Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2018-2020 Christoph Hellwig.
  4 *
  5 * DMA operations that map physical memory directly without using an IOMMU.
  6 */
  7#include <linux/memblock.h> /* for max_pfn */
  8#include <linux/export.h>
  9#include <linux/mm.h>
 10#include <linux/dma-map-ops.h>
 11#include <linux/scatterlist.h>
 12#include <linux/pfn.h>
 13#include <linux/vmalloc.h>
 14#include <linux/set_memory.h>
 15#include <linux/slab.h>
 16#include "direct.h"
 17
 18/*
 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20 * it for entirely different regions. In that case the arch code needs to
 21 * override the variable below for dma-direct to work properly.
 22 */
 23unsigned int zone_dma_bits __ro_after_init = 24;
 24
 25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26		phys_addr_t phys)
 27{
 28	if (force_dma_unencrypted(dev))
 29		return phys_to_dma_unencrypted(dev, phys);
 30	return phys_to_dma(dev, phys);
 31}
 32
 33static inline struct page *dma_direct_to_page(struct device *dev,
 34		dma_addr_t dma_addr)
 35{
 36	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37}
 38
 39u64 dma_direct_get_required_mask(struct device *dev)
 40{
 41	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42	u64 max_dma = phys_to_dma_direct(dev, phys);
 43
 44	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45}
 46
 47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
 48				  u64 *phys_limit)
 49{
 50	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
 51
 52	/*
 53	 * Optimistically try the zone that the physical address mask falls
 54	 * into first.  If that returns memory that isn't actually addressable
 55	 * we will fallback to the next lower zone and try again.
 56	 *
 57	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 58	 * zones.
 59	 */
 60	*phys_limit = dma_to_phys(dev, dma_limit);
 61	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 62		return GFP_DMA;
 63	if (*phys_limit <= DMA_BIT_MASK(32))
 64		return GFP_DMA32;
 65	return 0;
 66}
 67
 68static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 69{
 70	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 71
 72	if (dma_addr == DMA_MAPPING_ERROR)
 73		return false;
 74	return dma_addr + size - 1 <=
 75		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 76}
 77
 78static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
 79{
 80	if (!force_dma_unencrypted(dev))
 81		return 0;
 82	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
 83}
 84
 85static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
 86{
 87	int ret;
 88
 89	if (!force_dma_unencrypted(dev))
 90		return 0;
 91	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
 92	if (ret)
 93		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
 94	return ret;
 95}
 96
 97static void __dma_direct_free_pages(struct device *dev, struct page *page,
 98				    size_t size)
 99{
100	if (swiotlb_free(dev, page, size))
101		return;
102	dma_free_contiguous(dev, page, size);
103}
104
105static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
106{
107	struct page *page = swiotlb_alloc(dev, size);
108
109	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110		swiotlb_free(dev, page, size);
111		return NULL;
112	}
113
114	return page;
115}
116
117static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
118		gfp_t gfp, bool allow_highmem)
119{
120	int node = dev_to_node(dev);
121	struct page *page = NULL;
122	u64 phys_limit;
123
124	WARN_ON_ONCE(!PAGE_ALIGNED(size));
125
126	if (is_swiotlb_for_alloc(dev))
127		return dma_direct_alloc_swiotlb(dev, size);
128
129	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
130					   &phys_limit);
131	page = dma_alloc_contiguous(dev, size, gfp);
132	if (page) {
133		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134		    (!allow_highmem && PageHighMem(page))) {
135			dma_free_contiguous(dev, page, size);
136			page = NULL;
137		}
138	}
139again:
140	if (!page)
141		page = alloc_pages_node(node, gfp, get_order(size));
142	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143		dma_free_contiguous(dev, page, size);
144		page = NULL;
145
146		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147		    phys_limit < DMA_BIT_MASK(64) &&
148		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
149			gfp |= GFP_DMA32;
150			goto again;
151		}
152
153		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155			goto again;
156		}
157	}
158
159	return page;
160}
161
162/*
163 * Check if a potentially blocking operations needs to dip into the atomic
164 * pools for the given device/gfp.
