Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/kernel/power/snapshot.c
4 *
5 * This file provides system snapshot/restore functionality for swsusp.
6 *
7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
9 */
10
11#define pr_fmt(fmt) "PM: hibernation: " fmt
12
13#include <linux/version.h>
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/spinlock.h>
20#include <linux/kernel.h>
21#include <linux/pm.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/memblock.h>
25#include <linux/nmi.h>
26#include <linux/syscalls.h>
27#include <linux/console.h>
28#include <linux/highmem.h>
29#include <linux/list.h>
30#include <linux/slab.h>
31#include <linux/compiler.h>
32#include <linux/ktime.h>
33#include <linux/set_memory.h>
34
35#include <linux/uaccess.h>
36#include <asm/mmu_context.h>
37#include <asm/tlbflush.h>
38#include <asm/io.h>
39
40#include "power.h"
41
42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
43static bool hibernate_restore_protection;
44static bool hibernate_restore_protection_active;
45
46void enable_restore_image_protection(void)
47{
48 hibernate_restore_protection = true;
49}
50
51static inline void hibernate_restore_protection_begin(void)
52{
53 hibernate_restore_protection_active = hibernate_restore_protection;
54}
55
56static inline void hibernate_restore_protection_end(void)
57{
58 hibernate_restore_protection_active = false;
59}
60
61static inline void hibernate_restore_protect_page(void *page_address)
62{
63 if (hibernate_restore_protection_active)
64 set_memory_ro((unsigned long)page_address, 1);
65}
66
67static inline void hibernate_restore_unprotect_page(void *page_address)
68{
69 if (hibernate_restore_protection_active)
70 set_memory_rw((unsigned long)page_address, 1);
71}
72#else
73static inline void hibernate_restore_protection_begin(void) {}
74static inline void hibernate_restore_protection_end(void) {}
75static inline void hibernate_restore_protect_page(void *page_address) {}
76static inline void hibernate_restore_unprotect_page(void *page_address) {}
77#endif /* CONFIG_STRICT_KERNEL_RWX && CONFIG_ARCH_HAS_SET_MEMORY */
78
79
80/*
81 * The calls to set_direct_map_*() should not fail because remapping a page
82 * here means that we only update protection bits in an existing PTE.
83 * It is still worth to have a warning here if something changes and this
84 * will no longer be the case.
85 */
86static inline void hibernate_map_page(struct page *page)
87{
88 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
89 int ret = set_direct_map_default_noflush(page);
90
91 if (ret)
92 pr_warn_once("Failed to remap page\n");
93 } else {
94 debug_pagealloc_map_pages(page, 1);
95 }
96}
97
98static inline void hibernate_unmap_page(struct page *page)
99{
100 if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
101 unsigned long addr = (unsigned long)page_address(page);
102 int ret = set_direct_map_invalid_noflush(page);
103
104 if (ret)
105 pr_warn_once("Failed to remap page\n");
106
107 flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
108 } else {
109 debug_pagealloc_unmap_pages(page, 1);
110 }
111}
112
113static int swsusp_page_is_free(struct page *);
114static void swsusp_set_page_forbidden(struct page *);
115static void swsusp_unset_page_forbidden(struct page *);
116
117/*
118 * Number of bytes to reserve for memory allocations made by device drivers
119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
120 * cause image creation to fail (tunable via /sys/power/reserved_size).
121 */
122unsigned long reserved_size;
123
124void __init hibernate_reserved_size_init(void)
125{
126 reserved_size = SPARE_PAGES * PAGE_SIZE;
127}
128
129/*
130 * Preferred image size in bytes (tunable via /sys/power/image_size).
131 * When it is set to N, swsusp will do its best to ensure the image
132 * size will not exceed N bytes, but if that is impossible, it will
133 * try to create the smallest image possible.
134 */
135unsigned long image_size;
136
137void __init hibernate_image_size_init(void)
138{
139 image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
140}
141
142/*
143 * List of PBEs needed for restoring the pages that were allocated before
144 * the suspend and included in the suspend image, but have also been
145 * allocated by the "resume" kernel, so their contents cannot be written
146 * directly to their "original" page frames.
147 */
148struct pbe *restore_pblist;
149
150/* struct linked_page is used to build chains of pages */
151
152#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
153
154struct linked_page {
155 struct linked_page *next;
156 char data[LINKED_PAGE_DATA_SIZE];
157} __packed;
158
159/*
160 * List of "safe" pages (ie. pages that were not used by the image kernel
161 * before hibernation) that may be used as temporary storage for image kernel
162 * memory contents.
163 */
164static struct linked_page *safe_pages_list;
165
166/* Pointer to an auxiliary buffer (1 page) */
167static void *buffer;
168
169#define PG_ANY 0
170#define PG_SAFE 1
171#define PG_UNSAFE_CLEAR 1
172#define PG_UNSAFE_KEEP 0
173
174static unsigned int allocated_unsafe_pages;
175
176/**
177 * get_image_page - Allocate a page for a hibernation image.
178 * @gfp_mask: GFP mask for the allocation.
179 * @safe_needed: Get pages that were not used before hibernation (restore only)
180 *
181 * During image restoration, for storing the PBE list and the image data, we can
182 * only use memory pages that do not conflict with the pages used before
183 * hibernation. The "unsafe" pages have PageNosaveFree set and we count them
184 * using allocated_unsafe_pages.
185 *
186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
187 * swsusp_free() can release it.
188 */
189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
190{
191 void *res;
192
193 res = (void *)get_zeroed_page(gfp_mask);
194 if (safe_needed)
195 while (res && swsusp_page_is_free(virt_to_page(res))) {
196 /* The page is unsafe, mark it for swsusp_free() */
197 swsusp_set_page_forbidden(virt_to_page(res));
198 allocated_unsafe_pages++;
199 res = (void *)get_zeroed_page(gfp_mask);
200 }
201 if (res) {
202 swsusp_set_page_forbidden(virt_to_page(res));
203 swsusp_set_page_free(virt_to_page(res));
204 }
205 return res;
206}
207
208static void *__get_safe_page(gfp_t gfp_mask)
209{
210 if (safe_pages_list) {
211 void *ret = safe_pages_list;
212
213 safe_pages_list = safe_pages_list->next;
214 memset(ret, 0, PAGE_SIZE);
215 return ret;
216 }
217 return get_image_page(gfp_mask, PG_SAFE);
218}
219
220unsigned long get_safe_page(gfp_t gfp_mask)
221{
222 return (unsigned long)__get_safe_page(gfp_mask);
223}
224
225static struct page *alloc_image_page(gfp_t gfp_mask)
226{
227 struct page *page;
228
229 page = alloc_page(gfp_mask);
230 if (page) {
231 swsusp_set_page_forbidden(page);
232 swsusp_set_page_free(page);
233 }
234 return page;
235}
236
237static void recycle_safe_page(void *page_address)
238{
239 struct linked_page *lp = page_address;
240
241 lp->next = safe_pages_list;
242 safe_pages_list = lp;
243}
244
245/**
246 * free_image_page - Free a page allocated for hibernation image.
247 * @addr: Address of the page to free.
248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
249 *
250 * The page to free should have been allocated by get_image_page() (page flags
251 * set by it are affected).
252 */
253static inline void free_image_page(void *addr, int clear_nosave_free)
254{
255 struct page *page;
256
257 BUG_ON(!virt_addr_valid(addr));
258
259 page = virt_to_page(addr);
260
261 swsusp_unset_page_forbidden(page);
262 if (clear_nosave_free)
263 swsusp_unset_page_free(page);
264
265 __free_page(page);
266}
267
268static inline void free_list_of_pages(struct linked_page *list,
269 int clear_page_nosave)
270{
271 while (list) {
272 struct linked_page *lp = list->next;
273
274 free_image_page(list, clear_page_nosave);
275 list = lp;
276 }
277}
278
279/*
280 * struct chain_allocator is used for allocating small objects out of
281 * a linked list of pages called 'the chain'.
282 *
283 * The chain grows each time when there is no room for a new object in
284 * the current page. The allocated objects cannot be freed individually.
285 * It is only possible to free them all at once, by freeing the entire
286 * chain.
287 *
288 * NOTE: The chain allocator may be inefficient if the allocated objects
289 * are not much smaller than PAGE_SIZE.
290 */
291struct chain_allocator {
292 struct linked_page *chain; /* the chain */
293 unsigned int used_space; /* total size of objects allocated out
294 of the current page */
295 gfp_t gfp_mask; /* mask for allocating pages */
296 int safe_needed; /* if set, only "safe" pages are allocated */
297};
298
299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
300 int safe_needed)
301{
302 ca->chain = NULL;
303 ca->used_space = LINKED_PAGE_DATA_SIZE;
304 ca->gfp_mask = gfp_mask;
305 ca->safe_needed = safe_needed;
306}
307
308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
309{
310 void *ret;
311
312 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
313 struct linked_page *lp;
314
315 lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
316 get_image_page(ca->gfp_mask, PG_ANY);
317 if (!lp)
318 return NULL;
319
320 lp->next = ca->chain;
321 ca->chain = lp;
322 ca->used_space = 0;
323 }
324 ret = ca->chain->data + ca->used_space;
325 ca->used_space += size;
326 return ret;
327}
328
329/*
330 * Data types related to memory bitmaps.
331 *
332 * Memory bitmap is a structure consisting of many linked lists of
333 * objects. The main list's elements are of type struct zone_bitmap
334 * and each of them corresponds to one zone. For each zone bitmap
335 * object there is a list of objects of type struct bm_block that
336 * represent each blocks of bitmap in which information is stored.
337 *
338 * struct memory_bitmap contains a pointer to the main list of zone
339 * bitmap objects, a struct bm_position used for browsing the bitmap,
340 * and a pointer to the list of pages used for allocating all of the
341 * zone bitmap objects and bitmap block objects.
342 *
343 * NOTE: It has to be possible to lay out the bitmap in memory
344 * using only allocations of order 0. Additionally, the bitmap is
345 * designed to work with arbitrary number of zones (this is over the
346 * top for now, but let's avoid making unnecessary assumptions ;-).
347 *
348 * struct zone_bitmap contains a pointer to a list of bitmap block
349 * objects and a pointer to the bitmap block object that has been
350 * most recently used for setting bits. Additionally, it contains the
351 * PFNs that correspond to the start and end of the represented zone.
352 *
353 * struct bm_block contains a pointer to the memory page in which
354 * information is stored (in the form of a block of bitmap)
355 * It also contains the pfns that correspond to the start and end of
356 * the represented memory area.
357 *
358 * The memory bitmap is organized as a radix tree to guarantee fast random
359 * access to the bits. There is one radix tree for each zone (as returned
360 * from create_mem_extents).
361 *
362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
363 * two linked lists for the nodes of the tree, one for the inner nodes and
364 * one for the leave nodes. The linked leave nodes are used for fast linear
365 * access of the memory bitmap.
366 *
367 * The struct rtree_node represents one node of the radix tree.
368 */
369
370#define BM_END_OF_MAP (~0UL)
371
372#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
373#define BM_BLOCK_SHIFT (PAGE_SHIFT + 3)
374#define BM_BLOCK_MASK ((1UL << BM_BLOCK_SHIFT) - 1)
375
376/*
377 * struct rtree_node is a wrapper struct to link the nodes
378 * of the rtree together for easy linear iteration over
379 * bits and easy freeing
380 */
381struct rtree_node {
382 struct list_head list;
383 unsigned long *data;
384};
385
386/*
387 * struct mem_zone_bm_rtree represents a bitmap used for one
388 * populated memory zone.
389 */
390struct mem_zone_bm_rtree {
391 struct list_head list; /* Link Zones together */
392 struct list_head nodes; /* Radix Tree inner nodes */
393 struct list_head leaves; /* Radix Tree leaves */
394 unsigned long start_pfn; /* Zone start page frame */
395 unsigned long end_pfn; /* Zone end page frame + 1 */
396 struct rtree_node *rtree; /* Radix Tree Root */
397 int levels; /* Number of Radix Tree Levels */
398 unsigned int blocks; /* Number of Bitmap Blocks */
399};
400
401/* strcut bm_position is used for browsing memory bitmaps */
402
403struct bm_position {
404 struct mem_zone_bm_rtree *zone;
405 struct rtree_node *node;
406 unsigned long node_pfn;
407 int node_bit;
408};
409
410struct memory_bitmap {
411 struct list_head zones;
412 struct linked_page *p_list; /* list of pages used to store zone
413 bitmap objects and bitmap block
414 objects */
415 struct bm_position cur; /* most recently used bit position */
416};
417
418/* Functions that operate on memory bitmaps */
419
420#define BM_ENTRIES_PER_LEVEL (PAGE_SIZE / sizeof(unsigned long))
421#if BITS_PER_LONG == 32
422#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 2)
423#else
424#define BM_RTREE_LEVEL_SHIFT (PAGE_SHIFT - 3)
425#endif
426#define BM_RTREE_LEVEL_MASK ((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
427
428/**
429 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
430 * @gfp_mask: GFP mask for the allocation.
431 * @safe_needed: Get pages not used before hibernation (restore only)
432 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
433 * @list: Radix Tree node to add.
434 *
435 * This function is used to allocate inner nodes as well as the
436 * leave nodes of the radix tree. It also adds the node to the
437 * corresponding linked list passed in by the *list parameter.
438 */
439static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
440 struct chain_allocator *ca,
441 struct list_head *list)
442{
443 struct rtree_node *node;
444
445 node = chain_alloc(ca, sizeof(struct rtree_node));
446 if (!node)
447 return NULL;
448
449 node->data = get_image_page(gfp_mask, safe_needed);
450 if (!node->data)
451 return NULL;
452
453 list_add_tail(&node->list, list);
454
455 return node;
456}
457
458/**
459 * add_rtree_block - Add a new leave node to the radix tree.
460 *
461 * The leave nodes need to be allocated in order to keep the leaves
462 * linked list in order. This is guaranteed by the zone->blocks
463 * counter.
464 */
465static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
466 int safe_needed, struct chain_allocator *ca)
467{
468 struct rtree_node *node, *block, **dst;
469 unsigned int levels_needed, block_nr;
470 int i;
471
472 block_nr = zone->blocks;
473 levels_needed = 0;
474
475 /* How many levels do we need for this block nr? */
476 while (block_nr) {
477 levels_needed += 1;
478 block_nr >>= BM_RTREE_LEVEL_SHIFT;
479 }
480
481 /* Make sure the rtree has enough levels */
482 for (i = zone->levels; i < levels_needed; i++) {
483 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
484 &zone->nodes);
485 if (!node)
486 return -ENOMEM;
487
488 node->data[0] = (unsigned long)zone->rtree;
489 zone->rtree = node;
490 zone->levels += 1;
491 }
492
493 /* Allocate new block */
494 block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
495 if (!block)
496 return -ENOMEM;
497
498 /* Now walk the rtree to insert the block */
499 node = zone->rtree;
500 dst = &zone->rtree;
501 block_nr = zone->blocks;
502 for (i = zone->levels; i > 0; i--) {
503 int index;
504
505 if (!node) {
506 node = alloc_rtree_node(gfp_mask, safe_needed, ca,
507 &zone->nodes);
508 if (!node)
509 return -ENOMEM;
510 *dst = node;
511 }
512
513 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
514 index &= BM_RTREE_LEVEL_MASK;
515 dst = (struct rtree_node **)&((*dst)->data[index]);
516 node = *dst;
517 }
518
519 zone->blocks += 1;
520 *dst = block;
521
522 return 0;
523}
524
525static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
526 int clear_nosave_free);
527
528/**
529 * create_zone_bm_rtree - Create a radix tree for one zone.
530 *
531 * Allocated the mem_zone_bm_rtree structure and initializes it.
532 * This function also allocated and builds the radix tree for the
533 * zone.
534 */
535static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
536 int safe_needed,
537 struct chain_allocator *ca,
538 unsigned long start,
539 unsigned long end)
540{
541 struct mem_zone_bm_rtree *zone;
542 unsigned int i, nr_blocks;
543 unsigned long pages;
544
545 pages = end - start;
546 zone = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
547 if (!zone)
548 return NULL;
549
550 INIT_LIST_HEAD(&zone->nodes);
551 INIT_LIST_HEAD(&zone->leaves);
552 zone->start_pfn = start;
553 zone->end_pfn = end;
554 nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
555
556 for (i = 0; i < nr_blocks; i++) {
557 if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
558 free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
559 return NULL;
560 }
561 }
562
563 return zone;
564}
565
566/**
567 * free_zone_bm_rtree - Free the memory of the radix tree.
568 *
569 * Free all node pages of the radix tree. The mem_zone_bm_rtree
570 * structure itself is not freed here nor are the rtree_node
571 * structs.
572 */
573static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
574 int clear_nosave_free)
575{
576 struct rtree_node *node;
577
578 list_for_each_entry(node, &zone->nodes, list)
579 free_image_page(node->data, clear_nosave_free);
580
581 list_for_each_entry(node, &zone->leaves, list)
582 free_image_page(node->data, clear_nosave_free);
583}
584
585static void memory_bm_position_reset(struct memory_bitmap *bm)
586{
587 bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
588 list);
589 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
590 struct rtree_node, list);
591 bm->cur.node_pfn = 0;
592 bm->cur.node_bit = 0;
593}
594
595static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
596
597struct mem_extent {
598 struct list_head hook;
599 unsigned long start;
600 unsigned long end;
601};
602
603/**
604 * free_mem_extents - Free a list of memory extents.
605 * @list: List of extents to free.
606 */
607static void free_mem_extents(struct list_head *list)
608{
609 struct mem_extent *ext, *aux;
610
611 list_for_each_entry_safe(ext, aux, list, hook) {
612 list_del(&ext->hook);
613 kfree(ext);
614 }
615}
616
617/**
618 * create_mem_extents - Create a list of memory extents.
619 * @list: List to put the extents into.
620 * @gfp_mask: Mask to use for memory allocations.
621 *
622 * The extents represent contiguous ranges of PFNs.
623 */
624static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
625{
626 struct zone *zone;
627
628 INIT_LIST_HEAD(list);
629
630 for_each_populated_zone(zone) {
631 unsigned long zone_start, zone_end;
632 struct mem_extent *ext, *cur, *aux;
633
634 zone_start = zone->zone_start_pfn;
635 zone_end = zone_end_pfn(zone);
636
637 list_for_each_entry(ext, list, hook)
638 if (zone_start <= ext->end)
639 break;
640
641 if (&ext->hook == list || zone_end < ext->start) {
642 /* New extent is necessary */
643 struct mem_extent *new_ext;
644
645 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
646 if (!new_ext) {
647 free_mem_extents(list);
648 return -ENOMEM;
649 }
650 new_ext->start = zone_start;
651 new_ext->end = zone_end;
652 list_add_tail(&new_ext->hook, &ext->hook);
653 continue;
654 }
655
656 /* Merge this zone's range of PFNs with the existing one */
657 if (zone_start < ext->start)
658 ext->start = zone_start;
659 if (zone_end > ext->end)
660 ext->end = zone_end;
661
662 /* More merging may be possible */
663 cur = ext;
664 list_for_each_entry_safe_continue(cur, aux, list, hook) {
665 if (zone_end < cur->start)
666 break;
667 if (zone_end < cur->end)
668 ext->end = cur->end;
669 list_del(&cur->hook);
670 kfree(cur);
671 }
672 }
673
674 return 0;
675}
676
677/**
678 * memory_bm_create - Allocate memory for a memory bitmap.
