Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  arch/sparc64/mm/init.c
   4 *
   5 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   6 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   7 */
   8 
   9#include <linux/extable.h>
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/string.h>
  13#include <linux/init.h>
  14#include <linux/memblock.h>
  15#include <linux/mm.h>
  16#include <linux/hugetlb.h>
  17#include <linux/initrd.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/poison.h>
  21#include <linux/fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/kprobes.h>
  24#include <linux/cache.h>
  25#include <linux/sort.h>
  26#include <linux/ioport.h>
  27#include <linux/percpu.h>
 
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
  30#include <linux/bootmem_info.h>
  31
  32#include <asm/head.h>
  33#include <asm/page.h>
  34#include <asm/pgalloc.h>
 
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/setup.h>
  52#include <asm/irq.h>
  53
  54#include "init_64.h"
  55
  56unsigned long kern_linear_pte_xor[4] __read_mostly;
  57static unsigned long page_cache4v_flag;
  58
  59/* A bitmap, two bits for every 256MB of physical memory.  These two
  60 * bits determine what page size we use for kernel linear
  61 * translations.  They form an index into kern_linear_pte_xor[].  The
  62 * value in the indexed slot is XOR'd with the TLB miss virtual
  63 * address to form the resulting TTE.  The mapping is:
  64 *
  65 *	0	==>	4MB
  66 *	1	==>	256MB
  67 *	2	==>	2GB
  68 *	3	==>	16GB
  69 *
  70 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  71 * support 2GB pages, and hopefully future cpus will support the 16GB
  72 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  73 * if these larger page sizes are not supported by the cpu.
  74 *
  75 * It would be nice to determine this from the machine description
  76 * 'cpu' properties, but we need to have this table setup before the
  77 * MDESC is initialized.
  78 */
 
  79
  80#ifndef CONFIG_DEBUG_PAGEALLOC
  81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  82 * Space is allocated for this right after the trap table in
  83 * arch/sparc64/kernel/head.S
  84 */
  85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  86#endif
  87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  88
  89static unsigned long cpu_pgsz_mask;
  90
  91#define MAX_BANKS	1024
  92
  93static struct linux_prom64_registers pavail[MAX_BANKS];
  94static int pavail_ents;
  95
  96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
  97
  98static int cmp_p64(const void *a, const void *b)
  99{
 100	const struct linux_prom64_registers *x = a, *y = b;
 101
 102	if (x->phys_addr > y->phys_addr)
 103		return 1;
 104	if (x->phys_addr < y->phys_addr)
 105		return -1;
 106	return 0;
 107}
 108
 109static void __init read_obp_memory(const char *property,
 110				   struct linux_prom64_registers *regs,
 111				   int *num_ents)
 112{
 113	phandle node = prom_finddevice("/memory");
 114	int prop_size = prom_getproplen(node, property);
 115	int ents, ret, i;
 116
 117	ents = prop_size / sizeof(struct linux_prom64_registers);
 118	if (ents > MAX_BANKS) {
 119		prom_printf("The machine has more %s property entries than "
 120			    "this kernel can support (%d).\n",
 121			    property, MAX_BANKS);
 122		prom_halt();
 123	}
 124
 125	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 126	if (ret == -1) {
 127		prom_printf("Couldn't get %s property from /memory.\n",
 128				property);
 129		prom_halt();
 130	}
 131
 132	/* Sanitize what we got from the firmware, by page aligning
 133	 * everything.
 134	 */
 135	for (i = 0; i < ents; i++) {
 136		unsigned long base, size;
 137
 138		base = regs[i].phys_addr;
 139		size = regs[i].reg_size;
 140
 141		size &= PAGE_MASK;
 142		if (base & ~PAGE_MASK) {
 143			unsigned long new_base = PAGE_ALIGN(base);
 144
 145			size -= new_base - base;
 146			if ((long) size < 0L)
 147				size = 0UL;
 148			base = new_base;
 149		}
 150		if (size == 0UL) {
 151			/* If it is empty, simply get rid of it.
 152			 * This simplifies the logic of the other
 153			 * functions that process these arrays.
 154			 */
 155			memmove(&regs[i], &regs[i + 1],
 156				(ents - i - 1) * sizeof(regs[0]));
 157			i--;
 158			ents--;
 159			continue;
 160		}
 161		regs[i].phys_addr = base;
 162		regs[i].reg_size = size;
 163	}
 164
 165	*num_ents = ents;
 166
 167	sort(regs, ents, sizeof(struct linux_prom64_registers),
 168	     cmp_p64, NULL);
 169}
 170
 
 
 
 
 171/* Kernel physical address base and size in bytes.  */
 172unsigned long kern_base __read_mostly;
 173unsigned long kern_size __read_mostly;
 174
 175/* Initial ramdisk setup */
 176extern unsigned long sparc_ramdisk_image64;
 177extern unsigned int sparc_ramdisk_image;
 178extern unsigned int sparc_ramdisk_size;
 179
 180struct page *mem_map_zero __read_mostly;
 181EXPORT_SYMBOL(mem_map_zero);
 182
 183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 184
 185unsigned long sparc64_kern_pri_context __read_mostly;
 186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 187unsigned long sparc64_kern_sec_context __read_mostly;
 188
 189int num_kernel_image_mappings;
 190
 191#ifdef CONFIG_DEBUG_DCFLUSH
 192atomic_t dcpage_flushes = ATOMIC_INIT(0);
 193#ifdef CONFIG_SMP
 194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 195#endif
 196#endif
 197
 198inline void flush_dcache_page_impl(struct page *page)
 199{
 200	BUG_ON(tlb_type == hypervisor);
 201#ifdef CONFIG_DEBUG_DCFLUSH
 202	atomic_inc(&dcpage_flushes);
 203#endif
 204
 205#ifdef DCACHE_ALIASING_POSSIBLE
 206	__flush_dcache_page(page_address(page),
 207			    ((tlb_type == spitfire) &&
 208			     page_mapping_file(page) != NULL));
 209#else
 210	if (page_mapping_file(page) != NULL &&
 211	    tlb_type == spitfire)
 212		__flush_icache_page(__pa(page_address(page)));
 213#endif
 214}
 215
 216#define PG_dcache_dirty		PG_arch_1
 217#define PG_dcache_cpu_shift	32UL
 218#define PG_dcache_cpu_mask	\
 219	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 220
 221#define dcache_dirty_cpu(page) \
 222	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 223
 224static inline void set_dcache_dirty(struct page *page, int this_cpu)
 225{
 226	unsigned long mask = this_cpu;
 227	unsigned long non_cpu_bits;
 228
 229	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 230	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 231
 232	__asm__ __volatile__("1:\n\t"
 233			     "ldx	[%2], %%g7\n\t"
 234			     "and	%%g7, %1, %%g1\n\t"
 235			     "or	%%g1, %0, %%g1\n\t"
 236			     "casx	[%2], %%g7, %%g1\n\t"
 237			     "cmp	%%g7, %%g1\n\t"
 238			     "bne,pn	%%xcc, 1b\n\t"
 239			     " nop"
 240			     : /* no outputs */
 241			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 242			     : "g1", "g7");
 243}
 244
 245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 246{
 247	unsigned long mask = (1UL << PG_dcache_dirty);
 248
 249	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 250			     "1:\n\t"
 251			     "ldx	[%2], %%g7\n\t"
 252			     "srlx	%%g7, %4, %%g1\n\t"
 253			     "and	%%g1, %3, %%g1\n\t"
 254			     "cmp	%%g1, %0\n\t"
 255			     "bne,pn	%%icc, 2f\n\t"
 256			     " andn	%%g7, %1, %%g1\n\t"
 257			     "casx	[%2], %%g7, %%g1\n\t"
 258			     "cmp	%%g7, %%g1\n\t"
 259			     "bne,pn	%%xcc, 1b\n\t"
 260			     " nop\n"
 261			     "2:"
 262			     : /* no outputs */
 263			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 264			       "i" (PG_dcache_cpu_mask),
 265			       "i" (PG_dcache_cpu_shift)
 266			     : "g1", "g7");
 267}
 268
 269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 270{
 271	unsigned long tsb_addr = (unsigned long) ent;
 272
 273	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 274		tsb_addr = __pa(tsb_addr);
 275
 276	__tsb_insert(tsb_addr, tag, pte);
 277}
 278
 279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 280
 281static void flush_dcache(unsigned long pfn)
 282{
 283	struct page *page;
 284
 285	page = pfn_to_page(pfn);
 286	if (page) {
 287		unsigned long pg_flags;
 288
 289		pg_flags = page->flags;
 290		if (pg_flags & (1UL << PG_dcache_dirty)) {
 291			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 292				   PG_dcache_cpu_mask);
 293			int this_cpu = get_cpu();
 294
 295			/* This is just to optimize away some function calls
 296			 * in the SMP case.
 297			 */
 298			if (cpu == this_cpu)
 299				flush_dcache_page_impl(page);
 300			else
 301				smp_flush_dcache_page_impl(page, cpu);
 302
 303			clear_dcache_dirty_cpu(page, cpu);
 304
 305			put_cpu();
 306		}
 307	}
 308}
 309
 310/* mm->context.lock must be held */
 311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 312				    unsigned long tsb_hash_shift, unsigned long address,
 313				    unsigned long tte)
 314{
 315	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 316	unsigned long tag;
 317
 318	if (unlikely(!tsb))
 319		return;
 320
 321	tsb += ((address >> tsb_hash_shift) &
 322		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 323	tag = (address >> 22UL);
 324	tsb_insert(tsb, tag, tte);
 325}
 326
 327#ifdef CONFIG_HUGETLB_PAGE
 328static int __init hugetlbpage_init(void)
 329{
 330	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
 331	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
 332	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
 333	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
 334
 335	return 0;
 336}
 337
 338arch_initcall(hugetlbpage_init);
 339
 340static void __init pud_huge_patch(void)
 341{
 342	struct pud_huge_patch_entry *p;
 343	unsigned long addr;
 344
 345	p = &__pud_huge_patch;
 346	addr = p->addr;
 347	*(unsigned int *)addr = p->insn;
 348
 349	__asm__ __volatile__("flush %0" : : "r" (addr));
 350}
 351
 352bool __init arch_hugetlb_valid_size(unsigned long size)
 353{
 354	unsigned int hugepage_shift = ilog2(size);
 355	unsigned short hv_pgsz_idx;
 356	unsigned int hv_pgsz_mask;
 357
 358	switch (hugepage_shift) {
 359	case HPAGE_16GB_SHIFT:
 360		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
 361		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
 362		pud_huge_patch();
 363		break;
 364	case HPAGE_2GB_SHIFT:
 365		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
 366		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
 367		break;
 368	case HPAGE_256MB_SHIFT:
 369		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
 370		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
 371		break;
 372	case HPAGE_SHIFT:
 373		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
 374		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
 375		break;
 376	case HPAGE_64K_SHIFT:
 377		hv_pgsz_mask = HV_PGSZ_MASK_64K;
 378		hv_pgsz_idx = HV_PGSZ_IDX_64K;
 379		break;
 380	default:
 381		hv_pgsz_mask = 0;
 382	}
 383
 384	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
 385		return false;
 386
 387	return true;
 388}
 389#endif	/* CONFIG_HUGETLB_PAGE */
 390
 391void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 392{
 393	struct mm_struct *mm;
 394	unsigned long flags;
 395	bool is_huge_tsb;
 396	pte_t pte = *ptep;
 397
 398	if (tlb_type != hypervisor) {
 399		unsigned long pfn = pte_pfn(pte);
 400
 401		if (pfn_valid(pfn))
 402			flush_dcache(pfn);
 403	}
 404
 405	mm = vma->vm_mm;
 406
 407	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 408	if (!pte_accessible(mm, pte))
 409		return;
 410
 411	spin_lock_irqsave(&mm->context.lock, flags);
 412
 413	is_huge_tsb = false;
 414#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 415	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
 416		unsigned long hugepage_size = PAGE_SIZE;
 417
 418		if (is_vm_hugetlb_page(vma))
 419			hugepage_size = huge_page_size(hstate_vma(vma));
 420
 421		if (hugepage_size >= PUD_SIZE) {
 422			unsigned long mask = 0x1ffc00000UL;
 423
 424			/* Transfer bits [32:22] from address to resolve
 425			 * at 4M granularity.
 426			 */
 427			pte_val(pte) &= ~mask;
 428			pte_val(pte) |= (address & mask);
 429		} else if (hugepage_size >= PMD_SIZE) {
 430			/* We are fabricating 8MB pages using 4MB
 431			 * real hw pages.
 432			 */
 433			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 434		}
 435
 436		if (hugepage_size >= PMD_SIZE) {
 437			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
 438				REAL_HPAGE_SHIFT, address, pte_val(pte));
 439			is_huge_tsb = true;
 440		}
 441	}
 442#endif
 443	if (!is_huge_tsb)
 444		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 445					address, pte_val(pte));
 446
 447	spin_unlock_irqrestore(&mm->context.lock, flags);
 448}
 449
 450void flush_dcache_page(struct page *page)
 451{
 452	struct address_space *mapping;
 453	int this_cpu;
 454
 455	if (tlb_type == hypervisor)
 456		return;
 457
 458	/* Do not bother with the expensive D-cache flush if it
 459	 * is merely the zero page.  The 'bigcore' testcase in GDB
 460	 * causes this case to run millions of times.
 461	 */
 462	if (page == ZERO_PAGE(0))
 463		return;
 464
 465	this_cpu = get_cpu();
 466
 467	mapping = page_mapping_file(page);
 468	if (mapping && !mapping_mapped(mapping)) {
 469		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 470		if (dirty) {
 471			int dirty_cpu = dcache_dirty_cpu(page);
 472
 473			if (dirty_cpu == this_cpu)
 474				goto out;
 475			smp_flush_dcache_page_impl(page, dirty_cpu);
 476		}
 477		set_dcache_dirty(page, this_cpu);
 478	} else {
 479		/* We could delay the flush for the !page_mapping
 480		 * case too.  But that case is for exec env/arg
 481		 * pages and those are %99 certainly going to get
 482		 * faulted into the tlb (and thus flushed) anyways.
 483		 */
 484		flush_dcache_page_impl(page);
 485	}
 486
 487out:
 488	put_cpu();
 489}
 490EXPORT_SYMBOL(flush_dcache_page);
 491
 492void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 493{
 494	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 495	if (tlb_type == spitfire) {
 496		unsigned long kaddr;
 497
 498		/* This code only runs on Spitfire cpus so this is
 499		 * why we can assume _PAGE_PADDR_4U.
 500		 */
 501		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 502			unsigned long paddr, mask = _PAGE_PADDR_4U;
 503
 504			if (kaddr >= PAGE_OFFSET)
 505				paddr = kaddr & mask;
 506			else {
 507				pte_t *ptep = virt_to_kpte(kaddr);
 