165 */
166static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167{
168	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169}
170
171static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172		dma_addr_t *dma_handle, gfp_t gfp)
173{
174	struct page *page;
175	u64 phys_mask;
176	void *ret;
177
178	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179		return NULL;
180
181	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
182					   &phys_mask);
183	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
184	if (!page)
185		return NULL;
186	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
187	return ret;
188}
189
190static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191		dma_addr_t *dma_handle, gfp_t gfp)
192{
193	struct page *page;
194
195	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
196	if (!page)
197		return NULL;
198
199	/* remove any dirty cache lines on the kernel alias */
200	if (!PageHighMem(page))
201		arch_dma_prep_coherent(page, size);
202
203	/* return the page pointer as the opaque cookie */
204	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
205	return page;
206}
207
208void *dma_direct_alloc(struct device *dev, size_t size,
209		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
210{
211	bool remap = false, set_uncached = false;
212	struct page *page;
213	void *ret;
214
215	size = PAGE_ALIGN(size);
216	if (attrs & DMA_ATTR_NO_WARN)
217		gfp |= __GFP_NOWARN;
218
219	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
222
223	if (!dev_is_dma_coherent(dev)) {
224		/*
225		 * Fallback to the arch handler if it exists.  This should
226		 * eventually go away.
227		 */
228		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
229		    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
230		    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
231		    !is_swiotlb_for_alloc(dev))
232			return arch_dma_alloc(dev, size, dma_handle, gfp,
233					      attrs);
234
235		/*
236		 * If there is a global pool, always allocate from it for
237		 * non-coherent devices.
238		 */
239		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
240			return dma_alloc_from_global_coherent(dev, size,
241					dma_handle);
242
243		/*
244		 * Otherwise remap if the architecture is asking for it.  But
245		 * given that remapping memory is a blocking operation we'll
246		 * instead have to dip into the atomic pools.
247		 */
248		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
249		if (remap) {
250			if (dma_direct_use_pool(dev, gfp))
251				return dma_direct_alloc_from_pool(dev, size,
252						dma_handle, gfp);
253		} else {
254			if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
255				return NULL;
256			set_uncached = true;
257		}
258	}
259
260	/*
261	 * Decrypting memory may block, so allocate the memory from the atomic
262	 * pools if we can't block.
263	 */
264	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
265		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
266
267	/* we always manually zero the memory once we are done */
268	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
269	if (!page)
270		return NULL;
271
272	/*
273	 * dma_alloc_contiguous can return highmem pages depending on a
274	 * combination the cma= arguments and per-arch setup.  These need to be
275	 * remapped to return a kernel virtual address.
276	 */
277	if (PageHighMem(page)) {
278		remap = true;
279		set_uncached = false;
280	}
281
282	if (remap) {
283		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
284
285		if (force_dma_unencrypted(dev))
286			prot = pgprot_decrypted(prot);
287
288		/* remove any dirty cache lines on the kernel alias */
289		arch_dma_prep_coherent(page, size);
290
291		/* create a coherent mapping */
292		ret = dma_common_contiguous_remap(page, size, prot,
293				__builtin_return_address(0));
294		if (!ret)
295			goto out_free_pages;
296	} else {
297		ret = page_address(page);
298		if (dma_set_decrypted(dev, ret, size))
299			goto out_free_pages;
300	}
301
302	memset(ret, 0, size);
303
304	if (set_uncached) {
305		arch_dma_prep_coherent(page, size);
306		ret = arch_dma_set_uncached(ret, size);
307		if (IS_ERR(ret))
308			goto out_encrypt_pages;
309	}
310
311	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
312	return ret;
313
314out_encrypt_pages:
315	if (dma_set_encrypted(dev, page_address(page), size))
316		return NULL;
317out_free_pages:
318	__dma_direct_free_pages(dev, page, size);
319	return NULL;
320}
321
322void dma_direct_free(struct device *dev, size_t size,
323		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
324{
325	unsigned int page_order = get_order(size);
326
327	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
328	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
329		/* cpu_addr is a struct page cookie, not a kernel address */
330		dma_free_contiguous(dev, cpu_addr, size);
331		return;
332	}
333
