119	if (gp_duration > rsp->gp_max)
2120		rsp->gp_max = gp_duration;
 
2121
2122	/*
2123	 * We know the grace period is complete, but to everyone else
2124	 * it appears to still be ongoing.  But it is also the case
2125	 * that to everyone else it looks like there is nothing that
2126	 * they can do to advance the grace period.  It is therefore
2127	 * safe for us to drop the lock in order to mark the grace
2128	 * period as completed in all of the rcu_node structures.
2129	 */
 
2130	raw_spin_unlock_irq_rcu_node(rnp);
2131
2132	/*
2133	 * Propagate new ->completed value to rcu_node structures so
2134	 * that other CPUs don't have to wait until the start of the next
2135	 * grace period to process their callbacks.  This also avoids
2136	 * some nasty RCU grace-period initialization races by forcing
2137	 * the end of the current grace period to be completely recorded in
2138	 * all of the rcu_node structures before the beginning of the next
2139	 * grace period is recorded in any of the rcu_node structures.
2140	 */
2141	rcu_for_each_node_breadth_first(rsp, rnp) {
 
 
2142		raw_spin_lock_irq_rcu_node(rnp);
2143		WARN_ON_ONCE(rcu_preempt_blocked_readers_cgp(rnp));
 
2144		WARN_ON_ONCE(rnp->qsmask);
2145		WRITE_ONCE(rnp->completed, rsp->gpnum);
2146		rdp = this_cpu_ptr(rsp->rda);
 
 
2147		if (rnp == rdp->mynode)
2148			needgp = __note_gp_changes(rsp, rnp, rdp) || needgp;
2149		/* smp_mb() provided by prior unlock-lock pair. */
2150		nocb += rcu_future_gp_cleanup(rsp, rnp);
 
 
 
 
 
 
2151		sq = rcu_nocb_gp_get(rnp);
2152		raw_spin_unlock_irq_rcu_node(rnp);
2153		rcu_nocb_gp_cleanup(sq);
2154		cond_resched_rcu_qs();
2155		WRITE_ONCE(rsp->gp_activity, jiffies);
2156		rcu_gp_slow(rsp, gp_cleanup_delay);
2157	}
2158	rnp = rcu_get_root(rsp);
2159	raw_spin_lock_irq_rcu_node(rnp); /* Order GP before ->completed update. */
2160	rcu_nocb_gp_set(rnp, nocb);
2161
2162	/* Declare grace period done. */
2163	WRITE_ONCE(rsp->completed, rsp->gpnum);
2164	trace_rcu_grace_period(rsp->name, rsp->completed, TPS("end"));
2165	rsp->gp_state = RCU_GP_IDLE;
2166	rdp = this_cpu_ptr(rsp->rda);
 
 
 
 
 
 
2167	/* Advance CBs to reduce false positives below. */
2168	needgp = rcu_advance_cbs(rsp, rnp, rdp) || needgp;
2169	if (needgp || cpu_needs_another_gp(rsp, rdp)) {
2170		WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2171		trace_rcu_grace_period(rsp->name,
2172				       READ_ONCE(rsp->gpnum),
2173				       TPS("newreq"));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2174	}
2175	raw_spin_unlock_irq_rcu_node(rnp);
 
 
 
 
2176}
2177
2178/*
2179 * Body of kthread that handles grace periods.
2180 */
2181static int __noreturn rcu_gp_kthread(void *arg)
2182{
2183	bool first_gp_fqs;
2184	int gf;
2185	unsigned long j;
2186	int ret;
2187	struct rcu_state *rsp = arg;
2188	struct rcu_node *rnp = rcu_get_root(rsp);
2189
2190	rcu_bind_gp_kthread();
2191	for (;;) {
2192
2193		/* Handle grace-period start. */
2194		for (;;) {
2195			trace_rcu_grace_period(rsp->name,
2196					       READ_ONCE(rsp->gpnum),
2197					       TPS("reqwait"));
2198			rsp->gp_state = RCU_GP_WAIT_GPS;
2199			swait_event_idle(rsp->gp_wq, READ_ONCE(rsp->gp_flags) &
2200						     RCU_GP_FLAG_INIT);
2201			rsp->gp_state = RCU_GP_DONE_GPS;
 
 
2202			/* Locking provides needed memory barrier. */
2203			if (rcu_gp_init(rsp))
2204				break;
2205			cond_resched_rcu_qs();
2206			WRITE_ONCE(rsp->gp_activity, jiffies);
2207			WARN_ON(signal_pending(current));
2208			trace_rcu_grace_period(rsp->name,
2209					       READ_ONCE(rsp->gpnum),
2210					       TPS("reqwaitsig"));
2211		}
2212
2213		/* Handle quiescent-state forcing. */
2214		first_gp_fqs = true;
2215		j = jiffies_till_first_fqs;
2216		if (j > HZ) {
2217			j = HZ;
2218			jiffies_till_first_fqs = HZ;
2219		}
2220		ret = 0;
2221		for (;;) {
2222			if (!ret) {
2223				rsp->jiffies_force_qs = jiffies + j;
2224				WRITE_ONCE(rsp->jiffies_kick_kthreads,
2225					   jiffies + 3 * j);
2226			}
2227			trace_rcu_grace_period(rsp->name,
2228					       READ_ONCE(rsp->gpnum),
2229					       TPS("fqswait"));
2230			rsp->gp_state = RCU_GP_WAIT_FQS;
2231			ret = swait_event_idle_timeout(rsp->gp_wq,
2232					rcu_gp_fqs_check_wake(rsp, &gf), j);
2233			rsp->gp_state = RCU_GP_DOING_FQS;
2234			/* Locking provides needed memory barriers. */
2235			/* If grace period done, leave loop. */
2236			if (!READ_ONCE(rnp->qsmask) &&
2237			    !rcu_preempt_blocked_readers_cgp(rnp))
2238				break;
2239			/* If time for quiescent-state forcing, do it. */
2240			if (ULONG_CMP_GE(jiffies, rsp->jiffies_force_qs) ||
2241			    (gf & RCU_GP_FLAG_FQS)) {
2242				trace_rcu_grace_period(rsp->name,
2243						       READ_ONCE(rsp->gpnum),
2244						       TPS("fqsstart"));
2245				rcu_gp_fqs(rsp, first_gp_fqs);
2246				first_gp_fqs = false;
2247				trace_rcu_grace_period(rsp->name,
2248						       READ_ONCE(rsp->gpnum),
2249						       TPS("fqsend"));
2250				cond_resched_rcu_qs();
2251				WRITE_ONCE(rsp->gp_activity, jiffies);
2252				ret = 0; /* Force full wait till next FQS. */
2253				j = jiffies_till_next_fqs;
2254				if (j > HZ) {
2255					j = HZ;
2256					jiffies_till_next_fqs = HZ;
2257				} else if (j < 1) {
2258					j = 1;
2259					jiffies_till_next_fqs = 1;
2260				}
2261			} else {
2262				/* Deal with stray signal. */
2263				cond_resched_rcu_qs();
2264				WRITE_ONCE(rsp->gp_activity, jiffies);
2265				WARN_ON(signal_pending(current));
2266				trace_rcu_grace_period(rsp->name,
2267						       READ_ONCE(rsp->gpnum),
2268						       TPS("fqswaitsig"));
2269				ret = 1; /* Keep old FQS timing. */
2270				j = jiffies;
2271				if (time_after(jiffies, rsp->jiffies_force_qs))
2272					j = 1;
2273				else
2274					j = rsp->jiffies_force_qs - j;
2275			}
2276		}
2277
2278		/* Handle grace-period end. */
2279		rsp->gp_state = RCU_GP_CLEANUP;
2280		rcu_gp_cleanup(rsp);
2281		rsp->gp_state = RCU_GP_CLEANED;
2282	}
2283}
2284
2285/*
2286 * Start a new RCU grace period if warranted, re-initializing the hierarchy
2287 * in preparation for detecting the next grace period.  The caller must hold
2288 * the root node's ->lock and hard irqs must be disabled.
2289 *
2290 * Note that it is legal for a dying CPU (which is marked as offline) to
2291 * invoke this function.  This can happen when the dying CPU reports its
2292 * quiescent state.
2293 *
2294 * Returns true if the grace-period kthread must be awakened.
2295 */
2296static bool
2297rcu_start_gp_advanced(struct rcu_state *rsp, struct rcu_node *rnp,
2298		      struct rcu_data *rdp)
2299{
2300	raw_lockdep_assert_held_rcu_node(rnp);
2301	if (!rsp->gp_kthread || !cpu_needs_another_gp(rsp, rdp)) {
2302		/*
2303		 * Either we have not yet spawned the grace-period
2304		 * task, this CPU does not need another grace period,
2305		 * or a grace period is already in progress.
2306		 * Either way, don't start a new grace period.
2307		 */
2308		return false;
2309	}
2310	WRITE_ONCE(rsp->gp_flags, RCU_GP_FLAG_INIT);
2311	trace_rcu_grace_period(rsp->name, READ_ONCE(rsp->gpnum),
2312			       TPS("newreq"));
2313
2314	/*
2315	 * We can't do wakeups while holding the rnp->lock, as that
2316	 * could cause possible deadlocks with the rq->lock. Defer
2317	 * the wakeup to our caller.
2318	 */
2319	return true;
2320}
2321
2322/*
2323 * Similar to rcu_start_gp_advanced(), but also advance the calling CPU's
2324 * callbacks.  Note that rcu_start_gp_advanced() cannot do this because it
2325 * is invoked indirectly from rcu_advance_cbs(), which would result in
2326 * endless recursion -- or would do so if it wasn't for the self-deadlock
2327 * that is encountered beforehand.
2328 *
2329 * Returns true if the grace-period kthread needs to be awakened.
2330 */
2331static bool rcu_start_gp(struct rcu_state *rsp)
2332{
2333	struct rcu_data *rdp = this_cpu_ptr(rsp->rda);
2334	struct rcu_node *rnp = rcu_get_root(rsp);
2335	bool ret = false;
2336
2337	/*
2338	 * If there is no grace period in progress right now, any
2339	 * callbacks we have up to this point will be satisfied by the
2340	 * next grace period.  Also, advancing the callbacks reduces the
2341	 * probability of false positives from cpu_needs_another_gp()
2342	 * resulting in pointless grace periods.  So, advance callbacks
2343	 * then start the grace period!
2344	 */
2345	ret = rcu_advance_cbs(rsp, rnp, rdp) || ret;
2346	ret = rcu_start_gp_advanced(rsp, rnp, rdp) || ret;
2347	return ret;
2348}
2349
2350/*
2351 * Report a full set of quiescent states to the specified rcu_state data
2352 * structure.  Invoke rcu_gp_kthread_wake() to awaken the grace-period
2353 * kthread if another grace period is required.  Whether we wake
2354 * the grace-period kthread or it awakens itself for the next round
2355 * of quiescent-state forcing, that kthread will clean up after the
2356 * just-completed grace period.  Note that the caller must hold rnp->lock,
2357 * which is released before return.
2358 */
2359static void rcu_report_qs_rsp(struct rcu_state *rsp, unsigned long flags)
2360	__releases(rcu_get_root(rsp)->lock)
2361{
2362	raw_lockdep_assert_held_rcu_node(rcu_get_root(rsp));
2363	WARN_ON_ONCE(!rcu_gp_in_progress(rsp));
2364	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
2365	raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2366	rcu_gp_kthread_wake(rsp);
2367}
2368
2369/*
2370 * Similar to rcu_report_qs_rdp(), for which it is a helper function.
2371 * Allows quiescent states for a group of CPUs to be reported at one go
2372 * to the specified rcu_node structure, though all the CPUs in the group
2373 * must be represented by the same rcu_node structure (which need not be a
2374 * leaf rcu_node structure, though it often will be).  The gps parameter
2375 * is the grace-period snapshot, which means that the quiescent states
2376 * are valid only if rnp->gpnum is equal to gps.  That structure's lock
2377 * must be held upon entry, and it is released before return.
 