 
 
 508
 509				paddr = pte_val(*ptep) & mask;
 510			}
 511			__flush_icache_page(paddr);
 512		}
 513	}
 514}
 515EXPORT_SYMBOL(flush_icache_range);
 516
 517void mmu_info(struct seq_file *m)
 518{
 519	static const char *pgsz_strings[] = {
 520		"8K", "64K", "512K", "4MB", "32MB",
 521		"256MB", "2GB", "16GB",
 522	};
 523	int i, printed;
 524
 525	if (tlb_type == cheetah)
 526		seq_printf(m, "MMU Type\t: Cheetah\n");
 527	else if (tlb_type == cheetah_plus)
 528		seq_printf(m, "MMU Type\t: Cheetah+\n");
 529	else if (tlb_type == spitfire)
 530		seq_printf(m, "MMU Type\t: Spitfire\n");
 531	else if (tlb_type == hypervisor)
 532		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 533	else
 534		seq_printf(m, "MMU Type\t: ???\n");
 535
 536	seq_printf(m, "MMU PGSZs\t: ");
 537	printed = 0;
 538	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 539		if (cpu_pgsz_mask & (1UL << i)) {
 540			seq_printf(m, "%s%s",
 541				   printed ? "," : "", pgsz_strings[i]);
 542			printed++;
 543		}
 544	}
 545	seq_putc(m, '\n');
 546
 547#ifdef CONFIG_DEBUG_DCFLUSH
 548	seq_printf(m, "DCPageFlushes\t: %d\n",
 549		   atomic_read(&dcpage_flushes));
 550#ifdef CONFIG_SMP
 551	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 552		   atomic_read(&dcpage_flushes_xcall));
 553#endif /* CONFIG_SMP */
 554#endif /* CONFIG_DEBUG_DCFLUSH */
 555}
 556
 557struct linux_prom_translation prom_trans[512] __read_mostly;
 558unsigned int prom_trans_ents __read_mostly;
 559
 560unsigned long kern_locked_tte_data;
 561
 562/* The obp translations are saved based on 8k pagesize, since obp can
 563 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 564 * HI_OBP_ADDRESS range are handled in ktlb.S.
 565 */
 566static inline int in_obp_range(unsigned long vaddr)
 567{
 568	return (vaddr >= LOW_OBP_ADDRESS &&
 569		vaddr < HI_OBP_ADDRESS);
 570}
 571
 572static int cmp_ptrans(const void *a, const void *b)
 573{
 574	const struct linux_prom_translation *x = a, *y = b;
 575
 576	if (x->virt > y->virt)
 577		return 1;
 578	if (x->virt < y->virt)
 579		return -1;
 580	return 0;
 581}
 582
 583/* Read OBP translations property into 'prom_trans[]'.  */
 584static void __init read_obp_translations(void)
 585{
 586	int n, node, ents, first, last, i;
 587
 588	node = prom_finddevice("/virtual-memory");
 589	n = prom_getproplen(node, "translations");
 590	if (unlikely(n == 0 || n == -1)) {
 591		prom_printf("prom_mappings: Couldn't get size.\n");
 592		prom_halt();
 593	}
 594	if (unlikely(n > sizeof(prom_trans))) {
 595		prom_printf("prom_mappings: Size %d is too big.\n", n);
 596		prom_halt();
 597	}
 598
 599	if ((n = prom_getproperty(node, "translations",
 600				  (char *)&prom_trans[0],
 601				  sizeof(prom_trans))) == -1) {
 602		prom_printf("prom_mappings: Couldn't get property.\n");
 603		prom_halt();
 604	}
 605
 606	n = n / sizeof(struct linux_prom_translation);
 607
 608	ents = n;
 609
 610	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 611	     cmp_ptrans, NULL);
 612
 613	/* Now kick out all the non-OBP entries.  */
 614	for (i = 0; i < ents; i++) {
 615		if (in_obp_range(prom_trans[i].virt))
 616			break;
 617	}
 618	first = i;
 619	for (; i < ents; i++) {
 620		if (!in_obp_range(prom_trans[i].virt))
 621			break;
 622	}
 623	last = i;
 624
 625	for (i = 0; i < (last - first); i++) {
 626		struct linux_prom_translation *src = &prom_trans[i + first];
 627		struct linux_prom_translation *dest = &prom_trans[i];
 628
 629		*dest = *src;
 630	}
 631	for (; i < ents; i++) {
 632		struct linux_prom_translation *dest = &prom_trans[i];
 633		dest->virt = dest->size = dest->data = 0x0UL;
 634	}
 635
 636	prom_trans_ents = last - first;
 637
 638	if (tlb_type == spitfire) {
 639		/* Clear diag TTE bits. */
 640		for (i = 0; i < prom_trans_ents; i++)
 641			prom_trans[i].data &= ~0x0003fe0000000000UL;
 642	}
 643
 644	/* Force execute bit on.  */
 645	for (i = 0; i < prom_trans_ents; i++)
 646		prom_trans[i].data |= (tlb_type == hypervisor ?
 647				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 648}
 649
 650static void __init hypervisor_tlb_lock(unsigned long vaddr,
 651				       unsigned long pte,
 652				       unsigned long mmu)
 653{
 654	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 655
 656	if (ret != 0) {
 657		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 658			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 659		prom_halt();
 660	}
 661}
 662
 663static unsigned long kern_large_tte(unsigned long paddr);
 664
 665static void __init remap_kernel(void)
 666{
 667	unsigned long phys_page, tte_vaddr, tte_data;
 668	int i, tlb_ent = sparc64_highest_locked_tlbent();
 669
 670	tte_vaddr = (unsigned long) KERNBASE;
 671	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 672	tte_data = kern_large_tte(phys_page);
 673
 674	kern_locked_tte_data = tte_data;
 675
 676	/* Now lock us into the TLBs via Hypervisor or OBP. */
 677	if (tlb_type == hypervisor) {
 678		for (i = 0; i < num_kernel_image_mappings; i++) {
 679			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 680			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 681			tte_vaddr += 0x400000;
 682			tte_data += 0x400000;
 683		}
 684	} else {
 685		for (i = 0; i < num_kernel_image_mappings; i++) {
 686			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 687			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 688			tte_vaddr += 0x400000;
 689			tte_data += 0x400000;
 690		}
 691		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 692	}
 693	if (tlb_type == cheetah_plus) {
 694		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 695					    CTX_CHEETAH_PLUS_NUC);
 696		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 697		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 698	}
 699}
 700
 701
 702static void __init inherit_prom_mappings(void)
 703{
 704	/* Now fixup OBP's idea about where we really are mapped. */
 705	printk("Remapping the kernel... ");
 706	remap_kernel();
 707	printk("done.\n");
 708}
 709
 710void prom_world(int enter)
 711{
 712	/*
 713	 * No need to change the address space any more, just flush
 714	 * the register windows
 715	 */
 716	__asm__ __volatile__("flushw");
 717}
 718
 719void __flush_dcache_range(unsigned long start, unsigned long end)
 720{
 721	unsigned long va;
 722
 723	if (tlb_type == spitfire) {
 724		int n = 0;
 725
 726		for (va = start; va < end; va += 32) {
 727			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 728			if (++n >= 512)
 729				break;
 730		}
 731	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 732		start = __pa(start);
 733		end = __pa(end);
 734		for (va = start; va < end; va += 32)
 735			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 736					     "membar #Sync"
 737					     : /* no outputs */
 738					     : "r" (va),
 739					       "i" (ASI_DCACHE_INVALIDATE));
 740	}
 741}
 742EXPORT_SYMBOL(__flush_dcache_range);
 743
 744/* get_new_mmu_context() uses "cache + 1".  */
 745DEFINE_SPINLOCK(ctx_alloc_lock);
 746unsigned long tlb_context_cache = CTX_FIRST_VERSION;
 747#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 748#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 749DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 750DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
 751
 752static void mmu_context_wrap(void)
 753{
 754	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
 755	unsigned long new_ver, new_ctx, old_ctx;
 756	struct mm_struct *mm;
 757	int cpu;
 758
 759	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
 760
 761	/* Reserve kernel context */
 762	set_bit(0, mmu_context_bmap);
 763
 764	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
 765	if (unlikely(new_ver == 0))
 766		new_ver = CTX_FIRST_VERSION;
 767	tlb_context_cache = new_ver;
 768
 769	/*
 770	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
 771	 * are going to go through get_new_mmu_context() path.
 772	 */
 773	mb();
 774
 775	/*
 776	 * Updated versions to current on those CPUs that had valid secondary
 777	 * contexts
 778	 */
 779	for_each_online_cpu(cpu) {
 780		/*
 781		 * If a new mm is stored after we took this mm from the array,
 782		 * it will go into get_new_mmu_context() path, because we
 783		 * already bumped the version in tlb_context_cache.
 784		 */
 785		mm = per_cpu(per_cpu_secondary_mm, cpu);
 786
 787		if (unlikely(!mm || mm == &init_mm))
 788			continue;
 789
 790		old_ctx = mm->context.sparc64_ctx_val;
 791		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
 792			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
 793			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
 794			mm->context.sparc64_ctx_val = new_ctx;
 795		}
 796	}
 797}
 798
 799/* Caller does TLB context flushing on local CPU if necessary.
 800 * The caller also ensures that CTX_VALID(mm->context) is false.
 801 *
 802 * We must be careful about boundary cases so that we never
 803 * let the user have CTX 0 (nucleus) or we ever use a CTX
 804 * version of zero (and thus NO_CONTEXT would not be caught
 805 * by version mis-match tests in mmu_context.h).
 806 *
 807 * Always invoked with interrupts disabled.
 808 */
 809void get_new_mmu_context(struct mm_struct *mm)
 810{
 811	unsigned long ctx, new_ctx;
 812	unsigned long orig_pgsz_bits;
 
 813
 814	spin_lock(&ctx_alloc_lock);
 815retry:
 816	/* wrap might have happened, test again if our context became valid */
 817	if (unlikely(CTX_VALID(mm->context)))
 818		goto out;
 819	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 820	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 821	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 
 822	if (new_ctx >= (1 << CTX_NR_BITS)) {
 823		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 824		if (new_ctx >= ctx) {
 825			mmu_context_wrap();
 826			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827		}
 828	}
 829	if (mm->context.sparc64_ctx_val)
 830		cpumask_clear(mm_cpumask(mm));
 831	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 832	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 
 833	tlb_context_cache = new_ctx;
 834	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 835out:
 836	spin_unlock(&ctx_alloc_lock);
 
 
 
 837}
 838
 839static int numa_enabled = 1;
 840static int numa_debug;
 841
 842static int __init early_numa(char *p)
 843{
 844	if (!p)
 845		return 0;
 846
 847	if (strstr(p, "off"))
 848		numa_enabled = 0;
 849
 850	if (strstr(p, "debug"))
 851		numa_debug = 1;
 852
 853	return 0;
 854}
 855early_param("numa", early_numa);
 856
 857#define numadbg(f, a...) \
 858do {	if (numa_debug) \
 859		printk(KERN_INFO f, ## a); \
 860} while (0)
 861
 862static void __init find_ramdisk(unsigned long phys_base)
 863{
 864#ifdef CONFIG_BLK_DEV_INITRD
 865	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 866		unsigned long ramdisk_image;
 867
 868		/* Older versions of the bootloader only supported a
 869		 * 32-bit physical address for the ramdisk image
 870		 * location, stored at sparc_ramdisk_image.  Newer
 871		 * SILO versions set sparc_ramdisk_image to zero and
 872		 * provide a full 64-bit physical address at
 873		 * sparc_ramdisk_image64.
 874		 */
 875		ramdisk_image = sparc_ramdisk_image;
 876		if (!ramdisk_image)
 877			ramdisk_image = sparc_ramdisk_image64;
 878
 879		/* Another bootloader quirk.  The bootloader normalizes
 880		 * the physical address to KERNBASE, so we have to
 881		 * factor that back out and add in the lowest valid
 882		 * physical page address to get the true physical address.
 883		 */
 884		ramdisk_image -= KERNBASE;
 885		ramdisk_image += phys_base;
 886
 887		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 888			ramdisk_image, sparc_ramdisk_size);
 889
 890		initrd_start = ramdisk_image;
 891		initrd_end = ramdisk_image + sparc_ramdisk_size;
 892
 893		memblock_reserve(initrd_start, sparc_ramdisk_size);
 894
 895		initrd_start += PAGE_OFFSET;
 896		initrd_end += PAGE_OFFSET;
 897	}
 898#endif
 899}
 900
 901struct node_mem_mask {
 902	unsigned long mask;
 903	unsigned long match;
 904};
 905static struct node_mem_mask node_masks[MAX_NUMNODES];
 906static int num_node_masks;
 907
 908#ifdef CONFIG_NUMA
 909
 910struct mdesc_mlgroup {
 911	u64	node;
 912	u64	latency;
 913	u64	match;
 914	u64	mask;
 915};
 916
 917static struct mdesc_mlgroup *mlgroups;
 918static int num_mlgroups;
 919
 920int numa_cpu_lookup_table[NR_CPUS];
 921cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 922
 
 
 923struct mdesc_mblock {
 924	u64	base;
 925	u64	size;
 926	u64	offset; /* RA-to-PA */
 927};
 928static struct mdesc_mblock *mblocks;
 929static int num_mblocks;
 930
 931static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
 932{
 933	struct mdesc_mblock *m = NULL;
 934	int i;
 935
 936	for (i = 0; i < num_mblocks; i++) {
 937		m = &mblocks[i];
 938
 939		if (addr >= m->base &&
 940		    addr < (m->base + m->size)) {
 
