Linux Audio

Check our new training course

Real-Time Linux with PREEMPT_RT training

Feb 18-20, 2025
Register
Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * linux/kernel/power/snapshot.c
   4 *
   5 * This file provides system snapshot/restore functionality for swsusp.
   6 *
   7 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   8 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "PM: hibernation: " fmt
  12
  13#include <linux/version.h>
  14#include <linux/module.h>
  15#include <linux/mm.h>
  16#include <linux/suspend.h>
  17#include <linux/delay.h>
  18#include <linux/bitops.h>
  19#include <linux/spinlock.h>
  20#include <linux/kernel.h>
  21#include <linux/pm.h>
  22#include <linux/device.h>
  23#include <linux/init.h>
  24#include <linux/memblock.h>
  25#include <linux/nmi.h>
  26#include <linux/syscalls.h>
  27#include <linux/console.h>
  28#include <linux/highmem.h>
  29#include <linux/list.h>
  30#include <linux/slab.h>
  31#include <linux/compiler.h>
  32#include <linux/ktime.h>
  33#include <linux/set_memory.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/mmu_context.h>
 
  37#include <asm/tlbflush.h>
  38#include <asm/io.h>
  39
  40#include "power.h"
  41
  42#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  43static bool hibernate_restore_protection;
  44static bool hibernate_restore_protection_active;
  45
  46void enable_restore_image_protection(void)
  47{
  48	hibernate_restore_protection = true;
  49}
  50
  51static inline void hibernate_restore_protection_begin(void)
  52{
  53	hibernate_restore_protection_active = hibernate_restore_protection;
  54}
  55
  56static inline void hibernate_restore_protection_end(void)
  57{
  58	hibernate_restore_protection_active = false;
  59}
  60
  61static inline void hibernate_restore_protect_page(void *page_address)
  62{
  63	if (hibernate_restore_protection_active)
  64		set_memory_ro((unsigned long)page_address, 1);
  65}
  66
  67static inline void hibernate_restore_unprotect_page(void *page_address)
  68{
  69	if (hibernate_restore_protection_active)
  70		set_memory_rw((unsigned long)page_address, 1);
  71}
  72#else
  73static inline void hibernate_restore_protection_begin(void) {}
  74static inline void hibernate_restore_protection_end(void) {}
  75static inline void hibernate_restore_protect_page(void *page_address) {}
  76static inline void hibernate_restore_unprotect_page(void *page_address) {}
  77#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  78
  79
  80/*
  81 * The calls to set_direct_map_*() should not fail because remapping a page
  82 * here means that we only update protection bits in an existing PTE.
  83 * It is still worth to have a warning here if something changes and this
  84 * will no longer be the case.
  85 */
  86static inline void hibernate_map_page(struct page *page)
  87{
  88	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
  89		int ret = set_direct_map_default_noflush(page);
  90
  91		if (ret)
  92			pr_warn_once("Failed to remap page\n");
  93	} else {
  94		debug_pagealloc_map_pages(page, 1);
  95	}
  96}
  97
  98static inline void hibernate_unmap_page(struct page *page)
  99{
 100	if (IS_ENABLED(CONFIG_ARCH_HAS_SET_DIRECT_MAP)) {
 101		unsigned long addr = (unsigned long)page_address(page);
 102		int ret  = set_direct_map_invalid_noflush(page);
 103
 104		if (ret)
 105			pr_warn_once("Failed to remap page\n");
 106
 107		flush_tlb_kernel_range(addr, addr + PAGE_SIZE);
 108	} else {
 109		debug_pagealloc_unmap_pages(page, 1);
 110	}
 111}
 112
 113static int swsusp_page_is_free(struct page *);
 114static void swsusp_set_page_forbidden(struct page *);
 115static void swsusp_unset_page_forbidden(struct page *);
 116
 117/*
 118 * Number of bytes to reserve for memory allocations made by device drivers
 119 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
 120 * cause image creation to fail (tunable via /sys/power/reserved_size).
 121 */
 122unsigned long reserved_size;
 123
 124void __init hibernate_reserved_size_init(void)
 125{
 126	reserved_size = SPARE_PAGES * PAGE_SIZE;
 127}
 128
 129/*
 130 * Preferred image size in bytes (tunable via /sys/power/image_size).
 131 * When it is set to N, swsusp will do its best to ensure the image
 132 * size will not exceed N bytes, but if that is impossible, it will
 133 * try to create the smallest image possible.
 134 */
 135unsigned long image_size;
 136
 137void __init hibernate_image_size_init(void)
 138{
 139	image_size = ((totalram_pages() * 2) / 5) * PAGE_SIZE;
 140}
 141
 142/*
 143 * List of PBEs needed for restoring the pages that were allocated before
 144 * the suspend and included in the suspend image, but have also been
 145 * allocated by the "resume" kernel, so their contents cannot be written
 146 * directly to their "original" page frames.
 147 */
 148struct pbe *restore_pblist;
 149
 150/* struct linked_page is used to build chains of pages */
 151
 152#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 153
 154struct linked_page {
 155	struct linked_page *next;
 156	char data[LINKED_PAGE_DATA_SIZE];
 157} __packed;
 158
 159/*
 160 * List of "safe" pages (ie. pages that were not used by the image kernel
 161 * before hibernation) that may be used as temporary storage for image kernel
 162 * memory contents.
 163 */
 164static struct linked_page *safe_pages_list;
 165
 166/* Pointer to an auxiliary buffer (1 page) */
 167static void *buffer;
 168
 169#define PG_ANY		0
 170#define PG_SAFE		1
 171#define PG_UNSAFE_CLEAR	1
 172#define PG_UNSAFE_KEEP	0
 173
 174static unsigned int allocated_unsafe_pages;
 175
 176/**
 177 * get_image_page - Allocate a page for a hibernation image.
 178 * @gfp_mask: GFP mask for the allocation.
 179 * @safe_needed: Get pages that were not used before hibernation (restore only)
 180 *
 181 * During image restoration, for storing the PBE list and the image data, we can
 182 * only use memory pages that do not conflict with the pages used before
 183 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 184 * using allocated_unsafe_pages.
 185 *
 186 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 187 * swsusp_free() can release it.
 188 */
 189static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 190{
 191	void *res;
 192
 193	res = (void *)get_zeroed_page(gfp_mask);
 194	if (safe_needed)
 195		while (res && swsusp_page_is_free(virt_to_page(res))) {
 196			/* The page is unsafe, mark it for swsusp_free() */
 197			swsusp_set_page_forbidden(virt_to_page(res));
 198			allocated_unsafe_pages++;
 199			res = (void *)get_zeroed_page(gfp_mask);
 200		}
 201	if (res) {
 202		swsusp_set_page_forbidden(virt_to_page(res));
 203		swsusp_set_page_free(virt_to_page(res));
 204	}
 205	return res;
 206}
 207
 208static void *__get_safe_page(gfp_t gfp_mask)
 209{
 210	if (safe_pages_list) {
 211		void *ret = safe_pages_list;
 212
 213		safe_pages_list = safe_pages_list->next;
 214		memset(ret, 0, PAGE_SIZE);
 215		return ret;
 216	}
 217	return get_image_page(gfp_mask, PG_SAFE);
 218}
 219
 220unsigned long get_safe_page(gfp_t gfp_mask)
 221{
 222	return (unsigned long)__get_safe_page(gfp_mask);
 223}
 224
 225static struct page *alloc_image_page(gfp_t gfp_mask)
 226{
 227	struct page *page;
 228
 229	page = alloc_page(gfp_mask);
 230	if (page) {
 231		swsusp_set_page_forbidden(page);
 232		swsusp_set_page_free(page);
 233	}
 234	return page;
 235}
 236
 237static void recycle_safe_page(void *page_address)
 238{
 239	struct linked_page *lp = page_address;
 240
 241	lp->next = safe_pages_list;
 242	safe_pages_list = lp;
 243}
 244
 245/**
 246 * free_image_page - Free a page allocated for hibernation image.
 247 * @addr: Address of the page to free.
 248 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 249 *
 250 * The page to free should have been allocated by get_image_page() (page flags
 251 * set by it are affected).
 252 */
 253static inline void free_image_page(void *addr, int clear_nosave_free)
 254{
 255	struct page *page;
 256
 257	BUG_ON(!virt_addr_valid(addr));
 258
 259	page = virt_to_page(addr);
 260
 261	swsusp_unset_page_forbidden(page);
 262	if (clear_nosave_free)
 263		swsusp_unset_page_free(page);
 264
 265	__free_page(page);
 266}
 267
 268static inline void free_list_of_pages(struct linked_page *list,
 269				      int clear_page_nosave)
 270{
 271	while (list) {
 272		struct linked_page *lp = list->next;
 273
 274		free_image_page(list, clear_page_nosave);
 275		list = lp;
 276	}
 277}
 278
 279/*
 280 * struct chain_allocator is used for allocating small objects out of
 281 * a linked list of pages called 'the chain'.
 282 *
 283 * The chain grows each time when there is no room for a new object in
 284 * the current page.  The allocated objects cannot be freed individually.
 285 * It is only possible to free them all at once, by freeing the entire
 286 * chain.
 287 *
 288 * NOTE: The chain allocator may be inefficient if the allocated objects
 289 * are not much smaller than PAGE_SIZE.
 290 */
 291struct chain_allocator {
 292	struct linked_page *chain;	/* the chain */
 293	unsigned int used_space;	/* total size of objects allocated out
 294					   of the current page */
 295	gfp_t gfp_mask;		/* mask for allocating pages */
 296	int safe_needed;	/* if set, only "safe" pages are allocated */
 297};
 298
 299static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 300		       int safe_needed)
 301{
 302	ca->chain = NULL;
 303	ca->used_space = LINKED_PAGE_DATA_SIZE;
 304	ca->gfp_mask = gfp_mask;
 305	ca->safe_needed = safe_needed;
 306}
 307
 308static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 309{
 310	void *ret;
 311
 312	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 313		struct linked_page *lp;
 314
 315		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 316					get_image_page(ca->gfp_mask, PG_ANY);
 317		if (!lp)
 318			return NULL;
 319
 320		lp->next = ca->chain;
 321		ca->chain = lp;
 322		ca->used_space = 0;
 323	}
 324	ret = ca->chain->data + ca->used_space;
 325	ca->used_space += size;
 326	return ret;
 327}
 328
 329/*
 330 * Data types related to memory bitmaps.
 331 *
 332 * Memory bitmap is a structure consisting of many linked lists of
 333 * objects.  The main list's elements are of type struct zone_bitmap
 334 * and each of them corresponds to one zone.  For each zone bitmap
 335 * object there is a list of objects of type struct bm_block that
 336 * represent each blocks of bitmap in which information is stored.
 337 *
 338 * struct memory_bitmap contains a pointer to the main list of zone
 339 * bitmap objects, a struct bm_position used for browsing the bitmap,
 340 * and a pointer to the list of pages used for allocating all of the
 341 * zone bitmap objects and bitmap block objects.
 342 *
 343 * NOTE: It has to be possible to lay out the bitmap in memory
 344 * using only allocations of order 0.  Additionally, the bitmap is
 345 * designed to work with arbitrary number of zones (this is over the
 346 * top for now, but let's avoid making unnecessary assumptions ;-).
 347 *
 348 * struct zone_bitmap contains a pointer to a list of bitmap block
 349 * objects and a pointer to the bitmap block object that has been
 350 * most recently used for setting bits.  Additionally, it contains the
 351 * PFNs that correspond to the start and end of the represented zone.
 352 *
 353 * struct bm_block contains a pointer to the memory page in which
 354 * information is stored (in the form of a block of bitmap)
 355 * It also contains the pfns that correspond to the start and end of
 356 * the represented memory area.
 357 *
 358 * The memory bitmap is organized as a radix tree to guarantee fast random
 359 * access to the bits. There is one radix tree for each zone (as returned
 360 * from create_mem_extents).
 361 *
 362 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 363 * two linked lists for the nodes of the tree, one for the inner nodes and
 364 * one for the leave nodes. The linked leave nodes are used for fast linear
 365 * access of the memory bitmap.
 366 *
 367 * The struct rtree_node represents one node of the radix tree.
 368 */
 369
 370#define BM_END_OF_MAP	(~0UL)
 371
 372#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 373#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 374#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 375
 376/*
 377 * struct rtree_node is a wrapper struct to link the nodes
 378 * of the rtree together for easy linear iteration over
 379 * bits and easy freeing
 380 */
 381struct rtree_node {
 382	struct list_head list;
 383	unsigned long *data;
 384};
 385
 386/*
 387 * struct mem_zone_bm_rtree represents a bitmap used for one
 388 * populated memory zone.
 389 */
 390struct mem_zone_bm_rtree {
 391	struct list_head list;		/* Link Zones together         */
 392	struct list_head nodes;		/* Radix Tree inner nodes      */
 393	struct list_head leaves;	/* Radix Tree leaves           */
 394	unsigned long start_pfn;	/* Zone start page frame       */
 395	unsigned long end_pfn;		/* Zone end page frame + 1     */
 396	struct rtree_node *rtree;	/* Radix Tree Root             */
 397	int levels;			/* Number of Radix Tree Levels */
 398	unsigned int blocks;		/* Number of Bitmap Blocks     */
 399};
 400
 401/* strcut bm_position is used for browsing memory bitmaps */
 402
 403struct bm_position {
 404	struct mem_zone_bm_rtree *zone;
 405	struct rtree_node *node;
 406	unsigned long node_pfn;
 407	int node_bit;
 408};
 409
 410struct memory_bitmap {
 411	struct list_head zones;
 412	struct linked_page *p_list;	/* list of pages used to store zone
 413					   bitmap objects and bitmap block
 414					   objects */
 415	struct bm_position cur;	/* most recently used bit position */
 416};
 417
 418/* Functions that operate on memory bitmaps */
 419
 420#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 421#if BITS_PER_LONG == 32
 422#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 423#else
 424#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 425#endif
 426#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 427
 428/**
 429 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 430 * @gfp_mask: GFP mask for the allocation.
 431 * @safe_needed: Get pages not used before hibernation (restore only)
 432 * @ca: Pointer to a linked list of pages ("a chain") to allocate from
 433 * @list: Radix Tree node to add.
 434 *
 435 * This function is used to allocate inner nodes as well as the
 436 * leave nodes of the radix tree. It also adds the node to the
 437 * corresponding linked list passed in by the *list parameter.
 438 */
 439static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 440					   struct chain_allocator *ca,
 441					   struct list_head *list)
 442{
 443	struct rtree_node *node;
 444
 445	node = chain_alloc(ca, sizeof(struct rtree_node));
 446	if (!node)
 447		return NULL;
 448
 449	node->data = get_image_page(gfp_mask, safe_needed);
 450	if (!node->data)
 451		return NULL;
 452
 453	list_add_tail(&node->list, list);
 454
 455	return node;
 456}
 457
 458/**
 459 * add_rtree_block - Add a new leave node to the radix tree.
 460 *
 461 * The leave nodes need to be allocated in order to keep the leaves
 462 * linked list in order. This is guaranteed by the zone->blocks
 463 * counter.
 464 */
 465static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 466			   int safe_needed, struct chain_allocator *ca)
 467{
 468	struct rtree_node *node, *block, **dst;
 469	unsigned int levels_needed, block_nr;
 470	int i;
 471
 472	block_nr = zone->blocks;
 473	levels_needed = 0;
 474
 475	/* How many levels do we need for this block nr? */
 476	while (block_nr) {
 477		levels_needed += 1;
 478		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 479	}
 480
 481	/* Make sure the rtree has enough levels */
 482	for (i = zone->levels; i < levels_needed; i++) {
 483		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 484					&zone->nodes);
 485		if (!node)
 486			return -ENOMEM;
 487
 488		node->data[0] = (unsigned long)zone->rtree;
 489		zone->rtree = node;
 490		zone->levels += 1;
 491	}
 492
 493	/* Allocate new block */
 494	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 495	if (!block)
 496		return -ENOMEM;
 497
 498	/* Now walk the rtree to insert the block */
 499	node = zone->rtree;
 500	dst = &zone->rtree;
 501	block_nr = zone->blocks;
 502	for (i = zone->levels; i > 0; i--) {
 503		int index;
 504
 505		if (!node) {
 506			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 507						&zone->nodes);
 508			if (!node)
 509				return -ENOMEM;
 510			*dst = node;
 511		}
 512
 513		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 514		index &= BM_RTREE_LEVEL_MASK;
 515		dst = (struct rtree_node **)&((*dst)->data[index]);
 516		node = *dst;
 517	}
 518
 519	zone->blocks += 1;
 520	*dst = block;
 521
 522	return 0;
 523}
 524
 525static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 526			       int clear_nosave_free);
 527
 528/**
 529 * create_zone_bm_rtree - Create a radix tree for one zone.
 530 *
 531 * Allocated the mem_zone_bm_rtree structure and initializes it.
 532 * This function also allocated and builds the radix tree for the
 533 * zone.
 534 */
 535static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 536						      int safe_needed,
 537						      struct chain_allocator *ca,
 538						      unsigned long start,
 539						      unsigned long end)
 540{
 541	struct mem_zone_bm_rtree *zone;
 542	unsigned int i, nr_blocks;
 543	unsigned long pages;
 544
 545	pages = end - start;
 546	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 547	if (!zone)
 548		return NULL;
 549
 550	INIT_LIST_HEAD(&zone->nodes);
 551	INIT_LIST_HEAD(&zone->leaves);
 552	zone->start_pfn = start;
 553	zone->end_pfn = end;
 554	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 555
 556	for (i = 0; i < nr_blocks; i++) {
 557		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 558			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 559			return NULL;
 560		}
 561	}
 562
 563	return zone;
 564}
 565
 566/**
 567 * free_zone_bm_rtree - Free the memory of the radix tree.
 568 *
 569 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 570 * structure itself is not freed here nor are the rtree_node
 571 * structs.
 572 */
 573static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 574			       int clear_nosave_free)
 575{
 576	struct rtree_node *node;
 577
 578	list_for_each_entry(node, &zone->nodes, list)
 579		free_image_page(node->data, clear_nosave_free);
 580
 581	list_for_each_entry(node, &zone->leaves, list)
 582		free_image_page(node->data, clear_nosave_free);
 583}
 584
 585static void memory_bm_position_reset(struct memory_bitmap *bm)
 586{
 587	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 588				  list);
 589	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 590				  struct rtree_node, list);
 591	bm->cur.node_pfn = 0;
 592	bm->cur.node_bit = 0;
 593}
 594
 595static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 596
 597struct mem_extent {
 598	struct list_head hook;
 599	unsigned long start;
 600	unsigned long end;
 601};
 602
 603/**
 604 * free_mem_extents - Free a list of memory extents.
 605 * @list: List of extents to free.
 606 */
 607static void free_mem_extents(struct list_head *list)
 608{
 609	struct mem_extent *ext, *aux;
 610
 611	list_for_each_entry_safe(ext, aux, list, hook) {
 612		list_del(&ext->hook);
 613		kfree(ext);
 614	}
 615}
 616
 617/**
 618 * create_mem_extents - Create a list of memory extents.
 619 * @list: List to put the extents into.
 620 * @gfp_mask: Mask to use for memory allocations.
 621 *
 622 * The extents represent contiguous ranges of PFNs.
 623 */
 624static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 625{
 626	struct zone *zone;
 627
 628	INIT_LIST_HEAD(list);
 629
 630	for_each_populated_zone(zone) {
 631		unsigned long zone_start, zone_end;
 632		struct mem_extent *ext, *cur, *aux;
 633
 634		zone_start = zone->zone_start_pfn;
 635		zone_end = zone_end_pfn(zone);
 636
 637		list_for_each_entry(ext, list, hook)
 638			if (zone_start <= ext->end)
 639				break;
 640
 641		if (&ext->hook == list || zone_end < ext->start) {
 642			/* New extent is necessary */
 643			struct mem_extent *new_ext;
 644
 645			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 646			if (!new_ext) {
 647				free_mem_extents(list);
 648				return -ENOMEM;
 649			}
 650			new_ext->start = zone_start;
 651			new_ext->end = zone_end;
 652			list_add_tail(&new_ext->hook, &ext->hook);
 653			continue;
 654		}
 655
 656		/* Merge this zone's range of PFNs with the existing one */
 657		if (zone_start < ext->start)
 658			ext->start = zone_start;
 659		if (zone_end > ext->end)
 660			ext->end = zone_end;
 661
 662		/* More merging may be possible */
 663		cur = ext;
 664		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 665			if (zone_end < cur->start)
 666				break;
 667			if (zone_end < cur->end)
 668				ext->end = cur->end;
 669			list_del(&cur->hook);
 670			kfree(cur);
 671		}
 672	}
 673
 674	return 0;
 675}
 676
 677/**
 678 * memory_bm_create - Allocate memory for a memory bitmap.
 679 */
 680static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 681			    int safe_needed)
 682{
 683	struct chain_allocator ca;
 684	struct list_head mem_extents;
 685	struct mem_extent *ext;
 686	int error;
 687
 688	chain_init(&ca, gfp_mask, safe_needed);
 689	INIT_LIST_HEAD(&bm->zones);
 690
 691	error = create_mem_extents(&mem_extents, gfp_mask);
 692	if (error)
 693		return error;
 694
 695	list_for_each_entry(ext, &mem_extents, hook) {
 696		struct mem_zone_bm_rtree *zone;
 697
 698		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 699					    ext->start, ext->end);
 700		if (!zone) {
 701			error = -ENOMEM;
 702			goto Error;
 703		}
 704		list_add_tail(&zone->list, &bm->zones);
 705	}
 706
 707	bm->p_list = ca.chain;
 708	memory_bm_position_reset(bm);
 709 Exit:
 710	free_mem_extents(&mem_extents);
 711	return error;
 712
 713 Error:
 714	bm->p_list = ca.chain;
 715	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 716	goto Exit;
 717}
 718
 719/**
 720 * memory_bm_free - Free memory occupied by the memory bitmap.
 721 * @bm: Memory bitmap.
 722 */
 723static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 724{
 725	struct mem_zone_bm_rtree *zone;
 726
 727	list_for_each_entry(zone, &bm->zones, list)
 728		free_zone_bm_rtree(zone, clear_nosave_free);
 729
 730	free_list_of_pages(bm->p_list, clear_nosave_free);
 731
 732	INIT_LIST_HEAD(&bm->zones);
 733}
 734
 735/**
 736 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 737 *
 738 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 739 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 740 *
 741 * Walk the radix tree to find the page containing the bit that represents @pfn
 742 * and return the position of the bit in @addr and @bit_nr.
 743 */
 744static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 745			      void **addr, unsigned int *bit_nr)
 746{
 747	struct mem_zone_bm_rtree *curr, *zone;
 748	struct rtree_node *node;
 749	int i, block_nr;
 750
 751	zone = bm->cur.zone;
 752
 753	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 754		goto zone_found;
 755
 756	zone = NULL;
 757
 758	/* Find the right zone */
 759	list_for_each_entry(curr, &bm->zones, list) {
 760		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 761			zone = curr;
 762			break;
 763		}
 764	}
 765
 766	if (!zone)
 767		return -EFAULT;
 768
 769zone_found:
 770	/*
 771	 * We have found the zone. Now walk the radix tree to find the leaf node
 772	 * for our PFN.
 773	 */
 774
 775	/*
 776	 * If the zone we wish to scan is the current zone and the
 777	 * pfn falls into the current node then we do not need to walk
 778	 * the tree.
 779	 */
 780	node = bm->cur.node;
 781	if (zone == bm->cur.zone &&
 782	    ((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 783		goto node_found;
 784
 785	node      = zone->rtree;
 786	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 787
 788	for (i = zone->levels; i > 0; i--) {
 789		int index;
 790
 791		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 792		index &= BM_RTREE_LEVEL_MASK;
 793		BUG_ON(node->data[index] == 0);
 794		node = (struct rtree_node *)node->data[index];
 795	}
 796
 797node_found:
 798	/* Update last position */
 799	bm->cur.zone = zone;
 800	bm->cur.node = node;
 801	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 802
 803	/* Set return values */
 804	*addr = node->data;
 805	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 806
 807	return 0;
 808}
 809
 810static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 811{
 812	void *addr;
 813	unsigned int bit;
 814	int error;
 815
 816	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 817	BUG_ON(error);
 818	set_bit(bit, addr);
 819}
 820
 821static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 822{
 823	void *addr;
 824	unsigned int bit;
 825	int error;
 826
 827	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 828	if (!error)
 829		set_bit(bit, addr);
 830
 831	return error;
 832}
 833
 834static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 835{
 836	void *addr;
 837	unsigned int bit;
 838	int error;
 839
 840	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 841	BUG_ON(error);
 842	clear_bit(bit, addr);
 843}
 844
 845static void memory_bm_clear_current(struct memory_bitmap *bm)
 846{
 847	int bit;
 848
 849	bit = max(bm->cur.node_bit - 1, 0);
 850	clear_bit(bit, bm->cur.node->data);
 851}
 852
 853static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 854{
 855	void *addr;
 856	unsigned int bit;
 857	int error;
 858
 859	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 860	BUG_ON(error);
 861	return test_bit(bit, addr);
 862}
 863
 864static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 865{
 866	void *addr;
 867	unsigned int bit;
 868
 869	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 870}
 871
 872/*
 873 * rtree_next_node - Jump to the next leaf node.
 874 *
 875 * Set the position to the beginning of the next node in the
 876 * memory bitmap. This is either the next node in the current
 877 * zone's radix tree or the first node in the radix tree of the
 878 * next zone.
 879 *
 880 * Return true if there is a next node, false otherwise.
 881 */
 882static bool rtree_next_node(struct memory_bitmap *bm)
 883{
 884	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 885		bm->cur.node = list_entry(bm->cur.node->list.next,
 886					  struct rtree_node, list);
 887		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 888		bm->cur.node_bit  = 0;
 889		touch_softlockup_watchdog();
 890		return true;
 891	}
 892
 893	/* No more nodes, goto next zone */
 894	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 895		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 896				  struct mem_zone_bm_rtree, list);
 897		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 898					  struct rtree_node, list);
 899		bm->cur.node_pfn = 0;
 900		bm->cur.node_bit = 0;
 901		return true;
 902	}
 903
 904	/* No more zones */
 905	return false;
 906}
 907
 908/**
 909 * memory_bm_next_pfn - Find the next set bit in a memory bitmap.
 910 * @bm: Memory bitmap.
 911 *
 912 * Starting from the last returned position this function searches for the next
 913 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 914 * set, BM_END_OF_MAP is returned.
 915 *
 916 * It is required to run memory_bm_position_reset() before the first call to
 917 * this function for the given memory bitmap.
 918 */
 919static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 920{
 921	unsigned long bits, pfn, pages;
 922	int bit;
 923
 924	do {
 925		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 926		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 927		bit	  = find_next_bit(bm->cur.node->data, bits,
 928					  bm->cur.node_bit);
 929		if (bit < bits) {
 930			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 931			bm->cur.node_bit = bit + 1;
 932			return pfn;
 933		}
 934	} while (rtree_next_node(bm));
 935
 936	return BM_END_OF_MAP;
 937}
 938
 939/*
 940 * This structure represents a range of page frames the contents of which
 941 * should not be saved during hibernation.
 942 */
 943struct nosave_region {
 944	struct list_head list;
 945	unsigned long start_pfn;
 946	unsigned long end_pfn;
 947};
 948
 949static LIST_HEAD(nosave_regions);
 950
 951static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 952{
 953	struct rtree_node *node;
 954
 955	list_for_each_entry(node, &zone->nodes, list)
 956		recycle_safe_page(node->data);
 957
 958	list_for_each_entry(node, &zone->leaves, list)
 959		recycle_safe_page(node->data);
 960}
 961
 962static void memory_bm_recycle(struct memory_bitmap *bm)
 963{
 964	struct mem_zone_bm_rtree *zone;
 965	struct linked_page *p_list;
 966
 967	list_for_each_entry(zone, &bm->zones, list)
 968		recycle_zone_bm_rtree(zone);
 969
 970	p_list = bm->p_list;
 971	while (p_list) {
 972		struct linked_page *lp = p_list;
 973
 974		p_list = lp->next;
 975		recycle_safe_page(lp);
 976	}
 977}
 978
 979/**
 980 * register_nosave_region - Register a region of unsaveable memory.
 981 *
 982 * Register a range of page frames the contents of which should not be saved
 983 * during hibernation (to be used in the early initialization code).
 984 */
 985void __init register_nosave_region(unsigned long start_pfn, unsigned long end_pfn)
 
