Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline void hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		set_memory_ro((unsigned long)page_address, 1);
  65}
  66
  67static inline void hibernate_restore_unprotect_page(void *page_address)
  68{
  69	if (hibernate_restore_protection_active)
  70		set_memory_rw((unsigned long)page_address, 1);
  71}
  72#else
  73static inline void hibernate_restore_protection_begin(void) {}
  74static inline void hibernate_restore_protection_end(void) {}
  75static inline void hibernate_restore_protect_page(void *page_address) {}
  76static inline void hibernate_restore_unprotect_page(void *page_address) {}
  77#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  78
  79
  80/*
  81 * The calls to set_direct_map_*() should not fail because remapping a page
  82 * here means that we only update protection bits in an existing PTE.
  83 * It is still worth to have a warning here if something changes and this
  84 * will no longer be the case.
  85 */
  86static inline void hibernate_map_page(struct page *page)
  87{
  88	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
  89		int ret = set_direct_map_default_noflush(page);
  90
  91		if (ret)
  92			pr_warn_once("Failed to remap page\n");
  93	} else {
  94		debug_pagealloc_map_pages(page, 1);
  95	}
  96}
  97
  98static inline void hibernate_unmap_page(struct page *page)
  99{
 100	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
 101		unsigned long addr = (unsigned long)page_address(page);
 102		int ret  = set_direct_map_invalid_noflush(page);
 103
 104		if (ret)
 105			pr_warn_once("Failed to remap page\n");
 106
 107		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
 108	} else {
 109		debug_pagealloc_unmap_pages(page, 1);
 110	}
 111}
 112
 113static int swsusp_page_is_free(struct page *);
 114static void swsusp_set_page_forbidden(struct page *);
 115static void swsusp_unset_page_forbidden(struct page *);
 116
 117/*
 118 * Number of bytes to reserve for memory allocations made by device drivers
 119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 120 * cause image creation to fail (tunable via /sys/power/reserved_size).
 121 */
 122unsigned long reserved_size;
 123
 124void __init hibernate_reserved_size_init(void)
 125{
 126	reserved_size = SPARE_PAGES * PAGE_SIZE;
 127}
 128
 129/*
 130 * Preferred image size in bytes (tunable via /sys/power/image_size).
 131 * When it is set to N, swsusp will do its best to ensure the image
 132 * size will not exceed N bytes, but if that is impossible, it will
 133 * try to create the smallest image possible.
 134 */
 135unsigned long image_size;
 136
 137void __init hibernate_image_size_init(void)
 138{
 139	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 140}
 141
 142/*
 143 * List of PBEs needed for restoring the pages that were allocated before
 144 * the suspend and included in the suspend image, but have also been
 145 * allocated by the "resume" kernel, so their contents cannot be written
 146 * directly to their "original" page frames.
 147 */
 148struct pbe *restore_pblist;
 149
 150/* struct linked_page is used to build chains of pages */
 151
 152#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 153
 154struct linked_page {
 155	struct linked_page *next;
 156	char data[LINKED_PAGE_DATA_SIZE];
 157} __packed;
 158
 159/*
 160 * List of "safe" pages (ie. pages that were not used by the image kernel
 161 * before hibernation) that may be used as temporary storage for image kernel
 162 * memory contents.
 163 */
 164static struct linked_page *safe_pages_list;
 165
 166/* Pointer to an auxiliary buffer (1 page) */
 167static void *buffer;
 168
 169#define PG_ANY		0
 170#define PG_SAFE		1
 171#define PG_UNSAFE_CLEAR	1
 172#define PG_UNSAFE_KEEP	0
 173
 174static unsigned int allocated_unsafe_pages;
 175
 176/**
 177 * get_image_page - Allocate a page for a hibernation image.
 178 * @gfp_mask: GFP mask for the allocation.
 179 * @safe_needed: Get pages that were not used before hibernation (restore only)
 180 *
 181 * During image restoration, for storing the PBE list and the image data, we can
 182 * only use memory pages that do not conflict with the pages used before
 183 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 184 * using allocated_unsafe_pages.
 185 *
 186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 187 * swsusp_free() can release it.
 188 */
 189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 190{
 191	void *res;
 192
 193	res = (void *)get_zeroed_page(gfp_mask);
 194	if (safe_needed)
 195		while (res && swsusp_page_is_free(virt_to_page(res))) {
 196			/* The page is unsafe, mark it for swsusp_free() */
 197			swsusp_set_page_forbidden(virt_to_page(res));
 198			allocated_unsafe_pages++;
 199			res = (void *)get_zeroed_page(gfp_mask);
 200		}
 201	if (res) {
 202		swsusp_set_page_forbidden(virt_to_page(res));
 203		swsusp_set_page_free(virt_to_page(res));
 204	}
 205	return res;
 206}
 207
 208static void *__get_safe_page(gfp_t gfp_mask)
 209{
 210	if (safe_pages_list) {
 211		void *ret = safe_pages_list;
 212
 213		safe_pages_list = safe_pages_list->next;
 214		memset(ret, 0, PAGE_SIZE);
 215		return ret;
 216	}
 217	return get_image_page(gfp_mask, PG_SAFE);
 218}
 219
 220unsigned long get_safe_page(gfp_t gfp_mask)
 221{
 222	return (unsigned long)__get_safe_page(gfp_mask);
 223}
 224
 225static struct page *alloc_image_page(gfp_t gfp_mask)
 226{
 227	struct page *page;
 228
 229	page = alloc_page(gfp_mask);
 230	if (page) {
 231		swsusp_set_page_forbidden(page);
 232		swsusp_set_page_free(page);
 233	}
 234	return page;
 235}
 236
 237static void recycle_safe_page(void *page_address)
 238{
 239	struct linked_page *lp = page_address;
 240
 241	lp->next = safe_pages_list;
 242	safe_pages_list = lp;
 243}
 244
 245/**
 246 * free_image_page - Free a page allocated for hibernation image.
 247 * @addr: Address of the page to free.
 248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 249 *
 250 * The page to free should have been allocated by get_image_page() (page flags
 251 * set by it are affected).
 252 */
 253static inline void free_image_page(void *addr, int clear_nosave_free)
 254{
 255	struct page *page;
 256
 257	BUG_ON(!virt_addr_valid(addr));
 258
 259	page = virt_to_page(addr);
 260
 261	swsusp_unset_page_forbidden(page);
 262	if (clear_nosave_free)
 263		swsusp_unset_page_free(page);
 264
 265	__free_page(page);
 266}
 267
 268static inline void free_list_of_pages(struct linked_page *list,
 269				      int clear_page_nosave)
 270{
 271	while (list) {
 272		struct linked_page *lp = list->next;
 273
 274		free_image_page(list, clear_page_nosave);
 275		list = lp;
 276	}
 277}
 278
 279/*
 280 * struct chain_allocator is used for allocating small objects out of
 281 * a linked list of pages called 'the chain'.
 282 *
 283 * The chain grows each time when there is no room for a new object in
 284 * the current page.  The allocated objects cannot be freed individually.
 285 * It is only possible to free them all at once, by freeing the entire
 286 * chain.
 287 *
 288 * NOTE: The chain allocator may be inefficient if the allocated objects
 289 * are not much smaller than PAGE_SIZE.
 290 */
 291struct chain_allocator {
 292	struct linked_page *chain;	/* the chain */
 293	unsigned int used_space;	/* total size of objects allocated out
 294					   of the current page */
 295	gfp_t gfp_mask;		/* mask for allocating pages */
 296	int safe_needed;	/* if set, only "safe" pages are allocated */
 297};
 298
 299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 300		       int safe_needed)
 301{
 302	ca->chain = NULL;
 303	ca->used_space = LINKED_PAGE_DATA_SIZE;
 304	ca->gfp_mask = gfp_mask;
 305	ca->safe_needed = safe_needed;
 306}
 307
 308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 309{
 310	void *ret;
 311
 312	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 313		struct linked_page *lp;
 314
 315		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 316					get_image_page(ca->gfp_mask, PG_ANY);
 317		if (!lp)
 318			return NULL;
 319
 320		lp->next = ca->chain;
 321		ca->chain = lp;
 322		ca->used_space = 0;
 323	}
 324	ret = ca->chain->data + ca->used_space;
 325	ca->used_space += size;
 326	return ret;
 327}
 328
 329/*
 330 * Data types related to memory bitmaps.
 331 *
 332 * Memory bitmap is a structure consisting of many linked lists of
 333 * objects.  The main list's elements are of type struct zone_bitmap
 334 * and each of them corresponds to one zone.  For each zone bitmap
 335 * object there is a list of objects of type struct bm_block that
 336 * represent each blocks of bitmap in which information is stored.
 337 *
 338 * struct memory_bitmap contains a pointer to the main list of zone
 339 * bitmap objects, a struct bm_position used for browsing the bitmap,
 340 * and a pointer to the list of pages used for allocating all of the
 341 * zone bitmap objects and bitmap block objects.
 342 *
 343 * NOTE: It has to be possible to lay out the bitmap in memory
 344 * using only allocations of order 0.  Additionally, the bitmap is
 345 * designed to work with arbitrary number of zones (this is over the
 346 * top for now, but let's avoid making unnecessary assumptions ;-).
 347 *
 348 * struct zone_bitmap contains a pointer to a list of bitmap block
 349 * objects and a pointer to the bitmap block object that has been
 350 * most recently used for setting bits.  Additionally, it contains the
 351 * PFNs that correspond to the start and end of the represented zone.
 352 *
 353 * struct bm_block contains a pointer to the memory page in which
 354 * information is stored (in the form of a block of bitmap)
 355 * It also contains the pfns that correspond to the start and end of
 356 * the represented memory area.
 357 *
 358 * The memory bitmap is organized as a radix tree to guarantee fast random
 359 * access to the bits. There is one radix tree for each zone (as returned
 360 * from create_mem_extents).
 361 *
 362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 363 * two linked lists for the nodes of the tree, one for the inner nodes and
 364 * one for the leave nodes. The linked leave nodes are used for fast linear
 365 * access of the memory bitmap.
 366 *
 367 * The struct rtree_node represents one node of the radix tree.
 368 */
 369
 370#define BM_END_OF_MAP	(~0UL)
 371
 372#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 373#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 374#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 375
 376/*
 377 * struct rtree_node is a wrapper struct to link the nodes
 378 * of the rtree together for easy linear iteration over
 379 * bits and easy freeing
 380 */
 381struct rtree_node {
 382	struct list_head list;
 383	unsigned long *data;
 384};
 385
 386/*
 387 * struct mem_zone_bm_rtree represents a bitmap used for one
 388 * populated memory zone.
 389 */
 390struct mem_zone_bm_rtree {
 391	struct list_head list;		/* Link Zones together         */
 392	struct list_head nodes;		/* Radix Tree inner nodes      */
 393	struct list_head leaves;	/* Radix Tree leaves           */
 394	unsigned long start_pfn;	/* Zone start page frame       */
 395	unsigned long end_pfn;		/* Zone end page frame + 1     */
 396	struct rtree_node *rtree;	/* Radix Tree Root             */
 397	int levels;			/* Number of Radix Tree Levels */
 398	unsigned int blocks;		/* Number of Bitmap Blocks     */
 399};
 400
 401/* strcut bm_position is used for browsing memory bitmaps */
 402
 403struct bm_position {
 404	struct mem_zone_bm_rtree *zone;
 405	struct rtree_node *node;
 406	unsigned long node_pfn;
 407	int node_bit;
 408};
 409
 410struct memory_bitmap {
 411	struct list_head zones;
 412	struct linked_page *p_list;	/* list of pages used to store zone
 413					   bitmap objects and bitmap block
 414					   objects */
 415	struct bm_position cur;	/* most recently used bit position */
 416};
 417
 418/* Functions that operate on memory bitmaps */
 419
 420#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 421#if BITS_PER_LONG == 32
 422#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 423#else
 424#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 425#endif
 426#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 427
 428/**
 429 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 430 * @gfp_mask: GFP mask for the allocation.
 431 * @safe_needed: Get pages not used before hibernation (restore only)
 432 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
 433 * @list: Radix Tree node to add.
 434 *
 435 * This function is used to allocate inner nodes as well as the
 436 * leave nodes of the radix tree. It also adds the node to the
 437 * corresponding linked list passed in by the *list parameter.
 438 */
 439static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 440					   struct chain_allocator *ca,
 441					   struct list_head *list)
 442{
 443	struct rtree_node *node;
 444
 445	node = chain_alloc(ca, sizeof(struct rtree_node));
 446	if (!node)
 447		return NULL;
 448
 449	node->data = get_image_page(gfp_mask, safe_needed);
 450	if (!node->data)
 451		return NULL;
 452
 453	list_add_tail(&node->list, list);
 454
 455	return node;
 456}
 457
 458/**
 459 * add_rtree_block - Add a new leave node to the radix tree.
 460 *
 461 * The leave nodes need to be allocated in order to keep the leaves
 462 * linked list in order. This is guaranteed by the zone->blocks
 463 * counter.
 464 */
 465static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 466			   int safe_needed, struct chain_allocator *ca)
 467{
 468	struct rtree_node *node, *block, **dst;
 469	unsigned int levels_needed, block_nr;
 470	int i;
 471
 472	block_nr = zone->blocks;
 473	levels_needed = 0;
 474
 475	/* How many levels do we need for this block nr? */
 476	while (block_nr) {
 477		levels_needed += 1;
 478		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 479	}
 480
 481	/* Make sure the rtree has enough levels */
 482	for (i = zone->levels; i < levels_needed; i++) {
 483		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 484					&zone->nodes);
 485		if (!node)
 486			return -ENOMEM;
 487
 488		node->data[0] = (unsigned long)zone->rtree;
 489		zone->rtree = node;
 490		zone->levels += 1;
 491	}
 492
 493	/* Allocate new block */
 494	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 495	if (!block)
 496		return -ENOMEM;
 497
 498	/* Now walk the rtree to insert the block */
 499	node = zone->rtree;
 500	dst = &zone->rtree;
 501	block_nr = zone->blocks;
 502	for (i = zone->levels; i > 0; i--) {
 503		int index;
 504
 505		if (!node) {
 506			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 507						&zone->nodes);
 508			if (!node)
 509				return -ENOMEM;
 510			*dst = node;
 511		}
 512
 513		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 514		index &= BM_RTREE_LEVEL_MASK;
 515		dst = (struct rtree_node **)&((*dst)->data[index]);
 516		node = *dst;
 517	}
 518
 519	zone->blocks += 1;
 520	*dst = block;
 521
 522	return 0;
 523}
 524
 525static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 526			       int clear_nosave_free);
 527
 528/**
 529 * create_zone_bm_rtree - Create a radix tree for one zone.
 530 *
 531 * Allocated the mem_zone_bm_rtree structure and initializes it.
 532 * This function also allocated and builds the radix tree for the
 533 * zone.
 534 */
 535static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 536						      int safe_needed,
 537						      struct chain_allocator *ca,
 538						      unsigned long start,
 539						      unsigned long end)
 540{
 541	struct mem_zone_bm_rtree *zone;
 542	unsigned int i, nr_blocks;
 543	unsigned long pages;
 544
 545	pages = end - start;
 546	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 547	if (!zone)
 548		return NULL;
 549
 550	INIT_LIST_HEAD(&zone->nodes);
 551	INIT_LIST_HEAD(&zone->leaves);
 552	zone->start_pfn = start;
 553	zone->end_pfn = end;
 554	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 555
 556	for (i = 0; i < nr_blocks; i++) {
 557		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 558			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 559			return NULL;
 560		}
 561	}
 562
 563	return zone;
 564}
 565
 566/**
 567 * free_zone_bm_rtree - Free the memory of the radix tree.
 568 *
 569 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 570 * structure itself is not freed here nor are the rtree_node
 571 * structs.
 572 */
 573static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 574			       int clear_nosave_free)
 575{
 576	struct rtree_node *node;
 577
 578	list_for_each_entry(node, &zone->nodes, list)
 579		free_image_page(node->data, clear_nosave_free);
 580
 581	list_for_each_entry(node, &zone->leaves, list)
 582		free_image_page(node->data, clear_nosave_free);
 583}
 584
 585static void memory_bm_position_reset(struct memory_bitmap *bm)
 586{
 587	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 588				  list);
 589	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 590				  struct rtree_node, list);
 591	bm->cur.node_pfn = 0;
 592	bm->cur.node_bit = 0;
 593}
 594
 595static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 596
 597struct mem_extent {
 598	struct list_head hook;
 599	unsigned long start;
 600	unsigned long end;
 601};
 602
 603/**
 604 * free_mem_extents - Free a list of memory extents.
 605 * @list: List of extents to free.
 606 */
 607static void free_mem_extents(struct list_head *list)
 608{
 609	struct mem_extent *ext, *aux;
 610
 611	list_for_each_entry_safe(ext, aux, list, hook) {
 612		list_del(&ext->hook);
 613		kfree(ext);
 614	}
 615}
 616
 617/**
 618 * create_mem_extents - Create a list of memory extents.
 619 * @list: List to put the extents into.
 620 * @gfp_mask: Mask to use for memory allocations.
 621 *
 622 * The extents represent contiguous ranges of PFNs.
 623 */
 624static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 625{
 626	struct zone *zone;
 627
 628	INIT_LIST_HEAD(list);
 629
 630	for_each_populated_zone(zone) {
 631		unsigned long zone_start, zone_end;
 632		struct mem_extent *ext, *cur, *aux;
 633
 634		zone_start = zone->zone_start_pfn;
 635		zone_end = zone_end_pfn(zone);
 636
 637		list_for_each_entry(ext, list, hook)
 638			if (zone_start <= ext->end)
 639				break;
 640
 641		if (&ext->hook == list || zone_end < ext->start) {
 642			/* New extent is necessary */
 643			struct mem_extent *new_ext;
 644
 645			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 646			if (!new_ext) {
 647				free_mem_extents(list);
 648				return -ENOMEM;
 649			}
 650			new_ext->start = zone_start;
 651			new_ext->end = zone_end;
 652			list_add_tail(&new_ext->hook, &ext->hook);
 653			continue;
 654		}
 655
 656		/* Merge this zone's range of PFNs with the existing one */
 657		if (zone_start < ext->start)
 658			ext->start = zone_start;
 659		if (zone_end > ext->end)
 660			ext->end = zone_end;
 661
 662		/* More merging may be possible */
 663		cur = ext;
 664		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 665			if (zone_end < cur->start)
 666				break;
 667			if (zone_end < cur->end)
 668				ext->end = cur->end;
 669			list_del(&cur->hook);
 670			kfree(cur);
 671		}
 672	}
 673
 674	return 0;
 675}
 676
 677/**
 678 * memory_bm_create - Allocate memory for a memory bitmap.
 679 */
 680static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 681			    int safe_needed)
 682{
 683	struct chain_allocator ca;
 684	struct list_head mem_extents;
 685	struct mem_extent *ext;
 686	int error;
 687
 688	chain_init(&ca, gfp_mask, safe_needed);
 689	INIT_LIST_HEAD(&bm->zones);
 690
 691	error = create_mem_extents(&mem_extents, gfp_mask);
 692	if (error)
 693		return error;
 694
 695	list_for_each_entry(ext, &mem_extents, hook) {
 696		struct mem_zone_bm_rtree *zone;
 697
 698		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 699					    ext->start, ext->end);
 700		if (!zone) {
 701			error = -ENOMEM;
 702			goto Error;
 703		}
 704		list_add_tail(&zone->list, &bm->zones);
 705	}
 706
 707	bm->p_list = ca.chain;
 708	memory_bm_position_reset(bm);
 709 Exit:
 710	free_mem_extents(&mem_extents);
 711	return error;
 712
 713 Error:
 714	bm->p_list = ca.chain;
 715	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 716	goto Exit;
 717}
 718
 719/**
 720 * memory_bm_free - Free memory occupied by the memory bitmap.
 721 * @bm: Memory bitmap.
 722 */
 723static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 724{
 725	struct mem_zone_bm_rtree *zone;
 726
 727	list_for_each_entry(zone, &bm->zones, list)
 728		free_zone_bm_rtree(zone, clear_nosave_free);
 729
 730	free_list_of_pages(bm->p_list, clear_nosave_free);
 731
 732	INIT_LIST_HEAD(&bm->zones);
 733}
 734
 735/**
 736 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 737 *
 738 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 739 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 740 *
 741 * Walk the radix tree to find the page containing the bit that represents @pfn
 742 * and return the position of the bit in @addr and @bit_nr.
 743 */
 744static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 745			      void **addr, unsigned int *bit_nr)
 746{
 747	struct mem_zone_bm_rtree *curr, *zone;
 748	struct rtree_node *node;
 749	int i, block_nr;
 750
 751	zone = bm->cur.zone;
 752
 753	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 754		goto zone_found;
 755
 756	zone = NULL;
 757
 758	/* Find the right zone */
 759	list_for_each_entry(curr, &bm->zones, list) {
 760		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 761			zone = curr;
 762			break;
 763		}
 764	}
 765
 766	if (!zone)
 767		return -EFAULT;
 768
 769zone_found:
 770	/*
 771	 * We have found the zone. Now walk the radix tree to find the leaf node
 772	 * for our PFN.
 773	 */
 774
 775	/*
 776	 * If the zone we wish to scan is the current zone and the
 777	 * pfn falls into the current node then we do not need to walk
 778	 * the tree.
 779	 */
 780	node = bm->cur.node;
 781	if (zone == bm->cur.zone &&
 782	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 783		goto node_found;
 784
 785	node      = zone->rtree;
 786	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 787
 788	for (i = zone->levels; i > 0; i--) {
 789		int index;
 790
 791		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 792		index &= BM_RTREE_LEVEL_MASK;
 793		BUG_ON(node->data[index] == 0);
 794		node = (struct rtree_node *)node->data[index];
 795	}
 796
 797node_found:
 798	/* Update last position */
 799	bm->cur.zone = zone;
 800	bm->cur.node = node;
 801	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 802
 803	/* Set return values */
 804	*addr = node->data;
 805	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 806
 807	return 0;
 808}
 809
 810static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 811{
 812	void *addr;
 813	unsigned int bit;
 814	int error;
 815
 816	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 817	BUG_ON(error);
 818	set_bit(bit, addr);
 819}
 820
 821static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 822{
 823	void *addr;
 824	unsigned int bit;
 825	int error;
 826
 827	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 828	if (!error)
 829		set_bit(bit, addr);
 830
 831	return error;
 832}
 833
 834static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 835{
 836	void *addr;
 837	unsigned int bit;
 838	int error;
 839
 840	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 841	BUG_ON(error);
 842	clear_bit(bit, addr);
 843}
 844
 845static void memory_bm_clear_current(struct memory_bitmap *bm)
 846{
 847	int bit;
 848
 849	bit = max(bm->cur.node_bit - 1, 0);
 850	clear_bit(bit, bm->cur.node->data);
 851}
 852
 853static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 854{
 855	void *addr;
 856	unsigned int bit;
 857	int error;
 858
 859	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 860	BUG_ON(error);
 861	return test_bit(bit, addr);
 862}
 863
 864static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 865{
 866	void *addr;
 867	unsigned int bit;
 868
 869	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 870}
 871
 872/*
 873 * rtree_next_node - Jump to the next leaf node.
 874 *
 875 * Set the position to the beginning of the next node in the
 876 * memory bitmap. This is either the next node in the current
 877 * zone's radix tree or the first node in the radix tree of the
 878 * next zone.
 879 *
 880 * Return true if there is a next node, false otherwise.
 881 */
 882static bool rtree_next_node(struct memory_bitmap *bm)
 883{
 884	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 885		bm->cur.node = list_entry(bm->cur.node->list.next,
 886					  struct rtree_node, list);
 887		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 888		bm->cur.node_bit  = 0;
 889		touch_softlockup_watchdog();
 890		return true;
 891	}
 892
 893	/* No more nodes, goto next zone */
 894	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 895		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 896				  struct mem_zone_bm_rtree, list);
 897		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 898					  struct rtree_node, list);
 899		bm->cur.node_pfn = 0;
 900		bm->cur.node_bit = 0;
 901		return true;
 902	}
 903
 904	/* No more zones */
 905	return false;
 906}
 907
 908/**
 909 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
 910 * @bm: Memory bitmap.
 911 *
 912 * Starting from the last returned position this function searches for the next
 913 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 914 * set, BM_END_OF_MAP is returned.
 915 *
 916 * It is required to run memory_bm_position_reset() before the first call to
 917 * this function for the given memory bitmap.
 918 */
 919static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 920{
 921	unsigned long bits, pfn, pages;
 922	int bit;
 923
 924	do {
 925		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 926		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 927		bit	  = find_next_bit(bm->cur.node->data, bits,
 928					  bm->cur.node_bit);
 929		if (bit < bits) {
 930			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 931			bm->cur.node_bit = bit + 1;
 932			return pfn;
 933		}
 934	} while (rtree_next_node(bm));
 935
 936	return BM_END_OF_MAP;
 937}
 938
 939/*
 940 * This structure represents a range of page frames the contents of which
 941 * should not be saved during hibernation.
 942 */
 943struct nosave_region {
 944	struct list_head list;
 945	unsigned long start_pfn;
 946	unsigned long end_pfn;
 947};
 948
 949static LIST_HEAD(nosave_regions);
 950
 951static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 952{
 953	struct rtree_node *node;
 954
 955	list_for_each_entry(node, &zone->nodes, list)
 956		recycle_safe_page(node->data);
 957
 958	list_for_each_entry(node, &zone->leaves, list)
 959		recycle_safe_page(node->data);
 960}
 961
 962static void memory_bm_recycle(struct memory_bitmap *bm)
 963{
 964	struct mem_zone_bm_rtree *zone;
 965	struct linked_page *p_list;
 966
 967	list_for_each_entry(zone, &bm->zones, list)
 968		recycle_zone_bm_rtree(zone);
 969
 970	p_list = bm->p_list;
 971	while (p_list) {
 972		struct linked_page *lp = p_list;
 973
 974		p_list = lp->next;
 975		recycle_safe_page(lp);
 976	}
 977}
 978
 979/**
 980 * register_nosave_region - Register a region of unsaveable memory.
 981 *
 982 * Register a range of page frames the contents of which should not be saved
 983 * during hibernation (to be used in the early initialization code).
 984 */
 985void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
 