 
 
 
2378 */
2379static void
2380rcu_report_qs_rnp(unsigned long mask, struct rcu_state *rsp,
2381		  struct rcu_node *rnp, unsigned long gps, unsigned long flags)
2382	__releases(rnp->lock)
2383{
2384	unsigned long oldmask = 0;
2385	struct rcu_node *rnp_c;
2386
2387	raw_lockdep_assert_held_rcu_node(rnp);
2388
2389	/* Walk up the rcu_node hierarchy. */
2390	for (;;) {
2391		if (!(rnp->qsmask & mask) || rnp->gpnum != gps) {
2392
2393			/*
2394			 * Our bit has already been cleared, or the
2395			 * relevant grace period is already over, so done.
2396			 */
2397			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2398			return;
2399		}
2400		WARN_ON_ONCE(oldmask); /* Any child must be all zeroed! */
2401		WARN_ON_ONCE(rnp->level != rcu_num_lvls - 1 &&
2402			     rcu_preempt_blocked_readers_cgp(rnp));
2403		rnp->qsmask &= ~mask;
2404		trace_rcu_quiescent_state_report(rsp->name, rnp->gpnum,
2405						 mask, rnp->qsmask, rnp->level,
2406						 rnp->grplo, rnp->grphi,
2407						 !!rnp->gp_tasks);
2408		if (rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
2409
2410			/* Other bits still set at this level, so done. */
2411			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2412			return;
2413		}
 
2414		mask = rnp->grpmask;
2415		if (rnp->parent == NULL) {
2416
2417			/* No more levels.  Exit loop holding root lock. */
2418
2419			break;
2420		}
2421		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2422		rnp_c = rnp;
2423		rnp = rnp->parent;
2424		raw_spin_lock_irqsave_rcu_node(rnp, flags);
2425		oldmask = rnp_c->qsmask;
2426	}
2427
2428	/*
2429	 * Get here if we are the last CPU to pass through a quiescent
2430	 * state for this grace period.  Invoke rcu_report_qs_rsp()
2431	 * to clean up and start the next grace period if one is needed.
2432	 */
2433	rcu_report_qs_rsp(rsp, flags); /* releases rnp->lock. */
2434}
2435
2436/*
2437 * Record a quiescent state for all tasks that were previously queued
2438 * on the specified rcu_node structure and that were blocking the current
2439 * RCU grace period.  The caller must hold the specified rnp->lock with
2440 * irqs disabled, and this lock is released upon return, but irqs remain
2441 * disabled.
2442 */
2443static void rcu_report_unblock_qs_rnp(struct rcu_state *rsp,
2444				      struct rcu_node *rnp, unsigned long flags)
2445	__releases(rnp->lock)
2446{
2447	unsigned long gps;
2448	unsigned long mask;
2449	struct rcu_node *rnp_p;
2450
2451	raw_lockdep_assert_held_rcu_node(rnp);
2452	if (rcu_state_p == &rcu_sched_state || rsp != rcu_state_p ||
2453	    rnp->qsmask != 0 || rcu_preempt_blocked_readers_cgp(rnp)) {
 
2454		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2455		return;  /* Still need more quiescent states! */
2456	}
2457
 
2458	rnp_p = rnp->parent;
2459	if (rnp_p == NULL) {
2460		/*
2461		 * Only one rcu_node structure in the tree, so don't
2462		 * try to report up to its nonexistent parent!
2463		 */
2464		rcu_report_qs_rsp(rsp, flags);
2465		return;
2466	}
2467
2468	/* Report up the rest of the hierarchy, tracking current ->gpnum. */
2469	gps = rnp->gpnum;
2470	mask = rnp->grpmask;
2471	raw_spin_unlock_rcu_node(rnp);	/* irqs remain disabled. */
2472	raw_spin_lock_rcu_node(rnp_p);	/* irqs already disabled. */
2473	rcu_report_qs_rnp(mask, rsp, rnp_p, gps, flags);
2474}
2475
2476/*
2477 * Record a quiescent state for the specified CPU to that CPU's rcu_data
2478 * structure.  This must be called from the specified CPU.
2479 */
2480static void
2481rcu_report_qs_rdp(int cpu, struct rcu_state *rsp, struct rcu_data *rdp)
2482{
2483	unsigned long flags;
2484	unsigned long mask;
2485	bool needwake;
 
2486	struct rcu_node *rnp;
2487
 
2488	rnp = rdp->mynode;
2489	raw_spin_lock_irqsave_rcu_node(rnp, flags);
2490	if (rdp->cpu_no_qs.b.norm || rdp->gpnum != rnp->gpnum ||
2491	    rnp->completed == rnp->gpnum || rdp->gpwrap) {
2492
2493		/*
2494		 * The grace period in which this quiescent state was
2495		 * recorded has ended, so don't report it upwards.
2496		 * We will instead need a new quiescent state that lies
2497		 * within the current grace period.
2498		 */
2499		rdp->cpu_no_qs.b.norm = true;	/* need qs for new gp. */
2500		rdp->rcu_qs_ctr_snap = __this_cpu_read(rcu_dynticks.rcu_qs_ctr);
2501		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2502		return;
2503	}
2504	mask = rdp->grpmask;
 
2505	if ((rnp->qsmask & mask) == 0) {
2506		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2507	} else {
2508		rdp->core_needs_qs = false;
2509
2510		/*
2511		 * This GP can't end until cpu checks in, so all of our
2512		 * callbacks can be processed during the next GP.
 
 
2513		 */
2514		needwake = rcu_accelerate_cbs(rsp, rnp, rdp);
 
 
 
 
 
 
 
 
2515
2516		rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
 
2517		/* ^^^ Released rnp->lock */
2518		if (needwake)
2519			rcu_gp_kthread_wake(rsp);
 
 
 
 
 
 
2520	}
2521}
2522
2523/*
2524 * Check to see if there is a new grace period of which this CPU
2525 * is not yet aware, and if so, set up local rcu_data state for it.
2526 * Otherwise, see if this CPU has just passed through its first
2527 * quiescent state for this grace period, and record that fact if so.
2528 */
2529static void
2530rcu_check_quiescent_state(struct rcu_state *rsp, struct rcu_data *rdp)
2531{
2532	/* Check for grace-period ends and beginnings. */
2533	note_gp_changes(rsp, rdp);
2534
2535	/*
2536	 * Does this CPU still need to do its part for current grace period?
2537	 * If no, return and let the other CPUs do their part as well.
2538	 */
2539	if (!rdp->core_needs_qs)
2540		return;
2541
2542	/*
2543	 * Was there a quiescent state since the beginning of the grace
2544	 * period? If no, then exit and wait for the next call.
2545	 */
2546	if (rdp->cpu_no_qs.b.norm)
2547		return;
2548
2549	/*
2550	 * Tell RCU we are done (but rcu_report_qs_rdp() will be the
2551	 * judge of that).
2552	 */
2553	rcu_report_qs_rdp(rdp->cpu, rsp, rdp);
2554}
2555
2556/*
2557 * Trace the fact that this CPU is going offline.
 
2558 */
2559static void rcu_cleanup_dying_cpu(struct rcu_state *rsp)
2560{
2561	RCU_TRACE(unsigned long mask;)
2562	RCU_TRACE(struct rcu_data *rdp = this_cpu_ptr(rsp->rda);)
2563	RCU_TRACE(struct rcu_node *rnp = rdp->mynode;)
2564
2565	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2566		return;
2567
2568	RCU_TRACE(mask = rdp->grpmask;)
2569	trace_rcu_grace_period(rsp->name,
2570			       rnp->gpnum + 1 - !!(rnp->qsmask & mask),
2571			       TPS("cpuofl"));
2572}
2573
2574/*
2575 * All CPUs for the specified rcu_node structure have gone offline,
2576 * and all tasks that were preempted within an RCU read-side critical
2577 * section while running on one of those CPUs have since exited their RCU
2578 * read-side critical section.  Some other CPU is reporting this fact with
2579 * the specified rcu_node structure's ->lock held and interrupts disabled.
2580 * This function therefore goes up the tree of rcu_node structures,
2581 * clearing the corresponding bits in the ->qsmaskinit fields.  Note that
2582 * the leaf rcu_node structure's ->qsmaskinit field has already been
2583 * updated
2584 *
2585 * This function does check that the specified rcu_node structure has
2586 * all CPUs offline and no blocked tasks, so it is OK to invoke it
2587 * prematurely.  That said, invoking it after the fact will cost you
2588 * a needless lock acquisition.  So once it has done its work, don't
2589 * invoke it again.
2590 */
2591static void rcu_cleanup_dead_rnp(struct rcu_node *rnp_leaf)
2592{
2593	long mask;
2594	struct rcu_node *rnp = rnp_leaf;
2595
2596	raw_lockdep_assert_held_rcu_node(rnp);
2597	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU) ||
2598	    rnp->qsmaskinit || rcu_preempt_has_tasks(rnp))
 
2599		return;
2600	for (;;) {
2601		mask = rnp->grpmask;
2602		rnp = rnp->parent;
2603		if (!rnp)
2604			break;
2605		raw_spin_lock_rcu_node(rnp); /* irqs already disabled. */
2606		rnp->qsmaskinit &= ~mask;
2607		rnp->qsmask &= ~mask;
 
2608		if (rnp->qsmaskinit) {
2609			raw_spin_unlock_rcu_node(rnp);
2610			/* irqs remain disabled. */
2611			return;
2612		}
2613		raw_spin_unlock_rcu_node(rnp); /* irqs remain disabled. */
2614	}
2615}
2616
2617/*
2618 * The CPU has been completely removed, and some other CPU is reporting
2619 * this fact from process context.  Do the remainder of the cleanup.
2620 * There can only be one CPU hotplug operation at a time, so no need for
2621 * explicit locking.
2622 */
2623static void rcu_cleanup_dead_cpu(int cpu, struct rcu_state *rsp)
2624{
2625	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
2626	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
2627
2628	if (!IS_ENABLED(CONFIG_HOTPLUG_CPU))
2629		return;
2630
 
2631	/* Adjust any no-longer-needed kthreads. */
2632	rcu_boost_kthread_setaffinity(rnp, -1);
 
 
 
2633}
2634
2635/*
2636 * Invoke any RCU callbacks that have made it to the end of their grace
2637 * period.  Thottle as specified by rdp->blimit.
2638 */
2639static void rcu_do_batch(struct rcu_state *rsp, struct rcu_data *rdp)
2640{
 
 
2641	unsigned long flags;
2642	struct rcu_head *rhp;
2643	struct rcu_cblist rcl = RCU_CBLIST_INITIALIZER(rcl);
2644	long bl, count;
 