679 */
680static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
681 int safe_needed)
682{
683 struct chain_allocator ca;
684 struct list_head mem_extents;
685 struct mem_extent *ext;
686 int error;
687
688 chain_init(&ca, gfp_mask, safe_needed);
689 INIT_LIST_HEAD(&bm->zones);
690
691 error = create_mem_extents(&mem_extents, gfp_mask);
692 if (error)
693 return error;
694
695 list_for_each_entry(ext, &mem_extents, hook) {
696 struct mem_zone_bm_rtree *zone;
697
698 zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
699 ext->start, ext->end);
700 if (!zone) {
701 error = -ENOMEM;
702 goto Error;
703 }
704 list_add_tail(&zone->list, &bm->zones);
705 }
706
707 bm->p_list = ca.chain;
708 memory_bm_position_reset(bm);
709 Exit:
710 free_mem_extents(&mem_extents);
711 return error;
712
713 Error:
714 bm->p_list = ca.chain;
715 memory_bm_free(bm, PG_UNSAFE_CLEAR);
716 goto Exit;
717}
718
719/**
720 * memory_bm_free - Free memory occupied by the memory bitmap.
721 * @bm: Memory bitmap.
722 */
723static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
724{
725 struct mem_zone_bm_rtree *zone;
726
727 list_for_each_entry(zone, &bm->zones, list)
728 free_zone_bm_rtree(zone, clear_nosave_free);
729
730 free_list_of_pages(bm->p_list, clear_nosave_free);
731
732 INIT_LIST_HEAD(&bm->zones);
733}
734
735/**
736 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
737 *
738 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
739 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
740 *
741 * Walk the radix tree to find the page containing the bit that represents @pfn
742 * and return the position of the bit in @addr and @bit_nr.
743 */
744static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
745 void **addr, unsigned int *bit_nr)
746{
747 struct mem_zone_bm_rtree *curr, *zone;
748 struct rtree_node *node;
749 int i, block_nr;
750
751 zone = bm->cur.zone;
752
753 if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
754 goto zone_found;
755
756 zone = NULL;
757
758 /* Find the right zone */
759 list_for_each_entry(curr, &bm->zones, list) {
760 if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
761 zone = curr;
762 break;
763 }
764 }
765
766 if (!zone)
767 return -EFAULT;
768
769zone_found:
770 /*
771 * We have found the zone. Now walk the radix tree to find the leaf node
772 * for our PFN.
773 */
774
775 /*
776 * If the zone we wish to scan is the current zone and the
777 * pfn falls into the current node then we do not need to walk
778 * the tree.
779 */
780 node = bm->cur.node;
781 if (zone == bm->cur.zone &&
782 ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
783 goto node_found;
784
785 node = zone->rtree;
786 block_nr = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
787
788 for (i = zone->levels; i > 0; i--) {
789 int index;
790
791 index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
792 index &= BM_RTREE_LEVEL_MASK;
793 BUG_ON(node->data[index] == 0);
794 node = (struct rtree_node *)node->data[index];
795 }
796
797node_found:
798 /* Update last position */
799 bm->cur.zone = zone;
800 bm->cur.node = node;
801 bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
802
803 /* Set return values */
804 *addr = node->data;
805 *bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
806
807 return 0;
808}
809
810static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
811{
812 void *addr;
813 unsigned int bit;
814 int error;
815
816 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
817 BUG_ON(error);
818 set_bit(bit, addr);
819}
820
821static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
822{
823 void *addr;
824 unsigned int bit;
825 int error;
826
827 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
828 if (!error)
829 set_bit(bit, addr);
830
831 return error;
832}
833
834static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
835{
836 void *addr;
837 unsigned int bit;
838 int error;
839
840 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
841 BUG_ON(error);
842 clear_bit(bit, addr);
843}
844
845static void memory_bm_clear_current(struct memory_bitmap *bm)
846{
847 int bit;
848
849 bit = max(bm->cur.node_bit - 1, 0);
850 clear_bit(bit, bm->cur.node->data);
851}
852
853static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
854{
855 void *addr;
856 unsigned int bit;
857 int error;
858
859 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
860 BUG_ON(error);
861 return test_bit(bit, addr);
862}
863
864static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
865{
866 void *addr;
867 unsigned int bit;
868
869 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
870}
871
872/*
873 * rtree_next_node - Jump to the next leaf node.
874 *
875 * Set the position to the beginning of the next node in the
876 * memory bitmap. This is either the next node in the current
877 * zone's radix tree or the first node in the radix tree of the
878 * next zone.
879 *
880 * Return true if there is a next node, false otherwise.
881 */
882static bool rtree_next_node(struct memory_bitmap *bm)
883{
884 if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
885 bm->cur.node = list_entry(bm->cur.node->list.next,
886 struct rtree_node, list);
887 bm->cur.node_pfn += BM_BITS_PER_BLOCK;
888 bm->cur.node_bit = 0;
889 touch_softlockup_watchdog();
890 return true;
891 }
892
893 /* No more nodes, goto next zone */
894 if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
895 bm->cur.zone = list_entry(bm->cur.zone->list.next,
896 struct mem_zone_bm_rtree, list);
897 bm->cur.node = list_entry(bm->cur.zone->leaves.next,
898 struct rtree_node, list);
899 bm->cur.node_pfn = 0;
900 bm->cur.node_bit = 0;
901 return true;
902 }
903
904 /* No more zones */
905 return false;
906}
907
908/**
909 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
910 * @bm: Memory bitmap.
911 *
912 * Starting from the last returned position this function searches for the next
913 * set bit in @bm and returns the PFN represented by it. If no more bits are
914 * set, BM_END_OF_MAP is returned.
915 *
916 * It is required to run memory_bm_position_reset() before the first call to
917 * this function for the given memory bitmap.
918 */
919static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
920{
921 unsigned long bits, pfn, pages;
922 int bit;
923
924 do {
925 pages = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
926 bits = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
927 bit = find_next_bit(bm->cur.node->data, bits,
928 bm->cur.node_bit);
929 if (bit < bits) {
930 pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
931 bm->cur.node_bit = bit + 1;
932 return pfn;
933 }
934 } while (rtree_next_node(bm));
935
936 return BM_END_OF_MAP;
937}
938
939/*
940 * This structure represents a range of page frames the contents of which
941 * should not be saved during hibernation.
942 */
943struct nosave_region {
944 struct list_head list;
945 unsigned long start_pfn;
946 unsigned long end_pfn;
947};
948
949static LIST_HEAD(nosave_regions);
950
951static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
952{
953 struct rtree_node *node;
954
955 list_for_each_entry(node, &zone->nodes, list)
956 recycle_safe_page(node->data);
957
958 list_for_each_entry(node, &zone->leaves, list)
959 recycle_safe_page(node->data);
960}
961
962static void memory_bm_recycle(struct memory_bitmap *bm)
963{
964 struct mem_zone_bm_rtree *zone;
965 struct linked_page *p_list;
966
967 list_for_each_entry(zone, &bm->zones, list)
968 recycle_zone_bm_rtree(zone);
969
970 p_list = bm->p_list;
971 while (p_list) {
972 struct linked_page *lp = p_list;
973
974 p_list = lp->next;
975 recycle_safe_page(lp);
976 }
977}
978
979/**
980 * register_nosave_region - Register a region of unsaveable memory.
981 *
982 * Register a range of page frames the contents of which should not be saved
983 * during hibernation (to be used in the early initialization code).
984 */
985void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
986{
987 struct nosave_region *region;
988
989 if (start_pfn >= end_pfn)
990 return;
991
992 if (!list_empty(&nosave_regions)) {
993 /* Try to extend the previous region (they should be sorted) */
994 region = list_entry(nosave_regions.prev,
995 struct nosave_region, list);
996 if (region->end_pfn == start_pfn) {
997 region->end_pfn = end_pfn;
998 goto Report;
999 }
1000 }
1001 /* This allocation cannot fail */
1002 region = memblock_alloc(sizeof(struct nosave_region),
1003 SMP_CACHE_BYTES);
1004 if (!region)
1005 panic("%s: Failed to allocate %zu bytes\n", __func__,
1006 sizeof(struct nosave_region));
1007 region->start_pfn = start_pfn;
1008 region->end_pfn = end_pfn;
1009 list_add_tail(®ion->list, &nosave_regions);
1010 Report:
1011 pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1012 (unsigned long long) start_pfn << PAGE_SHIFT,
1013 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1014}
1015
1016/*
1017 * Set bits in this map correspond to the page frames the contents of which
1018 * should not be saved during the suspend.
1019 */
1020static struct memory_bitmap *forbidden_pages_map;
1021
1022/* Set bits in this map correspond to free page frames. */
1023static struct memory_bitmap *free_pages_map;
1024
1025/*
1026 * Each page frame allocated for creating the image is marked by setting the
1027 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1028 */
1029
1030void swsusp_set_page_free(struct page *page)
1031{
1032 if (free_pages_map)
1033 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1034}
1035
1036static int swsusp_page_is_free(struct page *page)
1037{
1038 return free_pages_map ?
1039 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1040}
1041
1042void swsusp_unset_page_free(struct page *page)
1043{
1044 if (free_pages_map)
1045 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1046}
1047
1048static void swsusp_set_page_forbidden(struct page *page)
1049{
1050 if (forbidden_pages_map)
1051 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1052}
1053
1054int swsusp_page_is_forbidden(struct page *page)
1055{
1056 return forbidden_pages_map ?
1057 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1058}
1059
1060static void swsusp_unset_page_forbidden(struct page *page)
1061{
1062 if (forbidden_pages_map)
1063 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1064}
1065
1066/**
1067 * mark_nosave_pages - Mark pages that should not be saved.
1068 * @bm: Memory bitmap.
1069 *
1070 * Set the bits in @bm that correspond to the page frames the contents of which
1071 * should not be saved.
1072 */
1073static void mark_nosave_pages(struct memory_bitmap *bm)
1074{
1075 struct nosave_region *region;
1076
1077 if (list_empty(&nosave_regions))
1078 return;
1079
1080 list_for_each_entry(region, &nosave_regions, list) {
1081 unsigned long pfn;
1082
1083 pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1084 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1085 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1086 - 1);
1087
1088 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1089 if (pfn_valid(pfn)) {
1090 /*
1091 * It is safe to ignore the result of
1092 * mem_bm_set_bit_check() here, since we won't
1093 * touch the PFNs for which the error is
1094 * returned anyway.
1095 */
1096 mem_bm_set_bit_check(bm, pfn);
1097 }
1098 }
1099}
1100
1101/**
1102 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1103 *
1104 * Create bitmaps needed for marking page frames that should not be saved and
1105 * free page frames. The forbidden_pages_map and free_pages_map pointers are
1106 * only modified if everything goes well, because we don't want the bits to be
1107 * touched before both bitmaps are set up.
1108 */
1109int create_basic_memory_bitmaps(void)
1110{
1111 struct memory_bitmap *bm1, *bm2;
1112 int error = 0;
1113
1114 if (forbidden_pages_map && free_pages_map)
1115 return 0;
1116 else
1117 BUG_ON(forbidden_pages_map || free_pages_map);
1118
1119 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1120 if (!bm1)
1121 return -ENOMEM;
1122
1123 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1124 if (error)
1125 goto Free_first_object;
1126
1127 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1128 if (!bm2)
1129 goto Free_first_bitmap;
1130
1131 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1132 if (error)
1133 goto Free_second_object;
1134
1135 forbidden_pages_map = bm1;
1136 free_pages_map = bm2;
1137 mark_nosave_pages(forbidden_pages_map);
1138
1139 pr_debug("Basic memory bitmaps created\n");
1140
1141 return 0;
1142
1143 Free_second_object:
1144 kfree(bm2);
1145 Free_first_bitmap:
1146 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1147 Free_first_object:
1148 kfree(bm1);
1149 return -ENOMEM;
1150}
1151
1152/**
1153 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1154 *
1155 * Free memory bitmaps allocated by create_basic_memory_bitmaps(). The
1156 * auxiliary pointers are necessary so that the bitmaps themselves are not
1157 * referred to while they are being freed.
1158 */
1159void free_basic_memory_bitmaps(void)
1160{
1161 struct memory_bitmap *bm1, *bm2;
1162
1163 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1164 return;
1165
1166 bm1 = forbidden_pages_map;
1167 bm2 = free_pages_map;
1168 forbidden_pages_map = NULL;
1169 free_pages_map = NULL;
1170 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1171 kfree(bm1);
1172 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1173 kfree(bm2);
1174
1175 pr_debug("Basic memory bitmaps freed\n");
1176}
1177
1178static void clear_or_poison_free_page(struct page *page)
1179{
1180 if (page_poisoning_enabled_static())
1181 __kernel_poison_pages(page, 1);
1182 else if (want_init_on_free())
1183 clear_highpage(page);
1184}
1185
1186void clear_or_poison_free_pages(void)
1187{
1188 struct memory_bitmap *bm = free_pages_map;
1189 unsigned long pfn;
1190
1191 if (WARN_ON(!(free_pages_map)))
1192 return;
1193
1194 if (page_poisoning_enabled() || want_init_on_free()) {
1195 memory_bm_position_reset(bm);
1196 pfn = memory_bm_next_pfn(bm);
1197 while (pfn != BM_END_OF_MAP) {
1198 if (pfn_valid(pfn))
1199 clear_or_poison_free_page(pfn_to_page(pfn));
1200
1201 pfn = memory_bm_next_pfn(bm);
1202 }
1203 memory_bm_position_reset(bm);
1204 pr_info("free pages cleared after restore\n");
1205 }
1206}
1207
1208/**
1209 * snapshot_additional_pages - Estimate the number of extra pages needed.
1210 * @zone: Memory zone to carry out the computation for.
1211 *
1212 * Estimate the number of additional pages needed for setting up a hibernation
1213 * image data structures for @zone (usually, the returned value is greater than
1214 * the exact number).
1215 */
1216unsigned int snapshot_additional_pages(struct zone *zone)
1217{
1218 unsigned int rtree, nodes;
1219
1220 rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1221 rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1222 LINKED_PAGE_DATA_SIZE);
1223 while (nodes > 1) {
1224 nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1225 rtree += nodes;
1226 }
1227
1228 return 2 * rtree;
1229}
1230
1231#ifdef CONFIG_HIGHMEM
1232/**
1233 * count_free_highmem_pages - Compute the total number of free highmem pages.
1234 *
1235 * The returned number is system-wide.
1236 */
1237static unsigned int count_free_highmem_pages(void)
1238{
1239 struct zone *zone;
1240 unsigned int cnt = 0;
1241
1242 for_each_populated_zone(zone)
1243 if (is_highmem(zone))
1244 cnt += zone_page_state(zone, NR_FREE_PAGES);
1245
1246 return cnt;
1247}
1248
1249/**
1250 * saveable_highmem_page - Check if a highmem page is saveable.
1251 *
1252 * Determine whether a highmem page should be included in a hibernation image.
1253 *
1254 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1255 * and it isn't part of a free chunk of pages.
1256 */
1257static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1258{
1259 struct page *page;
1260
1261 if (!pfn_valid(pfn))
1262 return NULL;
1263
1264 page = pfn_to_online_page(pfn);
1265 if (!page || page_zone(page) != zone)
1266 return NULL;
1267
1268 BUG_ON(!PageHighMem(page));
1269
1270 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1271 return NULL;
1272
1273 if (PageReserved(page) || PageOffline(page))
1274 return NULL;
1275
1276 if (page_is_guard(page))
1277 return NULL;
1278
1279 return page;
1280}
1281
1282/**
1283 * count_highmem_pages - Compute the total number of saveable highmem pages.
1284 */
1285static unsigned int count_highmem_pages(void)
1286{
1287 struct zone *zone;
1288 unsigned int n = 0;
1289
1290 for_each_populated_zone(zone) {
1291 unsigned long pfn, max_zone_pfn;
1292
1293 if (!is_highmem(zone))
1294 continue;
1295
1296 mark_free_pages(zone);
1297 max_zone_pfn = zone_end_pfn(zone);
1298 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1299 if (saveable_highmem_page(zone, pfn))
1300 n++;
1301 }
1302 return n;
1303}
1304#else
1305static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1306{
1307 return NULL;
1308}
1309#endif /* CONFIG_HIGHMEM */
1310
1311/**
1312 * saveable_page - Check if the given page is saveable.
1313 *
1314 * Determine whether a non-highmem page should be included in a hibernation
1315 * image.
1316 *
1317 * We should save the page if it isn't Nosave, and is not in the range
1318 * of pages statically defined as 'unsaveable', and it isn't part of
1319 * a free chunk of pages.
1320 */
1321static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1322{
1323 struct page *page;
1324
1325 if (!pfn_valid(pfn))
1326 return NULL;
1327
1328 page = pfn_to_online_page(pfn);
1329 if (!page || page_zone(page) != zone)
1330 return NULL;
1331
1332 BUG_ON(PageHighMem(page));
1333
1334 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1335 return NULL;
1336
1337 if (PageOffline(page))
1338 return NULL;
1339
1340 if (PageReserved(page)
1341 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1342 return NULL;
1343
1344 if (page_is_guard(page))
1345 return NULL;
1346
1347 return page;
1348}
1349
1350/**
1351 * count_data_pages - Compute the total number of saveable non-highmem pages.
1352 */
1353static unsigned int count_data_pages(void)
1354{
1355 struct zone *zone;
1356 unsigned long pfn, max_zone_pfn;
1357 unsigned int n = 0;
1358
1359 for_each_populated_zone(zone) {
1360 if (is_highmem(zone))
1361 continue;
1362
1363 mark_free_pages(zone);
1364 max_zone_pfn = zone_end_pfn(zone);
1365 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1366 if (saveable_page(zone, pfn))
1367 n++;
1368 }
1369 return n;
1370}
1371
1372/*
1373 * This is needed, because copy_page and memcpy are not usable for copying
1374 * task structs.
1375 */
1376static inline void do_copy_page(long *dst, long *src)
1377{
1378 int n;
1379
1380 for (n = PAGE_SIZE / sizeof(long); n; n--)
1381 *dst++ = *src++;
1382}
1383
1384/**
1385 * safe_copy_page - Copy a page in a safe way.
1386 *
1387 * Check if the page we are going to copy is marked as present in the kernel
1388 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1389 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1390 * always returns 'true'.
1391 */
1392static void safe_copy_page(void *dst, struct page *s_page)
1393{
1394 if (kernel_page_present(s_page)) {
1395 do_copy_page(dst, page_address(s_page));
1396 } else {
1397 hibernate_map_page(s_page);
1398 do_copy_page(dst, page_address(s_page));
1399 hibernate_unmap_page(s_page);
1400 }
1401}
1402
1403#ifdef CONFIG_HIGHMEM
1404static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1405{
1406 return is_highmem(zone) ?