 986{
 987	struct nosave_region *region;
 988
 989	if (start_pfn >= end_pfn)
 990		return;
 991
 992	if (!list_empty(&nosave_regions)) {
 993		/* Try to extend the previous region (they should be sorted) */
 994		region = list_entry(nosave_regions.prev,
 995					struct nosave_region, list);
 996		if (region->end_pfn == start_pfn) {
 997			region->end_pfn = end_pfn;
 998			goto Report;
 999		}
1000	}
1001	/* This allocation cannot fail */
1002	region = memblock_alloc(sizeof(struct nosave_region),
1003				SMP_CACHE_BYTES);
1004	if (!region)
1005		panic("%s: Failed to allocate %zu bytes\n", __func__,
1006		      sizeof(struct nosave_region));
 
 
 
 
 
 
1007	region->start_pfn = start_pfn;
1008	region->end_pfn = end_pfn;
1009	list_add_tail(&region->list, &nosave_regions);
1010 Report:
1011	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1012		(unsigned long long) start_pfn << PAGE_SHIFT,
1013		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1014}
1015
1016/*
1017 * Set bits in this map correspond to the page frames the contents of which
1018 * should not be saved during the suspend.
1019 */
1020static struct memory_bitmap *forbidden_pages_map;
1021
1022/* Set bits in this map correspond to free page frames. */
1023static struct memory_bitmap *free_pages_map;
1024
1025/*
1026 * Each page frame allocated for creating the image is marked by setting the
1027 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1028 */
1029
1030void swsusp_set_page_free(struct page *page)
1031{
1032	if (free_pages_map)
1033		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1034}
1035
1036static int swsusp_page_is_free(struct page *page)
1037{
1038	return free_pages_map ?
1039		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1040}
1041
1042void swsusp_unset_page_free(struct page *page)
1043{
1044	if (free_pages_map)
1045		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1046}
1047
1048static void swsusp_set_page_forbidden(struct page *page)
1049{
1050	if (forbidden_pages_map)
1051		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1052}
1053
1054int swsusp_page_is_forbidden(struct page *page)
1055{
1056	return forbidden_pages_map ?
1057		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1058}
1059
1060static void swsusp_unset_page_forbidden(struct page *page)
1061{
1062	if (forbidden_pages_map)
1063		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1064}
1065
1066/**
1067 * mark_nosave_pages - Mark pages that should not be saved.
1068 * @bm: Memory bitmap.
1069 *
1070 * Set the bits in @bm that correspond to the page frames the contents of which
1071 * should not be saved.
1072 */
1073static void mark_nosave_pages(struct memory_bitmap *bm)
1074{
1075	struct nosave_region *region;
1076
1077	if (list_empty(&nosave_regions))
1078		return;
1079
1080	list_for_each_entry(region, &nosave_regions, list) {
1081		unsigned long pfn;
1082
1083		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1084			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1085			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1086				- 1);
1087
1088		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1089			if (pfn_valid(pfn)) {
1090				/*
1091				 * It is safe to ignore the result of
1092				 * mem_bm_set_bit_check() here, since we won't
1093				 * touch the PFNs for which the error is
1094				 * returned anyway.
1095				 */
1096				mem_bm_set_bit_check(bm, pfn);
1097			}
1098	}
1099}
1100
1101/**
1102 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1103 *
1104 * Create bitmaps needed for marking page frames that should not be saved and
1105 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1106 * only modified if everything goes well, because we don't want the bits to be
1107 * touched before both bitmaps are set up.
1108 */
1109int create_basic_memory_bitmaps(void)
1110{
1111	struct memory_bitmap *bm1, *bm2;
1112	int error = 0;
1113
1114	if (forbidden_pages_map && free_pages_map)
1115		return 0;
1116	else
1117		BUG_ON(forbidden_pages_map || free_pages_map);
1118
1119	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1120	if (!bm1)
1121		return -ENOMEM;
1122
1123	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1124	if (error)
1125		goto Free_first_object;
1126
1127	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1128	if (!bm2)
1129		goto Free_first_bitmap;
1130
1131	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1132	if (error)
1133		goto Free_second_object;
1134
1135	forbidden_pages_map = bm1;
1136	free_pages_map = bm2;
1137	mark_nosave_pages(forbidden_pages_map);
1138
1139	pr_debug("Basic memory bitmaps created\n");
1140
1141	return 0;
1142
1143 Free_second_object:
1144	kfree(bm2);
1145 Free_first_bitmap:
1146	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1147 Free_first_object:
1148	kfree(bm1);
1149	return -ENOMEM;
1150}
1151
1152/**
1153 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1154 *
1155 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1156 * auxiliary pointers are necessary so that the bitmaps themselves are not
1157 * referred to while they are being freed.
1158 */
1159void free_basic_memory_bitmaps(void)
1160{
1161	struct memory_bitmap *bm1, *bm2;
1162
1163	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1164		return;
1165
1166	bm1 = forbidden_pages_map;
1167	bm2 = free_pages_map;
1168	forbidden_pages_map = NULL;
1169	free_pages_map = NULL;
1170	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1171	kfree(bm1);
1172	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1173	kfree(bm2);
1174
1175	pr_debug("Basic memory bitmaps freed\n");
1176}
1177
1178static void clear_or_poison_free_page(struct page *page)
1179{
1180	if (page_poisoning_enabled_static())
1181		__kernel_poison_pages(page, 1);
1182	else if (want_init_on_free())
1183		clear_highpage(page);
1184}
1185
1186void clear_or_poison_free_pages(void)
1187{
 
1188	struct memory_bitmap *bm = free_pages_map;
1189	unsigned long pfn;
1190
1191	if (WARN_ON(!(free_pages_map)))
1192		return;
1193
1194	if (page_poisoning_enabled() || want_init_on_free()) {
1195		memory_bm_position_reset(bm);
1196		pfn = memory_bm_next_pfn(bm);
1197		while (pfn != BM_END_OF_MAP) {
1198			if (pfn_valid(pfn))
1199				clear_or_poison_free_page(pfn_to_page(pfn));
1200
1201			pfn = memory_bm_next_pfn(bm);
1202		}
1203		memory_bm_position_reset(bm);
1204		pr_info("free pages cleared after restore\n");
1205	}
 
 
 
1206}
1207
1208/**
1209 * snapshot_additional_pages - Estimate the number of extra pages needed.
1210 * @zone: Memory zone to carry out the computation for.
1211 *
1212 * Estimate the number of additional pages needed for setting up a hibernation
1213 * image data structures for @zone (usually, the returned value is greater than
1214 * the exact number).
1215 */
1216unsigned int snapshot_additional_pages(struct zone *zone)
1217{
1218	unsigned int rtree, nodes;
1219
1220	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1221	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1222			      LINKED_PAGE_DATA_SIZE);
1223	while (nodes > 1) {
1224		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1225		rtree += nodes;
1226	}
1227
1228	return 2 * rtree;
1229}
1230
1231#ifdef CONFIG_HIGHMEM
1232/**
1233 * count_free_highmem_pages - Compute the total number of free highmem pages.
1234 *
1235 * The returned number is system-wide.
1236 */
1237static unsigned int count_free_highmem_pages(void)
1238{
1239	struct zone *zone;
1240	unsigned int cnt = 0;
1241
1242	for_each_populated_zone(zone)
1243		if (is_highmem(zone))
1244			cnt += zone_page_state(zone, NR_FREE_PAGES);
1245
1246	return cnt;
1247}
1248
1249/**
1250 * saveable_highmem_page - Check if a highmem page is saveable.
1251 *
1252 * Determine whether a highmem page should be included in a hibernation image.
1253 *
1254 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1255 * and it isn't part of a free chunk of pages.
1256 */
1257static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1258{
1259	struct page *page;
1260
1261	if (!pfn_valid(pfn))
1262		return NULL;
1263
1264	page = pfn_to_online_page(pfn);
1265	if (!page || page_zone(page) != zone)
1266		return NULL;
1267
1268	BUG_ON(!PageHighMem(page));
1269
1270	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1271		return NULL;
1272
1273	if (PageReserved(page) || PageOffline(page))
1274		return NULL;
1275
1276	if (page_is_guard(page))
1277		return NULL;
1278
1279	return page;
1280}
1281
1282/**
1283 * count_highmem_pages - Compute the total number of saveable highmem pages.
1284 */
1285static unsigned int count_highmem_pages(void)
1286{
1287	struct zone *zone;
1288	unsigned int n = 0;
1289
1290	for_each_populated_zone(zone) {
1291		unsigned long pfn, max_zone_pfn;
1292
1293		if (!is_highmem(zone))
1294			continue;
1295
1296		mark_free_pages(zone);
1297		max_zone_pfn = zone_end_pfn(zone);
1298		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1299			if (saveable_highmem_page(zone, pfn))
1300				n++;
1301	}
1302	return n;
1303}
1304#else
1305static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1306{
1307	return NULL;
1308}
1309#endif /* CONFIG_HIGHMEM */
1310
1311/**
1312 * saveable_page - Check if the given page is saveable.
1313 *
1314 * Determine whether a non-highmem page should be included in a hibernation
1315 * image.
1316 *
1317 * We should save the page if it isn't Nosave, and is not in the range
1318 * of pages statically defined as 'unsaveable', and it isn't part of
1319 * a free chunk of pages.
1320 */
1321static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1322{
1323	struct page *page;
1324
1325	if (!pfn_valid(pfn))
1326		return NULL;
1327
1328	page = pfn_to_online_page(pfn);
1329	if (!page || page_zone(page) != zone)
1330		return NULL;
1331
1332	BUG_ON(PageHighMem(page));
1333
1334	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1335		return NULL;
1336
1337	if (PageOffline(page))
1338		return NULL;
1339
1340	if (PageReserved(page)
1341	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1342		return NULL;
1343
1344	if (page_is_guard(page))
1345		return NULL;
1346
1347	return page;
1348}
1349
1350/**
1351 * count_data_pages - Compute the total number of saveable non-highmem pages.
1352 */
1353static unsigned int count_data_pages(void)
1354{
1355	struct zone *zone;
1356	unsigned long pfn, max_zone_pfn;
1357	unsigned int n = 0;
1358
1359	for_each_populated_zone(zone) {
1360		if (is_highmem(zone))
1361			continue;
1362
1363		mark_free_pages(zone);
1364		max_zone_pfn = zone_end_pfn(zone);
1365		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1366			if (saveable_page(zone, pfn))
1367				n++;
1368	}
1369	return n;
1370}
1371
1372/*
1373 * This is needed, because copy_page and memcpy are not usable for copying
1374 * task structs.
1375 */
1376static inline void do_copy_page(long *dst, long *src)
1377{
1378	int n;
1379
1380	for (n = PAGE_SIZE / sizeof(long); n; n--)
1381		*dst++ = *src++;
1382}
1383
1384/**
1385 * safe_copy_page - Copy a page in a safe way.
1386 *
1387 * Check if the page we are going to copy is marked as present in the kernel
1388 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1389 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1390 * always returns 'true'.
1391 */
1392static void safe_copy_page(void *dst, struct page *s_page)
1393{
1394	if (kernel_page_present(s_page)) {
1395		do_copy_page(dst, page_address(s_page));
1396	} else {
1397		hibernate_map_page(s_page);
1398		do_copy_page(dst, page_address(s_page));
1399		hibernate_unmap_page(s_page);
1400	}
1401}
1402
1403#ifdef CONFIG_HIGHMEM
1404static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1405{
1406	return is_highmem(zone) ?
1407		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1408}
1409
1410static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1411{
1412	struct page *s_page, *d_page;
1413	void *src, *dst;
1414
1415	s_page = pfn_to_page(src_pfn);
1416	d_page = pfn_to_page(dst_pfn);
1417	if (PageHighMem(s_page)) {
1418		src = kmap_atomic(s_page);
1419		dst = kmap_atomic(d_page);
1420		do_copy_page(dst, src);
1421		kunmap_atomic(dst);
1422		kunmap_atomic(src);
1423	} else {
1424		if (PageHighMem(d_page)) {
1425			/*
1426			 * The page pointed to by src may contain some kernel
1427			 * data modified by kmap_atomic()
1428			 */
1429			safe_copy_page(buffer, s_page);
1430			dst = kmap_atomic(d_page);
1431			copy_page(dst, buffer);
1432			kunmap_atomic(dst);
1433		} else {
1434			safe_copy_page(page_address(d_page), s_page);
1435		}
1436	}
1437}
1438#else
1439#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1440
1441static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1442{
1443	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1444				pfn_to_page(src_pfn));
1445}
1446#endif /* CONFIG_HIGHMEM */
1447
1448static void copy_data_pages(struct memory_bitmap *copy_bm,
1449			    struct memory_bitmap *orig_bm)
1450{
1451	struct zone *zone;
1452	unsigned long pfn;
1453
1454	for_each_populated_zone(zone) {
1455		unsigned long max_zone_pfn;
1456
1457		mark_free_pages(zone);
1458		max_zone_pfn = zone_end_pfn(zone);
1459		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1460			if (page_is_saveable(zone, pfn))
1461				memory_bm_set_bit(orig_bm, pfn);
1462	}
1463	memory_bm_position_reset(orig_bm);
1464	memory_bm_position_reset(copy_bm);
1465	for(;;) {
1466		pfn = memory_bm_next_pfn(orig_bm);
1467		if (unlikely(pfn == BM_END_OF_MAP))
1468			break;
1469		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1470	}
1471}
1472
1473/* Total number of image pages */
1474static unsigned int nr_copy_pages;
1475/* Number of pages needed for saving the original pfns of the image pages */
1476static unsigned int nr_meta_pages;
1477/*
1478 * Numbers of normal and highmem page frames allocated for hibernation image
1479 * before suspending devices.
1480 */
1481static unsigned int alloc_normal, alloc_highmem;
1482/*
1483 * Memory bitmap used for marking saveable pages (during hibernation) or
1484 * hibernation image pages (during restore)
1485 */
1486static struct memory_bitmap orig_bm;
1487/*
1488 * Memory bitmap used during hibernation for marking allocated page frames that
1489 * will contain copies of saveable pages.  During restore it is initially used
1490 * for marking hibernation image pages, but then the set bits from it are
1491 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1492 * used for marking "safe" highmem pages, but it has to be reinitialized for
1493 * this purpose.
1494 */
1495static struct memory_bitmap copy_bm;
1496
1497/**
1498 * swsusp_free - Free pages allocated for hibernation image.
1499 *
1500 * Image pages are allocated before snapshot creation, so they need to be
1501 * released after resume.
1502 */
1503void swsusp_free(void)
1504{
1505	unsigned long fb_pfn, fr_pfn;
1506
1507	if (!forbidden_pages_map || !free_pages_map)
1508		goto out;
1509
1510	memory_bm_position_reset(forbidden_pages_map);
1511	memory_bm_position_reset(free_pages_map);
1512
1513loop:
1514	fr_pfn = memory_bm_next_pfn(free_pages_map);
1515	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1516
1517	/*
1518	 * Find the next bit set in both bitmaps. This is guaranteed to
1519	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1520	 */
1521	do {
1522		if (fb_pfn < fr_pfn)
1523			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1524		if (fr_pfn < fb_pfn)
1525			fr_pfn = memory_bm_next_pfn(free_pages_map);
1526	} while (fb_pfn != fr_pfn);
1527
1528	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1529		struct page *page = pfn_to_page(fr_pfn);
1530
1531		memory_bm_clear_current(forbidden_pages_map);
1532		memory_bm_clear_current(free_pages_map);
1533		hibernate_restore_unprotect_page(page_address(page));
1534		__free_page(page);
1535		goto loop;
1536	}
1537
1538out:
1539	nr_copy_pages = 0;
1540	nr_meta_pages = 0;
1541	restore_pblist = NULL;
1542	buffer = NULL;
1543	alloc_normal = 0;
1544	alloc_highmem = 0;
1545	hibernate_restore_protection_end();
1546}
1547
1548/* Helper functions used for the shrinking of memory. */
1549
1550#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1551
1552/**
1553 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1554 * @nr_pages: Number of page frames to allocate.
1555 * @mask: GFP flags to use for the allocation.
1556 *
1557 * Return value: Number of page frames actually allocated
1558 */
1559static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1560{
1561	unsigned long nr_alloc = 0;
1562
1563	while (nr_pages > 0) {
1564		struct page *page;
1565
1566		page = alloc_image_page(mask);
1567		if (!page)
1568			break;
1569		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1570		if (PageHighMem(page))
1571			alloc_highmem++;
1572		else
1573			alloc_normal++;
1574		nr_pages--;
1575		nr_alloc++;
1576	}
1577
1578	return nr_alloc;
1579}
1580
1581static unsigned long preallocate_image_memory(unsigned long nr_pages,
1582					      unsigned long avail_normal)
1583{
1584	unsigned long alloc;
1585
1586	if (avail_normal <= alloc_normal)
1587		return 0;
1588
1589	alloc = avail_normal - alloc_normal;
1590	if (nr_pages < alloc)
1591		alloc = nr_pages;
1592
1593	return preallocate_image_pages(alloc, GFP_IMAGE);
1594}
1595
1596#ifdef CONFIG_HIGHMEM
1597static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1598{
1599	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1600}
1601
1602/**
1603 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1604 */
1605static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1606{
1607	return div64_u64(x * multiplier, base);
 