334	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
335	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
336	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
337	    !dev_is_dma_coherent(dev) &&
338	    !is_swiotlb_for_alloc(dev)) {
339		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
340		return;
341	}
342
343	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
344	    !dev_is_dma_coherent(dev)) {
345		if (!dma_release_from_global_coherent(page_order, cpu_addr))
346			WARN_ON_ONCE(1);
347		return;
348	}
349
350	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
351	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
352	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
353		return;
354
355	if (is_vmalloc_addr(cpu_addr)) {
356		vunmap(cpu_addr);
357	} else {
358		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
359			arch_dma_clear_uncached(cpu_addr, size);
360		if (dma_set_encrypted(dev, cpu_addr, size))
361			return;
362	}
363
364	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
365}
366
367struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
368		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
369{
370	struct page *page;
371	void *ret;
372
373	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
374		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
375
376	page = __dma_direct_alloc_pages(dev, size, gfp, false);
377	if (!page)
378		return NULL;
379
380	ret = page_address(page);
381	if (dma_set_decrypted(dev, ret, size))
382		goto out_free_pages;
383	memset(ret, 0, size);
384	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
385	return page;
386out_free_pages:
387	__dma_direct_free_pages(dev, page, size);
388	return NULL;
389}
390
391void dma_direct_free_pages(struct device *dev, size_t size,
392		struct page *page, dma_addr_t dma_addr,
393		enum dma_data_direction dir)
394{
395	void *vaddr = page_address(page);
396
397	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
398	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
399	    dma_free_from_pool(dev, vaddr, size))
400		return;
401
402	if (dma_set_encrypted(dev, vaddr, size))
403		return;
404	__dma_direct_free_pages(dev, page, size);
405}
406
407#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
408    defined(CONFIG_SWIOTLB)
409void dma_direct_sync_sg_for_device(struct device *dev,
410		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
411{
412	struct scatterlist *sg;
413	int i;
414
415	for_each_sg(sgl, sg, nents, i) {
416		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
417
418		if (unlikely(is_swiotlb_buffer(dev, paddr)))
419			swiotlb_sync_single_for_device(dev, paddr, sg->length,
420						       dir);
421
422		if (!dev_is_dma_coherent(dev))
423			arch_sync_dma_for_device(paddr, sg->length,
424					dir);
425	}
426}
427#endif
428
429#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
430    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
431    defined(CONFIG_SWIOTLB)
432void dma_direct_sync_sg_for_cpu(struct device *dev,
433		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
434{
435	struct scatterlist *sg;
436	int i;
437
438	for_each_sg(sgl, sg, nents, i) {
439		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
440
441		if (!dev_is_dma_coherent(dev))
442			arch_sync_dma_for_cpu(paddr, sg->length, dir);
443
444		if (unlikely(is_swiotlb_buffer(dev, paddr)))
445			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
446						    dir);
447
448		if (dir == DMA_FROM_DEVICE)
449			arch_dma_mark_clean(paddr, sg->length);
450	}
451
452	if (!dev_is_dma_coherent(dev))
453		arch_sync_dma_for_cpu_all();
454}
455
456/*
457 * Unmaps segments, except for ones marked as pci_p2pdma which do not
458 * require any further action as they contain a bus address.
459 */
460void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
461		int nents, enum dma_data_direction dir, unsigned long attrs)
462{
463	struct scatterlist *sg;
464	int i;
465
466	for_each_sg(sgl,  sg, nents, i) {
467		if (sg_is_dma_bus_address(sg))
468			sg_dma_unmark_bus_address(sg);
469		else
470			dma_direct_unmap_page(dev, sg->dma_address,
471					      sg_dma_len(sg), dir, attrs);
472	}
473}
474#endif
475
476int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
477		enum dma_data_direction dir, unsigned long attrs)
478{
479	struct pci_p2pdma_map_state p2pdma_state = {};
480	enum pci_p2pdma_map_type map;
481	struct scatterlist *sg;
482	int i, ret;
483
484	for_each_sg(sgl, sg, nents, i) {
485		if (is_pci_p2pdma_page(sg_page(sg))) {
486			map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
487			switch (map) {
488			case PCI_P2PDMA_MAP_BUS_ADDR:
489				continue;
490			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
491				/*
492				 * Any P2P mapping that traverses the PCI
493				 * host bridge must be mapped with CPU physical
494				 * address and not PCI bus addresses. This is
495				 * done with dma_direct_map_page() below.