 986{
 987	struct nosave_region *region;
 988
 989	if (start_pfn >= end_pfn)
 990		return;
 991
 992	if (!list_empty(&nosave_regions)) {
 993		/* Try to extend the previous region (they should be sorted) */
 994		region = list_entry(nosave_regions.prev,
 995					struct nosave_region, list);
 996		if (region->end_pfn == start_pfn) {
 997			region->end_pfn = end_pfn;
 998			goto Report;
 999		}
1000	}
1001	/* This allocation cannot fail */
1002	region = memblock_alloc(sizeof(struct nosave_region),
1003				SMP_CACHE_BYTES);
1004	if (!region)
1005		panic("%s: Failed to allocate %zu bytes\n", __func__,
1006		      sizeof(struct nosave_region));
 
 
1007	region->start_pfn = start_pfn;
1008	region->end_pfn = end_pfn;
1009	list_add_tail(&region->list, &nosave_regions);
1010 Report:
1011	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
1012		(unsigned long long) start_pfn << PAGE_SHIFT,
1013		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1014}
1015
1016/*
1017 * Set bits in this map correspond to the page frames the contents of which
1018 * should not be saved during the suspend.
1019 */
1020static struct memory_bitmap *forbidden_pages_map;
1021
1022/* Set bits in this map correspond to free page frames. */
1023static struct memory_bitmap *free_pages_map;
1024
1025/*
1026 * Each page frame allocated for creating the image is marked by setting the
1027 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
1028 */
1029
1030void swsusp_set_page_free(struct page *page)
1031{
1032	if (free_pages_map)
1033		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
1034}
1035
1036static int swsusp_page_is_free(struct page *page)
1037{
1038	return free_pages_map ?
1039		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1040}
1041
1042void swsusp_unset_page_free(struct page *page)
1043{
1044	if (free_pages_map)
1045		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1046}
1047
1048static void swsusp_set_page_forbidden(struct page *page)
1049{
1050	if (forbidden_pages_map)
1051		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1052}
1053
1054int swsusp_page_is_forbidden(struct page *page)
1055{
1056	return forbidden_pages_map ?
1057		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1058}
1059
1060static void swsusp_unset_page_forbidden(struct page *page)
1061{
1062	if (forbidden_pages_map)
1063		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1064}
1065
1066/**
1067 * mark_nosave_pages - Mark pages that should not be saved.
1068 * @bm: Memory bitmap.
1069 *
1070 * Set the bits in @bm that correspond to the page frames the contents of which
1071 * should not be saved.
1072 */
1073static void mark_nosave_pages(struct memory_bitmap *bm)
1074{
1075	struct nosave_region *region;
1076
1077	if (list_empty(&nosave_regions))
1078		return;
1079
1080	list_for_each_entry(region, &nosave_regions, list) {
1081		unsigned long pfn;
1082
1083		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1084			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1085			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1086				- 1);
1087
1088		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1089			if (pfn_valid(pfn)) {
1090				/*
1091				 * It is safe to ignore the result of
1092				 * mem_bm_set_bit_check() here, since we won't
1093				 * touch the PFNs for which the error is
1094				 * returned anyway.
1095				 */
1096				mem_bm_set_bit_check(bm, pfn);
1097			}
1098	}
1099}
1100
1101/**
1102 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1103 *
1104 * Create bitmaps needed for marking page frames that should not be saved and
1105 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1106 * only modified if everything goes well, because we don't want the bits to be
1107 * touched before both bitmaps are set up.
1108 */
1109int create_basic_memory_bitmaps(void)
1110{
1111	struct memory_bitmap *bm1, *bm2;
1112	int error = 0;
1113
1114	if (forbidden_pages_map && free_pages_map)
1115		return 0;
1116	else
1117		BUG_ON(forbidden_pages_map || free_pages_map);
1118
1119	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1120	if (!bm1)
1121		return -ENOMEM;
1122
1123	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1124	if (error)
1125		goto Free_first_object;
1126
1127	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1128	if (!bm2)
1129		goto Free_first_bitmap;
1130
1131	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1132	if (error)
1133		goto Free_second_object;
1134
1135	forbidden_pages_map = bm1;
1136	free_pages_map = bm2;
1137	mark_nosave_pages(forbidden_pages_map);
1138
1139	pr_debug("Basic memory bitmaps created\n");
1140
1141	return 0;
1142
1143 Free_second_object:
1144	kfree(bm2);
1145 Free_first_bitmap:
1146	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1147 Free_first_object:
1148	kfree(bm1);
1149	return -ENOMEM;
1150}
1151
1152/**
1153 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1154 *
1155 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1156 * auxiliary pointers are necessary so that the bitmaps themselves are not
1157 * referred to while they are being freed.
1158 */
1159void free_basic_memory_bitmaps(void)
1160{
1161	struct memory_bitmap *bm1, *bm2;
1162
1163	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1164		return;
1165
1166	bm1 = forbidden_pages_map;
1167	bm2 = free_pages_map;
1168	forbidden_pages_map = NULL;
1169	free_pages_map = NULL;
1170	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1171	kfree(bm1);
1172	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1173	kfree(bm2);
1174
1175	pr_debug("Basic memory bitmaps freed\n");
1176}
1177
1178static void clear_or_poison_free_page(struct page *page)
1179{
1180	if (page_poisoning_enabled_static())
1181		__kernel_poison_pages(page, 1);
1182	else if (want_init_on_free())
1183		clear_highpage(page);
1184}
1185
1186void clear_or_poison_free_pages(void)
1187{
 
1188	struct memory_bitmap *bm = free_pages_map;
1189	unsigned long pfn;
1190
1191	if (WARN_ON(!(free_pages_map)))
1192		return;
1193
1194	if (page_poisoning_enabled() || want_init_on_free()) {
1195		memory_bm_position_reset(bm);
1196		pfn = memory_bm_next_pfn(bm);
1197		while (pfn != BM_END_OF_MAP) {
1198			if (pfn_valid(pfn))
1199				clear_or_poison_free_page(pfn_to_page(pfn));
1200
1201			pfn = memory_bm_next_pfn(bm);
1202		}
1203		memory_bm_position_reset(bm);
1204		pr_info("free pages cleared after restore\n");
1205	}
 
 
 
1206}
1207
1208/**
1209 * snapshot_additional_pages - Estimate the number of extra pages needed.
1210 * @zone: Memory zone to carry out the computation for.
1211 *
1212 * Estimate the number of additional pages needed for setting up a hibernation
1213 * image data structures for @zone (usually, the returned value is greater than
1214 * the exact number).
1215 */
1216unsigned int snapshot_additional_pages(struct zone *zone)
1217{
1218	unsigned int rtree, nodes;
1219
1220	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1221	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1222			      LINKED_PAGE_DATA_SIZE);
1223	while (nodes > 1) {
1224		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1225		rtree += nodes;
1226	}
1227
1228	return 2 * rtree;
1229}
1230
1231#ifdef CONFIG_HIGHMEM
1232/**
1233 * count_free_highmem_pages - Compute the total number of free highmem pages.
1234 *
1235 * The returned number is system-wide.
1236 */
1237static unsigned int count_free_highmem_pages(void)
1238{
1239	struct zone *zone;
1240	unsigned int cnt = 0;
1241
1242	for_each_populated_zone(zone)
1243		if (is_highmem(zone))
1244			cnt += zone_page_state(zone, NR_FREE_PAGES);
1245
1246	return cnt;
1247}
1248
1249/**
1250 * saveable_highmem_page - Check if a highmem page is saveable.
1251 *
1252 * Determine whether a highmem page should be included in a hibernation image.
1253 *
1254 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1255 * and it isn't part of a free chunk of pages.
1256 */
1257static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1258{
1259	struct page *page;
1260
1261	if (!pfn_valid(pfn))
1262		return NULL;
1263
1264	page = pfn_to_online_page(pfn);
1265	if (!page || page_zone(page) != zone)
1266		return NULL;
1267
1268	BUG_ON(!PageHighMem(page));
1269
1270	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page))
1271		return NULL;
1272
1273	if (PageReserved(page) || PageOffline(page))
1274		return NULL;
1275
1276	if (page_is_guard(page))
1277		return NULL;
1278
1279	return page;
1280}
1281
1282/**
1283 * count_highmem_pages - Compute the total number of saveable highmem pages.
1284 */
1285static unsigned int count_highmem_pages(void)
1286{
1287	struct zone *zone;
1288	unsigned int n = 0;
1289
1290	for_each_populated_zone(zone) {
1291		unsigned long pfn, max_zone_pfn;
1292
1293		if (!is_highmem(zone))
1294			continue;
1295
1296		mark_free_pages(zone);
1297		max_zone_pfn = zone_end_pfn(zone);
1298		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1299			if (saveable_highmem_page(zone, pfn))
1300				n++;
1301	}
1302	return n;
1303}
1304#else
1305static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1306{
1307	return NULL;
1308}
1309#endif /* CONFIG_HIGHMEM */
1310
1311/**
1312 * saveable_page - Check if the given page is saveable.
1313 *
1314 * Determine whether a non-highmem page should be included in a hibernation
1315 * image.
1316 *
1317 * We should save the page if it isn't Nosave, and is not in the range
1318 * of pages statically defined as 'unsaveable', and it isn't part of
1319 * a free chunk of pages.
1320 */
1321static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1322{
1323	struct page *page;
1324
1325	if (!pfn_valid(pfn))
1326		return NULL;
1327
1328	page = pfn_to_online_page(pfn);
1329	if (!page || page_zone(page) != zone)
1330		return NULL;
1331
1332	BUG_ON(PageHighMem(page));
1333
1334	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1335		return NULL;
1336
1337	if (PageOffline(page))
1338		return NULL;
1339
1340	if (PageReserved(page)
1341	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1342		return NULL;
1343
1344	if (page_is_guard(page))
1345		return NULL;
1346
1347	return page;
1348}
1349
1350/**
1351 * count_data_pages - Compute the total number of saveable non-highmem pages.
1352 */
1353static unsigned int count_data_pages(void)
1354{
1355	struct zone *zone;
1356	unsigned long pfn, max_zone_pfn;
1357	unsigned int n = 0;
1358
1359	for_each_populated_zone(zone) {
1360		if (is_highmem(zone))
1361			continue;
1362
1363		mark_free_pages(zone);
1364		max_zone_pfn = zone_end_pfn(zone);
1365		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1366			if (saveable_page(zone, pfn))
1367				n++;
1368	}
1369	return n;
1370}
1371
1372/*
1373 * This is needed, because copy_page and memcpy are not usable for copying
1374 * task structs.
1375 */
1376static inline void do_copy_page(long *dst, long *src)
1377{
1378	int n;
1379
1380	for (n = PAGE_SIZE / sizeof(long); n; n--)
1381		*dst++ = *src++;
1382}
1383
1384/**
1385 * safe_copy_page - Copy a page in a safe way.
1386 *
1387 * Check if the page we are going to copy is marked as present in the kernel
1388 * page tables. This always is the case if CONFIG_DEBUG_PAGEALLOC or
1389 * CONFIG_ARCH_HAS_SET_DIRECT_MAP is not set. In that case kernel_page_present()
1390 * always returns 'true'.
1391 */
1392static void safe_copy_page(void *dst, struct page *s_page)
1393{
1394	if (kernel_page_present(s_page)) {
1395		do_copy_page(dst, page_address(s_page));
1396	} else {
1397		hibernate_map_page(s_page);
1398		do_copy_page(dst, page_address(s_page));
1399		hibernate_unmap_page(s_page);
1400	}
1401}
1402
1403#ifdef CONFIG_HIGHMEM
1404static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1405{
1406	return is_highmem(zone) ?
1407		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1408}
1409
1410static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1411{
1412	struct page *s_page, *d_page;
1413	void *src, *dst;
1414
1415	s_page = pfn_to_page(src_pfn);
1416	d_page = pfn_to_page(dst_pfn);
1417	if (PageHighMem(s_page)) {
1418		src = kmap_atomic(s_page);
1419		dst = kmap_atomic(d_page);
1420		do_copy_page(dst, src);
1421		kunmap_atomic(dst);
1422		kunmap_atomic(src);
1423	} else {
1424		if (PageHighMem(d_page)) {
1425			/*
1426			 * The page pointed to by src may contain some kernel
1427			 * data modified by kmap_atomic()
1428			 */
1429			safe_copy_page(buffer, s_page);
1430			dst = kmap_atomic(d_page);
1431			copy_page(dst, buffer);
1432			kunmap_atomic(dst);
1433		} else {
1434			safe_copy_page(page_address(d_page), s_page);
1435		}
1436	}
1437}
1438#else
1439#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1440
1441static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1442{
1443	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1444				pfn_to_page(src_pfn));
1445}
1446#endif /* CONFIG_HIGHMEM */
1447
1448static void copy_data_pages(struct memory_bitmap *copy_bm,
1449			    struct memory_bitmap *orig_bm)
1450{
1451	struct zone *zone;
1452	unsigned long pfn;
1453
1454	for_each_populated_zone(zone) {
1455		unsigned long max_zone_pfn;
1456
1457		mark_free_pages(zone);
1458		max_zone_pfn = zone_end_pfn(zone);
1459		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1460			if (page_is_saveable(zone, pfn))
1461				memory_bm_set_bit(orig_bm, pfn);
1462	}
1463	memory_bm_position_reset(orig_bm);
1464	memory_bm_position_reset(copy_bm);
1465	for(;;) {
1466		pfn = memory_bm_next_pfn(orig_bm);
1467		if (unlikely(pfn == BM_END_OF_MAP))
1468			break;
1469		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1470	}
1471}
1472
1473/* Total number of image pages */
1474static unsigned int nr_copy_pages;
1475/* Number of pages needed for saving the original pfns of the image pages */
1476static unsigned int nr_meta_pages;
1477/*
1478 * Numbers of normal and highmem page frames allocated for hibernation image
1479 * before suspending devices.
1480 */
1481static unsigned int alloc_normal, alloc_highmem;
1482/*
1483 * Memory bitmap used for marking saveable pages (during hibernation) or
1484 * hibernation image pages (during restore)
1485 */
1486static struct memory_bitmap orig_bm;
1487/*
1488 * Memory bitmap used during hibernation for marking allocated page frames that
1489 * will contain copies of saveable pages.  During restore it is initially used
1490 * for marking hibernation image pages, but then the set bits from it are
1491 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1492 * used for marking "safe" highmem pages, but it has to be reinitialized for
1493 * this purpose.
1494 */
1495static struct memory_bitmap copy_bm;
1496
1497/**
1498 * swsusp_free - Free pages allocated for hibernation image.
1499 *
1500 * Image pages are allocated before snapshot creation, so they need to be
1501 * released after resume.
1502 */
1503void swsusp_free(void)
1504{
1505	unsigned long fb_pfn, fr_pfn;
1506
1507	if (!forbidden_pages_map || !free_pages_map)
1508		goto out;
1509
1510	memory_bm_position_reset(forbidden_pages_map);
1511	memory_bm_position_reset(free_pages_map);
1512
1513loop:
1514	fr_pfn = memory_bm_next_pfn(free_pages_map);
1515	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1516
1517	/*
1518	 * Find the next bit set in both bitmaps. This is guaranteed to
1519	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1520	 */
1521	do {
1522		if (fb_pfn < fr_pfn)
1523			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1524		if (fr_pfn < fb_pfn)
1525			fr_pfn = memory_bm_next_pfn(free_pages_map);
1526	} while (fb_pfn != fr_pfn);
1527
1528	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1529		struct page *page = pfn_to_page(fr_pfn);
1530
1531		memory_bm_clear_current(forbidden_pages_map);
1532		memory_bm_clear_current(free_pages_map);
1533		hibernate_restore_unprotect_page(page_address(page));
1534		__free_page(page);
1535		goto loop;
1536	}
1537
1538out:
1539	nr_copy_pages = 0;
1540	nr_meta_pages = 0;
1541	restore_pblist = NULL;
1542	buffer = NULL;
1543	alloc_normal = 0;
1544	alloc_highmem = 0;
1545	hibernate_restore_protection_end();
1546}
1547
1548/* Helper functions used for the shrinking of memory. */
1549
1550#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1551
1552/**
1553 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1554 * @nr_pages: Number of page frames to allocate.
1555 * @mask: GFP flags to use for the allocation.
1556 *
1557 * Return value: Number of page frames actually allocated
1558 */
1559static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1560{
1561	unsigned long nr_alloc = 0;
1562
1563	while (nr_pages > 0) {
1564		struct page *page;
1565
1566		page = alloc_image_page(mask);
1567		if (!page)
1568			break;
1569		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1570		if (PageHighMem(page))
1571			alloc_highmem++;
1572		else
1573			alloc_normal++;
1574		nr_pages--;
1575		nr_alloc++;
1576	}
1577
1578	return nr_alloc;
1579}
1580
1581static unsigned long preallocate_image_memory(unsigned long nr_pages,
1582					      unsigned long avail_normal)
1583{
1584	unsigned long alloc;
1585
1586	if (avail_normal <= alloc_normal)
1587		return 0;
1588
1589	alloc = avail_normal - alloc_normal;
1590	if (nr_pages < alloc)
1591		alloc = nr_pages;
1592
1593	return preallocate_image_pages(alloc, GFP_IMAGE);
1594}
1595
1596#ifdef CONFIG_HIGHMEM
1597static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1598{
1599	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1600}
1601
1602/**
1603 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1604 */
1605static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1606{
1607	return div64_u64(x * multiplier, base);
 