 
1608}
1609
1610static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1611						  unsigned long highmem,
1612						  unsigned long total)
1613{
1614	unsigned long alloc = __fraction(nr_pages, highmem, total);
1615
1616	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1617}
1618#else /* CONFIG_HIGHMEM */
1619static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1620{
1621	return 0;
1622}
1623
1624static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1625							 unsigned long highmem,
1626							 unsigned long total)
1627{
1628	return 0;
1629}
1630#endif /* CONFIG_HIGHMEM */
1631
1632/**
1633 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1634 */
1635static unsigned long free_unnecessary_pages(void)
1636{
1637	unsigned long save, to_free_normal, to_free_highmem, free;
1638
1639	save = count_data_pages();
1640	if (alloc_normal >= save) {
1641		to_free_normal = alloc_normal - save;
1642		save = 0;
1643	} else {
1644		to_free_normal = 0;
1645		save -= alloc_normal;
1646	}
1647	save += count_highmem_pages();
1648	if (alloc_highmem >= save) {
1649		to_free_highmem = alloc_highmem - save;
1650	} else {
1651		to_free_highmem = 0;
1652		save -= alloc_highmem;
1653		if (to_free_normal > save)
1654			to_free_normal -= save;
1655		else
1656			to_free_normal = 0;
1657	}
1658	free = to_free_normal + to_free_highmem;
1659
1660	memory_bm_position_reset(&copy_bm);
1661
1662	while (to_free_normal > 0 || to_free_highmem > 0) {
1663		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1664		struct page *page = pfn_to_page(pfn);
1665
1666		if (PageHighMem(page)) {
1667			if (!to_free_highmem)
1668				continue;
1669			to_free_highmem--;
1670			alloc_highmem--;
1671		} else {
1672			if (!to_free_normal)
1673				continue;
1674			to_free_normal--;
1675			alloc_normal--;
1676		}
1677		memory_bm_clear_bit(&copy_bm, pfn);
1678		swsusp_unset_page_forbidden(page);
1679		swsusp_unset_page_free(page);
1680		__free_page(page);
1681	}
1682
1683	return free;
1684}
1685
1686/**
1687 * minimum_image_size - Estimate the minimum acceptable size of an image.
1688 * @saveable: Number of saveable pages in the system.
1689 *
1690 * We want to avoid attempting to free too much memory too hard, so estimate the
1691 * minimum acceptable size of a hibernation image to use as the lower limit for
1692 * preallocating memory.
1693 *
1694 * We assume that the minimum image size should be proportional to
1695 *
1696 * [number of saveable pages] - [number of pages that can be freed in theory]
1697 *
1698 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1699 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1700 */
1701static unsigned long minimum_image_size(unsigned long saveable)
1702{
1703	unsigned long size;
1704
1705	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1706		+ global_node_page_state(NR_ACTIVE_ANON)
1707		+ global_node_page_state(NR_INACTIVE_ANON)
1708		+ global_node_page_state(NR_ACTIVE_FILE)
1709		+ global_node_page_state(NR_INACTIVE_FILE);
1710
1711	return saveable <= size ? 0 : saveable - size;
1712}
1713
1714/**
1715 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1716 *
1717 * To create a hibernation image it is necessary to make a copy of every page
1718 * frame in use.  We also need a number of page frames to be free during
1719 * hibernation for allocations made while saving the image and for device
1720 * drivers, in case they need to allocate memory from their hibernation
1721 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1722 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1723 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1724 * total number of available page frames and allocate at least
1725 *
1726 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1727 *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1728 *
1729 * of them, which corresponds to the maximum size of a hibernation image.
1730 *
1731 * If image_size is set below the number following from the above formula,
1732 * the preallocation of memory is continued until the total number of saveable
1733 * pages in the system is below the requested image size or the minimum
1734 * acceptable image size returned by minimum_image_size(), whichever is greater.
1735 */
1736int hibernate_preallocate_memory(void)
1737{
1738	struct zone *zone;
1739	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1740	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1741	ktime_t start, stop;
1742	int error;
1743
1744	pr_info("Preallocating image memory\n");
1745	start = ktime_get();
1746
1747	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1748	if (error) {
1749		pr_err("Cannot allocate original bitmap\n");
1750		goto err_out;
1751	}
1752
1753	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1754	if (error) {
1755		pr_err("Cannot allocate copy bitmap\n");
1756		goto err_out;
1757	}
1758
1759	alloc_normal = 0;
1760	alloc_highmem = 0;
1761
1762	/* Count the number of saveable data pages. */
1763	save_highmem = count_highmem_pages();
1764	saveable = count_data_pages();
1765
1766	/*
1767	 * Compute the total number of page frames we can use (count) and the
1768	 * number of pages needed for image metadata (size).
1769	 */
1770	count = saveable;
1771	saveable += save_highmem;
1772	highmem = save_highmem;
1773	size = 0;
1774	for_each_populated_zone(zone) {
1775		size += snapshot_additional_pages(zone);
1776		if (is_highmem(zone))
1777			highmem += zone_page_state(zone, NR_FREE_PAGES);
1778		else
1779			count += zone_page_state(zone, NR_FREE_PAGES);
1780	}
1781	avail_normal = count;
1782	count += highmem;
1783	count -= totalreserve_pages;
1784
 
 
 
1785	/* Compute the maximum number of saveable pages to leave in memory. */
1786	max_size = (count - (size + PAGES_FOR_IO)) / 2
1787			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1788	/* Compute the desired number of image pages specified by image_size. */
1789	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1790	if (size > max_size)
1791		size = max_size;
1792	/*
1793	 * If the desired number of image pages is at least as large as the
1794	 * current number of saveable pages in memory, allocate page frames for
1795	 * the image and we're done.
1796	 */
1797	if (size >= saveable) {
1798		pages = preallocate_image_highmem(save_highmem);
1799		pages += preallocate_image_memory(saveable - pages, avail_normal);
1800		goto out;
1801	}
1802
1803	/* Estimate the minimum size of the image. */
1804	pages = minimum_image_size(saveable);
1805	/*
1806	 * To avoid excessive pressure on the normal zone, leave room in it to
1807	 * accommodate an image of the minimum size (unless it's already too
1808	 * small, in which case don't preallocate pages from it at all).
1809	 */
1810	if (avail_normal > pages)
1811		avail_normal -= pages;
1812	else
1813		avail_normal = 0;
1814	if (size < pages)
1815		size = min_t(unsigned long, pages, max_size);
1816
1817	/*
1818	 * Let the memory management subsystem know that we're going to need a
1819	 * large number of page frames to allocate and make it free some memory.
1820	 * NOTE: If this is not done, performance will be hurt badly in some
1821	 * test cases.
1822	 */
1823	shrink_all_memory(saveable - size);
1824
1825	/*
1826	 * The number of saveable pages in memory was too high, so apply some
1827	 * pressure to decrease it.  First, make room for the largest possible
1828	 * image and fail if that doesn't work.  Next, try to decrease the size
1829	 * of the image as much as indicated by 'size' using allocations from
1830	 * highmem and non-highmem zones separately.
1831	 */
1832	pages_highmem = preallocate_image_highmem(highmem / 2);
1833	alloc = count - max_size;
1834	if (alloc > pages_highmem)
1835		alloc -= pages_highmem;
1836	else
1837		alloc = 0;
1838	pages = preallocate_image_memory(alloc, avail_normal);
1839	if (pages < alloc) {
1840		/* We have exhausted non-highmem pages, try highmem. */
1841		alloc -= pages;
1842		pages += pages_highmem;
1843		pages_highmem = preallocate_image_highmem(alloc);
1844		if (pages_highmem < alloc) {
1845			pr_err("Image allocation is %lu pages short\n",
1846				alloc - pages_highmem);
1847			goto err_out;
1848		}
1849		pages += pages_highmem;
1850		/*
1851		 * size is the desired number of saveable pages to leave in
1852		 * memory, so try to preallocate (all memory - size) pages.
1853		 */
1854		alloc = (count - pages) - size;
1855		pages += preallocate_image_highmem(alloc);
1856	} else {
1857		/*
1858		 * There are approximately max_size saveable pages at this point
1859		 * and we want to reduce this number down to size.
1860		 */
1861		alloc = max_size - size;
1862		size = preallocate_highmem_fraction(alloc, highmem, count);
1863		pages_highmem += size;
1864		alloc -= size;
1865		size = preallocate_image_memory(alloc, avail_normal);
1866		pages_highmem += preallocate_image_highmem(alloc - size);
1867		pages += pages_highmem + size;
1868	}
1869
1870	/*
1871	 * We only need as many page frames for the image as there are saveable
1872	 * pages in memory, but we have allocated more.  Release the excessive
1873	 * ones now.
1874	 */
1875	pages -= free_unnecessary_pages();
1876
1877 out:
1878	stop = ktime_get();
1879	pr_info("Allocated %lu pages for snapshot\n", pages);
1880	swsusp_show_speed(start, stop, pages, "Allocated");
1881
1882	return 0;
1883
1884 err_out:
 
1885	swsusp_free();
1886	return -ENOMEM;
1887}
1888
1889#ifdef CONFIG_HIGHMEM
1890/**
1891 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1892 *
1893 * Compute the number of non-highmem pages that will be necessary for creating
1894 * copies of highmem pages.
1895 */
1896static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1897{
1898	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1899
1900	if (free_highmem >= nr_highmem)
1901		nr_highmem = 0;
1902	else
1903		nr_highmem -= free_highmem;
1904
1905	return nr_highmem;
1906}
1907#else
1908static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1909#endif /* CONFIG_HIGHMEM */
1910
1911/**
1912 * enough_free_mem - Check if there is enough free memory for the image.
1913 */
1914static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1915{
1916	struct zone *zone;
1917	unsigned int free = alloc_normal;
1918
1919	for_each_populated_zone(zone)
1920		if (!is_highmem(zone))
1921			free += zone_page_state(zone, NR_FREE_PAGES);
1922
1923	nr_pages += count_pages_for_highmem(nr_highmem);
1924	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1925		 nr_pages, PAGES_FOR_IO, free);
1926
1927	return free > nr_pages + PAGES_FOR_IO;
1928}
1929
1930#ifdef CONFIG_HIGHMEM
1931/**
1932 * get_highmem_buffer - Allocate a buffer for highmem pages.
1933 *
1934 * If there are some highmem pages in the hibernation image, we may need a
1935 * buffer to copy them and/or load their data.
1936 */
1937static inline int get_highmem_buffer(int safe_needed)
1938{
1939	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1940	return buffer ? 0 : -ENOMEM;
1941}
1942
1943/**
1944 * alloc_highmem_pages - Allocate some highmem pages for the image.
1945 *
1946 * Try to allocate as many pages as needed, but if the number of free highmem
1947 * pages is less than that, allocate them all.
1948 */
1949static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1950					       unsigned int nr_highmem)
1951{
1952	unsigned int to_alloc = count_free_highmem_pages();
1953
1954	if (to_alloc > nr_highmem)
1955		to_alloc = nr_highmem;
1956
1957	nr_highmem -= to_alloc;
1958	while (to_alloc-- > 0) {
1959		struct page *page;
1960
1961		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1962		memory_bm_set_bit(bm, page_to_pfn(page));
1963	}
1964	return nr_highmem;
1965}
1966#else
1967static inline int get_highmem_buffer(int safe_needed) { return 0; }
1968
1969static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1970					       unsigned int n) { return 0; }
1971#endif /* CONFIG_HIGHMEM */
1972
1973/**
1974 * swsusp_alloc - Allocate memory for hibernation image.
1975 *
1976 * We first try to allocate as many highmem pages as there are
1977 * saveable highmem pages in the system.  If that fails, we allocate
1978 * non-highmem pages for the copies of the remaining highmem ones.
1979 *
1980 * In this approach it is likely that the copies of highmem pages will
1981 * also be located in the high memory, because of the way in which
1982 * copy_data_pages() works.
1983 */
1984static int swsusp_alloc(struct memory_bitmap *copy_bm,
1985			unsigned int nr_pages, unsigned int nr_highmem)
1986{
1987	if (nr_highmem > 0) {
1988		if (get_highmem_buffer(PG_ANY))
1989			goto err_out;
1990		if (nr_highmem > alloc_highmem) {
1991			nr_highmem -= alloc_highmem;
1992			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1993		}
1994	}
1995	if (nr_pages > alloc_normal) {
1996		nr_pages -= alloc_normal;
1997		while (nr_pages-- > 0) {
1998			struct page *page;
1999
2000			page = alloc_image_page(GFP_ATOMIC);
2001			if (!page)
2002				goto err_out;
2003			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2004		}
2005	}
2006
2007	return 0;
2008
2009 err_out:
2010	swsusp_free();
2011	return -ENOMEM;
2012}
2013
2014asmlinkage __visible int swsusp_save(void)
2015{
2016	unsigned int nr_pages, nr_highmem;
2017
2018	pr_info("Creating image:\n");
2019
2020	drain_local_pages(NULL);
2021	nr_pages = count_data_pages();
2022	nr_highmem = count_highmem_pages();
2023	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2024
2025	if (!enough_free_mem(nr_pages, nr_highmem)) {
2026		pr_err("Not enough free memory\n");
2027		return -ENOMEM;
2028	}
2029
2030	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2031		pr_err("Memory allocation failed\n");
2032		return -ENOMEM;
2033	}
2034
2035	/*
2036	 * During allocating of suspend pagedir, new cold pages may appear.
2037	 * Kill them.
2038	 */
2039	drain_local_pages(NULL);
2040	copy_data_pages(&copy_bm, &orig_bm);
2041
2042	/*
2043	 * End of critical section. From now on, we can write to memory,
2044	 * but we should not touch disk. This specially means we must _not_
2045	 * touch swap space! Except we must write out our image of course.
2046	 */
2047
2048	nr_pages += nr_highmem;
2049	nr_copy_pages = nr_pages;
2050	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2051
2052	pr_info("Image created (%d pages copied)\n", nr_pages);
2053
2054	return 0;
2055}
2056
2057#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2058static int init_header_complete(struct swsusp_info *info)
2059{
2060	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2061	info->version_code = LINUX_VERSION_CODE;
2062	return 0;
2063}
2064
2065static const char *check_image_kernel(struct swsusp_info *info)
2066{
2067	if (info->version_code != LINUX_VERSION_CODE)
2068		return "kernel version";
2069	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2070		return "system type";
2071	if (strcmp(info->uts.release,init_utsname()->release))
2072		return "kernel release";
2073	if (strcmp(info->uts.version,init_utsname()->version))
2074		return "version";
2075	if (strcmp(info->uts.machine,init_utsname()->machine))
2076		return "machine";
2077	return NULL;
2078}
2079#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2080
2081unsigned long snapshot_get_image_size(void)
2082{
2083	return nr_copy_pages + nr_meta_pages + 1;
2084}
2085
2086static int init_header(struct swsusp_info *info)
2087{
2088	memset(info, 0, sizeof(struct swsusp_info));
2089	info->num_physpages = get_num_physpages();
2090	info->image_pages = nr_copy_pages;
2091	info->pages = snapshot_get_image_size();
2092	info->size = info->pages;
2093	info->size <<= PAGE_SHIFT;
2094	return init_header_complete(info);
2095}
2096
2097/**
2098 * pack_pfns - Prepare PFNs for saving.
2099 * @bm: Memory bitmap.
2100 * @buf: Memory buffer to store the PFNs in.
2101 *
2102 * PFNs corresponding to set bits in @bm are stored in the area of memory
2103 * pointed to by @buf (1 page at a time).
2104 */
2105static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2106{
2107	int j;
2108
2109	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2110		buf[j] = memory_bm_next_pfn(bm);
2111		if (unlikely(buf[j] == BM_END_OF_MAP))
2112			break;
 
