Linux Audio

Check our new training course

Loading...
v6.2
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2018-2020 Christoph Hellwig.
  4 *
  5 * DMA operations that map physical memory directly without using an IOMMU.
  6 */
  7#include <linux/memblock.h> /* for max_pfn */
  8#include <linux/export.h>
  9#include <linux/mm.h>
 10#include <linux/dma-map-ops.h>
 11#include <linux/scatterlist.h>
 12#include <linux/pfn.h>
 13#include <linux/vmalloc.h>
 14#include <linux/set_memory.h>
 15#include <linux/slab.h>
 16#include "direct.h"
 17
 18/*
 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20 * it for entirely different regions. In that case the arch code needs to
 21 * override the variable below for dma-direct to work properly.
 22 */
 23unsigned int zone_dma_bits __ro_after_init = 24;
 24
 25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26		phys_addr_t phys)
 27{
 28	if (force_dma_unencrypted(dev))
 29		return phys_to_dma_unencrypted(dev, phys);
 30	return phys_to_dma(dev, phys);
 31}
 32
 33static inline struct page *dma_direct_to_page(struct device *dev,
 34		dma_addr_t dma_addr)
 35{
 36	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37}
 38
 39u64 dma_direct_get_required_mask(struct device *dev)
 40{
 41	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42	u64 max_dma = phys_to_dma_direct(dev, phys);
 43
 44	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45}
 46
 47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 dma_mask,
 48				  u64 *phys_limit)
 49{
 50	u64 dma_limit = min_not_zero(dma_mask, dev->bus_dma_limit);
 
 
 51
 52	/*
 53	 * Optimistically try the zone that the physical address mask falls
 54	 * into first.  If that returns memory that isn't actually addressable
 55	 * we will fallback to the next lower zone and try again.
 56	 *
 57	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 58	 * zones.
 59	 */
 60	*phys_limit = dma_to_phys(dev, dma_limit);
 61	if (*phys_limit <= DMA_BIT_MASK(zone_dma_bits))
 62		return GFP_DMA;
 63	if (*phys_limit <= DMA_BIT_MASK(32))
 64		return GFP_DMA32;
 65	return 0;
 66}
 67
 68static bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 69{
 70	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 71
 72	if (dma_addr == DMA_MAPPING_ERROR)
 73		return false;
 74	return dma_addr + size - 1 <=
 75		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 76}
 77
 78static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
 79{
 80	if (!force_dma_unencrypted(dev))
 81		return 0;
 82	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
 83}
 84
 85static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
 86{
 87	int ret;
 88
 89	if (!force_dma_unencrypted(dev))
 90		return 0;
 91	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
 92	if (ret)
 93		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
 94	return ret;
 95}
 96
 97static void __dma_direct_free_pages(struct device *dev, struct page *page,
 98				    size_t size)
 99{
100	if (swiotlb_free(dev, page, size))
101		return;
102	dma_free_contiguous(dev, page, size);
103}
104
105static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
106{
107	struct page *page = swiotlb_alloc(dev, size);
108
109	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
110		swiotlb_free(dev, page, size);
111		return NULL;
112	}
113
114	return page;
115}
116
117static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
118		gfp_t gfp, bool allow_highmem)
119{
120	int node = dev_to_node(dev);
121	struct page *page = NULL;
122	u64 phys_limit;
123
124	WARN_ON_ONCE(!PAGE_ALIGNED(size));
125
126	if (is_swiotlb_for_alloc(dev))
127		return dma_direct_alloc_swiotlb(dev, size);
128
129	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
130					   &phys_limit);
131	page = dma_alloc_contiguous(dev, size, gfp);
132	if (page) {
133		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134		    (!allow_highmem && PageHighMem(page))) {
135			dma_free_contiguous(dev, page, size);
136			page = NULL;
137		}
138	}
139again:
140	if (!page)
141		page = alloc_pages_node(node, gfp, get_order(size));
142	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143		dma_free_contiguous(dev, page, size);
144		page = NULL;
145
146		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147		    phys_limit < DMA_BIT_MASK(64) &&
148		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
149			gfp |= GFP_DMA32;
150			goto again;
151		}
152
153		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155			goto again;
156		}
157	}
158
159	return page;
160}
161
162/*
163 * Check if a potentially blocking operations needs to dip into the atomic
164 * pools for the given device/gfp.
165 */
166static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167{
168	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169}
170
171static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172		dma_addr_t *dma_handle, gfp_t gfp)
173{
174	struct page *page;
175	u64 phys_mask;
176	void *ret;
177
178	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179		return NULL;
180
181	gfp |= dma_direct_optimal_gfp_mask(dev, dev->coherent_dma_mask,
182					   &phys_mask);
183	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
184	if (!page)
185		return NULL;
186	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
187	return ret;
188}
189
190static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
191		dma_addr_t *dma_handle, gfp_t gfp)
192{
193	struct page *page;
194
195	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
196	if (!page)
197		return NULL;
198
199	/* remove any dirty cache lines on the kernel alias */
200	if (!PageHighMem(page))
201		arch_dma_prep_coherent(page, size);
202
203	/* return the page pointer as the opaque cookie */
204	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
205	return page;
206}
207
208void *dma_direct_alloc(struct device *dev, size_t size,
209		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
210{
211	bool remap = false, set_uncached = false;
212	struct page *page;
213	void *ret;
214
215	size = PAGE_ALIGN(size);
216	if (attrs & DMA_ATTR_NO_WARN)
217		gfp |= __GFP_NOWARN;
218
219	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
220	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
221		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
222
223	if (!dev_is_dma_coherent(dev)) {
224		/*
225		 * Fallback to the arch handler if it exists.  This should
226		 * eventually go away.
227		 */
228		if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
229		    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
230		    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
231		    !is_swiotlb_for_alloc(dev))
232			return arch_dma_alloc(dev, size, dma_handle, gfp,
233					      attrs);
234
235		/*
236		 * If there is a global pool, always allocate from it for
237		 * non-coherent devices.
238		 */
239		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
240			return dma_alloc_from_global_coherent(dev, size,
241					dma_handle);
242
243		/*
244		 * Otherwise remap if the architecture is asking for it.  But
245		 * given that remapping memory is a blocking operation we'll
246		 * instead have to dip into the atomic pools.
247		 */
 