2645
2646	/* If no callbacks are ready, just return. */
2647	if (!rcu_segcblist_ready_cbs(&rdp->cblist)) {
2648		trace_rcu_batch_start(rsp->name,
2649				      rcu_segcblist_n_lazy_cbs(&rdp->cblist),
2650				      rcu_segcblist_n_cbs(&rdp->cblist), 0);
2651		trace_rcu_batch_end(rsp->name, 0,
2652				    !rcu_segcblist_empty(&rdp->cblist),
2653				    need_resched(), is_idle_task(current),
2654				    rcu_is_callbacks_kthread());
2655		return;
2656	}
2657
2658	/*
2659	 * Extract the list of ready callbacks, disabling to prevent
2660	 * races with call_rcu() from interrupt handlers.  Leave the
2661	 * callback counts, as rcu_barrier() needs to be conservative.
2662	 */
2663	local_irq_save(flags);
2664	WARN_ON_ONCE(cpu_is_offline(smp_processor_id()));
2665	bl = rdp->blimit;
2666	trace_rcu_batch_start(rsp->name, rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 
 
 
 
 
 
 
 
 
2667			      rcu_segcblist_n_cbs(&rdp->cblist), bl);
2668	rcu_segcblist_extract_done_cbs(&rdp->cblist, &rcl);
2669	local_irq_restore(flags);
 
 
 
 
2670
2671	/* Invoke callbacks. */
 
2672	rhp = rcu_cblist_dequeue(&rcl);
 
2673	for (; rhp; rhp = rcu_cblist_dequeue(&rcl)) {
 
 
 
2674		debug_rcu_head_unqueue(rhp);
2675		if (__rcu_reclaim(rsp->name, rhp))
2676			rcu_cblist_dequeued_lazy(&rcl);
 
 
 
 
 
 
 
 
2677		/*
2678		 * Stop only if limit reached and CPU has something to do.
2679		 * Note: The rcl structure counts down from zero.
2680		 */
2681		if (-rcl.len >= bl &&
2682		    (need_resched() ||
2683		     (!is_idle_task(current) && !rcu_is_callbacks_kthread())))
2684			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2685	}
2686
2687	local_irq_save(flags);
2688	count = -rcl.len;
2689	trace_rcu_batch_end(rsp->name, count, !!rcl.head, need_resched(),
2690			    is_idle_task(current), rcu_is_callbacks_kthread());
2691
2692	/* Update counts and requeue any remaining callbacks. */
2693	rcu_segcblist_insert_done_cbs(&rdp->cblist, &rcl);
2694	smp_mb(); /* List handling before counting for rcu_barrier(). */
2695	rcu_segcblist_insert_count(&rdp->cblist, &rcl);
2696
2697	/* Reinstate batch limit if we have worked down the excess. */
2698	count = rcu_segcblist_n_cbs(&rdp->cblist);
2699	if (rdp->blimit == LONG_MAX && count <= qlowmark)
2700		rdp->blimit = blimit;
2701
2702	/* Reset ->qlen_last_fqs_check trigger if enough CBs have drained. */
2703	if (count == 0 && rdp->qlen_last_fqs_check != 0) {
2704		rdp->qlen_last_fqs_check = 0;
2705		rdp->n_force_qs_snap = rsp->n_force_qs;
2706	} else if (count < rdp->qlen_last_fqs_check - qhimark)
2707		rdp->qlen_last_fqs_check = count;
2708
2709	/*
2710	 * The following usually indicates a double call_rcu().  To track
2711	 * this down, try building with CONFIG_DEBUG_OBJECTS_RCU_HEAD=y.
2712	 */
2713	WARN_ON_ONCE(rcu_segcblist_empty(&rdp->cblist) != (count == 0));
 
 
 
 
 
2714
2715	local_irq_restore(flags);
2716
2717	/* Re-invoke RCU core processing if there are callbacks remaining. */
2718	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2719		invoke_rcu_core();
2720}
2721
2722/*
2723 * Check to see if this CPU is in a non-context-switch quiescent state
2724 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
2725 * Also schedule RCU core processing.
2726 *
2727 * This function must be called from hardirq context.  It is normally
2728 * invoked from the scheduling-clock interrupt.
2729 */
2730void rcu_check_callbacks(int user)
2731{
 
 
 
 
 
 
 
2732	trace_rcu_utilization(TPS("Start scheduler-tick"));
2733	increment_cpu_stall_ticks();
2734	if (user || rcu_is_cpu_rrupt_from_idle()) {
2735
2736		/*
2737		 * Get here if this CPU took its interrupt from user
2738		 * mode or from the idle loop, and if this is not a
2739		 * nested interrupt.  In this case, the CPU is in
2740		 * a quiescent state, so note it.
2741		 *
2742		 * No memory barrier is required here because both
2743		 * rcu_sched_qs() and rcu_bh_qs() reference only CPU-local
2744		 * variables that other CPUs neither access nor modify,
2745		 * at least not while the corresponding CPU is online.
2746		 */
2747
2748		rcu_sched_qs();
2749		rcu_bh_qs();
2750
2751	} else if (!in_softirq()) {
2752
2753		/*
2754		 * Get here if this CPU did not take its interrupt from
2755		 * softirq, in other words, if it is not interrupting
2756		 * a rcu_bh read-side critical section.  This is an _bh
2757		 * critical section, so note it.
2758		 */
2759
2760		rcu_bh_qs();
2761	}
2762	rcu_preempt_check_callbacks();
2763	if (rcu_pending())
2764		invoke_rcu_core();
2765	if (user)
2766		rcu_note_voluntary_context_switch(current);
 
 
2767	trace_rcu_utilization(TPS("End scheduler-tick"));
2768}
2769
2770/*
2771 * Scan the leaf rcu_node structures, processing dyntick state for any that
2772 * have not yet encountered a quiescent state, using the function specified.
2773 * Also initiate boosting for any threads blocked on the root rcu_node.
2774 *
2775 * The caller must have suppressed start of new grace periods.
2776 */
2777static void force_qs_rnp(struct rcu_state *rsp, int (*f)(struct rcu_data *rsp))
2778{
2779	int cpu;
2780	unsigned long flags;
2781	unsigned long mask;
 
2782	struct rcu_node *rnp;
2783
2784	rcu_for_each_leaf_node(rsp, rnp) {
2785		cond_resched_rcu_qs();
 
 
2786		mask = 0;
2787		raw_spin_lock_irqsave_rcu_node(rnp, flags);
 
2788		if (rnp->qsmask == 0) {
2789			if (rcu_state_p == &rcu_sched_state ||
2790			    rsp != rcu_state_p ||
2791			    rcu_preempt_blocked_readers_cgp(rnp)) {
2792				/*
2793				 * No point in scanning bits because they
2794				 * are all zero.  But we might need to
2795				 * priority-boost blocked readers.
2796				 */
2797				rcu_initiate_boost(rnp, flags);
2798				/* rcu_initiate_boost() releases rnp->lock */
2799				continue;
2800			}
2801			if (rnp->parent &&
2802			    (rnp->parent->qsmask & rnp->grpmask)) {
2803				/*
2804				 * Race between grace-period
2805				 * initialization and task exiting RCU
2806				 * read-side critical section: Report.
2807				 */
2808				rcu_report_unblock_qs_rnp(rsp, rnp, flags);
2809				/* rcu_report_unblock_qs_rnp() rlses ->lock */
2810				continue;
2811			}
2812		}
2813		for_each_leaf_node_possible_cpu(rnp, cpu) {
2814			unsigned long bit = leaf_node_cpu_bit(rnp, cpu);
2815			if ((rnp->qsmask & bit) != 0) {
2816				if (f(per_cpu_ptr(rsp->rda, cpu)))
2817					mask |= bit;
2818			}
2819		}
2820		if (mask != 0) {
2821			/* Idle/offline CPUs, report (releases rnp->lock. */
2822			rcu_report_qs_rnp(mask, rsp, rnp, rnp->gpnum, flags);
2823		} else {
2824			/* Nothing to do here, so just drop the lock. */
2825			raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
2826		}
2827	}
2828}
2829
2830/*
2831 * Force quiescent states on reluctant CPUs, and also detect which
2832 * CPUs are in dyntick-idle mode.
2833 */
2834static void force_quiescent_state(struct rcu_state *rsp)
2835{
2836	unsigned long flags;
2837	bool ret;
2838	struct rcu_node *rnp;
2839	struct rcu_node *rnp_old = NULL;
2840
2841	/* Funnel through hierarchy to reduce memory contention. */
2842	rnp = __this_cpu_read(rsp->rda->mynode);
2843	for (; rnp != NULL; rnp = rnp->parent) {
2844		ret = (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) ||
2845		      !raw_spin_trylock(&rnp->fqslock);
2846		if (rnp_old != NULL)
2847			raw_spin_unlock(&rnp_old->fqslock);
2848		if (ret)
2849			return;
2850		rnp_old = rnp;
2851	}
2852	/* rnp_old == rcu_get_root(rsp), rnp == NULL. */
2853
2854	/* Reached the root of the rcu_node tree, acquire lock. */
2855	raw_spin_lock_irqsave_rcu_node(rnp_old, flags);
2856	raw_spin_unlock(&rnp_old->fqslock);
2857	if (READ_ONCE(rsp->gp_flags) & RCU_GP_FLAG_FQS) {
2858		raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2859		return;  /* Someone beat us to it. */
2860	}
2861	WRITE_ONCE(rsp->gp_flags, READ_ONCE(rsp->gp_flags) | RCU_GP_FLAG_FQS);
 
2862	raw_spin_unlock_irqrestore_rcu_node(rnp_old, flags);
2863	rcu_gp_kthread_wake(rsp);
 
 
 
 
 
 
 
 
 
2864}
2865
2866/*
2867 * This does the RCU core processing work for the specified rcu_state
2868 * and rcu_data structures.  This may be called only from the CPU to
2869 * whom the rdp belongs.
2870 */
2871static void
2872__rcu_process_callbacks(struct rcu_state *rsp)
2873{
2874	unsigned long flags;
2875	bool needwake;
2876	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2877
 
 
 
2878	WARN_ON_ONCE(!rdp->beenonline);
2879
 
 
 
 
 
 
 
 
2880	/* Update RCU state based on any recent quiescent states. */
2881	rcu_check_quiescent_state(rsp, rdp);
2882
2883	/* Does this CPU require a not-yet-started grace period? */
2884	local_irq_save(flags);
2885	if (cpu_needs_another_gp(rsp, rdp)) {
2886		raw_spin_lock_rcu_node(rcu_get_root(rsp)); /* irqs disabled. */
2887		needwake = rcu_start_gp(rsp);
2888		raw_spin_unlock_irqrestore_rcu_node(rcu_get_root(rsp), flags);
2889		if (needwake)
2890			rcu_gp_kthread_wake(rsp);
2891	} else {
2892		local_irq_restore(flags);
2893	}
2894
 
 
2895	/* If there are callbacks ready, invoke them. */
2896	if (rcu_segcblist_ready_cbs(&rdp->cblist))
2897		invoke_rcu_callbacks(rsp, rdp);
 
 
 
 
 
2898
2899	/* Do any needed deferred wakeups of rcuo kthreads. */
2900	do_nocb_deferred_wakeup(rdp);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2901}
2902
2903/*
2904 * Do RCU core processing for the current CPU.
2905 */
2906static __latent_entropy void rcu_process_callbacks(struct softirq_action *unused)
 
 
 
 
 
 
 
 
 
 
2907{
2908	struct rcu_state *rsp;
 