 
2113	}
2114}
2115
2116/**
2117 * snapshot_read_next - Get the address to read the next image page from.
2118 * @handle: Snapshot handle to be used for the reading.
2119 *
2120 * On the first call, @handle should point to a zeroed snapshot_handle
2121 * structure.  The structure gets populated then and a pointer to it should be
2122 * passed to this function every next time.
2123 *
2124 * On success, the function returns a positive number.  Then, the caller
2125 * is allowed to read up to the returned number of bytes from the memory
2126 * location computed by the data_of() macro.
2127 *
2128 * The function returns 0 to indicate the end of the data stream condition,
2129 * and negative numbers are returned on errors.  If that happens, the structure
2130 * pointed to by @handle is not updated and should not be used any more.
2131 */
2132int snapshot_read_next(struct snapshot_handle *handle)
2133{
2134	if (handle->cur > nr_meta_pages + nr_copy_pages)
2135		return 0;
2136
2137	if (!buffer) {
2138		/* This makes the buffer be freed by swsusp_free() */
2139		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2140		if (!buffer)
2141			return -ENOMEM;
2142	}
2143	if (!handle->cur) {
2144		int error;
2145
2146		error = init_header((struct swsusp_info *)buffer);
2147		if (error)
2148			return error;
2149		handle->buffer = buffer;
2150		memory_bm_position_reset(&orig_bm);
2151		memory_bm_position_reset(&copy_bm);
2152	} else if (handle->cur <= nr_meta_pages) {
2153		clear_page(buffer);
2154		pack_pfns(buffer, &orig_bm);
2155	} else {
2156		struct page *page;
2157
2158		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2159		if (PageHighMem(page)) {
2160			/*
2161			 * Highmem pages are copied to the buffer,
2162			 * because we can't return with a kmapped
2163			 * highmem page (we may not be called again).
2164			 */
2165			void *kaddr;
2166
2167			kaddr = kmap_atomic(page);
2168			copy_page(buffer, kaddr);
2169			kunmap_atomic(kaddr);
2170			handle->buffer = buffer;
2171		} else {
2172			handle->buffer = page_address(page);
2173		}
2174	}
2175	handle->cur++;
2176	return PAGE_SIZE;
2177}
2178
2179static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2180				    struct memory_bitmap *src)
2181{
2182	unsigned long pfn;
2183
2184	memory_bm_position_reset(src);
2185	pfn = memory_bm_next_pfn(src);
2186	while (pfn != BM_END_OF_MAP) {
2187		memory_bm_set_bit(dst, pfn);
2188		pfn = memory_bm_next_pfn(src);
2189	}
2190}
2191
2192/**
2193 * mark_unsafe_pages - Mark pages that were used before hibernation.
2194 *
2195 * Mark the pages that cannot be used for storing the image during restoration,
2196 * because they conflict with the pages that had been used before hibernation.
2197 */
2198static void mark_unsafe_pages(struct memory_bitmap *bm)
2199{
2200	unsigned long pfn;
2201
2202	/* Clear the "free"/"unsafe" bit for all PFNs */
2203	memory_bm_position_reset(free_pages_map);
2204	pfn = memory_bm_next_pfn(free_pages_map);
2205	while (pfn != BM_END_OF_MAP) {
2206		memory_bm_clear_current(free_pages_map);
2207		pfn = memory_bm_next_pfn(free_pages_map);
2208	}
2209
2210	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2211	duplicate_memory_bitmap(free_pages_map, bm);
2212
2213	allocated_unsafe_pages = 0;
2214}
2215
2216static int check_header(struct swsusp_info *info)
2217{
2218	const char *reason;
2219
2220	reason = check_image_kernel(info);
2221	if (!reason && info->num_physpages != get_num_physpages())
2222		reason = "memory size";
2223	if (reason) {
2224		pr_err("Image mismatch: %s\n", reason);
2225		return -EPERM;
2226	}
2227	return 0;
2228}
2229
2230/**
2231 * load_header - Check the image header and copy the data from it.
2232 */
2233static int load_header(struct swsusp_info *info)
2234{
2235	int error;
2236
2237	restore_pblist = NULL;
2238	error = check_header(info);
2239	if (!error) {
2240		nr_copy_pages = info->image_pages;
2241		nr_meta_pages = info->pages - info->image_pages - 1;
2242	}
2243	return error;
2244}
2245
2246/**
2247 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2248 * @bm: Memory bitmap.
2249 * @buf: Area of memory containing the PFNs.
2250 *
2251 * For each element of the array pointed to by @buf (1 page at a time), set the
2252 * corresponding bit in @bm.
2253 */
2254static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2255{
2256	int j;
2257
2258	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2259		if (unlikely(buf[j] == BM_END_OF_MAP))
2260			break;
2261
2262		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) {
 
 
 
2263			memory_bm_set_bit(bm, buf[j]);
2264		} else {
2265			if (!pfn_valid(buf[j]))
2266				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2267				       (unsigned long long)PFN_PHYS(buf[j]));
2268			return -EFAULT;
2269		}
2270	}
2271
2272	return 0;
2273}
2274
2275#ifdef CONFIG_HIGHMEM
2276/*
2277 * struct highmem_pbe is used for creating the list of highmem pages that
2278 * should be restored atomically during the resume from disk, because the page
2279 * frames they have occupied before the suspend are in use.
2280 */
2281struct highmem_pbe {
2282	struct page *copy_page;	/* data is here now */
2283	struct page *orig_page;	/* data was here before the suspend */
2284	struct highmem_pbe *next;
2285};
2286
2287/*
2288 * List of highmem PBEs needed for restoring the highmem pages that were
2289 * allocated before the suspend and included in the suspend image, but have
2290 * also been allocated by the "resume" kernel, so their contents cannot be
2291 * written directly to their "original" page frames.
2292 */
2293static struct highmem_pbe *highmem_pblist;
2294
2295/**
2296 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2297 * @bm: Memory bitmap.
2298 *
2299 * The bits in @bm that correspond to image pages are assumed to be set.
2300 */
2301static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2302{
2303	unsigned long pfn;
2304	unsigned int cnt = 0;
2305
2306	memory_bm_position_reset(bm);
2307	pfn = memory_bm_next_pfn(bm);
2308	while (pfn != BM_END_OF_MAP) {
2309		if (PageHighMem(pfn_to_page(pfn)))
2310			cnt++;
2311
2312		pfn = memory_bm_next_pfn(bm);
2313	}
2314	return cnt;
2315}
2316
2317static unsigned int safe_highmem_pages;
2318
2319static struct memory_bitmap *safe_highmem_bm;
2320
2321/**
2322 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2323 * @bm: Pointer to an uninitialized memory bitmap structure.
2324 * @nr_highmem_p: Pointer to the number of highmem image pages.
2325 *
2326 * Try to allocate as many highmem pages as there are highmem image pages
2327 * (@nr_highmem_p points to the variable containing the number of highmem image
2328 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2329 * hibernation image is restored entirely) have the corresponding bits set in
2330 * @bm (it must be uninitialized).
2331 *
2332 * NOTE: This function should not be called if there are no highmem image pages.
2333 */
2334static int prepare_highmem_image(struct memory_bitmap *bm,
2335				 unsigned int *nr_highmem_p)
2336{
2337	unsigned int to_alloc;
2338
2339	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2340		return -ENOMEM;
2341
2342	if (get_highmem_buffer(PG_SAFE))
2343		return -ENOMEM;
2344
2345	to_alloc = count_free_highmem_pages();
2346	if (to_alloc > *nr_highmem_p)
2347		to_alloc = *nr_highmem_p;
2348	else
2349		*nr_highmem_p = to_alloc;
2350
2351	safe_highmem_pages = 0;
2352	while (to_alloc-- > 0) {
2353		struct page *page;
2354
2355		page = alloc_page(__GFP_HIGHMEM);
2356		if (!swsusp_page_is_free(page)) {
2357			/* The page is "safe", set its bit the bitmap */
2358			memory_bm_set_bit(bm, page_to_pfn(page));
2359			safe_highmem_pages++;
2360		}
2361		/* Mark the page as allocated */
2362		swsusp_set_page_forbidden(page);
2363		swsusp_set_page_free(page);
2364	}
2365	memory_bm_position_reset(bm);
2366	safe_highmem_bm = bm;
2367	return 0;
2368}
2369
2370static struct page *last_highmem_page;
2371
2372/**
2373 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2374 *
2375 * For a given highmem image page get a buffer that suspend_write_next() should
2376 * return to its caller to write to.
2377 *
2378 * If the page is to be saved to its "original" page frame or a copy of
2379 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2380 * the copy of the page is to be made in normal memory, so the address of
2381 * the copy is returned.
2382 *
2383 * If @buffer is returned, the caller of suspend_write_next() will write
2384 * the page's contents to @buffer, so they will have to be copied to the
2385 * right location on the next call to suspend_write_next() and it is done
2386 * with the help of copy_last_highmem_page().  For this purpose, if
2387 * @buffer is returned, @last_highmem_page is set to the page to which
2388 * the data will have to be copied from @buffer.
2389 */
2390static void *get_highmem_page_buffer(struct page *page,
2391				     struct chain_allocator *ca)
2392{
2393	struct highmem_pbe *pbe;
2394	void *kaddr;
2395
2396	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2397		/*
2398		 * We have allocated the "original" page frame and we can
2399		 * use it directly to store the loaded page.
2400		 */
2401		last_highmem_page = page;
2402		return buffer;
2403	}
2404	/*
2405	 * The "original" page frame has not been allocated and we have to
2406	 * use a "safe" page frame to store the loaded page.
2407	 */
2408	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2409	if (!pbe) {
2410		swsusp_free();
2411		return ERR_PTR(-ENOMEM);
2412	}
2413	pbe->orig_page = page;
2414	if (safe_highmem_pages > 0) {
2415		struct page *tmp;
2416
2417		/* Copy of the page will be stored in high memory */
2418		kaddr = buffer;
2419		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2420		safe_highmem_pages--;
2421		last_highmem_page = tmp;
2422		pbe->copy_page = tmp;
2423	} else {
2424		/* Copy of the page will be stored in normal memory */
2425		kaddr = safe_pages_list;
2426		safe_pages_list = safe_pages_list->next;
2427		pbe->copy_page = virt_to_page(kaddr);
2428	}
2429	pbe->next = highmem_pblist;
2430	highmem_pblist = pbe;
2431	return kaddr;
2432}
2433
2434/**
2435 * copy_last_highmem_page - Copy most the most recent highmem image page.
2436 *
2437 * Copy the contents of a highmem image from @buffer, where the caller of
2438 * snapshot_write_next() has stored them, to the right location represented by
2439 * @last_highmem_page .
2440 */
2441static void copy_last_highmem_page(void)
2442{
2443	if (last_highmem_page) {
2444		void *dst;
2445
2446		dst = kmap_atomic(last_highmem_page);
2447		copy_page(dst, buffer);
2448		kunmap_atomic(dst);
2449		last_highmem_page = NULL;
2450	}
2451}
2452
2453static inline int last_highmem_page_copied(void)
2454{
2455	return !last_highmem_page;
2456}
2457
2458static inline void free_highmem_data(void)
2459{
2460	if (safe_highmem_bm)
2461		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2462
2463	if (buffer)
2464		free_image_page(buffer, PG_UNSAFE_CLEAR);
2465}
2466#else
2467static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2468
2469static inline int prepare_highmem_image(struct memory_bitmap *bm,
2470					unsigned int *nr_highmem_p) { return 0; }
2471
2472static inline void *get_highmem_page_buffer(struct page *page,
2473					    struct chain_allocator *ca)
2474{
2475	return ERR_PTR(-EINVAL);
2476}
2477
2478static inline void copy_last_highmem_page(void) {}
2479static inline int last_highmem_page_copied(void) { return 1; }
2480static inline void free_highmem_data(void) {}
2481#endif /* CONFIG_HIGHMEM */
2482
2483#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2484
2485/**
2486 * prepare_image - Make room for loading hibernation image.
2487 * @new_bm: Uninitialized memory bitmap structure.
2488 * @bm: Memory bitmap with unsafe pages marked.
2489 *
2490 * Use @bm to mark the pages that will be overwritten in the process of
2491 * restoring the system memory state from the suspend image ("unsafe" pages)
2492 * and allocate memory for the image.
2493 *
2494 * The idea is to allocate a new memory bitmap first and then allocate
2495 * as many pages as needed for image data, but without specifying what those
2496 * pages will be used for just yet.  Instead, we mark them all as allocated and
2497 * create a lists of "safe" pages to be used later.  On systems with high
2498 * memory a list of "safe" highmem pages is created too.
2499 */
2500static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2501{
2502	unsigned int nr_pages, nr_highmem;
2503	struct linked_page *lp;
2504	int error;
2505
2506	/* If there is no highmem, the buffer will not be necessary */
2507	free_image_page(buffer, PG_UNSAFE_CLEAR);
2508	buffer = NULL;
2509
2510	nr_highmem = count_highmem_image_pages(bm);
2511	mark_unsafe_pages(bm);
2512
2513	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2514	if (error)
2515		goto Free;
2516
2517	duplicate_memory_bitmap(new_bm, bm);
2518	memory_bm_free(bm, PG_UNSAFE_KEEP);
2519	if (nr_highmem > 0) {
2520		error = prepare_highmem_image(bm, &nr_highmem);
2521		if (error)
2522			goto Free;
2523	}
2524	/*
2525	 * Reserve some safe pages for potential later use.
2526	 *
2527	 * NOTE: This way we make sure there will be enough safe pages for the
2528	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2529	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2530	 *
2531	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2532	 */
2533	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2534	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2535	while (nr_pages > 0) {
2536		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2537		if (!lp) {
2538			error = -ENOMEM;
2539			goto Free;
2540		}
2541		lp->next = safe_pages_list;
2542		safe_pages_list = lp;
2543		nr_pages--;
2544	}
2545	/* Preallocate memory for the image */
2546	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2547	while (nr_pages > 0) {
2548		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2549		if (!lp) {
2550			error = -ENOMEM;
2551			goto Free;
2552		}
2553		if (!swsusp_page_is_free(virt_to_page(lp))) {
2554			/* The page is "safe", add it to the list */
2555			lp->next = safe_pages_list;
2556			safe_pages_list = lp;
2557		}
2558		/* Mark the page as allocated */
2559		swsusp_set_page_forbidden(virt_to_page(lp));
2560		swsusp_set_page_free(virt_to_page(lp));
2561		nr_pages--;
2562	}
2563	return 0;
2564
2565 Free:
2566	swsusp_free();
2567	return error;
2568}
2569
2570/**
2571 * get_buffer - Get the address to store the next image data page.
2572 *
2573 * Get the address that snapshot_write_next() should return to its caller to
2574 * write to.
2575 */
2576static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2577{
2578	struct pbe *pbe;
2579	struct page *page;
2580	unsigned long pfn = memory_bm_next_pfn(bm);
2581
2582	if (pfn == BM_END_OF_MAP)
2583		return ERR_PTR(-EFAULT);
2584
2585	page = pfn_to_page(pfn);
2586	if (PageHighMem(page))
2587		return get_highmem_page_buffer(page, ca);
2588
2589	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2590		/*
2591		 * We have allocated the "original" page frame and we can
2592		 * use it directly to store the loaded page.
2593		 */
2594		return page_address(page);
2595
2596	/*
2597	 * The "original" page frame has not been allocated and we have to
2598	 * use a "safe" page frame to store the loaded page.
2599	 */
2600	pbe = chain_alloc(ca, sizeof(struct pbe));
2601	if (!pbe) {
2602		swsusp_free();
2603		return ERR_PTR(-ENOMEM);
2604	}
2605	pbe->orig_address = page_address(page);
2606	pbe->address = safe_pages_list;
2607	safe_pages_list = safe_pages_list->next;
2608	pbe->next = restore_pblist;
2609	restore_pblist = pbe;
2610	return pbe->address;
2611}
2612
2613/**
2614 * snapshot_write_next - Get the address to store the next image page.
2615 * @handle: Snapshot handle structure to guide the writing.
2616 *
2617 * On the first call, @handle should point to a zeroed snapshot_handle
2618 * structure.  The structure gets populated then and a pointer to it should be
2619 * passed to this function every next time.
2620 *
2621 * On success, the function returns a positive number.  Then, the caller
2622 * is allowed to write up to the returned number of bytes to the memory
2623 * location computed by the data_of() macro.
2624 *
2625 * The function returns 0 to indicate the "end of file" condition.  Negative
2626 * numbers are returned on errors, in which cases the structure pointed to by
2627 * @handle is not updated and should not be used any more.
2628 */
2629int snapshot_write_next(struct snapshot_handle *handle)
2630{
2631	static struct chain_allocator ca;
2632	int error = 0;
2633
2634	/* Check if we have already loaded the entire image */
2635	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2636		return 0;
2637
2638	handle->sync_read = 1;
2639
2640	if (!handle->cur) {
2641		if (!buffer)
2642			/* This makes the buffer be freed by swsusp_free() */
2643			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2644
2645		if (!buffer)
2646			return -ENOMEM;
2647
2648		handle->buffer = buffer;
2649	} else if (handle->cur == 1) {
2650		error = load_header(buffer);
2651		if (error)
2652			return error;
2653
2654		safe_pages_list = NULL;
2655
2656		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2657		if (error)
2658			return error;
2659
 
 
 
 
 
2660		hibernate_restore_protection_begin();
2661	} else if (handle->cur <= nr_meta_pages + 1) {
2662		error = unpack_orig_pfns(buffer, &copy_bm);
2663		if (error)
2664			return error;
2665
2666		if (handle->cur == nr_meta_pages + 1) {
2667			error = prepare_image(&orig_bm, &copy_bm);
2668			if (error)
2669				return error;
2670
2671			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2672			memory_bm_position_reset(&orig_bm);
2673			restore_pblist = NULL;
2674			handle->buffer = get_buffer(&orig_bm, &ca);
2675			handle->sync_read = 0;
2676			if (IS_ERR(handle->buffer))
2677				return PTR_ERR(handle->buffer);
2678		}
2679	} else {
2680		copy_last_highmem_page();
 
 
2681		hibernate_restore_protect_page(handle->buffer);
2682		handle->buffer = get_buffer(&orig_bm, &ca);
2683		if (IS_ERR(handle->buffer))
2684			return PTR_ERR(handle->buffer);
2685		if (handle->buffer != buffer)
2686			handle->sync_read = 0;
2687	}
2688	handle->cur++;
2689	return PAGE_SIZE;
2690}
2691
2692/**
2693 * snapshot_write_finalize - Complete the loading of a hibernation image.
2694 *
2695 * Must be called after the last call to snapshot_write_next() in case the last
2696 * page in the image happens to be a highmem page and its contents should be
2697 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2698 * necessary any more.
2699 */
2700void snapshot_write_finalize(struct snapshot_handle *handle)
2701{
2702	copy_last_highmem_page();
 
 
 