248		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
249		if (remap) {
250			if (dma_direct_use_pool(dev, gfp))
251				return dma_direct_alloc_from_pool(dev, size,
252						dma_handle, gfp);
253		} else {
254			if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED))
255				return NULL;
256			set_uncached = true;
257		}
258	}
259
260	/*
261	 * Decrypting memory may block, so allocate the memory from the atomic
262	 * pools if we can't block.
263	 */
264	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
 
265		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
266
267	/* we always manually zero the memory once we are done */
268	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
269	if (!page)
270		return NULL;
271
272	/*
273	 * dma_alloc_contiguous can return highmem pages depending on a
274	 * combination the cma= arguments and per-arch setup.  These need to be
275	 * remapped to return a kernel virtual address.
276	 */
277	if (PageHighMem(page)) {
278		remap = true;
279		set_uncached = false;
280	}
281
282	if (remap) {
283		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
284
285		if (force_dma_unencrypted(dev))
286			prot = pgprot_decrypted(prot);
287
288		/* remove any dirty cache lines on the kernel alias */
289		arch_dma_prep_coherent(page, size);
290
291		/* create a coherent mapping */
292		ret = dma_common_contiguous_remap(page, size, prot,
293				__builtin_return_address(0));
294		if (!ret)
295			goto out_free_pages;
296	} else {
297		ret = page_address(page);
298		if (dma_set_decrypted(dev, ret, size))
299			goto out_free_pages;
300	}
301
302	memset(ret, 0, size);
303
304	if (set_uncached) {
305		arch_dma_prep_coherent(page, size);
306		ret = arch_dma_set_uncached(ret, size);
307		if (IS_ERR(ret))
308			goto out_encrypt_pages;
309	}
310
311	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
312	return ret;
313
314out_encrypt_pages:
315	if (dma_set_encrypted(dev, page_address(page), size))
316		return NULL;
317out_free_pages:
318	__dma_direct_free_pages(dev, page, size);
319	return NULL;
 