1407 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1408}
1409
1410static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1411{
1412 struct page *s_page, *d_page;
1413 void *src, *dst;
1414
1415 s_page = pfn_to_page(src_pfn);
1416 d_page = pfn_to_page(dst_pfn);
1417 if (PageHighMem(s_page)) {
1418 src = kmap_atomic(s_page);
1419 dst = kmap_atomic(d_page);
1420 do_copy_page(dst, src);
1421 kunmap_atomic(dst);
1422 kunmap_atomic(src);
1423 } else {
1424 if (PageHighMem(d_page)) {
1425 /*
1426 * The page pointed to by src may contain some kernel
1427 * data modified by kmap_atomic()
1428 */
1429 safe_copy_page(buffer, s_page);
1430 dst = kmap_atomic(d_page);
1431 copy_page(dst, buffer);
1432 kunmap_atomic(dst);
1433 } else {
1434 safe_copy_page(page_address(d_page), s_page);
1435 }
1436 }
1437}
1438#else
1439#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1440
1441static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1442{
1443 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1444 pfn_to_page(src_pfn));
1445}
1446#endif /* CONFIG_HIGHMEM */
1447
1448static void copy_data_pages(struct memory_bitmap *copy_bm,
1449 struct memory_bitmap *orig_bm)
1450{
1451 struct zone *zone;
1452 unsigned long pfn;
1453
1454 for_each_populated_zone(zone) {
1455 unsigned long max_zone_pfn;
1456
1457 mark_free_pages(zone);
1458 max_zone_pfn = zone_end_pfn(zone);
1459 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1460 if (page_is_saveable(zone, pfn))
1461 memory_bm_set_bit(orig_bm, pfn);
1462 }
1463 memory_bm_position_reset(orig_bm);
1464 memory_bm_position_reset(copy_bm);
1465 for(;;) {
1466 pfn = memory_bm_next_pfn(orig_bm);
1467 if (unlikely(pfn == BM_END_OF_MAP))
1468 break;
1469 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1470 }
1471}
1472
1473/* Total number of image pages */
1474static unsigned int nr_copy_pages;
1475/* Number of pages needed for saving the original pfns of the image pages */
1476static unsigned int nr_meta_pages;
1477/*
1478 * Numbers of normal and highmem page frames allocated for hibernation image
1479 * before suspending devices.
1480 */
1481static unsigned int alloc_normal, alloc_highmem;
1482/*
1483 * Memory bitmap used for marking saveable pages (during hibernation) or
1484 * hibernation image pages (during restore)
1485 */
1486static struct memory_bitmap orig_bm;
1487/*
1488 * Memory bitmap used during hibernation for marking allocated page frames that
1489 * will contain copies of saveable pages. During restore it is initially used
1490 * for marking hibernation image pages, but then the set bits from it are
1491 * duplicated in @orig_bm and it is released. On highmem systems it is next
1492 * used for marking "safe" highmem pages, but it has to be reinitialized for
1493 * this purpose.
1494 */
1495static struct memory_bitmap copy_bm;
1496
1497/**
1498 * swsusp_free - Free pages allocated for hibernation image.
1499 *
1500 * Image pages are allocated before snapshot creation, so they need to be
1501 * released after resume.
1502 */
1503void swsusp_free(void)
1504{
1505 unsigned long fb_pfn, fr_pfn;
1506
1507 if (!forbidden_pages_map || !free_pages_map)
1508 goto out;
1509
1510 memory_bm_position_reset(forbidden_pages_map);
1511 memory_bm_position_reset(free_pages_map);
1512
1513loop:
1514 fr_pfn = memory_bm_next_pfn(free_pages_map);
1515 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1516
1517 /*
1518 * Find the next bit set in both bitmaps. This is guaranteed to
1519 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1520 */
1521 do {
1522 if (fb_pfn < fr_pfn)
1523 fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1524 if (fr_pfn < fb_pfn)
1525 fr_pfn = memory_bm_next_pfn(free_pages_map);
1526 } while (fb_pfn != fr_pfn);
1527
1528 if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1529 struct page *page = pfn_to_page(fr_pfn);
1530
1531 memory_bm_clear_current(forbidden_pages_map);
1532 memory_bm_clear_current(free_pages_map);
1533 hibernate_restore_unprotect_page(page_address(page));
1534 __free_page(page);
1535 goto loop;
1536 }
1537
1538out:
1539 nr_copy_pages = 0;
1540 nr_meta_pages = 0;
1541 restore_pblist = NULL;
1542 buffer = NULL;
1543 alloc_normal = 0;
1544 alloc_highmem = 0;
1545 hibernate_restore_protection_end();
1546}
1547
1548/* Helper functions used for the shrinking of memory. */
1549
1550#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1551
1552/**
1553 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1554 * @nr_pages: Number of page frames to allocate.
1555 * @mask: GFP flags to use for the allocation.
1556 *
1557 * Return value: Number of page frames actually allocated
1558 */
1559static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1560{
1561 unsigned long nr_alloc = 0;
1562
1563 while (nr_pages > 0) {
1564 struct page *page;
1565
1566 page = alloc_image_page(mask);
1567 if (!page)
1568 break;
1569 memory_bm_set_bit(©_bm, page_to_pfn(page));
1570 if (PageHighMem(page))
1571 alloc_highmem++;
1572 else
1573 alloc_normal++;
1574 nr_pages--;
1575 nr_alloc++;
1576 }
1577
1578 return nr_alloc;
1579}
1580
1581static unsigned long preallocate_image_memory(unsigned long nr_pages,
1582 unsigned long avail_normal)
1583{
1584 unsigned long alloc;
1585
1586 if (avail_normal <= alloc_normal)
1587 return 0;
1588
1589 alloc = avail_normal - alloc_normal;
1590 if (nr_pages < alloc)
1591 alloc = nr_pages;
1592
1593 return preallocate_image_pages(alloc, GFP_IMAGE);
1594}
1595
1596#ifdef CONFIG_HIGHMEM
1597static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1598{
1599 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1600}
1601
1602/**
1603 * __fraction - Compute (an approximation of) x * (multiplier / base).
1604 */
1605static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1606{
1607 return div64_u64(x * multiplier, base);
1608}
1609
1610static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1611 unsigned long highmem,
1612 unsigned long total)
1613{
1614 unsigned long alloc = __fraction(nr_pages, highmem, total);
1615
1616 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1617}
1618#else /* CONFIG_HIGHMEM */
1619static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1620{
1621 return 0;
1622}
1623
1624static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1625 unsigned long highmem,
1626 unsigned long total)
1627{
1628 return 0;
1629}
1630#endif /* CONFIG_HIGHMEM */
1631
1632/**
1633 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1634 */
1635static unsigned long free_unnecessary_pages(void)
1636{
1637 unsigned long save, to_free_normal, to_free_highmem, free;
1638
1639 save = count_data_pages();
1640 if (alloc_normal >= save) {
1641 to_free_normal = alloc_normal - save;
1642 save = 0;
1643 } else {
1644 to_free_normal = 0;
1645 save -= alloc_normal;
1646 }
1647 save += count_highmem_pages();
1648 if (alloc_highmem >= save) {
1649 to_free_highmem = alloc_highmem - save;
1650 } else {
1651 to_free_highmem = 0;
1652 save -= alloc_highmem;
1653 if (to_free_normal > save)
1654 to_free_normal -= save;
1655 else
1656 to_free_normal = 0;
1657 }
1658 free = to_free_normal + to_free_highmem;
1659
1660 memory_bm_position_reset(©_bm);
1661
1662 while (to_free_normal > 0 || to_free_highmem > 0) {
1663 unsigned long pfn = memory_bm_next_pfn(©_bm);
1664 struct page *page = pfn_to_page(pfn);
1665
1666 if (PageHighMem(page)) {
1667 if (!to_free_highmem)
1668 continue;
1669 to_free_highmem--;
1670 alloc_highmem--;
1671 } else {
1672 if (!to_free_normal)
1673 continue;
1674 to_free_normal--;
1675 alloc_normal--;
1676 }
1677 memory_bm_clear_bit(©_bm, pfn);
1678 swsusp_unset_page_forbidden(page);
1679 swsusp_unset_page_free(page);
1680 __free_page(page);
1681 }
1682
1683 return free;
1684}
1685
1686/**
1687 * minimum_image_size - Estimate the minimum acceptable size of an image.
1688 * @saveable: Number of saveable pages in the system.
1689 *
1690 * We want to avoid attempting to free too much memory too hard, so estimate the
1691 * minimum acceptable size of a hibernation image to use as the lower limit for
1692 * preallocating memory.
1693 *
1694 * We assume that the minimum image size should be proportional to
1695 *
1696 * [number of saveable pages] - [number of pages that can be freed in theory]
1697 *
1698 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1699 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1700 */
1701static unsigned long minimum_image_size(unsigned long saveable)
1702{
1703 unsigned long size;
1704
1705 size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1706 + global_node_page_state(NR_ACTIVE_ANON)
1707 + global_node_page_state(NR_INACTIVE_ANON)
1708 + global_node_page_state(NR_ACTIVE_FILE)
1709 + global_node_page_state(NR_INACTIVE_FILE);
1710
1711 return saveable <= size ? 0 : saveable - size;
1712}
1713
1714/**
1715 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1716 *
1717 * To create a hibernation image it is necessary to make a copy of every page
1718 * frame in use. We also need a number of page frames to be free during
1719 * hibernation for allocations made while saving the image and for device
1720 * drivers, in case they need to allocate memory from their hibernation
1721 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1722 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1723 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1724 * total number of available page frames and allocate at least
1725 *
1726 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1727 * - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1728 *
1729 * of them, which corresponds to the maximum size of a hibernation image.
1730 *
1731 * If image_size is set below the number following from the above formula,
1732 * the preallocation of memory is continued until the total number of saveable
1733 * pages in the system is below the requested image size or the minimum
1734 * acceptable image size returned by minimum_image_size(), whichever is greater.
1735 */
1736int hibernate_preallocate_memory(void)
1737{
1738 struct zone *zone;
1739 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1740 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1741 ktime_t start, stop;
1742 int error;
1743
1744 pr_info("Preallocating image memory\n");
1745 start = ktime_get();
1746
1747 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1748 if (error) {
1749 pr_err("Cannot allocate original bitmap\n");
1750 goto err_out;
1751 }
1752
1753 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
1754 if (error) {
1755 pr_err("Cannot allocate copy bitmap\n");
1756 goto err_out;
1757 }
1758
1759 alloc_normal = 0;
1760 alloc_highmem = 0;
1761
1762 /* Count the number of saveable data pages. */
1763 save_highmem = count_highmem_pages();
1764 saveable = count_data_pages();
1765
1766 /*
1767 * Compute the total number of page frames we can use (count) and the
1768 * number of pages needed for image metadata (size).
1769 */
1770 count = saveable;
1771 saveable += save_highmem;
1772 highmem = save_highmem;
1773 size = 0;
1774 for_each_populated_zone(zone) {
1775 size += snapshot_additional_pages(zone);
1776 if (is_highmem(zone))
1777 highmem += zone_page_state(zone, NR_FREE_PAGES);
1778 else
1779 count += zone_page_state(zone, NR_FREE_PAGES);
1780 }
1781 avail_normal = count;
1782 count += highmem;
1783 count -= totalreserve_pages;
1784
1785 /* Compute the maximum number of saveable pages to leave in memory. */
1786 max_size = (count - (size + PAGES_FOR_IO)) / 2
1787 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1788 /* Compute the desired number of image pages specified by image_size. */
1789 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1790 if (size > max_size)
1791 size = max_size;
1792 /*
1793 * If the desired number of image pages is at least as large as the
1794 * current number of saveable pages in memory, allocate page frames for
1795 * the image and we're done.
1796 */
1797 if (size >= saveable) {
1798 pages = preallocate_image_highmem(save_highmem);
1799 pages += preallocate_image_memory(saveable - pages, avail_normal);
1800 goto out;
1801 }
1802
1803 /* Estimate the minimum size of the image. */
1804 pages = minimum_image_size(saveable);
1805 /*
1806 * To avoid excessive pressure on the normal zone, leave room in it to
1807 * accommodate an image of the minimum size (unless it's already too
1808 * small, in which case don't preallocate pages from it at all).
1809 */
1810 if (avail_normal > pages)
1811 avail_normal -= pages;
1812 else
1813 avail_normal = 0;
1814 if (size < pages)
1815 size = min_t(unsigned long, pages, max_size);
1816
1817 /*
1818 * Let the memory management subsystem know that we're going to need a
1819 * large number of page frames to allocate and make it free some memory.
1820 * NOTE: If this is not done, performance will be hurt badly in some
1821 * test cases.
1822 */
1823 shrink_all_memory(saveable - size);
1824
1825 /*
1826 * The number of saveable pages in memory was too high, so apply some
1827 * pressure to decrease it. First, make room for the largest possible
1828 * image and fail if that doesn't work. Next, try to decrease the size
1829 * of the image as much as indicated by 'size' using allocations from
1830 * highmem and non-highmem zones separately.
1831 */
1832 pages_highmem = preallocate_image_highmem(highmem / 2);
1833 alloc = count - max_size;
1834 if (alloc > pages_highmem)
1835 alloc -= pages_highmem;
1836 else
1837 alloc = 0;
1838 pages = preallocate_image_memory(alloc, avail_normal);
1839 if (pages < alloc) {
1840 /* We have exhausted non-highmem pages, try highmem. */
1841 alloc -= pages;
1842 pages += pages_highmem;
1843 pages_highmem = preallocate_image_highmem(alloc);
1844 if (pages_highmem < alloc) {
1845 pr_err("Image allocation is %lu pages short\n",
1846 alloc - pages_highmem);
1847 goto err_out;
1848 }
1849 pages += pages_highmem;
1850 /*
1851 * size is the desired number of saveable pages to leave in
1852 * memory, so try to preallocate (all memory - size) pages.
1853 */
1854 alloc = (count - pages) - size;
1855 pages += preallocate_image_highmem(alloc);
1856 } else {
1857 /*
1858 * There are approximately max_size saveable pages at this point
1859 * and we want to reduce this number down to size.
1860 */
1861 alloc = max_size - size;
1862 size = preallocate_highmem_fraction(alloc, highmem, count);
1863 pages_highmem += size;
1864 alloc -= size;
1865 size = preallocate_image_memory(alloc, avail_normal);
1866 pages_highmem += preallocate_image_highmem(alloc - size);
1867 pages += pages_highmem + size;
1868 }
1869
1870 /*
1871 * We only need as many page frames for the image as there are saveable
1872 * pages in memory, but we have allocated more. Release the excessive
1873 * ones now.
1874 */
1875 pages -= free_unnecessary_pages();
1876
1877 out:
1878 stop = ktime_get();
1879 pr_info("Allocated %lu pages for snapshot\n", pages);
1880 swsusp_show_speed(start, stop, pages, "Allocated");
1881
1882 return 0;
1883
1884 err_out:
1885 swsusp_free();
1886 return -ENOMEM;
1887}
1888
1889#ifdef CONFIG_HIGHMEM
1890/**
1891 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1892 *
1893 * Compute the number of non-highmem pages that will be necessary for creating
1894 * copies of highmem pages.
1895 */
1896static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1897{
1898 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1899
1900 if (free_highmem >= nr_highmem)
1901 nr_highmem = 0;
1902 else
1903 nr_highmem -= free_highmem;
1904
1905 return nr_highmem;
1906}
1907#else
1908static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1909#endif /* CONFIG_HIGHMEM */
1910
1911/**
1912 * enough_free_mem - Check if there is enough free memory for the image.
1913 */
1914static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1915{
1916 struct zone *zone;
1917 unsigned int free = alloc_normal;
1918
1919 for_each_populated_zone(zone)
1920 if (!is_highmem(zone))
1921 free += zone_page_state(zone, NR_FREE_PAGES);
1922
1923 nr_pages += count_pages_for_highmem(nr_highmem);
1924 pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1925 nr_pages, PAGES_FOR_IO, free);
1926
1927 return free > nr_pages + PAGES_FOR_IO;
1928}
1929
1930#ifdef CONFIG_HIGHMEM
1931/**
1932 * get_highmem_buffer - Allocate a buffer for highmem pages.
1933 *
1934 * If there are some highmem pages in the hibernation image, we may need a
1935 * buffer to copy them and/or load their data.
1936 */
1937static inline int get_highmem_buffer(int safe_needed)
1938{
1939 buffer = get_image_page(GFP_ATOMIC, safe_needed);
1940 return buffer ? 0 : -ENOMEM;
1941}
1942
1943/**
1944 * alloc_highmem_pages - Allocate some highmem pages for the image.
1945 *
1946 * Try to allocate as many pages as needed, but if the number of free highmem
1947 * pages is less than that, allocate them all.
1948 */
1949static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1950 unsigned int nr_highmem)
1951{
1952 unsigned int to_alloc = count_free_highmem_pages();
1953
1954 if (to_alloc > nr_highmem)
1955 to_alloc = nr_highmem;
1956
1957 nr_highmem -= to_alloc;
1958 while (to_alloc-- > 0) {
1959 struct page *page;
1960
1961 page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1962 memory_bm_set_bit(bm, page_to_pfn(page));
1963 }
1964 return nr_highmem;
1965}
1966#else
1967static inline int get_highmem_buffer(int safe_needed) { return 0; }
1968
1969static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1970 unsigned int n) { return 0; }
1971#endif /* CONFIG_HIGHMEM */
1972
1973/**
1974 * swsusp_alloc - Allocate memory for hibernation image.
1975 *
1976 * We first try to allocate as many highmem pages as there are
1977 * saveable highmem pages in the system. If that fails, we allocate
1978 * non-highmem pages for the copies of the remaining highmem ones.
1979 *
1980 * In this approach it is likely that the copies of highmem pages will
1981 * also be located in the high memory, because of the way in which
1982 * copy_data_pages() works.
1983 */
1984static int swsusp_alloc(struct memory_bitmap *copy_bm,
1985 unsigned int nr_pages, unsigned int nr_highmem)
1986{
1987 if (nr_highmem > 0) {
1988 if (get_highmem_buffer(PG_ANY))
1989 goto err_out;
1990 if (nr_highmem > alloc_highmem) {
1991 nr_highmem -= alloc_highmem;
1992 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1993 }
1994 }
1995 if (nr_pages > alloc_normal) {
1996 nr_pages -= alloc_normal;
1997 while (nr_pages-- > 0) {
1998 struct page *page;
1999
2000 page = alloc_image_page(GFP_ATOMIC);
2001 if (!page)
2002 goto err_out;
2003 memory_bm_set_bit(copy_bm, page_to_pfn(page));
2004 }
2005 }
2006
2007 return 0;
2008
2009 err_out:
2010 swsusp_free();
2011 return -ENOMEM;
2012}
2013
2014asmlinkage __visible int swsusp_save(void)
2015{
2016 unsigned int nr_pages, nr_highmem;
2017
2018 pr_info("Creating image:\n");
2019
2020 drain_local_pages(NULL);
2021 nr_pages = count_data_pages();
2022 nr_highmem = count_highmem_pages();
2023 pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2024
2025 if (!enough_free_mem(nr_pages, nr_highmem)) {
2026 pr_err("Not enough free memory\n");
2027 return -ENOMEM;
2028 }
2029
2030 if (swsusp_alloc(©_bm, nr_pages, nr_highmem)) {
2031 pr_err("Memory allocation failed\n");
2032 return -ENOMEM;
2033 }
2034
2035 /*
2036 * During allocating of suspend pagedir, new cold pages may appear.