2703	hibernate_restore_protect_page(handle->buffer);
2704	/* Do that only if we have loaded the image entirely */
2705	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2706		memory_bm_recycle(&orig_bm);
2707		free_highmem_data();
2708	}
2709}
2710
2711int snapshot_image_loaded(struct snapshot_handle *handle)
2712{
2713	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2714			handle->cur <= nr_meta_pages + nr_copy_pages);
2715}
2716
2717#ifdef CONFIG_HIGHMEM
2718/* Assumes that @buf is ready and points to a "safe" page */
2719static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2720				       void *buf)
2721{
2722	void *kaddr1, *kaddr2;
2723
2724	kaddr1 = kmap_atomic(p1);
2725	kaddr2 = kmap_atomic(p2);
2726	copy_page(buf, kaddr1);
2727	copy_page(kaddr1, kaddr2);
2728	copy_page(kaddr2, buf);
2729	kunmap_atomic(kaddr2);
2730	kunmap_atomic(kaddr1);
2731}
2732
2733/**
2734 * restore_highmem - Put highmem image pages into their original locations.
2735 *
2736 * For each highmem page that was in use before hibernation and is included in
2737 * the image, and also has been allocated by the "restore" kernel, swap its
2738 * current contents with the previous (ie. "before hibernation") ones.
2739 *
2740 * If the restore eventually fails, we can call this function once again and
2741 * restore the highmem state as seen by the restore kernel.
2742 */
2743int restore_highmem(void)
2744{
2745	struct highmem_pbe *pbe = highmem_pblist;
2746	void *buf;
2747
2748	if (!pbe)
2749		return 0;
2750
2751	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2752	if (!buf)
2753		return -ENOMEM;
2754
2755	while (pbe) {
2756		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2757		pbe = pbe->next;
2758	}
2759	free_image_page(buf, PG_UNSAFE_CLEAR);
2760	return 0;
2761}
2762#endif /* CONFIG_HIGHMEM */
v5.4
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   9 */
  10
  11#define pr_fmt(fmt) "PM: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
  37#include <asm/pgtable.h>
  38#include <asm/tlbflush.h>
  39#include <asm/io.h>
  40
  41#include "power.h"
  42
  43#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  44static bool hibernate_restore_protection;
  45static bool hibernate_restore_protection_active;
  46
  47void enable_restore_image_protection(void)
  48{
  49	hibernate_restore_protection = true;
  50}
  51
  52static inline void hibernate_restore_protection_begin(void)
  53{
  54	hibernate_restore_protection_active = hibernate_restore_protection;
  55}
  56
  57static inline void hibernate_restore_protection_end(void)
  58{
  59	hibernate_restore_protection_active = false;
  60}
  61
  62static inline void hibernate_restore_protect_page(void *page_address)
  63{
  64	if (hibernate_restore_protection_active)
  65		set_memory_ro((unsigned long)page_address, 1);
  66}
  67
  68static inline void hibernate_restore_unprotect_page(void *page_address)
  69{
  70	if (hibernate_restore_protection_active)
  71		set_memory_rw((unsigned long)page_address, 1);
  72}
  73#else
  74static inline void hibernate_restore_protection_begin(void) {}
  75static inline void hibernate_restore_protection_end(void) {}
  76static inline void hibernate_restore_protect_page(void *page_address) {}
  77static inline void hibernate_restore_unprotect_page(void *page_address) {}
  78#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  79
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80static int swsusp_page_is_free(struct page *);
  81static void swsusp_set_page_forbidden(struct page *);
  82static void swsusp_unset_page_forbidden(struct page *);
  83
  84/*
  85 * Number of bytes to reserve for memory allocations made by device drivers
  86 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  87 * cause image creation to fail (tunable via /sys/power/reserved_size).
  88 */
  89unsigned long reserved_size;
  90
  91void __init hibernate_reserved_size_init(void)
  92{
  93	reserved_size = SPARE_PAGES * PAGE_SIZE;
  94}
  95
  96/*
  97 * Preferred image size in bytes (tunable via /sys/power/image_size).
  98 * When it is set to N, swsusp will do its best to ensure the image
  99 * size will not exceed N bytes, but if that is impossible, it will
 100 * try to create the smallest image possible.
 101 */
 102unsigned long image_size;
 103
 104void __init hibernate_image_size_init(void)
 105{
 106	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 107}
 108
 109/*
 110 * List of PBEs needed for restoring the pages that were allocated before
 111 * the suspend and included in the suspend image, but have also been
 112 * allocated by the "resume" kernel, so their contents cannot be written
 113 * directly to their "original" page frames.
 114 */
 115struct pbe *restore_pblist;
 116
 117/* struct linked_page is used to build chains of pages */
 118
 119#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 120
 121struct linked_page {
 122	struct linked_page *next;
 123	char data[LINKED_PAGE_DATA_SIZE];
 124} __packed;
 125
 126/*
 127 * List of "safe" pages (ie. pages that were not used by the image kernel
 128 * before hibernation) that may be used as temporary storage for image kernel
 129 * memory contents.
 130 */
 131static struct linked_page *safe_pages_list;
 132
 133/* Pointer to an auxiliary buffer (1 page) */
 134static void *buffer;
 135
 136#define PG_ANY		0
 137#define PG_SAFE		1
 138#define PG_UNSAFE_CLEAR	1
 139#define PG_UNSAFE_KEEP	0
 140
 141static unsigned int allocated_unsafe_pages;
 142
 143/**
 144 * get_image_page - Allocate a page for a hibernation image.
 145 * @gfp_mask: GFP mask for the allocation.
 146 * @safe_needed: Get pages that were not used before hibernation (restore only)
 147 *
 148 * During image restoration, for storing the PBE list and the image data, we can
 149 * only use memory pages that do not conflict with the pages used before
 150 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 151 * using allocated_unsafe_pages.
 152 *
 153 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 154 * swsusp_free() can release it.
 155 */
 156static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 157{
 158	void *res;
 159
 160	res = (void *)get_zeroed_page(gfp_mask);
 161	if (safe_needed)
 162		while (res && swsusp_page_is_free(virt_to_page(res))) {
 163			/* The page is unsafe, mark it for swsusp_free() */
 164			swsusp_set_page_forbidden(virt_to_page(res));
 165			allocated_unsafe_pages++;
 166			res = (void *)get_zeroed_page(gfp_mask);
 167		}
 168	if (res) {
 169		swsusp_set_page_forbidden(virt_to_page(res));
 170		swsusp_set_page_free(virt_to_page(res));
 171	}
 172	return res;
 173}
 174
 175static void *__get_safe_page(gfp_t gfp_mask)
 176{
 177	if (safe_pages_list) {
 178		void *ret = safe_pages_list;
 179
 180		safe_pages_list = safe_pages_list->next;
 181		memset(ret, 0, PAGE_SIZE);
 182		return ret;
 183	}
 184	return get_image_page(gfp_mask, PG_SAFE);
 185}
 186
 187unsigned long get_safe_page(gfp_t gfp_mask)
 188{
 189	return (unsigned long)__get_safe_page(gfp_mask);
 190}
 191
 192static struct page *alloc_image_page(gfp_t gfp_mask)
 193{
 194	struct page *page;
 195
 196	page = alloc_page(gfp_mask);
 197	if (page) {
 198		swsusp_set_page_forbidden(page);
 199		swsusp_set_page_free(page);
 200	}
 201	return page;
 202}
 203
 204static void recycle_safe_page(void *page_address)
 205{
 206	struct linked_page *lp = page_address;
 207
 208	lp->next = safe_pages_list;
 209	safe_pages_list = lp;
 210}
 211
 212/**
 213 * free_image_page - Free a page allocated for hibernation image.
 214 * @addr: Address of the page to free.
 215 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 216 *
 217 * The page to free should have been allocated by get_image_page() (page flags
 218 * set by it are affected).
 219 */
 220static inline void free_image_page(void *addr, int clear_nosave_free)
 221{
 222	struct page *page;
 223
 224	BUG_ON(!virt_addr_valid(addr));
 225
 226	page = virt_to_page(addr);
 227
 228	swsusp_unset_page_forbidden(page);
 229	if (clear_nosave_free)
 230		swsusp_unset_page_free(page);
 231
 232	__free_page(page);
 233}
 234
 235static inline void free_list_of_pages(struct linked_page *list,
 236				      int clear_page_nosave)
 237{
 238	while (list) {
 239		struct linked_page *lp = list->next;
 240
 241		free_image_page(list, clear_page_nosave);
 242		list = lp;
 243	}
 244}
 245
 246/*
 247 * struct chain_allocator is used for allocating small objects out of
 248 * a linked list of pages called 'the chain'.
 249 *
 250 * The chain grows each time when there is no room for a new object in
 251 * the current page.  The allocated objects cannot be freed individually.
 252 * It is only possible to free them all at once, by freeing the entire
 253 * chain.
 254 *
 255 * NOTE: The chain allocator may be inefficient if the allocated objects
 256 * are not much smaller than PAGE_SIZE.
 257 */
 258struct chain_allocator {
 259	struct linked_page *chain;	/* the chain */
 260	unsigned int used_space;	/* total size of objects allocated out
 261					   of the current page */
 262	gfp_t gfp_mask;		/* mask for allocating pages */
 263	int safe_needed;	/* if set, only "safe" pages are allocated */
 264};
 265
 266static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 267		       int safe_needed)
 268{
 269	ca->chain = NULL;
 270	ca->used_space = LINKED_PAGE_DATA_SIZE;
 271	ca->gfp_mask = gfp_mask;
 272	ca->safe_needed = safe_needed;
 273}
 274
 275static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 276{
 277	void *ret;
 278
 279	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 280		struct linked_page *lp;
 281
 282		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 283					get_image_page(ca->gfp_mask, PG_ANY);
 284		if (!lp)
 285			return NULL;
 286
 287		lp->next = ca->chain;
 288		ca->chain = lp;
 289		ca->used_space = 0;
 290	}
 291	ret = ca->chain->data + ca->used_space;
 292	ca->used_space += size;
 293	return ret;
 294}
 295
 296/**
 297 * Data types related to memory bitmaps.
 298 *
 299 * Memory bitmap is a structure consiting of many linked lists of
 300 * objects.  The main list's elements are of type struct zone_bitmap
 301 * and each of them corresonds to one zone.  For each zone bitmap
 302 * object there is a list of objects of type struct bm_block that
 303 * represent each blocks of bitmap in which information is stored.
 304 *
 305 * struct memory_bitmap contains a pointer to the main list of zone
 306 * bitmap objects, a struct bm_position used for browsing the bitmap,
 307 * and a pointer to the list of pages used for allocating all of the
 308 * zone bitmap objects and bitmap block objects.
 309 *
 310 * NOTE: It has to be possible to lay out the bitmap in memory
 311 * using only allocations of order 0.  Additionally, the bitmap is
 312 * designed to work with arbitrary number of zones (this is over the
 313 * top for now, but let's avoid making unnecessary assumptions ;-).
 314 *
 315 * struct zone_bitmap contains a pointer to a list of bitmap block
 316 * objects and a pointer to the bitmap block object that has been
 317 * most recently used for setting bits.  Additionally, it contains the
 318 * PFNs that correspond to the start and end of the represented zone.
 319 *
 320 * struct bm_block contains a pointer to the memory page in which
 321 * information is stored (in the form of a block of bitmap)
 322 * It also contains the pfns that correspond to the start and end of
 323 * the represented memory area.
 324 *
 325 * The memory bitmap is organized as a radix tree to guarantee fast random
 326 * access to the bits. There is one radix tree for each zone (as returned
 327 * from create_mem_extents).
 328 *
 329 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 330 * two linked lists for the nodes of the tree, one for the inner nodes and
 331 * one for the leave nodes. The linked leave nodes are used for fast linear
 332 * access of the memory bitmap.
 333 *
 334 * The struct rtree_node represents one node of the radix tree.
 335 */
 336
 337#define BM_END_OF_MAP	(~0UL)
 338
 339#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 340#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 341#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 342
 343/*
 344 * struct rtree_node is a wrapper struct to link the nodes
 345 * of the rtree together for easy linear iteration over
 346 * bits and easy freeing
 347 */
 348struct rtree_node {
 349	struct list_head list;
 350	unsigned long *data;
 351};
 352
 353/*
 354 * struct mem_zone_bm_rtree represents a bitmap used for one
 355 * populated memory zone.
 356 */
 357struct mem_zone_bm_rtree {
 358	struct list_head list;		/* Link Zones together         */
 359	struct list_head nodes;		/* Radix Tree inner nodes      */
 360	struct list_head leaves;	/* Radix Tree leaves           */
 361	unsigned long start_pfn;	/* Zone start page frame       */
 362	unsigned long end_pfn;		/* Zone end page frame + 1     */
 363	struct rtree_node *rtree;	/* Radix Tree Root             */
 364	int levels;			/* Number of Radix Tree Levels */
 365	unsigned int blocks;		/* Number of Bitmap Blocks     */
 366};
 367
 368/* strcut bm_position is used for browsing memory bitmaps */
 369
 370struct bm_position {
 371	struct mem_zone_bm_rtree *zone;
 372	struct rtree_node *node;
 373	unsigned long node_pfn;
 374	int node_bit;
 375};
 376
 377struct memory_bitmap {
 378	struct list_head zones;
 379	struct linked_page *p_list;	/* list of pages used to store zone
 380					   bitmap objects and bitmap block
 381					   objects */
 382	struct bm_position cur;	/* most recently used bit position */
 383};
 384
 385/* Functions that operate on memory bitmaps */
 386
 387#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 388#if BITS_PER_LONG == 32
 389#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 390#else
 391#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 392#endif
 393#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 394
 395/**
 396 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 
 
 
 
 397 *
 398 * This function is used to allocate inner nodes as well as the
 399 * leave nodes of the radix tree. It also adds the node to the
 400 * corresponding linked list passed in by the *list parameter.
 401 */
 402static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 403					   struct chain_allocator *ca,
 404					   struct list_head *list)
 405{
 406	struct rtree_node *node;
 407
 408	node = chain_alloc(ca, sizeof(struct rtree_node));
 409	if (!node)
 410		return NULL;
 411
 412	node->data = get_image_page(gfp_mask, safe_needed);
 413	if (!node->data)
 414		return NULL;
 415
 416	list_add_tail(&node->list, list);
 417
 418	return node;
 419}
 420
 421/**
 422 * add_rtree_block - Add a new leave node to the radix tree.
 423 *
 424 * The leave nodes need to be allocated in order to keep the leaves
 425 * linked list in order. This is guaranteed by the zone->blocks
 426 * counter.
 427 */
 428static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 429			   int safe_needed, struct chain_allocator *ca)
 430{
 431	struct rtree_node *node, *block, **dst;
 432	unsigned int levels_needed, block_nr;
 433	int i;
 434
 435	block_nr = zone->blocks;
 436	levels_needed = 0;
 437
 438	/* How many levels do we need for this block nr? */
 439	while (block_nr) {
 440		levels_needed += 1;
 441		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 442	}
 443
 444	/* Make sure the rtree has enough levels */
 445	for (i = zone->levels; i < levels_needed; i++) {
 446		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 447					&zone->nodes);
 448		if (!node)
 449			return -ENOMEM;
 450
 451		node->data[0] = (unsigned long)zone->rtree;
 452		zone->rtree = node;
 453		zone->levels += 1;
 454	}
 455
 456	/* Allocate new block */
 457	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 458	if (!block)
 459		return -ENOMEM;
 460
 461	/* Now walk the rtree to insert the block */
 462	node = zone->rtree;
 463	dst = &zone->rtree;
 464	block_nr = zone->blocks;
 465	for (i = zone->levels; i > 0; i--) {
 466		int index;
 467
 468		if (!node) {
 469			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 470						&zone->nodes);
 471			if (!node)
 472				return -ENOMEM;
 473			*dst = node;
 474		}
 475
 476		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 477		index &= BM_RTREE_LEVEL_MASK;
 478		dst = (struct rtree_node **)&((*dst)->data[index]);
 479		node = *dst;
 480	}
 481
 482	zone->blocks += 1;
 483	*dst = block;
 484
 485	return 0;
 486}
 487
 488static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 489			       int clear_nosave_free);
 490
 491/**
 492 * create_zone_bm_rtree - Create a radix tree for one zone.
 493 *
 494 * Allocated the mem_zone_bm_rtree structure and initializes it.
 495 * This function also allocated and builds the radix tree for the
 496 * zone.
 497 */
 498static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 499						      int safe_needed,
 500						      struct chain_allocator *ca,
 501						      unsigned long start,
 502						      unsigned long end)
 503{
 504	struct mem_zone_bm_rtree *zone;
 505	unsigned int i, nr_blocks;
 506	unsigned long pages;
 507
 508	pages = end - start;
 509	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 510	if (!zone)
 511		return NULL;
 512
 513	INIT_LIST_HEAD(&zone->nodes);
 514	INIT_LIST_HEAD(&zone->leaves);
 515	zone->start_pfn = start;
 516	zone->end_pfn = end;
 517	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 518
 519	for (i = 0; i < nr_blocks; i++) {
 520		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 521			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 522			return NULL;
 523		}
 524	}
 525
 526	return zone;
 527}
 528
 529/**
 530 * free_zone_bm_rtree - Free the memory of the radix tree.
 531 *
 532 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 533 * structure itself is not freed here nor are the rtree_node
 534 * structs.
 535 */
 536static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 537			       int clear_nosave_free)
 538{
 539	struct rtree_node *node;
 540
 541	list_for_each_entry(node, &zone->nodes, list)
 542		free_image_page(node->data, clear_nosave_free);
 543
 544	list_for_each_entry(node, &zone->leaves, list)
 545		free_image_page(node->data, clear_nosave_free);
 546}
 547
 548static void memory_bm_position_reset(struct memory_bitmap *bm)
 549{
 550	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 551				  list);
 552	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 553				  struct rtree_node, list);
 554	bm->cur.node_pfn = 0;
 555	bm->cur.node_bit = 0;
 556}
 557
 558static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 559
 560struct mem_extent {
 561	struct list_head hook;
 562	unsigned long start;
 563	unsigned long end;
 564};
 565
 566/**
 567 * free_mem_extents - Free a list of memory extents.
 568 * @list: List of extents to free.
 569 */
 570static void free_mem_extents(struct list_head *list)
 571{
 572	struct mem_extent *ext, *aux;
 573
 574	list_for_each_entry_safe(ext, aux, list, hook) {
 575		list_del(&ext->hook);
 576		kfree(ext);
 577	}
 578}
 579
 580/**
 581 * create_mem_extents - Create a list of memory extents.
 582 * @list: List to put the extents into.
 583 * @gfp_mask: Mask to use for memory allocations.
 584 *
 585 * The extents represent contiguous ranges of PFNs.
 586 */
 587static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 588{
 589	struct zone *zone;
 590
 591	INIT_LIST_HEAD(list);
 592
 593	for_each_populated_zone(zone) {
 594		unsigned long zone_start, zone_end;
 595		struct mem_extent *ext, *cur, *aux;
 596
 597		zone_start = zone->zone_start_pfn;
 598		zone_end = zone_end_pfn(zone);
 599
 600		list_for_each_entry(ext, list, hook)
 601			if (zone_start <= ext->end)
 602				break;
 603
 604		if (&ext->hook == list || zone_end < ext->start) {
 605			/* New extent is necessary */
 606			struct mem_extent *new_ext;
 607
 608			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 609			if (!new_ext) {
 610				free_mem_extents(list);
 611				return -ENOMEM;
 612			}
 613			new_ext->start = zone_start;
 614			new_ext->end = zone_end;
 615			list_add_tail(&new_ext->hook, &ext->hook);
 616			continue;
 617		}
 618
 619		/* Merge this zone's range of PFNs with the existing one */
 620		if (zone_start < ext->start)
 621			ext->start = zone_start;
 622		if (zone_end > ext->end)
 623			ext->end = zone_end;
 624
 625		/* More merging may be possible */
 626		cur = ext;
 627		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 628			if (zone_end < cur->start)
 629				break;
 630			if (zone_end < cur->end)
 631				ext->end = cur->end;
 632			list_del(&cur->hook);
 633			kfree(cur);
 634		}
 635	}
 636
 637	return 0;
 638}
 639
 640/**
 641 * memory_bm_create - Allocate memory for a memory bitmap.
 642 */
 643static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 644			    int safe_needed)
 645{
 646	struct chain_allocator ca;
 647	struct list_head mem_extents;
 648	struct mem_extent *ext;
 649	int error;
 650
 651	chain_init(&ca, gfp_mask, safe_needed);
 652	INIT_LIST_HEAD(&bm->zones);
 653
 654	error = create_mem_extents(&mem_extents, gfp_mask);
 655	if (error)
 656		return error;
 657
 658	list_for_each_entry(ext, &mem_extents, hook) {
 659		struct mem_zone_bm_rtree *zone;
 660
 661		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 662					    ext->start, ext->end);
 663		if (!zone) {
 664			error = -ENOMEM;
 665			goto Error;
 666		}
 667		list_add_tail(&zone->list, &bm->zones);
 668	}
 669
 670	bm->p_list = ca.chain;
 671	memory_bm_position_reset(bm);
 672 Exit:
 673	free_mem_extents(&mem_extents);
 674	return error;
 675
 676 Error:
 677	bm->p_list = ca.chain;
 678	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 679	goto Exit;
 680}
 681
 682/**
 683 * memory_bm_free - Free memory occupied by the memory bitmap.
 684 * @bm: Memory bitmap.
 685 */
 686static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 687{
 688	struct mem_zone_bm_rtree *zone;
 689
 690	list_for_each_entry(zone, &bm->zones, list)
 691		free_zone_bm_rtree(zone, clear_nosave_free);
 692
 693	free_list_of_pages(bm->p_list, clear_nosave_free);
 694
 695	INIT_LIST_HEAD(&bm->zones);
 696}
 697
 698/**
 699 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 700 *
 701 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 702 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 703 *
 704 * Walk the radix tree to find the page containing the bit that represents @pfn
 705 * and return the position of the bit in @addr and @bit_nr.
 706 */
 707static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 708			      void **addr, unsigned int *bit_nr)
 709{
 710	struct mem_zone_bm_rtree *curr, *zone;
 711	struct rtree_node *node;
 712	int i, block_nr;
 713
 714	zone = bm->cur.zone;
 715
 716	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 717		goto zone_found;
 718
 719	zone = NULL;
 720
 721	/* Find the right zone */
 722	list_for_each_entry(curr, &bm->zones, list) {
 723		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 724			zone = curr;
 725			break;
 726		}
 727	}
 728
 729	if (!zone)
 730		return -EFAULT;
 731
 732zone_found:
 733	/*
 734	 * We have found the zone. Now walk the radix tree to find the leaf node
 735	 * for our PFN.
 736	 */
 