496				 */
497				break;
498			default:
499				ret = -EREMOTEIO;
500				goto out_unmap;
501			}
502		}
503
504		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
505				sg->offset, sg->length, dir, attrs);
506		if (sg->dma_address == DMA_MAPPING_ERROR) {
507			ret = -EIO;
508			goto out_unmap;
509		}
510		sg_dma_len(sg) = sg->length;
511	}
512
513	return nents;
514
515out_unmap:
516	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
517	return ret;
518}
519
520dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
521		size_t size, enum dma_data_direction dir, unsigned long attrs)
522{
523	dma_addr_t dma_addr = paddr;
524
525	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
526		dev_err_once(dev,
527			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
528			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
529		WARN_ON_ONCE(1);
530		return DMA_MAPPING_ERROR;
531	}
532
533	return dma_addr;
534}
535
536int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
537		void *cpu_addr, dma_addr_t dma_addr, size_t size,
538		unsigned long attrs)
539{
540	struct page *page = dma_direct_to_page(dev, dma_addr);
541	int ret;
542
543	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
544	if (!ret)
545		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
546	return ret;
547}
548
549bool dma_direct_can_mmap(struct device *dev)
550{
551	return dev_is_dma_coherent(dev) ||
552		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
553}
554
555int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
556		void *cpu_addr, dma_addr_t dma_addr, size_t size,
557		unsigned long attrs)
558{
559	unsigned long user_count = vma_pages(vma);
560	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
561	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
562	int ret = -ENXIO;
563
564	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
565	if (force_dma_unencrypted(dev))
566		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
567
568	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
569		return ret;
570	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
571		return ret;
572
573	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
574		return -ENXIO;
575	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
576			user_count << PAGE_SHIFT, vma->vm_page_prot);
577}
578
579int dma_direct_supported(struct device *dev, u64 mask)
580{
581	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
582
583	/*
584	 * Because 32-bit DMA masks are so common we expect every architecture
585	 * to be able to satisfy them - either by not supporting more physical
586	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
587	 * architecture needs to use an IOMMU instead of the direct mapping.
588	 */
589	if (mask >= DMA_BIT_MASK(32))
590		return 1;
591
592	/*
593	 * This check needs to be against the actual bit mask value, so use
594	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
595	 * part of the check.
596	 */
597	if (IS_ENABLED(CONFIG_ZONE_DMA))
598		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
599	return mask >= phys_to_dma_unencrypted(dev, min_mask);
600}
601
602size_t dma_direct_max_mapping_size(struct device *dev)
603{
604	/* If SWIOTLB is active, use its maximum mapping size */
605	if (is_swiotlb_active(dev) &&
606	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
607		return swiotlb_max_mapping_size(dev);
608	return SIZE_MAX;
609}
610
611bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
612{
613	return !dev_is_dma_coherent(dev) ||
614	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
615}
616
617/**
618 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
619 * @dev:	device pointer; needed to "own" the alloced memory.
620 * @cpu_start:  beginning of memory region covered by this offset.
621 * @dma_start:  beginning of DMA/PCI region covered by this offset.
622 * @size:	size of the region.
623 *
624 * This is for the simple case of a uniform offset which cannot
625 * be discovered by "dma-ranges".
626 *
627 * It returns -ENOMEM if out of memory, -EINVAL if a map
628 * already exists, 0 otherwise.
629 *
630 * Note: any call to this from a driver is a bug.  The mapping needs
631 * to be described by the device tree or other firmware interfaces.
632 */
633int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
634			 dma_addr_t dma_start, u64 size)
635{
636	struct bus_dma_region *map;
637	u64 offset = (u64)cpu_start - (u64)dma_start;
638
639	if (dev->dma_range_map) {
640		dev_err(dev, "attempt to add DMA range to existing map\n");
641		return -EINVAL;
642	}
643
644	if (!offset)
645		return 0;
646
647	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
648	if (!map)
649		return -ENOMEM;
650	map[0].cpu_start = cpu_start;
651	map[0].dma_start = dma_start;
652	map[0].offset = offset;
653	map[0].size = size;
654	dev->dma_range_map = map;
655	return 0;
656}