2037 * Kill them.
2038 */
2039 drain_local_pages(NULL);
2040 copy_data_pages(©_bm, &orig_bm);
2041
2042 /*
2043 * End of critical section. From now on, we can write to memory,
2044 * but we should not touch disk. This specially means we must _not_
2045 * touch swap space! Except we must write out our image of course.
2046 */
2047
2048 nr_pages += nr_highmem;
2049 nr_copy_pages = nr_pages;
2050 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2051
2052 pr_info("Image created (%d pages copied)\n", nr_pages);
2053
2054 return 0;
2055}
2056
2057#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2058static int init_header_complete(struct swsusp_info *info)
2059{
2060 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2061 info->version_code = LINUX_VERSION_CODE;
2062 return 0;
2063}
2064
2065static const char *check_image_kernel(struct swsusp_info *info)
2066{
2067 if (info->version_code != LINUX_VERSION_CODE)
2068 return "kernel version";
2069 if (strcmp(info->uts.sysname,init_utsname()->sysname))
2070 return "system type";
2071 if (strcmp(info->uts.release,init_utsname()->release))
2072 return "kernel release";
2073 if (strcmp(info->uts.version,init_utsname()->version))
2074 return "version";
2075 if (strcmp(info->uts.machine,init_utsname()->machine))
2076 return "machine";
2077 return NULL;
2078}
2079#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2080
2081unsigned long snapshot_get_image_size(void)
2082{
2083 return nr_copy_pages + nr_meta_pages + 1;
2084}
2085
2086static int init_header(struct swsusp_info *info)
2087{
2088 memset(info, 0, sizeof(struct swsusp_info));
2089 info->num_physpages = get_num_physpages();
2090 info->image_pages = nr_copy_pages;
2091 info->pages = snapshot_get_image_size();
2092 info->size = info->pages;
2093 info->size <<= PAGE_SHIFT;
2094 return init_header_complete(info);
2095}
2096
2097/**
2098 * pack_pfns - Prepare PFNs for saving.
2099 * @bm: Memory bitmap.
2100 * @buf: Memory buffer to store the PFNs in.
2101 *
2102 * PFNs corresponding to set bits in @bm are stored in the area of memory
2103 * pointed to by @buf (1 page at a time).
2104 */
2105static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2106{
2107 int j;
2108
2109 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2110 buf[j] = memory_bm_next_pfn(bm);
2111 if (unlikely(buf[j] == BM_END_OF_MAP))
2112 break;
2113 }
2114}
2115
2116/**
2117 * snapshot_read_next - Get the address to read the next image page from.
2118 * @handle: Snapshot handle to be used for the reading.
2119 *
2120 * On the first call, @handle should point to a zeroed snapshot_handle
2121 * structure. The structure gets populated then and a pointer to it should be
2122 * passed to this function every next time.
2123 *
2124 * On success, the function returns a positive number. Then, the caller
2125 * is allowed to read up to the returned number of bytes from the memory
2126 * location computed by the data_of() macro.
2127 *
2128 * The function returns 0 to indicate the end of the data stream condition,
2129 * and negative numbers are returned on errors. If that happens, the structure
2130 * pointed to by @handle is not updated and should not be used any more.
2131 */
2132int snapshot_read_next(struct snapshot_handle *handle)
2133{
2134 if (handle->cur > nr_meta_pages + nr_copy_pages)
2135 return 0;
2136
2137 if (!buffer) {
2138 /* This makes the buffer be freed by swsusp_free() */
2139 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2140 if (!buffer)
2141 return -ENOMEM;
2142 }
2143 if (!handle->cur) {
2144 int error;
2145
2146 error = init_header((struct swsusp_info *)buffer);
2147 if (error)
2148 return error;
2149 handle->buffer = buffer;
2150 memory_bm_position_reset(&orig_bm);
2151 memory_bm_position_reset(©_bm);
2152 } else if (handle->cur <= nr_meta_pages) {
2153 clear_page(buffer);
2154 pack_pfns(buffer, &orig_bm);
2155 } else {
2156 struct page *page;
2157
2158 page = pfn_to_page(memory_bm_next_pfn(©_bm));
2159 if (PageHighMem(page)) {
2160 /*
2161 * Highmem pages are copied to the buffer,
2162 * because we can't return with a kmapped
2163 * highmem page (we may not be called again).
2164 */
2165 void *kaddr;
2166
2167 kaddr = kmap_atomic(page);
2168 copy_page(buffer, kaddr);
2169 kunmap_atomic(kaddr);
2170 handle->buffer = buffer;
2171 } else {
2172 handle->buffer = page_address(page);
2173 }
2174 }
2175 handle->cur++;
2176 return PAGE_SIZE;
2177}
2178
2179static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2180 struct memory_bitmap *src)
2181{
2182 unsigned long pfn;
2183
2184 memory_bm_position_reset(src);
2185 pfn = memory_bm_next_pfn(src);
2186 while (pfn != BM_END_OF_MAP) {
2187 memory_bm_set_bit(dst, pfn);
2188 pfn = memory_bm_next_pfn(src);
2189 }
2190}
2191
2192/**
2193 * mark_unsafe_pages - Mark pages that were used before hibernation.
2194 *
2195 * Mark the pages that cannot be used for storing the image during restoration,
2196 * because they conflict with the pages that had been used before hibernation.
2197 */
2198static void mark_unsafe_pages(struct memory_bitmap *bm)
2199{
2200 unsigned long pfn;
2201
2202 /* Clear the "free"/"unsafe" bit for all PFNs */
2203 memory_bm_position_reset(free_pages_map);
2204 pfn = memory_bm_next_pfn(free_pages_map);
2205 while (pfn != BM_END_OF_MAP) {
2206 memory_bm_clear_current(free_pages_map);
2207 pfn = memory_bm_next_pfn(free_pages_map);
2208 }
2209
2210 /* Mark pages that correspond to the "original" PFNs as "unsafe" */
2211 duplicate_memory_bitmap(free_pages_map, bm);
2212
2213 allocated_unsafe_pages = 0;
2214}
2215
2216static int check_header(struct swsusp_info *info)
2217{
2218 const char *reason;
2219
2220 reason = check_image_kernel(info);
2221 if (!reason && info->num_physpages != get_num_physpages())
2222 reason = "memory size";
2223 if (reason) {
2224 pr_err("Image mismatch: %s\n", reason);
2225 return -EPERM;
2226 }
2227 return 0;
2228}
2229
2230/**
2231 * load_header - Check the image header and copy the data from it.
2232 */
2233static int load_header(struct swsusp_info *info)
2234{
2235 int error;
2236
2237 restore_pblist = NULL;
2238 error = check_header(info);
2239 if (!error) {
2240 nr_copy_pages = info->image_pages;
2241 nr_meta_pages = info->pages - info->image_pages - 1;
2242 }
2243 return error;
2244}
2245
2246/**
2247 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2248 * @bm: Memory bitmap.
2249 * @buf: Area of memory containing the PFNs.
2250 *
2251 * For each element of the array pointed to by @buf (1 page at a time), set the
2252 * corresponding bit in @bm.
2253 */
2254static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2255{
2256 int j;
2257
2258 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2259 if (unlikely(buf[j] == BM_END_OF_MAP))
2260 break;
2261
2262 if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) {
2263 memory_bm_set_bit(bm, buf[j]);
2264 } else {
2265 if (!pfn_valid(buf[j]))
2266 pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2267 (unsigned long long)PFN_PHYS(buf[j]));
2268 return -EFAULT;
2269 }
2270 }
2271
2272 return 0;
2273}
2274
2275#ifdef CONFIG_HIGHMEM
2276/*
2277 * struct highmem_pbe is used for creating the list of highmem pages that
2278 * should be restored atomically during the resume from disk, because the page
2279 * frames they have occupied before the suspend are in use.
2280 */
2281struct highmem_pbe {
2282 struct page *copy_page; /* data is here now */
2283 struct page *orig_page; /* data was here before the suspend */
2284 struct highmem_pbe *next;
2285};
2286
2287/*
2288 * List of highmem PBEs needed for restoring the highmem pages that were
2289 * allocated before the suspend and included in the suspend image, but have
2290 * also been allocated by the "resume" kernel, so their contents cannot be
2291 * written directly to their "original" page frames.
2292 */
2293static struct highmem_pbe *highmem_pblist;
2294
2295/**
2296 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2297 * @bm: Memory bitmap.
2298 *
2299 * The bits in @bm that correspond to image pages are assumed to be set.
2300 */
2301static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2302{
2303 unsigned long pfn;
2304 unsigned int cnt = 0;
2305
2306 memory_bm_position_reset(bm);
2307 pfn = memory_bm_next_pfn(bm);
2308 while (pfn != BM_END_OF_MAP) {
2309 if (PageHighMem(pfn_to_page(pfn)))
2310 cnt++;
2311
2312 pfn = memory_bm_next_pfn(bm);
2313 }
2314 return cnt;
2315}
2316
2317static unsigned int safe_highmem_pages;
2318
2319static struct memory_bitmap *safe_highmem_bm;
2320
2321/**
2322 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2323 * @bm: Pointer to an uninitialized memory bitmap structure.
2324 * @nr_highmem_p: Pointer to the number of highmem image pages.
2325 *
2326 * Try to allocate as many highmem pages as there are highmem image pages
2327 * (@nr_highmem_p points to the variable containing the number of highmem image
2328 * pages). The pages that are "safe" (ie. will not be overwritten when the
2329 * hibernation image is restored entirely) have the corresponding bits set in
2330 * @bm (it must be uninitialized).
2331 *
2332 * NOTE: This function should not be called if there are no highmem image pages.
2333 */
2334static int prepare_highmem_image(struct memory_bitmap *bm,
2335 unsigned int *nr_highmem_p)
2336{
2337 unsigned int to_alloc;
2338
2339 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2340 return -ENOMEM;
2341
2342 if (get_highmem_buffer(PG_SAFE))
2343 return -ENOMEM;
2344
2345 to_alloc = count_free_highmem_pages();
2346 if (to_alloc > *nr_highmem_p)
2347 to_alloc = *nr_highmem_p;
2348 else
2349 *nr_highmem_p = to_alloc;
2350
2351 safe_highmem_pages = 0;
2352 while (to_alloc-- > 0) {
2353 struct page *page;
2354
2355 page = alloc_page(__GFP_HIGHMEM);
2356 if (!swsusp_page_is_free(page)) {
2357 /* The page is "safe", set its bit the bitmap */
2358 memory_bm_set_bit(bm, page_to_pfn(page));
2359 safe_highmem_pages++;
2360 }
2361 /* Mark the page as allocated */
2362 swsusp_set_page_forbidden(page);
2363 swsusp_set_page_free(page);
2364 }
2365 memory_bm_position_reset(bm);
2366 safe_highmem_bm = bm;
2367 return 0;
2368}
2369
2370static struct page *last_highmem_page;
2371
2372/**
2373 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2374 *
2375 * For a given highmem image page get a buffer that suspend_write_next() should
2376 * return to its caller to write to.
2377 *
2378 * If the page is to be saved to its "original" page frame or a copy of
2379 * the page is to be made in the highmem, @buffer is returned. Otherwise,
2380 * the copy of the page is to be made in normal memory, so the address of
2381 * the copy is returned.
2382 *
2383 * If @buffer is returned, the caller of suspend_write_next() will write
2384 * the page's contents to @buffer, so they will have to be copied to the
2385 * right location on the next call to suspend_write_next() and it is done
2386 * with the help of copy_last_highmem_page(). For this purpose, if
2387 * @buffer is returned, @last_highmem_page is set to the page to which
2388 * the data will have to be copied from @buffer.
2389 */
2390static void *get_highmem_page_buffer(struct page *page,
2391 struct chain_allocator *ca)
2392{
2393 struct highmem_pbe *pbe;
2394 void *kaddr;
2395
2396 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2397 /*
2398 * We have allocated the "original" page frame and we can
2399 * use it directly to store the loaded page.
2400 */
2401 last_highmem_page = page;
2402 return buffer;
2403 }
2404 /*
2405 * The "original" page frame has not been allocated and we have to
2406 * use a "safe" page frame to store the loaded page.
2407 */
2408 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2409 if (!pbe) {
2410 swsusp_free();
2411 return ERR_PTR(-ENOMEM);
2412 }
2413 pbe->orig_page = page;
2414 if (safe_highmem_pages > 0) {
2415 struct page *tmp;
2416
2417 /* Copy of the page will be stored in high memory */
2418 kaddr = buffer;
2419 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2420 safe_highmem_pages--;
2421 last_highmem_page = tmp;
2422 pbe->copy_page = tmp;
2423 } else {
2424 /* Copy of the page will be stored in normal memory */
2425 kaddr = safe_pages_list;
2426 safe_pages_list = safe_pages_list->next;
2427 pbe->copy_page = virt_to_page(kaddr);
2428 }
2429 pbe->next = highmem_pblist;
2430 highmem_pblist = pbe;
2431 return kaddr;
2432}
2433
2434/**
2435 * copy_last_highmem_page - Copy most the most recent highmem image page.
2436 *
2437 * Copy the contents of a highmem image from @buffer, where the caller of
2438 * snapshot_write_next() has stored them, to the right location represented by
2439 * @last_highmem_page .
2440 */
2441static void copy_last_highmem_page(void)
2442{
2443 if (last_highmem_page) {
2444 void *dst;
2445
2446 dst = kmap_atomic(last_highmem_page);
2447 copy_page(dst, buffer);
2448 kunmap_atomic(dst);
2449 last_highmem_page = NULL;
2450 }
2451}
2452
2453static inline int last_highmem_page_copied(void)
2454{
2455 return !last_highmem_page;
2456}
2457
2458static inline void free_highmem_data(void)
2459{
2460 if (safe_highmem_bm)
2461 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2462
2463 if (buffer)
2464 free_image_page(buffer, PG_UNSAFE_CLEAR);
2465}
2466#else
2467static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2468
2469static inline int prepare_highmem_image(struct memory_bitmap *bm,
2470 unsigned int *nr_highmem_p) { return 0; }
2471
2472static inline void *get_highmem_page_buffer(struct page *page,
2473 struct chain_allocator *ca)
2474{
2475 return ERR_PTR(-EINVAL);
2476}
2477
2478static inline void copy_last_highmem_page(void) {}
2479static inline int last_highmem_page_copied(void) { return 1; }
2480static inline void free_highmem_data(void) {}
2481#endif /* CONFIG_HIGHMEM */
2482
2483#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2484
2485/**
2486 * prepare_image - Make room for loading hibernation image.
2487 * @new_bm: Uninitialized memory bitmap structure.
2488 * @bm: Memory bitmap with unsafe pages marked.
2489 *
2490 * Use @bm to mark the pages that will be overwritten in the process of
2491 * restoring the system memory state from the suspend image ("unsafe" pages)
2492 * and allocate memory for the image.
2493 *
2494 * The idea is to allocate a new memory bitmap first and then allocate
2495 * as many pages as needed for image data, but without specifying what those
2496 * pages will be used for just yet. Instead, we mark them all as allocated and
2497 * create a lists of "safe" pages to be used later. On systems with high
2498 * memory a list of "safe" highmem pages is created too.
2499 */
2500static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2501{
2502 unsigned int nr_pages, nr_highmem;
2503 struct linked_page *lp;
2504 int error;
2505
2506 /* If there is no highmem, the buffer will not be necessary */
2507 free_image_page(buffer, PG_UNSAFE_CLEAR);
2508 buffer = NULL;
2509
2510 nr_highmem = count_highmem_image_pages(bm);
2511 mark_unsafe_pages(bm);
2512
2513 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2514 if (error)
2515 goto Free;
2516
2517 duplicate_memory_bitmap(new_bm, bm);
2518 memory_bm_free(bm, PG_UNSAFE_KEEP);
2519 if (nr_highmem > 0) {
2520 error = prepare_highmem_image(bm, &nr_highmem);
2521 if (error)
2522 goto Free;
2523 }
2524 /*
2525 * Reserve some safe pages for potential later use.
2526 *
2527 * NOTE: This way we make sure there will be enough safe pages for the
2528 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2529 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2530 *
2531 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2532 */
2533 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2534 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2535 while (nr_pages > 0) {
2536 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2537 if (!lp) {
2538 error = -ENOMEM;
2539 goto Free;
2540 }
2541 lp->next = safe_pages_list;
2542 safe_pages_list = lp;
2543 nr_pages--;
2544 }
2545 /* Preallocate memory for the image */
2546 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2547 while (nr_pages > 0) {
2548 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2549 if (!lp) {
2550 error = -ENOMEM;
2551 goto Free;
2552 }
2553 if (!swsusp_page_is_free(virt_to_page(lp))) {
2554 /* The page is "safe", add it to the list */
2555 lp->next = safe_pages_list;
2556 safe_pages_list = lp;
2557 }
2558 /* Mark the page as allocated */
2559 swsusp_set_page_forbidden(virt_to_page(lp));
2560 swsusp_set_page_free(virt_to_page(lp));
2561 nr_pages--;
2562 }
2563 return 0;
2564
2565 Free:
2566 swsusp_free();
2567 return error;
2568}
2569
2570/**
2571 * get_buffer - Get the address to store the next image data page.
2572 *
2573 * Get the address that snapshot_write_next() should return to its caller to
2574 * write to.
2575 */
2576static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2577{
2578 struct pbe *pbe;
2579 struct page *page;
2580 unsigned long pfn = memory_bm_next_pfn(bm);
2581
2582 if (pfn == BM_END_OF_MAP)
2583 return ERR_PTR(-EFAULT);
2584
2585 page = pfn_to_page(pfn);
2586 if (PageHighMem(page))
2587 return get_highmem_page_buffer(page, ca);
2588
2589 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2590 /*
2591 * We have allocated the "original" page frame and we can
2592 * use it directly to store the loaded page.
2593 */
2594 return page_address(page);
2595
2596 /*
2597 * The "original" page frame has not been allocated and we have to
2598 * use a "safe" page frame to store the loaded page.
2599 */
2600 pbe = chain_alloc(ca, sizeof(struct pbe));
2601 if (!pbe) {
2602 swsusp_free();
2603 return ERR_PTR(-ENOMEM);
2604 }
2605 pbe->orig_address = page_address(page);
2606 pbe->address = safe_pages_list;
2607 safe_pages_list = safe_pages_list->next;
2608 pbe->next = restore_pblist;
2609 restore_pblist = pbe;
2610 return pbe->address;
2611}
2612
2613/**
2614 * snapshot_write_next - Get the address to store the next image page.
2615 * @handle: Snapshot handle structure to guide the writing.
2616 *
2617 * On the first call, @handle should point to a zeroed snapshot_handle
2618 * structure. The structure gets populated then and a pointer to it should be
2619 * passed to this function every next time.