 941			break;
 942		}
 943	}
 944
 945	return m;
 946}
 947
 948static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
 949{
 950	int prev_nid, new_nid;
 951
 952	prev_nid = NUMA_NO_NODE;
 953	for ( ; start < end; start += PAGE_SIZE) {
 954		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
 955			struct node_mem_mask *p = &node_masks[new_nid];
 956
 957			if ((start & p->mask) == p->match) {
 958				if (prev_nid == NUMA_NO_NODE)
 959					prev_nid = new_nid;
 960				break;
 961			}
 962		}
 963
 964		if (new_nid == num_node_masks) {
 965			prev_nid = 0;
 966			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
 967				  start);
 968			break;
 969		}
 970
 971		if (prev_nid != new_nid)
 972			break;
 973	}
 974	*nid = prev_nid;
 975
 976	return start > end ? end : start;
 977}
 978
 979static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
 980{
 981	u64 ret_end, pa_start, m_mask, m_match, m_end;
 982	struct mdesc_mblock *mblock;
 983	int _nid, i;
 984
 985	if (tlb_type != hypervisor)
 986		return memblock_nid_range_sun4u(start, end, nid);
 987
 988	mblock = addr_to_mblock(start);
 989	if (!mblock) {
 990		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
 991			  start);
 992
 993		_nid = 0;
 994		ret_end = end;
 995		goto done;
 996	}
 997
 998	pa_start = start + mblock->offset;
 999	m_match = 0;
1000	m_mask = 0;
1001
1002	for (_nid = 0; _nid < num_node_masks; _nid++) {
1003		struct node_mem_mask *const m = &node_masks[_nid];
1004
1005		if ((pa_start & m->mask) == m->match) {
1006			m_match = m->match;
1007			m_mask = m->mask;
1008			break;
1009		}
1010	}
1011
1012	if (num_node_masks == _nid) {
1013		/* We could not find NUMA group, so default to 0, but lets
1014		 * search for latency group, so we could calculate the correct
1015		 * end address that we return
1016		 */
1017		_nid = 0;
1018
1019		for (i = 0; i < num_mlgroups; i++) {
1020			struct mdesc_mlgroup *const m = &mlgroups[i];
1021
1022			if ((pa_start & m->mask) == m->match) {
1023				m_match = m->match;
1024				m_mask = m->mask;
1025				break;
1026			}
1027		}
1028
1029		if (i == num_mlgroups) {
1030			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1031				  start);
1032
1033			ret_end = end;
1034			goto done;
1035		}
1036	}
1037
1038	/*
1039	 * Each latency group has match and mask, and each memory block has an
1040	 * offset.  An address belongs to a latency group if its address matches
1041	 * the following formula: ((addr + offset) & mask) == match
1042	 * It is, however, slow to check every single page if it matches a
1043	 * particular latency group. As optimization we calculate end value by
1044	 * using bit arithmetics.
1045	 */
1046	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1047	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1048	ret_end = m_end > end ? end : m_end;
1049
1050done:
1051	*nid = _nid;
1052	return ret_end;
1053}
1054#endif
1055
1056/* This must be invoked after performing all of the necessary
1057 * memblock_set_node() calls for 'nid'.  We need to be able to get
1058 * correct data from get_pfn_range_for_nid().
1059 */
1060static void __init allocate_node_data(int nid)
1061{
1062	struct pglist_data *p;
1063	unsigned long start_pfn, end_pfn;
1064#ifdef CONFIG_NUMA
 
1065
1066	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1067					     SMP_CACHE_BYTES, nid);
1068	if (!NODE_DATA(nid)) {
1069		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1070		prom_halt();
1071	}
 
 
1072
1073	NODE_DATA(nid)->node_id = nid;
1074#endif
1075
1076	p = NODE_DATA(nid);
1077
1078	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1079	p->node_start_pfn = start_pfn;
1080	p->node_spanned_pages = end_pfn - start_pfn;
1081}
1082
1083static void init_node_masks_nonnuma(void)
1084{
1085#ifdef CONFIG_NUMA
1086	int i;
1087#endif
1088
1089	numadbg("Initializing tables for non-numa.\n");
1090
1091	node_masks[0].mask = 0;
1092	node_masks[0].match = 0;
1093	num_node_masks = 1;
1094
1095#ifdef CONFIG_NUMA
1096	for (i = 0; i < NR_CPUS; i++)
1097		numa_cpu_lookup_table[i] = 0;
1098
1099	cpumask_setall(&numa_cpumask_lookup_table[0]);
1100#endif
1101}
1102
1103#ifdef CONFIG_NUMA
1104struct pglist_data *node_data[MAX_NUMNODES];
1105
1106EXPORT_SYMBOL(numa_cpu_lookup_table);
1107EXPORT_SYMBOL(numa_cpumask_lookup_table);
1108EXPORT_SYMBOL(node_data);
1109
 
 
 
 
 
 
 
 
 
1110static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1111				   u32 cfg_handle)
1112{
1113	u64 arc;
1114
1115	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1116		u64 target = mdesc_arc_target(md, arc);
1117		const u64 *val;
1118
1119		val = mdesc_get_property(md, target,
1120					 "cfg-handle", NULL);
1121		if (val && *val == cfg_handle)
1122			return 0;
1123	}
1124	return -ENODEV;
1125}
1126
1127static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1128				    u32 cfg_handle)
1129{
1130	u64 arc, candidate, best_latency = ~(u64)0;
1131
1132	candidate = MDESC_NODE_NULL;
1133	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1134		u64 target = mdesc_arc_target(md, arc);
1135		const char *name = mdesc_node_name(md, target);
1136		const u64 *val;
1137
1138		if (strcmp(name, "pio-latency-group"))
1139			continue;
1140
1141		val = mdesc_get_property(md, target, "latency", NULL);
1142		if (!val)
1143			continue;
1144
1145		if (*val < best_latency) {
1146			candidate = target;
1147			best_latency = *val;
1148		}
1149	}
1150
1151	if (candidate == MDESC_NODE_NULL)
1152		return -ENODEV;
1153
1154	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1155}
1156
1157int of_node_to_nid(struct device_node *dp)
1158{
1159	const struct linux_prom64_registers *regs;
1160	struct mdesc_handle *md;
1161	u32 cfg_handle;
1162	int count, nid;
1163	u64 grp;
1164
1165	/* This is the right thing to do on currently supported
1166	 * SUN4U NUMA platforms as well, as the PCI controller does
1167	 * not sit behind any particular memory controller.
1168	 */
1169	if (!mlgroups)
1170		return -1;
1171
1172	regs = of_get_property(dp, "reg", NULL);
1173	if (!regs)
1174		return -1;
1175
1176	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1177
1178	md = mdesc_grab();
1179
1180	count = 0;
1181	nid = NUMA_NO_NODE;
1182	mdesc_for_each_node_by_name(md, grp, "group") {
1183		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1184			nid = count;
1185			break;
1186		}
1187		count++;
1188	}
1189
1190	mdesc_release(md);
1191
1192	return nid;
1193}
1194
1195static void __init add_node_ranges(void)
1196{
1197	phys_addr_t start, end;
1198	unsigned long prev_max;
1199	u64 i;
1200
1201memblock_resized:
1202	prev_max = memblock.memory.max;
 
1203
1204	for_each_mem_range(i, &start, &end) {
 
1205		while (start < end) {
1206			unsigned long this_end;
1207			int nid;
1208
1209			this_end = memblock_nid_range(start, end, &nid);
1210
1211			numadbg("Setting memblock NUMA node nid[%d] "
1212				"start[%llx] end[%lx]\n",
1213				nid, start, this_end);
1214
1215			memblock_set_node(start, this_end - start,
1216					  &memblock.memory, nid);
1217			if (memblock.memory.max != prev_max)
1218				goto memblock_resized;
1219			start = this_end;
1220		}
1221	}
1222}
1223
1224static int __init grab_mlgroups(struct mdesc_handle *md)
1225{
1226	unsigned long paddr;
1227	int count = 0;
1228	u64 node;
1229
1230	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1231		count++;
1232	if (!count)
1233		return -ENOENT;
1234
1235	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1236				    SMP_CACHE_BYTES);
1237	if (!paddr)
1238		return -ENOMEM;
1239
1240	mlgroups = __va(paddr);
1241	num_mlgroups = count;
1242
1243	count = 0;
1244	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1245		struct mdesc_mlgroup *m = &mlgroups[count++];
1246		const u64 *val;
1247
1248		m->node = node;
1249
1250		val = mdesc_get_property(md, node, "latency", NULL);
1251		m->latency = *val;
1252		val = mdesc_get_property(md, node, "address-match", NULL);
1253		m->match = *val;
1254		val = mdesc_get_property(md, node, "address-mask", NULL);
1255		m->mask = *val;
1256
1257		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1258			"match[%llx] mask[%llx]\n",
1259			count - 1, m->node, m->latency, m->match, m->mask);
1260	}
1261
1262	return 0;
1263}
1264
1265static int __init grab_mblocks(struct mdesc_handle *md)
1266{
1267	unsigned long paddr;
1268	int count = 0;
1269	u64 node;
1270
1271	mdesc_for_each_node_by_name(md, node, "mblock")
1272		count++;
1273	if (!count)
1274		return -ENOENT;
1275
1276	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1277				    SMP_CACHE_BYTES);
1278	if (!paddr)
1279		return -ENOMEM;
1280
1281	mblocks = __va(paddr);
1282	num_mblocks = count;
1283
1284	count = 0;
1285	mdesc_for_each_node_by_name(md, node, "mblock") {
1286		struct mdesc_mblock *m = &mblocks[count++];
1287		const u64 *val;
1288
1289		val = mdesc_get_property(md, node, "base", NULL);
1290		m->base = *val;
1291		val = mdesc_get_property(md, node, "size", NULL);
1292		m->size = *val;
1293		val = mdesc_get_property(md, node,
1294					 "address-congruence-offset", NULL);
1295
1296		/* The address-congruence-offset property is optional.
1297		 * Explicity zero it be identifty this.
1298		 */
1299		if (val)
1300			m->offset = *val;
1301		else
1302			m->offset = 0UL;
1303
1304		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1305			count - 1, m->base, m->size, m->offset);
1306	}
1307
1308	return 0;
1309}
1310
1311static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1312					       u64 grp, cpumask_t *mask)
1313{
1314	u64 arc;
1315
1316	cpumask_clear(mask);
1317
1318	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1319		u64 target = mdesc_arc_target(md, arc);
1320		const char *name = mdesc_node_name(md, target);
1321		const u64 *id;
1322
1323		if (strcmp(name, "cpu"))
1324			continue;
1325		id = mdesc_get_property(md, target, "id", NULL);
1326		if (*id < nr_cpu_ids)
1327			cpumask_set_cpu(*id, mask);
1328	}
1329}
1330
1331static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1332{
1333	int i;
1334
1335	for (i = 0; i < num_mlgroups; i++) {
1336		struct mdesc_mlgroup *m = &mlgroups[i];
1337		if (m->node == node)
1338			return m;
1339	}
1340	return NULL;
1341}
1342
1343int __node_distance(int from, int to)
1344{
1345	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1346		pr_warn("Returning default NUMA distance value for %d->%d\n",
1347			from, to);
1348		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1349	}
1350	return numa_latency[from][to];
1351}
1352EXPORT_SYMBOL(__node_distance);
1353
1354static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1355{
1356	int i;
1357
1358	for (i = 0; i < MAX_NUMNODES; i++) {
1359		struct node_mem_mask *n = &node_masks[i];
1360
1361		if ((grp->mask == n->mask) && (grp->match == n->match))
1362			break;
1363	}
1364	return i;
1365}
1366
1367static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1368						 u64 grp, int index)
1369{
1370	u64 arc;
1371
1372	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1373		int tnode;
1374		u64 target = mdesc_arc_target(md, arc);
1375		struct mdesc_mlgroup *m = find_mlgroup(target);
1376
1377		if (!m)
1378			continue;
1379		tnode = find_best_numa_node_for_mlgroup(m);
1380		if (tnode == MAX_NUMNODES)
1381			continue;
1382		numa_latency[index][tnode] = m->latency;
1383	}
1384}
1385
1386static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1387				      int index)
1388{
1389	struct mdesc_mlgroup *candidate = NULL;
1390	u64 arc, best_latency = ~(u64)0;
1391	struct node_mem_mask *n;
1392
1393	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1394		u64 target = mdesc_arc_target(md, arc);
1395		struct mdesc_mlgroup *m = find_mlgroup(target);
1396		if (!m)
1397			continue;
1398		if (m->latency < best_latency) {
1399			candidate = m;
1400			best_latency = m->latency;
1401		}
1402	}
1403	if (!candidate)
1404		return -ENOENT;
1405
1406	if (num_node_masks != index) {
1407		printk(KERN_ERR "Inconsistent NUMA state, "
1408		       "index[%d] != num_node_masks[%d]\n",
1409		       index, num_node_masks);
1410		return -EINVAL;
1411	}
1412
1413	n = &node_masks[num_node_masks++];
1414
1415	n->mask = candidate->mask;
1416	n->match = candidate->match;
1417
1418	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1419		index, n->mask, n->match, candidate->latency);
1420
1421	return 0;
1422}
1423
1424static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1425					 int index)
1426{
1427	cpumask_t mask;
1428	int cpu;
1429
1430	numa_parse_mdesc_group_cpus(md, grp, &mask);
1431
1432	for_each_cpu(cpu, &mask)
1433		numa_cpu_lookup_table[cpu] = index;
1434	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1435
1436	if (numa_debug) {
1437		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1438		for_each_cpu(cpu, &mask)
1439			printk("%d ", cpu);
1440		printk("]\n");
1441	}
1442
1443	return numa_attach_mlgroup(md, grp, index);
1444}
1445
1446static int __init numa_parse_mdesc(void)
1447{
1448	struct mdesc_handle *md = mdesc_grab();
1449	int i, j, err, count;
1450	u64 node;
1451
1452	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1453	if (node == MDESC_NODE_NULL) {
1454		mdesc_release(md);
1455		return -ENOENT;
1456	}
1457
1458	err = grab_mblocks(md);
1459	if (err < 0)
1460		goto out;
1461
1462	err = grab_mlgroups(md);
1463	if (err < 0)
1464		goto out;
1465
1466	count = 0;
1467	mdesc_for_each_node_by_name(md, node, "group") {
1468		err = numa_parse_mdesc_group(md, node, count);
1469		if (err < 0)
1470			break;
1471		count++;
1472	}
1473
1474	count = 0;
1475	mdesc_for_each_node_by_name(md, node, "group") {
1476		find_numa_latencies_for_group(md, node, count);
1477		count++;
1478	}
1479
1480	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1481	for (i = 0; i < MAX_NUMNODES; i++) {
1482		u64 self_latency = numa_latency[i][i];
1483
1484		for (j = 0; j < MAX_NUMNODES; j++) {
1485			numa_latency[i][j] =
1486				(numa_latency[i][j] * LOCAL_DISTANCE) /
1487				self_latency;
1488		}
1489	}
1490
1491	add_node_ranges();
1492
1493	for (i = 0; i < num_node_masks; i++) {
1494		allocate_node_data(i);
1495		node_set_online(i);
1496	}
1497
1498	err = 0;
1499out:
1500	mdesc_release(md);
1501	return err;
1502}
1503
1504static int __init numa_parse_jbus(void)
1505{
1506	unsigned long cpu, index;
1507
1508	/* NUMA node id is encoded in bits 36 and higher, and there is
1509	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1510	 */
1511	index = 0;
1512	for_each_present_cpu(cpu) {
1513		numa_cpu_lookup_table[cpu] = index;
1514		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1515		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1516		node_masks[index].match = cpu << 36UL;
1517
1518		index++;
1519	}
1520	num_node_masks = index;
1521
1522	add_node_ranges();
1523
1524	for (index = 0; index < num_node_masks; index++) {
1525		allocate_node_data(index);
1526		node_set_online(index);
1527	}
1528
1529	return 0;
1530}
1531
1532static int __init numa_parse_sun4u(void)
1533{
1534	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1535		unsigned long ver;
1536
1537		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1538		if ((ver >> 32UL) == __JALAPENO_ID ||
1539		    (ver >> 32UL) == __SERRANO_ID)
1540			return numa_parse_jbus();
1541	}
1542	return -1;
1543}
1544
1545static int __init bootmem_init_numa(void)
1546{
1547	int i, j;
1548	int err = -1;
1549
1550	numadbg("bootmem_init_numa()\n");
1551
1552	/* Some sane defaults for numa latency values */
1553	for (i = 0; i < MAX_NUMNODES; i++) {
1554		for (j = 0; j < MAX_NUMNODES; j++)
1555			numa_latency[i][j] = (i == j) ?
1556				LOCAL_DISTANCE : REMOTE_DISTANCE;
1557	}
1558
1559	if (numa_enabled) {
1560		if (tlb_type == hypervisor)
1561			err = numa_parse_mdesc();
1562		else
1563			err = numa_parse_sun4u();
1564	}
1565	return err;
1566}
1567
1568#else
1569
1570static int bootmem_init_numa(void)
1571{
1572	return -1;
1573}
1574
1575#endif
1576
1577static void __init bootmem_init_nonnuma(void)
1578{
1579	unsigned long top_of_ram = memblock_end_of_DRAM();
1580	unsigned long total_ram = memblock_phys_mem_size();
1581
1582	numadbg("bootmem_init_nonnuma()\n");
1583
1584	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1585	       top_of_ram, total_ram);
1586	printk(KERN_INFO "Memory hole size: %ldMB\n",
1587	       (top_of_ram - total_ram) >> 20);
1588
1589	init_node_masks_nonnuma();
1590	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1591	allocate_node_data(0);
1592	node_set_online(0);
1593}
1594
1595static unsigned long __init bootmem_init(unsigned long phys_base)
1596{
1597	unsigned long end_pfn;
1598
1599	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1600	max_pfn = max_low_pfn = end_pfn;
1601	min_low_pfn = (phys_base >> PAGE_SHIFT);
1602
1603	if (bootmem_init_numa() < 0)
1604		bootmem_init_nonnuma();
1605
1606	/* Dump memblock with node info. */
1607	memblock_dump_all();
1608
1609	/* XXX cpu notifier XXX */
1610
 