2909
2910	if (cpu_is_offline(smp_processor_id()))
2911		return;
2912	trace_rcu_utilization(TPS("Start RCU core"));
2913	for_each_rcu_flavor(rsp)
2914		__rcu_process_callbacks(rsp);
2915	trace_rcu_utilization(TPS("End RCU core"));
2916}
2917
2918/*
2919 * Schedule RCU callback invocation.  If the specified type of RCU
2920 * does not support RCU priority boosting, just do a direct call,
2921 * otherwise wake up the per-CPU kernel kthread.  Note that because we
2922 * are running on the current CPU with softirqs disabled, the
2923 * rcu_cpu_kthread_task cannot disappear out from under us.
2924 */
2925static void invoke_rcu_callbacks(struct rcu_state *rsp, struct rcu_data *rdp)
2926{
2927	if (unlikely(!READ_ONCE(rcu_scheduler_fully_active)))
2928		return;
2929	if (likely(!rsp->boost)) {
2930		rcu_do_batch(rsp, rdp);
2931		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2932	}
2933	invoke_rcu_callbacks_kthread();
 
 
 
 
 
2934}
2935
2936static void invoke_rcu_core(void)
 
 
 
 
 
 
 
 
 
 
 
 
2937{
2938	if (cpu_online(smp_processor_id()))
2939		raise_softirq(RCU_SOFTIRQ);
 
 
 
 
 
 
 
2940}
2941
2942/*
2943 * Handle any core-RCU processing required by a call_rcu() invocation.
2944 */
2945static void __call_rcu_core(struct rcu_state *rsp, struct rcu_data *rdp,
2946			    struct rcu_head *head, unsigned long flags)
2947{
2948	bool needwake;
2949
2950	/*
2951	 * If called from an extended quiescent state, invoke the RCU
2952	 * core in order to force a re-evaluation of RCU's idleness.
2953	 */
2954	if (!rcu_is_watching())
2955		invoke_rcu_core();
2956
2957	/* If interrupts were disabled or CPU offline, don't invoke RCU core. */
2958	if (irqs_disabled_flags(flags) || cpu_is_offline(smp_processor_id()))
2959		return;
2960
2961	/*
2962	 * Force the grace period if too many callbacks or too long waiting.
2963	 * Enforce hysteresis, and don't invoke force_quiescent_state()
2964	 * if some other CPU has recently done so.  Also, don't bother
2965	 * invoking force_quiescent_state() if the newly enqueued callback
2966	 * is the only one waiting for a grace period to complete.
2967	 */
2968	if (unlikely(rcu_segcblist_n_cbs(&rdp->cblist) >
2969		     rdp->qlen_last_fqs_check + qhimark)) {
2970
2971		/* Are we ignoring a completed grace period? */
2972		note_gp_changes(rsp, rdp);
2973
2974		/* Start a new grace period if one not already started. */
2975		if (!rcu_gp_in_progress(rsp)) {
2976			struct rcu_node *rnp_root = rcu_get_root(rsp);
2977
2978			raw_spin_lock_rcu_node(rnp_root);
2979			needwake = rcu_start_gp(rsp);
2980			raw_spin_unlock_rcu_node(rnp_root);
2981			if (needwake)
2982				rcu_gp_kthread_wake(rsp);
2983		} else {
2984			/* Give the grace period a kick. */
2985			rdp->blimit = LONG_MAX;
2986			if (rsp->n_force_qs == rdp->n_force_qs_snap &&
2987			    rcu_segcblist_first_pend_cb(&rdp->cblist) != head)
2988				force_quiescent_state(rsp);
2989			rdp->n_force_qs_snap = rsp->n_force_qs;
2990			rdp->qlen_last_fqs_check = rcu_segcblist_n_cbs(&rdp->cblist);
2991		}
2992	}
2993}
2994
2995/*
2996 * RCU callback function to leak a callback.
2997 */
2998static void rcu_leak_callback(struct rcu_head *rhp)
2999{
3000}
3001
3002/*
3003 * Helper function for call_rcu() and friends.  The cpu argument will
3004 * normally be -1, indicating "currently running CPU".  It may specify
3005 * a CPU only if that CPU is a no-CBs CPU.  Currently, only _rcu_barrier()
3006 * is expected to specify a CPU.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3007 */
 
 
 
 
 
 
 
 
 
 
 
 
 
3008static void
3009__call_rcu(struct rcu_head *head, rcu_callback_t func,
3010	   struct rcu_state *rsp, int cpu, bool lazy)
3011{
 
3012	unsigned long flags;
3013	struct rcu_data *rdp;
 
3014
3015	/* Misaligned rcu_head! */
3016	WARN_ON_ONCE((unsigned long)head & (sizeof(void *) - 1));
3017
3018	if (debug_rcu_head_queue(head)) {
3019		/*
3020		 * Probable double call_rcu(), so leak the callback.
3021		 * Use rcu:rcu_callback trace event to find the previous
3022		 * time callback was passed to __call_rcu().
3023		 */
3024		WARN_ONCE(1, "__call_rcu(): Double-freed CB %p->%pF()!!!\n",
3025			  head, head->func);
 
 
3026		WRITE_ONCE(head->func, rcu_leak_callback);
3027		return;
3028	}
3029	head->func = func;
3030	head->next = NULL;
 
3031	local_irq_save(flags);
3032	rdp = this_cpu_ptr(rsp->rda);
3033
3034	/* Add the callback to our list. */
3035	if (unlikely(!rcu_segcblist_is_enabled(&rdp->cblist)) || cpu != -1) {
3036		int offline;
3037
3038		if (cpu != -1)
3039			rdp = per_cpu_ptr(rsp->rda, cpu);
3040		if (likely(rdp->mynode)) {
3041			/* Post-boot, so this should be for a no-CBs CPU. */
3042			offline = !__call_rcu_nocb(rdp, head, lazy, flags);
3043			WARN_ON_ONCE(offline);
3044			/* Offline CPU, _call_rcu() illegal, leak callback.  */
3045			local_irq_restore(flags);
3046			return;
3047		}
3048		/*
3049		 * Very early boot, before rcu_init().  Initialize if needed
3050		 * and then drop through to queue the callback.
3051		 */
3052		BUG_ON(cpu != -1);
3053		WARN_ON_ONCE(!rcu_is_watching());
 
 
3054		if (rcu_segcblist_empty(&rdp->cblist))
3055			rcu_segcblist_init(&rdp->cblist);
3056	}
3057	rcu_segcblist_enqueue(&rdp->cblist, head, lazy);
3058	if (!lazy)
3059		rcu_idle_count_callbacks_posted();
3060
3061	if (__is_kfree_rcu_offset((unsigned long)func))
3062		trace_rcu_kfree_callback(rsp->name, head, (unsigned long)func,
3063					 rcu_segcblist_n_lazy_cbs(&rdp->cblist),
 
 
3064					 rcu_segcblist_n_cbs(&rdp->cblist));
3065	else
3066		trace_rcu_callback(rsp->name, head,
3067				   rcu_segcblist_n_lazy_cbs(&rdp->cblist),
3068				   rcu_segcblist_n_cbs(&rdp->cblist));
3069
 
 
3070	/* Go handle any RCU core processing required. */
3071	__call_rcu_core(rsp, rdp, head, flags);
3072	local_irq_restore(flags);
 
 
 
 
3073}
3074
 
3075/**
3076 * call_rcu_sched() - Queue an RCU for invocation after sched grace period.
 
 
 
3077 * @head: structure to be used for queueing the RCU updates.
3078 * @func: actual callback function to be invoked after the grace period
3079 *
3080 * The callback function will be invoked some time after a full grace
3081 * period elapses, in other words after all currently executing RCU
3082 * read-side critical sections have completed. call_rcu_sched() assumes
3083 * that the read-side critical sections end on enabling of preemption
3084 * or on voluntary preemption.
3085 * RCU read-side critical sections are delimited by:
3086 *
3087 * - rcu_read_lock_sched() and rcu_read_unlock_sched(), OR
3088 * - anything that disables preemption.
3089 *
3090 *  These may be nested.
3091 *
3092 * See the description of call_rcu() for more detailed information on
3093 * memory ordering guarantees.
3094 */
3095void call_rcu_sched(struct rcu_head *head, rcu_callback_t func)
3096{
3097	__call_rcu(head, func, &rcu_sched_state, -1, 0);
3098}
3099EXPORT_SYMBOL_GPL(call_rcu_sched);
 
3100
3101/**
3102 * call_rcu_bh() - Queue an RCU for invocation after a quicker grace period.
 
 
 
 
3103 * @head: structure to be used for queueing the RCU updates.
3104 * @func: actual callback function to be invoked after the grace period
3105 *
3106 * The callback function will be invoked some time after a full grace
3107 * period elapses, in other words after all currently executing RCU
3108 * read-side critical sections have completed. call_rcu_bh() assumes
3109 * that the read-side critical sections end on completion of a softirq
3110 * handler. This means that read-side critical sections in process
3111 * context must not be interrupted by softirqs. This interface is to be
3112 * used when most of the read-side critical sections are in softirq context.
3113 * RCU read-side critical sections are delimited by:
3114 *
3115 * - rcu_read_lock() and  rcu_read_unlock(), if in interrupt context, OR
3116 * - rcu_read_lock_bh() and rcu_read_unlock_bh(), if in process context.
3117 *
3118 * These may be nested.
3119 *
3120 * See the description of call_rcu() for more detailed information on
3121 * memory ordering guarantees.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3122 */
3123void call_rcu_bh(struct rcu_head *head, rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3124{
3125	__call_rcu(head, func, &rcu_bh_state, -1, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3126}
3127EXPORT_SYMBOL_GPL(call_rcu_bh);
3128
3129/*
3130 * Queue an RCU callback for lazy invocation after a grace period.
3131 * This will likely be later named something like "call_rcu_lazy()",
3132 * but this change will require some way of tagging the lazy RCU
3133 * callbacks in the list of pending callbacks. Until then, this
3134 * function may only be called from __kfree_rcu().
3135 */
3136void kfree_call_rcu(struct rcu_head *head,
3137		    rcu_callback_t func)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3138{
3139	__call_rcu(head, func, rcu_state_p, -1, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3140}
3141EXPORT_SYMBOL_GPL(kfree_call_rcu);
3142
3143/*
3144 * Because a context switch is a grace period for RCU-sched and RCU-bh,
3145 * any blocking grace-period wait automatically implies a grace period
3146 * if there is only one CPU online at any point time during execution
3147 * of either synchronize_sched() or synchronize_rcu_bh().  It is OK to
3148 * occasionally incorrectly indicate that there are multiple CPUs online
3149 * when there was in fact only one the whole time, as this just adds
3150 * some overhead: RCU still operates correctly.
 