2620 *
2621 * On success, the function returns a positive number. Then, the caller
2622 * is allowed to write up to the returned number of bytes to the memory
2623 * location computed by the data_of() macro.
2624 *
2625 * The function returns 0 to indicate the "end of file" condition. Negative
2626 * numbers are returned on errors, in which cases the structure pointed to by
2627 * @handle is not updated and should not be used any more.
2628 */
2629int snapshot_write_next(struct snapshot_handle *handle)
2630{
2631 static struct chain_allocator ca;
2632 int error = 0;
2633
2634 /* Check if we have already loaded the entire image */
2635 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2636 return 0;
2637
2638 handle->sync_read = 1;
2639
2640 if (!handle->cur) {
2641 if (!buffer)
2642 /* This makes the buffer be freed by swsusp_free() */
2643 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2644
2645 if (!buffer)
2646 return -ENOMEM;
2647
2648 handle->buffer = buffer;
2649 } else if (handle->cur == 1) {
2650 error = load_header(buffer);
2651 if (error)
2652 return error;
2653
2654 safe_pages_list = NULL;
2655
2656 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
2657 if (error)
2658 return error;
2659
2660 hibernate_restore_protection_begin();
2661 } else if (handle->cur <= nr_meta_pages + 1) {
2662 error = unpack_orig_pfns(buffer, ©_bm);
2663 if (error)
2664 return error;
2665
2666 if (handle->cur == nr_meta_pages + 1) {
2667 error = prepare_image(&orig_bm, ©_bm);
2668 if (error)
2669 return error;
2670
2671 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2672 memory_bm_position_reset(&orig_bm);
2673 restore_pblist = NULL;
2674 handle->buffer = get_buffer(&orig_bm, &ca);
2675 handle->sync_read = 0;
2676 if (IS_ERR(handle->buffer))
2677 return PTR_ERR(handle->buffer);
2678 }
2679 } else {
2680 copy_last_highmem_page();
2681 hibernate_restore_protect_page(handle->buffer);
2682 handle->buffer = get_buffer(&orig_bm, &ca);
2683 if (IS_ERR(handle->buffer))
2684 return PTR_ERR(handle->buffer);
2685 if (handle->buffer != buffer)
2686 handle->sync_read = 0;
2687 }
2688 handle->cur++;
2689 return PAGE_SIZE;
2690}
2691
2692/**
2693 * snapshot_write_finalize - Complete the loading of a hibernation image.
2694 *
2695 * Must be called after the last call to snapshot_write_next() in case the last
2696 * page in the image happens to be a highmem page and its contents should be
2697 * stored in highmem. Additionally, it recycles bitmap memory that's not
2698 * necessary any more.
2699 */
2700void snapshot_write_finalize(struct snapshot_handle *handle)
2701{
2702 copy_last_highmem_page();
2703 hibernate_restore_protect_page(handle->buffer);
2704 /* Do that only if we have loaded the image entirely */
2705 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2706 memory_bm_recycle(&orig_bm);
2707 free_highmem_data();
2708 }
2709}
2710
2711int snapshot_image_loaded(struct snapshot_handle *handle)
2712{
2713 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2714 handle->cur <= nr_meta_pages + nr_copy_pages);
2715}
2716
2717#ifdef CONFIG_HIGHMEM
2718/* Assumes that @buf is ready and points to a "safe" page */
2719static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2720 void *buf)
2721{
2722 void *kaddr1, *kaddr2;
2723
2724 kaddr1 = kmap_atomic(p1);
2725 kaddr2 = kmap_atomic(p2);
2726 copy_page(buf, kaddr1);
2727 copy_page(kaddr1, kaddr2);
2728 copy_page(kaddr2, buf);
2729 kunmap_atomic(kaddr2);
2730 kunmap_atomic(kaddr1);
2731}
2732
2733/**
2734 * restore_highmem - Put highmem image pages into their original locations.
2735 *
2736 * For each highmem page that was in use before hibernation and is included in
2737 * the image, and also has been allocated by the "restore" kernel, swap its
2738 * current contents with the previous (ie. "before hibernation") ones.
2739 *
2740 * If the restore eventually fails, we can call this function once again and
2741 * restore the highmem state as seen by the restore kernel.
2742 */
2743int restore_highmem(void)
2744{
2745 struct highmem_pbe *pbe = highmem_pblist;
2746 void *buf;
2747
2748 if (!pbe)
2749 return 0;
2750
2751 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2752 if (!buf)
2753 return -ENOMEM;
2754
2755 while (pbe) {
2756 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2757 pbe = pbe->next;
2758 }
2759 free_image_page(buf, PG_UNSAFE_CLEAR);
2760 return 0;
2761}
2762#endif /* CONFIG_HIGHMEM */
1/*
2 * linux/kernel/power/snapshot.c
3 *
4 * This file provides system snapshot/restore functionality for swsusp.
5 *
6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
8 *
9 * This file is released under the GPLv2.
10 *
11 */
12
13#include <linux/version.h>
14#include <linux/module.h>
15#include <linux/mm.h>
16#include <linux/suspend.h>
17#include <linux/delay.h>
18#include <linux/bitops.h>
19#include <linux/spinlock.h>
20#include <linux/kernel.h>
21#include <linux/pm.h>
22#include <linux/device.h>
23#include <linux/init.h>
24#include <linux/bootmem.h>
25#include <linux/syscalls.h>
26#include <linux/console.h>
27#include <linux/highmem.h>
28#include <linux/list.h>
29#include <linux/slab.h>
30#include <linux/compiler.h>
31
32#include <asm/uaccess.h>
33#include <asm/mmu_context.h>
34#include <asm/pgtable.h>
35#include <asm/tlbflush.h>
36#include <asm/io.h>
37
38#include "power.h"
39
40static int swsusp_page_is_free(struct page *);
41static void swsusp_set_page_forbidden(struct page *);
42static void swsusp_unset_page_forbidden(struct page *);
43
44/*
45 * Number of bytes to reserve for memory allocations made by device drivers
46 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
47 * cause image creation to fail (tunable via /sys/power/reserved_size).
48 */
49unsigned long reserved_size;
50
51void __init hibernate_reserved_size_init(void)
52{
53 reserved_size = SPARE_PAGES * PAGE_SIZE;
54}
55
56/*
57 * Preferred image size in bytes (tunable via /sys/power/image_size).
58 * When it is set to N, swsusp will do its best to ensure the image
59 * size will not exceed N bytes, but if that is impossible, it will
60 * try to create the smallest image possible.
61 */
62unsigned long image_size;
63
64void __init hibernate_image_size_init(void)
65{
66 image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
67}
68
69/* List of PBEs needed for restoring the pages that were allocated before
70 * the suspend and included in the suspend image, but have also been
71 * allocated by the "resume" kernel, so their contents cannot be written
72 * directly to their "original" page frames.
73 */
74struct pbe *restore_pblist;
75
76/* Pointer to an auxiliary buffer (1 page) */
77static void *buffer;
78
79/**
80 * @safe_needed - on resume, for storing the PBE list and the image,
81 * we can only use memory pages that do not conflict with the pages
82 * used before suspend. The unsafe pages have PageNosaveFree set
83 * and we count them using unsafe_pages.
84 *
85 * Each allocated image page is marked as PageNosave and PageNosaveFree
86 * so that swsusp_free() can release it.
87 */
88
89#define PG_ANY 0
90#define PG_SAFE 1
91#define PG_UNSAFE_CLEAR 1
92#define PG_UNSAFE_KEEP 0
93
94static unsigned int allocated_unsafe_pages;
95
96static void *get_image_page(gfp_t gfp_mask, int safe_needed)
97{
98 void *res;
99
100 res = (void *)get_zeroed_page(gfp_mask);
101 if (safe_needed)
102 while (res && swsusp_page_is_free(virt_to_page(res))) {
103 /* The page is unsafe, mark it for swsusp_free() */
104 swsusp_set_page_forbidden(virt_to_page(res));
105 allocated_unsafe_pages++;
106 res = (void *)get_zeroed_page(gfp_mask);
107 }
108 if (res) {
109 swsusp_set_page_forbidden(virt_to_page(res));
110 swsusp_set_page_free(virt_to_page(res));
111 }
112 return res;
113}
114
115unsigned long get_safe_page(gfp_t gfp_mask)
116{
117 return (unsigned long)get_image_page(gfp_mask, PG_SAFE);
118}
119
120static struct page *alloc_image_page(gfp_t gfp_mask)
121{
122 struct page *page;
123
124 page = alloc_page(gfp_mask);
125 if (page) {
126 swsusp_set_page_forbidden(page);
127 swsusp_set_page_free(page);
128 }
129 return page;
130}
131
132/**
133 * free_image_page - free page represented by @addr, allocated with
134 * get_image_page (page flags set by it must be cleared)
135 */
136
137static inline void free_image_page(void *addr, int clear_nosave_free)
138{
139 struct page *page;
140
141 BUG_ON(!virt_addr_valid(addr));
142
143 page = virt_to_page(addr);
144
145 swsusp_unset_page_forbidden(page);
146 if (clear_nosave_free)
147 swsusp_unset_page_free(page);
148
149 __free_page(page);
150}
151
152/* struct linked_page is used to build chains of pages */
153
154#define LINKED_PAGE_DATA_SIZE (PAGE_SIZE - sizeof(void *))
155
156struct linked_page {
157 struct linked_page *next;
158 char data[LINKED_PAGE_DATA_SIZE];
159} __packed;
160
161static inline void
162free_list_of_pages(struct linked_page *list, int clear_page_nosave)
163{
164 while (list) {
165 struct linked_page *lp = list->next;
166
167 free_image_page(list, clear_page_nosave);
168 list = lp;
169 }
170}
171
172/**
173 * struct chain_allocator is used for allocating small objects out of
174 * a linked list of pages called 'the chain'.
175 *
176 * The chain grows each time when there is no room for a new object in
177 * the current page. The allocated objects cannot be freed individually.
178 * It is only possible to free them all at once, by freeing the entire
179 * chain.
180 *
181 * NOTE: The chain allocator may be inefficient if the allocated objects
182 * are not much smaller than PAGE_SIZE.
183 */
184
185struct chain_allocator {
186 struct linked_page *chain; /* the chain */
187 unsigned int used_space; /* total size of objects allocated out
188 * of the current page
189 */
190 gfp_t gfp_mask; /* mask for allocating pages */
191 int safe_needed; /* if set, only "safe" pages are allocated */
192};
193
194static void
195chain_init(struct chain_allocator *ca, gfp_t gfp_mask, int safe_needed)
196{
197 ca->chain = NULL;
198 ca->used_space = LINKED_PAGE_DATA_SIZE;
199 ca->gfp_mask = gfp_mask;
200 ca->safe_needed = safe_needed;
201}
202
203static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
204{
205 void *ret;
206
207 if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
208 struct linked_page *lp;
209
210 lp = get_image_page(ca->gfp_mask, ca->safe_needed);
211 if (!lp)
212 return NULL;
213
214 lp->next = ca->chain;
215 ca->chain = lp;
216 ca->used_space = 0;
217 }
218 ret = ca->chain->data + ca->used_space;
219 ca->used_space += size;
220 return ret;
221}
222
223/**
224 * Data types related to memory bitmaps.
225 *
226 * Memory bitmap is a structure consiting of many linked lists of
227 * objects. The main list's elements are of type struct zone_bitmap
228 * and each of them corresonds to one zone. For each zone bitmap
229 * object there is a list of objects of type struct bm_block that
230 * represent each blocks of bitmap in which information is stored.
231 *
232 * struct memory_bitmap contains a pointer to the main list of zone
233 * bitmap objects, a struct bm_position used for browsing the bitmap,
234 * and a pointer to the list of pages used for allocating all of the
235 * zone bitmap objects and bitmap block objects.
236 *
237 * NOTE: It has to be possible to lay out the bitmap in memory
238 * using only allocations of order 0. Additionally, the bitmap is
239 * designed to work with arbitrary number of zones (this is over the
240 * top for now, but let's avoid making unnecessary assumptions ;-).
241 *
242 * struct zone_bitmap contains a pointer to a list of bitmap block
243 * objects and a pointer to the bitmap block object that has been
244 * most recently used for setting bits. Additionally, it contains the
245 * pfns that correspond to the start and end of the represented zone.
246 *
247 * struct bm_block contains a pointer to the memory page in which
248 * information is stored (in the form of a block of bitmap)
249 * It also contains the pfns that correspond to the start and end of
250 * the represented memory area.
251 */
252
253#define BM_END_OF_MAP (~0UL)
254
255#define BM_BITS_PER_BLOCK (PAGE_SIZE * BITS_PER_BYTE)
256
257struct bm_block {
258 struct list_head hook; /* hook into a list of bitmap blocks */
259 unsigned long start_pfn; /* pfn represented by the first bit */
260 unsigned long end_pfn; /* pfn represented by the last bit plus 1 */
261 unsigned long *data; /* bitmap representing pages */
262};
263
264static inline unsigned long bm_block_bits(struct bm_block *bb)
265{
266 return bb->end_pfn - bb->start_pfn;
267}
268
269/* strcut bm_position is used for browsing memory bitmaps */
270
271struct bm_position {
272 struct bm_block *block;
273 int bit;
274};
275
276struct memory_bitmap {
277 struct list_head blocks; /* list of bitmap blocks */
278 struct linked_page *p_list; /* list of pages used to store zone
279 * bitmap objects and bitmap block
280 * objects
281 */
282 struct bm_position cur; /* most recently used bit position */
283};
284
285/* Functions that operate on memory bitmaps */
286
287static void memory_bm_position_reset(struct memory_bitmap *bm)
288{
289 bm->cur.block = list_entry(bm->blocks.next, struct bm_block, hook);
290 bm->cur.bit = 0;
291}
292
293static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
294
295/**
296 * create_bm_block_list - create a list of block bitmap objects
297 * @pages - number of pages to track
298 * @list - list to put the allocated blocks into
299 * @ca - chain allocator to be used for allocating memory
300 */
301static int create_bm_block_list(unsigned long pages,
302 struct list_head *list,
303 struct chain_allocator *ca)
304{
305 unsigned int nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
306
307 while (nr_blocks-- > 0) {
308 struct bm_block *bb;
309
310 bb = chain_alloc(ca, sizeof(struct bm_block));
311 if (!bb)
312 return -ENOMEM;
313 list_add(&bb->hook, list);
314 }
315
316 return 0;
317}
318
319struct mem_extent {
320 struct list_head hook;
321 unsigned long start;
322 unsigned long end;
323};
324
325/**
326 * free_mem_extents - free a list of memory extents
327 * @list - list of extents to empty
328 */
329static void free_mem_extents(struct list_head *list)
330{
331 struct mem_extent *ext, *aux;
332
333 list_for_each_entry_safe(ext, aux, list, hook) {
334 list_del(&ext->hook);
335 kfree(ext);
336 }
337}
338
339/**
340 * create_mem_extents - create a list of memory extents representing
341 * contiguous ranges of PFNs
342 * @list - list to put the extents into
343 * @gfp_mask - mask to use for memory allocations
344 */
345static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
346{
347 struct zone *zone;
348
349 INIT_LIST_HEAD(list);
350
351 for_each_populated_zone(zone) {
352 unsigned long zone_start, zone_end;
353 struct mem_extent *ext, *cur, *aux;
354
355 zone_start = zone->zone_start_pfn;
356 zone_end = zone_end_pfn(zone);
357
358 list_for_each_entry(ext, list, hook)
359 if (zone_start <= ext->end)
360 break;
361
362 if (&ext->hook == list || zone_end < ext->start) {
363 /* New extent is necessary */
364 struct mem_extent *new_ext;
365
366 new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
367 if (!new_ext) {
368 free_mem_extents(list);
369 return -ENOMEM;
370 }
371 new_ext->start = zone_start;
372 new_ext->end = zone_end;
373 list_add_tail(&new_ext->hook, &ext->hook);
374 continue;
375 }
376
377 /* Merge this zone's range of PFNs with the existing one */
378 if (zone_start < ext->start)
379 ext->start = zone_start;
380 if (zone_end > ext->end)
381 ext->end = zone_end;
382
383 /* More merging may be possible */
384 cur = ext;
385 list_for_each_entry_safe_continue(cur, aux, list, hook) {
386 if (zone_end < cur->start)
387 break;
388 if (zone_end < cur->end)
389 ext->end = cur->end;
390 list_del(&cur->hook);
391 kfree(cur);
392 }
393 }
394
395 return 0;
396}
397
398/**
399 * memory_bm_create - allocate memory for a memory bitmap
400 */
401static int
402memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask, int safe_needed)
403{
404 struct chain_allocator ca;
405 struct list_head mem_extents;
406 struct mem_extent *ext;
407 int error;
408
409 chain_init(&ca, gfp_mask, safe_needed);
410 INIT_LIST_HEAD(&bm->blocks);
411
412 error = create_mem_extents(&mem_extents, gfp_mask);
413 if (error)
414 return error;
415
416 list_for_each_entry(ext, &mem_extents, hook) {
417 struct bm_block *bb;
418 unsigned long pfn = ext->start;
419 unsigned long pages = ext->end - ext->start;
420
421 bb = list_entry(bm->blocks.prev, struct bm_block, hook);
422
423 error = create_bm_block_list(pages, bm->blocks.prev, &ca);
424 if (error)
425 goto Error;
426
427 list_for_each_entry_continue(bb, &bm->blocks, hook) {
428 bb->data = get_image_page(gfp_mask, safe_needed);
429 if (!bb->data) {
430 error = -ENOMEM;
431 goto Error;
432 }
433
434 bb->start_pfn = pfn;
435 if (pages >= BM_BITS_PER_BLOCK) {
436 pfn += BM_BITS_PER_BLOCK;
437 pages -= BM_BITS_PER_BLOCK;
438 } else {
439 /* This is executed only once in the loop */
440 pfn += pages;
441 }
442 bb->end_pfn = pfn;
443 }
444 }
445
446 bm->p_list = ca.chain;
447 memory_bm_position_reset(bm);
448 Exit:
449 free_mem_extents(&mem_extents);
450 return error;
451
452 Error:
453 bm->p_list = ca.chain;
454 memory_bm_free(bm, PG_UNSAFE_CLEAR);
455 goto Exit;
456}
457
458/**
459 * memory_bm_free - free memory occupied by the memory bitmap @bm
460 */
461static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
462{
463 struct bm_block *bb;
464
465 list_for_each_entry(bb, &bm->blocks, hook)
466 if (bb->data)
467 free_image_page(bb->data, clear_nosave_free);
468
469 free_list_of_pages(bm->p_list, clear_nosave_free);
470
471 INIT_LIST_HEAD(&bm->blocks);
472}
473
474/**
475 * memory_bm_find_bit - find the bit in the bitmap @bm that corresponds
476 * to given pfn. The cur_zone_bm member of @bm and the cur_block member
477 * of @bm->cur_zone_bm are updated.
478 */
479static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
480 void **addr, unsigned int *bit_nr)
481{
482 struct bm_block *bb;
483
484 /*
485 * Check if the pfn corresponds to the current bitmap block and find
486 * the block where it fits if this is not the case.