 
320}
321
322void dma_direct_free(struct device *dev, size_t size,
323		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
324{
325	unsigned int page_order = get_order(size);
326
327	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
328	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
329		/* cpu_addr is a struct page cookie, not a kernel address */
330		dma_free_contiguous(dev, cpu_addr, size);
331		return;
332	}
333
334	if (!IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED) &&
335	    !IS_ENABLED(CONFIG_DMA_DIRECT_REMAP) &&
336	    !IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
337	    !dev_is_dma_coherent(dev) &&
338	    !is_swiotlb_for_alloc(dev)) {
339		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
340		return;
341	}
342
343	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
344	    !dev_is_dma_coherent(dev)) {
345		if (!dma_release_from_global_coherent(page_order, cpu_addr))
346			WARN_ON_ONCE(1);
347		return;
348	}
349
350	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
351	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
352	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
353		return;
354
355	if (is_vmalloc_addr(cpu_addr)) {
356		vunmap(cpu_addr);
357	} else {
358		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
359			arch_dma_clear_uncached(cpu_addr, size);
360		if (dma_set_encrypted(dev, cpu_addr, size))
361			return;
362	}
363
364	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
365}
366
367struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
368		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
369{
370	struct page *page;
371	void *ret;
372
373	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
374		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
375
376	page = __dma_direct_alloc_pages(dev, size, gfp, false);
377	if (!page)
378		return NULL;
379
380	ret = page_address(page);
381	if (dma_set_decrypted(dev, ret, size))
382		goto out_free_pages;
383	memset(ret, 0, size);
384	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
385	return page;
386out_free_pages:
387	__dma_direct_free_pages(dev, page, size);
388	return NULL;
389}
390
391void dma_direct_free_pages(struct device *dev, size_t size,
392		struct page *page, dma_addr_t dma_addr,
393		enum dma_data_direction dir)
394{
395	void *vaddr = page_address(page);
396
397	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
398	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
399	    dma_free_from_pool(dev, vaddr, size))
400		return;
401
402	if (dma_set_encrypted(dev, vaddr, size))
403		return;
404	__dma_direct_free_pages(dev, page, size);
405}
406
407#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
408    defined(CONFIG_SWIOTLB)
409void dma_direct_sync_sg_for_device(struct device *dev,
410		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
411{
412	struct scatterlist *sg;
413	int i;
414
415	for_each_sg(sgl, sg, nents, i) {
416		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
417
418		if (unlikely(is_swiotlb_buffer(dev, paddr)))
419			swiotlb_sync_single_for_device(dev, paddr, sg->length,
420						       dir);
421
422		if (!dev_is_dma_coherent(dev))
423			arch_sync_dma_for_device(paddr, sg->length,
424					dir);
425	}
426}
427#endif
428
429#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
430    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
431    defined(CONFIG_SWIOTLB)
432void dma_direct_sync_sg_for_cpu(struct device *dev,
433		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
434{
435	struct scatterlist *sg;
436	int i;
437
438	for_each_sg(sgl, sg, nents, i) {
439		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
440
441		if (!dev_is_dma_coherent(dev))
442			arch_sync_dma_for_cpu(paddr, sg->length, dir);
443
444		if (unlikely(is_swiotlb_buffer(dev, paddr)))
445			swiotlb_sync_single_for_cpu(dev, paddr, sg->length,
446						    dir);
447
448		if (dir == DMA_FROM_DEVICE)
449			arch_dma_mark_clean(paddr, sg->length);
450	}
451
452	if (!dev_is_dma_coherent(dev))
453		arch_sync_dma_for_cpu_all();
454}
455
456/*
457 * Unmaps segments, except for ones marked as pci_p2pdma which do not
458 * require any further action as they contain a bus address.
459 */
460void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
461		int nents, enum dma_data_direction dir, unsigned long attrs)
462{
463	struct scatterlist *sg;
464	int i;
465
466	for_each_sg(sgl,  sg, nents, i) {
467		if (sg_is_dma_bus_address(sg))
468			sg_dma_unmark_bus_address(sg);
469		else
470			dma_direct_unmap_page(dev, sg->dma_address,
471					      sg_dma_len(sg), dir, attrs);
472	}
473}
474#endif
475
476int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
477		enum dma_data_direction dir, unsigned long attrs)
478{
479	struct pci_p2pdma_map_state p2pdma_state = {};
480	enum pci_p2pdma_map_type map;
481	struct scatterlist *sg;
482	int i, ret;
483
484	for_each_sg(sgl, sg, nents, i) {
485		if (is_pci_p2pdma_page(sg_page(sg))) {
486			map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
487			switch (map) {
488			case PCI_P2PDMA_MAP_BUS_ADDR:
489				continue;
490			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
491				/*
492				 * Any P2P mapping that traverses the PCI
493				 * host bridge must be mapped with CPU physical
494				 * address and not PCI bus addresses. This is
495				 * done with dma_direct_map_page() below.
496				 */
497				break;
498			default:
499				ret = -EREMOTEIO;
500				goto out_unmap;
501			}
502		}
503
504		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
505				sg->offset, sg->length, dir, attrs);
506		if (sg->dma_address == DMA_MAPPING_ERROR) {
507			ret = -EIO;
508			goto out_unmap;
509		}
510		sg_dma_len(sg) = sg->length;
511	}
512
513	return nents;
514
515out_unmap:
516	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
517	return ret;
518}
519
520dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