 
 
3151 */
3152static inline int rcu_blocking_is_gp(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3153{
3154	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3155
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3156	might_sleep();  /* Check for RCU read-side critical section. */
3157	preempt_disable();
3158	ret = num_online_cpus() <= 1;
3159	preempt_enable();
3160	return ret;
3161}
3162
3163/**
3164 * synchronize_sched - wait until an rcu-sched grace period has elapsed.
3165 *
3166 * Control will return to the caller some time after a full rcu-sched
3167 * grace period has elapsed, in other words after all currently executing
3168 * rcu-sched read-side critical sections have completed.   These read-side
3169 * critical sections are delimited by rcu_read_lock_sched() and
3170 * rcu_read_unlock_sched(), and may be nested.  Note that preempt_disable(),
3171 * local_irq_disable(), and so on may be used in place of
3172 * rcu_read_lock_sched().
3173 *
3174 * This means that all preempt_disable code sequences, including NMI and
3175 * non-threaded hardware-interrupt handlers, in progress on entry will
3176 * have completed before this primitive returns.  However, this does not
3177 * guarantee that softirq handlers will have completed, since in some
3178 * kernels, these handlers can run in process context, and can block.
3179 *
3180 * Note that this guarantee implies further memory-ordering guarantees.
3181 * On systems with more than one CPU, when synchronize_sched() returns,
3182 * each CPU is guaranteed to have executed a full memory barrier since the
3183 * end of its last RCU-sched read-side critical section whose beginning
3184 * preceded the call to synchronize_sched().  In addition, each CPU having
3185 * an RCU read-side critical section that extends beyond the return from
3186 * synchronize_sched() is guaranteed to have executed a full memory barrier
3187 * after the beginning of synchronize_sched() and before the beginning of
3188 * that RCU read-side critical section.  Note that these guarantees include
3189 * CPUs that are offline, idle, or executing in user mode, as well as CPUs
3190 * that are executing in the kernel.
3191 *
3192 * Furthermore, if CPU A invoked synchronize_sched(), which returned
3193 * to its caller on CPU B, then both CPU A and CPU B are guaranteed
3194 * to have executed a full memory barrier during the execution of
3195 * synchronize_sched() -- even if CPU A and CPU B are the same CPU (but
3196 * again only if the system has more than one CPU).
 
 
 
3197 */
3198void synchronize_sched(void)
3199{
 
 
 
3200	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3201			 lock_is_held(&rcu_lock_map) ||
3202			 lock_is_held(&rcu_sched_lock_map),
3203			 "Illegal synchronize_sched() in RCU-sched read-side critical section");
3204	if (rcu_blocking_is_gp())
 
 
 
 
3205		return;
3206	if (rcu_gp_is_expedited())
3207		synchronize_sched_expedited();
3208	else
3209		wait_rcu_gp(call_rcu_sched);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3210}
3211EXPORT_SYMBOL_GPL(synchronize_sched);
3212
3213/**
3214 * synchronize_rcu_bh - wait until an rcu_bh grace period has elapsed.
 
3215 *
3216 * Control will return to the caller some time after a full rcu_bh grace
3217 * period has elapsed, in other words after all currently executing rcu_bh
3218 * read-side critical sections have completed.  RCU read-side critical
3219 * sections are delimited by rcu_read_lock_bh() and rcu_read_unlock_bh(),
3220 * and may be nested.
3221 *
3222 * See the description of synchronize_sched() for more detailed information
3223 * on memory ordering guarantees.
3224 */
3225void synchronize_rcu_bh(void)
3226{
3227	RCU_LOCKDEP_WARN(lock_is_held(&rcu_bh_lock_map) ||
3228			 lock_is_held(&rcu_lock_map) ||
3229			 lock_is_held(&rcu_sched_lock_map),
3230			 "Illegal synchronize_rcu_bh() in RCU-bh read-side critical section");
3231	if (rcu_blocking_is_gp())
3232		return;
3233	if (rcu_gp_is_expedited())
3234		synchronize_rcu_bh_expedited();
3235	else
3236		wait_rcu_gp(call_rcu_bh);
3237}
3238EXPORT_SYMBOL_GPL(synchronize_rcu_bh);
3239
3240/**
3241 * get_state_synchronize_rcu - Snapshot current RCU state
3242 *
3243 * Returns a cookie that is used by a later call to cond_synchronize_rcu()
3244 * to determine whether or not a full grace period has elapsed in the
3245 * meantime.
3246 */
3247unsigned long get_state_synchronize_rcu(void)
3248{
3249	/*
3250	 * Any prior manipulation of RCU-protected data must happen
3251	 * before the load from ->gpnum.
3252	 */
3253	smp_mb();  /* ^^^ */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3254
3255	/*
3256	 * Make sure this load happens before the purportedly
3257	 * time-consuming work between get_state_synchronize_rcu()
3258	 * and cond_synchronize_rcu().
3259	 */
3260	return smp_load_acquire(&rcu_state_p->gpnum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3261}
3262EXPORT_SYMBOL_GPL(get_state_synchronize_rcu);
3263
3264/**
3265 * cond_synchronize_rcu - Conditionally wait for an RCU grace period
3266 *
3267 * @oldstate: return value from earlier call to get_state_synchronize_rcu()
 
 
 
 
3268 *
3269 * If a full RCU grace period has elapsed since the earlier call to
3270 * get_state_synchronize_rcu(), just return.  Otherwise, invoke
3271 * synchronize_rcu() to wait for a full grace period.
3272 *
3273 * Yes, this function does not take counter wrap into account.  But
3274 * counter wrap is harmless.  If the counter wraps, we have waited for
3275 * more than 2 billion grace periods (and way more on a 64-bit system!),
3276 * so waiting for one additional grace period should be just fine.
3277 */
3278void cond_synchronize_rcu(unsigned long oldstate)
3279{
3280	unsigned long newstate;
3281
3282	/*
3283	 * Ensure that this load happens before any RCU-destructive
3284	 * actions the caller might carry out after we return.
3285	 */
3286	newstate = smp_load_acquire(&rcu_state_p->completed);
3287	if (ULONG_CMP_GE(oldstate, newstate))
3288		synchronize_rcu();
3289}
3290EXPORT_SYMBOL_GPL(cond_synchronize_rcu);
3291
3292/**
3293 * get_state_synchronize_sched - Snapshot current RCU-sched state
 
 
 
 
 
 
 
 
3294 *
3295 * Returns a cookie that is used by a later call to cond_synchronize_sched()
3296 * to determine whether or not a full grace period has elapsed in the
3297 * meantime.
3298 */
3299unsigned long get_state_synchronize_sched(void)
3300{
3301	/*
3302	 * Any prior manipulation of RCU-protected data must happen
3303	 * before the load from ->gpnum.
3304	 */
3305	smp_mb();  /* ^^^ */
3306
3307	/*
3308	 * Make sure this load happens before the purportedly
3309	 * time-consuming work between get_state_synchronize_sched()
3310	 * and cond_synchronize_sched().
3311	 */
3312	return smp_load_acquire(&rcu_sched_state.gpnum);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3313}
3314EXPORT_SYMBOL_GPL(get_state_synchronize_sched);
3315
3316/**
3317 * cond_synchronize_sched - Conditionally wait for an RCU-sched grace period
 
3318 *
3319 * @oldstate: return value from earlier call to get_state_synchronize_sched()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3320 *
3321 * If a full RCU-sched grace period has elapsed since the earlier call to
3322 * get_state_synchronize_sched(), just return.  Otherwise, invoke
3323 * synchronize_sched() to wait for a full grace period.
3324 *
3325 * Yes, this function does not take counter wrap into account.  But
3326 * counter wrap is harmless.  If the counter wraps, we have waited for
3327 * more than 2 billion grace periods (and way more on a 64-bit system!),
3328 * so waiting for one additional grace period should be just fine.
 
 
 
 
 
3329 */
3330void cond_synchronize_sched(unsigned long oldstate)
3331{
3332	unsigned long newstate;
 
 
 
3333
3334	/*
3335	 * Ensure that this load happens before any RCU-destructive
3336	 * actions the caller might carry out after we return.
3337	 */
3338	newstate = smp_load_acquire(&rcu_sched_state.completed);
3339	if (ULONG_CMP_GE(oldstate, newstate))
3340		synchronize_sched();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3341}
3342EXPORT_SYMBOL_GPL(cond_synchronize_sched);
3343
3344/*
3345 * Check to see if there is any immediate RCU-related work to be done
3346 * by the current CPU, for the specified type of RCU, returning 1 if so.
3347 * The checks are in order of increasing expense: checks that can be
3348 * carried out against CPU-local state are performed first.  However,
3349 * we must check for CPU stalls first, else we might not get a chance.
3350 */
3351static int __rcu_pending(struct rcu_state *rsp, struct rcu_data *rdp)
3352{
 
 
3353	struct rcu_node *rnp = rdp->mynode;
3354
 
 
3355	/* Check for CPU stalls, if enabled. */
3356	check_cpu_stall(rsp, rdp);
3357
3358	/* Is this CPU a NO_HZ_FULL CPU that should ignore RCU? */
3359	if (rcu_nohz_full_cpu(rsp))
 
 
 
 
3360		return 0;
3361
3362	/* Is the RCU core waiting for a quiescent state from this CPU? */
3363	if (rdp->core_needs_qs && !rdp->cpu_no_qs.b.norm)
 
3364		return 1;
3365
3366	/* Does this CPU have callbacks ready to invoke? */
3367	if (rcu_segcblist_ready_cbs(&rdp->cblist))
 
3368		return 1;
3369
3370	/* Has RCU gone idle with this CPU needing another grace period? */
3371	if (cpu_needs_another_gp(rsp, rdp))
3372		return 1;
3373
3374	/* Has another RCU grace period completed?  */
3375	if (READ_ONCE(rnp->completed) != rdp->completed) /* outside lock */
3376		return 1;
3377
3378	/* Has a new RCU grace period started? */
3379	if (READ_ONCE(rnp->gpnum) != rdp->gpnum ||
3380	    unlikely(READ_ONCE(rdp->gpwrap))) /* outside lock */
3381		return 1;
3382
3383	/* Does this CPU need a deferred NOCB wakeup? */
3384	if (rcu_nocb_need_deferred_wakeup(rdp))
3385		return 1;
3386
3387	/* nothing to do */
3388	return 0;
3389}
3390
3391/*
3392 * Check to see if there is any immediate RCU-related work to be done
3393 * by the current CPU, returning 1 if so.  This function is part of the
3394 * RCU implementation; it is -not- an exported member of the RCU API.
3395 */
3396static int rcu_pending(void)
3397{
3398	struct rcu_state *rsp;
3399
3400	for_each_rcu_flavor(rsp)
3401		if (__rcu_pending(rsp, this_cpu_ptr(rsp->rda)))
3402			return 1;
3403	return 0;
3404}
3405
3406/*
3407 * Return true if the specified CPU has any callback.  If all_lazy is
3408 * non-NULL, store an indication of whether all callbacks are lazy.
3409 * (If there are no callbacks, all of them are deemed to be lazy.)
 