487 */
488 bb = bm->cur.block;
489 if (pfn < bb->start_pfn)
490 list_for_each_entry_continue_reverse(bb, &bm->blocks, hook)
491 if (pfn >= bb->start_pfn)
492 break;
493
494 if (pfn >= bb->end_pfn)
495 list_for_each_entry_continue(bb, &bm->blocks, hook)
496 if (pfn >= bb->start_pfn && pfn < bb->end_pfn)
497 break;
498
499 if (&bb->hook == &bm->blocks)
500 return -EFAULT;
501
502 /* The block has been found */
503 bm->cur.block = bb;
504 pfn -= bb->start_pfn;
505 bm->cur.bit = pfn + 1;
506 *bit_nr = pfn;
507 *addr = bb->data;
508 return 0;
509}
510
511static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
512{
513 void *addr;
514 unsigned int bit;
515 int error;
516
517 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
518 BUG_ON(error);
519 set_bit(bit, addr);
520}
521
522static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
523{
524 void *addr;
525 unsigned int bit;
526 int error;
527
528 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
529 if (!error)
530 set_bit(bit, addr);
531 return error;
532}
533
534static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
535{
536 void *addr;
537 unsigned int bit;
538 int error;
539
540 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
541 BUG_ON(error);
542 clear_bit(bit, addr);
543}
544
545static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
546{
547 void *addr;
548 unsigned int bit;
549 int error;
550
551 error = memory_bm_find_bit(bm, pfn, &addr, &bit);
552 BUG_ON(error);
553 return test_bit(bit, addr);
554}
555
556static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
557{
558 void *addr;
559 unsigned int bit;
560
561 return !memory_bm_find_bit(bm, pfn, &addr, &bit);
562}
563
564/**
565 * memory_bm_next_pfn - find the pfn that corresponds to the next set bit
566 * in the bitmap @bm. If the pfn cannot be found, BM_END_OF_MAP is
567 * returned.
568 *
569 * It is required to run memory_bm_position_reset() before the first call to
570 * this function.
571 */
572
573static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
574{
575 struct bm_block *bb;
576 int bit;
577
578 bb = bm->cur.block;
579 do {
580 bit = bm->cur.bit;
581 bit = find_next_bit(bb->data, bm_block_bits(bb), bit);
582 if (bit < bm_block_bits(bb))
583 goto Return_pfn;
584
585 bb = list_entry(bb->hook.next, struct bm_block, hook);
586 bm->cur.block = bb;
587 bm->cur.bit = 0;
588 } while (&bb->hook != &bm->blocks);
589
590 memory_bm_position_reset(bm);
591 return BM_END_OF_MAP;
592
593 Return_pfn:
594 bm->cur.bit = bit + 1;
595 return bb->start_pfn + bit;
596}
597
598/**
599 * This structure represents a range of page frames the contents of which
600 * should not be saved during the suspend.
601 */
602
603struct nosave_region {
604 struct list_head list;
605 unsigned long start_pfn;
606 unsigned long end_pfn;
607};
608
609static LIST_HEAD(nosave_regions);
610
611/**
612 * register_nosave_region - register a range of page frames the contents
613 * of which should not be saved during the suspend (to be used in the early
614 * initialization code)
615 */
616
617void __init
618__register_nosave_region(unsigned long start_pfn, unsigned long end_pfn,
619 int use_kmalloc)
620{
621 struct nosave_region *region;
622
623 if (start_pfn >= end_pfn)
624 return;
625
626 if (!list_empty(&nosave_regions)) {
627 /* Try to extend the previous region (they should be sorted) */
628 region = list_entry(nosave_regions.prev,
629 struct nosave_region, list);
630 if (region->end_pfn == start_pfn) {
631 region->end_pfn = end_pfn;
632 goto Report;
633 }
634 }
635 if (use_kmalloc) {
636 /* during init, this shouldn't fail */
637 region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
638 BUG_ON(!region);
639 } else
640 /* This allocation cannot fail */
641 region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
642 region->start_pfn = start_pfn;
643 region->end_pfn = end_pfn;
644 list_add_tail(®ion->list, &nosave_regions);
645 Report:
646 printk(KERN_INFO "PM: Registered nosave memory: [mem %#010llx-%#010llx]\n",
647 (unsigned long long) start_pfn << PAGE_SHIFT,
648 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
649}
650
651/*
652 * Set bits in this map correspond to the page frames the contents of which
653 * should not be saved during the suspend.
654 */
655static struct memory_bitmap *forbidden_pages_map;
656
657/* Set bits in this map correspond to free page frames. */
658static struct memory_bitmap *free_pages_map;
659
660/*
661 * Each page frame allocated for creating the image is marked by setting the
662 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
663 */
664
665void swsusp_set_page_free(struct page *page)
666{
667 if (free_pages_map)
668 memory_bm_set_bit(free_pages_map, page_to_pfn(page));
669}
670
671static int swsusp_page_is_free(struct page *page)
672{
673 return free_pages_map ?
674 memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
675}
676
677void swsusp_unset_page_free(struct page *page)
678{
679 if (free_pages_map)
680 memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
681}
682
683static void swsusp_set_page_forbidden(struct page *page)
684{
685 if (forbidden_pages_map)
686 memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
687}
688
689int swsusp_page_is_forbidden(struct page *page)
690{
691 return forbidden_pages_map ?
692 memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
693}
694
695static void swsusp_unset_page_forbidden(struct page *page)
696{
697 if (forbidden_pages_map)
698 memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
699}
700
701/**
702 * mark_nosave_pages - set bits corresponding to the page frames the
703 * contents of which should not be saved in a given bitmap.
704 */
705
706static void mark_nosave_pages(struct memory_bitmap *bm)
707{
708 struct nosave_region *region;
709
710 if (list_empty(&nosave_regions))
711 return;
712
713 list_for_each_entry(region, &nosave_regions, list) {
714 unsigned long pfn;
715
716 pr_debug("PM: Marking nosave pages: [mem %#010llx-%#010llx]\n",
717 (unsigned long long) region->start_pfn << PAGE_SHIFT,
718 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
719 - 1);
720
721 for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
722 if (pfn_valid(pfn)) {
723 /*
724 * It is safe to ignore the result of
725 * mem_bm_set_bit_check() here, since we won't
726 * touch the PFNs for which the error is
727 * returned anyway.
728 */
729 mem_bm_set_bit_check(bm, pfn);
730 }
731 }
732}
733
734/**
735 * create_basic_memory_bitmaps - create bitmaps needed for marking page
736 * frames that should not be saved and free page frames. The pointers
737 * forbidden_pages_map and free_pages_map are only modified if everything
738 * goes well, because we don't want the bits to be used before both bitmaps
739 * are set up.
740 */
741
742int create_basic_memory_bitmaps(void)
743{
744 struct memory_bitmap *bm1, *bm2;
745 int error = 0;
746
747 if (forbidden_pages_map && free_pages_map)
748 return 0;
749 else
750 BUG_ON(forbidden_pages_map || free_pages_map);
751
752 bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
753 if (!bm1)
754 return -ENOMEM;
755
756 error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
757 if (error)
758 goto Free_first_object;
759
760 bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
761 if (!bm2)
762 goto Free_first_bitmap;
763
764 error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
765 if (error)
766 goto Free_second_object;
767
768 forbidden_pages_map = bm1;
769 free_pages_map = bm2;
770 mark_nosave_pages(forbidden_pages_map);
771
772 pr_debug("PM: Basic memory bitmaps created\n");
773
774 return 0;
775
776 Free_second_object:
777 kfree(bm2);
778 Free_first_bitmap:
779 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
780 Free_first_object:
781 kfree(bm1);
782 return -ENOMEM;
783}
784
785/**
786 * free_basic_memory_bitmaps - free memory bitmaps allocated by
787 * create_basic_memory_bitmaps(). The auxiliary pointers are necessary
788 * so that the bitmaps themselves are not referred to while they are being
789 * freed.
790 */
791
792void free_basic_memory_bitmaps(void)
793{
794 struct memory_bitmap *bm1, *bm2;
795
796 if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
797 return;
798
799 bm1 = forbidden_pages_map;
800 bm2 = free_pages_map;
801 forbidden_pages_map = NULL;
802 free_pages_map = NULL;
803 memory_bm_free(bm1, PG_UNSAFE_CLEAR);
804 kfree(bm1);
805 memory_bm_free(bm2, PG_UNSAFE_CLEAR);
806 kfree(bm2);
807
808 pr_debug("PM: Basic memory bitmaps freed\n");
809}
810
811/**
812 * snapshot_additional_pages - estimate the number of additional pages
813 * be needed for setting up the suspend image data structures for given
814 * zone (usually the returned value is greater than the exact number)
815 */
816
817unsigned int snapshot_additional_pages(struct zone *zone)
818{
819 unsigned int res;
820
821 res = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
822 res += DIV_ROUND_UP(res * sizeof(struct bm_block),
823 LINKED_PAGE_DATA_SIZE);
824 return 2 * res;
825}
826
827#ifdef CONFIG_HIGHMEM
828/**
829 * count_free_highmem_pages - compute the total number of free highmem
830 * pages, system-wide.
831 */
832
833static unsigned int count_free_highmem_pages(void)
834{
835 struct zone *zone;
836 unsigned int cnt = 0;
837
838 for_each_populated_zone(zone)
839 if (is_highmem(zone))
840 cnt += zone_page_state(zone, NR_FREE_PAGES);
841
842 return cnt;
843}
844
845/**
846 * saveable_highmem_page - Determine whether a highmem page should be
847 * included in the suspend image.
848 *
849 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
850 * and it isn't a part of a free chunk of pages.
851 */
852static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
853{
854 struct page *page;
855
856 if (!pfn_valid(pfn))
857 return NULL;
858
859 page = pfn_to_page(pfn);
860 if (page_zone(page) != zone)
861 return NULL;
862
863 BUG_ON(!PageHighMem(page));
864
865 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page) ||
866 PageReserved(page))
867 return NULL;
868
869 if (page_is_guard(page))
870 return NULL;
871
872 return page;
873}
874
875/**
876 * count_highmem_pages - compute the total number of saveable highmem
877 * pages.
878 */
879
880static unsigned int count_highmem_pages(void)
881{
882 struct zone *zone;
883 unsigned int n = 0;
884
885 for_each_populated_zone(zone) {
886 unsigned long pfn, max_zone_pfn;
887
888 if (!is_highmem(zone))
889 continue;
890
891 mark_free_pages(zone);
892 max_zone_pfn = zone_end_pfn(zone);
893 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
894 if (saveable_highmem_page(zone, pfn))
895 n++;
896 }
897 return n;
898}
899#else
900static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
901{
902 return NULL;
903}
904#endif /* CONFIG_HIGHMEM */
905
906/**
907 * saveable_page - Determine whether a non-highmem page should be included
908 * in the suspend image.
909 *
910 * We should save the page if it isn't Nosave, and is not in the range
911 * of pages statically defined as 'unsaveable', and it isn't a part of
912 * a free chunk of pages.
913 */
914static struct page *saveable_page(struct zone *zone, unsigned long pfn)
915{
916 struct page *page;
917
918 if (!pfn_valid(pfn))
919 return NULL;
920
921 page = pfn_to_page(pfn);
922 if (page_zone(page) != zone)
923 return NULL;
924
925 BUG_ON(PageHighMem(page));
926
927 if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
928 return NULL;
929
930 if (PageReserved(page)
931 && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
932 return NULL;
933
934 if (page_is_guard(page))
935 return NULL;
936
937 return page;
938}
939
940/**
941 * count_data_pages - compute the total number of saveable non-highmem
942 * pages.
943 */
944
945static unsigned int count_data_pages(void)
946{
947 struct zone *zone;
948 unsigned long pfn, max_zone_pfn;
949 unsigned int n = 0;
950
951 for_each_populated_zone(zone) {
952 if (is_highmem(zone))
953 continue;
954
955 mark_free_pages(zone);
956 max_zone_pfn = zone_end_pfn(zone);
957 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
958 if (saveable_page(zone, pfn))
959 n++;
960 }
961 return n;
962}
963
964/* This is needed, because copy_page and memcpy are not usable for copying
965 * task structs.
966 */
967static inline void do_copy_page(long *dst, long *src)
968{
969 int n;
970
971 for (n = PAGE_SIZE / sizeof(long); n; n--)
972 *dst++ = *src++;
973}
974
975
976/**
977 * safe_copy_page - check if the page we are going to copy is marked as
978 * present in the kernel page tables (this always is the case if
979 * CONFIG_DEBUG_PAGEALLOC is not set and in that case
980 * kernel_page_present() always returns 'true').
981 */
982static void safe_copy_page(void *dst, struct page *s_page)
983{
984 if (kernel_page_present(s_page)) {
985 do_copy_page(dst, page_address(s_page));
986 } else {
987 kernel_map_pages(s_page, 1, 1);
988 do_copy_page(dst, page_address(s_page));
989 kernel_map_pages(s_page, 1, 0);
990 }
991}
992
993
994#ifdef CONFIG_HIGHMEM
995static inline struct page *
996page_is_saveable(struct zone *zone, unsigned long pfn)
997{
998 return is_highmem(zone) ?
999 saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1000}
1001
1002static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1003{
1004 struct page *s_page, *d_page;
1005 void *src, *dst;
1006
1007 s_page = pfn_to_page(src_pfn);
1008 d_page = pfn_to_page(dst_pfn);
1009 if (PageHighMem(s_page)) {
1010 src = kmap_atomic(s_page);
1011 dst = kmap_atomic(d_page);
1012 do_copy_page(dst, src);
1013 kunmap_atomic(dst);
1014 kunmap_atomic(src);
1015 } else {
1016 if (PageHighMem(d_page)) {
1017 /* Page pointed to by src may contain some kernel
1018 * data modified by kmap_atomic()
1019 */
1020 safe_copy_page(buffer, s_page);
1021 dst = kmap_atomic(d_page);
1022 copy_page(dst, buffer);
1023 kunmap_atomic(dst);
1024 } else {
1025 safe_copy_page(page_address(d_page), s_page);
1026 }
1027 }
1028}
1029#else
1030#define page_is_saveable(zone, pfn) saveable_page(zone, pfn)
1031
1032static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1033{
1034 safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1035 pfn_to_page(src_pfn));
1036}
1037#endif /* CONFIG_HIGHMEM */
1038
1039static void
1040copy_data_pages(struct memory_bitmap *copy_bm, struct memory_bitmap *orig_bm)
1041{
1042 struct zone *zone;
1043 unsigned long pfn;
1044
1045 for_each_populated_zone(zone) {
1046 unsigned long max_zone_pfn;
1047
1048 mark_free_pages(zone);
1049 max_zone_pfn = zone_end_pfn(zone);
1050 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1051 if (page_is_saveable(zone, pfn))
1052 memory_bm_set_bit(orig_bm, pfn);
1053 }
1054 memory_bm_position_reset(orig_bm);
1055 memory_bm_position_reset(copy_bm);
1056 for(;;) {
1057 pfn = memory_bm_next_pfn(orig_bm);
1058 if (unlikely(pfn == BM_END_OF_MAP))
1059 break;
1060 copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1061 }
1062}
1063
1064/* Total number of image pages */
1065static unsigned int nr_copy_pages;
1066/* Number of pages needed for saving the original pfns of the image pages */
1067static unsigned int nr_meta_pages;
1068/*
1069 * Numbers of normal and highmem page frames allocated for hibernation image
1070 * before suspending devices.
1071 */
1072unsigned int alloc_normal, alloc_highmem;
1073/*
1074 * Memory bitmap used for marking saveable pages (during hibernation) or
1075 * hibernation image pages (during restore)
1076 */
1077static struct memory_bitmap orig_bm;
1078/*
1079 * Memory bitmap used during hibernation for marking allocated page frames that
1080 * will contain copies of saveable pages. During restore it is initially used
1081 * for marking hibernation image pages, but then the set bits from it are
1082 * duplicated in @orig_bm and it is released. On highmem systems it is next
1083 * used for marking "safe" highmem pages, but it has to be reinitialized for
1084 * this purpose.
1085 */
1086static struct memory_bitmap copy_bm;
1087
1088/**
1089 * swsusp_free - free pages allocated for the suspend.
1090 *
1091 * Suspend pages are alocated before the atomic copy is made, so we
1092 * need to release them after the resume.
1093 */
1094
1095void swsusp_free(void)
1096{
1097 struct zone *zone;
1098 unsigned long pfn, max_zone_pfn;
1099
1100 for_each_populated_zone(zone) {
1101 max_zone_pfn = zone_end_pfn(zone);
1102 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1103 if (pfn_valid(pfn)) {
1104 struct page *page = pfn_to_page(pfn);
1105
1106 if (swsusp_page_is_forbidden(page) &&
1107 swsusp_page_is_free(page)) {
1108 swsusp_unset_page_forbidden(page);
1109 swsusp_unset_page_free(page);
1110 __free_page(page);
1111 }
1112 }
1113 }
1114 nr_copy_pages = 0;
1115 nr_meta_pages = 0;
1116 restore_pblist = NULL;
1117 buffer = NULL;
1118 alloc_normal = 0;
1119 alloc_highmem = 0;
1120}
1121
1122/* Helper functions used for the shrinking of memory. */
1123
1124#define GFP_IMAGE (GFP_KERNEL | __GFP_NOWARN)
1125
1126/**
1127 * preallocate_image_pages - Allocate a number of pages for hibernation image
1128 * @nr_pages: Number of page frames to allocate.
1129 * @mask: GFP flags to use for the allocation.