521		size_t size, enum dma_data_direction dir, unsigned long attrs)
522{
523	dma_addr_t dma_addr = paddr;
524
525	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
526		dev_err_once(dev,
527			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
528			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
529		WARN_ON_ONCE(1);
530		return DMA_MAPPING_ERROR;
531	}
532
533	return dma_addr;
534}
535
536int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
537		void *cpu_addr, dma_addr_t dma_addr, size_t size,
538		unsigned long attrs)
539{
540	struct page *page = dma_direct_to_page(dev, dma_addr);
541	int ret;
542
543	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
544	if (!ret)
545		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
546	return ret;
547}
548
549bool dma_direct_can_mmap(struct device *dev)
550{
551	return dev_is_dma_coherent(dev) ||
552		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
553}
554
555int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
556		void *cpu_addr, dma_addr_t dma_addr, size_t size,
557		unsigned long attrs)
558{
559	unsigned long user_count = vma_pages(vma);
560	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
561	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
562	int ret = -ENXIO;
563
564	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
565	if (force_dma_unencrypted(dev))
566		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
567
568	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
569		return ret;
570	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
571		return ret;
572
573	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
574		return -ENXIO;
575	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
576			user_count << PAGE_SHIFT, vma->vm_page_prot);
577}
578
579int dma_direct_supported(struct device *dev, u64 mask)
580{
581	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
582
583	/*
584	 * Because 32-bit DMA masks are so common we expect every architecture
585	 * to be able to satisfy them - either by not supporting more physical
586	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
587	 * architecture needs to use an IOMMU instead of the direct mapping.
588	 */
589	if (mask >= DMA_BIT_MASK(32))
590		return 1;
591
592	/*
593	 * This check needs to be against the actual bit mask value, so use
594	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
595	 * part of the check.
596	 */
597	if (IS_ENABLED(CONFIG_ZONE_DMA))
598		min_mask = min_t(u64, min_mask, DMA_BIT_MASK(zone_dma_bits));
599	return mask >= phys_to_dma_unencrypted(dev, min_mask);
600}
601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
602size_t dma_direct_max_mapping_size(struct device *dev)
603{
604	/* If SWIOTLB is active, use its maximum mapping size */
605	if (is_swiotlb_active(dev) &&
606	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
607		return swiotlb_max_mapping_size(dev);
608	return SIZE_MAX;
609}
610
611bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
612{
613	return !dev_is_dma_coherent(dev) ||
614	       is_swiotlb_buffer(dev, dma_to_phys(dev, dma_addr));
615}
616
617/**
618 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
619 * @dev:	device pointer; needed to "own" the alloced memory.
620 * @cpu_start:  beginning of memory region covered by this offset.
621 * @dma_start:  beginning of DMA/PCI region covered by this offset.
622 * @size:	size of the region.
623 *
624 * This is for the simple case of a uniform offset which cannot
625 * be discovered by "dma-ranges".
626 *
627 * It returns -ENOMEM if out of memory, -EINVAL if a map
628 * already exists, 0 otherwise.
629 *
630 * Note: any call to this from a driver is a bug.  The mapping needs
631 * to be described by the device tree or other firmware interfaces.
632 */
633int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
634			 dma_addr_t dma_start, u64 size)
635{
636	struct bus_dma_region *map;
637	u64 offset = (u64)cpu_start - (u64)dma_start;
638
639	if (dev->dma_range_map) {
640		dev_err(dev, "attempt to add DMA range to existing map\n");
641		return -EINVAL;
642	}
643
644	if (!offset)
645		return 0;
646
647	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
648	if (!map)
649		return -ENOMEM;
650	map[0].cpu_start = cpu_start;
651	map[0].dma_start = dma_start;
652	map[0].offset = offset;
653	map[0].size = size;
654	dev->dma_range_map = map;
655	return 0;
656}
v6.13.7
  1// SPDX-License-Identifier: GPL-2.0
  2/*
  3 * Copyright (C) 2018-2020 Christoph Hellwig.
  4 *
  5 * DMA operations that map physical memory directly without using an IOMMU.
  6 */
  7#include <linux/memblock.h> /* for max_pfn */
  8#include <linux/export.h>
  9#include <linux/mm.h>
 10#include <linux/dma-map-ops.h>
 11#include <linux/scatterlist.h>
 12#include <linux/pfn.h>
 13#include <linux/vmalloc.h>
 14#include <linux/set_memory.h>
 15#include <linux/slab.h>
 16#include "direct.h"
 17
 18/*
 19 * Most architectures use ZONE_DMA for the first 16 Megabytes, but some use
 20 * it for entirely different regions. In that case the arch code needs to
 21 * override the variable below for dma-direct to work properly.
 22 */
 23u64 zone_dma_limit __ro_after_init = DMA_BIT_MASK(24);
 24
 25static inline dma_addr_t phys_to_dma_direct(struct device *dev,
 26		phys_addr_t phys)
 27{
 28	if (force_dma_unencrypted(dev))
 29		return phys_to_dma_unencrypted(dev, phys);
 30	return phys_to_dma(dev, phys);
 31}
 32
 33static inline struct page *dma_direct_to_page(struct device *dev,
 34		dma_addr_t dma_addr)
 35{
 36	return pfn_to_page(PHYS_PFN(dma_to_phys(dev, dma_addr)));
 37}
 38
 39u64 dma_direct_get_required_mask(struct device *dev)
 40{
 41	phys_addr_t phys = (phys_addr_t)(max_pfn - 1) << PAGE_SHIFT;
 42	u64 max_dma = phys_to_dma_direct(dev, phys);
 43
 44	return (1ULL << (fls64(max_dma) - 1)) * 2 - 1;
 45}
 46
 47static gfp_t dma_direct_optimal_gfp_mask(struct device *dev, u64 *phys_limit)
 