 
 
 
 
3410 */
3411static bool __maybe_unused rcu_cpu_has_callbacks(bool *all_lazy)
3412{
3413	bool al = true;
3414	bool hc = false;
3415	struct rcu_data *rdp;
3416	struct rcu_state *rsp;
3417
3418	for_each_rcu_flavor(rsp) {
3419		rdp = this_cpu_ptr(rsp->rda);
3420		if (rcu_segcblist_empty(&rdp->cblist))
3421			continue;
3422		hc = true;
3423		if (rcu_segcblist_n_nonlazy_cbs(&rdp->cblist) || !all_lazy) {
3424			al = false;
3425			break;
3426		}
3427	}
3428	if (all_lazy)
3429		*all_lazy = al;
3430	return hc;
3431}
3432
3433/*
3434 * Helper function for _rcu_barrier() tracing.  If tracing is disabled,
3435 * the compiler is expected to optimize this away.
3436 */
3437static void _rcu_barrier_trace(struct rcu_state *rsp, const char *s,
3438			       int cpu, unsigned long done)
3439{
3440	trace_rcu_barrier(rsp->name, s, cpu,
3441			  atomic_read(&rsp->barrier_cpu_count), done);
3442}
 
3443
3444/*
3445 * RCU callback function for _rcu_barrier().  If we are last, wake
3446 * up the task executing _rcu_barrier().
3447 */
3448static void rcu_barrier_callback(struct rcu_head *rhp)
3449{
3450	struct rcu_data *rdp = container_of(rhp, struct rcu_data, barrier_head);
3451	struct rcu_state *rsp = rdp->rsp;
3452
3453	if (atomic_dec_and_test(&rsp->barrier_cpu_count)) {
3454		_rcu_barrier_trace(rsp, TPS("LastCB"), -1,
3455				   rsp->barrier_sequence);
3456		complete(&rsp->barrier_completion);
 
 
 
 
3457	} else {
3458		_rcu_barrier_trace(rsp, TPS("CB"), -1, rsp->barrier_sequence);
 
3459	}
 
 
 
 
3460}
3461
3462/*
3463 * Called with preemption disabled, and from cross-cpu IRQ context.
3464 */
3465static void rcu_barrier_func(void *type)
3466{
3467	struct rcu_state *rsp = type;
3468	struct rcu_data *rdp = raw_cpu_ptr(rsp->rda);
3469
3470	_rcu_barrier_trace(rsp, TPS("IRQ"), -1, rsp->barrier_sequence);
3471	rdp->barrier_head.func = rcu_barrier_callback;
3472	debug_rcu_head_queue(&rdp->barrier_head);
3473	if (rcu_segcblist_entrain(&rdp->cblist, &rdp->barrier_head, 0)) {
3474		atomic_inc(&rsp->barrier_cpu_count);
3475	} else {
3476		debug_rcu_head_unqueue(&rdp->barrier_head);
3477		_rcu_barrier_trace(rsp, TPS("IRQNQ"), -1,
3478				   rsp->barrier_sequence);
3479	}
3480}
3481
3482/*
3483 * Orchestrate the specified type of RCU barrier, waiting for all
3484 * RCU callbacks of the specified type to complete.
 
 
 
 
3485 */
3486static void _rcu_barrier(struct rcu_state *rsp)
3487{
3488	int cpu;
 
 
3489	struct rcu_data *rdp;
3490	unsigned long s = rcu_seq_snap(&rsp->barrier_sequence);
3491
3492	_rcu_barrier_trace(rsp, TPS("Begin"), -1, s);
3493
3494	/* Take mutex to serialize concurrent rcu_barrier() requests. */
3495	mutex_lock(&rsp->barrier_mutex);
3496
3497	/* Did someone else do our work for us? */
3498	if (rcu_seq_done(&rsp->barrier_sequence, s)) {
3499		_rcu_barrier_trace(rsp, TPS("EarlyExit"), -1,
3500				   rsp->barrier_sequence);
3501		smp_mb(); /* caller's subsequent code after above check. */
3502		mutex_unlock(&rsp->barrier_mutex);
3503		return;
3504	}
3505
3506	/* Mark the start of the barrier operation. */
3507	rcu_seq_start(&rsp->barrier_sequence);
3508	_rcu_barrier_trace(rsp, TPS("Inc1"), -1, rsp->barrier_sequence);
 
 
3509
3510	/*
3511	 * Initialize the count to one rather than to zero in order to
3512	 * avoid a too-soon return to zero in case of a short grace period
3513	 * (or preemption of this task).  Exclude CPU-hotplug operations
3514	 * to ensure that no offline CPU has callbacks queued.
3515	 */
3516	init_completion(&rsp->barrier_completion);
3517	atomic_set(&rsp->barrier_cpu_count, 1);
3518	get_online_cpus();
 
3519
3520	/*
3521	 * Force each CPU with callbacks to register a new callback.
3522	 * When that callback is invoked, we will know that all of the
3523	 * corresponding CPU's preceding callbacks have been invoked.
3524	 */
3525	for_each_possible_cpu(cpu) {
3526		if (!cpu_online(cpu) && !rcu_is_nocb_cpu(cpu))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3527			continue;
3528		rdp = per_cpu_ptr(rsp->rda, cpu);
3529		if (rcu_is_nocb_cpu(cpu)) {
3530			if (!rcu_nocb_cpu_needs_barrier(rsp, cpu)) {
3531				_rcu_barrier_trace(rsp, TPS("OfflineNoCB"), cpu,
3532						   rsp->barrier_sequence);
3533			} else {
3534				_rcu_barrier_trace(rsp, TPS("OnlineNoCB"), cpu,
3535						   rsp->barrier_sequence);
3536				smp_mb__before_atomic();
3537				atomic_inc(&rsp->barrier_cpu_count);
3538				__call_rcu(&rdp->barrier_head,
3539					   rcu_barrier_callback, rsp, cpu, 0);
3540			}
3541		} else if (rcu_segcblist_n_cbs(&rdp->cblist)) {
3542			_rcu_barrier_trace(rsp, TPS("OnlineQ"), cpu,
3543					   rsp->barrier_sequence);
3544			smp_call_function_single(cpu, rcu_barrier_func, rsp, 1);
3545		} else {
3546			_rcu_barrier_trace(rsp, TPS("OnlineNQ"), cpu,
3547					   rsp->barrier_sequence);
3548		}
 
 
 
 
 
 
 
3549	}
3550	put_online_cpus();
3551
3552	/*
3553	 * Now that we have an rcu_barrier_callback() callback on each
3554	 * CPU, and thus each counted, remove the initial count.
3555	 */
3556	if (atomic_dec_and_test(&rsp->barrier_cpu_count))
3557		complete(&rsp->barrier_completion);
3558
3559	/* Wait for all rcu_barrier_callback() callbacks to be invoked. */
3560	wait_for_completion(&rsp->barrier_completion);
3561
3562	/* Mark the end of the barrier operation. */
3563	_rcu_barrier_trace(rsp, TPS("Inc2"), -1, rsp->barrier_sequence);
3564	rcu_seq_end(&rsp->barrier_sequence);
 
 
 
 
 
 
3565
3566	/* Other rcu_barrier() invocations can now safely proceed. */
3567	mutex_unlock(&rsp->barrier_mutex);
3568}
3569
3570/**
3571 * rcu_barrier_bh - Wait until all in-flight call_rcu_bh() callbacks complete.
3572 */
3573void rcu_barrier_bh(void)
3574{
3575	_rcu_barrier(&rcu_bh_state);
3576}
3577EXPORT_SYMBOL_GPL(rcu_barrier_bh);
3578
3579/**
3580 * rcu_barrier_sched - Wait for in-flight call_rcu_sched() callbacks.
3581 */
3582void rcu_barrier_sched(void)
3583{
3584	_rcu_barrier(&rcu_sched_state);
3585}
3586EXPORT_SYMBOL_GPL(rcu_barrier_sched);
3587
3588/*
3589 * Propagate ->qsinitmask bits up the rcu_node tree to account for the
3590 * first CPU in a given leaf rcu_node structure coming online.  The caller
3591 * must hold the corresponding leaf rcu_node ->lock with interrrupts
3592 * disabled.
3593 */
3594static void rcu_init_new_rnp(struct rcu_node *rnp_leaf)
3595{
3596	long mask;
 
3597	struct rcu_node *rnp = rnp_leaf;
3598
3599	raw_lockdep_assert_held_rcu_node(rnp);
 
3600	for (;;) {
3601		mask = rnp->grpmask;
3602		rnp = rnp->parent;
3603		if (rnp == NULL)
3604			return;
3605		raw_spin_lock_rcu_node(rnp); /* Interrupts already disabled. */
 
3606		rnp->qsmaskinit |= mask;
3607		raw_spin_unlock_rcu_node(rnp); /* Interrupts remain disabled. */
 
 
3608	}
3609}
3610
3611/*
3612 * Do boot-time initialization of a CPU's per-CPU RCU data.
3613 */
3614static void __init
3615rcu_boot_init_percpu_data(int cpu, struct rcu_state *rsp)
3616{
3617	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
 
3618
3619	/* Set up local state, ensuring consistent view of global state. */
3620	rdp->grpmask = leaf_node_cpu_bit(rdp->mynode, cpu);
3621	rdp->dynticks = &per_cpu(rcu_dynticks, cpu);
3622	WARN_ON_ONCE(rdp->dynticks->dynticks_nesting != 1);
3623	WARN_ON_ONCE(rcu_dynticks_in_eqs(rcu_dynticks_snap(rdp->dynticks)));
 
 
 
 
 
 
3624	rdp->cpu = cpu;
3625	rdp->rsp = rsp;
3626	rcu_boot_init_nocb_percpu_data(rdp);
3627}
3628
3629/*
3630 * Initialize a CPU's per-CPU RCU data.  Note that only one online or
3631 * offline event can be happening at a given time.  Note also that we
3632 * can accept some slop in the rsp->completed access due to the fact
3633 * that this CPU cannot possibly have any RCU callbacks in flight yet.
 
 
 
 
3634 */
3635static void
3636rcu_init_percpu_data(int cpu, struct rcu_state *rsp)
3637{
3638	unsigned long flags;
3639	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3640	struct rcu_node *rnp = rcu_get_root(rsp);
 
3641
3642	/* Set up local state, ensuring consistent view of global state. */
3643	raw_spin_lock_irqsave_rcu_node(rnp, flags);
3644	rdp->qlen_last_fqs_check = 0;
3645	rdp->n_force_qs_snap = rsp->n_force_qs;
3646	rdp->blimit = blimit;
3647	if (rcu_segcblist_empty(&rdp->cblist) && /* No early-boot CBs? */
3648	    !init_nocb_callback_list(rdp))
 
 
 
 
 
 
3649		rcu_segcblist_init(&rdp->cblist);  /* Re-enable callbacks. */
3650	rdp->dynticks->dynticks_nesting = 1;	/* CPU not up, no tearing. */
3651	rcu_dynticks_eqs_online();
3652	raw_spin_unlock_rcu_node(rnp);		/* irqs remain disabled. */
3653
3654	/*
3655	 * Add CPU to leaf rcu_node pending-online bitmask.  Any needed
3656	 * propagation up the rcu_node tree will happen at the beginning
3657	 * of the next grace period.
3658	 */
3659	rnp = rdp->mynode;
3660	raw_spin_lock_rcu_node(rnp);		/* irqs already disabled. */
3661	rdp->beenonline = true;	 /* We have now been online. */
3662	rdp->gpnum = rnp->completed; /* Make CPU later note any new GP. */
3663	rdp->completed = rnp->completed;
3664	rdp->cpu_no_qs.b.norm = true;
3665	rdp->rcu_qs_ctr_snap = per_cpu(rcu_dynticks.rcu_qs_ctr, cpu);
3666	rdp->core_needs_qs = false;
3667	rdp->rcu_iw_pending = false;
3668	rdp->rcu_iw_gpnum = rnp->gpnum - 1;
3669	trace_rcu_grace_period(rsp->name, rdp->gpnum, TPS("cpuonl"));
 