1130 *
1131 * Return value: Number of page frames actually allocated
1132 */
1133static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1134{
1135 unsigned long nr_alloc = 0;
1136
1137 while (nr_pages > 0) {
1138 struct page *page;
1139
1140 page = alloc_image_page(mask);
1141 if (!page)
1142 break;
1143 memory_bm_set_bit(©_bm, page_to_pfn(page));
1144 if (PageHighMem(page))
1145 alloc_highmem++;
1146 else
1147 alloc_normal++;
1148 nr_pages--;
1149 nr_alloc++;
1150 }
1151
1152 return nr_alloc;
1153}
1154
1155static unsigned long preallocate_image_memory(unsigned long nr_pages,
1156 unsigned long avail_normal)
1157{
1158 unsigned long alloc;
1159
1160 if (avail_normal <= alloc_normal)
1161 return 0;
1162
1163 alloc = avail_normal - alloc_normal;
1164 if (nr_pages < alloc)
1165 alloc = nr_pages;
1166
1167 return preallocate_image_pages(alloc, GFP_IMAGE);
1168}
1169
1170#ifdef CONFIG_HIGHMEM
1171static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1172{
1173 return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1174}
1175
1176/**
1177 * __fraction - Compute (an approximation of) x * (multiplier / base)
1178 */
1179static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1180{
1181 x *= multiplier;
1182 do_div(x, base);
1183 return (unsigned long)x;
1184}
1185
1186static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1187 unsigned long highmem,
1188 unsigned long total)
1189{
1190 unsigned long alloc = __fraction(nr_pages, highmem, total);
1191
1192 return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1193}
1194#else /* CONFIG_HIGHMEM */
1195static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1196{
1197 return 0;
1198}
1199
1200static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1201 unsigned long highmem,
1202 unsigned long total)
1203{
1204 return 0;
1205}
1206#endif /* CONFIG_HIGHMEM */
1207
1208/**
1209 * free_unnecessary_pages - Release preallocated pages not needed for the image
1210 */
1211static void free_unnecessary_pages(void)
1212{
1213 unsigned long save, to_free_normal, to_free_highmem;
1214
1215 save = count_data_pages();
1216 if (alloc_normal >= save) {
1217 to_free_normal = alloc_normal - save;
1218 save = 0;
1219 } else {
1220 to_free_normal = 0;
1221 save -= alloc_normal;
1222 }
1223 save += count_highmem_pages();
1224 if (alloc_highmem >= save) {
1225 to_free_highmem = alloc_highmem - save;
1226 } else {
1227 to_free_highmem = 0;
1228 save -= alloc_highmem;
1229 if (to_free_normal > save)
1230 to_free_normal -= save;
1231 else
1232 to_free_normal = 0;
1233 }
1234
1235 memory_bm_position_reset(©_bm);
1236
1237 while (to_free_normal > 0 || to_free_highmem > 0) {
1238 unsigned long pfn = memory_bm_next_pfn(©_bm);
1239 struct page *page = pfn_to_page(pfn);
1240
1241 if (PageHighMem(page)) {
1242 if (!to_free_highmem)
1243 continue;
1244 to_free_highmem--;
1245 alloc_highmem--;
1246 } else {
1247 if (!to_free_normal)
1248 continue;
1249 to_free_normal--;
1250 alloc_normal--;
1251 }
1252 memory_bm_clear_bit(©_bm, pfn);
1253 swsusp_unset_page_forbidden(page);
1254 swsusp_unset_page_free(page);
1255 __free_page(page);
1256 }
1257}
1258
1259/**
1260 * minimum_image_size - Estimate the minimum acceptable size of an image
1261 * @saveable: Number of saveable pages in the system.
1262 *
1263 * We want to avoid attempting to free too much memory too hard, so estimate the
1264 * minimum acceptable size of a hibernation image to use as the lower limit for
1265 * preallocating memory.
1266 *
1267 * We assume that the minimum image size should be proportional to
1268 *
1269 * [number of saveable pages] - [number of pages that can be freed in theory]
1270 *
1271 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1272 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages,
1273 * minus mapped file pages.
1274 */
1275static unsigned long minimum_image_size(unsigned long saveable)
1276{
1277 unsigned long size;
1278
1279 size = global_page_state(NR_SLAB_RECLAIMABLE)
1280 + global_page_state(NR_ACTIVE_ANON)
1281 + global_page_state(NR_INACTIVE_ANON)
1282 + global_page_state(NR_ACTIVE_FILE)
1283 + global_page_state(NR_INACTIVE_FILE)
1284 - global_page_state(NR_FILE_MAPPED);
1285
1286 return saveable <= size ? 0 : saveable - size;
1287}
1288
1289/**
1290 * hibernate_preallocate_memory - Preallocate memory for hibernation image
1291 *
1292 * To create a hibernation image it is necessary to make a copy of every page
1293 * frame in use. We also need a number of page frames to be free during
1294 * hibernation for allocations made while saving the image and for device
1295 * drivers, in case they need to allocate memory from their hibernation
1296 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1297 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1298 * /sys/power/reserved_size, respectively). To make this happen, we compute the
1299 * total number of available page frames and allocate at least
1300 *
1301 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1302 * + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1303 *
1304 * of them, which corresponds to the maximum size of a hibernation image.
1305 *
1306 * If image_size is set below the number following from the above formula,
1307 * the preallocation of memory is continued until the total number of saveable
1308 * pages in the system is below the requested image size or the minimum
1309 * acceptable image size returned by minimum_image_size(), whichever is greater.
1310 */
1311int hibernate_preallocate_memory(void)
1312{
1313 struct zone *zone;
1314 unsigned long saveable, size, max_size, count, highmem, pages = 0;
1315 unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1316 struct timeval start, stop;
1317 int error;
1318
1319 printk(KERN_INFO "PM: Preallocating image memory... ");
1320 do_gettimeofday(&start);
1321
1322 error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1323 if (error)
1324 goto err_out;
1325
1326 error = memory_bm_create(©_bm, GFP_IMAGE, PG_ANY);
1327 if (error)
1328 goto err_out;
1329
1330 alloc_normal = 0;
1331 alloc_highmem = 0;
1332
1333 /* Count the number of saveable data pages. */
1334 save_highmem = count_highmem_pages();
1335 saveable = count_data_pages();
1336
1337 /*
1338 * Compute the total number of page frames we can use (count) and the
1339 * number of pages needed for image metadata (size).
1340 */
1341 count = saveable;
1342 saveable += save_highmem;
1343 highmem = save_highmem;
1344 size = 0;
1345 for_each_populated_zone(zone) {
1346 size += snapshot_additional_pages(zone);
1347 if (is_highmem(zone))
1348 highmem += zone_page_state(zone, NR_FREE_PAGES);
1349 else
1350 count += zone_page_state(zone, NR_FREE_PAGES);
1351 }
1352 avail_normal = count;
1353 count += highmem;
1354 count -= totalreserve_pages;
1355
1356 /* Add number of pages required for page keys (s390 only). */
1357 size += page_key_additional_pages(saveable);
1358
1359 /* Compute the maximum number of saveable pages to leave in memory. */
1360 max_size = (count - (size + PAGES_FOR_IO)) / 2
1361 - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1362 /* Compute the desired number of image pages specified by image_size. */
1363 size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1364 if (size > max_size)
1365 size = max_size;
1366 /*
1367 * If the desired number of image pages is at least as large as the
1368 * current number of saveable pages in memory, allocate page frames for
1369 * the image and we're done.
1370 */
1371 if (size >= saveable) {
1372 pages = preallocate_image_highmem(save_highmem);
1373 pages += preallocate_image_memory(saveable - pages, avail_normal);
1374 goto out;
1375 }
1376
1377 /* Estimate the minimum size of the image. */
1378 pages = minimum_image_size(saveable);
1379 /*
1380 * To avoid excessive pressure on the normal zone, leave room in it to
1381 * accommodate an image of the minimum size (unless it's already too
1382 * small, in which case don't preallocate pages from it at all).
1383 */
1384 if (avail_normal > pages)
1385 avail_normal -= pages;
1386 else
1387 avail_normal = 0;
1388 if (size < pages)
1389 size = min_t(unsigned long, pages, max_size);
1390
1391 /*
1392 * Let the memory management subsystem know that we're going to need a
1393 * large number of page frames to allocate and make it free some memory.
1394 * NOTE: If this is not done, performance will be hurt badly in some
1395 * test cases.
1396 */
1397 shrink_all_memory(saveable - size);
1398
1399 /*
1400 * The number of saveable pages in memory was too high, so apply some
1401 * pressure to decrease it. First, make room for the largest possible
1402 * image and fail if that doesn't work. Next, try to decrease the size
1403 * of the image as much as indicated by 'size' using allocations from
1404 * highmem and non-highmem zones separately.
1405 */
1406 pages_highmem = preallocate_image_highmem(highmem / 2);
1407 alloc = count - max_size;
1408 if (alloc > pages_highmem)
1409 alloc -= pages_highmem;
1410 else
1411 alloc = 0;
1412 pages = preallocate_image_memory(alloc, avail_normal);
1413 if (pages < alloc) {
1414 /* We have exhausted non-highmem pages, try highmem. */
1415 alloc -= pages;
1416 pages += pages_highmem;
1417 pages_highmem = preallocate_image_highmem(alloc);
1418 if (pages_highmem < alloc)
1419 goto err_out;
1420 pages += pages_highmem;
1421 /*
1422 * size is the desired number of saveable pages to leave in
1423 * memory, so try to preallocate (all memory - size) pages.
1424 */
1425 alloc = (count - pages) - size;
1426 pages += preallocate_image_highmem(alloc);
1427 } else {
1428 /*
1429 * There are approximately max_size saveable pages at this point
1430 * and we want to reduce this number down to size.
1431 */
1432 alloc = max_size - size;
1433 size = preallocate_highmem_fraction(alloc, highmem, count);
1434 pages_highmem += size;
1435 alloc -= size;
1436 size = preallocate_image_memory(alloc, avail_normal);
1437 pages_highmem += preallocate_image_highmem(alloc - size);
1438 pages += pages_highmem + size;
1439 }
1440
1441 /*
1442 * We only need as many page frames for the image as there are saveable
1443 * pages in memory, but we have allocated more. Release the excessive
1444 * ones now.
1445 */
1446 free_unnecessary_pages();
1447
1448 out:
1449 do_gettimeofday(&stop);
1450 printk(KERN_CONT "done (allocated %lu pages)\n", pages);
1451 swsusp_show_speed(&start, &stop, pages, "Allocated");
1452
1453 return 0;
1454
1455 err_out:
1456 printk(KERN_CONT "\n");
1457 swsusp_free();
1458 return -ENOMEM;
1459}
1460
1461#ifdef CONFIG_HIGHMEM
1462/**
1463 * count_pages_for_highmem - compute the number of non-highmem pages
1464 * that will be necessary for creating copies of highmem pages.
1465 */
1466
1467static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1468{
1469 unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1470
1471 if (free_highmem >= nr_highmem)
1472 nr_highmem = 0;
1473 else
1474 nr_highmem -= free_highmem;
1475
1476 return nr_highmem;
1477}
1478#else
1479static unsigned int
1480count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1481#endif /* CONFIG_HIGHMEM */
1482
1483/**
1484 * enough_free_mem - Make sure we have enough free memory for the
1485 * snapshot image.
1486 */
1487
1488static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1489{
1490 struct zone *zone;
1491 unsigned int free = alloc_normal;
1492
1493 for_each_populated_zone(zone)
1494 if (!is_highmem(zone))
1495 free += zone_page_state(zone, NR_FREE_PAGES);
1496
1497 nr_pages += count_pages_for_highmem(nr_highmem);
1498 pr_debug("PM: Normal pages needed: %u + %u, available pages: %u\n",
1499 nr_pages, PAGES_FOR_IO, free);
1500
1501 return free > nr_pages + PAGES_FOR_IO;
1502}
1503
1504#ifdef CONFIG_HIGHMEM
1505/**
1506 * get_highmem_buffer - if there are some highmem pages in the suspend
1507 * image, we may need the buffer to copy them and/or load their data.
1508 */
1509
1510static inline int get_highmem_buffer(int safe_needed)
1511{
1512 buffer = get_image_page(GFP_ATOMIC | __GFP_COLD, safe_needed);
1513 return buffer ? 0 : -ENOMEM;
1514}
1515
1516/**
1517 * alloc_highmem_image_pages - allocate some highmem pages for the image.
1518 * Try to allocate as many pages as needed, but if the number of free
1519 * highmem pages is lesser than that, allocate them all.
1520 */
1521
1522static inline unsigned int
1523alloc_highmem_pages(struct memory_bitmap *bm, unsigned int nr_highmem)
1524{
1525 unsigned int to_alloc = count_free_highmem_pages();
1526
1527 if (to_alloc > nr_highmem)
1528 to_alloc = nr_highmem;
1529
1530 nr_highmem -= to_alloc;
1531 while (to_alloc-- > 0) {
1532 struct page *page;
1533
1534 page = alloc_image_page(__GFP_HIGHMEM);
1535 memory_bm_set_bit(bm, page_to_pfn(page));
1536 }
1537 return nr_highmem;
1538}
1539#else
1540static inline int get_highmem_buffer(int safe_needed) { return 0; }
1541
1542static inline unsigned int
1543alloc_highmem_pages(struct memory_bitmap *bm, unsigned int n) { return 0; }
1544#endif /* CONFIG_HIGHMEM */
1545
1546/**
1547 * swsusp_alloc - allocate memory for the suspend image
1548 *
1549 * We first try to allocate as many highmem pages as there are
1550 * saveable highmem pages in the system. If that fails, we allocate
1551 * non-highmem pages for the copies of the remaining highmem ones.
1552 *
1553 * In this approach it is likely that the copies of highmem pages will
1554 * also be located in the high memory, because of the way in which
1555 * copy_data_pages() works.
1556 */
1557
1558static int
1559swsusp_alloc(struct memory_bitmap *orig_bm, struct memory_bitmap *copy_bm,
1560 unsigned int nr_pages, unsigned int nr_highmem)
1561{
1562 if (nr_highmem > 0) {
1563 if (get_highmem_buffer(PG_ANY))
1564 goto err_out;
1565 if (nr_highmem > alloc_highmem) {
1566 nr_highmem -= alloc_highmem;
1567 nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1568 }
1569 }
1570 if (nr_pages > alloc_normal) {
1571 nr_pages -= alloc_normal;
1572 while (nr_pages-- > 0) {
1573 struct page *page;
1574
1575 page = alloc_image_page(GFP_ATOMIC | __GFP_COLD);
1576 if (!page)
1577 goto err_out;
1578 memory_bm_set_bit(copy_bm, page_to_pfn(page));
1579 }
1580 }
1581
1582 return 0;
1583
1584 err_out:
1585 swsusp_free();
1586 return -ENOMEM;
1587}
1588
1589asmlinkage __visible int swsusp_save(void)
1590{
1591 unsigned int nr_pages, nr_highmem;
1592
1593 printk(KERN_INFO "PM: Creating hibernation image:\n");
1594
1595 drain_local_pages(NULL);
1596 nr_pages = count_data_pages();
1597 nr_highmem = count_highmem_pages();
1598 printk(KERN_INFO "PM: Need to copy %u pages\n", nr_pages + nr_highmem);
1599
1600 if (!enough_free_mem(nr_pages, nr_highmem)) {
1601 printk(KERN_ERR "PM: Not enough free memory\n");
1602 return -ENOMEM;
1603 }
1604
1605 if (swsusp_alloc(&orig_bm, ©_bm, nr_pages, nr_highmem)) {
1606 printk(KERN_ERR "PM: Memory allocation failed\n");
1607 return -ENOMEM;
1608 }
1609
1610 /* During allocating of suspend pagedir, new cold pages may appear.
1611 * Kill them.
1612 */
1613 drain_local_pages(NULL);
1614 copy_data_pages(©_bm, &orig_bm);
1615
1616 /*
1617 * End of critical section. From now on, we can write to memory,
1618 * but we should not touch disk. This specially means we must _not_
1619 * touch swap space! Except we must write out our image of course.
1620 */
1621
1622 nr_pages += nr_highmem;
1623 nr_copy_pages = nr_pages;
1624 nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1625
1626 printk(KERN_INFO "PM: Hibernation image created (%d pages copied)\n",
1627 nr_pages);
1628
1629 return 0;
1630}
1631
1632#ifndef CONFIG_ARCH_HIBERNATION_HEADER
1633static int init_header_complete(struct swsusp_info *info)
1634{
1635 memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
1636 info->version_code = LINUX_VERSION_CODE;
1637 return 0;
1638}
1639
1640static char *check_image_kernel(struct swsusp_info *info)
1641{
1642 if (info->version_code != LINUX_VERSION_CODE)
1643 return "kernel version";
1644 if (strcmp(info->uts.sysname,init_utsname()->sysname))
1645 return "system type";
1646 if (strcmp(info->uts.release,init_utsname()->release))
1647 return "kernel release";
1648 if (strcmp(info->uts.version,init_utsname()->version))
1649 return "version";
1650 if (strcmp(info->uts.machine,init_utsname()->machine))
1651 return "machine";
1652 return NULL;
1653}
1654#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
1655
1656unsigned long snapshot_get_image_size(void)
1657{
1658 return nr_copy_pages + nr_meta_pages + 1;
1659}
1660
1661static int init_header(struct swsusp_info *info)
1662{
1663 memset(info, 0, sizeof(struct swsusp_info));
1664 info->num_physpages = get_num_physpages();
1665 info->image_pages = nr_copy_pages;
1666 info->pages = snapshot_get_image_size();
1667 info->size = info->pages;
1668 info->size <<= PAGE_SHIFT;
1669 return init_header_complete(info);
1670}
1671
1672/**
1673 * pack_pfns - pfns corresponding to the set bits found in the bitmap @bm
1674 * are stored in the array @buf[] (1 page at a time)
1675 */
1676
1677static inline void
1678pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
1679{
1680 int j;
1681
1682 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1683 buf[j] = memory_bm_next_pfn(bm);
1684 if (unlikely(buf[j] == BM_END_OF_MAP))
1685 break;
1686 /* Save page key for data page (s390 only). */
1687 page_key_read(buf + j);
1688 }
1689}
1690
1691/**
1692 * snapshot_read_next - used for reading the system memory snapshot.
1693 *
1694 * On the first call to it @handle should point to a zeroed
1695 * snapshot_handle structure. The structure gets updated and a pointer
1696 * to it should be passed to this function every next time.
1697 *
1698 * On success the function returns a positive number. Then, the caller
1699 * is allowed to read up to the returned number of bytes from the memory
1700 * location computed by the data_of() macro.
1701 *
1702 * The function returns 0 to indicate the end of data stream condition,
1703 * and a negative number is returned on error. In such cases the
1704 * structure pointed to by @handle is not updated and should not be used
1705 * any more.
1706 */
1707
1708int snapshot_read_next(struct snapshot_handle *handle)
1709{
1710 if (handle->cur > nr_meta_pages + nr_copy_pages)
1711 return 0;
1712
1713 if (!buffer) {
1714 /* This makes the buffer be freed by swsusp_free() */
1715 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
1716 if (!buffer)
1717 return -ENOMEM;
1718 }
1719 if (!handle->cur) {
1720 int error;
1721
1722 error = init_header((struct swsusp_info *)buffer);
1723 if (error)
1724 return error;
1725 handle->buffer = buffer;
1726 memory_bm_position_reset(&orig_bm);
1727 memory_bm_position_reset(©_bm);
1728 } else if (handle->cur <= nr_meta_pages) {
1729 clear_page(buffer);
1730 pack_pfns(buffer, &orig_bm);
1731 } else {
1732 struct page *page;
1733
1734 page = pfn_to_page(memory_bm_next_pfn(©_bm));
1735 if (PageHighMem(page)) {
1736 /* Highmem pages are copied to the buffer,
1737 * because we can't return with a kmapped
1738 * highmem page (we may not be called again).