 
1608}
1609
1610static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1611						  unsigned long highmem,
1612						  unsigned long total)
1613{
1614	unsigned long alloc = __fraction(nr_pages, highmem, total);
1615
1616	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1617}
1618#else /* CONFIG_HIGHMEM */
1619static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1620{
1621	return 0;
1622}
1623
1624static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1625							 unsigned long highmem,
1626							 unsigned long total)
1627{
1628	return 0;
1629}
1630#endif /* CONFIG_HIGHMEM */
1631
1632/**
1633 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1634 */
1635static unsigned long free_unnecessary_pages(void)
1636{
1637	unsigned long save, to_free_normal, to_free_highmem, free;
1638
1639	save = count_data_pages();
1640	if (alloc_normal >= save) {
1641		to_free_normal = alloc_normal - save;
1642		save = 0;
1643	} else {
1644		to_free_normal = 0;
1645		save -= alloc_normal;
1646	}
1647	save += count_highmem_pages();
1648	if (alloc_highmem >= save) {
1649		to_free_highmem = alloc_highmem - save;
1650	} else {
1651		to_free_highmem = 0;
1652		save -= alloc_highmem;
1653		if (to_free_normal > save)
1654			to_free_normal -= save;
1655		else
1656			to_free_normal = 0;
1657	}
1658	free = to_free_normal + to_free_highmem;
1659
1660	memory_bm_position_reset(&copy_bm);
1661
1662	while (to_free_normal > 0 || to_free_highmem > 0) {
1663		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1664		struct page *page = pfn_to_page(pfn);
1665
1666		if (PageHighMem(page)) {
1667			if (!to_free_highmem)
1668				continue;
1669			to_free_highmem--;
1670			alloc_highmem--;
1671		} else {
1672			if (!to_free_normal)
1673				continue;
1674			to_free_normal--;
1675			alloc_normal--;
1676		}
1677		memory_bm_clear_bit(&copy_bm, pfn);
1678		swsusp_unset_page_forbidden(page);
1679		swsusp_unset_page_free(page);
1680		__free_page(page);
1681	}
1682
1683	return free;
1684}
1685
1686/**
1687 * minimum_image_size - Estimate the minimum acceptable size of an image.
1688 * @saveable: Number of saveable pages in the system.
1689 *
1690 * We want to avoid attempting to free too much memory too hard, so estimate the
1691 * minimum acceptable size of a hibernation image to use as the lower limit for
1692 * preallocating memory.
1693 *
1694 * We assume that the minimum image size should be proportional to
1695 *
1696 * [number of saveable pages] - [number of pages that can be freed in theory]
1697 *
1698 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1699 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1700 */
1701static unsigned long minimum_image_size(unsigned long saveable)
1702{
1703	unsigned long size;
1704
1705	size = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B)
1706		+ global_node_page_state(NR_ACTIVE_ANON)
1707		+ global_node_page_state(NR_INACTIVE_ANON)
1708		+ global_node_page_state(NR_ACTIVE_FILE)
1709		+ global_node_page_state(NR_INACTIVE_FILE);
1710
1711	return saveable <= size ? 0 : saveable - size;
1712}
1713
1714/**
1715 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1716 *
1717 * To create a hibernation image it is necessary to make a copy of every page
1718 * frame in use.  We also need a number of page frames to be free during
1719 * hibernation for allocations made while saving the image and for device
1720 * drivers, in case they need to allocate memory from their hibernation
1721 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1722 * estimate) and reserved_size divided by PAGE_SIZE (which is tunable through
1723 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1724 * total number of available page frames and allocate at least
1725 *
1726 * ([page frames total] - PAGES_FOR_IO - [metadata pages]) / 2
1727 *  - 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1728 *
1729 * of them, which corresponds to the maximum size of a hibernation image.
1730 *
1731 * If image_size is set below the number following from the above formula,
1732 * the preallocation of memory is continued until the total number of saveable
1733 * pages in the system is below the requested image size or the minimum
1734 * acceptable image size returned by minimum_image_size(), whichever is greater.
1735 */
1736int hibernate_preallocate_memory(void)
1737{
1738	struct zone *zone;
1739	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1740	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1741	ktime_t start, stop;
1742	int error;
1743
1744	pr_info("Preallocating image memory\n");
1745	start = ktime_get();
1746
1747	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1748	if (error) {
1749		pr_err("Cannot allocate original bitmap\n");
1750		goto err_out;
1751	}
1752
1753	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1754	if (error) {
1755		pr_err("Cannot allocate copy bitmap\n");
1756		goto err_out;
1757	}
1758
1759	alloc_normal = 0;
1760	alloc_highmem = 0;
1761
1762	/* Count the number of saveable data pages. */
1763	save_highmem = count_highmem_pages();
1764	saveable = count_data_pages();
1765
1766	/*
1767	 * Compute the total number of page frames we can use (count) and the
1768	 * number of pages needed for image metadata (size).
1769	 */
1770	count = saveable;
1771	saveable += save_highmem;
1772	highmem = save_highmem;
1773	size = 0;
1774	for_each_populated_zone(zone) {
1775		size += snapshot_additional_pages(zone);
1776		if (is_highmem(zone))
1777			highmem += zone_page_state(zone, NR_FREE_PAGES);
1778		else
1779			count += zone_page_state(zone, NR_FREE_PAGES);
1780	}
1781	avail_normal = count;
1782	count += highmem;
1783	count -= totalreserve_pages;
1784
 
 
 
1785	/* Compute the maximum number of saveable pages to leave in memory. */
1786	max_size = (count - (size + PAGES_FOR_IO)) / 2
1787			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1788	/* Compute the desired number of image pages specified by image_size. */
1789	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1790	if (size > max_size)
1791		size = max_size;
1792	/*
1793	 * If the desired number of image pages is at least as large as the
1794	 * current number of saveable pages in memory, allocate page frames for
1795	 * the image and we're done.
1796	 */
1797	if (size >= saveable) {
1798		pages = preallocate_image_highmem(save_highmem);
1799		pages += preallocate_image_memory(saveable - pages, avail_normal);
1800		goto out;
1801	}
1802
1803	/* Estimate the minimum size of the image. */
1804	pages = minimum_image_size(saveable);
1805	/*
1806	 * To avoid excessive pressure on the normal zone, leave room in it to
1807	 * accommodate an image of the minimum size (unless it's already too
1808	 * small, in which case don't preallocate pages from it at all).
1809	 */
1810	if (avail_normal > pages)
1811		avail_normal -= pages;
1812	else
1813		avail_normal = 0;
1814	if (size < pages)
1815		size = min_t(unsigned long, pages, max_size);
1816
1817	/*
1818	 * Let the memory management subsystem know that we're going to need a
1819	 * large number of page frames to allocate and make it free some memory.
1820	 * NOTE: If this is not done, performance will be hurt badly in some
1821	 * test cases.
1822	 */
1823	shrink_all_memory(saveable - size);
1824
1825	/*
1826	 * The number of saveable pages in memory was too high, so apply some
1827	 * pressure to decrease it.  First, make room for the largest possible
1828	 * image and fail if that doesn't work.  Next, try to decrease the size
1829	 * of the image as much as indicated by 'size' using allocations from
1830	 * highmem and non-highmem zones separately.
1831	 */
1832	pages_highmem = preallocate_image_highmem(highmem / 2);
1833	alloc = count - max_size;
1834	if (alloc > pages_highmem)
1835		alloc -= pages_highmem;
1836	else
1837		alloc = 0;
1838	pages = preallocate_image_memory(alloc, avail_normal);
1839	if (pages < alloc) {
1840		/* We have exhausted non-highmem pages, try highmem. */
1841		alloc -= pages;
1842		pages += pages_highmem;
1843		pages_highmem = preallocate_image_highmem(alloc);
1844		if (pages_highmem < alloc) {
1845			pr_err("Image allocation is %lu pages short\n",
1846				alloc - pages_highmem);
1847			goto err_out;
1848		}
1849		pages += pages_highmem;
1850		/*
1851		 * size is the desired number of saveable pages to leave in
1852		 * memory, so try to preallocate (all memory - size) pages.
1853		 */
1854		alloc = (count - pages) - size;
1855		pages += preallocate_image_highmem(alloc);
1856	} else {
1857		/*
1858		 * There are approximately max_size saveable pages at this point
1859		 * and we want to reduce this number down to size.
1860		 */
1861		alloc = max_size - size;
1862		size = preallocate_highmem_fraction(alloc, highmem, count);
1863		pages_highmem += size;
1864		alloc -= size;
1865		size = preallocate_image_memory(alloc, avail_normal);
1866		pages_highmem += preallocate_image_highmem(alloc - size);
1867		pages += pages_highmem + size;
1868	}
1869
1870	/*
1871	 * We only need as many page frames for the image as there are saveable
1872	 * pages in memory, but we have allocated more.  Release the excessive
1873	 * ones now.
1874	 */
1875	pages -= free_unnecessary_pages();
1876
1877 out:
1878	stop = ktime_get();
1879	pr_info("Allocated %lu pages for snapshot\n", pages);
1880	swsusp_show_speed(start, stop, pages, "Allocated");
1881
1882	return 0;
1883
1884 err_out:
 
1885	swsusp_free();
1886	return -ENOMEM;
1887}
1888
1889#ifdef CONFIG_HIGHMEM
1890/**
1891 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1892 *
1893 * Compute the number of non-highmem pages that will be necessary for creating
1894 * copies of highmem pages.
1895 */
1896static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1897{
1898	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1899
1900	if (free_highmem >= nr_highmem)
1901		nr_highmem = 0;
1902	else
1903		nr_highmem -= free_highmem;
1904
1905	return nr_highmem;
1906}
1907#else
1908static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1909#endif /* CONFIG_HIGHMEM */
1910
1911/**
1912 * enough_free_mem - Check if there is enough free memory for the image.
1913 */
1914static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1915{
1916	struct zone *zone;
1917	unsigned int free = alloc_normal;
1918
1919	for_each_populated_zone(zone)
1920		if (!is_highmem(zone))
1921			free += zone_page_state(zone, NR_FREE_PAGES);
1922
1923	nr_pages += count_pages_for_highmem(nr_highmem);
1924	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1925		 nr_pages, PAGES_FOR_IO, free);
1926
1927	return free > nr_pages + PAGES_FOR_IO;
1928}
1929
1930#ifdef CONFIG_HIGHMEM
1931/**
1932 * get_highmem_buffer - Allocate a buffer for highmem pages.
1933 *
1934 * If there are some highmem pages in the hibernation image, we may need a
1935 * buffer to copy them and/or load their data.
1936 */
1937static inline int get_highmem_buffer(int safe_needed)
1938{
1939	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1940	return buffer ? 0 : -ENOMEM;
1941}
1942
1943/**
1944 * alloc_highmem_pages - Allocate some highmem pages for the image.
1945 *
1946 * Try to allocate as many pages as needed, but if the number of free highmem
1947 * pages is less than that, allocate them all.
1948 */
1949static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1950					       unsigned int nr_highmem)
1951{
1952	unsigned int to_alloc = count_free_highmem_pages();
1953
1954	if (to_alloc > nr_highmem)
1955		to_alloc = nr_highmem;
1956
1957	nr_highmem -= to_alloc;
1958	while (to_alloc-- > 0) {
1959		struct page *page;
1960
1961		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1962		memory_bm_set_bit(bm, page_to_pfn(page));
1963	}
1964	return nr_highmem;
1965}
1966#else
1967static inline int get_highmem_buffer(int safe_needed) { return 0; }
1968
1969static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1970					       unsigned int n) { return 0; }
1971#endif /* CONFIG_HIGHMEM */
1972
1973/**
1974 * swsusp_alloc - Allocate memory for hibernation image.
1975 *
1976 * We first try to allocate as many highmem pages as there are
1977 * saveable highmem pages in the system.  If that fails, we allocate
1978 * non-highmem pages for the copies of the remaining highmem ones.
1979 *
1980 * In this approach it is likely that the copies of highmem pages will
1981 * also be located in the high memory, because of the way in which
1982 * copy_data_pages() works.
1983 */
1984static int swsusp_alloc(struct memory_bitmap *copy_bm,
1985			unsigned int nr_pages, unsigned int nr_highmem)
1986{
1987	if (nr_highmem > 0) {
1988		if (get_highmem_buffer(PG_ANY))
1989			goto err_out;
1990		if (nr_highmem > alloc_highmem) {
1991			nr_highmem -= alloc_highmem;
1992			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1993		}
1994	}
1995	if (nr_pages > alloc_normal) {
1996		nr_pages -= alloc_normal;
1997		while (nr_pages-- > 0) {
1998			struct page *page;
1999
2000			page = alloc_image_page(GFP_ATOMIC);
2001			if (!page)
2002				goto err_out;
2003			memory_bm_set_bit(copy_bm, page_to_pfn(page));
2004		}
2005	}
2006
2007	return 0;
2008
2009 err_out:
2010	swsusp_free();
2011	return -ENOMEM;
2012}
2013
2014asmlinkage __visible int swsusp_save(void)
2015{
2016	unsigned int nr_pages, nr_highmem;
2017
2018	pr_info("Creating image:\n");
2019
2020	drain_local_pages(NULL);
2021	nr_pages = count_data_pages();
2022	nr_highmem = count_highmem_pages();
2023	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
2024
2025	if (!enough_free_mem(nr_pages, nr_highmem)) {
2026		pr_err("Not enough free memory\n");
2027		return -ENOMEM;
2028	}
2029
2030	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
2031		pr_err("Memory allocation failed\n");
2032		return -ENOMEM;
2033	}
2034
2035	/*
2036	 * During allocating of suspend pagedir, new cold pages may appear.
2037	 * Kill them.
2038	 */
2039	drain_local_pages(NULL);
2040	copy_data_pages(&copy_bm, &orig_bm);
2041
2042	/*
2043	 * End of critical section. From now on, we can write to memory,
2044	 * but we should not touch disk. This specially means we must _not_
2045	 * touch swap space! Except we must write out our image of course.
2046	 */
2047
2048	nr_pages += nr_highmem;
2049	nr_copy_pages = nr_pages;
2050	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
2051
2052	pr_info("Image created (%d pages copied)\n", nr_pages);
2053
2054	return 0;
2055}
2056
2057#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2058static int init_header_complete(struct swsusp_info *info)
2059{
2060	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2061	info->version_code = LINUX_VERSION_CODE;
2062	return 0;
2063}
2064
2065static const char *check_image_kernel(struct swsusp_info *info)
2066{
2067	if (info->version_code != LINUX_VERSION_CODE)
2068		return "kernel version";
2069	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2070		return "system type";
2071	if (strcmp(info->uts.release,init_utsname()->release))
2072		return "kernel release";
2073	if (strcmp(info->uts.version,init_utsname()->version))
2074		return "version";
2075	if (strcmp(info->uts.machine,init_utsname()->machine))
2076		return "machine";
2077	return NULL;
2078}
2079#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2080
2081unsigned long snapshot_get_image_size(void)
2082{
2083	return nr_copy_pages + nr_meta_pages + 1;
2084}
2085
2086static int init_header(struct swsusp_info *info)
2087{
2088	memset(info, 0, sizeof(struct swsusp_info));
2089	info->num_physpages = get_num_physpages();
2090	info->image_pages = nr_copy_pages;
2091	info->pages = snapshot_get_image_size();
2092	info->size = info->pages;
2093	info->size <<= PAGE_SHIFT;
2094	return init_header_complete(info);
2095}
2096
2097/**
2098 * pack_pfns - Prepare PFNs for saving.
2099 * @bm: Memory bitmap.
2100 * @buf: Memory buffer to store the PFNs in.
2101 *
2102 * PFNs corresponding to set bits in @bm are stored in the area of memory
2103 * pointed to by @buf (1 page at a time).
2104 */
2105static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2106{
2107	int j;
2108
2109	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2110		buf[j] = memory_bm_next_pfn(bm);
2111		if (unlikely(buf[j] == BM_END_OF_MAP))
2112			break;
 
 
2113	}
2114}
2115
2116/**
2117 * snapshot_read_next - Get the address to read the next image page from.
2118 * @handle: Snapshot handle to be used for the reading.
2119 *
2120 * On the first call, @handle should point to a zeroed snapshot_handle
2121 * structure.  The structure gets populated then and a pointer to it should be
2122 * passed to this function every next time.
2123 *
2124 * On success, the function returns a positive number.  Then, the caller
2125 * is allowed to read up to the returned number of bytes from the memory
2126 * location computed by the data_of() macro.
2127 *
2128 * The function returns 0 to indicate the end of the data stream condition,
2129 * and negative numbers are returned on errors.  If that happens, the structure
2130 * pointed to by @handle is not updated and should not be used any more.
2131 */
2132int snapshot_read_next(struct snapshot_handle *handle)
2133{
2134	if (handle->cur > nr_meta_pages + nr_copy_pages)
2135		return 0;
2136
2137	if (!buffer) {
2138		/* This makes the buffer be freed by swsusp_free() */
2139		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2140		if (!buffer)
2141			return -ENOMEM;
2142	}
2143	if (!handle->cur) {
2144		int error;
2145
2146		error = init_header((struct swsusp_info *)buffer);
2147		if (error)
2148			return error;
2149		handle->buffer = buffer;
2150		memory_bm_position_reset(&orig_bm);
2151		memory_bm_position_reset(&copy_bm);
2152	} else if (handle->cur <= nr_meta_pages) {
2153		clear_page(buffer);
2154		pack_pfns(buffer, &orig_bm);
2155	} else {
2156		struct page *page;
2157
2158		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2159		if (PageHighMem(page)) {
2160			/*
2161			 * Highmem pages are copied to the buffer,
2162			 * because we can't return with a kmapped
2163			 * highmem page (we may not be called again).
2164			 */
2165			void *kaddr;
2166
2167			kaddr = kmap_atomic(page);
2168			copy_page(buffer, kaddr);
2169			kunmap_atomic(kaddr);
2170			handle->buffer = buffer;
2171		} else {
2172			handle->buffer = page_address(page);
2173		}
2174	}
2175	handle->cur++;
2176	return PAGE_SIZE;
2177}
2178
2179static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2180				    struct memory_bitmap *src)
2181{
2182	unsigned long pfn;
2183
2184	memory_bm_position_reset(src);
2185	pfn = memory_bm_next_pfn(src);
2186	while (pfn != BM_END_OF_MAP) {
2187		memory_bm_set_bit(dst, pfn);
2188		pfn = memory_bm_next_pfn(src);
2189	}
2190}
2191
2192/**
2193 * mark_unsafe_pages - Mark pages that were used before hibernation.
2194 *
2195 * Mark the pages that cannot be used for storing the image during restoration,
2196 * because they conflict with the pages that had been used before hibernation.
2197 */
2198static void mark_unsafe_pages(struct memory_bitmap *bm)
2199{
2200	unsigned long pfn;
2201
2202	/* Clear the "free"/"unsafe" bit for all PFNs */
2203	memory_bm_position_reset(free_pages_map);
2204	pfn = memory_bm_next_pfn(free_pages_map);
2205	while (pfn != BM_END_OF_MAP) {
2206		memory_bm_clear_current(free_pages_map);
2207		pfn = memory_bm_next_pfn(free_pages_map);
2208	}
2209
2210	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2211	duplicate_memory_bitmap(free_pages_map, bm);
2212
2213	allocated_unsafe_pages = 0;
2214}
2215
2216static int check_header(struct swsusp_info *info)
2217{
2218	const char *reason;
2219
2220	reason = check_image_kernel(info);
2221	if (!reason && info->num_physpages != get_num_physpages())
2222		reason = "memory size";
2223	if (reason) {
2224		pr_err("Image mismatch: %s\n", reason);
2225		return -EPERM;
2226	}
2227	return 0;
2228}
2229
2230/**
2231 * load_header - Check the image header and copy the data from it.
2232 */
2233static int load_header(struct swsusp_info *info)
2234{
2235	int error;
2236
2237	restore_pblist = NULL;
2238	error = check_header(info);
2239	if (!error) {
2240		nr_copy_pages = info->image_pages;
2241		nr_meta_pages = info->pages - info->image_pages - 1;
2242	}
2243	return error;
2244}
2245
2246/**
2247 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2248 * @bm: Memory bitmap.
2249 * @buf: Area of memory containing the PFNs.
2250 *
2251 * For each element of the array pointed to by @buf (1 page at a time), set the
2252 * corresponding bit in @bm.
2253 */
2254static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2255{
2256	int j;
2257
2258	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2259		if (unlikely(buf[j] == BM_END_OF_MAP))
2260			break;
2261
2262		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j])) {
 
 
 