 
 
 
 
 
 737	node = bm->cur.node;
 738	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 
 739		goto node_found;
 740
 741	node      = zone->rtree;
 742	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 743
 744	for (i = zone->levels; i > 0; i--) {
 745		int index;
 746
 747		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 748		index &= BM_RTREE_LEVEL_MASK;
 749		BUG_ON(node->data[index] == 0);
 750		node = (struct rtree_node *)node->data[index];
 751	}
 752
 753node_found:
 754	/* Update last position */
 755	bm->cur.zone = zone;
 756	bm->cur.node = node;
 757	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 758
 759	/* Set return values */
 760	*addr = node->data;
 761	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 762
 763	return 0;
 764}
 765
 766static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 767{
 768	void *addr;
 769	unsigned int bit;
 770	int error;
 771
 772	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 773	BUG_ON(error);
 774	set_bit(bit, addr);
 775}
 776
 777static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 778{
 779	void *addr;
 780	unsigned int bit;
 781	int error;
 782
 783	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 784	if (!error)
 785		set_bit(bit, addr);
 786
 787	return error;
 788}
 789
 790static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 791{
 792	void *addr;
 793	unsigned int bit;
 794	int error;
 795
 796	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 797	BUG_ON(error);
 798	clear_bit(bit, addr);
 799}
 800
 801static void memory_bm_clear_current(struct memory_bitmap *bm)
 802{
 803	int bit;
 804
 805	bit = max(bm->cur.node_bit - 1, 0);
 806	clear_bit(bit, bm->cur.node->data);
 807}
 808
 809static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 810{
 811	void *addr;
 812	unsigned int bit;
 813	int error;
 814
 815	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 816	BUG_ON(error);
 817	return test_bit(bit, addr);
 818}
 819
 820static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 821{
 822	void *addr;
 823	unsigned int bit;
 824
 825	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 826}
 827
 828/*
 829 * rtree_next_node - Jump to the next leaf node.
 830 *
 831 * Set the position to the beginning of the next node in the
 832 * memory bitmap. This is either the next node in the current
 833 * zone's radix tree or the first node in the radix tree of the
 834 * next zone.
 835 *
 836 * Return true if there is a next node, false otherwise.
 837 */
 838static bool rtree_next_node(struct memory_bitmap *bm)
 839{
 840	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 841		bm->cur.node = list_entry(bm->cur.node->list.next,
 842					  struct rtree_node, list);
 843		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 844		bm->cur.node_bit  = 0;
 845		touch_softlockup_watchdog();
 846		return true;
 847	}
 848
 849	/* No more nodes, goto next zone */
 850	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 851		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 852				  struct mem_zone_bm_rtree, list);
 853		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 854					  struct rtree_node, list);
 855		bm->cur.node_pfn = 0;
 856		bm->cur.node_bit = 0;
 857		return true;
 858	}
 859
 860	/* No more zones */
 861	return false;
 862}
 863
 864/**
 865 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 866 * @bm: Memory bitmap.
 867 *
 868 * Starting from the last returned position this function searches for the next
 869 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 870 * set, BM_END_OF_MAP is returned.
 871 *
 872 * It is required to run memory_bm_position_reset() before the first call to
 873 * this function for the given memory bitmap.
 874 */
 875static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 876{
 877	unsigned long bits, pfn, pages;
 878	int bit;
 879
 880	do {
 881		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 882		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 883		bit	  = find_next_bit(bm->cur.node->data, bits,
 884					  bm->cur.node_bit);
 885		if (bit < bits) {
 886			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 887			bm->cur.node_bit = bit + 1;
 888			return pfn;
 889		}
 890	} while (rtree_next_node(bm));
 891
 892	return BM_END_OF_MAP;
 893}
 894
 895/*
 896 * This structure represents a range of page frames the contents of which
 897 * should not be saved during hibernation.
 898 */
 899struct nosave_region {
 900	struct list_head list;
 901	unsigned long start_pfn;
 902	unsigned long end_pfn;
 903};
 904
 905static LIST_HEAD(nosave_regions);
 906
 907static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 908{
 909	struct rtree_node *node;
 910
 911	list_for_each_entry(node, &zone->nodes, list)
 912		recycle_safe_page(node->data);
 913
 914	list_for_each_entry(node, &zone->leaves, list)
 915		recycle_safe_page(node->data);
 916}
 917
 918static void memory_bm_recycle(struct memory_bitmap *bm)
 919{
 920	struct mem_zone_bm_rtree *zone;
 921	struct linked_page *p_list;
 922
 923	list_for_each_entry(zone, &bm->zones, list)
 924		recycle_zone_bm_rtree(zone);
 925
 926	p_list = bm->p_list;
 927	while (p_list) {
 928		struct linked_page *lp = p_list;
 929
 930		p_list = lp->next;
 931		recycle_safe_page(lp);
 932	}
 933}
 934
 935/**
 936 * register_nosave_region - Register a region of unsaveable memory.
 937 *
 938 * Register a range of page frames the contents of which should not be saved
 939 * during hibernation (to be used in the early initialization code).
 940 */
 941void __init __register_nosave_region(unsigned long start_pfn,
 942				     unsigned long end_pfn, int use_kmalloc)
 943{
 944	struct nosave_region *region;
 945
 946	if (start_pfn >= end_pfn)
 947		return;
 948
 949	if (!list_empty(&nosave_regions)) {
 950		/* Try to extend the previous region (they should be sorted) */
 951		region = list_entry(nosave_regions.prev,
 952					struct nosave_region, list);
 953		if (region->end_pfn == start_pfn) {
 954			region->end_pfn = end_pfn;
 955			goto Report;
 956		}
 957	}
 958	if (use_kmalloc) {
 959		/* During init, this shouldn't fail */
 960		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 961		BUG_ON(!region);
 962	} else {
 963		/* This allocation cannot fail */
 964		region = memblock_alloc(sizeof(struct nosave_region),
 965					SMP_CACHE_BYTES);
 966		if (!region)
 967			panic("%s: Failed to allocate %zu bytes\n", __func__,
 968			      sizeof(struct nosave_region));
 969	}
 970	region->start_pfn = start_pfn;
 971	region->end_pfn = end_pfn;
 972	list_add_tail(&region->list, &nosave_regions);
 973 Report:
 974	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 975		(unsigned long long) start_pfn << PAGE_SHIFT,
 976		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 977}
 978
 979/*
 980 * Set bits in this map correspond to the page frames the contents of which
 981 * should not be saved during the suspend.
 982 */
 983static struct memory_bitmap *forbidden_pages_map;
 984
 985/* Set bits in this map correspond to free page frames. */
 986static struct memory_bitmap *free_pages_map;
 987
 988/*
 989 * Each page frame allocated for creating the image is marked by setting the
 990 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 991 */
 992
 993void swsusp_set_page_free(struct page *page)
 994{
 995	if (free_pages_map)
 996		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 997}
 998
 999static int swsusp_page_is_free(struct page *page)
1000{
1001	return free_pages_map ?
1002		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1003}
1004
1005void swsusp_unset_page_free(struct page *page)
1006{
1007	if (free_pages_map)
1008		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1009}
1010
1011static void swsusp_set_page_forbidden(struct page *page)
1012{
1013	if (forbidden_pages_map)
1014		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1015}
1016
1017int swsusp_page_is_forbidden(struct page *page)
1018{
1019	return forbidden_pages_map ?
1020		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1021}
1022
1023static void swsusp_unset_page_forbidden(struct page *page)
1024{
1025	if (forbidden_pages_map)
1026		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1027}
1028
1029/**
1030 * mark_nosave_pages - Mark pages that should not be saved.
1031 * @bm: Memory bitmap.
1032 *
1033 * Set the bits in @bm that correspond to the page frames the contents of which
1034 * should not be saved.
1035 */
1036static void mark_nosave_pages(struct memory_bitmap *bm)
1037{
1038	struct nosave_region *region;
1039
1040	if (list_empty(&nosave_regions))
1041		return;
1042
1043	list_for_each_entry(region, &nosave_regions, list) {
1044		unsigned long pfn;
1045
1046		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1047			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1048			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1049				- 1);
1050
1051		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1052			if (pfn_valid(pfn)) {
1053				/*
1054				 * It is safe to ignore the result of
1055				 * mem_bm_set_bit_check() here, since we won't
1056				 * touch the PFNs for which the error is
1057				 * returned anyway.
1058				 */
1059				mem_bm_set_bit_check(bm, pfn);
1060			}
1061	}
1062}
1063
1064/**
1065 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1066 *
1067 * Create bitmaps needed for marking page frames that should not be saved and
1068 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1069 * only modified if everything goes well, because we don't want the bits to be
1070 * touched before both bitmaps are set up.
1071 */
1072int create_basic_memory_bitmaps(void)
1073{
1074	struct memory_bitmap *bm1, *bm2;
1075	int error = 0;
1076
1077	if (forbidden_pages_map && free_pages_map)
1078		return 0;
1079	else
1080		BUG_ON(forbidden_pages_map || free_pages_map);
1081
1082	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1083	if (!bm1)
1084		return -ENOMEM;
1085
1086	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1087	if (error)
1088		goto Free_first_object;
1089
1090	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1091	if (!bm2)
1092		goto Free_first_bitmap;
1093
1094	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1095	if (error)
1096		goto Free_second_object;
1097
1098	forbidden_pages_map = bm1;
1099	free_pages_map = bm2;
1100	mark_nosave_pages(forbidden_pages_map);
1101
1102	pr_debug("Basic memory bitmaps created\n");
1103
1104	return 0;
1105
1106 Free_second_object:
1107	kfree(bm2);
1108 Free_first_bitmap:
1109 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1110 Free_first_object:
1111	kfree(bm1);
1112	return -ENOMEM;
1113}
1114
1115/**
1116 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1117 *
1118 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1119 * auxiliary pointers are necessary so that the bitmaps themselves are not
1120 * referred to while they are being freed.
1121 */
1122void free_basic_memory_bitmaps(void)
1123{
1124	struct memory_bitmap *bm1, *bm2;
1125
1126	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1127		return;
1128
1129	bm1 = forbidden_pages_map;
1130	bm2 = free_pages_map;
1131	forbidden_pages_map = NULL;
1132	free_pages_map = NULL;
1133	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1134	kfree(bm1);
1135	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1136	kfree(bm2);
1137
1138	pr_debug("Basic memory bitmaps freed\n");
1139}
1140
1141void clear_free_pages(void)
 
 
 
 
 
 
 
 
1142{
1143#ifdef CONFIG_PAGE_POISONING_ZERO
1144	struct memory_bitmap *bm = free_pages_map;
1145	unsigned long pfn;
1146
1147	if (WARN_ON(!(free_pages_map)))
1148		return;
1149
1150	memory_bm_position_reset(bm);
1151	pfn = memory_bm_next_pfn(bm);
1152	while (pfn != BM_END_OF_MAP) {
1153		if (pfn_valid(pfn))
1154			clear_highpage(pfn_to_page(pfn));
 
1155
1156		pfn = memory_bm_next_pfn(bm);
 
 
 
1157	}
1158	memory_bm_position_reset(bm);
1159	pr_info("free pages cleared after restore\n");
1160#endif /* PAGE_POISONING_ZERO */
1161}
1162
1163/**
1164 * snapshot_additional_pages - Estimate the number of extra pages needed.
1165 * @zone: Memory zone to carry out the computation for.
1166 *
1167 * Estimate the number of additional pages needed for setting up a hibernation
1168 * image data structures for @zone (usually, the returned value is greater than
1169 * the exact number).
1170 */
1171unsigned int snapshot_additional_pages(struct zone *zone)
1172{
1173	unsigned int rtree, nodes;
1174
1175	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1176	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1177			      LINKED_PAGE_DATA_SIZE);
1178	while (nodes > 1) {
1179		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1180		rtree += nodes;
1181	}
1182
1183	return 2 * rtree;
1184}
1185
1186#ifdef CONFIG_HIGHMEM
1187/**
1188 * count_free_highmem_pages - Compute the total number of free highmem pages.
1189 *
1190 * The returned number is system-wide.
1191 */
1192static unsigned int count_free_highmem_pages(void)
1193{
1194	struct zone *zone;
1195	unsigned int cnt = 0;
1196
1197	for_each_populated_zone(zone)
1198		if (is_highmem(zone))
1199			cnt += zone_page_state(zone, NR_FREE_PAGES);
1200
1201	return cnt;
1202}
1203
1204/**
1205 * saveable_highmem_page - Check if a highmem page is saveable.
1206 *
1207 * Determine whether a highmem page should be included in a hibernation image.
1208 *
1209 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1210 * and it isn't part of a free chunk of pages.
1211 */
1212static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1213{
1214	struct page *page;
1215
1216	if (!pfn_valid(pfn))
1217		return NULL;
1218
1219	page = pfn_to_online_page(pfn);
1220	if (!page || page_zone(page) != zone)
1221		return NULL;
1222
1223	BUG_ON(!PageHighMem(page));
1224
1225	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1226		return NULL;
1227
1228	if (PageReserved(page) || PageOffline(page))
1229		return NULL;
1230
1231	if (page_is_guard(page))
1232		return NULL;
1233
1234	return page;
1235}
1236
1237/**
1238 * count_highmem_pages - Compute the total number of saveable highmem pages.
1239 */
1240static unsigned int count_highmem_pages(void)
1241{
1242	struct zone *zone;
1243	unsigned int n = 0;
1244
1245	for_each_populated_zone(zone) {
1246		unsigned long pfn, max_zone_pfn;
1247
1248		if (!is_highmem(zone))
1249			continue;
1250
1251		mark_free_pages(zone);
1252		max_zone_pfn = zone_end_pfn(zone);
1253		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1254			if (saveable_highmem_page(zone, pfn))
1255				n++;
1256	}
1257	return n;
1258}
1259#else
1260static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1261{
1262	return NULL;
1263}
1264#endif /* CONFIG_HIGHMEM */
1265
1266/**
1267 * saveable_page - Check if the given page is saveable.
1268 *
1269 * Determine whether a non-highmem page should be included in a hibernation
1270 * image.
1271 *
1272 * We should save the page if it isn't Nosave, and is not in the range
1273 * of pages statically defined as 'unsaveable', and it isn't part of
1274 * a free chunk of pages.
1275 */
1276static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1277{
1278	struct page *page;
1279
1280	if (!pfn_valid(pfn))
1281		return NULL;
1282
1283	page = pfn_to_online_page(pfn);
1284	if (!page || page_zone(page) != zone)
1285		return NULL;
1286
1287	BUG_ON(PageHighMem(page));
1288
1289	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1290		return NULL;
1291
1292	if (PageOffline(page))
1293		return NULL;
1294
1295	if (PageReserved(page)
1296	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1297		return NULL;
1298
1299	if (page_is_guard(page))
1300		return NULL;
1301
1302	return page;
1303}
1304
1305/**
1306 * count_data_pages - Compute the total number of saveable non-highmem pages.
1307 */
1308static unsigned int count_data_pages(void)
1309{
1310	struct zone *zone;
1311	unsigned long pfn, max_zone_pfn;
1312	unsigned int n = 0;
1313
1314	for_each_populated_zone(zone) {
1315		if (is_highmem(zone))
1316			continue;
1317
1318		mark_free_pages(zone);
1319		max_zone_pfn = zone_end_pfn(zone);
1320		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1321			if (saveable_page(zone, pfn))
1322				n++;
1323	}
1324	return n;
1325}
1326
1327/*
1328 * This is needed, because copy_page and memcpy are not usable for copying
1329 * task structs.
1330 */
1331static inline void do_copy_page(long *dst, long *src)
1332{
1333	int n;
1334
1335	for (n = PAGE_SIZE / sizeof(long); n; n--)
1336		*dst++ = *src++;
1337}
1338
1339/**
1340 * safe_copy_page - Copy a page in a safe way.
1341 *
1342 * Check if the page we are going to copy is marked as present in the kernel
1343 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1344 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1345 * always returns 'true'.
1346 */
1347static void safe_copy_page(void *dst, struct page *s_page)
1348{
1349	if (kernel_page_present(s_page)) {
1350		do_copy_page(dst, page_address(s_page));
1351	} else {
1352		kernel_map_pages(s_page, 1, 1);
1353		do_copy_page(dst, page_address(s_page));
1354		kernel_map_pages(s_page, 1, 0);
1355	}
1356}
1357
1358#ifdef CONFIG_HIGHMEM
1359static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1360{
1361	return is_highmem(zone) ?
1362		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1363}
1364
1365static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1366{
1367	struct page *s_page, *d_page;
1368	void *src, *dst;
1369
1370	s_page = pfn_to_page(src_pfn);
1371	d_page = pfn_to_page(dst_pfn);
1372	if (PageHighMem(s_page)) {
1373		src = kmap_atomic(s_page);
1374		dst = kmap_atomic(d_page);
1375		do_copy_page(dst, src);
1376		kunmap_atomic(dst);
1377		kunmap_atomic(src);
1378	} else {
1379		if (PageHighMem(d_page)) {
1380			/*
1381			 * The page pointed to by src may contain some kernel
1382			 * data modified by kmap_atomic()
1383			 */
1384			safe_copy_page(buffer, s_page);
1385			dst = kmap_atomic(d_page);
1386			copy_page(dst, buffer);
1387			kunmap_atomic(dst);
1388		} else {
1389			safe_copy_page(page_address(d_page), s_page);
1390		}
1391	}
1392}
1393#else
1394#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1395
1396static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1397{
1398	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1399				pfn_to_page(src_pfn));
1400}
1401#endif /* CONFIG_HIGHMEM */
1402
1403static void copy_data_pages(struct memory_bitmap *copy_bm,
1404			    struct memory_bitmap *orig_bm)
1405{
1406	struct zone *zone;
1407	unsigned long pfn;
1408
1409	for_each_populated_zone(zone) {
1410		unsigned long max_zone_pfn;
1411
1412		mark_free_pages(zone);
1413		max_zone_pfn = zone_end_pfn(zone);
1414		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1415			if (page_is_saveable(zone, pfn))
1416				memory_bm_set_bit(orig_bm, pfn);
1417	}
1418	memory_bm_position_reset(orig_bm);
1419	memory_bm_position_reset(copy_bm);
1420	for(;;) {
1421		pfn = memory_bm_next_pfn(orig_bm);
1422		if (unlikely(pfn == BM_END_OF_MAP))
1423			break;
1424		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1425	}
1426}
1427
1428/* Total number of image pages */
1429static unsigned int nr_copy_pages;
1430/* Number of pages needed for saving the original pfns of the image pages */
1431static unsigned int nr_meta_pages;
1432/*
1433 * Numbers of normal and highmem page frames allocated for hibernation image
1434 * before suspending devices.
1435 */
1436static unsigned int alloc_normal, alloc_highmem;
1437/*
1438 * Memory bitmap used for marking saveable pages (during hibernation) or
1439 * hibernation image pages (during restore)
1440 */
1441static struct memory_bitmap orig_bm;
1442/*
1443 * Memory bitmap used during hibernation for marking allocated page frames that
1444 * will contain copies of saveable pages.  During restore it is initially used
1445 * for marking hibernation image pages, but then the set bits from it are
1446 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1447 * used for marking "safe" highmem pages, but it has to be reinitialized for
1448 * this purpose.
1449 */
1450static struct memory_bitmap copy_bm;
1451
1452/**
1453 * swsusp_free - Free pages allocated for hibernation image.
1454 *
1455 * Image pages are alocated before snapshot creation, so they need to be
1456 * released after resume.
1457 */
1458void swsusp_free(void)
1459{
1460	unsigned long fb_pfn, fr_pfn;
1461
1462	if (!forbidden_pages_map || !free_pages_map)
1463		goto out;
1464
1465	memory_bm_position_reset(forbidden_pages_map);
1466	memory_bm_position_reset(free_pages_map);
1467
1468loop:
1469	fr_pfn = memory_bm_next_pfn(free_pages_map);
1470	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471
1472	/*
1473	 * Find the next bit set in both bitmaps. This is guaranteed to
1474	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1475	 */
1476	do {
1477		if (fb_pfn < fr_pfn)
1478			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1479		if (fr_pfn < fb_pfn)
1480			fr_pfn = memory_bm_next_pfn(free_pages_map);
1481	} while (fb_pfn != fr_pfn);
1482
1483	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1484		struct page *page = pfn_to_page(fr_pfn);
1485
1486		memory_bm_clear_current(forbidden_pages_map);
1487		memory_bm_clear_current(free_pages_map);
1488		hibernate_restore_unprotect_page(page_address(page));
1489		__free_page(page);
1490		goto loop;
1491	}
1492
1493out:
1494	nr_copy_pages = 0;
1495	nr_meta_pages = 0;
1496	restore_pblist = NULL;
1497	buffer = NULL;
1498	alloc_normal = 0;
1499	alloc_highmem = 0;
1500	hibernate_restore_protection_end();
1501}
1502
1503/* Helper functions used for the shrinking of memory. */
1504
1505#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1506
1507/**
1508 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1509 * @nr_pages: Number of page frames to allocate.
1510 * @mask: GFP flags to use for the allocation.
1511 *
1512 * Return value: Number of page frames actually allocated
1513 */
1514static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1515{
1516	unsigned long nr_alloc = 0;
1517
1518	while (nr_pages > 0) {
1519		struct page *page;
1520
1521		page = alloc_image_page(mask);
1522		if (!page)
1523			break;
1524		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1525		if (PageHighMem(page))
1526			alloc_highmem++;
1527		else
1528			alloc_normal++;
1529		nr_pages--;
1530		nr_alloc++;
1531	}
1532
1533	return nr_alloc;
1534}
1535
1536static unsigned long preallocate_image_memory(unsigned long nr_pages,
1537					      unsigned long avail_normal)
1538{
1539	unsigned long alloc;
1540
1541	if (avail_normal <= alloc_normal)
1542		return 0;
1543
1544	alloc = avail_normal - alloc_normal;
1545	if (nr_pages < alloc)
1546		alloc = nr_pages;
1547
1548	return preallocate_image_pages(alloc, GFP_IMAGE);
1549}
1550
1551#ifdef CONFIG_HIGHMEM
1552static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1553{
1554	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1555}
1556
1557/**
1558 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1559 */
1560static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1561{
1562	x *= multiplier;
1563	do_div(x, base);
1564	return (unsigned long)x;
1565}
1566
1567static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1568						  unsigned long highmem,
1569						  unsigned long total)
1570{
1571	unsigned long alloc = __fraction(nr_pages, highmem, total);
1572
1573	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1574}
1575#else /* CONFIG_HIGHMEM */
1576static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1577{
1578	return 0;
1579}
1580
1581static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1582							 unsigned long highmem,
1583							 unsigned long total)
1584{
1585	return 0;
1586}
1587#endif /* CONFIG_HIGHMEM */
1588
1589/**
1590 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1591 */
1592static unsigned long free_unnecessary_pages(void)
1593{
1594	unsigned long save, to_free_normal, to_free_highmem, free;
1595
1596	save = count_data_pages();
1597	if (alloc_normal >= save) {
1598		to_free_normal = alloc_normal - save;
1599		save = 0;
1600	} else {
1601		to_free_normal = 0;
1602		save -= alloc_normal;
1603	}
1604	save += count_highmem_pages();
1605	if (alloc_highmem >= save) {
1606		to_free_highmem = alloc_highmem - save;
1607	} else {
1608		to_free_highmem = 0;
1609		save -= alloc_highmem;
1610		if (to_free_normal > save)
1611			to_free_normal -= save;
1612		else
1613			to_free_normal = 0;
1614	}
1615	free = to_free_normal + to_free_highmem;
1616
1617	memory_bm_position_reset(&copy_bm);
1618
1619	while (to_free_normal > 0 || to_free_highmem > 0) {
1620		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1621		struct page *page = pfn_to_page(pfn);
1622
1623		if (PageHighMem(page)) {
1624			if (!to_free_highmem)
1625				continue;
1626			to_free_highmem--;
1627			alloc_highmem--;
1628		} else {
1629			if (!to_free_normal)
1630				continue;
1631			to_free_normal--;
1632			alloc_normal--;
1633		}
1634		memory_bm_clear_bit(&copy_bm, pfn);
1635		swsusp_unset_page_forbidden(page);
1636		swsusp_unset_page_free(page);
1637		__free_page(page);
1638	}
1639
1640	return free;
1641}
1642
1643/**
1644 * minimum_image_size - Estimate the minimum acceptable size of an image.
1645 * @saveable: Number of saveable pages in the system.
1646 *
1647 * We want to avoid attempting to free too much memory too hard, so estimate the
1648 * minimum acceptable size of a hibernation image to use as the lower limit for
1649 * preallocating memory.
1650 *
1651 * We assume that the minimum image size should be proportional to
1652 *
1653 * [number of saveable pages] - [number of pages that can be freed in theory]
1654 *
1655 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1656 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1657 */
1658static unsigned long minimum_image_size(unsigned long saveable)
1659{
1660	unsigned long size;
1661
1662	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1663		+ global_node_page_state(NR_ACTIVE_ANON)
1664		+ global_node_page_state(NR_INACTIVE_ANON)
1665		+ global_node_page_state(NR_ACTIVE_FILE)
1666		+ global_node_page_state(NR_INACTIVE_FILE);
1667
1668	return saveable <= size ? 0 : saveable - size;
1669}
1670
1671/**
1672 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1673 *
1674 * To create a hibernation image it is necessary to make a copy of every page
1675 * frame in use.  We also need a number of page frames to be free during
1676 * hibernation for allocations made while saving the image and for device
1677 * drivers, in case they need to allocate memory from their hibernation
1678 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1679 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1680 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1681 * total number of available page frames and allocate at least
1682 *
1683 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1684 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1685 *
1686 * of them, which corresponds to the maximum size of a hibernation image.
1687 *
1688 * If image_size is set below the number following from the above formula,
1689 * the preallocation of memory is continued until the total number of saveable
1690 * pages in the system is below the requested image size or the minimum
1691 * acceptable image size returned by minimum_image_size(), whichever is greater.
1692 */
1693int hibernate_preallocate_memory(void)
1694{
1695	struct zone *zone;
1696	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1697	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1698	ktime_t start, stop;
1699	int error;
1700
1701	pr_info("Preallocating image memory... ");
1702	start = ktime_get();
1703
1704	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1705	if (error)
 