 48{
 49	u64 dma_limit = min_not_zero(
 50		dev->coherent_dma_mask,
 51		dev->bus_dma_limit);
 52
 53	/*
 54	 * Optimistically try the zone that the physical address mask falls
 55	 * into first.  If that returns memory that isn't actually addressable
 56	 * we will fallback to the next lower zone and try again.
 57	 *
 58	 * Note that GFP_DMA32 and GFP_DMA are no ops without the corresponding
 59	 * zones.
 60	 */
 61	*phys_limit = dma_to_phys(dev, dma_limit);
 62	if (*phys_limit <= zone_dma_limit)
 63		return GFP_DMA;
 64	if (*phys_limit <= DMA_BIT_MASK(32))
 65		return GFP_DMA32;
 66	return 0;
 67}
 68
 69bool dma_coherent_ok(struct device *dev, phys_addr_t phys, size_t size)
 70{
 71	dma_addr_t dma_addr = phys_to_dma_direct(dev, phys);
 72
 73	if (dma_addr == DMA_MAPPING_ERROR)
 74		return false;
 75	return dma_addr + size - 1 <=
 76		min_not_zero(dev->coherent_dma_mask, dev->bus_dma_limit);
 77}
 78
 79static int dma_set_decrypted(struct device *dev, void *vaddr, size_t size)
 80{
 81	if (!force_dma_unencrypted(dev))
 82		return 0;
 83	return set_memory_decrypted((unsigned long)vaddr, PFN_UP(size));
 84}
 85
 86static int dma_set_encrypted(struct device *dev, void *vaddr, size_t size)
 87{
 88	int ret;
 89
 90	if (!force_dma_unencrypted(dev))
 91		return 0;
 92	ret = set_memory_encrypted((unsigned long)vaddr, PFN_UP(size));
 93	if (ret)
 94		pr_warn_ratelimited("leaking DMA memory that can't be re-encrypted\n");
 95	return ret;
 96}
 97
 98static void __dma_direct_free_pages(struct device *dev, struct page *page,
 99				    size_t size)
100{
101	if (swiotlb_free(dev, page, size))
102		return;
103	dma_free_contiguous(dev, page, size);
104}
105
106static struct page *dma_direct_alloc_swiotlb(struct device *dev, size_t size)
107{
108	struct page *page = swiotlb_alloc(dev, size);
109
110	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
111		swiotlb_free(dev, page, size);
112		return NULL;
113	}
114
115	return page;
116}
117
118static struct page *__dma_direct_alloc_pages(struct device *dev, size_t size,
119		gfp_t gfp, bool allow_highmem)
120{
121	int node = dev_to_node(dev);
122	struct page *page = NULL;
123	u64 phys_limit;
124
125	WARN_ON_ONCE(!PAGE_ALIGNED(size));
126
127	if (is_swiotlb_for_alloc(dev))
128		return dma_direct_alloc_swiotlb(dev, size);
129
130	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
 