2263			memory_bm_set_bit(bm, buf[j]);
2264		} else {
2265			if (!pfn_valid(buf[j]))
2266				pr_err(FW_BUG "Memory map mismatch at 0x%llx after hibernation\n",
2267				       (unsigned long long)PFN_PHYS(buf[j]));
2268			return -EFAULT;
2269		}
2270	}
2271
2272	return 0;
2273}
2274
2275#ifdef CONFIG_HIGHMEM
2276/*
2277 * struct highmem_pbe is used for creating the list of highmem pages that
2278 * should be restored atomically during the resume from disk, because the page
2279 * frames they have occupied before the suspend are in use.
2280 */
2281struct highmem_pbe {
2282	struct page *copy_page;	/* data is here now */
2283	struct page *orig_page;	/* data was here before the suspend */
2284	struct highmem_pbe *next;
2285};
2286
2287/*
2288 * List of highmem PBEs needed for restoring the highmem pages that were
2289 * allocated before the suspend and included in the suspend image, but have
2290 * also been allocated by the "resume" kernel, so their contents cannot be
2291 * written directly to their "original" page frames.
2292 */
2293static struct highmem_pbe *highmem_pblist;
2294
2295/**
2296 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2297 * @bm: Memory bitmap.
2298 *
2299 * The bits in @bm that correspond to image pages are assumed to be set.
2300 */
2301static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2302{
2303	unsigned long pfn;
2304	unsigned int cnt = 0;
2305
2306	memory_bm_position_reset(bm);
2307	pfn = memory_bm_next_pfn(bm);
2308	while (pfn != BM_END_OF_MAP) {
2309		if (PageHighMem(pfn_to_page(pfn)))
2310			cnt++;
2311
2312		pfn = memory_bm_next_pfn(bm);
2313	}
2314	return cnt;
2315}
2316
2317static unsigned int safe_highmem_pages;
2318
2319static struct memory_bitmap *safe_highmem_bm;
2320
2321/**
2322 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2323 * @bm: Pointer to an uninitialized memory bitmap structure.
2324 * @nr_highmem_p: Pointer to the number of highmem image pages.
2325 *
2326 * Try to allocate as many highmem pages as there are highmem image pages
2327 * (@nr_highmem_p points to the variable containing the number of highmem image
2328 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2329 * hibernation image is restored entirely) have the corresponding bits set in
2330 * @bm (it must be uninitialized).
2331 *
2332 * NOTE: This function should not be called if there are no highmem image pages.
2333 */
2334static int prepare_highmem_image(struct memory_bitmap *bm,
2335				 unsigned int *nr_highmem_p)
2336{
2337	unsigned int to_alloc;
2338
2339	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2340		return -ENOMEM;
2341
2342	if (get_highmem_buffer(PG_SAFE))
2343		return -ENOMEM;
2344
2345	to_alloc = count_free_highmem_pages();
2346	if (to_alloc > *nr_highmem_p)
2347		to_alloc = *nr_highmem_p;
2348	else
2349		*nr_highmem_p = to_alloc;
2350
2351	safe_highmem_pages = 0;
2352	while (to_alloc-- > 0) {
2353		struct page *page;
2354
2355		page = alloc_page(__GFP_HIGHMEM);
2356		if (!swsusp_page_is_free(page)) {
2357			/* The page is "safe", set its bit the bitmap */
2358			memory_bm_set_bit(bm, page_to_pfn(page));
2359			safe_highmem_pages++;
2360		}
2361		/* Mark the page as allocated */
2362		swsusp_set_page_forbidden(page);
2363		swsusp_set_page_free(page);
2364	}
2365	memory_bm_position_reset(bm);
2366	safe_highmem_bm = bm;
2367	return 0;
2368}
2369
2370static struct page *last_highmem_page;
2371
2372/**
2373 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2374 *
2375 * For a given highmem image page get a buffer that suspend_write_next() should
2376 * return to its caller to write to.
2377 *
2378 * If the page is to be saved to its "original" page frame or a copy of
2379 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2380 * the copy of the page is to be made in normal memory, so the address of
2381 * the copy is returned.
2382 *
2383 * If @buffer is returned, the caller of suspend_write_next() will write
2384 * the page's contents to @buffer, so they will have to be copied to the
2385 * right location on the next call to suspend_write_next() and it is done
2386 * with the help of copy_last_highmem_page().  For this purpose, if
2387 * @buffer is returned, @last_highmem_page is set to the page to which
2388 * the data will have to be copied from @buffer.
2389 */
2390static void *get_highmem_page_buffer(struct page *page,
2391				     struct chain_allocator *ca)
2392{
2393	struct highmem_pbe *pbe;
2394	void *kaddr;
2395
2396	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2397		/*
2398		 * We have allocated the "original" page frame and we can
2399		 * use it directly to store the loaded page.
2400		 */
2401		last_highmem_page = page;
2402		return buffer;
2403	}
2404	/*
2405	 * The "original" page frame has not been allocated and we have to
2406	 * use a "safe" page frame to store the loaded page.
2407	 */
2408	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2409	if (!pbe) {
2410		swsusp_free();
2411		return ERR_PTR(-ENOMEM);
2412	}
2413	pbe->orig_page = page;
2414	if (safe_highmem_pages > 0) {
2415		struct page *tmp;
2416
2417		/* Copy of the page will be stored in high memory */
2418		kaddr = buffer;
2419		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2420		safe_highmem_pages--;
2421		last_highmem_page = tmp;
2422		pbe->copy_page = tmp;
2423	} else {
2424		/* Copy of the page will be stored in normal memory */
2425		kaddr = safe_pages_list;
2426		safe_pages_list = safe_pages_list->next;
2427		pbe->copy_page = virt_to_page(kaddr);
2428	}
2429	pbe->next = highmem_pblist;
2430	highmem_pblist = pbe;
2431	return kaddr;
2432}
2433
2434/**
2435 * copy_last_highmem_page - Copy most the most recent highmem image page.
2436 *
2437 * Copy the contents of a highmem image from @buffer, where the caller of
2438 * snapshot_write_next() has stored them, to the right location represented by
2439 * @last_highmem_page .
2440 */
2441static void copy_last_highmem_page(void)
2442{
2443	if (last_highmem_page) {
2444		void *dst;
2445
2446		dst = kmap_atomic(last_highmem_page);
2447		copy_page(dst, buffer);
2448		kunmap_atomic(dst);
2449		last_highmem_page = NULL;
2450	}
2451}
2452
2453static inline int last_highmem_page_copied(void)
2454{
2455	return !last_highmem_page;
2456}
2457
2458static inline void free_highmem_data(void)
2459{
2460	if (safe_highmem_bm)
2461		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2462
2463	if (buffer)
2464		free_image_page(buffer, PG_UNSAFE_CLEAR);
2465}
2466#else
2467static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2468
2469static inline int prepare_highmem_image(struct memory_bitmap *bm,
2470					unsigned int *nr_highmem_p) { return 0; }
2471
2472static inline void *get_highmem_page_buffer(struct page *page,
2473					    struct chain_allocator *ca)
2474{
2475	return ERR_PTR(-EINVAL);
2476}
2477
2478static inline void copy_last_highmem_page(void) {}
2479static inline int last_highmem_page_copied(void) { return 1; }
2480static inline void free_highmem_data(void) {}
2481#endif /* CONFIG_HIGHMEM */
2482
2483#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2484
2485/**
2486 * prepare_image - Make room for loading hibernation image.
2487 * @new_bm: Uninitialized memory bitmap structure.
2488 * @bm: Memory bitmap with unsafe pages marked.
2489 *
2490 * Use @bm to mark the pages that will be overwritten in the process of
2491 * restoring the system memory state from the suspend image ("unsafe" pages)
2492 * and allocate memory for the image.
2493 *
2494 * The idea is to allocate a new memory bitmap first and then allocate
2495 * as many pages as needed for image data, but without specifying what those
2496 * pages will be used for just yet.  Instead, we mark them all as allocated and
2497 * create a lists of "safe" pages to be used later.  On systems with high
2498 * memory a list of "safe" highmem pages is created too.
2499 */
2500static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2501{
2502	unsigned int nr_pages, nr_highmem;
2503	struct linked_page *lp;
2504	int error;
2505
2506	/* If there is no highmem, the buffer will not be necessary */
2507	free_image_page(buffer, PG_UNSAFE_CLEAR);
2508	buffer = NULL;
2509
2510	nr_highmem = count_highmem_image_pages(bm);
2511	mark_unsafe_pages(bm);
2512
2513	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2514	if (error)
2515		goto Free;
2516
2517	duplicate_memory_bitmap(new_bm, bm);
2518	memory_bm_free(bm, PG_UNSAFE_KEEP);
2519	if (nr_highmem > 0) {
2520		error = prepare_highmem_image(bm, &nr_highmem);
2521		if (error)
2522			goto Free;
2523	}
2524	/*
2525	 * Reserve some safe pages for potential later use.
2526	 *
2527	 * NOTE: This way we make sure there will be enough safe pages for the
2528	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2529	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2530	 *
2531	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2532	 */
2533	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2534	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2535	while (nr_pages > 0) {
2536		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2537		if (!lp) {
2538			error = -ENOMEM;
2539			goto Free;
2540		}
2541		lp->next = safe_pages_list;
2542		safe_pages_list = lp;
2543		nr_pages--;
2544	}
2545	/* Preallocate memory for the image */
2546	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2547	while (nr_pages > 0) {
2548		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2549		if (!lp) {
2550			error = -ENOMEM;
2551			goto Free;
2552		}
2553		if (!swsusp_page_is_free(virt_to_page(lp))) {
2554			/* The page is "safe", add it to the list */
2555			lp->next = safe_pages_list;
2556			safe_pages_list = lp;
2557		}
2558		/* Mark the page as allocated */
2559		swsusp_set_page_forbidden(virt_to_page(lp));
2560		swsusp_set_page_free(virt_to_page(lp));
2561		nr_pages--;
2562	}
2563	return 0;
2564
2565 Free:
2566	swsusp_free();
2567	return error;
2568}
2569
2570/**
2571 * get_buffer - Get the address to store the next image data page.
2572 *
2573 * Get the address that snapshot_write_next() should return to its caller to
2574 * write to.
2575 */
2576static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2577{
2578	struct pbe *pbe;
2579	struct page *page;
2580	unsigned long pfn = memory_bm_next_pfn(bm);
2581
2582	if (pfn == BM_END_OF_MAP)
2583		return ERR_PTR(-EFAULT);
2584
2585	page = pfn_to_page(pfn);
2586	if (PageHighMem(page))
2587		return get_highmem_page_buffer(page, ca);
2588
2589	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2590		/*
2591		 * We have allocated the "original" page frame and we can
2592		 * use it directly to store the loaded page.
2593		 */
2594		return page_address(page);
2595
2596	/*
2597	 * The "original" page frame has not been allocated and we have to
2598	 * use a "safe" page frame to store the loaded page.
2599	 */
2600	pbe = chain_alloc(ca, sizeof(struct pbe));
2601	if (!pbe) {
2602		swsusp_free();
2603		return ERR_PTR(-ENOMEM);
2604	}
2605	pbe->orig_address = page_address(page);
2606	pbe->address = safe_pages_list;
2607	safe_pages_list = safe_pages_list->next;
2608	pbe->next = restore_pblist;
2609	restore_pblist = pbe;
2610	return pbe->address;
2611}
2612
2613/**
2614 * snapshot_write_next - Get the address to store the next image page.
2615 * @handle: Snapshot handle structure to guide the writing.
2616 *
2617 * On the first call, @handle should point to a zeroed snapshot_handle
2618 * structure.  The structure gets populated then and a pointer to it should be
2619 * passed to this function every next time.
2620 *
2621 * On success, the function returns a positive number.  Then, the caller
2622 * is allowed to write up to the returned number of bytes to the memory
2623 * location computed by the data_of() macro.
2624 *
2625 * The function returns 0 to indicate the "end of file" condition.  Negative
2626 * numbers are returned on errors, in which cases the structure pointed to by
2627 * @handle is not updated and should not be used any more.
2628 */
2629int snapshot_write_next(struct snapshot_handle *handle)
2630{
2631	static struct chain_allocator ca;
2632	int error = 0;
2633
2634	/* Check if we have already loaded the entire image */
2635	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2636		return 0;
2637
2638	handle->sync_read = 1;
2639
2640	if (!handle->cur) {
2641		if (!buffer)
2642			/* This makes the buffer be freed by swsusp_free() */
2643			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2644
2645		if (!buffer)
2646			return -ENOMEM;
2647
2648		handle->buffer = buffer;
2649	} else if (handle->cur == 1) {
2650		error = load_header(buffer);
2651		if (error)
2652			return error;
2653
2654		safe_pages_list = NULL;
2655
2656		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2657		if (error)
2658			return error;
2659
 
 
 
 
 
2660		hibernate_restore_protection_begin();
2661	} else if (handle->cur <= nr_meta_pages + 1) {
2662		error = unpack_orig_pfns(buffer, &copy_bm);
2663		if (error)
2664			return error;
2665
2666		if (handle->cur == nr_meta_pages + 1) {
2667			error = prepare_image(&orig_bm, &copy_bm);
2668			if (error)
2669				return error;
2670
2671			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2672			memory_bm_position_reset(&orig_bm);
2673			restore_pblist = NULL;
2674			handle->buffer = get_buffer(&orig_bm, &ca);
2675			handle->sync_read = 0;
2676			if (IS_ERR(handle->buffer))
2677				return PTR_ERR(handle->buffer);
2678		}
2679	} else {
2680		copy_last_highmem_page();
 
 
2681		hibernate_restore_protect_page(handle->buffer);
2682		handle->buffer = get_buffer(&orig_bm, &ca);
2683		if (IS_ERR(handle->buffer))
2684			return PTR_ERR(handle->buffer);
2685		if (handle->buffer != buffer)
2686			handle->sync_read = 0;
2687	}
2688	handle->cur++;
2689	return PAGE_SIZE;
2690}
2691
2692/**
2693 * snapshot_write_finalize - Complete the loading of a hibernation image.
2694 *
2695 * Must be called after the last call to snapshot_write_next() in case the last
2696 * page in the image happens to be a highmem page and its contents should be
2697 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2698 * necessary any more.
2699 */
2700void snapshot_write_finalize(struct snapshot_handle *handle)
2701{
2702	copy_last_highmem_page();
 
 
 
2703	hibernate_restore_protect_page(handle->buffer);
2704	/* Do that only if we have loaded the image entirely */
2705	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2706		memory_bm_recycle(&orig_bm);
2707		free_highmem_data();
2708	}
2709}
2710
2711int snapshot_image_loaded(struct snapshot_handle *handle)
2712{
2713	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2714			handle->cur <= nr_meta_pages + nr_copy_pages);
2715}
2716
2717#ifdef CONFIG_HIGHMEM
2718/* Assumes that @buf is ready and points to a "safe" page */
2719static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2720				       void *buf)
2721{
2722	void *kaddr1, *kaddr2;
2723
2724	kaddr1 = kmap_atomic(p1);
2725	kaddr2 = kmap_atomic(p2);
2726	copy_page(buf, kaddr1);
2727	copy_page(kaddr1, kaddr2);
2728	copy_page(kaddr2, buf);
2729	kunmap_atomic(kaddr2);
2730	kunmap_atomic(kaddr1);
2731}
2732
2733/**
2734 * restore_highmem - Put highmem image pages into their original locations.
2735 *
2736 * For each highmem page that was in use before hibernation and is included in
2737 * the image, and also has been allocated by the "restore" kernel, swap its
2738 * current contents with the previous (ie. "before hibernation") ones.
2739 *
2740 * If the restore eventually fails, we can call this function once again and
2741 * restore the highmem state as seen by the restore kernel.
2742 */
2743int restore_highmem(void)
2744{
2745	struct highmem_pbe *pbe = highmem_pblist;
2746	void *buf;
2747
2748	if (!pbe)
2749		return 0;
2750
2751	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2752	if (!buf)
2753		return -ENOMEM;
2754
2755	while (pbe) {
2756		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2757		pbe = pbe->next;
2758	}
2759	free_image_page(buf, PG_UNSAFE_CLEAR);
2760	return 0;
2761}
2762#endif /* CONFIG_HIGHMEM */
v4.17
 