1611	sparse_init();
1612
1613	return end_pfn;
1614}
1615
1616static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1617static int pall_ents __initdata;
1618
1619static unsigned long max_phys_bits = 40;
1620
1621bool kern_addr_valid(unsigned long addr)
1622{
1623	pgd_t *pgd;
1624	p4d_t *p4d;
1625	pud_t *pud;
1626	pmd_t *pmd;
1627	pte_t *pte;
1628
1629	if ((long)addr < 0L) {
1630		unsigned long pa = __pa(addr);
1631
1632		if ((pa >> max_phys_bits) != 0UL)
1633			return false;
1634
1635		return pfn_valid(pa >> PAGE_SHIFT);
1636	}
1637
1638	if (addr >= (unsigned long) KERNBASE &&
1639	    addr < (unsigned long)&_end)
1640		return true;
1641
1642	pgd = pgd_offset_k(addr);
1643	if (pgd_none(*pgd))
1644		return false;
1645
1646	p4d = p4d_offset(pgd, addr);
1647	if (p4d_none(*p4d))
1648		return false;
1649
1650	pud = pud_offset(p4d, addr);
1651	if (pud_none(*pud))
1652		return false;
1653
1654	if (pud_large(*pud))
1655		return pfn_valid(pud_pfn(*pud));
1656
1657	pmd = pmd_offset(pud, addr);
1658	if (pmd_none(*pmd))
1659		return false;
1660
1661	if (pmd_large(*pmd))
1662		return pfn_valid(pmd_pfn(*pmd));
1663
1664	pte = pte_offset_kernel(pmd, addr);
1665	if (pte_none(*pte))
1666		return false;
1667
1668	return pfn_valid(pte_pfn(*pte));
1669}
1670
1671static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1672					      unsigned long vend,
1673					      pud_t *pud)
1674{
1675	const unsigned long mask16gb = (1UL << 34) - 1UL;
1676	u64 pte_val = vstart;
1677
1678	/* Each PUD is 8GB */
1679	if ((vstart & mask16gb) ||
1680	    (vend - vstart <= mask16gb)) {
1681		pte_val ^= kern_linear_pte_xor[2];
1682		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1683
1684		return vstart + PUD_SIZE;
1685	}
1686
1687	pte_val ^= kern_linear_pte_xor[3];
1688	pte_val |= _PAGE_PUD_HUGE;
1689
1690	vend = vstart + mask16gb + 1UL;
1691	while (vstart < vend) {
1692		pud_val(*pud) = pte_val;
1693
1694		pte_val += PUD_SIZE;
1695		vstart += PUD_SIZE;
1696		pud++;
1697	}
1698	return vstart;
1699}
1700
1701static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1702				   bool guard)
1703{
1704	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1705		return true;
1706
1707	return false;
1708}
1709
1710static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1711					      unsigned long vend,
1712					      pmd_t *pmd)
1713{
1714	const unsigned long mask256mb = (1UL << 28) - 1UL;
1715	const unsigned long mask2gb = (1UL << 31) - 1UL;
1716	u64 pte_val = vstart;
1717
1718	/* Each PMD is 8MB */
1719	if ((vstart & mask256mb) ||
1720	    (vend - vstart <= mask256mb)) {
1721		pte_val ^= kern_linear_pte_xor[0];
1722		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1723
1724		return vstart + PMD_SIZE;
1725	}
1726
1727	if ((vstart & mask2gb) ||
1728	    (vend - vstart <= mask2gb)) {
1729		pte_val ^= kern_linear_pte_xor[1];
1730		pte_val |= _PAGE_PMD_HUGE;
1731		vend = vstart + mask256mb + 1UL;
1732	} else {
1733		pte_val ^= kern_linear_pte_xor[2];
1734		pte_val |= _PAGE_PMD_HUGE;
1735		vend = vstart + mask2gb + 1UL;
1736	}
1737
1738	while (vstart < vend) {
1739		pmd_val(*pmd) = pte_val;
1740
1741		pte_val += PMD_SIZE;
1742		vstart += PMD_SIZE;
1743		pmd++;
1744	}
1745
1746	return vstart;
1747}
1748
1749static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1750				   bool guard)
1751{
1752	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1753		return true;
1754
1755	return false;
1756}
1757
1758static unsigned long __ref kernel_map_range(unsigned long pstart,
1759					    unsigned long pend, pgprot_t prot,
1760					    bool use_huge)
1761{
1762	unsigned long vstart = PAGE_OFFSET + pstart;
1763	unsigned long vend = PAGE_OFFSET + pend;
1764	unsigned long alloc_bytes = 0UL;
1765
1766	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1767		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1768			    vstart, vend);
1769		prom_halt();
1770	}
1771
1772	while (vstart < vend) {
1773		unsigned long this_end, paddr = __pa(vstart);
1774		pgd_t *pgd = pgd_offset_k(vstart);
1775		p4d_t *p4d;
1776		pud_t *pud;
1777		pmd_t *pmd;
1778		pte_t *pte;
1779
1780		if (pgd_none(*pgd)) {
1781			pud_t *new;
1782
1783			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1784						  PAGE_SIZE);
1785			if (!new)
1786				goto err_alloc;
1787			alloc_bytes += PAGE_SIZE;
1788			pgd_populate(&init_mm, pgd, new);
1789		}
1790
1791		p4d = p4d_offset(pgd, vstart);
1792		if (p4d_none(*p4d)) {
1793			pud_t *new;
1794
1795			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1796						  PAGE_SIZE);
1797			if (!new)
1798				goto err_alloc;
1799			alloc_bytes += PAGE_SIZE;
1800			p4d_populate(&init_mm, p4d, new);
1801		}
1802
1803		pud = pud_offset(p4d, vstart);
1804		if (pud_none(*pud)) {
1805			pmd_t *new;
1806
1807			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1808				vstart = kernel_map_hugepud(vstart, vend, pud);
1809				continue;
1810			}
1811			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1812						  PAGE_SIZE);
1813			if (!new)
1814				goto err_alloc;
1815			alloc_bytes += PAGE_SIZE;
1816			pud_populate(&init_mm, pud, new);
1817		}
1818
1819		pmd = pmd_offset(pud, vstart);
1820		if (pmd_none(*pmd)) {
1821			pte_t *new;
1822
1823			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1824				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1825				continue;
1826			}
1827			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1828						  PAGE_SIZE);
1829			if (!new)
1830				goto err_alloc;
1831			alloc_bytes += PAGE_SIZE;
1832			pmd_populate_kernel(&init_mm, pmd, new);
1833		}
1834
1835		pte = pte_offset_kernel(pmd, vstart);
1836		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1837		if (this_end > vend)
1838			this_end = vend;
1839
1840		while (vstart < this_end) {
1841			pte_val(*pte) = (paddr | pgprot_val(prot));
1842
1843			vstart += PAGE_SIZE;
1844			paddr += PAGE_SIZE;
1845			pte++;
1846		}
1847	}
1848
1849	return alloc_bytes;
 
 
 
 
 
 
 
 
 
 
 
1850
1851err_alloc:
1852	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1853	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1854	return -ENOMEM;
1855}
1856
1857static void __init flush_all_kernel_tsbs(void)
 
 
 
 
 
1858{
1859	int i;
 
 
 
1860
1861	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1862		struct tsb *ent = &swapper_tsb[i];
1863
1864		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1865	}
1866#ifndef CONFIG_DEBUG_PAGEALLOC
1867	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1868		struct tsb *ent = &swapper_4m_tsb[i];
1869
1870		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1871	}
1872#endif
1873}
1874
1875extern unsigned int kvmap_linear_patch[1];
 
 
 
 
 
 
 
 
 
 
 
 
1876
1877static void __init kernel_physical_mapping_init(void)
1878{
 
1879	unsigned long i, mem_alloced = 0UL;
1880	bool use_huge = true;
1881
1882#ifdef CONFIG_DEBUG_PAGEALLOC
1883	use_huge = false;
1884#endif
1885	for (i = 0; i < pall_ents; i++) {
1886		unsigned long phys_start, phys_end;
1887
1888		phys_start = pall[i].phys_addr;
1889		phys_end = phys_start + pall[i].reg_size;
1890
1891		mem_alloced += kernel_map_range(phys_start, phys_end,
1892						PAGE_KERNEL, use_huge);
1893	}
1894
1895	printk("Allocated %ld bytes for kernel page tables.\n",
1896	       mem_alloced);
1897
1898	kvmap_linear_patch[0] = 0x01000000; /* nop */
1899	flushi(&kvmap_linear_patch[0]);
1900
1901	flush_all_kernel_tsbs();
1902
1903	__flush_tlb_all();
 
1904}
1905
1906#ifdef CONFIG_DEBUG_PAGEALLOC
1907void __kernel_map_pages(struct page *page, int numpages, int enable)
1908{
1909	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1910	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1911
1912	kernel_map_range(phys_start, phys_end,
1913			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1914
1915	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1916			       PAGE_OFFSET + phys_end);
1917
1918	/* we should perform an IPI and flush all tlbs,
1919	 * but that can deadlock->flush only current cpu.
1920	 */
1921	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1922				 PAGE_OFFSET + phys_end);
1923}
1924#endif
1925
1926unsigned long __init find_ecache_flush_span(unsigned long size)
1927{
1928	int i;
1929
1930	for (i = 0; i < pavail_ents; i++) {
1931		if (pavail[i].reg_size >= size)
1932			return pavail[i].phys_addr;
1933	}
1934
1935	return ~0UL;
1936}
1937
1938unsigned long PAGE_OFFSET;
1939EXPORT_SYMBOL(PAGE_OFFSET);
1940
1941unsigned long VMALLOC_END   = 0x0000010000000000UL;
1942EXPORT_SYMBOL(VMALLOC_END);
 
 
 
1943
1944unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1945unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1946
1947static void __init setup_page_offset(void)
1948{
1949	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1950		/* Cheetah/Panther support a full 64-bit virtual
1951		 * address, so we can use all that our page tables
1952		 * support.
1953		 */
1954		sparc64_va_hole_top =    0xfff0000000000000UL;
1955		sparc64_va_hole_bottom = 0x0010000000000000UL;
1956
 