131	page = dma_alloc_contiguous(dev, size, gfp);
132	if (page) {
133		if (!dma_coherent_ok(dev, page_to_phys(page), size) ||
134		    (!allow_highmem && PageHighMem(page))) {
135			dma_free_contiguous(dev, page, size);
136			page = NULL;
137		}
138	}
139again:
140	if (!page)
141		page = alloc_pages_node(node, gfp, get_order(size));
142	if (page && !dma_coherent_ok(dev, page_to_phys(page), size)) {
143		__free_pages(page, get_order(size));
144		page = NULL;
145
146		if (IS_ENABLED(CONFIG_ZONE_DMA32) &&
147		    phys_limit < DMA_BIT_MASK(64) &&
148		    !(gfp & (GFP_DMA32 | GFP_DMA))) {
149			gfp |= GFP_DMA32;
150			goto again;
151		}
152
153		if (IS_ENABLED(CONFIG_ZONE_DMA) && !(gfp & GFP_DMA)) {
154			gfp = (gfp & ~GFP_DMA32) | GFP_DMA;
155			goto again;
156		}
157	}
158
159	return page;
160}
161
162/*
163 * Check if a potentially blocking operations needs to dip into the atomic
164 * pools for the given device/gfp.
165 */
166static bool dma_direct_use_pool(struct device *dev, gfp_t gfp)
167{
168	return !gfpflags_allow_blocking(gfp) && !is_swiotlb_for_alloc(dev);
169}
170
171static void *dma_direct_alloc_from_pool(struct device *dev, size_t size,
172		dma_addr_t *dma_handle, gfp_t gfp)
173{
174	struct page *page;
175	u64 phys_limit;
176	void *ret;
177
178	if (WARN_ON_ONCE(!IS_ENABLED(CONFIG_DMA_COHERENT_POOL)))
179		return NULL;
180
181	gfp |= dma_direct_optimal_gfp_mask(dev, &phys_limit);
 
182	page = dma_alloc_from_pool(dev, size, &ret, gfp, dma_coherent_ok);
183	if (!page)
184		return NULL;
185	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
186	return ret;
187}
188
189static void *dma_direct_alloc_no_mapping(struct device *dev, size_t size,
190		dma_addr_t *dma_handle, gfp_t gfp)
191{
192	struct page *page;
193
194	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
195	if (!page)
196		return NULL;
197
198	/* remove any dirty cache lines on the kernel alias */
199	if (!PageHighMem(page))
200		arch_dma_prep_coherent(page, size);
201
202	/* return the page pointer as the opaque cookie */
203	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
204	return page;
205}
206
207void *dma_direct_alloc(struct device *dev, size_t size,
208		dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs)
209{
210	bool remap = false, set_uncached = false;
211	struct page *page;
212	void *ret;
213
214	size = PAGE_ALIGN(size);
215	if (attrs & DMA_ATTR_NO_WARN)
216		gfp |= __GFP_NOWARN;
217
218	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
219	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev))
220		return dma_direct_alloc_no_mapping(dev, size, dma_handle, gfp);
221
222	if (!dev_is_dma_coherent(dev)) {
223		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
 
 
 
 
 
 
224		    !is_swiotlb_for_alloc(dev))
225			return arch_dma_alloc(dev, size, dma_handle, gfp,
226					      attrs);
227
228		/*
229		 * If there is a global pool, always allocate from it for
230		 * non-coherent devices.
231		 */
232		if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL))
233			return dma_alloc_from_global_coherent(dev, size,
234					dma_handle);
235
236		/*
237		 * Otherwise we require the architecture to either be able to
238		 * mark arbitrary parts of the kernel direct mapping uncached,
239		 * or remapped it uncached.
240		 */
241		set_uncached = IS_ENABLED(CONFIG_ARCH_HAS_DMA_SET_UNCACHED);
242		remap = IS_ENABLED(CONFIG_DMA_DIRECT_REMAP);
243		if (!set_uncached && !remap) {
244			pr_warn_once("coherent DMA allocations not supported on this platform.\n");
245			return NULL;
 
 
 
 
 