   1/*
   2 * linux/kernel/power/snapshot.c
   3 *
   4 * This file provides system snapshot/restore functionality for swsusp.
   5 *
   6 * Copyright (C) 1998-2005 Pavel Machek <pavel@ucw.cz>
   7 * Copyright (C) 2006 Rafael J. Wysocki <rjw@sisk.pl>
   8 *
   9 * This file is released under the GPLv2.
  10 *
  11 */
  12
  13#define pr_fmt(fmt) "PM: " fmt
  14
  15#include <linux/version.h>
  16#include <linux/module.h>
  17#include <linux/mm.h>
  18#include <linux/suspend.h>
  19#include <linux/delay.h>
  20#include <linux/bitops.h>
  21#include <linux/spinlock.h>
  22#include <linux/kernel.h>
  23#include <linux/pm.h>
  24#include <linux/device.h>
  25#include <linux/init.h>
  26#include <linux/bootmem.h>
  27#include <linux/nmi.h>
  28#include <linux/syscalls.h>
  29#include <linux/console.h>
  30#include <linux/highmem.h>
  31#include <linux/list.h>
  32#include <linux/slab.h>
  33#include <linux/compiler.h>
  34#include <linux/ktime.h>
  35#include <linux/set_memory.h>
  36
  37#include <linux/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/pgtable.h>
  40#include <asm/tlbflush.h>
  41#include <asm/io.h>
  42
  43#include "power.h"
  44
  45#if defined(CONFIG_STRICT_KERNEL_RWX) && defined(CONFIG_ARCH_HAS_SET_MEMORY)
  46static bool hibernate_restore_protection;
  47static bool hibernate_restore_protection_active;
  48
  49void enable_restore_image_protection(void)
  50{
  51	hibernate_restore_protection = true;
  52}
  53
  54static inline void hibernate_restore_protection_begin(void)
  55{
  56	hibernate_restore_protection_active = hibernate_restore_protection;
  57}
  58
  59static inline void hibernate_restore_protection_end(void)
  60{
  61	hibernate_restore_protection_active = false;
  62}
  63
  64static inline void hibernate_restore_protect_page(void *page_address)
  65{
  66	if (hibernate_restore_protection_active)
  67		set_memory_ro((unsigned long)page_address, 1);
  68}
  69
  70static inline void hibernate_restore_unprotect_page(void *page_address)
  71{
  72	if (hibernate_restore_protection_active)
  73		set_memory_rw((unsigned long)page_address, 1);
  74}
  75#else
  76static inline void hibernate_restore_protection_begin(void) {}
  77static inline void hibernate_restore_protection_end(void) {}
  78static inline void hibernate_restore_protect_page(void *page_address) {}
  79static inline void hibernate_restore_unprotect_page(void *page_address) {}
  80#endif /* CONFIG_STRICT_KERNEL_RWX  && CONFIG_ARCH_HAS_SET_MEMORY */
  81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  82static int swsusp_page_is_free(struct page *);
  83static void swsusp_set_page_forbidden(struct page *);
  84static void swsusp_unset_page_forbidden(struct page *);
  85
  86/*
  87 * Number of bytes to reserve for memory allocations made by device drivers
  88 * from their ->freeze() and ->freeze_noirq() callbacks so that they don't
  89 * cause image creation to fail (tunable via /sys/power/reserved_size).
  90 */
  91unsigned long reserved_size;
  92
  93void __init hibernate_reserved_size_init(void)
  94{
  95	reserved_size = SPARE_PAGES * PAGE_SIZE;
  96}
  97
  98/*
  99 * Preferred image size in bytes (tunable via /sys/power/image_size).
 100 * When it is set to N, swsusp will do its best to ensure the image
 101 * size will not exceed N bytes, but if that is impossible, it will
 102 * try to create the smallest image possible.
 103 */
 104unsigned long image_size;
 105
 106void __init hibernate_image_size_init(void)
 107{
 108	image_size = ((totalram_pages * 2) / 5) * PAGE_SIZE;
 109}
 110
 111/*
 112 * List of PBEs needed for restoring the pages that were allocated before
 113 * the suspend and included in the suspend image, but have also been
 114 * allocated by the "resume" kernel, so their contents cannot be written
 115 * directly to their "original" page frames.
 116 */
 117struct pbe *restore_pblist;
 118
 119/* struct linked_page is used to build chains of pages */
 120
 121#define LINKED_PAGE_DATA_SIZE	(PAGE_SIZE - sizeof(void *))
 122
 123struct linked_page {
 124	struct linked_page *next;
 125	char data[LINKED_PAGE_DATA_SIZE];
 126} __packed;
 127
 128/*
 129 * List of "safe" pages (ie. pages that were not used by the image kernel
 130 * before hibernation) that may be used as temporary storage for image kernel
 131 * memory contents.
 132 */
 133static struct linked_page *safe_pages_list;
 134
 135/* Pointer to an auxiliary buffer (1 page) */
 136static void *buffer;
 137
 138#define PG_ANY		0
 139#define PG_SAFE		1
 140#define PG_UNSAFE_CLEAR	1
 141#define PG_UNSAFE_KEEP	0
 142
 143static unsigned int allocated_unsafe_pages;
 144
 145/**
 146 * get_image_page - Allocate a page for a hibernation image.
 147 * @gfp_mask: GFP mask for the allocation.
 148 * @safe_needed: Get pages that were not used before hibernation (restore only)
 149 *
 150 * During image restoration, for storing the PBE list and the image data, we can
 151 * only use memory pages that do not conflict with the pages used before
 152 * hibernation.  The "unsafe" pages have PageNosaveFree set and we count them
 153 * using allocated_unsafe_pages.
 154 *
 155 * Each allocated image page is marked as PageNosave and PageNosaveFree so that
 156 * swsusp_free() can release it.
 157 */
 158static void *get_image_page(gfp_t gfp_mask, int safe_needed)
 159{
 160	void *res;
 161
 162	res = (void *)get_zeroed_page(gfp_mask);
 163	if (safe_needed)
 164		while (res && swsusp_page_is_free(virt_to_page(res))) {
 165			/* The page is unsafe, mark it for swsusp_free() */
 166			swsusp_set_page_forbidden(virt_to_page(res));
 167			allocated_unsafe_pages++;
 168			res = (void *)get_zeroed_page(gfp_mask);
 169		}
 170	if (res) {
 171		swsusp_set_page_forbidden(virt_to_page(res));
 172		swsusp_set_page_free(virt_to_page(res));
 173	}
 174	return res;
 175}
 176
 177static void *__get_safe_page(gfp_t gfp_mask)
 178{
 179	if (safe_pages_list) {
 180		void *ret = safe_pages_list;
 181
 182		safe_pages_list = safe_pages_list->next;
 183		memset(ret, 0, PAGE_SIZE);
 184		return ret;
 185	}
 186	return get_image_page(gfp_mask, PG_SAFE);
 187}
 188
 189unsigned long get_safe_page(gfp_t gfp_mask)
 190{
 191	return (unsigned long)__get_safe_page(gfp_mask);
 192}
 193
 194static struct page *alloc_image_page(gfp_t gfp_mask)
 195{
 196	struct page *page;
 197
 198	page = alloc_page(gfp_mask);
 199	if (page) {
 200		swsusp_set_page_forbidden(page);
 201		swsusp_set_page_free(page);
 202	}
 203	return page;
 204}
 205
 206static void recycle_safe_page(void *page_address)
 207{
 208	struct linked_page *lp = page_address;
 209
 210	lp->next = safe_pages_list;
 211	safe_pages_list = lp;
 212}
 213
 214/**
 215 * free_image_page - Free a page allocated for hibernation image.
 216 * @addr: Address of the page to free.
 217 * @clear_nosave_free: If set, clear the PageNosaveFree bit for the page.
 218 *
 219 * The page to free should have been allocated by get_image_page() (page flags
 220 * set by it are affected).
 221 */
 222static inline void free_image_page(void *addr, int clear_nosave_free)
 223{
 224	struct page *page;
 225
 226	BUG_ON(!virt_addr_valid(addr));
 227
 228	page = virt_to_page(addr);
 229
 230	swsusp_unset_page_forbidden(page);
 231	if (clear_nosave_free)
 232		swsusp_unset_page_free(page);
 233
 234	__free_page(page);
 235}
 236
 237static inline void free_list_of_pages(struct linked_page *list,
 238				      int clear_page_nosave)
 239{
 240	while (list) {
 241		struct linked_page *lp = list->next;
 242
 243		free_image_page(list, clear_page_nosave);
 244		list = lp;
 245	}
 246}
 247
 248/*
 249 * struct chain_allocator is used for allocating small objects out of
 250 * a linked list of pages called 'the chain'.
 251 *
 252 * The chain grows each time when there is no room for a new object in
 253 * the current page.  The allocated objects cannot be freed individually.
 254 * It is only possible to free them all at once, by freeing the entire
 255 * chain.
 256 *
 257 * NOTE: The chain allocator may be inefficient if the allocated objects
 258 * are not much smaller than PAGE_SIZE.
 259 */
 260struct chain_allocator {
 261	struct linked_page *chain;	/* the chain */
 262	unsigned int used_space;	/* total size of objects allocated out
 263					   of the current page */
 264	gfp_t gfp_mask;		/* mask for allocating pages */
 265	int safe_needed;	/* if set, only "safe" pages are allocated */
 266};
 267
 268static void chain_init(struct chain_allocator *ca, gfp_t gfp_mask,
 269		       int safe_needed)
 270{
 271	ca->chain = NULL;
 272	ca->used_space = LINKED_PAGE_DATA_SIZE;
 273	ca->gfp_mask = gfp_mask;
 274	ca->safe_needed = safe_needed;
 275}
 276
 277static void *chain_alloc(struct chain_allocator *ca, unsigned int size)
 278{
 279	void *ret;
 280
 281	if (LINKED_PAGE_DATA_SIZE - ca->used_space < size) {
 282		struct linked_page *lp;
 283
 284		lp = ca->safe_needed ? __get_safe_page(ca->gfp_mask) :
 285					get_image_page(ca->gfp_mask, PG_ANY);
 286		if (!lp)
 287			return NULL;
 288
 289		lp->next = ca->chain;
 290		ca->chain = lp;
 291		ca->used_space = 0;
 292	}
 293	ret = ca->chain->data + ca->used_space;
 294	ca->used_space += size;
 295	return ret;
 296}
 297
 298/**
 299 * Data types related to memory bitmaps.
 300 *
 301 * Memory bitmap is a structure consiting of many linked lists of
 302 * objects.  The main list's elements are of type struct zone_bitmap
 303 * and each of them corresonds to one zone.  For each zone bitmap
 304 * object there is a list of objects of type struct bm_block that
 305 * represent each blocks of bitmap in which information is stored.
 306 *
 307 * struct memory_bitmap contains a pointer to the main list of zone
 308 * bitmap objects, a struct bm_position used for browsing the bitmap,
 309 * and a pointer to the list of pages used for allocating all of the
 310 * zone bitmap objects and bitmap block objects.
 311 *
 312 * NOTE: It has to be possible to lay out the bitmap in memory
 313 * using only allocations of order 0.  Additionally, the bitmap is
 314 * designed to work with arbitrary number of zones (this is over the
 315 * top for now, but let's avoid making unnecessary assumptions ;-).
 316 *
 317 * struct zone_bitmap contains a pointer to a list of bitmap block
 318 * objects and a pointer to the bitmap block object that has been
 319 * most recently used for setting bits.  Additionally, it contains the
 320 * PFNs that correspond to the start and end of the represented zone.
 321 *
 322 * struct bm_block contains a pointer to the memory page in which
 323 * information is stored (in the form of a block of bitmap)
 324 * It also contains the pfns that correspond to the start and end of
 325 * the represented memory area.
 326 *
 327 * The memory bitmap is organized as a radix tree to guarantee fast random
 328 * access to the bits. There is one radix tree for each zone (as returned
 329 * from create_mem_extents).
 330 *
 331 * One radix tree is represented by one struct mem_zone_bm_rtree. There are
 332 * two linked lists for the nodes of the tree, one for the inner nodes and
 333 * one for the leave nodes. The linked leave nodes are used for fast linear
 334 * access of the memory bitmap.
 335 *
 336 * The struct rtree_node represents one node of the radix tree.
 337 */
 338
 339#define BM_END_OF_MAP	(~0UL)
 340
 341#define BM_BITS_PER_BLOCK	(PAGE_SIZE * BITS_PER_BYTE)
 342#define BM_BLOCK_SHIFT		(PAGE_SHIFT + 3)
 343#define BM_BLOCK_MASK		((1UL << BM_BLOCK_SHIFT) - 1)
 344
 345/*
 346 * struct rtree_node is a wrapper struct to link the nodes
 347 * of the rtree together for easy linear iteration over
 348 * bits and easy freeing
 349 */
 350struct rtree_node {
 351	struct list_head list;
 352	unsigned long *data;
 353};
 354
 355/*
 356 * struct mem_zone_bm_rtree represents a bitmap used for one
 357 * populated memory zone.
 358 */
 359struct mem_zone_bm_rtree {
 360	struct list_head list;		/* Link Zones together         */
 361	struct list_head nodes;		/* Radix Tree inner nodes      */
 362	struct list_head leaves;	/* Radix Tree leaves           */
 363	unsigned long start_pfn;	/* Zone start page frame       */
 364	unsigned long end_pfn;		/* Zone end page frame + 1     */
 365	struct rtree_node *rtree;	/* Radix Tree Root             */
 366	int levels;			/* Number of Radix Tree Levels */
 367	unsigned int blocks;		/* Number of Bitmap Blocks     */
 368};
 369
 370/* strcut bm_position is used for browsing memory bitmaps */
 371
 372struct bm_position {
 373	struct mem_zone_bm_rtree *zone;
 374	struct rtree_node *node;
 375	unsigned long node_pfn;
 376	int node_bit;
 377};
 378
 379struct memory_bitmap {
 380	struct list_head zones;
 381	struct linked_page *p_list;	/* list of pages used to store zone
 382					   bitmap objects and bitmap block
 383					   objects */
 384	struct bm_position cur;	/* most recently used bit position */
 385};
 386
 387/* Functions that operate on memory bitmaps */
 388
 389#define BM_ENTRIES_PER_LEVEL	(PAGE_SIZE / sizeof(unsigned long))
 390#if BITS_PER_LONG == 32
 391#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 2)
 392#else
 393#define BM_RTREE_LEVEL_SHIFT	(PAGE_SHIFT - 3)
 394#endif
 395#define BM_RTREE_LEVEL_MASK	((1UL << BM_RTREE_LEVEL_SHIFT) - 1)
 396
 397/**
 398 * alloc_rtree_node - Allocate a new node and add it to the radix tree.
 
 
 
 
 399 *
 400 * This function is used to allocate inner nodes as well as the
 401 * leave nodes of the radix tree. It also adds the node to the
 402 * corresponding linked list passed in by the *list parameter.
 403 */
 404static struct rtree_node *alloc_rtree_node(gfp_t gfp_mask, int safe_needed,
 405					   struct chain_allocator *ca,
 406					   struct list_head *list)
 407{
 408	struct rtree_node *node;
 409
 410	node = chain_alloc(ca, sizeof(struct rtree_node));
 411	if (!node)
 412		return NULL;
 413
 414	node->data = get_image_page(gfp_mask, safe_needed);
 415	if (!node->data)
 416		return NULL;
 417
 418	list_add_tail(&node->list, list);
 419
 420	return node;
 421}
 422
 423/**
 424 * add_rtree_block - Add a new leave node to the radix tree.
 425 *
 426 * The leave nodes need to be allocated in order to keep the leaves
 427 * linked list in order. This is guaranteed by the zone->blocks
 428 * counter.
 429 */
 430static int add_rtree_block(struct mem_zone_bm_rtree *zone, gfp_t gfp_mask,
 431			   int safe_needed, struct chain_allocator *ca)
 432{
 433	struct rtree_node *node, *block, **dst;
 434	unsigned int levels_needed, block_nr;
 435	int i;
 436
 437	block_nr = zone->blocks;
 438	levels_needed = 0;
 439
 440	/* How many levels do we need for this block nr? */
 441	while (block_nr) {
 442		levels_needed += 1;
 443		block_nr >>= BM_RTREE_LEVEL_SHIFT;
 444	}
 445
 446	/* Make sure the rtree has enough levels */
 447	for (i = zone->levels; i < levels_needed; i++) {
 448		node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 449					&zone->nodes);
 450		if (!node)
 451			return -ENOMEM;
 452
 453		node->data[0] = (unsigned long)zone->rtree;
 454		zone->rtree = node;
 455		zone->levels += 1;
 456	}
 457
 458	/* Allocate new block */
 459	block = alloc_rtree_node(gfp_mask, safe_needed, ca, &zone->leaves);
 460	if (!block)
 461		return -ENOMEM;
 462
 463	/* Now walk the rtree to insert the block */
 464	node = zone->rtree;
 465	dst = &zone->rtree;
 466	block_nr = zone->blocks;
 467	for (i = zone->levels; i > 0; i--) {
 468		int index;
 469
 470		if (!node) {
 471			node = alloc_rtree_node(gfp_mask, safe_needed, ca,
 472						&zone->nodes);
 473			if (!node)
 474				return -ENOMEM;
 475			*dst = node;
 476		}
 477
 478		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 479		index &= BM_RTREE_LEVEL_MASK;
 480		dst = (struct rtree_node **)&((*dst)->data[index]);
 481		node = *dst;
 482	}
 483
 484	zone->blocks += 1;
 485	*dst = block;
 486
 487	return 0;
 488}
 489
 490static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 491			       int clear_nosave_free);
 492
 493/**
 494 * create_zone_bm_rtree - Create a radix tree for one zone.
 495 *
 496 * Allocated the mem_zone_bm_rtree structure and initializes it.
 497 * This function also allocated and builds the radix tree for the
 498 * zone.
 499 */
 500static struct mem_zone_bm_rtree *create_zone_bm_rtree(gfp_t gfp_mask,
 501						      int safe_needed,
 502						      struct chain_allocator *ca,
 503						      unsigned long start,
 504						      unsigned long end)
 505{
 506	struct mem_zone_bm_rtree *zone;
 507	unsigned int i, nr_blocks;
 508	unsigned long pages;
 509
 510	pages = end - start;
 511	zone  = chain_alloc(ca, sizeof(struct mem_zone_bm_rtree));
 512	if (!zone)
 513		return NULL;
 514
 515	INIT_LIST_HEAD(&zone->nodes);
 516	INIT_LIST_HEAD(&zone->leaves);
 517	zone->start_pfn = start;
 518	zone->end_pfn = end;
 519	nr_blocks = DIV_ROUND_UP(pages, BM_BITS_PER_BLOCK);
 520
 521	for (i = 0; i < nr_blocks; i++) {
 522		if (add_rtree_block(zone, gfp_mask, safe_needed, ca)) {
 523			free_zone_bm_rtree(zone, PG_UNSAFE_CLEAR);
 524			return NULL;
 525		}
 526	}
 527
 528	return zone;
 529}
 530
 531/**
 532 * free_zone_bm_rtree - Free the memory of the radix tree.
 533 *
 534 * Free all node pages of the radix tree. The mem_zone_bm_rtree
 535 * structure itself is not freed here nor are the rtree_node
 536 * structs.
 537 */
 538static void free_zone_bm_rtree(struct mem_zone_bm_rtree *zone,
 539			       int clear_nosave_free)
 540{
 541	struct rtree_node *node;
 542
 543	list_for_each_entry(node, &zone->nodes, list)
 544		free_image_page(node->data, clear_nosave_free);
 545
 546	list_for_each_entry(node, &zone->leaves, list)
 547		free_image_page(node->data, clear_nosave_free);
 548}
 549
 550static void memory_bm_position_reset(struct memory_bitmap *bm)
 551{
 552	bm->cur.zone = list_entry(bm->zones.next, struct mem_zone_bm_rtree,
 553				  list);
 554	bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 555				  struct rtree_node, list);
 556	bm->cur.node_pfn = 0;
 557	bm->cur.node_bit = 0;
 558}
 559
 560static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free);
 561
 562struct mem_extent {
 563	struct list_head hook;
 564	unsigned long start;
 565	unsigned long end;
 566};
 567
 568/**
 569 * free_mem_extents - Free a list of memory extents.
 570 * @list: List of extents to free.
 571 */
 572static void free_mem_extents(struct list_head *list)
 573{
 574	struct mem_extent *ext, *aux;
 575
 576	list_for_each_entry_safe(ext, aux, list, hook) {
 577		list_del(&ext->hook);
 578		kfree(ext);
 579	}
 580}
 581
 582/**
 583 * create_mem_extents - Create a list of memory extents.
 584 * @list: List to put the extents into.
 585 * @gfp_mask: Mask to use for memory allocations.
 586 *
 587 * The extents represent contiguous ranges of PFNs.
 588 */
 589static int create_mem_extents(struct list_head *list, gfp_t gfp_mask)
 590{
 591	struct zone *zone;
 592
 593	INIT_LIST_HEAD(list);
 594
 595	for_each_populated_zone(zone) {
 596		unsigned long zone_start, zone_end;
 597		struct mem_extent *ext, *cur, *aux;
 598
 599		zone_start = zone->zone_start_pfn;
 600		zone_end = zone_end_pfn(zone);
 601
 602		list_for_each_entry(ext, list, hook)
 603			if (zone_start <= ext->end)
 604				break;
 605
 606		if (&ext->hook == list || zone_end < ext->start) {
 607			/* New extent is necessary */
 608			struct mem_extent *new_ext;
 609
 610			new_ext = kzalloc(sizeof(struct mem_extent), gfp_mask);
 611			if (!new_ext) {
 612				free_mem_extents(list);
 613				return -ENOMEM;
 614			}
 615			new_ext->start = zone_start;
 616			new_ext->end = zone_end;
 617			list_add_tail(&new_ext->hook, &ext->hook);
 618			continue;
 619		}
 620
 621		/* Merge this zone's range of PFNs with the existing one */
 622		if (zone_start < ext->start)
 623			ext->start = zone_start;
 624		if (zone_end > ext->end)
 625			ext->end = zone_end;
 626
 627		/* More merging may be possible */
 628		cur = ext;
 629		list_for_each_entry_safe_continue(cur, aux, list, hook) {
 630			if (zone_end < cur->start)
 631				break;
 632			if (zone_end < cur->end)
 633				ext->end = cur->end;
 634			list_del(&cur->hook);
 635			kfree(cur);
 636		}
 637	}
 638
 639	return 0;
 640}
 641
 642/**
 643 * memory_bm_create - Allocate memory for a memory bitmap.
 644 */
 645static int memory_bm_create(struct memory_bitmap *bm, gfp_t gfp_mask,
 646			    int safe_needed)
 647{
 648	struct chain_allocator ca;
 649	struct list_head mem_extents;
 650	struct mem_extent *ext;
 651	int error;
 652
 653	chain_init(&ca, gfp_mask, safe_needed);
 654	INIT_LIST_HEAD(&bm->zones);
 655
 656	error = create_mem_extents(&mem_extents, gfp_mask);
 657	if (error)
 658		return error;
 659
 660	list_for_each_entry(ext, &mem_extents, hook) {
 661		struct mem_zone_bm_rtree *zone;
 662
 663		zone = create_zone_bm_rtree(gfp_mask, safe_needed, &ca,
 664					    ext->start, ext->end);
 665		if (!zone) {
 666			error = -ENOMEM;
 667			goto Error;
 668		}
 669		list_add_tail(&zone->list, &bm->zones);
 670	}
 671
 672	bm->p_list = ca.chain;
 673	memory_bm_position_reset(bm);
 674 Exit:
 675	free_mem_extents(&mem_extents);
 676	return error;
 677
 678 Error:
 679	bm->p_list = ca.chain;
 680	memory_bm_free(bm, PG_UNSAFE_CLEAR);
 681	goto Exit;
 682}
 683
 684/**
 685 * memory_bm_free - Free memory occupied by the memory bitmap.
 686 * @bm: Memory bitmap.
 687 */
 688static void memory_bm_free(struct memory_bitmap *bm, int clear_nosave_free)
 689{
 690	struct mem_zone_bm_rtree *zone;
 691
 692	list_for_each_entry(zone, &bm->zones, list)
 693		free_zone_bm_rtree(zone, clear_nosave_free);
 694
 695	free_list_of_pages(bm->p_list, clear_nosave_free);
 696
 697	INIT_LIST_HEAD(&bm->zones);
 698}
 699
 700/**
 701 * memory_bm_find_bit - Find the bit for a given PFN in a memory bitmap.
 702 *
 703 * Find the bit in memory bitmap @bm that corresponds to the given PFN.
 704 * The cur.zone, cur.block and cur.node_pfn members of @bm are updated.
 705 *
 706 * Walk the radix tree to find the page containing the bit that represents @pfn
 707 * and return the position of the bit in @addr and @bit_nr.
 708 */
 709static int memory_bm_find_bit(struct memory_bitmap *bm, unsigned long pfn,
 710			      void **addr, unsigned int *bit_nr)
 711{
 712	struct mem_zone_bm_rtree *curr, *zone;
 713	struct rtree_node *node;
 714	int i, block_nr;
 715
 716	zone = bm->cur.zone;
 717
 718	if (pfn >= zone->start_pfn && pfn < zone->end_pfn)
 719		goto zone_found;
 720
 721	zone = NULL;
 722
 723	/* Find the right zone */
 724	list_for_each_entry(curr, &bm->zones, list) {
 725		if (pfn >= curr->start_pfn && pfn < curr->end_pfn) {
 726			zone = curr;
 727			break;
 728		}
 729	}
 730
 731	if (!zone)
 732		return -EFAULT;
 733
 734zone_found:
 735	/*
 736	 * We have found the zone. Now walk the radix tree to find the leaf node
 737	 * for our PFN.
 738	 */
 
 
 
 
 
 
 739	node = bm->cur.node;
 740	if (((pfn - zone->start_pfn) & ~BM_BLOCK_MASK) == bm->cur.node_pfn)
 