1957		max_phys_bits = 42;
1958	} else if (tlb_type == hypervisor) {
1959		switch (sun4v_chip_type) {
1960		case SUN4V_CHIP_NIAGARA1:
1961		case SUN4V_CHIP_NIAGARA2:
1962			/* T1 and T2 support 48-bit virtual addresses.  */
1963			sparc64_va_hole_top =    0xffff800000000000UL;
1964			sparc64_va_hole_bottom = 0x0000800000000000UL;
1965
1966			max_phys_bits = 39;
1967			break;
1968		case SUN4V_CHIP_NIAGARA3:
1969			/* T3 supports 48-bit virtual addresses.  */
1970			sparc64_va_hole_top =    0xffff800000000000UL;
1971			sparc64_va_hole_bottom = 0x0000800000000000UL;
1972
1973			max_phys_bits = 43;
1974			break;
1975		case SUN4V_CHIP_NIAGARA4:
1976		case SUN4V_CHIP_NIAGARA5:
1977		case SUN4V_CHIP_SPARC64X:
1978		case SUN4V_CHIP_SPARC_M6:
1979			/* T4 and later support 52-bit virtual addresses.  */
1980			sparc64_va_hole_top =    0xfff8000000000000UL;
1981			sparc64_va_hole_bottom = 0x0008000000000000UL;
1982			max_phys_bits = 47;
1983			break;
1984		case SUN4V_CHIP_SPARC_M7:
1985		case SUN4V_CHIP_SPARC_SN:
1986			/* M7 and later support 52-bit virtual addresses.  */
1987			sparc64_va_hole_top =    0xfff8000000000000UL;
1988			sparc64_va_hole_bottom = 0x0008000000000000UL;
1989			max_phys_bits = 49;
1990			break;
1991		case SUN4V_CHIP_SPARC_M8:
1992		default:
1993			/* M8 and later support 54-bit virtual addresses.
1994			 * However, restricting M8 and above VA bits to 53
1995			 * as 4-level page table cannot support more than
1996			 * 53 VA bits.
1997			 */
1998			sparc64_va_hole_top =    0xfff0000000000000UL;
1999			sparc64_va_hole_bottom = 0x0010000000000000UL;
2000			max_phys_bits = 51;
2001			break;
2002		}
2003	}
2004
2005	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2006		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2007			    max_phys_bits);
2008		prom_halt();
2009	}
2010
2011	PAGE_OFFSET = sparc64_va_hole_top;
2012	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2013		       (sparc64_va_hole_bottom >> 2));
2014
2015	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2016		PAGE_OFFSET, max_phys_bits);
2017	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2018		VMALLOC_START, VMALLOC_END);
2019	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2020		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2021}
2022
2023static void __init tsb_phys_patch(void)
2024{
2025	struct tsb_ldquad_phys_patch_entry *pquad;
2026	struct tsb_phys_patch_entry *p;
2027
2028	pquad = &__tsb_ldquad_phys_patch;
2029	while (pquad < &__tsb_ldquad_phys_patch_end) {
2030		unsigned long addr = pquad->addr;
2031
2032		if (tlb_type == hypervisor)
2033			*(unsigned int *) addr = pquad->sun4v_insn;
2034		else
2035			*(unsigned int *) addr = pquad->sun4u_insn;
2036		wmb();
2037		__asm__ __volatile__("flush	%0"
2038				     : /* no outputs */
2039				     : "r" (addr));
2040
2041		pquad++;
2042	}
2043
2044	p = &__tsb_phys_patch;
2045	while (p < &__tsb_phys_patch_end) {
2046		unsigned long addr = p->addr;
2047
2048		*(unsigned int *) addr = p->insn;
2049		wmb();
2050		__asm__ __volatile__("flush	%0"
2051				     : /* no outputs */
2052				     : "r" (addr));
2053
2054		p++;
2055	}
2056}
2057
2058/* Don't mark as init, we give this to the Hypervisor.  */
2059#ifndef CONFIG_DEBUG_PAGEALLOC
2060#define NUM_KTSB_DESCR	2
2061#else
2062#define NUM_KTSB_DESCR	1
2063#endif
2064static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2065
2066/* The swapper TSBs are loaded with a base sequence of:
2067 *
2068 *	sethi	%uhi(SYMBOL), REG1
2069 *	sethi	%hi(SYMBOL), REG2
2070 *	or	REG1, %ulo(SYMBOL), REG1
2071 *	or	REG2, %lo(SYMBOL), REG2
2072 *	sllx	REG1, 32, REG1
2073 *	or	REG1, REG2, REG1
2074 *
2075 * When we use physical addressing for the TSB accesses, we patch the
2076 * first four instructions in the above sequence.
2077 */
2078
2079static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2080{
2081	unsigned long high_bits, low_bits;
2082
2083	high_bits = (pa >> 32) & 0xffffffff;
2084	low_bits = (pa >> 0) & 0xffffffff;
2085
2086	while (start < end) {
2087		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2088
2089		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2090		__asm__ __volatile__("flush	%0" : : "r" (ia));
2091
2092		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2093		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2094
2095		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2096		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2097
2098		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2099		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2100
2101		start++;
2102	}
2103}
2104
2105static void ktsb_phys_patch(void)
2106{
2107	extern unsigned int __swapper_tsb_phys_patch;
2108	extern unsigned int __swapper_tsb_phys_patch_end;
2109	unsigned long ktsb_pa;
2110
2111	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2112	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2113			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2114#ifndef CONFIG_DEBUG_PAGEALLOC
2115	{
2116	extern unsigned int __swapper_4m_tsb_phys_patch;
2117	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2118	ktsb_pa = (kern_base +
2119		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2120	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2121			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2122	}
2123#endif
2124}
2125
2126static void __init sun4v_ktsb_init(void)
2127{
2128	unsigned long ktsb_pa;
2129
2130	/* First KTSB for PAGE_SIZE mappings.  */
2131	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2132
2133	switch (PAGE_SIZE) {
2134	case 8 * 1024:
2135	default:
2136		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2137		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2138		break;
2139
2140	case 64 * 1024:
2141		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2142		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2143		break;
2144
2145	case 512 * 1024:
2146		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2147		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2148		break;
2149
2150	case 4 * 1024 * 1024:
2151		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2152		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2153		break;
2154	}
2155
2156	ktsb_descr[0].assoc = 1;
2157	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2158	ktsb_descr[0].ctx_idx = 0;
2159	ktsb_descr[0].tsb_base = ktsb_pa;
2160	ktsb_descr[0].resv = 0;
2161
2162#ifndef CONFIG_DEBUG_PAGEALLOC
2163	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2164	ktsb_pa = (kern_base +
2165		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2166
2167	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2168	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2169				    HV_PGSZ_MASK_256MB |
2170				    HV_PGSZ_MASK_2GB |
2171				    HV_PGSZ_MASK_16GB) &
2172				   cpu_pgsz_mask);
2173	ktsb_descr[1].assoc = 1;
2174	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2175	ktsb_descr[1].ctx_idx = 0;
2176	ktsb_descr[1].tsb_base = ktsb_pa;
2177	ktsb_descr[1].resv = 0;
2178#endif
2179}
2180
2181void sun4v_ktsb_register(void)
2182{
2183	unsigned long pa, ret;
2184
2185	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2186
2187	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2188	if (ret != 0) {
2189		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2190			    "errors with %lx\n", pa, ret);
2191		prom_halt();
2192	}
2193}
2194
2195static void __init sun4u_linear_pte_xor_finalize(void)
2196{
2197#ifndef CONFIG_DEBUG_PAGEALLOC
2198	/* This is where we would add Panther support for
2199	 * 32MB and 256MB pages.
2200	 */
2201#endif
2202}
2203
2204static void __init sun4v_linear_pte_xor_finalize(void)
2205{
2206	unsigned long pagecv_flag;
2207
2208	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2209	 * enables MCD error. Do not set bit 9 on M7 processor.
2210	 */
2211	switch (sun4v_chip_type) {
2212	case SUN4V_CHIP_SPARC_M7:
2213	case SUN4V_CHIP_SPARC_M8:
2214	case SUN4V_CHIP_SPARC_SN:
2215		pagecv_flag = 0x00;
2216		break;
2217	default:
2218		pagecv_flag = _PAGE_CV_4V;
2219		break;
2220	}
2221#ifndef CONFIG_DEBUG_PAGEALLOC
2222	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2223		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2224			PAGE_OFFSET;
2225		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2226					   _PAGE_P_4V | _PAGE_W_4V);
2227	} else {
2228		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2229	}
2230
2231	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2232		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2233			PAGE_OFFSET;
2234		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2235					   _PAGE_P_4V | _PAGE_W_4V);
2236	} else {
2237		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2238	}
2239
2240	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2241		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2242			PAGE_OFFSET;
2243		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2244					   _PAGE_P_4V | _PAGE_W_4V);
2245	} else {
2246		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2247	}
2248#endif
2249}
2250
2251/* paging_init() sets up the page tables */
2252
2253static unsigned long last_valid_pfn;
 
2254
2255static void sun4u_pgprot_init(void);
2256static void sun4v_pgprot_init(void);
2257
2258#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2259#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2260#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2261#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2262#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2263#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2264
2265/* We need to exclude reserved regions. This exclusion will include
2266 * vmlinux and initrd. To be more precise the initrd size could be used to
2267 * compute a new lower limit because it is freed later during initialization.
2268 */
2269static void __init reduce_memory(phys_addr_t limit_ram)
2270{
2271	limit_ram += memblock_reserved_size();
2272	memblock_enforce_memory_limit(limit_ram);
2273}
2274
2275void __init paging_init(void)
2276{
2277	unsigned long end_pfn, shift, phys_base;
2278	unsigned long real_end, i;
 
2279
2280	setup_page_offset();
2281
2282	/* These build time checkes make sure that the dcache_dirty_cpu()
2283	 * page->flags usage will work.
2284	 *
2285	 * When a page gets marked as dcache-dirty, we store the
2286	 * cpu number starting at bit 32 in the page->flags.  Also,
2287	 * functions like clear_dcache_dirty_cpu use the cpu mask
2288	 * in 13-bit signed-immediate instruction fields.
2289	 */
2290
2291	/*
2292	 * Page flags must not reach into upper 32 bits that are used
2293	 * for the cpu number
2294	 */
2295	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2296
2297	/*
2298	 * The bit fields placed in the high range must not reach below
2299	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2300	 * at the 32 bit boundary.
2301	 */
2302	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2303		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2304
2305	BUILD_BUG_ON(NR_CPUS > 4096);
2306
2307	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2308	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2309
2310	/* Invalidate both kernel TSBs.  */
2311	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2312#ifndef CONFIG_DEBUG_PAGEALLOC
2313	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2314#endif
2315
2316	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2317	 * bit on M7 processor. This is a conflicting usage of the same
2318	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2319	 * Detection error on all pages and this will lead to problems
2320	 * later. Kernel does not run with MCD enabled and hence rest
2321	 * of the required steps to fully configure memory corruption
2322	 * detection are not taken. We need to ensure TTE.mcde is not
2323	 * set on M7 processor. Compute the value of cacheability
2324	 * flag for use later taking this into consideration.
2325	 */
2326	switch (sun4v_chip_type) {
2327	case SUN4V_CHIP_SPARC_M7:
2328	case SUN4V_CHIP_SPARC_M8:
2329	case SUN4V_CHIP_SPARC_SN:
2330		page_cache4v_flag = _PAGE_CP_4V;
2331		break;
2332	default:
2333		page_cache4v_flag = _PAGE_CACHE_4V;
2334		break;
2335	}
2336
2337	if (tlb_type == hypervisor)
2338		sun4v_pgprot_init();
2339	else
2340		sun4u_pgprot_init();
2341
2342	if (tlb_type == cheetah_plus ||
2343	    tlb_type == hypervisor) {
2344		tsb_phys_patch();
2345		ktsb_phys_patch();
2346	}
2347
2348	if (tlb_type == hypervisor)
2349		sun4v_patch_tlb_handlers();
2350
2351	/* Find available physical memory...
2352	 *
2353	 * Read it twice in order to work around a bug in openfirmware.
2354	 * The call to grab this table itself can cause openfirmware to
2355	 * allocate memory, which in turn can take away some space from
2356	 * the list of available memory.  Reading it twice makes sure
2357	 * we really do get the final value.
2358	 */
2359	read_obp_translations();
2360	read_obp_memory("reg", &pall[0], &pall_ents);
2361	read_obp_memory("available", &pavail[0], &pavail_ents);
2362	read_obp_memory("available", &pavail[0], &pavail_ents);
2363
2364	phys_base = 0xffffffffffffffffUL;
2365	for (i = 0; i < pavail_ents; i++) {
2366		phys_base = min(phys_base, pavail[i].phys_addr);
2367		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2368	}
2369
2370	memblock_reserve(kern_base, kern_size);
2371
2372	find_ramdisk(phys_base);
2373
2374	if (cmdline_memory_size)
2375		reduce_memory(cmdline_memory_size);
2376
2377	memblock_allow_resize();
2378	memblock_dump_all();
2379
2380	set_bit(0, mmu_context_bmap);
2381
2382	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2383
2384	real_end = (unsigned long)_end;
2385	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2386	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2387	       num_kernel_image_mappings);
2388
2389	/* Set kernel pgd to upper alias so physical page computations
2390	 * work.
2391	 */
2392	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2393	
2394	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2395
 
 
 
 
2396	inherit_prom_mappings();
2397	
 
 
2398	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2399	setup_tba();
2400
2401	__flush_tlb_all();
2402
2403	prom_build_devicetree();
2404	of_populate_present_mask();
2405#ifndef CONFIG_SMP
2406	of_fill_in_cpu_data();
2407#endif
2408
2409	if (tlb_type == hypervisor) {
2410		sun4v_mdesc_init();
2411		mdesc_populate_present_mask(cpu_all_mask);
2412#ifndef CONFIG_SMP
2413		mdesc_fill_in_cpu_data(cpu_all_mask);
2414#endif
2415		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2416
2417		sun4v_linear_pte_xor_finalize();
2418
2419		sun4v_ktsb_init();
2420		sun4v_ktsb_register();
2421	} else {
2422		unsigned long impl, ver;
2423
2424		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2425				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2426
2427		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2428		impl = ((ver >> 32) & 0xffff);
2429		if (impl == PANTHER_IMPL)
2430			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2431					  HV_PGSZ_MASK_256MB);
2432
2433		sun4u_linear_pte_xor_finalize();
2434	}
2435
2436	/* Flush the TLBs and the 4M TSB so that the updated linear
2437	 * pte XOR settings are realized for all mappings.
2438	 */
2439	__flush_tlb_all();
2440#ifndef CONFIG_DEBUG_PAGEALLOC
2441	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2442#endif
2443	__flush_tlb_all();
2444
2445	/* Setup bootmem... */
2446	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2447
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2448	kernel_physical_mapping_init();
2449
2450	{
2451		unsigned long max_zone_pfns[MAX_NR_ZONES];
2452
2453		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2454
2455		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2456
2457		free_area_init(max_zone_pfns);
2458	}
2459
2460	printk("Booting Linux...\n");
2461}
2462
2463int page_in_phys_avail(unsigned long paddr)
2464{
2465	int i;
2466
2467	paddr &= PAGE_MASK;
2468
2469	for (i = 0; i < pavail_ents; i++) {
2470		unsigned long start, end;
2471
2472		start = pavail[i].phys_addr;
2473		end = start + pavail[i].reg_size;
2474
2475		if (paddr >= start && paddr < end)
2476			return 1;
2477	}
2478	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2479		return 1;
2480#ifdef CONFIG_BLK_DEV_INITRD
2481	if (paddr >= __pa(initrd_start) &&
2482	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2483		return 1;
2484#endif
2485
2486	return 0;
2487}
2488
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2489static void __init register_page_bootmem_info(void)
2490{
2491#ifdef CONFIG_NUMA
2492	int i;
2493
2494	for_each_online_node(i)
2495		if (NODE_DATA(i)->node_spanned_pages)
2496			register_page_bootmem_info_node(NODE_DATA(i));
2497#endif
2498}
2499void __init mem_init(void)
2500{
2501	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2502
2503	memblock_free_all();
 
 
 
 
 
 
 
 
 
 
2504
2505	/*
2506	 * Must be done after boot memory is put on freelist, because here we
2507	 * might set fields in deferred struct pages that have not yet been
2508	 * initialized, and memblock_free_all() initializes all the reserved
2509	 * deferred pages for us.
2510	 */
2511	register_page_bootmem_info();
 
2512
2513	/*
2514	 * Set up the zero page, mark it reserved, so that page count
2515	 * is not manipulated when freeing the page from user ptes.
2516	 */
2517	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2518	if (mem_map_zero == NULL) {
2519		prom_printf("paging_init: Cannot alloc zero page.\n");
2520		prom_halt();
2521	}
2522	mark_page_reserved(mem_map_zero);
2523
 