1706		goto err_out;
 
1707
1708	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1709	if (error)
 
1710		goto err_out;
 
1711
1712	alloc_normal = 0;
1713	alloc_highmem = 0;
1714
1715	/* Count the number of saveable data pages. */
1716	save_highmem = count_highmem_pages();
1717	saveable = count_data_pages();
1718
1719	/*
1720	 * Compute the total number of page frames we can use (count) and the
1721	 * number of pages needed for image metadata (size).
1722	 */
1723	count = saveable;
1724	saveable += save_highmem;
1725	highmem = save_highmem;
1726	size = 0;
1727	for_each_populated_zone(zone) {
1728		size += snapshot_additional_pages(zone);
1729		if (is_highmem(zone))
1730			highmem += zone_page_state(zone, NR_FREE_PAGES);
1731		else
1732			count += zone_page_state(zone, NR_FREE_PAGES);
1733	}
1734	avail_normal = count;
1735	count += highmem;
1736	count -= totalreserve_pages;
1737
1738	/* Add number of pages required for page keys (s390 only). */
1739	size += page_key_additional_pages(saveable);
1740
1741	/* Compute the maximum number of saveable pages to leave in memory. */
1742	max_size = (count - (size + PAGES_FOR_IO)) / 2
1743			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1744	/* Compute the desired number of image pages specified by image_size. */
1745	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1746	if (size > max_size)
1747		size = max_size;
1748	/*
1749	 * If the desired number of image pages is at least as large as the
1750	 * current number of saveable pages in memory, allocate page frames for
1751	 * the image and we're done.
1752	 */
1753	if (size >= saveable) {
1754		pages = preallocate_image_highmem(save_highmem);
1755		pages += preallocate_image_memory(saveable - pages, avail_normal);
1756		goto out;
1757	}
1758
1759	/* Estimate the minimum size of the image. */
1760	pages = minimum_image_size(saveable);
1761	/*
1762	 * To avoid excessive pressure on the normal zone, leave room in it to
1763	 * accommodate an image of the minimum size (unless it's already too
1764	 * small, in which case don't preallocate pages from it at all).
1765	 */
1766	if (avail_normal > pages)
1767		avail_normal -= pages;
1768	else
1769		avail_normal = 0;
1770	if (size < pages)
1771		size = min_t(unsigned long, pages, max_size);
1772
1773	/*
1774	 * Let the memory management subsystem know that we're going to need a
1775	 * large number of page frames to allocate and make it free some memory.
1776	 * NOTE: If this is not done, performance will be hurt badly in some
1777	 * test cases.
1778	 */
1779	shrink_all_memory(saveable - size);
1780
1781	/*
1782	 * The number of saveable pages in memory was too high, so apply some
1783	 * pressure to decrease it.  First, make room for the largest possible
1784	 * image and fail if that doesn't work.  Next, try to decrease the size
1785	 * of the image as much as indicated by 'size' using allocations from
1786	 * highmem and non-highmem zones separately.
1787	 */
1788	pages_highmem = preallocate_image_highmem(highmem / 2);
1789	alloc = count - max_size;
1790	if (alloc > pages_highmem)
1791		alloc -= pages_highmem;
1792	else
1793		alloc = 0;
1794	pages = preallocate_image_memory(alloc, avail_normal);
1795	if (pages < alloc) {
1796		/* We have exhausted non-highmem pages, try highmem. */
1797		alloc -= pages;
1798		pages += pages_highmem;
1799		pages_highmem = preallocate_image_highmem(alloc);
1800		if (pages_highmem < alloc)
 
 
1801			goto err_out;
 
1802		pages += pages_highmem;
1803		/*
1804		 * size is the desired number of saveable pages to leave in
1805		 * memory, so try to preallocate (all memory - size) pages.
1806		 */
1807		alloc = (count - pages) - size;
1808		pages += preallocate_image_highmem(alloc);
1809	} else {
1810		/*
1811		 * There are approximately max_size saveable pages at this point
1812		 * and we want to reduce this number down to size.
1813		 */
1814		alloc = max_size - size;
1815		size = preallocate_highmem_fraction(alloc, highmem, count);
1816		pages_highmem += size;
1817		alloc -= size;
1818		size = preallocate_image_memory(alloc, avail_normal);
1819		pages_highmem += preallocate_image_highmem(alloc - size);
1820		pages += pages_highmem + size;
1821	}
1822
1823	/*
1824	 * We only need as many page frames for the image as there are saveable
1825	 * pages in memory, but we have allocated more.  Release the excessive
1826	 * ones now.
1827	 */
1828	pages -= free_unnecessary_pages();
1829
1830 out:
1831	stop = ktime_get();
1832	pr_cont("done (allocated %lu pages)\n", pages);
1833	swsusp_show_speed(start, stop, pages, "Allocated");
1834
1835	return 0;
1836
1837 err_out:
1838	pr_cont("\n");
1839	swsusp_free();
1840	return -ENOMEM;
1841}
1842
1843#ifdef CONFIG_HIGHMEM
1844/**
1845 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1846 *
1847 * Compute the number of non-highmem pages that will be necessary for creating
1848 * copies of highmem pages.
1849 */
1850static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1851{
1852	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1853
1854	if (free_highmem >= nr_highmem)
1855		nr_highmem = 0;
1856	else
1857		nr_highmem -= free_highmem;
1858
1859	return nr_highmem;
1860}
1861#else
1862static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1863#endif /* CONFIG_HIGHMEM */
1864
1865/**
1866 * enough_free_mem - Check if there is enough free memory for the image.
1867 */
1868static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1869{
1870	struct zone *zone;
1871	unsigned int free = alloc_normal;
1872
1873	for_each_populated_zone(zone)
1874		if (!is_highmem(zone))
1875			free += zone_page_state(zone, NR_FREE_PAGES);
1876
1877	nr_pages += count_pages_for_highmem(nr_highmem);
1878	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1879		 nr_pages, PAGES_FOR_IO, free);
1880
1881	return free > nr_pages + PAGES_FOR_IO;
1882}
1883
1884#ifdef CONFIG_HIGHMEM
1885/**
1886 * get_highmem_buffer - Allocate a buffer for highmem pages.
1887 *
1888 * If there are some highmem pages in the hibernation image, we may need a
1889 * buffer to copy them and/or load their data.
1890 */
1891static inline int get_highmem_buffer(int safe_needed)
1892{
1893	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1894	return buffer ? 0 : -ENOMEM;
1895}
1896
1897/**
1898 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1899 *
1900 * Try to allocate as many pages as needed, but if the number of free highmem
1901 * pages is less than that, allocate them all.
1902 */
1903static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1904					       unsigned int nr_highmem)
1905{
1906	unsigned int to_alloc = count_free_highmem_pages();
1907
1908	if (to_alloc > nr_highmem)
1909		to_alloc = nr_highmem;
1910
1911	nr_highmem -= to_alloc;
1912	while (to_alloc-- > 0) {
1913		struct page *page;
1914
1915		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1916		memory_bm_set_bit(bm, page_to_pfn(page));
1917	}
1918	return nr_highmem;
1919}
1920#else
1921static inline int get_highmem_buffer(int safe_needed) { return 0; }
1922
1923static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1924					       unsigned int n) { return 0; }
1925#endif /* CONFIG_HIGHMEM */
1926
1927/**
1928 * swsusp_alloc - Allocate memory for hibernation image.
1929 *
1930 * We first try to allocate as many highmem pages as there are
1931 * saveable highmem pages in the system.  If that fails, we allocate
1932 * non-highmem pages for the copies of the remaining highmem ones.
1933 *
1934 * In this approach it is likely that the copies of highmem pages will
1935 * also be located in the high memory, because of the way in which
1936 * copy_data_pages() works.
1937 */
1938static int swsusp_alloc(struct memory_bitmap *copy_bm,
1939			unsigned int nr_pages, unsigned int nr_highmem)
1940{
1941	if (nr_highmem > 0) {
1942		if (get_highmem_buffer(PG_ANY))
1943			goto err_out;
1944		if (nr_highmem > alloc_highmem) {
1945			nr_highmem -= alloc_highmem;
1946			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1947		}
1948	}
1949	if (nr_pages > alloc_normal) {
1950		nr_pages -= alloc_normal;
1951		while (nr_pages-- > 0) {
1952			struct page *page;
1953
1954			page = alloc_image_page(GFP_ATOMIC);
1955			if (!page)
1956				goto err_out;
1957			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1958		}
1959	}
1960
1961	return 0;
1962
1963 err_out:
1964	swsusp_free();
1965	return -ENOMEM;
1966}
1967
1968asmlinkage __visible int swsusp_save(void)
1969{
1970	unsigned int nr_pages, nr_highmem;
1971
1972	pr_info("Creating hibernation image:\n");
1973
1974	drain_local_pages(NULL);
1975	nr_pages = count_data_pages();
1976	nr_highmem = count_highmem_pages();
1977	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1978
1979	if (!enough_free_mem(nr_pages, nr_highmem)) {
1980		pr_err("Not enough free memory\n");
1981		return -ENOMEM;
1982	}
1983
1984	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1985		pr_err("Memory allocation failed\n");
1986		return -ENOMEM;
1987	}
1988
1989	/*
1990	 * During allocating of suspend pagedir, new cold pages may appear.
1991	 * Kill them.
1992	 */
1993	drain_local_pages(NULL);
1994	copy_data_pages(&copy_bm, &orig_bm);
1995
1996	/*
1997	 * End of critical section. From now on, we can write to memory,
1998	 * but we should not touch disk. This specially means we must _not_
1999	 * touch swap space! Except we must write out our image of course.
2000	 */
2001
2002	nr_pages += nr_highmem;
2003	nr_copy_pages = nr_pages;
2004	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2005
2006	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
2007
2008	return 0;
2009}
2010
2011#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2012static int init_header_complete(struct swsusp_info *info)
2013{
2014	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2015	info->version_code = LINUX_VERSION_CODE;
2016	return 0;
2017}
2018
2019static char *check_image_kernel(struct swsusp_info *info)
2020{
2021	if (info->version_code != LINUX_VERSION_CODE)
2022		return "kernel version";
2023	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2024		return "system type";
2025	if (strcmp(info->uts.release,init_utsname()->release))
2026		return "kernel release";
2027	if (strcmp(info->uts.version,init_utsname()->version))
2028		return "version";
2029	if (strcmp(info->uts.machine,init_utsname()->machine))
2030		return "machine";
2031	return NULL;
2032}
2033#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2034
2035unsigned long snapshot_get_image_size(void)
2036{
2037	return nr_copy_pages + nr_meta_pages + 1;
2038}
2039
2040static int init_header(struct swsusp_info *info)
2041{
2042	memset(info, 0, sizeof(struct swsusp_info));
2043	info->num_physpages = get_num_physpages();
2044	info->image_pages = nr_copy_pages;
2045	info->pages = snapshot_get_image_size();
2046	info->size = info->pages;
2047	info->size <<= PAGE_SHIFT;
2048	return init_header_complete(info);
2049}
2050
2051/**
2052 * pack_pfns - Prepare PFNs for saving.
2053 * @bm: Memory bitmap.
2054 * @buf: Memory buffer to store the PFNs in.
2055 *
2056 * PFNs corresponding to set bits in @bm are stored in the area of memory
2057 * pointed to by @buf (1 page at a time).
2058 */
2059static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2060{
2061	int j;
2062
2063	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2064		buf[j] = memory_bm_next_pfn(bm);
2065		if (unlikely(buf[j] == BM_END_OF_MAP))
2066			break;
2067		/* Save page key for data page (s390 only). */
2068		page_key_read(buf + j);
2069	}
2070}
2071
2072/**
2073 * snapshot_read_next - Get the address to read the next image page from.
2074 * @handle: Snapshot handle to be used for the reading.
2075 *
2076 * On the first call, @handle should point to a zeroed snapshot_handle
2077 * structure.  The structure gets populated then and a pointer to it should be
2078 * passed to this function every next time.
2079 *
2080 * On success, the function returns a positive number.  Then, the caller
2081 * is allowed to read up to the returned number of bytes from the memory
2082 * location computed by the data_of() macro.
2083 *
2084 * The function returns 0 to indicate the end of the data stream condition,
2085 * and negative numbers are returned on errors.  If that happens, the structure
2086 * pointed to by @handle is not updated and should not be used any more.
2087 */
2088int snapshot_read_next(struct snapshot_handle *handle)
2089{
2090	if (handle->cur > nr_meta_pages + nr_copy_pages)
2091		return 0;
2092
2093	if (!buffer) {
2094		/* This makes the buffer be freed by swsusp_free() */
2095		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2096		if (!buffer)
2097			return -ENOMEM;
2098	}
2099	if (!handle->cur) {
2100		int error;
2101
2102		error = init_header((struct swsusp_info *)buffer);
2103		if (error)
2104			return error;
2105		handle->buffer = buffer;
2106		memory_bm_position_reset(&orig_bm);
2107		memory_bm_position_reset(&copy_bm);
2108	} else if (handle->cur <= nr_meta_pages) {
2109		clear_page(buffer);
2110		pack_pfns(buffer, &orig_bm);
2111	} else {
2112		struct page *page;
2113
2114		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2115		if (PageHighMem(page)) {
2116			/*
2117			 * Highmem pages are copied to the buffer,
2118			 * because we can't return with a kmapped
2119			 * highmem page (we may not be called again).
2120			 */
2121			void *kaddr;
2122
2123			kaddr = kmap_atomic(page);
2124			copy_page(buffer, kaddr);
2125			kunmap_atomic(kaddr);
2126			handle->buffer = buffer;
2127		} else {
2128			handle->buffer = page_address(page);
2129		}
2130	}
2131	handle->cur++;
2132	return PAGE_SIZE;
2133}
2134
2135static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2136				    struct memory_bitmap *src)
2137{
2138	unsigned long pfn;
2139
2140	memory_bm_position_reset(src);
2141	pfn = memory_bm_next_pfn(src);
2142	while (pfn != BM_END_OF_MAP) {
2143		memory_bm_set_bit(dst, pfn);
2144		pfn = memory_bm_next_pfn(src);
2145	}
2146}
2147
2148/**
2149 * mark_unsafe_pages - Mark pages that were used before hibernation.
2150 *
2151 * Mark the pages that cannot be used for storing the image during restoration,
2152 * because they conflict with the pages that had been used before hibernation.
2153 */
2154static void mark_unsafe_pages(struct memory_bitmap *bm)
2155{
2156	unsigned long pfn;
2157
2158	/* Clear the "free"/"unsafe" bit for all PFNs */
2159	memory_bm_position_reset(free_pages_map);
2160	pfn = memory_bm_next_pfn(free_pages_map);
2161	while (pfn != BM_END_OF_MAP) {
2162		memory_bm_clear_current(free_pages_map);
2163		pfn = memory_bm_next_pfn(free_pages_map);
2164	}
2165
2166	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2167	duplicate_memory_bitmap(free_pages_map, bm);
2168
2169	allocated_unsafe_pages = 0;
2170}
2171
2172static int check_header(struct swsusp_info *info)
2173{
2174	char *reason;
2175
2176	reason = check_image_kernel(info);
2177	if (!reason && info->num_physpages != get_num_physpages())
2178		reason = "memory size";
2179	if (reason) {
2180		pr_err("Image mismatch: %s\n", reason);
2181		return -EPERM;
2182	}
2183	return 0;
2184}
2185
2186/**
2187 * load header - Check the image header and copy the data from it.
2188 */
2189static int load_header(struct swsusp_info *info)
2190{
2191	int error;
2192
2193	restore_pblist = NULL;
2194	error = check_header(info);
2195	if (!error) {
2196		nr_copy_pages = info->image_pages;
2197		nr_meta_pages = info->pages - info->image_pages - 1;
2198	}
2199	return error;
2200}
2201
2202/**
2203 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2204 * @bm: Memory bitmap.
2205 * @buf: Area of memory containing the PFNs.
2206 *
2207 * For each element of the array pointed to by @buf (1 page at a time), set the
2208 * corresponding bit in @bm.
2209 */
2210static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2211{
2212	int j;
2213
2214	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2215		if (unlikely(buf[j] == BM_END_OF_MAP))
2216			break;
2217
2218		/* Extract and buffer page key for data page (s390 only). */
2219		page_key_memorize(buf + j);
2220
2221		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2222			memory_bm_set_bit(bm, buf[j]);
2223		else
 