 741		goto node_found;
 742
 743	node      = zone->rtree;
 744	block_nr  = (pfn - zone->start_pfn) >> BM_BLOCK_SHIFT;
 745
 746	for (i = zone->levels; i > 0; i--) {
 747		int index;
 748
 749		index = block_nr >> ((i - 1) * BM_RTREE_LEVEL_SHIFT);
 750		index &= BM_RTREE_LEVEL_MASK;
 751		BUG_ON(node->data[index] == 0);
 752		node = (struct rtree_node *)node->data[index];
 753	}
 754
 755node_found:
 756	/* Update last position */
 757	bm->cur.zone = zone;
 758	bm->cur.node = node;
 759	bm->cur.node_pfn = (pfn - zone->start_pfn) & ~BM_BLOCK_MASK;
 760
 761	/* Set return values */
 762	*addr = node->data;
 763	*bit_nr = (pfn - zone->start_pfn) & BM_BLOCK_MASK;
 764
 765	return 0;
 766}
 767
 768static void memory_bm_set_bit(struct memory_bitmap *bm, unsigned long pfn)
 769{
 770	void *addr;
 771	unsigned int bit;
 772	int error;
 773
 774	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 775	BUG_ON(error);
 776	set_bit(bit, addr);
 777}
 778
 779static int mem_bm_set_bit_check(struct memory_bitmap *bm, unsigned long pfn)
 780{
 781	void *addr;
 782	unsigned int bit;
 783	int error;
 784
 785	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 786	if (!error)
 787		set_bit(bit, addr);
 788
 789	return error;
 790}
 791
 792static void memory_bm_clear_bit(struct memory_bitmap *bm, unsigned long pfn)
 793{
 794	void *addr;
 795	unsigned int bit;
 796	int error;
 797
 798	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 799	BUG_ON(error);
 800	clear_bit(bit, addr);
 801}
 802
 803static void memory_bm_clear_current(struct memory_bitmap *bm)
 804{
 805	int bit;
 806
 807	bit = max(bm->cur.node_bit - 1, 0);
 808	clear_bit(bit, bm->cur.node->data);
 809}
 810
 811static int memory_bm_test_bit(struct memory_bitmap *bm, unsigned long pfn)
 812{
 813	void *addr;
 814	unsigned int bit;
 815	int error;
 816
 817	error = memory_bm_find_bit(bm, pfn, &addr, &bit);
 818	BUG_ON(error);
 819	return test_bit(bit, addr);
 820}
 821
 822static bool memory_bm_pfn_present(struct memory_bitmap *bm, unsigned long pfn)
 823{
 824	void *addr;
 825	unsigned int bit;
 826
 827	return !memory_bm_find_bit(bm, pfn, &addr, &bit);
 828}
 829
 830/*
 831 * rtree_next_node - Jump to the next leaf node.
 832 *
 833 * Set the position to the beginning of the next node in the
 834 * memory bitmap. This is either the next node in the current
 835 * zone's radix tree or the first node in the radix tree of the
 836 * next zone.
 837 *
 838 * Return true if there is a next node, false otherwise.
 839 */
 840static bool rtree_next_node(struct memory_bitmap *bm)
 841{
 842	if (!list_is_last(&bm->cur.node->list, &bm->cur.zone->leaves)) {
 843		bm->cur.node = list_entry(bm->cur.node->list.next,
 844					  struct rtree_node, list);
 845		bm->cur.node_pfn += BM_BITS_PER_BLOCK;
 846		bm->cur.node_bit  = 0;
 847		touch_softlockup_watchdog();
 848		return true;
 849	}
 850
 851	/* No more nodes, goto next zone */
 852	if (!list_is_last(&bm->cur.zone->list, &bm->zones)) {
 853		bm->cur.zone = list_entry(bm->cur.zone->list.next,
 854				  struct mem_zone_bm_rtree, list);
 855		bm->cur.node = list_entry(bm->cur.zone->leaves.next,
 856					  struct rtree_node, list);
 857		bm->cur.node_pfn = 0;
 858		bm->cur.node_bit = 0;
 859		return true;
 860	}
 861
 862	/* No more zones */
 863	return false;
 864}
 865
 866/**
 867 * memory_bm_rtree_next_pfn - Find the next set bit in a memory bitmap.
 868 * @bm: Memory bitmap.
 869 *
 870 * Starting from the last returned position this function searches for the next
 871 * set bit in @bm and returns the PFN represented by it.  If no more bits are
 872 * set, BM_END_OF_MAP is returned.
 873 *
 874 * It is required to run memory_bm_position_reset() before the first call to
 875 * this function for the given memory bitmap.
 876 */
 877static unsigned long memory_bm_next_pfn(struct memory_bitmap *bm)
 878{
 879	unsigned long bits, pfn, pages;
 880	int bit;
 881
 882	do {
 883		pages	  = bm->cur.zone->end_pfn - bm->cur.zone->start_pfn;
 884		bits      = min(pages - bm->cur.node_pfn, BM_BITS_PER_BLOCK);
 885		bit	  = find_next_bit(bm->cur.node->data, bits,
 886					  bm->cur.node_bit);
 887		if (bit < bits) {
 888			pfn = bm->cur.zone->start_pfn + bm->cur.node_pfn + bit;
 889			bm->cur.node_bit = bit + 1;
 890			return pfn;
 891		}
 892	} while (rtree_next_node(bm));
 893
 894	return BM_END_OF_MAP;
 895}
 896
 897/*
 898 * This structure represents a range of page frames the contents of which
 899 * should not be saved during hibernation.
 900 */
 901struct nosave_region {
 902	struct list_head list;
 903	unsigned long start_pfn;
 904	unsigned long end_pfn;
 905};
 906
 907static LIST_HEAD(nosave_regions);
 908
 909static void recycle_zone_bm_rtree(struct mem_zone_bm_rtree *zone)
 910{
 911	struct rtree_node *node;
 912
 913	list_for_each_entry(node, &zone->nodes, list)
 914		recycle_safe_page(node->data);
 915
 916	list_for_each_entry(node, &zone->leaves, list)
 917		recycle_safe_page(node->data);
 918}
 919
 920static void memory_bm_recycle(struct memory_bitmap *bm)
 921{
 922	struct mem_zone_bm_rtree *zone;
 923	struct linked_page *p_list;
 924
 925	list_for_each_entry(zone, &bm->zones, list)
 926		recycle_zone_bm_rtree(zone);
 927
 928	p_list = bm->p_list;
 929	while (p_list) {
 930		struct linked_page *lp = p_list;
 931
 932		p_list = lp->next;
 933		recycle_safe_page(lp);
 934	}
 935}
 936
 937/**
 938 * register_nosave_region - Register a region of unsaveable memory.
 939 *
 940 * Register a range of page frames the contents of which should not be saved
 941 * during hibernation (to be used in the early initialization code).
 942 */
 943void __init __register_nosave_region(unsigned long start_pfn,
 944				     unsigned long end_pfn, int use_kmalloc)
 945{
 946	struct nosave_region *region;
 947
 948	if (start_pfn >= end_pfn)
 949		return;
 950
 951	if (!list_empty(&nosave_regions)) {
 952		/* Try to extend the previous region (they should be sorted) */
 953		region = list_entry(nosave_regions.prev,
 954					struct nosave_region, list);
 955		if (region->end_pfn == start_pfn) {
 956			region->end_pfn = end_pfn;
 957			goto Report;
 958		}
 959	}
 960	if (use_kmalloc) {
 961		/* During init, this shouldn't fail */
 962		region = kmalloc(sizeof(struct nosave_region), GFP_KERNEL);
 963		BUG_ON(!region);
 964	} else {
 965		/* This allocation cannot fail */
 966		region = memblock_virt_alloc(sizeof(struct nosave_region), 0);
 967	}
 968	region->start_pfn = start_pfn;
 969	region->end_pfn = end_pfn;
 970	list_add_tail(&region->list, &nosave_regions);
 971 Report:
 972	pr_info("Registered nosave memory: [mem %#010llx-%#010llx]\n",
 973		(unsigned long long) start_pfn << PAGE_SHIFT,
 974		((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
 975}
 976
 977/*
 978 * Set bits in this map correspond to the page frames the contents of which
 979 * should not be saved during the suspend.
 980 */
 981static struct memory_bitmap *forbidden_pages_map;
 982
 983/* Set bits in this map correspond to free page frames. */
 984static struct memory_bitmap *free_pages_map;
 985
 986/*
 987 * Each page frame allocated for creating the image is marked by setting the
 988 * corresponding bits in forbidden_pages_map and free_pages_map simultaneously
 989 */
 990
 991void swsusp_set_page_free(struct page *page)
 992{
 993	if (free_pages_map)
 994		memory_bm_set_bit(free_pages_map, page_to_pfn(page));
 995}
 996
 997static int swsusp_page_is_free(struct page *page)
 998{
 999	return free_pages_map ?
1000		memory_bm_test_bit(free_pages_map, page_to_pfn(page)) : 0;
1001}
1002
1003void swsusp_unset_page_free(struct page *page)
1004{
1005	if (free_pages_map)
1006		memory_bm_clear_bit(free_pages_map, page_to_pfn(page));
1007}
1008
1009static void swsusp_set_page_forbidden(struct page *page)
1010{
1011	if (forbidden_pages_map)
1012		memory_bm_set_bit(forbidden_pages_map, page_to_pfn(page));
1013}
1014
1015int swsusp_page_is_forbidden(struct page *page)
1016{
1017	return forbidden_pages_map ?
1018		memory_bm_test_bit(forbidden_pages_map, page_to_pfn(page)) : 0;
1019}
1020
1021static void swsusp_unset_page_forbidden(struct page *page)
1022{
1023	if (forbidden_pages_map)
1024		memory_bm_clear_bit(forbidden_pages_map, page_to_pfn(page));
1025}
1026
1027/**
1028 * mark_nosave_pages - Mark pages that should not be saved.
1029 * @bm: Memory bitmap.
1030 *
1031 * Set the bits in @bm that correspond to the page frames the contents of which
1032 * should not be saved.
1033 */
1034static void mark_nosave_pages(struct memory_bitmap *bm)
1035{
1036	struct nosave_region *region;
1037
1038	if (list_empty(&nosave_regions))
1039		return;
1040
1041	list_for_each_entry(region, &nosave_regions, list) {
1042		unsigned long pfn;
1043
1044		pr_debug("Marking nosave pages: [mem %#010llx-%#010llx]\n",
1045			 (unsigned long long) region->start_pfn << PAGE_SHIFT,
1046			 ((unsigned long long) region->end_pfn << PAGE_SHIFT)
1047				- 1);
1048
1049		for (pfn = region->start_pfn; pfn < region->end_pfn; pfn++)
1050			if (pfn_valid(pfn)) {
1051				/*
1052				 * It is safe to ignore the result of
1053				 * mem_bm_set_bit_check() here, since we won't
1054				 * touch the PFNs for which the error is
1055				 * returned anyway.
1056				 */
1057				mem_bm_set_bit_check(bm, pfn);
1058			}
1059	}
1060}
1061
1062/**
1063 * create_basic_memory_bitmaps - Create bitmaps to hold basic page information.
1064 *
1065 * Create bitmaps needed for marking page frames that should not be saved and
1066 * free page frames.  The forbidden_pages_map and free_pages_map pointers are
1067 * only modified if everything goes well, because we don't want the bits to be
1068 * touched before both bitmaps are set up.
1069 */
1070int create_basic_memory_bitmaps(void)
1071{
1072	struct memory_bitmap *bm1, *bm2;
1073	int error = 0;
1074
1075	if (forbidden_pages_map && free_pages_map)
1076		return 0;
1077	else
1078		BUG_ON(forbidden_pages_map || free_pages_map);
1079
1080	bm1 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1081	if (!bm1)
1082		return -ENOMEM;
1083
1084	error = memory_bm_create(bm1, GFP_KERNEL, PG_ANY);
1085	if (error)
1086		goto Free_first_object;
1087
1088	bm2 = kzalloc(sizeof(struct memory_bitmap), GFP_KERNEL);
1089	if (!bm2)
1090		goto Free_first_bitmap;
1091
1092	error = memory_bm_create(bm2, GFP_KERNEL, PG_ANY);
1093	if (error)
1094		goto Free_second_object;
1095
1096	forbidden_pages_map = bm1;
1097	free_pages_map = bm2;
1098	mark_nosave_pages(forbidden_pages_map);
1099
1100	pr_debug("Basic memory bitmaps created\n");
1101
1102	return 0;
1103
1104 Free_second_object:
1105	kfree(bm2);
1106 Free_first_bitmap:
1107 	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1108 Free_first_object:
1109	kfree(bm1);
1110	return -ENOMEM;
1111}
1112
1113/**
1114 * free_basic_memory_bitmaps - Free memory bitmaps holding basic information.
1115 *
1116 * Free memory bitmaps allocated by create_basic_memory_bitmaps().  The
1117 * auxiliary pointers are necessary so that the bitmaps themselves are not
1118 * referred to while they are being freed.
1119 */
1120void free_basic_memory_bitmaps(void)
1121{
1122	struct memory_bitmap *bm1, *bm2;
1123
1124	if (WARN_ON(!(forbidden_pages_map && free_pages_map)))
1125		return;
1126
1127	bm1 = forbidden_pages_map;
1128	bm2 = free_pages_map;
1129	forbidden_pages_map = NULL;
1130	free_pages_map = NULL;
1131	memory_bm_free(bm1, PG_UNSAFE_CLEAR);
1132	kfree(bm1);
1133	memory_bm_free(bm2, PG_UNSAFE_CLEAR);
1134	kfree(bm2);
1135
1136	pr_debug("Basic memory bitmaps freed\n");
1137}
1138
1139void clear_free_pages(void)
 
 
 
 
 
 
 
 
1140{
1141#ifdef CONFIG_PAGE_POISONING_ZERO
1142	struct memory_bitmap *bm = free_pages_map;
1143	unsigned long pfn;
1144
1145	if (WARN_ON(!(free_pages_map)))
1146		return;
1147
1148	memory_bm_position_reset(bm);
1149	pfn = memory_bm_next_pfn(bm);
1150	while (pfn != BM_END_OF_MAP) {
1151		if (pfn_valid(pfn))
1152			clear_highpage(pfn_to_page(pfn));
 
1153
1154		pfn = memory_bm_next_pfn(bm);
 
 
 
1155	}
1156	memory_bm_position_reset(bm);
1157	pr_info("free pages cleared after restore\n");
1158#endif /* PAGE_POISONING_ZERO */
1159}
1160
1161/**
1162 * snapshot_additional_pages - Estimate the number of extra pages needed.
1163 * @zone: Memory zone to carry out the computation for.
1164 *
1165 * Estimate the number of additional pages needed for setting up a hibernation
1166 * image data structures for @zone (usually, the returned value is greater than
1167 * the exact number).
1168 */
1169unsigned int snapshot_additional_pages(struct zone *zone)
1170{
1171	unsigned int rtree, nodes;
1172
1173	rtree = nodes = DIV_ROUND_UP(zone->spanned_pages, BM_BITS_PER_BLOCK);
1174	rtree += DIV_ROUND_UP(rtree * sizeof(struct rtree_node),
1175			      LINKED_PAGE_DATA_SIZE);
1176	while (nodes > 1) {
1177		nodes = DIV_ROUND_UP(nodes, BM_ENTRIES_PER_LEVEL);
1178		rtree += nodes;
1179	}
1180
1181	return 2 * rtree;
1182}
1183
1184#ifdef CONFIG_HIGHMEM
1185/**
1186 * count_free_highmem_pages - Compute the total number of free highmem pages.
1187 *
1188 * The returned number is system-wide.
1189 */
1190static unsigned int count_free_highmem_pages(void)
1191{
1192	struct zone *zone;
1193	unsigned int cnt = 0;
1194
1195	for_each_populated_zone(zone)
1196		if (is_highmem(zone))
1197			cnt += zone_page_state(zone, NR_FREE_PAGES);
1198
1199	return cnt;
1200}
1201
1202/**
1203 * saveable_highmem_page - Check if a highmem page is saveable.
1204 *
1205 * Determine whether a highmem page should be included in a hibernation image.
1206 *
1207 * We should save the page if it isn't Nosave or NosaveFree, or Reserved,
1208 * and it isn't part of a free chunk of pages.
1209 */
1210static struct page *saveable_highmem_page(struct zone *zone, unsigned long pfn)
1211{
1212	struct page *page;
1213
1214	if (!pfn_valid(pfn))
1215		return NULL;
1216
1217	page = pfn_to_page(pfn);
1218	if (page_zone(page) != zone)
1219		return NULL;
1220
1221	BUG_ON(!PageHighMem(page));
1222
1223	if (swsusp_page_is_forbidden(page) ||  swsusp_page_is_free(page) ||
1224	    PageReserved(page))
 
 
1225		return NULL;
1226
1227	if (page_is_guard(page))
1228		return NULL;
1229
1230	return page;
1231}
1232
1233/**
1234 * count_highmem_pages - Compute the total number of saveable highmem pages.
1235 */
1236static unsigned int count_highmem_pages(void)
1237{
1238	struct zone *zone;
1239	unsigned int n = 0;
1240
1241	for_each_populated_zone(zone) {
1242		unsigned long pfn, max_zone_pfn;
1243
1244		if (!is_highmem(zone))
1245			continue;
1246
1247		mark_free_pages(zone);
1248		max_zone_pfn = zone_end_pfn(zone);
1249		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1250			if (saveable_highmem_page(zone, pfn))
1251				n++;
1252	}
1253	return n;
1254}
1255#else
1256static inline void *saveable_highmem_page(struct zone *z, unsigned long p)
1257{
1258	return NULL;
1259}
1260#endif /* CONFIG_HIGHMEM */
1261
1262/**
1263 * saveable_page - Check if the given page is saveable.
1264 *
1265 * Determine whether a non-highmem page should be included in a hibernation
1266 * image.
1267 *
1268 * We should save the page if it isn't Nosave, and is not in the range
1269 * of pages statically defined as 'unsaveable', and it isn't part of
1270 * a free chunk of pages.
1271 */
1272static struct page *saveable_page(struct zone *zone, unsigned long pfn)
1273{
1274	struct page *page;
1275
1276	if (!pfn_valid(pfn))
1277		return NULL;
1278
1279	page = pfn_to_page(pfn);
1280	if (page_zone(page) != zone)
1281		return NULL;
1282
1283	BUG_ON(PageHighMem(page));
1284
1285	if (swsusp_page_is_forbidden(page) || swsusp_page_is_free(page))
1286		return NULL;
1287
 
 
 
1288	if (PageReserved(page)
1289	    && (!kernel_page_present(page) || pfn_is_nosave(pfn)))
1290		return NULL;
1291
1292	if (page_is_guard(page))
1293		return NULL;
1294
1295	return page;
1296}
1297
1298/**
1299 * count_data_pages - Compute the total number of saveable non-highmem pages.
1300 */
1301static unsigned int count_data_pages(void)
1302{
1303	struct zone *zone;
1304	unsigned long pfn, max_zone_pfn;
1305	unsigned int n = 0;
1306
1307	for_each_populated_zone(zone) {
1308		if (is_highmem(zone))
1309			continue;
1310
1311		mark_free_pages(zone);
1312		max_zone_pfn = zone_end_pfn(zone);
1313		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1314			if (saveable_page(zone, pfn))
1315				n++;
1316	}
1317	return n;
1318}
1319
1320/*
1321 * This is needed, because copy_page and memcpy are not usable for copying
1322 * task structs.
1323 */
1324static inline void do_copy_page(long *dst, long *src)
1325{
1326	int n;
1327
1328	for (n = PAGE_SIZE / sizeof(long); n; n--)
1329		*dst++ = *src++;
1330}
1331
1332/**
1333 * safe_copy_page - Copy a page in a safe way.
1334 *
1335 * Check if the page we are going to copy is marked as present in the kernel
1336 * page tables (this always is the case if CONFIG_DEBUG_PAGEALLOC is not set
1337 * and in that case kernel_page_present() always returns 'true').
 