2524
2525	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2526		cheetah_ecache_flush_init();
2527}
2528
2529void free_initmem(void)
2530{
2531	unsigned long addr, initend;
2532	int do_free = 1;
2533
2534	/* If the physical memory maps were trimmed by kernel command
2535	 * line options, don't even try freeing this initmem stuff up.
2536	 * The kernel image could have been in the trimmed out region
2537	 * and if so the freeing below will free invalid page structs.
2538	 */
2539	if (cmdline_memory_size)
2540		do_free = 0;
2541
2542	/*
2543	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2544	 */
2545	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2546	initend = (unsigned long)(__init_end) & PAGE_MASK;
2547	for (; addr < initend; addr += PAGE_SIZE) {
2548		unsigned long page;
2549
2550		page = (addr +
2551			((unsigned long) __va(kern_base)) -
2552			((unsigned long) KERNBASE));
2553		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2554
2555		if (do_free)
2556			free_reserved_page(virt_to_page(page));
2557	}
2558}
2559
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2560pgprot_t PAGE_KERNEL __read_mostly;
2561EXPORT_SYMBOL(PAGE_KERNEL);
2562
2563pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2564pgprot_t PAGE_COPY __read_mostly;
2565
2566pgprot_t PAGE_SHARED __read_mostly;
2567EXPORT_SYMBOL(PAGE_SHARED);
2568
2569unsigned long pg_iobits __read_mostly;
2570
2571unsigned long _PAGE_IE __read_mostly;
2572EXPORT_SYMBOL(_PAGE_IE);
2573
2574unsigned long _PAGE_E __read_mostly;
2575EXPORT_SYMBOL(_PAGE_E);
2576
2577unsigned long _PAGE_CACHE __read_mostly;
2578EXPORT_SYMBOL(_PAGE_CACHE);
2579
2580#ifdef CONFIG_SPARSEMEM_VMEMMAP
 
 
 
 
 
2581int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2582			       int node, struct vmem_altmap *altmap)
2583{
 
 
 
 
2584	unsigned long pte_base;
2585
2586	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2587		    _PAGE_CP_4U | _PAGE_CV_4U |
2588		    _PAGE_P_4U | _PAGE_W_4U);
2589	if (tlb_type == hypervisor)
2590		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2591			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2592
2593	pte_base |= _PAGE_PMD_HUGE;
2594
2595	vstart = vstart & PMD_MASK;
2596	vend = ALIGN(vend, PMD_SIZE);
2597	for (; vstart < vend; vstart += PMD_SIZE) {
2598		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2599		unsigned long pte;
2600		p4d_t *p4d;
2601		pud_t *pud;
2602		pmd_t *pmd;
2603
2604		if (!pgd)
2605			return -ENOMEM;
2606
2607		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2608		if (!p4d)
2609			return -ENOMEM;
2610
2611		pud = vmemmap_pud_populate(p4d, vstart, node);
2612		if (!pud)
2613			return -ENOMEM;
2614
2615		pmd = pmd_offset(pud, vstart);
2616		pte = pmd_val(*pmd);
2617		if (!(pte & _PAGE_VALID)) {
2618			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2619
 
 
2620			if (!block)
2621				return -ENOMEM;
2622
2623			pmd_val(*pmd) = pte_base | __pa(block);
 
 
 
 
 
 
 
 
 
 
2624		}
2625	}
2626
2627	return 0;
2628}
2629
2630void vmemmap_free(unsigned long start, unsigned long end,
2631		struct vmem_altmap *altmap)
2632{
 
 
 
 
 
 
 
2633}
2634#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2635
2636/* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2637static pgprot_t protection_map[16] __ro_after_init;
 
 
 
2638
2639static void prot_init_common(unsigned long page_none,
2640			     unsigned long page_shared,
2641			     unsigned long page_copy,
2642			     unsigned long page_readonly,
2643			     unsigned long page_exec_bit)
2644{
2645	PAGE_COPY = __pgprot(page_copy);
2646	PAGE_SHARED = __pgprot(page_shared);
2647
2648	protection_map[0x0] = __pgprot(page_none);
2649	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2650	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2651	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2652	protection_map[0x4] = __pgprot(page_readonly);
2653	protection_map[0x5] = __pgprot(page_readonly);
2654	protection_map[0x6] = __pgprot(page_copy);
2655	protection_map[0x7] = __pgprot(page_copy);
2656	protection_map[0x8] = __pgprot(page_none);
2657	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2658	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2659	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2660	protection_map[0xc] = __pgprot(page_readonly);
2661	protection_map[0xd] = __pgprot(page_readonly);
2662	protection_map[0xe] = __pgprot(page_shared);
2663	protection_map[0xf] = __pgprot(page_shared);
2664}
2665
2666static void __init sun4u_pgprot_init(void)
2667{
2668	unsigned long page_none, page_shared, page_copy, page_readonly;
2669	unsigned long page_exec_bit;
2670	int i;
2671
2672	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2673				_PAGE_CACHE_4U | _PAGE_P_4U |
2674				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2675				_PAGE_EXEC_4U);
2676	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2677				       _PAGE_CACHE_4U | _PAGE_P_4U |
2678				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2679				       _PAGE_EXEC_4U | _PAGE_L_4U);
2680
2681	_PAGE_IE = _PAGE_IE_4U;
2682	_PAGE_E = _PAGE_E_4U;
2683	_PAGE_CACHE = _PAGE_CACHE_4U;
2684
2685	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2686		     __ACCESS_BITS_4U | _PAGE_E_4U);
2687
2688#ifdef CONFIG_DEBUG_PAGEALLOC
2689	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2690#else
2691	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2692		PAGE_OFFSET;
2693#endif
2694	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2695				   _PAGE_P_4U | _PAGE_W_4U);
2696
2697	for (i = 1; i < 4; i++)
2698		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2699
2700	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2701			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2702			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2703
2704
2705	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2706	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2707		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2708	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2709		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2710	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2711			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2712
2713	page_exec_bit = _PAGE_EXEC_4U;
2714
2715	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2716			 page_exec_bit);
2717}
2718
2719static void __init sun4v_pgprot_init(void)
2720{
2721	unsigned long page_none, page_shared, page_copy, page_readonly;
2722	unsigned long page_exec_bit;
2723	int i;
2724
2725	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2726				page_cache4v_flag | _PAGE_P_4V |
2727				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2728				_PAGE_EXEC_4V);
2729	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2730
2731	_PAGE_IE = _PAGE_IE_4V;
2732	_PAGE_E = _PAGE_E_4V;
2733	_PAGE_CACHE = page_cache4v_flag;
2734
2735#ifdef CONFIG_DEBUG_PAGEALLOC
2736	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2737#else
2738	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2739		PAGE_OFFSET;
2740#endif
2741	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2742				   _PAGE_W_4V);
2743
2744	for (i = 1; i < 4; i++)
2745		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2746
2747	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2748		     __ACCESS_BITS_4V | _PAGE_E_4V);
2749
2750	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2751			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2752			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2753			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2754
2755	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2756	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2757		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2758	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2759		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2760	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2761			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2762
2763	page_exec_bit = _PAGE_EXEC_4V;
2764
2765	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2766			 page_exec_bit);
2767}
2768
2769unsigned long pte_sz_bits(unsigned long sz)
2770{
2771	if (tlb_type == hypervisor) {
2772		switch (sz) {
2773		case 8 * 1024:
2774		default:
2775			return _PAGE_SZ8K_4V;
2776		case 64 * 1024:
2777			return _PAGE_SZ64K_4V;
2778		case 512 * 1024:
2779			return _PAGE_SZ512K_4V;
2780		case 4 * 1024 * 1024:
2781			return _PAGE_SZ4MB_4V;
2782		}
2783	} else {
2784		switch (sz) {
2785		case 8 * 1024:
2786		default:
2787			return _PAGE_SZ8K_4U;
2788		case 64 * 1024:
2789			return _PAGE_SZ64K_4U;
2790		case 512 * 1024:
2791			return _PAGE_SZ512K_4U;
2792		case 4 * 1024 * 1024:
2793			return _PAGE_SZ4MB_4U;
2794		}
2795	}
2796}
2797
2798pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2799{
2800	pte_t pte;
2801
2802	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2803	pte_val(pte) |= (((unsigned long)space) << 32);
2804	pte_val(pte) |= pte_sz_bits(page_size);
2805
2806	return pte;
2807}
2808
2809static unsigned long kern_large_tte(unsigned long paddr)
2810{
2811	unsigned long val;
2812
2813	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2814	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2815	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2816	if (tlb_type == hypervisor)
2817		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2818		       page_cache4v_flag | _PAGE_P_4V |
2819		       _PAGE_EXEC_4V | _PAGE_W_4V);
2820
2821	return val | paddr;
2822}
2823
2824/* If not locked, zap it. */
2825void __flush_tlb_all(void)
2826{
2827	unsigned long pstate;
2828	int i;
2829
2830	__asm__ __volatile__("flushw\n\t"
2831			     "rdpr	%%pstate, %0\n\t"
2832			     "wrpr	%0, %1, %%pstate"
2833			     : "=r" (pstate)
2834			     : "i" (PSTATE_IE));
2835	if (tlb_type == hypervisor) {
2836		sun4v_mmu_demap_all();
2837	} else if (tlb_type == spitfire) {
2838		for (i = 0; i < 64; i++) {
2839			/* Spitfire Errata #32 workaround */
2840			/* NOTE: Always runs on spitfire, so no
2841			 *       cheetah+ page size encodings.
2842			 */
2843			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2844					     "flush	%%g6"
2845					     : /* No outputs */
2846					     : "r" (0),
2847					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2848
2849			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2850				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2851						     "membar #Sync"
2852						     : /* no outputs */
2853						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2854				spitfire_put_dtlb_data(i, 0x0UL);
2855			}
2856
2857			/* Spitfire Errata #32 workaround */
2858			/* NOTE: Always runs on spitfire, so no
2859			 *       cheetah+ page size encodings.
2860			 */
2861			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2862					     "flush	%%g6"
2863					     : /* No outputs */
2864					     : "r" (0),
2865					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2866
2867			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2868				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2869						     "membar #Sync"
2870						     : /* no outputs */
2871						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2872				spitfire_put_itlb_data(i, 0x0UL);
2873			}
2874		}
2875	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2876		cheetah_flush_dtlb_all();
2877		cheetah_flush_itlb_all();
2878	}
2879	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2880			     : : "r" (pstate));
2881}
2882
2883pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
 
2884{
2885	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 
2886	pte_t *pte = NULL;
2887
2888	if (page)
2889		pte = (pte_t *) page_address(page);
2890
2891	return pte;
2892}
2893
2894pgtable_t pte_alloc_one(struct mm_struct *mm)
 