1739 */
1740 void *kaddr;
1741
1742 kaddr = kmap_atomic(page);
1743 copy_page(buffer, kaddr);
1744 kunmap_atomic(kaddr);
1745 handle->buffer = buffer;
1746 } else {
1747 handle->buffer = page_address(page);
1748 }
1749 }
1750 handle->cur++;
1751 return PAGE_SIZE;
1752}
1753
1754/**
1755 * mark_unsafe_pages - mark the pages that cannot be used for storing
1756 * the image during resume, because they conflict with the pages that
1757 * had been used before suspend
1758 */
1759
1760static int mark_unsafe_pages(struct memory_bitmap *bm)
1761{
1762 struct zone *zone;
1763 unsigned long pfn, max_zone_pfn;
1764
1765 /* Clear page flags */
1766 for_each_populated_zone(zone) {
1767 max_zone_pfn = zone_end_pfn(zone);
1768 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1769 if (pfn_valid(pfn))
1770 swsusp_unset_page_free(pfn_to_page(pfn));
1771 }
1772
1773 /* Mark pages that correspond to the "original" pfns as "unsafe" */
1774 memory_bm_position_reset(bm);
1775 do {
1776 pfn = memory_bm_next_pfn(bm);
1777 if (likely(pfn != BM_END_OF_MAP)) {
1778 if (likely(pfn_valid(pfn)))
1779 swsusp_set_page_free(pfn_to_page(pfn));
1780 else
1781 return -EFAULT;
1782 }
1783 } while (pfn != BM_END_OF_MAP);
1784
1785 allocated_unsafe_pages = 0;
1786
1787 return 0;
1788}
1789
1790static void
1791duplicate_memory_bitmap(struct memory_bitmap *dst, struct memory_bitmap *src)
1792{
1793 unsigned long pfn;
1794
1795 memory_bm_position_reset(src);
1796 pfn = memory_bm_next_pfn(src);
1797 while (pfn != BM_END_OF_MAP) {
1798 memory_bm_set_bit(dst, pfn);
1799 pfn = memory_bm_next_pfn(src);
1800 }
1801}
1802
1803static int check_header(struct swsusp_info *info)
1804{
1805 char *reason;
1806
1807 reason = check_image_kernel(info);
1808 if (!reason && info->num_physpages != get_num_physpages())
1809 reason = "memory size";
1810 if (reason) {
1811 printk(KERN_ERR "PM: Image mismatch: %s\n", reason);
1812 return -EPERM;
1813 }
1814 return 0;
1815}
1816
1817/**
1818 * load header - check the image header and copy data from it
1819 */
1820
1821static int
1822load_header(struct swsusp_info *info)
1823{
1824 int error;
1825
1826 restore_pblist = NULL;
1827 error = check_header(info);
1828 if (!error) {
1829 nr_copy_pages = info->image_pages;
1830 nr_meta_pages = info->pages - info->image_pages - 1;
1831 }
1832 return error;
1833}
1834
1835/**
1836 * unpack_orig_pfns - for each element of @buf[] (1 page at a time) set
1837 * the corresponding bit in the memory bitmap @bm
1838 */
1839static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
1840{
1841 int j;
1842
1843 for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
1844 if (unlikely(buf[j] == BM_END_OF_MAP))
1845 break;
1846
1847 /* Extract and buffer page key for data page (s390 only). */
1848 page_key_memorize(buf + j);
1849
1850 if (memory_bm_pfn_present(bm, buf[j]))
1851 memory_bm_set_bit(bm, buf[j]);
1852 else
1853 return -EFAULT;
1854 }
1855
1856 return 0;
1857}
1858
1859/* List of "safe" pages that may be used to store data loaded from the suspend
1860 * image
1861 */
1862static struct linked_page *safe_pages_list;
1863
1864#ifdef CONFIG_HIGHMEM
1865/* struct highmem_pbe is used for creating the list of highmem pages that
1866 * should be restored atomically during the resume from disk, because the page
1867 * frames they have occupied before the suspend are in use.
1868 */
1869struct highmem_pbe {
1870 struct page *copy_page; /* data is here now */
1871 struct page *orig_page; /* data was here before the suspend */
1872 struct highmem_pbe *next;
1873};
1874
1875/* List of highmem PBEs needed for restoring the highmem pages that were
1876 * allocated before the suspend and included in the suspend image, but have
1877 * also been allocated by the "resume" kernel, so their contents cannot be
1878 * written directly to their "original" page frames.
1879 */
1880static struct highmem_pbe *highmem_pblist;
1881
1882/**
1883 * count_highmem_image_pages - compute the number of highmem pages in the
1884 * suspend image. The bits in the memory bitmap @bm that correspond to the
1885 * image pages are assumed to be set.
1886 */
1887
1888static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
1889{
1890 unsigned long pfn;
1891 unsigned int cnt = 0;
1892
1893 memory_bm_position_reset(bm);
1894 pfn = memory_bm_next_pfn(bm);
1895 while (pfn != BM_END_OF_MAP) {
1896 if (PageHighMem(pfn_to_page(pfn)))
1897 cnt++;
1898
1899 pfn = memory_bm_next_pfn(bm);
1900 }
1901 return cnt;
1902}
1903
1904/**
1905 * prepare_highmem_image - try to allocate as many highmem pages as
1906 * there are highmem image pages (@nr_highmem_p points to the variable
1907 * containing the number of highmem image pages). The pages that are
1908 * "safe" (ie. will not be overwritten when the suspend image is
1909 * restored) have the corresponding bits set in @bm (it must be
1910 * unitialized).
1911 *
1912 * NOTE: This function should not be called if there are no highmem
1913 * image pages.
1914 */
1915
1916static unsigned int safe_highmem_pages;
1917
1918static struct memory_bitmap *safe_highmem_bm;
1919
1920static int
1921prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
1922{
1923 unsigned int to_alloc;
1924
1925 if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
1926 return -ENOMEM;
1927
1928 if (get_highmem_buffer(PG_SAFE))
1929 return -ENOMEM;
1930
1931 to_alloc = count_free_highmem_pages();
1932 if (to_alloc > *nr_highmem_p)
1933 to_alloc = *nr_highmem_p;
1934 else
1935 *nr_highmem_p = to_alloc;
1936
1937 safe_highmem_pages = 0;
1938 while (to_alloc-- > 0) {
1939 struct page *page;
1940
1941 page = alloc_page(__GFP_HIGHMEM);
1942 if (!swsusp_page_is_free(page)) {
1943 /* The page is "safe", set its bit the bitmap */
1944 memory_bm_set_bit(bm, page_to_pfn(page));
1945 safe_highmem_pages++;
1946 }
1947 /* Mark the page as allocated */
1948 swsusp_set_page_forbidden(page);
1949 swsusp_set_page_free(page);
1950 }
1951 memory_bm_position_reset(bm);
1952 safe_highmem_bm = bm;
1953 return 0;
1954}
1955
1956/**
1957 * get_highmem_page_buffer - for given highmem image page find the buffer
1958 * that suspend_write_next() should set for its caller to write to.
1959 *
1960 * If the page is to be saved to its "original" page frame or a copy of
1961 * the page is to be made in the highmem, @buffer is returned. Otherwise,
1962 * the copy of the page is to be made in normal memory, so the address of
1963 * the copy is returned.
1964 *
1965 * If @buffer is returned, the caller of suspend_write_next() will write
1966 * the page's contents to @buffer, so they will have to be copied to the
1967 * right location on the next call to suspend_write_next() and it is done
1968 * with the help of copy_last_highmem_page(). For this purpose, if
1969 * @buffer is returned, @last_highmem page is set to the page to which
1970 * the data will have to be copied from @buffer.
1971 */
1972
1973static struct page *last_highmem_page;
1974
1975static void *
1976get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
1977{
1978 struct highmem_pbe *pbe;
1979 void *kaddr;
1980
1981 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
1982 /* We have allocated the "original" page frame and we can
1983 * use it directly to store the loaded page.
1984 */
1985 last_highmem_page = page;
1986 return buffer;
1987 }
1988 /* The "original" page frame has not been allocated and we have to
1989 * use a "safe" page frame to store the loaded page.
1990 */
1991 pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
1992 if (!pbe) {
1993 swsusp_free();
1994 return ERR_PTR(-ENOMEM);
1995 }
1996 pbe->orig_page = page;
1997 if (safe_highmem_pages > 0) {
1998 struct page *tmp;
1999
2000 /* Copy of the page will be stored in high memory */
2001 kaddr = buffer;
2002 tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2003 safe_highmem_pages--;
2004 last_highmem_page = tmp;
2005 pbe->copy_page = tmp;
2006 } else {
2007 /* Copy of the page will be stored in normal memory */
2008 kaddr = safe_pages_list;
2009 safe_pages_list = safe_pages_list->next;
2010 pbe->copy_page = virt_to_page(kaddr);
2011 }
2012 pbe->next = highmem_pblist;
2013 highmem_pblist = pbe;
2014 return kaddr;
2015}
2016
2017/**
2018 * copy_last_highmem_page - copy the contents of a highmem image from
2019 * @buffer, where the caller of snapshot_write_next() has place them,
2020 * to the right location represented by @last_highmem_page .
2021 */
2022
2023static void copy_last_highmem_page(void)
2024{
2025 if (last_highmem_page) {
2026 void *dst;
2027
2028 dst = kmap_atomic(last_highmem_page);
2029 copy_page(dst, buffer);
2030 kunmap_atomic(dst);
2031 last_highmem_page = NULL;
2032 }
2033}
2034
2035static inline int last_highmem_page_copied(void)
2036{
2037 return !last_highmem_page;
2038}
2039
2040static inline void free_highmem_data(void)
2041{
2042 if (safe_highmem_bm)
2043 memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2044
2045 if (buffer)
2046 free_image_page(buffer, PG_UNSAFE_CLEAR);
2047}
2048#else
2049static inline int get_safe_write_buffer(void) { return 0; }
2050
2051static unsigned int
2052count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2053
2054static inline int
2055prepare_highmem_image(struct memory_bitmap *bm, unsigned int *nr_highmem_p)
2056{
2057 return 0;
2058}
2059
2060static inline void *
2061get_highmem_page_buffer(struct page *page, struct chain_allocator *ca)
2062{
2063 return ERR_PTR(-EINVAL);
2064}
2065
2066static inline void copy_last_highmem_page(void) {}
2067static inline int last_highmem_page_copied(void) { return 1; }
2068static inline void free_highmem_data(void) {}
2069#endif /* CONFIG_HIGHMEM */
2070
2071/**
2072 * prepare_image - use the memory bitmap @bm to mark the pages that will
2073 * be overwritten in the process of restoring the system memory state
2074 * from the suspend image ("unsafe" pages) and allocate memory for the
2075 * image.
2076 *
2077 * The idea is to allocate a new memory bitmap first and then allocate
2078 * as many pages as needed for the image data, but not to assign these
2079 * pages to specific tasks initially. Instead, we just mark them as
2080 * allocated and create a lists of "safe" pages that will be used
2081 * later. On systems with high memory a list of "safe" highmem pages is
2082 * also created.
2083 */
2084
2085#define PBES_PER_LINKED_PAGE (LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2086
2087static int
2088prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2089{
2090 unsigned int nr_pages, nr_highmem;
2091 struct linked_page *sp_list, *lp;
2092 int error;
2093
2094 /* If there is no highmem, the buffer will not be necessary */
2095 free_image_page(buffer, PG_UNSAFE_CLEAR);
2096 buffer = NULL;
2097
2098 nr_highmem = count_highmem_image_pages(bm);
2099 error = mark_unsafe_pages(bm);
2100 if (error)
2101 goto Free;
2102
2103 error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2104 if (error)
2105 goto Free;
2106
2107 duplicate_memory_bitmap(new_bm, bm);
2108 memory_bm_free(bm, PG_UNSAFE_KEEP);
2109 if (nr_highmem > 0) {
2110 error = prepare_highmem_image(bm, &nr_highmem);
2111 if (error)
2112 goto Free;
2113 }
2114 /* Reserve some safe pages for potential later use.
2115 *
2116 * NOTE: This way we make sure there will be enough safe pages for the
2117 * chain_alloc() in get_buffer(). It is a bit wasteful, but
2118 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2119 */
2120 sp_list = NULL;
2121 /* nr_copy_pages cannot be lesser than allocated_unsafe_pages */
2122 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2123 nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2124 while (nr_pages > 0) {
2125 lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2126 if (!lp) {
2127 error = -ENOMEM;
2128 goto Free;
2129 }
2130 lp->next = sp_list;
2131 sp_list = lp;
2132 nr_pages--;
2133 }
2134 /* Preallocate memory for the image */
2135 safe_pages_list = NULL;
2136 nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2137 while (nr_pages > 0) {
2138 lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2139 if (!lp) {
2140 error = -ENOMEM;
2141 goto Free;
2142 }
2143 if (!swsusp_page_is_free(virt_to_page(lp))) {
2144 /* The page is "safe", add it to the list */
2145 lp->next = safe_pages_list;
2146 safe_pages_list = lp;
2147 }
2148 /* Mark the page as allocated */
2149 swsusp_set_page_forbidden(virt_to_page(lp));
2150 swsusp_set_page_free(virt_to_page(lp));
2151 nr_pages--;
2152 }
2153 /* Free the reserved safe pages so that chain_alloc() can use them */
2154 while (sp_list) {
2155 lp = sp_list->next;
2156 free_image_page(sp_list, PG_UNSAFE_CLEAR);
2157 sp_list = lp;
2158 }
2159 return 0;
2160
2161 Free:
2162 swsusp_free();
2163 return error;
2164}
2165
2166/**
2167 * get_buffer - compute the address that snapshot_write_next() should
2168 * set for its caller to write to.
2169 */
2170
2171static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2172{
2173 struct pbe *pbe;
2174 struct page *page;
2175 unsigned long pfn = memory_bm_next_pfn(bm);
2176
2177 if (pfn == BM_END_OF_MAP)
2178 return ERR_PTR(-EFAULT);
2179
2180 page = pfn_to_page(pfn);
2181 if (PageHighMem(page))
2182 return get_highmem_page_buffer(page, ca);
2183
2184 if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2185 /* We have allocated the "original" page frame and we can
2186 * use it directly to store the loaded page.
2187 */
2188 return page_address(page);
2189
2190 /* The "original" page frame has not been allocated and we have to
2191 * use a "safe" page frame to store the loaded page.
2192 */
2193 pbe = chain_alloc(ca, sizeof(struct pbe));
2194 if (!pbe) {
2195 swsusp_free();
2196 return ERR_PTR(-ENOMEM);
2197 }
2198 pbe->orig_address = page_address(page);
2199 pbe->address = safe_pages_list;
2200 safe_pages_list = safe_pages_list->next;
2201 pbe->next = restore_pblist;
2202 restore_pblist = pbe;
2203 return pbe->address;
2204}
2205
2206/**
2207 * snapshot_write_next - used for writing the system memory snapshot.
2208 *
2209 * On the first call to it @handle should point to a zeroed
2210 * snapshot_handle structure. The structure gets updated and a pointer
2211 * to it should be passed to this function every next time.
2212 *
2213 * On success the function returns a positive number. Then, the caller
2214 * is allowed to write up to the returned number of bytes to the memory
2215 * location computed by the data_of() macro.
2216 *
2217 * The function returns 0 to indicate the "end of file" condition,
2218 * and a negative number is returned on error. In such cases the
2219 * structure pointed to by @handle is not updated and should not be used
2220 * any more.
2221 */
2222
2223int snapshot_write_next(struct snapshot_handle *handle)
2224{
2225 static struct chain_allocator ca;
2226 int error = 0;
2227
2228 /* Check if we have already loaded the entire image */
2229 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2230 return 0;
2231
2232 handle->sync_read = 1;
2233
2234 if (!handle->cur) {
2235 if (!buffer)
2236 /* This makes the buffer be freed by swsusp_free() */
2237 buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2238
2239 if (!buffer)
2240 return -ENOMEM;
2241
2242 handle->buffer = buffer;
2243 } else if (handle->cur == 1) {
2244 error = load_header(buffer);
2245 if (error)
2246 return error;
2247
2248 error = memory_bm_create(©_bm, GFP_ATOMIC, PG_ANY);
2249 if (error)
2250 return error;
2251
2252 /* Allocate buffer for page keys. */
2253 error = page_key_alloc(nr_copy_pages);
2254 if (error)
2255 return error;
2256
2257 } else if (handle->cur <= nr_meta_pages + 1) {
2258 error = unpack_orig_pfns(buffer, ©_bm);
2259 if (error)
2260 return error;
2261
2262 if (handle->cur == nr_meta_pages + 1) {
2263 error = prepare_image(&orig_bm, ©_bm);
2264 if (error)
2265 return error;
2266
2267 chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2268 memory_bm_position_reset(&orig_bm);
2269 restore_pblist = NULL;
2270 handle->buffer = get_buffer(&orig_bm, &ca);
2271 handle->sync_read = 0;
2272 if (IS_ERR(handle->buffer))
2273 return PTR_ERR(handle->buffer);
2274 }
2275 } else {
2276 copy_last_highmem_page();
2277 /* Restore page key for data page (s390 only). */
2278 page_key_write(handle->buffer);
2279 handle->buffer = get_buffer(&orig_bm, &ca);
2280 if (IS_ERR(handle->buffer))
2281 return PTR_ERR(handle->buffer);
2282 if (handle->buffer != buffer)
2283 handle->sync_read = 0;
2284 }
2285 handle->cur++;
2286 return PAGE_SIZE;
2287}
2288
2289/**
2290 * snapshot_write_finalize - must be called after the last call to
2291 * snapshot_write_next() in case the last page in the image happens
2292 * to be a highmem page and its contents should be stored in the
2293 * highmem. Additionally, it releases the memory that will not be
2294 * used any more.
2295 */
2296
2297void snapshot_write_finalize(struct snapshot_handle *handle)
2298{
2299 copy_last_highmem_page();
2300 /* Restore page key for data page (s390 only). */
2301 page_key_write(handle->buffer);
2302 page_key_free();
2303 /* Free only if we have loaded the image entirely */
2304 if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2305 memory_bm_free(&orig_bm, PG_UNSAFE_CLEAR);
2306 free_highmem_data();
2307 }
2308}
2309
2310int snapshot_image_loaded(struct snapshot_handle *handle)
2311{
2312 return !(!nr_copy_pages || !last_highmem_page_copied() ||
2313 handle->cur <= nr_meta_pages + nr_copy_pages);
2314}
2315
2316#ifdef CONFIG_HIGHMEM
2317/* Assumes that @buf is ready and points to a "safe" page */
2318static inline void
2319swap_two_pages_data(struct page *p1, struct page *p2, void *buf)
2320{
2321 void *kaddr1, *kaddr2;
2322
2323 kaddr1 = kmap_atomic(p1);
2324 kaddr2 = kmap_atomic(p2);
2325 copy_page(buf, kaddr1);
2326 copy_page(kaddr1, kaddr2);
2327 copy_page(kaddr2, buf);
2328 kunmap_atomic(kaddr2);
2329 kunmap_atomic(kaddr1);
2330}
2331
2332/**
2333 * restore_highmem - for each highmem page that was allocated before
2334 * the suspend and included in the suspend image, and also has been
2335 * allocated by the "resume" kernel swap its current (ie. "before
2336 * resume") contents with the previous (ie. "before suspend") one.
2337 *
2338 * If the resume eventually fails, we can call this function once
2339 * again and restore the "before resume" highmem state.
2340 */
2341
2342int restore_highmem(void)
2343{
2344 struct highmem_pbe *pbe = highmem_pblist;
2345 void *buf;
2346
2347 if (!pbe)
2348 return 0;
2349
2350 buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2351 if (!buf)
2352 return -ENOMEM;
2353
2354 while (pbe) {
2355 swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2356 pbe = pbe->next;
2357 }
2358 free_image_page(buf, PG_UNSAFE_CLEAR);
2359 return 0;
2360}
2361#endif /* CONFIG_HIGHMEM */