3670	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3671}
3672
3673/*
3674 * Invoked early in the CPU-online process, when pretty much all
3675 * services are available.  The incoming CPU is not present.
3676 */
3677int rcutree_prepare_cpu(unsigned int cpu)
3678{
3679	struct rcu_state *rsp;
3680
3681	for_each_rcu_flavor(rsp)
3682		rcu_init_percpu_data(cpu, rsp);
3683
3684	rcu_prepare_kthreads(cpu);
3685	rcu_spawn_all_nocb_kthreads(cpu);
3686
3687	return 0;
3688}
3689
3690/*
3691 * Update RCU priority boot kthread affinity for CPU-hotplug changes.
3692 */
3693static void rcutree_affinity_setting(unsigned int cpu, int outgoing)
3694{
3695	struct rcu_data *rdp = per_cpu_ptr(rcu_state_p->rda, cpu);
3696
3697	rcu_boost_kthread_setaffinity(rdp->mynode, outgoing);
3698}
3699
3700/*
3701 * Near the end of the CPU-online process.  Pretty much all services
3702 * enabled, and the CPU is now very much alive.
3703 */
3704int rcutree_online_cpu(unsigned int cpu)
3705{
3706	unsigned long flags;
3707	struct rcu_data *rdp;
3708	struct rcu_node *rnp;
3709	struct rcu_state *rsp;
3710
3711	for_each_rcu_flavor(rsp) {
3712		rdp = per_cpu_ptr(rsp->rda, cpu);
3713		rnp = rdp->mynode;
3714		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3715		rnp->ffmask |= rdp->grpmask;
3716		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3717	}
3718	if (IS_ENABLED(CONFIG_TREE_SRCU))
3719		srcu_online_cpu(cpu);
3720	if (rcu_scheduler_active == RCU_SCHEDULER_INACTIVE)
3721		return 0; /* Too early in boot for scheduler work. */
3722	sync_sched_exp_online_cleanup(cpu);
3723	rcutree_affinity_setting(cpu, -1);
 
 
 
3724	return 0;
3725}
3726
3727/*
3728 * Near the beginning of the process.  The CPU is still very much alive
3729 * with pretty much all services enabled.
3730 */
3731int rcutree_offline_cpu(unsigned int cpu)
3732{
3733	unsigned long flags;
3734	struct rcu_data *rdp;
3735	struct rcu_node *rnp;
3736	struct rcu_state *rsp;
3737
3738	for_each_rcu_flavor(rsp) {
3739		rdp = per_cpu_ptr(rsp->rda, cpu);
3740		rnp = rdp->mynode;
3741		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3742		rnp->ffmask &= ~rdp->grpmask;
3743		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3744	}
3745
3746	rcutree_affinity_setting(cpu, cpu);
3747	if (IS_ENABLED(CONFIG_TREE_SRCU))
3748		srcu_offline_cpu(cpu);
3749	return 0;
3750}
3751
3752/*
3753 * Near the end of the offline process.  We do only tracing here.
3754 */
3755int rcutree_dying_cpu(unsigned int cpu)
3756{
3757	struct rcu_state *rsp;
3758
3759	for_each_rcu_flavor(rsp)
3760		rcu_cleanup_dying_cpu(rsp);
3761	return 0;
3762}
3763
3764/*
3765 * The outgoing CPU is gone and we are running elsewhere.
3766 */
3767int rcutree_dead_cpu(unsigned int cpu)
3768{
3769	struct rcu_state *rsp;
3770
3771	for_each_rcu_flavor(rsp) {
3772		rcu_cleanup_dead_cpu(cpu, rsp);
3773		do_nocb_deferred_wakeup(per_cpu_ptr(rsp->rda, cpu));
3774	}
3775	return 0;
3776}
3777
3778/*
3779 * Mark the specified CPU as being online so that subsequent grace periods
3780 * (both expedited and normal) will wait on it.  Note that this means that
3781 * incoming CPUs are not allowed to use RCU read-side critical sections
3782 * until this function is called.  Failing to observe this restriction
3783 * will result in lockdep splats.
3784 *
3785 * Note that this function is special in that it is invoked directly
3786 * from the incoming CPU rather than from the cpuhp_step mechanism.
3787 * This is because this function must be invoked at a precise location.
3788 */
3789void rcu_cpu_starting(unsigned int cpu)
3790{
3791	unsigned long flags;
3792	unsigned long mask;
3793	int nbits;
3794	unsigned long oldmask;
3795	struct rcu_data *rdp;
3796	struct rcu_node *rnp;
3797	struct rcu_state *rsp;
 
 
 
 
 
3798
3799	for_each_rcu_flavor(rsp) {
3800		rdp = per_cpu_ptr(rsp->rda, cpu);
3801		rnp = rdp->mynode;
3802		mask = rdp->grpmask;
3803		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3804		rnp->qsmaskinitnext |= mask;
3805		oldmask = rnp->expmaskinitnext;
3806		rnp->expmaskinitnext |= mask;
3807		oldmask ^= rnp->expmaskinitnext;
3808		nbits = bitmap_weight(&oldmask, BITS_PER_LONG);
3809		/* Allow lockless access for expedited grace periods. */
3810		smp_store_release(&rsp->ncpus, rsp->ncpus + nbits); /* ^^^ */
3811		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3812	}
 
 
3813	smp_mb(); /* Ensure RCU read-side usage follows above initialization. */
3814}
3815
3816#ifdef CONFIG_HOTPLUG_CPU
3817/*
3818 * The CPU is exiting the idle loop into the arch_cpu_idle_dead()
3819 * function.  We now remove it from the rcu_node tree's ->qsmaskinit
3820 * bit masks.
 
 
 
3821 */
3822static void rcu_cleanup_dying_idle_cpu(int cpu, struct rcu_state *rsp)
3823{
3824	unsigned long flags;
3825	unsigned long mask;
3826	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3827	struct rcu_node *rnp = rdp->mynode;  /* Outgoing CPU's rdp & rnp. */
3828
 
 
 
 
 
3829	/* Remove outgoing CPU from mask in the leaf rcu_node structure. */
3830	mask = rdp->grpmask;
 
 
3831	raw_spin_lock_irqsave_rcu_node(rnp, flags); /* Enforce GP memory-order guarantee. */
3832	rnp->qsmaskinitnext &= ~mask;
 
 
 
 
 
 
 
 
3833	raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
 
 
 
 
3834}
3835
 
3836/*
3837 * The outgoing function has no further need of RCU, so remove it from
3838 * the list of CPUs that RCU must track.
3839 *
3840 * Note that this function is special in that it is invoked directly
3841 * from the outgoing CPU rather than from the cpuhp_step mechanism.
3842 * This is because this function must be invoked at a precise location.
3843 */
3844void rcu_report_dead(unsigned int cpu)
3845{
3846	struct rcu_state *rsp;
3847
3848	/* QS for any half-done expedited RCU-sched GP. */
3849	preempt_disable();
3850	rcu_report_exp_rdp(&rcu_sched_state,
3851			   this_cpu_ptr(rcu_sched_state.rda), true);
3852	preempt_enable();
3853	for_each_rcu_flavor(rsp)
3854		rcu_cleanup_dying_idle_cpu(cpu, rsp);
3855}
3856
3857/* Migrate the dead CPU's callbacks to the current CPU. */
3858static void rcu_migrate_callbacks(int cpu, struct rcu_state *rsp)
3859{
3860	unsigned long flags;
3861	struct rcu_data *my_rdp;
3862	struct rcu_data *rdp = per_cpu_ptr(rsp->rda, cpu);
3863	struct rcu_node *rnp_root = rcu_get_root(rdp->rsp);
 
3864
3865	if (rcu_is_nocb_cpu(cpu) || rcu_segcblist_empty(&rdp->cblist))
 
3866		return;  /* No callbacks to migrate. */
3867
3868	local_irq_save(flags);
3869	my_rdp = this_cpu_ptr(rsp->rda);
3870	if (rcu_nocb_adopt_orphan_cbs(my_rdp, rdp, flags)) {
3871		local_irq_restore(flags);
3872		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3873	}
3874	raw_spin_lock_rcu_node(rnp_root); /* irqs already disabled. */
3875	rcu_advance_cbs(rsp, rnp_root, rdp); /* Leverage recent GPs. */
3876	rcu_advance_cbs(rsp, rnp_root, my_rdp); /* Assign GP to pending CBs. */
3877	rcu_segcblist_merge(&my_rdp->cblist, &rdp->cblist);
3878	WARN_ON_ONCE(rcu_segcblist_empty(&my_rdp->cblist) !=
3879		     !rcu_segcblist_n_cbs(&my_rdp->cblist));
3880	raw_spin_unlock_irqrestore_rcu_node(rnp_root, flags);
3881	WARN_ONCE(rcu_segcblist_n_cbs(&rdp->cblist) != 0 ||
3882		  !rcu_segcblist_empty(&rdp->cblist),
3883		  "rcu_cleanup_dead_cpu: Callbacks on offline CPU %d: qlen=%lu, 1stCB=%p\n",
3884		  cpu, rcu_segcblist_n_cbs(&rdp->cblist),
3885		  rcu_segcblist_first_cb(&rdp->cblist));
3886}
3887
3888/*
3889 * The outgoing CPU has just passed through the dying-idle state,
3890 * and we are being invoked from the CPU that was IPIed to continue the
3891 * offline operation.  We need to migrate the outgoing CPU's callbacks.
3892 */
3893void rcutree_migrate_callbacks(int cpu)
3894{
3895	struct rcu_state *rsp;
3896
3897	for_each_rcu_flavor(rsp)
3898		rcu_migrate_callbacks(cpu, rsp);
3899}
3900#endif
3901
3902/*
3903 * On non-huge systems, use expedited RCU grace periods to make suspend
3904 * and hibernation run faster.
3905 */
3906static int rcu_pm_notify(struct notifier_block *self,
3907			 unsigned long action, void *hcpu)
3908{
3909	switch (action) {
3910	case PM_HIBERNATION_PREPARE:
3911	case PM_SUSPEND_PREPARE:
3912		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3913			rcu_expedite_gp();
3914		break;
3915	case PM_POST_HIBERNATION:
3916	case PM_POST_SUSPEND:
3917		if (nr_cpu_ids <= 256) /* Expediting bad for large systems. */
3918			rcu_unexpedite_gp();
3919		break;
3920	default:
3921		break;
3922	}
3923	return NOTIFY_OK;
3924}
3925
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3926/*
3927 * Spawn the kthreads that handle each RCU flavor's grace periods.
3928 */
3929static int __init rcu_spawn_gp_kthread(void)
3930{
3931	unsigned long flags;
3932	int kthread_prio_in = kthread_prio;
3933	struct rcu_node *rnp;
3934	struct rcu_state *rsp;
3935	struct sched_param sp;
3936	struct task_struct *t;
3937
3938	/* Force priority into range. */
3939	if (IS_ENABLED(CONFIG_RCU_BOOST) && kthread_prio < 1)
3940		kthread_prio = 1;
3941	else if (kthread_prio < 0)
3942		kthread_prio = 0;
3943	else if (kthread_prio > 99)
3944		kthread_prio = 99;
3945	if (kthread_prio != kthread_prio_in)
3946		pr_alert("rcu_spawn_gp_kthread(): Limited prio to %d from %d\n",
3947			 kthread_prio, kthread_prio_in);
3948
3949	rcu_scheduler_fully_active = 1;
3950	for_each_rcu_flavor(rsp) {
3951		t = kthread_create(rcu_gp_kthread, rsp, "%s", rsp->name);
3952		BUG_ON(IS_ERR(t));
3953		rnp = rcu_get_root(rsp);
3954		raw_spin_lock_irqsave_rcu_node(rnp, flags);
3955		rsp->gp_kthread = t;
3956		if (kthread_prio) {
3957			sp.sched_priority = kthread_prio;
3958			sched_setscheduler_nocheck(t, SCHED_FIFO, &sp);
3959		}
3960		raw_spin_unlock_irqrestore_rcu_node(rnp, flags);
3961		wake_up_process(t);
3962	}
3963	rcu_spawn_nocb_kthreads();
3964	rcu_spawn_boost_kthreads();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3965	return 0;
3966}
3967early_initcall(rcu_spawn_gp_kthread);
3968
3969/*
3970 * This function is invoked towards the end of the scheduler's
3971 * initialization process.  Before this is called, the idle task might
3972 * contain synchronous grace-period primitives (during which time, this idle
3973 * task is booting the system, and such primitives are no-ops).  After this
3974 * function is called, any synchronous grace-period primitives are run as
3975 * expedited, with the requesting task driving the grace period forward.
3976 * A later core_initcall() rcu_set_runtime_mode() will switch to full
3977 * runtime RCU functionality.
3978 */
3979void rcu_scheduler_starting(void)
3980{
 