2895{
2896	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 
2897	if (!page)
2898		return NULL;
2899	if (!pgtable_pte_page_ctor(page)) {
2900		__free_page(page);
2901		return NULL;
2902	}
2903	return (pte_t *) page_address(page);
2904}
2905
2906void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2907{
2908	free_page((unsigned long)pte);
2909}
2910
2911static void __pte_free(pgtable_t pte)
2912{
2913	struct page *page = virt_to_page(pte);
2914
2915	pgtable_pte_page_dtor(page);
2916	__free_page(page);
2917}
2918
2919void pte_free(struct mm_struct *mm, pgtable_t pte)
2920{
2921	__pte_free(pte);
2922}
2923
2924void pgtable_free(void *table, bool is_page)
2925{
2926	if (is_page)
2927		__pte_free(table);
2928	else
2929		kmem_cache_free(pgtable_cache, table);
2930}
2931
2932#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2933void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2934			  pmd_t *pmd)
2935{
2936	unsigned long pte, flags;
2937	struct mm_struct *mm;
2938	pmd_t entry = *pmd;
2939
2940	if (!pmd_large(entry) || !pmd_young(entry))
2941		return;
2942
2943	pte = pmd_val(entry);
2944
2945	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2946	if (!(pte & _PAGE_VALID))
2947		return;
2948
2949	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2950	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2951
2952	mm = vma->vm_mm;
2953
2954	spin_lock_irqsave(&mm->context.lock, flags);
2955
2956	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2957		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2958					addr, pte);
2959
2960	spin_unlock_irqrestore(&mm->context.lock, flags);
2961}
2962#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2963
2964#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2965static void context_reload(void *__data)
2966{
2967	struct mm_struct *mm = __data;
2968
2969	if (mm == current->mm)
2970		load_secondary_context(mm);
2971}
2972
2973void hugetlb_setup(struct pt_regs *regs)
2974{
2975	struct mm_struct *mm = current->mm;
2976	struct tsb_config *tp;
2977
2978	if (faulthandler_disabled() || !mm) {
2979		const struct exception_table_entry *entry;
2980
2981		entry = search_exception_tables(regs->tpc);
2982		if (entry) {
2983			regs->tpc = entry->fixup;
2984			regs->tnpc = regs->tpc + 4;
2985			return;
2986		}
2987		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2988		die_if_kernel("HugeTSB in atomic", regs);
2989	}
2990
2991	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2992	if (likely(tp->tsb == NULL))
2993		tsb_grow(mm, MM_TSB_HUGE, 0);
2994
2995	tsb_context_switch(mm);
2996	smp_tsb_sync(mm);
2997
2998	/* On UltraSPARC-III+ and later, configure the second half of
2999	 * the Data-TLB for huge pages.
3000	 */
3001	if (tlb_type == cheetah_plus) {
3002		bool need_context_reload = false;
3003		unsigned long ctx;
3004
3005		spin_lock_irq(&ctx_alloc_lock);
3006		ctx = mm->context.sparc64_ctx_val;
3007		ctx &= ~CTX_PGSZ_MASK;
3008		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3009		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3010
3011		if (ctx != mm->context.sparc64_ctx_val) {
3012			/* When changing the page size fields, we
3013			 * must perform a context flush so that no
3014			 * stale entries match.  This flush must
3015			 * occur with the original context register
3016			 * settings.
3017			 */
3018			do_flush_tlb_mm(mm);
3019
3020			/* Reload the context register of all processors
3021			 * also executing in this address space.
3022			 */
3023			mm->context.sparc64_ctx_val = ctx;
3024			need_context_reload = true;
3025		}
3026		spin_unlock_irq(&ctx_alloc_lock);
3027
3028		if (need_context_reload)
3029			on_each_cpu(context_reload, mm, 0);
3030	}
3031}
3032#endif
3033
3034static struct resource code_resource = {
3035	.name	= "Kernel code",
3036	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3037};
3038
3039static struct resource data_resource = {
3040	.name	= "Kernel data",
3041	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3042};
3043
3044static struct resource bss_resource = {
3045	.name	= "Kernel bss",
3046	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3047};
3048
3049static inline resource_size_t compute_kern_paddr(void *addr)
3050{
3051	return (resource_size_t) (addr - KERNBASE + kern_base);
3052}
3053
3054static void __init kernel_lds_init(void)
3055{
3056	code_resource.start = compute_kern_paddr(_text);
3057	code_resource.end   = compute_kern_paddr(_etext - 1);
3058	data_resource.start = compute_kern_paddr(_etext);
3059	data_resource.end   = compute_kern_paddr(_edata - 1);
3060	bss_resource.start  = compute_kern_paddr(__bss_start);
3061	bss_resource.end    = compute_kern_paddr(_end - 1);
3062}
3063
3064static int __init report_memory(void)
3065{
3066	int i;
3067	struct resource *res;
3068
3069	kernel_lds_init();
3070
3071	for (i = 0; i < pavail_ents; i++) {
3072		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3073
3074		if (!res) {
3075			pr_warn("Failed to allocate source.\n");
3076			break;
3077		}
3078
3079		res->name = "System RAM";
3080		res->start = pavail[i].phys_addr;
3081		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3082		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3083
3084		if (insert_resource(&iomem_resource, res) < 0) {
3085			pr_warn("Resource insertion failed.\n");
3086			break;
3087		}
3088
3089		insert_resource(res, &code_resource);
3090		insert_resource(res, &data_resource);
3091		insert_resource(res, &bss_resource);
3092	}
3093
3094	return 0;
3095}
3096arch_initcall(report_memory);
3097
3098#ifdef CONFIG_SMP
3099#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3100#else
3101#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3102#endif
3103
3104void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3105{
3106	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3107		if (start < LOW_OBP_ADDRESS) {
3108			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3109			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3110		}
3111		if (end > HI_OBP_ADDRESS) {
3112			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3113			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3114		}
3115	} else {
3116		flush_tsb_kernel_range(start, end);
3117		do_flush_tlb_kernel_range(start, end);
3118	}
3119}
3120
3121void copy_user_highpage(struct page *to, struct page *from,
3122	unsigned long vaddr, struct vm_area_struct *vma)
3123{
3124	char *vfrom, *vto;
3125
3126	vfrom = kmap_atomic(from);
3127	vto = kmap_atomic(to);
3128	copy_user_page(vto, vfrom, vaddr, to);
3129	kunmap_atomic(vto);
3130	kunmap_atomic(vfrom);
3131
3132	/* If this page has ADI enabled, copy over any ADI tags
3133	 * as well
3134	 */
3135	if (vma->vm_flags & VM_SPARC_ADI) {
3136		unsigned long pfrom, pto, i, adi_tag;
3137
3138		pfrom = page_to_phys(from);
3139		pto = page_to_phys(to);
3140
3141		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3142			asm volatile("ldxa [%1] %2, %0\n\t"
3143					: "=r" (adi_tag)
3144					:  "r" (i), "i" (ASI_MCD_REAL));
3145			asm volatile("stxa %0, [%1] %2\n\t"
3146					:
3147					: "r" (adi_tag), "r" (pto),
3148					  "i" (ASI_MCD_REAL));
3149			pto += adi_blksize();
3150		}
3151		asm volatile("membar #Sync\n\t");
3152	}
3153}
3154EXPORT_SYMBOL(copy_user_highpage);
3155
3156void copy_highpage(struct page *to, struct page *from)
3157{
3158	char *vfrom, *vto;
3159
3160	vfrom = kmap_atomic(from);
3161	vto = kmap_atomic(to);
3162	copy_page(vto, vfrom);
3163	kunmap_atomic(vto);
3164	kunmap_atomic(vfrom);
3165
3166	/* If this platform is ADI enabled, copy any ADI tags
3167	 * as well
3168	 */
3169	if (adi_capable()) {
3170		unsigned long pfrom, pto, i, adi_tag;
3171
3172		pfrom = page_to_phys(from);
3173		pto = page_to_phys(to);
3174
3175		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3176			asm volatile("ldxa [%1] %2, %0\n\t"
3177					: "=r" (adi_tag)
3178					:  "r" (i), "i" (ASI_MCD_REAL));
3179			asm volatile("stxa %0, [%1] %2\n\t"
3180					:
3181					: "r" (adi_tag), "r" (pto),
3182					  "i" (ASI_MCD_REAL));
3183			pto += adi_blksize();
3184		}
3185		asm volatile("membar #Sync\n\t");
3186	}
3187}
3188EXPORT_SYMBOL(copy_highpage);
3189
3190pgprot_t vm_get_page_prot(unsigned long vm_flags)
3191{
3192	unsigned long prot = pgprot_val(protection_map[vm_flags &
3193					(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3194
3195	if (vm_flags & VM_SPARC_ADI)
3196		prot |= _PAGE_MCD_4V;
3197
3198	return __pgprot(prot);
3199}
3200EXPORT_SYMBOL(vm_get_page_prot);
v3.15
 
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/module.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
 
  25#include <linux/percpu.h>
  26#include <linux/memblock.h>
  27#include <linux/mmzone.h>
  28#include <linux/gfp.h>
 
  29
  30#include <asm/head.h>
  31#include <asm/page.h>
  32#include <asm/pgalloc.h>
  33#include <asm/pgtable.h>
  34#include <asm/oplib.h>
  35#include <asm/iommu.h>
  36#include <asm/io.h>
  37#include <asm/uaccess.h>
  38#include <asm/mmu_context.h>
  39#include <asm/tlbflush.h>
  40#include <asm/dma.h>
  41#include <asm/starfire.h>
  42#include <asm/tlb.h>
  43#include <asm/spitfire.h>
  44#include <asm/sections.h>
  45#include <asm/tsb.h>
  46#include <asm/hypervisor.h>
  47#include <asm/prom.h>
  48#include <asm/mdesc.h>
  49#include <asm/cpudata.h>
 
  50#include <asm/irq.h>
  51
  52#include "init_64.h"
  53
  54unsigned long kern_linear_pte_xor[4] __read_mostly;
 
  55
  56/* A bitmap, two bits for every 256MB of physical memory.  These two
  57 * bits determine what page size we use for kernel linear
  58 * translations.  They form an index into kern_linear_pte_xor[].  The
  59 * value in the indexed slot is XOR'd with the TLB miss virtual
  60 * address to form the resulting TTE.  The mapping is:
  61 *
  62 *	0	==>	4MB
  63 *	1	==>	256MB
  64 *	2	==>	2GB
  65 *	3	==>	16GB
  66 *
  67 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  68 * support 2GB pages, and hopefully future cpus will support the 16GB
  69 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  70 * if these larger page sizes are not supported by the cpu.
  71 *
  72 * It would be nice to determine this from the machine description
  73 * 'cpu' properties, but we need to have this table setup before the
  74 * MDESC is initialized.
  75 */
  76unsigned long kpte_linear_bitmap[KPTE_BITMAP_BYTES / sizeof(unsigned long)];
  77
  78#ifndef CONFIG_DEBUG_PAGEALLOC
  79/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  80 * Space is allocated for this right after the trap table in
  81 * arch/sparc64/kernel/head.S
  82 */
  83extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  84#endif
 
  85
  86static unsigned long cpu_pgsz_mask;
  87
  88#define MAX_BANKS	32
  89
  90static struct linux_prom64_registers pavail[MAX_BANKS];
  91static int pavail_ents;
  92
 
 
  93static int cmp_p64(const void *a, const void *b)
  94{
  95	const struct linux_prom64_registers *x = a, *y = b;
  96
  97	if (x->phys_addr > y->phys_addr)
  98		return 1;
  99	if (x->phys_addr < y->phys_addr)
 100		return -1;
 101	return 0;
 102}
 103
 104static void __init read_obp_memory(const char *property,
 105				   struct linux_prom64_registers *regs,
 106				   int *num_ents)
 107{
 108	phandle node = prom_finddevice("/memory");
 109	int prop_size = prom_getproplen(node, property);
 110	int ents, ret, i;
 111
 112	ents = prop_size / sizeof(struct linux_prom64_registers);
 113	if (ents > MAX_BANKS) {
 114		prom_printf("The machine has more %s property entries than "
 115			    "this kernel can support (%d).\n",
 116			    property, MAX_BANKS);
 117		prom_halt();
 118	}
 119
 120	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 121	if (ret == -1) {
 122		prom_printf("Couldn't get %s property from /memory.\n",
 123				property);
 124		prom_halt();
 125	}
 126
 127	/* Sanitize what we got from the firmware, by page aligning
 128	 * everything.
 129	 */
 130	for (i = 0; i < ents; i++) {
 131		unsigned long base, size;
 132
 133		base = regs[i].phys_addr;
 134		size = regs[i].reg_size;
 135
 136		size &= PAGE_MASK;
 137		if (base & ~PAGE_MASK) {
 138			unsigned long new_base = PAGE_ALIGN(base);
 139
 140			size -= new_base - base;
 141			if ((long) size < 0L)
 142				size = 0UL;
 143			base = new_base;
 144		}
 145		if (size == 0UL) {
 146			/* If it is empty, simply get rid of it.
 147			 * This simplifies the logic of the other
 148			 * functions that process these arrays.
 149			 */
 150			memmove(&regs[i], &regs[i + 1],
 151				(ents - i - 1) * sizeof(regs[0]));
 152			i--;
 153			ents--;
 154			continue;
 155		}
 156		regs[i].phys_addr = base;
 157		regs[i].reg_size = size;
 158	}
 159
 160	*num_ents = ents;
 161
 162	sort(regs, ents, sizeof(struct linux_prom64_registers),
 163	     cmp_p64, NULL);
 164}
 165
 166unsigned long sparc64_valid_addr_bitmap[VALID_ADDR_BITMAP_BYTES /
 167					sizeof(unsigned long)];
 168EXPORT_SYMBOL(sparc64_valid_addr_bitmap);
 169
 170/* Kernel physical address base and size in bytes.  */
 171unsigned long kern_base __read_mostly;
 172unsigned long kern_size __read_mostly;
 173
 174/* Initial ramdisk setup */
 175extern unsigned long sparc_ramdisk_image64;
 176extern unsigned int sparc_ramdisk_image;
 177extern unsigned int sparc_ramdisk_size;
 178
 179struct page *mem_map_zero __read_mostly;
 180EXPORT_SYMBOL(mem_map_zero);
 181
 182unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 183
 184unsigned long sparc64_kern_pri_context __read_mostly;
 185unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 186unsigned long sparc64_kern_sec_context __read_mostly;
 187
 188int num_kernel_image_mappings;
 189
 190#ifdef CONFIG_DEBUG_DCFLUSH
 191atomic_t dcpage_flushes = ATOMIC_INIT(0);
 192#ifdef CONFIG_SMP
 193atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 194#endif
 195#endif
 196
 197inline void flush_dcache_page_impl(struct page *page)
 198{
 199	BUG_ON(tlb_type == hypervisor);
 200#ifdef CONFIG_DEBUG_DCFLUSH
 201	atomic_inc(&dcpage_flushes);
 202#endif
 203
 204#ifdef DCACHE_ALIASING_POSSIBLE
 205	__flush_dcache_page(page_address(page),
 206			    ((tlb_type == spitfire) &&
 207			     page_mapping(page) != NULL));
 208#else
 209	if (page_mapping(page) != NULL &&
 210	    tlb_type == spitfire)
 211		__flush_icache_page(__pa(page_address(page)));
 212#endif
 213}
 214
 215#define PG_dcache_dirty		PG_arch_1
 216#define PG_dcache_cpu_shift	32UL
 217#define PG_dcache_cpu_mask	\
 218	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 219
 220#define dcache_dirty_cpu(page) \
 221	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 222
 223static inline void set_dcache_dirty(struct page *page, int this_cpu)
 224{
 225	unsigned long mask = this_cpu;
 226	unsigned long non_cpu_bits;
 227
 228	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 229	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 230
 231	__asm__ __volatile__("1:\n\t"
 232			     "ldx	[%2], %%g7\n\t"
 233			     "and	%%g7, %1, %%g1\n\t"
 234			     "or	%%g1, %0, %%g1\n\t"
 235			     "casx	[%2], %%g7, %%g1\n\t"
 236			     "cmp	%%g7, %%g1\n\t"
 237			     "bne,pn	%%xcc, 1b\n\t"
 238			     " nop"
 239			     : /* no outputs */
 240			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 241			     : "g1", "g7");
 242}
 243
 244static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 245{
 246	unsigned long mask = (1UL << PG_dcache_dirty);
 247
 248	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 249			     "1:\n\t"
 250			     "ldx	[%2], %%g7\n\t"
 251			     "srlx	%%g7, %4, %%g1\n\t"
 252			     "and	%%g1, %3, %%g1\n\t"
 253			     "cmp	%%g1, %0\n\t"
 254			     "bne,pn	%%icc, 2f\n\t"
 255			     " andn	%%g7, %1, %%g1\n\t"
 256			     "casx	[%2], %%g7, %%g1\n\t"
 257			     "cmp	%%g7, %%g1\n\t"
 258			     "bne,pn	%%xcc, 1b\n\t"
 259			     " nop\n"
 260			     "2:"
 261			     : /* no outputs */
 262			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 263			       "i" (PG_dcache_cpu_mask),
 264			       "i" (PG_dcache_cpu_shift)
 265			     : "g1", "g7");
 266}
 267
 268static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 269{
 270	unsigned long tsb_addr = (unsigned long) ent;
 271
 272	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 273		tsb_addr = __pa(tsb_addr);
 274
 275	__tsb_insert(tsb_addr, tag, pte);
 276}
 277
 278unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 279
 280static void flush_dcache(unsigned long pfn)
 281{
 282	struct page *page;
 283
 284	page = pfn_to_page(pfn);
 285	if (page) {
 286		unsigned long pg_flags;
 287
 288		pg_flags = page->flags;
 289		if (pg_flags & (1UL << PG_dcache_dirty)) {
 290			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 291				   PG_dcache_cpu_mask);
 292			int this_cpu = get_cpu();
 293
 294			/* This is just to optimize away some function calls
 295			 * in the SMP case.
 296			 */
 297			if (cpu == this_cpu)
 298				flush_dcache_page_impl(page);
 299			else
 300				smp_flush_dcache_page_impl(page, cpu);
 301
 302			clear_dcache_dirty_cpu(page, cpu);
 303
 304			put_cpu();
 305		}
 306	}
 307}
 308
 309/* mm->context.lock must be held */
 310static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 311				    unsigned long tsb_hash_shift, unsigned long address,
 312				    unsigned long tte)
 313{
 314	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 315	unsigned long tag;
 316
 317	if (unlikely(!tsb))
 318		return;
 319
 320	tsb += ((address >> tsb_hash_shift) &
 321		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 322	tag = (address >> 22UL);
 323	tsb_insert(tsb, tag, tte);
 324}
 325
 326#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 327static inline bool is_hugetlb_pte(pte_t pte)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328{
 329	if ((tlb_type == hypervisor &&
 330	     (pte_val(pte) & _PAGE_SZALL_4V) == _PAGE_SZHUGE_4V) ||
 331	    (tlb_type != hypervisor &&
 332	     (pte_val(pte) & _PAGE_SZALL_4U) == _PAGE_SZHUGE_4U))
 333		return true;
 334	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 335}
 336#endif
 337
 338void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 339{
 340	struct mm_struct *mm;
 341	unsigned long flags;
 