1338 */
1339static void safe_copy_page(void *dst, struct page *s_page)
1340{
1341	if (kernel_page_present(s_page)) {
1342		do_copy_page(dst, page_address(s_page));
1343	} else {
1344		kernel_map_pages(s_page, 1, 1);
1345		do_copy_page(dst, page_address(s_page));
1346		kernel_map_pages(s_page, 1, 0);
1347	}
1348}
1349
1350#ifdef CONFIG_HIGHMEM
1351static inline struct page *page_is_saveable(struct zone *zone, unsigned long pfn)
1352{
1353	return is_highmem(zone) ?
1354		saveable_highmem_page(zone, pfn) : saveable_page(zone, pfn);
1355}
1356
1357static void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1358{
1359	struct page *s_page, *d_page;
1360	void *src, *dst;
1361
1362	s_page = pfn_to_page(src_pfn);
1363	d_page = pfn_to_page(dst_pfn);
1364	if (PageHighMem(s_page)) {
1365		src = kmap_atomic(s_page);
1366		dst = kmap_atomic(d_page);
1367		do_copy_page(dst, src);
1368		kunmap_atomic(dst);
1369		kunmap_atomic(src);
1370	} else {
1371		if (PageHighMem(d_page)) {
1372			/*
1373			 * The page pointed to by src may contain some kernel
1374			 * data modified by kmap_atomic()
1375			 */
1376			safe_copy_page(buffer, s_page);
1377			dst = kmap_atomic(d_page);
1378			copy_page(dst, buffer);
1379			kunmap_atomic(dst);
1380		} else {
1381			safe_copy_page(page_address(d_page), s_page);
1382		}
1383	}
1384}
1385#else
1386#define page_is_saveable(zone, pfn)	saveable_page(zone, pfn)
1387
1388static inline void copy_data_page(unsigned long dst_pfn, unsigned long src_pfn)
1389{
1390	safe_copy_page(page_address(pfn_to_page(dst_pfn)),
1391				pfn_to_page(src_pfn));
1392}
1393#endif /* CONFIG_HIGHMEM */
1394
1395static void copy_data_pages(struct memory_bitmap *copy_bm,
1396			    struct memory_bitmap *orig_bm)
1397{
1398	struct zone *zone;
1399	unsigned long pfn;
1400
1401	for_each_populated_zone(zone) {
1402		unsigned long max_zone_pfn;
1403
1404		mark_free_pages(zone);
1405		max_zone_pfn = zone_end_pfn(zone);
1406		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1407			if (page_is_saveable(zone, pfn))
1408				memory_bm_set_bit(orig_bm, pfn);
1409	}
1410	memory_bm_position_reset(orig_bm);
1411	memory_bm_position_reset(copy_bm);
1412	for(;;) {
1413		pfn = memory_bm_next_pfn(orig_bm);
1414		if (unlikely(pfn == BM_END_OF_MAP))
1415			break;
1416		copy_data_page(memory_bm_next_pfn(copy_bm), pfn);
1417	}
1418}
1419
1420/* Total number of image pages */
1421static unsigned int nr_copy_pages;
1422/* Number of pages needed for saving the original pfns of the image pages */
1423static unsigned int nr_meta_pages;
1424/*
1425 * Numbers of normal and highmem page frames allocated for hibernation image
1426 * before suspending devices.
1427 */
1428static unsigned int alloc_normal, alloc_highmem;
1429/*
1430 * Memory bitmap used for marking saveable pages (during hibernation) or
1431 * hibernation image pages (during restore)
1432 */
1433static struct memory_bitmap orig_bm;
1434/*
1435 * Memory bitmap used during hibernation for marking allocated page frames that
1436 * will contain copies of saveable pages.  During restore it is initially used
1437 * for marking hibernation image pages, but then the set bits from it are
1438 * duplicated in @orig_bm and it is released.  On highmem systems it is next
1439 * used for marking "safe" highmem pages, but it has to be reinitialized for
1440 * this purpose.
1441 */
1442static struct memory_bitmap copy_bm;
1443
1444/**
1445 * swsusp_free - Free pages allocated for hibernation image.
1446 *
1447 * Image pages are alocated before snapshot creation, so they need to be
1448 * released after resume.
1449 */
1450void swsusp_free(void)
1451{
1452	unsigned long fb_pfn, fr_pfn;
1453
1454	if (!forbidden_pages_map || !free_pages_map)
1455		goto out;
1456
1457	memory_bm_position_reset(forbidden_pages_map);
1458	memory_bm_position_reset(free_pages_map);
1459
1460loop:
1461	fr_pfn = memory_bm_next_pfn(free_pages_map);
1462	fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1463
1464	/*
1465	 * Find the next bit set in both bitmaps. This is guaranteed to
1466	 * terminate when fb_pfn == fr_pfn == BM_END_OF_MAP.
1467	 */
1468	do {
1469		if (fb_pfn < fr_pfn)
1470			fb_pfn = memory_bm_next_pfn(forbidden_pages_map);
1471		if (fr_pfn < fb_pfn)
1472			fr_pfn = memory_bm_next_pfn(free_pages_map);
1473	} while (fb_pfn != fr_pfn);
1474
1475	if (fr_pfn != BM_END_OF_MAP && pfn_valid(fr_pfn)) {
1476		struct page *page = pfn_to_page(fr_pfn);
1477
1478		memory_bm_clear_current(forbidden_pages_map);
1479		memory_bm_clear_current(free_pages_map);
1480		hibernate_restore_unprotect_page(page_address(page));
1481		__free_page(page);
1482		goto loop;
1483	}
1484
1485out:
1486	nr_copy_pages = 0;
1487	nr_meta_pages = 0;
1488	restore_pblist = NULL;
1489	buffer = NULL;
1490	alloc_normal = 0;
1491	alloc_highmem = 0;
1492	hibernate_restore_protection_end();
1493}
1494
1495/* Helper functions used for the shrinking of memory. */
1496
1497#define GFP_IMAGE	(GFP_KERNEL | __GFP_NOWARN)
1498
1499/**
1500 * preallocate_image_pages - Allocate a number of pages for hibernation image.
1501 * @nr_pages: Number of page frames to allocate.
1502 * @mask: GFP flags to use for the allocation.
1503 *
1504 * Return value: Number of page frames actually allocated
1505 */
1506static unsigned long preallocate_image_pages(unsigned long nr_pages, gfp_t mask)
1507{
1508	unsigned long nr_alloc = 0;
1509
1510	while (nr_pages > 0) {
1511		struct page *page;
1512
1513		page = alloc_image_page(mask);
1514		if (!page)
1515			break;
1516		memory_bm_set_bit(&copy_bm, page_to_pfn(page));
1517		if (PageHighMem(page))
1518			alloc_highmem++;
1519		else
1520			alloc_normal++;
1521		nr_pages--;
1522		nr_alloc++;
1523	}
1524
1525	return nr_alloc;
1526}
1527
1528static unsigned long preallocate_image_memory(unsigned long nr_pages,
1529					      unsigned long avail_normal)
1530{
1531	unsigned long alloc;
1532
1533	if (avail_normal <= alloc_normal)
1534		return 0;
1535
1536	alloc = avail_normal - alloc_normal;
1537	if (nr_pages < alloc)
1538		alloc = nr_pages;
1539
1540	return preallocate_image_pages(alloc, GFP_IMAGE);
1541}
1542
1543#ifdef CONFIG_HIGHMEM
1544static unsigned long preallocate_image_highmem(unsigned long nr_pages)
1545{
1546	return preallocate_image_pages(nr_pages, GFP_IMAGE | __GFP_HIGHMEM);
1547}
1548
1549/**
1550 *  __fraction - Compute (an approximation of) x * (multiplier / base).
1551 */
1552static unsigned long __fraction(u64 x, u64 multiplier, u64 base)
1553{
1554	x *= multiplier;
1555	do_div(x, base);
1556	return (unsigned long)x;
1557}
1558
1559static unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1560						  unsigned long highmem,
1561						  unsigned long total)
1562{
1563	unsigned long alloc = __fraction(nr_pages, highmem, total);
1564
1565	return preallocate_image_pages(alloc, GFP_IMAGE | __GFP_HIGHMEM);
1566}
1567#else /* CONFIG_HIGHMEM */
1568static inline unsigned long preallocate_image_highmem(unsigned long nr_pages)
1569{
1570	return 0;
1571}
1572
1573static inline unsigned long preallocate_highmem_fraction(unsigned long nr_pages,
1574							 unsigned long highmem,
1575							 unsigned long total)
1576{
1577	return 0;
1578}
1579#endif /* CONFIG_HIGHMEM */
1580
1581/**
1582 * free_unnecessary_pages - Release preallocated pages not needed for the image.
1583 */
1584static unsigned long free_unnecessary_pages(void)
1585{
1586	unsigned long save, to_free_normal, to_free_highmem, free;
1587
1588	save = count_data_pages();
1589	if (alloc_normal >= save) {
1590		to_free_normal = alloc_normal - save;
1591		save = 0;
1592	} else {
1593		to_free_normal = 0;
1594		save -= alloc_normal;
1595	}
1596	save += count_highmem_pages();
1597	if (alloc_highmem >= save) {
1598		to_free_highmem = alloc_highmem - save;
1599	} else {
1600		to_free_highmem = 0;
1601		save -= alloc_highmem;
1602		if (to_free_normal > save)
1603			to_free_normal -= save;
1604		else
1605			to_free_normal = 0;
1606	}
1607	free = to_free_normal + to_free_highmem;
1608
1609	memory_bm_position_reset(&copy_bm);
1610
1611	while (to_free_normal > 0 || to_free_highmem > 0) {
1612		unsigned long pfn = memory_bm_next_pfn(&copy_bm);
1613		struct page *page = pfn_to_page(pfn);
1614
1615		if (PageHighMem(page)) {
1616			if (!to_free_highmem)
1617				continue;
1618			to_free_highmem--;
1619			alloc_highmem--;
1620		} else {
1621			if (!to_free_normal)
1622				continue;
1623			to_free_normal--;
1624			alloc_normal--;
1625		}
1626		memory_bm_clear_bit(&copy_bm, pfn);
1627		swsusp_unset_page_forbidden(page);
1628		swsusp_unset_page_free(page);
1629		__free_page(page);
1630	}
1631
1632	return free;
1633}
1634
1635/**
1636 * minimum_image_size - Estimate the minimum acceptable size of an image.
1637 * @saveable: Number of saveable pages in the system.
1638 *
1639 * We want to avoid attempting to free too much memory too hard, so estimate the
1640 * minimum acceptable size of a hibernation image to use as the lower limit for
1641 * preallocating memory.
1642 *
1643 * We assume that the minimum image size should be proportional to
1644 *
1645 * [number of saveable pages] - [number of pages that can be freed in theory]
1646 *
1647 * where the second term is the sum of (1) reclaimable slab pages, (2) active
1648 * and (3) inactive anonymous pages, (4) active and (5) inactive file pages.
1649 */
1650static unsigned long minimum_image_size(unsigned long saveable)
1651{
1652	unsigned long size;
1653
1654	size = global_node_page_state(NR_SLAB_RECLAIMABLE)
1655		+ global_node_page_state(NR_ACTIVE_ANON)
1656		+ global_node_page_state(NR_INACTIVE_ANON)
1657		+ global_node_page_state(NR_ACTIVE_FILE)
1658		+ global_node_page_state(NR_INACTIVE_FILE);
1659
1660	return saveable <= size ? 0 : saveable - size;
1661}
1662
1663/**
1664 * hibernate_preallocate_memory - Preallocate memory for hibernation image.
1665 *
1666 * To create a hibernation image it is necessary to make a copy of every page
1667 * frame in use.  We also need a number of page frames to be free during
1668 * hibernation for allocations made while saving the image and for device
1669 * drivers, in case they need to allocate memory from their hibernation
1670 * callbacks (these two numbers are given by PAGES_FOR_IO (which is a rough
1671 * estimate) and reserverd_size divided by PAGE_SIZE (which is tunable through
1672 * /sys/power/reserved_size, respectively).  To make this happen, we compute the
1673 * total number of available page frames and allocate at least
1674 *
1675 * ([page frames total] + PAGES_FOR_IO + [metadata pages]) / 2
1676 *  + 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE)
1677 *
1678 * of them, which corresponds to the maximum size of a hibernation image.
1679 *
1680 * If image_size is set below the number following from the above formula,
1681 * the preallocation of memory is continued until the total number of saveable
1682 * pages in the system is below the requested image size or the minimum
1683 * acceptable image size returned by minimum_image_size(), whichever is greater.
1684 */
1685int hibernate_preallocate_memory(void)
1686{
1687	struct zone *zone;
1688	unsigned long saveable, size, max_size, count, highmem, pages = 0;
1689	unsigned long alloc, save_highmem, pages_highmem, avail_normal;
1690	ktime_t start, stop;
1691	int error;
1692
1693	pr_info("Preallocating image memory... ");
1694	start = ktime_get();
1695
1696	error = memory_bm_create(&orig_bm, GFP_IMAGE, PG_ANY);
1697	if (error)
 
1698		goto err_out;
 
1699
1700	error = memory_bm_create(&copy_bm, GFP_IMAGE, PG_ANY);
1701	if (error)
 
1702		goto err_out;
 
1703
1704	alloc_normal = 0;
1705	alloc_highmem = 0;
1706
1707	/* Count the number of saveable data pages. */
1708	save_highmem = count_highmem_pages();
1709	saveable = count_data_pages();
1710
1711	/*
1712	 * Compute the total number of page frames we can use (count) and the
1713	 * number of pages needed for image metadata (size).
1714	 */
1715	count = saveable;
1716	saveable += save_highmem;
1717	highmem = save_highmem;
1718	size = 0;
1719	for_each_populated_zone(zone) {
1720		size += snapshot_additional_pages(zone);
1721		if (is_highmem(zone))
1722			highmem += zone_page_state(zone, NR_FREE_PAGES);
1723		else
1724			count += zone_page_state(zone, NR_FREE_PAGES);
1725	}
1726	avail_normal = count;
1727	count += highmem;
1728	count -= totalreserve_pages;
1729
1730	/* Add number of pages required for page keys (s390 only). */
1731	size += page_key_additional_pages(saveable);
1732
1733	/* Compute the maximum number of saveable pages to leave in memory. */
1734	max_size = (count - (size + PAGES_FOR_IO)) / 2
1735			- 2 * DIV_ROUND_UP(reserved_size, PAGE_SIZE);
1736	/* Compute the desired number of image pages specified by image_size. */
1737	size = DIV_ROUND_UP(image_size, PAGE_SIZE);
1738	if (size > max_size)
1739		size = max_size;
1740	/*
1741	 * If the desired number of image pages is at least as large as the
1742	 * current number of saveable pages in memory, allocate page frames for
1743	 * the image and we're done.
1744	 */
1745	if (size >= saveable) {
1746		pages = preallocate_image_highmem(save_highmem);
1747		pages += preallocate_image_memory(saveable - pages, avail_normal);
1748		goto out;
1749	}
1750
1751	/* Estimate the minimum size of the image. */
1752	pages = minimum_image_size(saveable);
1753	/*
1754	 * To avoid excessive pressure on the normal zone, leave room in it to
1755	 * accommodate an image of the minimum size (unless it's already too
1756	 * small, in which case don't preallocate pages from it at all).
1757	 */
1758	if (avail_normal > pages)
1759		avail_normal -= pages;
1760	else
1761		avail_normal = 0;
1762	if (size < pages)
1763		size = min_t(unsigned long, pages, max_size);
1764
1765	/*
1766	 * Let the memory management subsystem know that we're going to need a
1767	 * large number of page frames to allocate and make it free some memory.
1768	 * NOTE: If this is not done, performance will be hurt badly in some
1769	 * test cases.
1770	 */
1771	shrink_all_memory(saveable - size);
1772
1773	/*
1774	 * The number of saveable pages in memory was too high, so apply some
1775	 * pressure to decrease it.  First, make room for the largest possible
1776	 * image and fail if that doesn't work.  Next, try to decrease the size
1777	 * of the image as much as indicated by 'size' using allocations from
1778	 * highmem and non-highmem zones separately.
1779	 */
1780	pages_highmem = preallocate_image_highmem(highmem / 2);
1781	alloc = count - max_size;
1782	if (alloc > pages_highmem)
1783		alloc -= pages_highmem;
1784	else
1785		alloc = 0;
1786	pages = preallocate_image_memory(alloc, avail_normal);
1787	if (pages < alloc) {
1788		/* We have exhausted non-highmem pages, try highmem. */
1789		alloc -= pages;
1790		pages += pages_highmem;
1791		pages_highmem = preallocate_image_highmem(alloc);
1792		if (pages_highmem < alloc)
 
 
1793			goto err_out;
 
1794		pages += pages_highmem;
1795		/*
1796		 * size is the desired number of saveable pages to leave in
1797		 * memory, so try to preallocate (all memory - size) pages.
1798		 */
1799		alloc = (count - pages) - size;
1800		pages += preallocate_image_highmem(alloc);
1801	} else {
1802		/*
1803		 * There are approximately max_size saveable pages at this point
1804		 * and we want to reduce this number down to size.
1805		 */
1806		alloc = max_size - size;
1807		size = preallocate_highmem_fraction(alloc, highmem, count);
1808		pages_highmem += size;
1809		alloc -= size;
1810		size = preallocate_image_memory(alloc, avail_normal);
1811		pages_highmem += preallocate_image_highmem(alloc - size);
1812		pages += pages_highmem + size;
1813	}
1814
1815	/*
1816	 * We only need as many page frames for the image as there are saveable
1817	 * pages in memory, but we have allocated more.  Release the excessive
1818	 * ones now.
1819	 */
1820	pages -= free_unnecessary_pages();
1821
1822 out:
1823	stop = ktime_get();
1824	pr_cont("done (allocated %lu pages)\n", pages);
1825	swsusp_show_speed(start, stop, pages, "Allocated");
1826
1827	return 0;
1828
1829 err_out:
1830	pr_cont("\n");
1831	swsusp_free();
1832	return -ENOMEM;
1833}
1834
1835#ifdef CONFIG_HIGHMEM
1836/**
1837 * count_pages_for_highmem - Count non-highmem pages needed for copying highmem.
1838 *
1839 * Compute the number of non-highmem pages that will be necessary for creating
1840 * copies of highmem pages.
1841 */
1842static unsigned int count_pages_for_highmem(unsigned int nr_highmem)
1843{
1844	unsigned int free_highmem = count_free_highmem_pages() + alloc_highmem;
1845
1846	if (free_highmem >= nr_highmem)
1847		nr_highmem = 0;
1848	else
1849		nr_highmem -= free_highmem;
1850
1851	return nr_highmem;
1852}
1853#else
1854static unsigned int count_pages_for_highmem(unsigned int nr_highmem) { return 0; }
1855#endif /* CONFIG_HIGHMEM */
1856
1857/**
1858 * enough_free_mem - Check if there is enough free memory for the image.
1859 */
1860static int enough_free_mem(unsigned int nr_pages, unsigned int nr_highmem)
1861{
1862	struct zone *zone;
1863	unsigned int free = alloc_normal;
1864
1865	for_each_populated_zone(zone)
1866		if (!is_highmem(zone))
1867			free += zone_page_state(zone, NR_FREE_PAGES);
1868
1869	nr_pages += count_pages_for_highmem(nr_highmem);
1870	pr_debug("Normal pages needed: %u + %u, available pages: %u\n",
1871		 nr_pages, PAGES_FOR_IO, free);
1872
1873	return free > nr_pages + PAGES_FOR_IO;
1874}
1875
1876#ifdef CONFIG_HIGHMEM
1877/**
1878 * get_highmem_buffer - Allocate a buffer for highmem pages.
1879 *
1880 * If there are some highmem pages in the hibernation image, we may need a
1881 * buffer to copy them and/or load their data.
1882 */
1883static inline int get_highmem_buffer(int safe_needed)
1884{
1885	buffer = get_image_page(GFP_ATOMIC, safe_needed);
1886	return buffer ? 0 : -ENOMEM;
1887}
1888
1889/**
1890 * alloc_highmem_image_pages - Allocate some highmem pages for the image.
1891 *
1892 * Try to allocate as many pages as needed, but if the number of free highmem
1893 * pages is less than that, allocate them all.
1894 */
1895static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1896					       unsigned int nr_highmem)
1897{
1898	unsigned int to_alloc = count_free_highmem_pages();
1899
1900	if (to_alloc > nr_highmem)
1901		to_alloc = nr_highmem;
1902
1903	nr_highmem -= to_alloc;
1904	while (to_alloc-- > 0) {
1905		struct page *page;
1906
1907		page = alloc_image_page(__GFP_HIGHMEM|__GFP_KSWAPD_RECLAIM);
1908		memory_bm_set_bit(bm, page_to_pfn(page));
1909	}
1910	return nr_highmem;
1911}
1912#else
1913static inline int get_highmem_buffer(int safe_needed) { return 0; }
1914
1915static inline unsigned int alloc_highmem_pages(struct memory_bitmap *bm,
1916					       unsigned int n) { return 0; }
1917#endif /* CONFIG_HIGHMEM */
1918
1919/**
1920 * swsusp_alloc - Allocate memory for hibernation image.
1921 *
1922 * We first try to allocate as many highmem pages as there are
1923 * saveable highmem pages in the system.  If that fails, we allocate
1924 * non-highmem pages for the copies of the remaining highmem ones.
1925 *
1926 * In this approach it is likely that the copies of highmem pages will
1927 * also be located in the high memory, because of the way in which
1928 * copy_data_pages() works.
1929 */
1930static int swsusp_alloc(struct memory_bitmap *copy_bm,
1931			unsigned int nr_pages, unsigned int nr_highmem)
1932{
1933	if (nr_highmem > 0) {
1934		if (get_highmem_buffer(PG_ANY))
1935			goto err_out;
1936		if (nr_highmem > alloc_highmem) {
1937			nr_highmem -= alloc_highmem;
1938			nr_pages += alloc_highmem_pages(copy_bm, nr_highmem);
1939		}
1940	}
1941	if (nr_pages > alloc_normal) {
1942		nr_pages -= alloc_normal;
1943		while (nr_pages-- > 0) {
1944			struct page *page;
1945
1946			page = alloc_image_page(GFP_ATOMIC);
1947			if (!page)
1948				goto err_out;
1949			memory_bm_set_bit(copy_bm, page_to_pfn(page));
1950		}
1951	}
1952
1953	return 0;
1954
1955 err_out:
1956	swsusp_free();
1957	return -ENOMEM;
1958}
1959
1960asmlinkage __visible int swsusp_save(void)
1961{
1962	unsigned int nr_pages, nr_highmem;
1963
1964	pr_info("Creating hibernation image:\n");
1965
1966	drain_local_pages(NULL);
1967	nr_pages = count_data_pages();
1968	nr_highmem = count_highmem_pages();
1969	pr_info("Need to copy %u pages\n", nr_pages + nr_highmem);
1970
1971	if (!enough_free_mem(nr_pages, nr_highmem)) {
1972		pr_err("Not enough free memory\n");
1973		return -ENOMEM;
1974	}
1975
1976	if (swsusp_alloc(&copy_bm, nr_pages, nr_highmem)) {
1977		pr_err("Memory allocation failed\n");
1978		return -ENOMEM;
1979	}
1980
1981	/*
1982	 * During allocating of suspend pagedir, new cold pages may appear.
1983	 * Kill them.
1984	 */
1985	drain_local_pages(NULL);
1986	copy_data_pages(&copy_bm, &orig_bm);
1987
1988	/*
1989	 * End of critical section. From now on, we can write to memory,
1990	 * but we should not touch disk. This specially means we must _not_
1991	 * touch swap space! Except we must write out our image of course.
1992	 */
1993
1994	nr_pages += nr_highmem;
1995	nr_copy_pages = nr_pages;
1996	nr_meta_pages = DIV_ROUND_UP(nr_pages * sizeof(long), PAGE_SIZE);
1997
1998	pr_info("Hibernation image created (%d pages copied)\n", nr_pages);
1999
2000	return 0;
2001}
2002
2003#ifndef CONFIG_ARCH_HIBERNATION_HEADER
2004static int init_header_complete(struct swsusp_info *info)
2005{
2006	memcpy(&info->uts, init_utsname(), sizeof(struct new_utsname));
2007	info->version_code = LINUX_VERSION_CODE;
2008	return 0;
2009}
2010
2011static char *check_image_kernel(struct swsusp_info *info)
2012{
2013	if (info->version_code != LINUX_VERSION_CODE)
2014		return "kernel version";
2015	if (strcmp(info->uts.sysname,init_utsname()->sysname))
2016		return "system type";
2017	if (strcmp(info->uts.release,init_utsname()->release))
2018		return "kernel release";
2019	if (strcmp(info->uts.version,init_utsname()->version))
2020		return "version";
2021	if (strcmp(info->uts.machine,init_utsname()->machine))
2022		return "machine";
2023	return NULL;
2024}
2025#endif /* CONFIG_ARCH_HIBERNATION_HEADER */
2026
2027unsigned long snapshot_get_image_size(void)
2028{
2029	return nr_copy_pages + nr_meta_pages + 1;
2030}
2031
2032static int init_header(struct swsusp_info *info)
2033{
2034	memset(info, 0, sizeof(struct swsusp_info));
2035	info->num_physpages = get_num_physpages();
2036	info->image_pages = nr_copy_pages;
2037	info->pages = snapshot_get_image_size();
2038	info->size = info->pages;
2039	info->size <<= PAGE_SHIFT;
2040	return init_header_complete(info);
2041}
2042
2043/**
2044 * pack_pfns - Prepare PFNs for saving.
2045 * @bm: Memory bitmap.
2046 * @buf: Memory buffer to store the PFNs in.
2047 *
2048 * PFNs corresponding to set bits in @bm are stored in the area of memory
2049 * pointed to by @buf (1 page at a time).
2050 */
2051static inline void pack_pfns(unsigned long *buf, struct memory_bitmap *bm)
2052{
2053	int j;
2054
2055	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2056		buf[j] = memory_bm_next_pfn(bm);
2057		if (unlikely(buf[j] == BM_END_OF_MAP))
2058			break;
2059		/* Save page key for data page (s390 only). */
2060		page_key_read(buf + j);
2061	}
2062}
2063
2064/**
2065 * snapshot_read_next - Get the address to read the next image page from.
2066 * @handle: Snapshot handle to be used for the reading.
2067 *
2068 * On the first call, @handle should point to a zeroed snapshot_handle
2069 * structure.  The structure gets populated then and a pointer to it should be
2070 * passed to this function every next time.
2071 *
2072 * On success, the function returns a positive number.  Then, the caller
2073 * is allowed to read up to the returned number of bytes from the memory
2074 * location computed by the data_of() macro.
2075 *
2076 * The function returns 0 to indicate the end of the data stream condition,
2077 * and negative numbers are returned on errors.  If that happens, the structure
2078 * pointed to by @handle is not updated and should not be used any more.
2079 */
2080int snapshot_read_next(struct snapshot_handle *handle)
2081{
2082	if (handle->cur > nr_meta_pages + nr_copy_pages)
2083		return 0;
2084
2085	if (!buffer) {
2086		/* This makes the buffer be freed by swsusp_free() */
2087		buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2088		if (!buffer)
2089			return -ENOMEM;
2090	}
2091	if (!handle->cur) {
2092		int error;
2093
2094		error = init_header((struct swsusp_info *)buffer);
2095		if (error)
2096			return error;
2097		handle->buffer = buffer;
2098		memory_bm_position_reset(&orig_bm);
2099		memory_bm_position_reset(&copy_bm);
2100	} else if (handle->cur <= nr_meta_pages) {
2101		clear_page(buffer);
2102		pack_pfns(buffer, &orig_bm);
2103	} else {
2104		struct page *page;
2105
2106		page = pfn_to_page(memory_bm_next_pfn(&copy_bm));
2107		if (PageHighMem(page)) {
2108			/*
2109			 * Highmem pages are copied to the buffer,
2110			 * because we can't return with a kmapped
2111			 * highmem page (we may not be called again).
2112			 */
2113			void *kaddr;
2114
2115			kaddr = kmap_atomic(page);
2116			copy_page(buffer, kaddr);
2117			kunmap_atomic(kaddr);
2118			handle->buffer = buffer;
2119		} else {
2120			handle->buffer = page_address(page);
2121		}
2122	}
2123	handle->cur++;
2124	return PAGE_SIZE;
2125}
2126
2127static void duplicate_memory_bitmap(struct memory_bitmap *dst,
2128				    struct memory_bitmap *src)
2129{
2130	unsigned long pfn;
2131
2132	memory_bm_position_reset(src);
2133	pfn = memory_bm_next_pfn(src);
2134	while (pfn != BM_END_OF_MAP) {
2135		memory_bm_set_bit(dst, pfn);
2136		pfn = memory_bm_next_pfn(src);
2137	}
2138}
2139
2140/**
2141 * mark_unsafe_pages - Mark pages that were used before hibernation.
2142 *
2143 * Mark the pages that cannot be used for storing the image during restoration,
2144 * because they conflict with the pages that had been used before hibernation.
2145 */
2146static void mark_unsafe_pages(struct memory_bitmap *bm)
2147{
2148	unsigned long pfn;
2149
2150	/* Clear the "free"/"unsafe" bit for all PFNs */
2151	memory_bm_position_reset(free_pages_map);
2152	pfn = memory_bm_next_pfn(free_pages_map);
2153	while (pfn != BM_END_OF_MAP) {
2154		memory_bm_clear_current(free_pages_map);
2155		pfn = memory_bm_next_pfn(free_pages_map);
2156	}
2157
2158	/* Mark pages that correspond to the "original" PFNs as "unsafe" */
2159	duplicate_memory_bitmap(free_pages_map, bm);
2160
2161	allocated_unsafe_pages = 0;
2162}
2163
2164static int check_header(struct swsusp_info *info)
2165{
2166	char *reason;
2167
2168	reason = check_image_kernel(info);
2169	if (!reason && info->num_physpages != get_num_physpages())
2170		reason = "memory size";
2171	if (reason) {
2172		pr_err("Image mismatch: %s\n", reason);
2173		return -EPERM;
2174	}
2175	return 0;
2176}
2177
2178/**
2179 * load header - Check the image header and copy the data from it.
2180 */
2181static int load_header(struct swsusp_info *info)
2182{
2183	int error;
2184
2185	restore_pblist = NULL;
2186	error = check_header(info);
2187	if (!error) {
2188		nr_copy_pages = info->image_pages;
2189		nr_meta_pages = info->pages - info->image_pages - 1;
2190	}
2191	return error;
2192}
2193
2194/**
2195 * unpack_orig_pfns - Set bits corresponding to given PFNs in a memory bitmap.
2196 * @bm: Memory bitmap.
2197 * @buf: Area of memory containing the PFNs.
2198 *
2199 * For each element of the array pointed to by @buf (1 page at a time), set the
2200 * corresponding bit in @bm.
2201 */
2202static int unpack_orig_pfns(unsigned long *buf, struct memory_bitmap *bm)
2203{
2204	int j;
2205
2206	for (j = 0; j < PAGE_SIZE / sizeof(long); j++) {
2207		if (unlikely(buf[j] == BM_END_OF_MAP))
2208			break;
2209
2210		/* Extract and buffer page key for data page (s390 only). */
2211		page_key_memorize(buf + j);
2212
2213		if (pfn_valid(buf[j]) && memory_bm_pfn_present(bm, buf[j]))
2214			memory_bm_set_bit(bm, buf[j]);
2215		else
 