246		}
247	}
248
249	/*
250	 * Remapping or decrypting memory may block, allocate the memory from
251	 * the atomic pools instead if we aren't allowed block.
252	 */
253	if ((remap || force_dma_unencrypted(dev)) &&
254	    dma_direct_use_pool(dev, gfp))
255		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
256
257	/* we always manually zero the memory once we are done */
258	page = __dma_direct_alloc_pages(dev, size, gfp & ~__GFP_ZERO, true);
259	if (!page)
260		return NULL;
261
262	/*
263	 * dma_alloc_contiguous can return highmem pages depending on a
264	 * combination the cma= arguments and per-arch setup.  These need to be
265	 * remapped to return a kernel virtual address.
266	 */
267	if (PageHighMem(page)) {
268		remap = true;
269		set_uncached = false;
270	}
271
272	if (remap) {
273		pgprot_t prot = dma_pgprot(dev, PAGE_KERNEL, attrs);
274
275		if (force_dma_unencrypted(dev))
276			prot = pgprot_decrypted(prot);
277
278		/* remove any dirty cache lines on the kernel alias */
279		arch_dma_prep_coherent(page, size);
280
281		/* create a coherent mapping */
282		ret = dma_common_contiguous_remap(page, size, prot,
283				__builtin_return_address(0));
284		if (!ret)
285			goto out_free_pages;
286	} else {
287		ret = page_address(page);
288		if (dma_set_decrypted(dev, ret, size))
289			goto out_leak_pages;
290	}
291
292	memset(ret, 0, size);
293
294	if (set_uncached) {
295		arch_dma_prep_coherent(page, size);
296		ret = arch_dma_set_uncached(ret, size);
297		if (IS_ERR(ret))
298			goto out_encrypt_pages;
299	}
300
301	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
302	return ret;
303
304out_encrypt_pages:
305	if (dma_set_encrypted(dev, page_address(page), size))
306		return NULL;
307out_free_pages:
308	__dma_direct_free_pages(dev, page, size);
309	return NULL;
310out_leak_pages:
311	return NULL;
312}
313
314void dma_direct_free(struct device *dev, size_t size,
315		void *cpu_addr, dma_addr_t dma_addr, unsigned long attrs)
316{
317	unsigned int page_order = get_order(size);
318
319	if ((attrs & DMA_ATTR_NO_KERNEL_MAPPING) &&
320	    !force_dma_unencrypted(dev) && !is_swiotlb_for_alloc(dev)) {
321		/* cpu_addr is a struct page cookie, not a kernel address */
322		dma_free_contiguous(dev, cpu_addr, size);
323		return;
324	}
325
326	if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_ALLOC) &&
 
 
327	    !dev_is_dma_coherent(dev) &&
328	    !is_swiotlb_for_alloc(dev)) {
329		arch_dma_free(dev, size, cpu_addr, dma_addr, attrs);
330		return;
331	}
332
333	if (IS_ENABLED(CONFIG_DMA_GLOBAL_POOL) &&
334	    !dev_is_dma_coherent(dev)) {
335		if (!dma_release_from_global_coherent(page_order, cpu_addr))
336			WARN_ON_ONCE(1);
337		return;
338	}
339
340	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
341	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
342	    dma_free_from_pool(dev, cpu_addr, PAGE_ALIGN(size)))
343		return;
344
345	if (is_vmalloc_addr(cpu_addr)) {
346		vunmap(cpu_addr);
347	} else {
348		if (IS_ENABLED(CONFIG_ARCH_HAS_DMA_CLEAR_UNCACHED))
349			arch_dma_clear_uncached(cpu_addr, size);
350		if (dma_set_encrypted(dev, cpu_addr, size))
351			return;
352	}
353
354	__dma_direct_free_pages(dev, dma_direct_to_page(dev, dma_addr), size);
355}
356
357struct page *dma_direct_alloc_pages(struct device *dev, size_t size,
358		dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp)
359{
360	struct page *page;
361	void *ret;
362
363	if (force_dma_unencrypted(dev) && dma_direct_use_pool(dev, gfp))
364		return dma_direct_alloc_from_pool(dev, size, dma_handle, gfp);
365
366	page = __dma_direct_alloc_pages(dev, size, gfp, false);
367	if (!page)
368		return NULL;
369
370	ret = page_address(page);
371	if (dma_set_decrypted(dev, ret, size))
372		goto out_leak_pages;
373	memset(ret, 0, size);
374	*dma_handle = phys_to_dma_direct(dev, page_to_phys(page));
375	return page;
376out_leak_pages:
 
377	return NULL;
378}
379
380void dma_direct_free_pages(struct device *dev, size_t size,
381		struct page *page, dma_addr_t dma_addr,
382		enum dma_data_direction dir)
383{
384	void *vaddr = page_address(page);
385
386	/* If cpu_addr is not from an atomic pool, dma_free_from_pool() fails */
387	if (IS_ENABLED(CONFIG_DMA_COHERENT_POOL) &&
388	    dma_free_from_pool(dev, vaddr, size))
389		return;
390
391	if (dma_set_encrypted(dev, vaddr, size))
392		return;
393	__dma_direct_free_pages(dev, page, size);
394}
395
396#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_DEVICE) || \
397    defined(CONFIG_SWIOTLB)
398void dma_direct_sync_sg_for_device(struct device *dev,
399		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
400{
401	struct scatterlist *sg;
402	int i;
403
404	for_each_sg(sgl, sg, nents, i) {
405		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
406
407		swiotlb_sync_single_for_device(dev, paddr, sg->length, dir);
 