 
 
2224			return -EFAULT;
 
2225	}
2226
2227	return 0;
2228}
2229
2230#ifdef CONFIG_HIGHMEM
2231/*
2232 * struct highmem_pbe is used for creating the list of highmem pages that
2233 * should be restored atomically during the resume from disk, because the page
2234 * frames they have occupied before the suspend are in use.
2235 */
2236struct highmem_pbe {
2237	struct page *copy_page;	/* data is here now */
2238	struct page *orig_page;	/* data was here before the suspend */
2239	struct highmem_pbe *next;
2240};
2241
2242/*
2243 * List of highmem PBEs needed for restoring the highmem pages that were
2244 * allocated before the suspend and included in the suspend image, but have
2245 * also been allocated by the "resume" kernel, so their contents cannot be
2246 * written directly to their "original" page frames.
2247 */
2248static struct highmem_pbe *highmem_pblist;
2249
2250/**
2251 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2252 * @bm: Memory bitmap.
2253 *
2254 * The bits in @bm that correspond to image pages are assumed to be set.
2255 */
2256static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2257{
2258	unsigned long pfn;
2259	unsigned int cnt = 0;
2260
2261	memory_bm_position_reset(bm);
2262	pfn = memory_bm_next_pfn(bm);
2263	while (pfn != BM_END_OF_MAP) {
2264		if (PageHighMem(pfn_to_page(pfn)))
2265			cnt++;
2266
2267		pfn = memory_bm_next_pfn(bm);
2268	}
2269	return cnt;
2270}
2271
2272static unsigned int safe_highmem_pages;
2273
2274static struct memory_bitmap *safe_highmem_bm;
2275
2276/**
2277 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2278 * @bm: Pointer to an uninitialized memory bitmap structure.
2279 * @nr_highmem_p: Pointer to the number of highmem image pages.
2280 *
2281 * Try to allocate as many highmem pages as there are highmem image pages
2282 * (@nr_highmem_p points to the variable containing the number of highmem image
2283 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2284 * hibernation image is restored entirely) have the corresponding bits set in
2285 * @bm (it must be unitialized).
2286 *
2287 * NOTE: This function should not be called if there are no highmem image pages.
2288 */
2289static int prepare_highmem_image(struct memory_bitmap *bm,
2290				 unsigned int *nr_highmem_p)
2291{
2292	unsigned int to_alloc;
2293
2294	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2295		return -ENOMEM;
2296
2297	if (get_highmem_buffer(PG_SAFE))
2298		return -ENOMEM;
2299
2300	to_alloc = count_free_highmem_pages();
2301	if (to_alloc > *nr_highmem_p)
2302		to_alloc = *nr_highmem_p;
2303	else
2304		*nr_highmem_p = to_alloc;
2305
2306	safe_highmem_pages = 0;
2307	while (to_alloc-- > 0) {
2308		struct page *page;
2309
2310		page = alloc_page(__GFP_HIGHMEM);
2311		if (!swsusp_page_is_free(page)) {
2312			/* The page is "safe", set its bit the bitmap */
2313			memory_bm_set_bit(bm, page_to_pfn(page));
2314			safe_highmem_pages++;
2315		}
2316		/* Mark the page as allocated */
2317		swsusp_set_page_forbidden(page);
2318		swsusp_set_page_free(page);
2319	}
2320	memory_bm_position_reset(bm);
2321	safe_highmem_bm = bm;
2322	return 0;
2323}
2324
2325static struct page *last_highmem_page;
2326
2327/**
2328 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2329 *
2330 * For a given highmem image page get a buffer that suspend_write_next() should
2331 * return to its caller to write to.
2332 *
2333 * If the page is to be saved to its "original" page frame or a copy of
2334 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2335 * the copy of the page is to be made in normal memory, so the address of
2336 * the copy is returned.
2337 *
2338 * If @buffer is returned, the caller of suspend_write_next() will write
2339 * the page's contents to @buffer, so they will have to be copied to the
2340 * right location on the next call to suspend_write_next() and it is done
2341 * with the help of copy_last_highmem_page().  For this purpose, if
2342 * @buffer is returned, @last_highmem_page is set to the page to which
2343 * the data will have to be copied from @buffer.
2344 */
2345static void *get_highmem_page_buffer(struct page *page,
2346				     struct chain_allocator *ca)
2347{
2348	struct highmem_pbe *pbe;
2349	void *kaddr;
2350
2351	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2352		/*
2353		 * We have allocated the "original" page frame and we can
2354		 * use it directly to store the loaded page.
2355		 */
2356		last_highmem_page = page;
2357		return buffer;
2358	}
2359	/*
2360	 * The "original" page frame has not been allocated and we have to
2361	 * use a "safe" page frame to store the loaded page.
2362	 */
2363	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2364	if (!pbe) {
2365		swsusp_free();
2366		return ERR_PTR(-ENOMEM);
2367	}
2368	pbe->orig_page = page;
2369	if (safe_highmem_pages > 0) {
2370		struct page *tmp;
2371
2372		/* Copy of the page will be stored in high memory */
2373		kaddr = buffer;
2374		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2375		safe_highmem_pages--;
2376		last_highmem_page = tmp;
2377		pbe->copy_page = tmp;
2378	} else {
2379		/* Copy of the page will be stored in normal memory */
2380		kaddr = safe_pages_list;
2381		safe_pages_list = safe_pages_list->next;
2382		pbe->copy_page = virt_to_page(kaddr);
2383	}
2384	pbe->next = highmem_pblist;
2385	highmem_pblist = pbe;
2386	return kaddr;
2387}
2388
2389/**
2390 * copy_last_highmem_page - Copy most the most recent highmem image page.
2391 *
2392 * Copy the contents of a highmem image from @buffer, where the caller of
2393 * snapshot_write_next() has stored them, to the right location represented by
2394 * @last_highmem_page .
2395 */
2396static void copy_last_highmem_page(void)
2397{
2398	if (last_highmem_page) {
2399		void *dst;
2400
2401		dst = kmap_atomic(last_highmem_page);
2402		copy_page(dst, buffer);
2403		kunmap_atomic(dst);
2404		last_highmem_page = NULL;
2405	}
2406}
2407
2408static inline int last_highmem_page_copied(void)
2409{
2410	return !last_highmem_page;
2411}
2412
2413static inline void free_highmem_data(void)
2414{
2415	if (safe_highmem_bm)
2416		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2417
2418	if (buffer)
2419		free_image_page(buffer, PG_UNSAFE_CLEAR);
2420}
2421#else
2422static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2423
2424static inline int prepare_highmem_image(struct memory_bitmap *bm,
2425					unsigned int *nr_highmem_p) { return 0; }
2426
2427static inline void *get_highmem_page_buffer(struct page *page,
2428					    struct chain_allocator *ca)
2429{
2430	return ERR_PTR(-EINVAL);
2431}
2432
2433static inline void copy_last_highmem_page(void) {}
2434static inline int last_highmem_page_copied(void) { return 1; }
2435static inline void free_highmem_data(void) {}
2436#endif /* CONFIG_HIGHMEM */
2437
2438#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2439
2440/**
2441 * prepare_image - Make room for loading hibernation image.
2442 * @new_bm: Unitialized memory bitmap structure.
2443 * @bm: Memory bitmap with unsafe pages marked.
2444 *
2445 * Use @bm to mark the pages that will be overwritten in the process of
2446 * restoring the system memory state from the suspend image ("unsafe" pages)
2447 * and allocate memory for the image.
2448 *
2449 * The idea is to allocate a new memory bitmap first and then allocate
2450 * as many pages as needed for image data, but without specifying what those
2451 * pages will be used for just yet.  Instead, we mark them all as allocated and
2452 * create a lists of "safe" pages to be used later.  On systems with high
2453 * memory a list of "safe" highmem pages is created too.
2454 */
2455static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2456{
2457	unsigned int nr_pages, nr_highmem;
2458	struct linked_page *lp;
2459	int error;
2460
2461	/* If there is no highmem, the buffer will not be necessary */
2462	free_image_page(buffer, PG_UNSAFE_CLEAR);
2463	buffer = NULL;
2464
2465	nr_highmem = count_highmem_image_pages(bm);
2466	mark_unsafe_pages(bm);
2467
2468	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2469	if (error)
2470		goto Free;
2471
2472	duplicate_memory_bitmap(new_bm, bm);
2473	memory_bm_free(bm, PG_UNSAFE_KEEP);
2474	if (nr_highmem > 0) {
2475		error = prepare_highmem_image(bm, &nr_highmem);
2476		if (error)
2477			goto Free;
2478	}
2479	/*
2480	 * Reserve some safe pages for potential later use.
2481	 *
2482	 * NOTE: This way we make sure there will be enough safe pages for the
2483	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2484	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2485	 *
2486	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2487	 */
2488	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2489	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2490	while (nr_pages > 0) {
2491		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2492		if (!lp) {
2493			error = -ENOMEM;
2494			goto Free;
2495		}
2496		lp->next = safe_pages_list;
2497		safe_pages_list = lp;
2498		nr_pages--;
2499	}
2500	/* Preallocate memory for the image */
2501	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2502	while (nr_pages > 0) {
2503		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2504		if (!lp) {
2505			error = -ENOMEM;
2506			goto Free;
2507		}
2508		if (!swsusp_page_is_free(virt_to_page(lp))) {
2509			/* The page is "safe", add it to the list */
2510			lp->next = safe_pages_list;
2511			safe_pages_list = lp;
2512		}
2513		/* Mark the page as allocated */
2514		swsusp_set_page_forbidden(virt_to_page(lp));
2515		swsusp_set_page_free(virt_to_page(lp));
2516		nr_pages--;
2517	}
2518	return 0;
2519
2520 Free:
2521	swsusp_free();
2522	return error;
2523}
2524
2525/**
2526 * get_buffer - Get the address to store the next image data page.
2527 *
2528 * Get the address that snapshot_write_next() should return to its caller to
2529 * write to.
2530 */
2531static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2532{
2533	struct pbe *pbe;
2534	struct page *page;
2535	unsigned long pfn = memory_bm_next_pfn(bm);
2536
2537	if (pfn == BM_END_OF_MAP)
2538		return ERR_PTR(-EFAULT);
2539
2540	page = pfn_to_page(pfn);
2541	if (PageHighMem(page))
2542		return get_highmem_page_buffer(page, ca);
2543
2544	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2545		/*
2546		 * We have allocated the "original" page frame and we can
2547		 * use it directly to store the loaded page.
2548		 */
2549		return page_address(page);
2550
2551	/*
2552	 * The "original" page frame has not been allocated and we have to
2553	 * use a "safe" page frame to store the loaded page.
2554	 */
2555	pbe = chain_alloc(ca, sizeof(struct pbe));
2556	if (!pbe) {
2557		swsusp_free();
2558		return ERR_PTR(-ENOMEM);
2559	}
2560	pbe->orig_address = page_address(page);
2561	pbe->address = safe_pages_list;
2562	safe_pages_list = safe_pages_list->next;
2563	pbe->next = restore_pblist;
2564	restore_pblist = pbe;
2565	return pbe->address;
2566}
2567
2568/**
2569 * snapshot_write_next - Get the address to store the next image page.
2570 * @handle: Snapshot handle structure to guide the writing.
2571 *
2572 * On the first call, @handle should point to a zeroed snapshot_handle
2573 * structure.  The structure gets populated then and a pointer to it should be
2574 * passed to this function every next time.
2575 *
2576 * On success, the function returns a positive number.  Then, the caller
2577 * is allowed to write up to the returned number of bytes to the memory
2578 * location computed by the data_of() macro.
2579 *
2580 * The function returns 0 to indicate the "end of file" condition.  Negative
2581 * numbers are returned on errors, in which cases the structure pointed to by
2582 * @handle is not updated and should not be used any more.
2583 */
2584int snapshot_write_next(struct snapshot_handle *handle)
2585{
2586	static struct chain_allocator ca;
2587	int error = 0;
2588
2589	/* Check if we have already loaded the entire image */
2590	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2591		return 0;
2592
2593	handle->sync_read = 1;
2594
2595	if (!handle->cur) {
2596		if (!buffer)
2597			/* This makes the buffer be freed by swsusp_free() */
2598			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2599
2600		if (!buffer)
2601			return -ENOMEM;
2602
2603		handle->buffer = buffer;
2604	} else if (handle->cur == 1) {
2605		error = load_header(buffer);
2606		if (error)
2607			return error;
2608
2609		safe_pages_list = NULL;
2610
2611		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2612		if (error)
2613			return error;
2614
2615		/* Allocate buffer for page keys. */
2616		error = page_key_alloc(nr_copy_pages);
2617		if (error)
2618			return error;
2619
2620		hibernate_restore_protection_begin();
2621	} else if (handle->cur <= nr_meta_pages + 1) {
2622		error = unpack_orig_pfns(buffer, &copy_bm);
2623		if (error)
2624			return error;
2625
2626		if (handle->cur == nr_meta_pages + 1) {
2627			error = prepare_image(&orig_bm, &copy_bm);
2628			if (error)
2629				return error;
2630
2631			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2632			memory_bm_position_reset(&orig_bm);
2633			restore_pblist = NULL;
2634			handle->buffer = get_buffer(&orig_bm, &ca);
2635			handle->sync_read = 0;
2636			if (IS_ERR(handle->buffer))
2637				return PTR_ERR(handle->buffer);
2638		}
2639	} else {
2640		copy_last_highmem_page();
2641		/* Restore page key for data page (s390 only). */
2642		page_key_write(handle->buffer);
2643		hibernate_restore_protect_page(handle->buffer);
2644		handle->buffer = get_buffer(&orig_bm, &ca);
2645		if (IS_ERR(handle->buffer))
2646			return PTR_ERR(handle->buffer);
2647		if (handle->buffer != buffer)
2648			handle->sync_read = 0;
2649	}
2650	handle->cur++;
2651	return PAGE_SIZE;
2652}
2653
2654/**
2655 * snapshot_write_finalize - Complete the loading of a hibernation image.
2656 *
2657 * Must be called after the last call to snapshot_write_next() in case the last
2658 * page in the image happens to be a highmem page and its contents should be
2659 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2660 * necessary any more.
2661 */
2662void snapshot_write_finalize(struct snapshot_handle *handle)
2663{
2664	copy_last_highmem_page();
2665	/* Restore page key for data page (s390 only). */
2666	page_key_write(handle->buffer);
2667	page_key_free();
2668	hibernate_restore_protect_page(handle->buffer);
2669	/* Do that only if we have loaded the image entirely */
2670	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2671		memory_bm_recycle(&orig_bm);
2672		free_highmem_data();
2673	}
2674}
2675
2676int snapshot_image_loaded(struct snapshot_handle *handle)
2677{
2678	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2679			handle->cur <= nr_meta_pages + nr_copy_pages);
2680}
2681
2682#ifdef CONFIG_HIGHMEM
2683/* Assumes that @buf is ready and points to a "safe" page */
2684static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2685				       void *buf)
2686{
2687	void *kaddr1, *kaddr2;
2688
2689	kaddr1 = kmap_atomic(p1);
2690	kaddr2 = kmap_atomic(p2);
2691	copy_page(buf, kaddr1);
2692	copy_page(kaddr1, kaddr2);
2693	copy_page(kaddr2, buf);
2694	kunmap_atomic(kaddr2);
2695	kunmap_atomic(kaddr1);
2696}
2697
2698/**
2699 * restore_highmem - Put highmem image pages into their original locations.
2700 *
2701 * For each highmem page that was in use before hibernation and is included in
2702 * the image, and also has been allocated by the "restore" kernel, swap its
2703 * current contents with the previous (ie. "before hibernation") ones.
2704 *
2705 * If the restore eventually fails, we can call this function once again and
2706 * restore the highmem state as seen by the restore kernel.
2707 */
2708int restore_highmem(void)
2709{
2710	struct highmem_pbe *pbe = highmem_pblist;
2711	void *buf;
2712
2713	if (!pbe)
2714		return 0;
2715
2716	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2717	if (!buf)
2718		return -ENOMEM;
2719
2720	while (pbe) {
2721		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2722		pbe = pbe->next;
2723	}
2724	free_image_page(buf, PG_UNSAFE_CLEAR);
2725	return 0;
2726}
2727#endif /* CONFIG_HIGHMEM */