 
 
2216			return -EFAULT;
 
2217	}
2218
2219	return 0;
2220}
2221
2222#ifdef CONFIG_HIGHMEM
2223/*
2224 * struct highmem_pbe is used for creating the list of highmem pages that
2225 * should be restored atomically during the resume from disk, because the page
2226 * frames they have occupied before the suspend are in use.
2227 */
2228struct highmem_pbe {
2229	struct page *copy_page;	/* data is here now */
2230	struct page *orig_page;	/* data was here before the suspend */
2231	struct highmem_pbe *next;
2232};
2233
2234/*
2235 * List of highmem PBEs needed for restoring the highmem pages that were
2236 * allocated before the suspend and included in the suspend image, but have
2237 * also been allocated by the "resume" kernel, so their contents cannot be
2238 * written directly to their "original" page frames.
2239 */
2240static struct highmem_pbe *highmem_pblist;
2241
2242/**
2243 * count_highmem_image_pages - Compute the number of highmem pages in the image.
2244 * @bm: Memory bitmap.
2245 *
2246 * The bits in @bm that correspond to image pages are assumed to be set.
2247 */
2248static unsigned int count_highmem_image_pages(struct memory_bitmap *bm)
2249{
2250	unsigned long pfn;
2251	unsigned int cnt = 0;
2252
2253	memory_bm_position_reset(bm);
2254	pfn = memory_bm_next_pfn(bm);
2255	while (pfn != BM_END_OF_MAP) {
2256		if (PageHighMem(pfn_to_page(pfn)))
2257			cnt++;
2258
2259		pfn = memory_bm_next_pfn(bm);
2260	}
2261	return cnt;
2262}
2263
2264static unsigned int safe_highmem_pages;
2265
2266static struct memory_bitmap *safe_highmem_bm;
2267
2268/**
2269 * prepare_highmem_image - Allocate memory for loading highmem data from image.
2270 * @bm: Pointer to an uninitialized memory bitmap structure.
2271 * @nr_highmem_p: Pointer to the number of highmem image pages.
2272 *
2273 * Try to allocate as many highmem pages as there are highmem image pages
2274 * (@nr_highmem_p points to the variable containing the number of highmem image
2275 * pages).  The pages that are "safe" (ie. will not be overwritten when the
2276 * hibernation image is restored entirely) have the corresponding bits set in
2277 * @bm (it must be unitialized).
2278 *
2279 * NOTE: This function should not be called if there are no highmem image pages.
2280 */
2281static int prepare_highmem_image(struct memory_bitmap *bm,
2282				 unsigned int *nr_highmem_p)
2283{
2284	unsigned int to_alloc;
2285
2286	if (memory_bm_create(bm, GFP_ATOMIC, PG_SAFE))
2287		return -ENOMEM;
2288
2289	if (get_highmem_buffer(PG_SAFE))
2290		return -ENOMEM;
2291
2292	to_alloc = count_free_highmem_pages();
2293	if (to_alloc > *nr_highmem_p)
2294		to_alloc = *nr_highmem_p;
2295	else
2296		*nr_highmem_p = to_alloc;
2297
2298	safe_highmem_pages = 0;
2299	while (to_alloc-- > 0) {
2300		struct page *page;
2301
2302		page = alloc_page(__GFP_HIGHMEM);
2303		if (!swsusp_page_is_free(page)) {
2304			/* The page is "safe", set its bit the bitmap */
2305			memory_bm_set_bit(bm, page_to_pfn(page));
2306			safe_highmem_pages++;
2307		}
2308		/* Mark the page as allocated */
2309		swsusp_set_page_forbidden(page);
2310		swsusp_set_page_free(page);
2311	}
2312	memory_bm_position_reset(bm);
2313	safe_highmem_bm = bm;
2314	return 0;
2315}
2316
2317static struct page *last_highmem_page;
2318
2319/**
2320 * get_highmem_page_buffer - Prepare a buffer to store a highmem image page.
2321 *
2322 * For a given highmem image page get a buffer that suspend_write_next() should
2323 * return to its caller to write to.
2324 *
2325 * If the page is to be saved to its "original" page frame or a copy of
2326 * the page is to be made in the highmem, @buffer is returned.  Otherwise,
2327 * the copy of the page is to be made in normal memory, so the address of
2328 * the copy is returned.
2329 *
2330 * If @buffer is returned, the caller of suspend_write_next() will write
2331 * the page's contents to @buffer, so they will have to be copied to the
2332 * right location on the next call to suspend_write_next() and it is done
2333 * with the help of copy_last_highmem_page().  For this purpose, if
2334 * @buffer is returned, @last_highmem_page is set to the page to which
2335 * the data will have to be copied from @buffer.
2336 */
2337static void *get_highmem_page_buffer(struct page *page,
2338				     struct chain_allocator *ca)
2339{
2340	struct highmem_pbe *pbe;
2341	void *kaddr;
2342
2343	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page)) {
2344		/*
2345		 * We have allocated the "original" page frame and we can
2346		 * use it directly to store the loaded page.
2347		 */
2348		last_highmem_page = page;
2349		return buffer;
2350	}
2351	/*
2352	 * The "original" page frame has not been allocated and we have to
2353	 * use a "safe" page frame to store the loaded page.
2354	 */
2355	pbe = chain_alloc(ca, sizeof(struct highmem_pbe));
2356	if (!pbe) {
2357		swsusp_free();
2358		return ERR_PTR(-ENOMEM);
2359	}
2360	pbe->orig_page = page;
2361	if (safe_highmem_pages > 0) {
2362		struct page *tmp;
2363
2364		/* Copy of the page will be stored in high memory */
2365		kaddr = buffer;
2366		tmp = pfn_to_page(memory_bm_next_pfn(safe_highmem_bm));
2367		safe_highmem_pages--;
2368		last_highmem_page = tmp;
2369		pbe->copy_page = tmp;
2370	} else {
2371		/* Copy of the page will be stored in normal memory */
2372		kaddr = safe_pages_list;
2373		safe_pages_list = safe_pages_list->next;
2374		pbe->copy_page = virt_to_page(kaddr);
2375	}
2376	pbe->next = highmem_pblist;
2377	highmem_pblist = pbe;
2378	return kaddr;
2379}
2380
2381/**
2382 * copy_last_highmem_page - Copy most the most recent highmem image page.
2383 *
2384 * Copy the contents of a highmem image from @buffer, where the caller of
2385 * snapshot_write_next() has stored them, to the right location represented by
2386 * @last_highmem_page .
2387 */
2388static void copy_last_highmem_page(void)
2389{
2390	if (last_highmem_page) {
2391		void *dst;
2392
2393		dst = kmap_atomic(last_highmem_page);
2394		copy_page(dst, buffer);
2395		kunmap_atomic(dst);
2396		last_highmem_page = NULL;
2397	}
2398}
2399
2400static inline int last_highmem_page_copied(void)
2401{
2402	return !last_highmem_page;
2403}
2404
2405static inline void free_highmem_data(void)
2406{
2407	if (safe_highmem_bm)
2408		memory_bm_free(safe_highmem_bm, PG_UNSAFE_CLEAR);
2409
2410	if (buffer)
2411		free_image_page(buffer, PG_UNSAFE_CLEAR);
2412}
2413#else
2414static unsigned int count_highmem_image_pages(struct memory_bitmap *bm) { return 0; }
2415
2416static inline int prepare_highmem_image(struct memory_bitmap *bm,
2417					unsigned int *nr_highmem_p) { return 0; }
2418
2419static inline void *get_highmem_page_buffer(struct page *page,
2420					    struct chain_allocator *ca)
2421{
2422	return ERR_PTR(-EINVAL);
2423}
2424
2425static inline void copy_last_highmem_page(void) {}
2426static inline int last_highmem_page_copied(void) { return 1; }
2427static inline void free_highmem_data(void) {}
2428#endif /* CONFIG_HIGHMEM */
2429
2430#define PBES_PER_LINKED_PAGE	(LINKED_PAGE_DATA_SIZE / sizeof(struct pbe))
2431
2432/**
2433 * prepare_image - Make room for loading hibernation image.
2434 * @new_bm: Unitialized memory bitmap structure.
2435 * @bm: Memory bitmap with unsafe pages marked.
2436 *
2437 * Use @bm to mark the pages that will be overwritten in the process of
2438 * restoring the system memory state from the suspend image ("unsafe" pages)
2439 * and allocate memory for the image.
2440 *
2441 * The idea is to allocate a new memory bitmap first and then allocate
2442 * as many pages as needed for image data, but without specifying what those
2443 * pages will be used for just yet.  Instead, we mark them all as allocated and
2444 * create a lists of "safe" pages to be used later.  On systems with high
2445 * memory a list of "safe" highmem pages is created too.
2446 */
2447static int prepare_image(struct memory_bitmap *new_bm, struct memory_bitmap *bm)
2448{
2449	unsigned int nr_pages, nr_highmem;
2450	struct linked_page *lp;
2451	int error;
2452
2453	/* If there is no highmem, the buffer will not be necessary */
2454	free_image_page(buffer, PG_UNSAFE_CLEAR);
2455	buffer = NULL;
2456
2457	nr_highmem = count_highmem_image_pages(bm);
2458	mark_unsafe_pages(bm);
2459
2460	error = memory_bm_create(new_bm, GFP_ATOMIC, PG_SAFE);
2461	if (error)
2462		goto Free;
2463
2464	duplicate_memory_bitmap(new_bm, bm);
2465	memory_bm_free(bm, PG_UNSAFE_KEEP);
2466	if (nr_highmem > 0) {
2467		error = prepare_highmem_image(bm, &nr_highmem);
2468		if (error)
2469			goto Free;
2470	}
2471	/*
2472	 * Reserve some safe pages for potential later use.
2473	 *
2474	 * NOTE: This way we make sure there will be enough safe pages for the
2475	 * chain_alloc() in get_buffer().  It is a bit wasteful, but
2476	 * nr_copy_pages cannot be greater than 50% of the memory anyway.
2477	 *
2478	 * nr_copy_pages cannot be less than allocated_unsafe_pages too.
2479	 */
2480	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2481	nr_pages = DIV_ROUND_UP(nr_pages, PBES_PER_LINKED_PAGE);
2482	while (nr_pages > 0) {
2483		lp = get_image_page(GFP_ATOMIC, PG_SAFE);
2484		if (!lp) {
2485			error = -ENOMEM;
2486			goto Free;
2487		}
2488		lp->next = safe_pages_list;
2489		safe_pages_list = lp;
2490		nr_pages--;
2491	}
2492	/* Preallocate memory for the image */
2493	nr_pages = nr_copy_pages - nr_highmem - allocated_unsafe_pages;
2494	while (nr_pages > 0) {
2495		lp = (struct linked_page *)get_zeroed_page(GFP_ATOMIC);
2496		if (!lp) {
2497			error = -ENOMEM;
2498			goto Free;
2499		}
2500		if (!swsusp_page_is_free(virt_to_page(lp))) {
2501			/* The page is "safe", add it to the list */
2502			lp->next = safe_pages_list;
2503			safe_pages_list = lp;
2504		}
2505		/* Mark the page as allocated */
2506		swsusp_set_page_forbidden(virt_to_page(lp));
2507		swsusp_set_page_free(virt_to_page(lp));
2508		nr_pages--;
2509	}
2510	return 0;
2511
2512 Free:
2513	swsusp_free();
2514	return error;
2515}
2516
2517/**
2518 * get_buffer - Get the address to store the next image data page.
2519 *
2520 * Get the address that snapshot_write_next() should return to its caller to
2521 * write to.
2522 */
2523static void *get_buffer(struct memory_bitmap *bm, struct chain_allocator *ca)
2524{
2525	struct pbe *pbe;
2526	struct page *page;
2527	unsigned long pfn = memory_bm_next_pfn(bm);
2528
2529	if (pfn == BM_END_OF_MAP)
2530		return ERR_PTR(-EFAULT);
2531
2532	page = pfn_to_page(pfn);
2533	if (PageHighMem(page))
2534		return get_highmem_page_buffer(page, ca);
2535
2536	if (swsusp_page_is_forbidden(page) && swsusp_page_is_free(page))
2537		/*
2538		 * We have allocated the "original" page frame and we can
2539		 * use it directly to store the loaded page.
2540		 */
2541		return page_address(page);
2542
2543	/*
2544	 * The "original" page frame has not been allocated and we have to
2545	 * use a "safe" page frame to store the loaded page.
2546	 */
2547	pbe = chain_alloc(ca, sizeof(struct pbe));
2548	if (!pbe) {
2549		swsusp_free();
2550		return ERR_PTR(-ENOMEM);
2551	}
2552	pbe->orig_address = page_address(page);
2553	pbe->address = safe_pages_list;
2554	safe_pages_list = safe_pages_list->next;
2555	pbe->next = restore_pblist;
2556	restore_pblist = pbe;
2557	return pbe->address;
2558}
2559
2560/**
2561 * snapshot_write_next - Get the address to store the next image page.
2562 * @handle: Snapshot handle structure to guide the writing.
2563 *
2564 * On the first call, @handle should point to a zeroed snapshot_handle
2565 * structure.  The structure gets populated then and a pointer to it should be
2566 * passed to this function every next time.
2567 *
2568 * On success, the function returns a positive number.  Then, the caller
2569 * is allowed to write up to the returned number of bytes to the memory
2570 * location computed by the data_of() macro.
2571 *
2572 * The function returns 0 to indicate the "end of file" condition.  Negative
2573 * numbers are returned on errors, in which cases the structure pointed to by
2574 * @handle is not updated and should not be used any more.
2575 */
2576int snapshot_write_next(struct snapshot_handle *handle)
2577{
2578	static struct chain_allocator ca;
2579	int error = 0;
2580
2581	/* Check if we have already loaded the entire image */
2582	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages)
2583		return 0;
2584
2585	handle->sync_read = 1;
2586
2587	if (!handle->cur) {
2588		if (!buffer)
2589			/* This makes the buffer be freed by swsusp_free() */
2590			buffer = get_image_page(GFP_ATOMIC, PG_ANY);
2591
2592		if (!buffer)
2593			return -ENOMEM;
2594
2595		handle->buffer = buffer;
2596	} else if (handle->cur == 1) {
2597		error = load_header(buffer);
2598		if (error)
2599			return error;
2600
2601		safe_pages_list = NULL;
2602
2603		error = memory_bm_create(&copy_bm, GFP_ATOMIC, PG_ANY);
2604		if (error)
2605			return error;
2606
2607		/* Allocate buffer for page keys. */
2608		error = page_key_alloc(nr_copy_pages);
2609		if (error)
2610			return error;
2611
2612		hibernate_restore_protection_begin();
2613	} else if (handle->cur <= nr_meta_pages + 1) {
2614		error = unpack_orig_pfns(buffer, &copy_bm);
2615		if (error)
2616			return error;
2617
2618		if (handle->cur == nr_meta_pages + 1) {
2619			error = prepare_image(&orig_bm, &copy_bm);
2620			if (error)
2621				return error;
2622
2623			chain_init(&ca, GFP_ATOMIC, PG_SAFE);
2624			memory_bm_position_reset(&orig_bm);
2625			restore_pblist = NULL;
2626			handle->buffer = get_buffer(&orig_bm, &ca);
2627			handle->sync_read = 0;
2628			if (IS_ERR(handle->buffer))
2629				return PTR_ERR(handle->buffer);
2630		}
2631	} else {
2632		copy_last_highmem_page();
2633		/* Restore page key for data page (s390 only). */
2634		page_key_write(handle->buffer);
2635		hibernate_restore_protect_page(handle->buffer);
2636		handle->buffer = get_buffer(&orig_bm, &ca);
2637		if (IS_ERR(handle->buffer))
2638			return PTR_ERR(handle->buffer);
2639		if (handle->buffer != buffer)
2640			handle->sync_read = 0;
2641	}
2642	handle->cur++;
2643	return PAGE_SIZE;
2644}
2645
2646/**
2647 * snapshot_write_finalize - Complete the loading of a hibernation image.
2648 *
2649 * Must be called after the last call to snapshot_write_next() in case the last
2650 * page in the image happens to be a highmem page and its contents should be
2651 * stored in highmem.  Additionally, it recycles bitmap memory that's not
2652 * necessary any more.
2653 */
2654void snapshot_write_finalize(struct snapshot_handle *handle)
2655{
2656	copy_last_highmem_page();
2657	/* Restore page key for data page (s390 only). */
2658	page_key_write(handle->buffer);
2659	page_key_free();
2660	hibernate_restore_protect_page(handle->buffer);
2661	/* Do that only if we have loaded the image entirely */
2662	if (handle->cur > 1 && handle->cur > nr_meta_pages + nr_copy_pages) {
2663		memory_bm_recycle(&orig_bm);
2664		free_highmem_data();
2665	}
2666}
2667
2668int snapshot_image_loaded(struct snapshot_handle *handle)
2669{
2670	return !(!nr_copy_pages || !last_highmem_page_copied() ||
2671			handle->cur <= nr_meta_pages + nr_copy_pages);
2672}
2673
2674#ifdef CONFIG_HIGHMEM
2675/* Assumes that @buf is ready and points to a "safe" page */
2676static inline void swap_two_pages_data(struct page *p1, struct page *p2,
2677				       void *buf)
2678{
2679	void *kaddr1, *kaddr2;
2680
2681	kaddr1 = kmap_atomic(p1);
2682	kaddr2 = kmap_atomic(p2);
2683	copy_page(buf, kaddr1);
2684	copy_page(kaddr1, kaddr2);
2685	copy_page(kaddr2, buf);
2686	kunmap_atomic(kaddr2);
2687	kunmap_atomic(kaddr1);
2688}
2689
2690/**
2691 * restore_highmem - Put highmem image pages into their original locations.
2692 *
2693 * For each highmem page that was in use before hibernation and is included in
2694 * the image, and also has been allocated by the "restore" kernel, swap its
2695 * current contents with the previous (ie. "before hibernation") ones.
2696 *
2697 * If the restore eventually fails, we can call this function once again and
2698 * restore the highmem state as seen by the restore kernel.
2699 */
2700int restore_highmem(void)
2701{
2702	struct highmem_pbe *pbe = highmem_pblist;
2703	void *buf;
2704
2705	if (!pbe)
2706		return 0;
2707
2708	buf = get_image_page(GFP_ATOMIC, PG_SAFE);
2709	if (!buf)
2710		return -ENOMEM;
2711
2712	while (pbe) {
2713		swap_two_pages_data(pbe->copy_page, pbe->orig_page, buf);
2714		pbe = pbe->next;
2715	}
2716	free_image_page(buf, PG_UNSAFE_CLEAR);
2717	return 0;
2718}
2719#endif /* CONFIG_HIGHMEM */