 
408
409		if (!dev_is_dma_coherent(dev))
410			arch_sync_dma_for_device(paddr, sg->length,
411					dir);
412	}
413}
414#endif
415
416#if defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU) || \
417    defined(CONFIG_ARCH_HAS_SYNC_DMA_FOR_CPU_ALL) || \
418    defined(CONFIG_SWIOTLB)
419void dma_direct_sync_sg_for_cpu(struct device *dev,
420		struct scatterlist *sgl, int nents, enum dma_data_direction dir)
421{
422	struct scatterlist *sg;
423	int i;
424
425	for_each_sg(sgl, sg, nents, i) {
426		phys_addr_t paddr = dma_to_phys(dev, sg_dma_address(sg));
427
428		if (!dev_is_dma_coherent(dev))
429			arch_sync_dma_for_cpu(paddr, sg->length, dir);
430
431		swiotlb_sync_single_for_cpu(dev, paddr, sg->length, dir);
 
 
432
433		if (dir == DMA_FROM_DEVICE)
434			arch_dma_mark_clean(paddr, sg->length);
435	}
436
437	if (!dev_is_dma_coherent(dev))
438		arch_sync_dma_for_cpu_all();
439}
440
441/*
442 * Unmaps segments, except for ones marked as pci_p2pdma which do not
443 * require any further action as they contain a bus address.
444 */
445void dma_direct_unmap_sg(struct device *dev, struct scatterlist *sgl,
446		int nents, enum dma_data_direction dir, unsigned long attrs)
447{
448	struct scatterlist *sg;
449	int i;
450
451	for_each_sg(sgl,  sg, nents, i) {
452		if (sg_dma_is_bus_address(sg))
453			sg_dma_unmark_bus_address(sg);
454		else
455			dma_direct_unmap_page(dev, sg->dma_address,
456					      sg_dma_len(sg), dir, attrs);
457	}
458}
459#endif
460
461int dma_direct_map_sg(struct device *dev, struct scatterlist *sgl, int nents,
462		enum dma_data_direction dir, unsigned long attrs)
463{
464	struct pci_p2pdma_map_state p2pdma_state = {};
465	enum pci_p2pdma_map_type map;
466	struct scatterlist *sg;
467	int i, ret;
468
469	for_each_sg(sgl, sg, nents, i) {
470		if (is_pci_p2pdma_page(sg_page(sg))) {
471			map = pci_p2pdma_map_segment(&p2pdma_state, dev, sg);
472			switch (map) {
473			case PCI_P2PDMA_MAP_BUS_ADDR:
474				continue;
475			case PCI_P2PDMA_MAP_THRU_HOST_BRIDGE:
476				/*
477				 * Any P2P mapping that traverses the PCI
478				 * host bridge must be mapped with CPU physical
479				 * address and not PCI bus addresses. This is
480				 * done with dma_direct_map_page() below.
481				 */
482				break;
483			default:
484				ret = -EREMOTEIO;
485				goto out_unmap;
486			}
487		}
488
489		sg->dma_address = dma_direct_map_page(dev, sg_page(sg),
490				sg->offset, sg->length, dir, attrs);
491		if (sg->dma_address == DMA_MAPPING_ERROR) {
492			ret = -EIO;
493			goto out_unmap;
494		}
495		sg_dma_len(sg) = sg->length;
496	}
497
498	return nents;
499
500out_unmap:
501	dma_direct_unmap_sg(dev, sgl, i, dir, attrs | DMA_ATTR_SKIP_CPU_SYNC);
502	return ret;
503}
504
505dma_addr_t dma_direct_map_resource(struct device *dev, phys_addr_t paddr,
506		size_t size, enum dma_data_direction dir, unsigned long attrs)
507{
508	dma_addr_t dma_addr = paddr;
509
510	if (unlikely(!dma_capable(dev, dma_addr, size, false))) {
511		dev_err_once(dev,
512			     "DMA addr %pad+%zu overflow (mask %llx, bus limit %llx).\n",
513			     &dma_addr, size, *dev->dma_mask, dev->bus_dma_limit);
514		WARN_ON_ONCE(1);
515		return DMA_MAPPING_ERROR;
516	}
517
518	return dma_addr;
519}
520
521int dma_direct_get_sgtable(struct device *dev, struct sg_table *sgt,
522		void *cpu_addr, dma_addr_t dma_addr, size_t size,
523		unsigned long attrs)
524{
525	struct page *page = dma_direct_to_page(dev, dma_addr);
526	int ret;
527
528	ret = sg_alloc_table(sgt, 1, GFP_KERNEL);
529	if (!ret)
530		sg_set_page(sgt->sgl, page, PAGE_ALIGN(size), 0);
531	return ret;
532}
533
534bool dma_direct_can_mmap(struct device *dev)
535{
536	return dev_is_dma_coherent(dev) ||
537		IS_ENABLED(CONFIG_DMA_NONCOHERENT_MMAP);
538}
539
540int dma_direct_mmap(struct device *dev, struct vm_area_struct *vma,
541		void *cpu_addr, dma_addr_t dma_addr, size_t size,
542		unsigned long attrs)
543{
544	unsigned long user_count = vma_pages(vma);
545	unsigned long count = PAGE_ALIGN(size) >> PAGE_SHIFT;
546	unsigned long pfn = PHYS_PFN(dma_to_phys(dev, dma_addr));
547	int ret = -ENXIO;
548
549	vma->vm_page_prot = dma_pgprot(dev, vma->vm_page_prot, attrs);
550	if (force_dma_unencrypted(dev))
551		vma->vm_page_prot = pgprot_decrypted(vma->vm_page_prot);
552
553	if (dma_mmap_from_dev_coherent(dev, vma, cpu_addr, size, &ret))
554		return ret;
555	if (dma_mmap_from_global_coherent(vma, cpu_addr, size, &ret))
556		return ret;
557
558	if (vma->vm_pgoff >= count || user_count > count - vma->vm_pgoff)
559		return -ENXIO;
560	return remap_pfn_range(vma, vma->vm_start, pfn + vma->vm_pgoff,
561			user_count << PAGE_SHIFT, vma->vm_page_prot);
562}
563
564int dma_direct_supported(struct device *dev, u64 mask)
565{
566	u64 min_mask = (max_pfn - 1) << PAGE_SHIFT;
567
568	/*
569	 * Because 32-bit DMA masks are so common we expect every architecture
570	 * to be able to satisfy them - either by not supporting more physical
571	 * memory, or by providing a ZONE_DMA32.  If neither is the case, the
572	 * architecture needs to use an IOMMU instead of the direct mapping.
573	 */
574	if (mask >= DMA_BIT_MASK(32))
575		return 1;
576
577	/*
578	 * This check needs to be against the actual bit mask value, so use
579	 * phys_to_dma_unencrypted() here so that the SME encryption mask isn't
580	 * part of the check.
581	 */
582	if (IS_ENABLED(CONFIG_ZONE_DMA))
583		min_mask = min_t(u64, min_mask, zone_dma_limit);
584	return mask >= phys_to_dma_unencrypted(dev, min_mask);
585}
586
587/*
588 * To check whether all ram resource ranges are covered by dma range map
589 * Returns 0 when further check is needed
590 * Returns 1 if there is some RAM range can't be covered by dma_range_map
591 */
592static int check_ram_in_range_map(unsigned long start_pfn,
593				  unsigned long nr_pages, void *data)
594{
595	unsigned long end_pfn = start_pfn + nr_pages;
596	const struct bus_dma_region *bdr = NULL;
597	const struct bus_dma_region *m;
598	struct device *dev = data;
599
600	while (start_pfn < end_pfn) {
601		for (m = dev->dma_range_map; PFN_DOWN(m->size); m++) {
602			unsigned long cpu_start_pfn = PFN_DOWN(m->cpu_start);
603
604			if (start_pfn >= cpu_start_pfn &&
605			    start_pfn - cpu_start_pfn < PFN_DOWN(m->size)) {
606				bdr = m;
607				break;
608			}
609		}
610		if (!bdr)
611			return 1;
612
613		start_pfn = PFN_DOWN(bdr->cpu_start) + PFN_DOWN(bdr->size);
614	}
615
616	return 0;
617}
618
619bool dma_direct_all_ram_mapped(struct device *dev)
620{
621	if (!dev->dma_range_map)
622		return true;
623	return !walk_system_ram_range(0, PFN_DOWN(ULONG_MAX) + 1, dev,
624				      check_ram_in_range_map);
625}
626
627size_t dma_direct_max_mapping_size(struct device *dev)
628{
629	/* If SWIOTLB is active, use its maximum mapping size */
630	if (is_swiotlb_active(dev) &&
631	    (dma_addressing_limited(dev) || is_swiotlb_force_bounce(dev)))
632		return swiotlb_max_mapping_size(dev);
633	return SIZE_MAX;
634}
635
636bool dma_direct_need_sync(struct device *dev, dma_addr_t dma_addr)
637{
638	return !dev_is_dma_coherent(dev) ||
639	       swiotlb_find_pool(dev, dma_to_phys(dev, dma_addr));
640}
641
642/**
643 * dma_direct_set_offset - Assign scalar offset for a single DMA range.
644 * @dev:	device pointer; needed to "own" the alloced memory.
645 * @cpu_start:  beginning of memory region covered by this offset.
646 * @dma_start:  beginning of DMA/PCI region covered by this offset.
647 * @size:	size of the region.
648 *
649 * This is for the simple case of a uniform offset which cannot
650 * be discovered by "dma-ranges".
651 *
652 * It returns -ENOMEM if out of memory, -EINVAL if a map
653 * already exists, 0 otherwise.
654 *
655 * Note: any call to this from a driver is a bug.  The mapping needs
656 * to be described by the device tree or other firmware interfaces.
657 */
658int dma_direct_set_offset(struct device *dev, phys_addr_t cpu_start,
659			 dma_addr_t dma_start, u64 size)
660{
661	struct bus_dma_region *map;
662	u64 offset = (u64)cpu_start - (u64)dma_start;
663
664	if (dev->dma_range_map) {
665		dev_err(dev, "attempt to add DMA range to existing map\n");
666		return -EINVAL;
667	}
668
669	if (!offset)
670		return 0;
671
672	map = kcalloc(2, sizeof(*map), GFP_KERNEL);
673	if (!map)
674		return -ENOMEM;
675	map[0].cpu_start = cpu_start;
676	map[0].dma_start = dma_start;
 
677	map[0].size = size;
678	dev->dma_range_map = map;
679	return 0;
680}