 
 
3981	WARN_ON(num_online_cpus() != 1);
3982	WARN_ON(nr_context_switches() > 0);
3983	rcu_test_sync_prims();
 
 
 
 
 
 
 
 
3984	rcu_scheduler_active = RCU_SCHEDULER_INIT;
3985	rcu_test_sync_prims();
3986}
3987
3988/*
3989 * Helper function for rcu_init() that initializes one rcu_state structure.
3990 */
3991static void __init rcu_init_one(struct rcu_state *rsp)
3992{
3993	static const char * const buf[] = RCU_NODE_NAME_INIT;
3994	static const char * const fqs[] = RCU_FQS_NAME_INIT;
3995	static struct lock_class_key rcu_node_class[RCU_NUM_LVLS];
3996	static struct lock_class_key rcu_fqs_class[RCU_NUM_LVLS];
3997
3998	int levelspread[RCU_NUM_LVLS];		/* kids/node in each level. */
3999	int cpustride = 1;
4000	int i;
4001	int j;
4002	struct rcu_node *rnp;
4003
4004	BUILD_BUG_ON(RCU_NUM_LVLS > ARRAY_SIZE(buf));  /* Fix buf[] init! */
4005
4006	/* Silence gcc 4.8 false positive about array index out of range. */
4007	if (rcu_num_lvls <= 0 || rcu_num_lvls > RCU_NUM_LVLS)
4008		panic("rcu_init_one: rcu_num_lvls out of range");
4009
4010	/* Initialize the level-tracking arrays. */
4011
4012	for (i = 1; i < rcu_num_lvls; i++)
4013		rsp->level[i] = rsp->level[i - 1] + num_rcu_lvl[i - 1];
 
4014	rcu_init_levelspread(levelspread, num_rcu_lvl);
4015
4016	/* Initialize the elements themselves, starting from the leaves. */
4017
4018	for (i = rcu_num_lvls - 1; i >= 0; i--) {
4019		cpustride *= levelspread[i];
4020		rnp = rsp->level[i];
4021		for (j = 0; j < num_rcu_lvl[i]; j++, rnp++) {
4022			raw_spin_lock_init(&ACCESS_PRIVATE(rnp, lock));
4023			lockdep_set_class_and_name(&ACCESS_PRIVATE(rnp, lock),
4024						   &rcu_node_class[i], buf[i]);
4025			raw_spin_lock_init(&rnp->fqslock);
4026			lockdep_set_class_and_name(&rnp->fqslock,
4027						   &rcu_fqs_class[i], fqs[i]);
4028			rnp->gpnum = rsp->gpnum;
4029			rnp->completed = rsp->completed;
 
4030			rnp->qsmask = 0;
4031			rnp->qsmaskinit = 0;
4032			rnp->grplo = j * cpustride;
4033			rnp->grphi = (j + 1) * cpustride - 1;
4034			if (rnp->grphi >= nr_cpu_ids)
4035				rnp->grphi = nr_cpu_ids - 1;
4036			if (i == 0) {
4037				rnp->grpnum = 0;
4038				rnp->grpmask = 0;
4039				rnp->parent = NULL;
4040			} else {
4041				rnp->grpnum = j % levelspread[i - 1];
4042				rnp->grpmask = 1UL << rnp->grpnum;
4043				rnp->parent = rsp->level[i - 1] +
4044					      j / levelspread[i - 1];
4045			}
4046			rnp->level = i;
4047			INIT_LIST_HEAD(&rnp->blkd_tasks);
4048			rcu_init_one_nocb(rnp);
4049			init_waitqueue_head(&rnp->exp_wq[0]);
4050			init_waitqueue_head(&rnp->exp_wq[1]);
4051			init_waitqueue_head(&rnp->exp_wq[2]);
4052			init_waitqueue_head(&rnp->exp_wq[3]);
4053			spin_lock_init(&rnp->exp_lock);
 
 
 
 
4054		}
4055	}
4056
4057	init_swait_queue_head(&rsp->gp_wq);
4058	init_swait_queue_head(&rsp->expedited_wq);
4059	rnp = rsp->level[rcu_num_lvls - 1];
4060	for_each_possible_cpu(i) {
4061		while (i > rnp->grphi)
4062			rnp++;
4063		per_cpu_ptr(rsp->rda, i)->mynode = rnp;
4064		rcu_boot_init_percpu_data(i, rsp);
4065	}
4066	list_add(&rsp->flavors, &rcu_struct_flavors);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4067}
4068
4069/*
4070 * Compute the rcu_node tree geometry from kernel parameters.  This cannot
4071 * replace the definitions in tree.h because those are needed to size
4072 * the ->node array in the rcu_state structure.
4073 */
4074static void __init rcu_init_geometry(void)
4075{
4076	ulong d;
4077	int i;
 
4078	int rcu_capacity[RCU_NUM_LVLS];
 
 
 
 
 
 
 
 
 
 
 
 
 
4079
4080	/*
4081	 * Initialize any unspecified boot parameters.
4082	 * The default values of jiffies_till_first_fqs and
4083	 * jiffies_till_next_fqs are set to the RCU_JIFFIES_TILL_FORCE_QS
4084	 * value, which is a function of HZ, then adding one for each
4085	 * RCU_JIFFIES_FQS_DIV CPUs that might be on the system.
4086	 */
4087	d = RCU_JIFFIES_TILL_FORCE_QS + nr_cpu_ids / RCU_JIFFIES_FQS_DIV;
4088	if (jiffies_till_first_fqs == ULONG_MAX)
4089		jiffies_till_first_fqs = d;
4090	if (jiffies_till_next_fqs == ULONG_MAX)
4091		jiffies_till_next_fqs = d;
 
4092
4093	/* If the compile-time values are accurate, just leave. */
4094	if (rcu_fanout_leaf == RCU_FANOUT_LEAF &&
4095	    nr_cpu_ids == NR_CPUS)
4096		return;
4097	pr_info("RCU: Adjusting geometry for rcu_fanout_leaf=%d, nr_cpu_ids=%u\n",
4098		rcu_fanout_leaf, nr_cpu_ids);
4099
4100	/*
4101	 * The boot-time rcu_fanout_leaf parameter must be at least two
4102	 * and cannot exceed the number of bits in the rcu_node masks.
4103	 * Complain and fall back to the compile-time values if this
4104	 * limit is exceeded.
4105	 */
4106	if (rcu_fanout_leaf < 2 ||
4107	    rcu_fanout_leaf > sizeof(unsigned long) * 8) {
4108		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4109		WARN_ON(1);
4110		return;
4111	}
4112
4113	/*
4114	 * Compute number of nodes that can be handled an rcu_node tree
4115	 * with the given number of levels.
4116	 */
4117	rcu_capacity[0] = rcu_fanout_leaf;
4118	for (i = 1; i < RCU_NUM_LVLS; i++)
4119		rcu_capacity[i] = rcu_capacity[i - 1] * RCU_FANOUT;
4120
4121	/*
4122	 * The tree must be able to accommodate the configured number of CPUs.
4123	 * If this limit is exceeded, fall back to the compile-time values.
4124	 */
4125	if (nr_cpu_ids > rcu_capacity[RCU_NUM_LVLS - 1]) {
4126		rcu_fanout_leaf = RCU_FANOUT_LEAF;
4127		WARN_ON(1);
4128		return;
4129	}
4130
4131	/* Calculate the number of levels in the tree. */
4132	for (i = 0; nr_cpu_ids > rcu_capacity[i]; i++) {
4133	}
4134	rcu_num_lvls = i + 1;
4135
4136	/* Calculate the number of rcu_nodes at each level of the tree. */
4137	for (i = 0; i < rcu_num_lvls; i++) {
4138		int cap = rcu_capacity[(rcu_num_lvls - 1) - i];
4139		num_rcu_lvl[i] = DIV_ROUND_UP(nr_cpu_ids, cap);
4140	}
4141
4142	/* Calculate the total number of rcu_node structures. */
4143	rcu_num_nodes = 0;
4144	for (i = 0; i < rcu_num_lvls; i++)
4145		rcu_num_nodes += num_rcu_lvl[i];
4146}
4147
4148/*
4149 * Dump out the structure of the rcu_node combining tree associated
4150 * with the rcu_state structure referenced by rsp.
4151 */
4152static void __init rcu_dump_rcu_node_tree(struct rcu_state *rsp)
4153{
4154	int level = 0;
4155	struct rcu_node *rnp;
4156
4157	pr_info("rcu_node tree layout dump\n");
4158	pr_info(" ");
4159	rcu_for_each_node_breadth_first(rsp, rnp) {
4160		if (rnp->level != level) {
4161			pr_cont("\n");
4162			pr_info(" ");
4163			level = rnp->level;
4164		}
4165		pr_cont("%d:%d ^%d  ", rnp->grplo, rnp->grphi, rnp->grpnum);
4166	}
4167	pr_cont("\n");
4168}
4169
4170struct workqueue_struct *rcu_gp_wq;
4171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4172void __init rcu_init(void)
4173{
4174	int cpu;
4175
4176	rcu_early_boot_tests();
4177
 
4178	rcu_bootup_announce();
 
4179	rcu_init_geometry();
4180	rcu_init_one(&rcu_bh_state);
4181	rcu_init_one(&rcu_sched_state);
4182	if (dump_tree)
4183		rcu_dump_rcu_node_tree(&rcu_sched_state);
4184	__rcu_init_preempt();
4185	open_softirq(RCU_SOFTIRQ, rcu_process_callbacks);
4186
4187	/*
4188	 * We don't need protection against CPU-hotplug here because
4189	 * this is called early in boot, before either interrupts
4190	 * or the scheduler are operational.
4191	 */
4192	pm_notifier(rcu_pm_notify, 0);
4193	for_each_online_cpu(cpu) {
4194		rcutree_prepare_cpu(cpu);
4195		rcu_cpu_starting(cpu);
4196		rcutree_online_cpu(cpu);
4197	}
4198
4199	/* Create workqueue for expedited GPs and for Tree SRCU. */
4200	rcu_gp_wq = alloc_workqueue("rcu_gp", WQ_MEM_RECLAIM, 0);
4201	WARN_ON(!rcu_gp_wq);
 
 
 
 
 
 
 
 
 
 
 
 
4202}
4203
 
4204#include "tree_exp.h"
 
4205#include "tree_plugin.h"