 342	pte_t pte = *ptep;
 343
 344	if (tlb_type != hypervisor) {
 345		unsigned long pfn = pte_pfn(pte);
 346
 347		if (pfn_valid(pfn))
 348			flush_dcache(pfn);
 349	}
 350
 351	mm = vma->vm_mm;
 352
 
 
 
 
 353	spin_lock_irqsave(&mm->context.lock, flags);
 354
 
 355#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 356	if (mm->context.huge_pte_count && is_hugetlb_pte(pte))
 357		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
 358					address, pte_val(pte));
 359	else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360#endif
 
 361		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 362					address, pte_val(pte));
 363
 364	spin_unlock_irqrestore(&mm->context.lock, flags);
 365}
 366
 367void flush_dcache_page(struct page *page)
 368{
 369	struct address_space *mapping;
 370	int this_cpu;
 371
 372	if (tlb_type == hypervisor)
 373		return;
 374
 375	/* Do not bother with the expensive D-cache flush if it
 376	 * is merely the zero page.  The 'bigcore' testcase in GDB
 377	 * causes this case to run millions of times.
 378	 */
 379	if (page == ZERO_PAGE(0))
 380		return;
 381
 382	this_cpu = get_cpu();
 383
 384	mapping = page_mapping(page);
 385	if (mapping && !mapping_mapped(mapping)) {
 386		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 387		if (dirty) {
 388			int dirty_cpu = dcache_dirty_cpu(page);
 389
 390			if (dirty_cpu == this_cpu)
 391				goto out;
 392			smp_flush_dcache_page_impl(page, dirty_cpu);
 393		}
 394		set_dcache_dirty(page, this_cpu);
 395	} else {
 396		/* We could delay the flush for the !page_mapping
 397		 * case too.  But that case is for exec env/arg
 398		 * pages and those are %99 certainly going to get
 399		 * faulted into the tlb (and thus flushed) anyways.
 400		 */
 401		flush_dcache_page_impl(page);
 402	}
 403
 404out:
 405	put_cpu();
 406}
 407EXPORT_SYMBOL(flush_dcache_page);
 408
 409void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 410{
 411	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 412	if (tlb_type == spitfire) {
 413		unsigned long kaddr;
 414
 415		/* This code only runs on Spitfire cpus so this is
 416		 * why we can assume _PAGE_PADDR_4U.
 417		 */
 418		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 419			unsigned long paddr, mask = _PAGE_PADDR_4U;
 420
 421			if (kaddr >= PAGE_OFFSET)
 422				paddr = kaddr & mask;
 423			else {
 424				pgd_t *pgdp = pgd_offset_k(kaddr);
 425				pud_t *pudp = pud_offset(pgdp, kaddr);
 426				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 427				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 428
 429				paddr = pte_val(*ptep) & mask;
 430			}
 431			__flush_icache_page(paddr);
 432		}
 433	}
 434}
 435EXPORT_SYMBOL(flush_icache_range);
 436
 437void mmu_info(struct seq_file *m)
 438{
 439	static const char *pgsz_strings[] = {
 440		"8K", "64K", "512K", "4MB", "32MB",
 441		"256MB", "2GB", "16GB",
 442	};
 443	int i, printed;
 444
 445	if (tlb_type == cheetah)
 446		seq_printf(m, "MMU Type\t: Cheetah\n");
 447	else if (tlb_type == cheetah_plus)
 448		seq_printf(m, "MMU Type\t: Cheetah+\n");
 449	else if (tlb_type == spitfire)
 450		seq_printf(m, "MMU Type\t: Spitfire\n");
 451	else if (tlb_type == hypervisor)
 452		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 453	else
 454		seq_printf(m, "MMU Type\t: ???\n");
 455
 456	seq_printf(m, "MMU PGSZs\t: ");
 457	printed = 0;
 458	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 459		if (cpu_pgsz_mask & (1UL << i)) {
 460			seq_printf(m, "%s%s",
 461				   printed ? "," : "", pgsz_strings[i]);
 462			printed++;
 463		}
 464	}
 465	seq_putc(m, '\n');
 466
 467#ifdef CONFIG_DEBUG_DCFLUSH
 468	seq_printf(m, "DCPageFlushes\t: %d\n",
 469		   atomic_read(&dcpage_flushes));
 470#ifdef CONFIG_SMP
 471	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 472		   atomic_read(&dcpage_flushes_xcall));
 473#endif /* CONFIG_SMP */
 474#endif /* CONFIG_DEBUG_DCFLUSH */
 475}
 476
 477struct linux_prom_translation prom_trans[512] __read_mostly;
 478unsigned int prom_trans_ents __read_mostly;
 479
 480unsigned long kern_locked_tte_data;
 481
 482/* The obp translations are saved based on 8k pagesize, since obp can
 483 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 484 * HI_OBP_ADDRESS range are handled in ktlb.S.
 485 */
 486static inline int in_obp_range(unsigned long vaddr)
 487{
 488	return (vaddr >= LOW_OBP_ADDRESS &&
 489		vaddr < HI_OBP_ADDRESS);
 490}
 491
 492static int cmp_ptrans(const void *a, const void *b)
 493{
 494	const struct linux_prom_translation *x = a, *y = b;
 495
 496	if (x->virt > y->virt)
 497		return 1;
 498	if (x->virt < y->virt)
 499		return -1;
 500	return 0;
 501}
 502
 503/* Read OBP translations property into 'prom_trans[]'.  */
 504static void __init read_obp_translations(void)
 505{
 506	int n, node, ents, first, last, i;
 507
 508	node = prom_finddevice("/virtual-memory");
 509	n = prom_getproplen(node, "translations");
 510	if (unlikely(n == 0 || n == -1)) {
 511		prom_printf("prom_mappings: Couldn't get size.\n");
 512		prom_halt();
 513	}
 514	if (unlikely(n > sizeof(prom_trans))) {
 515		prom_printf("prom_mappings: Size %d is too big.\n", n);
 516		prom_halt();
 517	}
 518
 519	if ((n = prom_getproperty(node, "translations",
 520				  (char *)&prom_trans[0],
 521				  sizeof(prom_trans))) == -1) {
 522		prom_printf("prom_mappings: Couldn't get property.\n");
 523		prom_halt();
 524	}
 525
 526	n = n / sizeof(struct linux_prom_translation);
 527
 528	ents = n;
 529
 530	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 531	     cmp_ptrans, NULL);
 532
 533	/* Now kick out all the non-OBP entries.  */
 534	for (i = 0; i < ents; i++) {
 535		if (in_obp_range(prom_trans[i].virt))
 536			break;
 537	}
 538	first = i;
 539	for (; i < ents; i++) {
 540		if (!in_obp_range(prom_trans[i].virt))
 541			break;
 542	}
 543	last = i;
 544
 545	for (i = 0; i < (last - first); i++) {
 546		struct linux_prom_translation *src = &prom_trans[i + first];
 547		struct linux_prom_translation *dest = &prom_trans[i];
 548
 549		*dest = *src;
 550	}
 551	for (; i < ents; i++) {
 552		struct linux_prom_translation *dest = &prom_trans[i];
 553		dest->virt = dest->size = dest->data = 0x0UL;
 554	}
 555
 556	prom_trans_ents = last - first;
 557
 558	if (tlb_type == spitfire) {
 559		/* Clear diag TTE bits. */
 560		for (i = 0; i < prom_trans_ents; i++)
 561			prom_trans[i].data &= ~0x0003fe0000000000UL;
 562	}
 563
 564	/* Force execute bit on.  */
 565	for (i = 0; i < prom_trans_ents; i++)
 566		prom_trans[i].data |= (tlb_type == hypervisor ?
 567				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 568}
 569
 570static void __init hypervisor_tlb_lock(unsigned long vaddr,
 571				       unsigned long pte,
 572				       unsigned long mmu)
 573{
 574	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 575
 576	if (ret != 0) {
 577		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 578			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 579		prom_halt();
 580	}
 581}
 582
 583static unsigned long kern_large_tte(unsigned long paddr);
 584
 585static void __init remap_kernel(void)
 586{
 587	unsigned long phys_page, tte_vaddr, tte_data;
 588	int i, tlb_ent = sparc64_highest_locked_tlbent();
 589
 590	tte_vaddr = (unsigned long) KERNBASE;
 591	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 592	tte_data = kern_large_tte(phys_page);
 593
 594	kern_locked_tte_data = tte_data;
 595
 596	/* Now lock us into the TLBs via Hypervisor or OBP. */
 597	if (tlb_type == hypervisor) {
 598		for (i = 0; i < num_kernel_image_mappings; i++) {
 599			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 600			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 601			tte_vaddr += 0x400000;
 602			tte_data += 0x400000;
 603		}
 604	} else {
 605		for (i = 0; i < num_kernel_image_mappings; i++) {
 606			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 607			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 608			tte_vaddr += 0x400000;
 609			tte_data += 0x400000;
 610		}
 611		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 612	}
 613	if (tlb_type == cheetah_plus) {
 614		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 615					    CTX_CHEETAH_PLUS_NUC);
 616		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 617		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 618	}
 619}
 620
 621
 622static void __init inherit_prom_mappings(void)
 623{
 624	/* Now fixup OBP's idea about where we really are mapped. */
 625	printk("Remapping the kernel... ");
 626	remap_kernel();
 627	printk("done.\n");
 628}
 629
 630void prom_world(int enter)
 631{
 632	if (!enter)
 633		set_fs(get_fs());
 634
 
 635	__asm__ __volatile__("flushw");
 636}
 637
 638void __flush_dcache_range(unsigned long start, unsigned long end)
 639{
 640	unsigned long va;
 641
 642	if (tlb_type == spitfire) {
 643		int n = 0;
 644
 645		for (va = start; va < end; va += 32) {
 646			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 647			if (++n >= 512)
 648				break;
 649		}
 650	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 651		start = __pa(start);
 652		end = __pa(end);
 653		for (va = start; va < end; va += 32)
 654			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 655					     "membar #Sync"
 656					     : /* no outputs */
 657					     : "r" (va),
 658					       "i" (ASI_DCACHE_INVALIDATE));
 659	}
 660}
 661EXPORT_SYMBOL(__flush_dcache_range);
 662
 663/* get_new_mmu_context() uses "cache + 1".  */
 664DEFINE_SPINLOCK(ctx_alloc_lock);
 665unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 666#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 667#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 668DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669
 670/* Caller does TLB context flushing on local CPU if necessary.
 671 * The caller also ensures that CTX_VALID(mm->context) is false.
 672 *
 673 * We must be careful about boundary cases so that we never
 674 * let the user have CTX 0 (nucleus) or we ever use a CTX
 675 * version of zero (and thus NO_CONTEXT would not be caught
 676 * by version mis-match tests in mmu_context.h).
 677 *
 678 * Always invoked with interrupts disabled.
 679 */
 680void get_new_mmu_context(struct mm_struct *mm)
 681{
 682	unsigned long ctx, new_ctx;
 683	unsigned long orig_pgsz_bits;
 684	int new_version;
 685
 686	spin_lock(&ctx_alloc_lock);
 
 
 
 
 687	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 688	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 689	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 690	new_version = 0;
 691	if (new_ctx >= (1 << CTX_NR_BITS)) {
 692		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 693		if (new_ctx >= ctx) {
 694			int i;
 695			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 696				CTX_FIRST_VERSION;
 697			if (new_ctx == 1)
 698				new_ctx = CTX_FIRST_VERSION;
 699
 700			/* Don't call memset, for 16 entries that's just
 701			 * plain silly...
 702			 */
 703			mmu_context_bmap[0] = 3;
 704			mmu_context_bmap[1] = 0;
 705			mmu_context_bmap[2] = 0;
 706			mmu_context_bmap[3] = 0;
 707			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 708				mmu_context_bmap[i + 0] = 0;
 709				mmu_context_bmap[i + 1] = 0;
 710				mmu_context_bmap[i + 2] = 0;
 711				mmu_context_bmap[i + 3] = 0;
 712			}
 713			new_version = 1;
 714			goto out;
 715		}
 716	}
 
 
 717	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 718	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 719out:
 720	tlb_context_cache = new_ctx;
 721	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 
 722	spin_unlock(&ctx_alloc_lock);
 723
 724	if (unlikely(new_version))
 725		smp_new_mmu_context_version();
 726}
 727
 728static int numa_enabled = 1;
 729static int numa_debug;
 730
 731static int __init early_numa(char *p)
 732{
 733	if (!p)
 734		return 0;
 735
 736	if (strstr(p, "off"))
 737		numa_enabled = 0;
 738
 739	if (strstr(p, "debug"))
 740		numa_debug = 1;
 741
 742	return 0;
 743}
 744early_param("numa", early_numa);
 745
 746#define numadbg(f, a...) \
 747do {	if (numa_debug) \
 748		printk(KERN_INFO f, ## a); \
 749} while (0)
 750
 751static void __init find_ramdisk(unsigned long phys_base)
 752{
 753#ifdef CONFIG_BLK_DEV_INITRD
 754	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 755		unsigned long ramdisk_image;
 756
 757		/* Older versions of the bootloader only supported a
 758		 * 32-bit physical address for the ramdisk image
 759		 * location, stored at sparc_ramdisk_image.  Newer
 760		 * SILO versions set sparc_ramdisk_image to zero and
 761		 * provide a full 64-bit physical address at
 762		 * sparc_ramdisk_image64.
 763		 */
 764		ramdisk_image = sparc_ramdisk_image;
 765		if (!ramdisk_image)
 766			ramdisk_image = sparc_ramdisk_image64;
 767
 768		/* Another bootloader quirk.  The bootloader normalizes
 769		 * the physical address to KERNBASE, so we have to
 770		 * factor that back out and add in the lowest valid
 771		 * physical page address to get the true physical address.
 772		 */
 773		ramdisk_image -= KERNBASE;
 774		ramdisk_image += phys_base;
 775
 776		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 777			ramdisk_image, sparc_ramdisk_size);
 778
 779		initrd_start = ramdisk_image;
 780		initrd_end = ramdisk_image + sparc_ramdisk_size;
 781
 782		memblock_reserve(initrd_start, sparc_ramdisk_size);
 783
 784		initrd_start += PAGE_OFFSET;
 785		initrd_end += PAGE_OFFSET;
 786	}
 787#endif
 788}
 789
 790struct node_mem_mask {
 791	unsigned long mask;
 792	unsigned long val;
 793};
 794static struct node_mem_mask node_masks[MAX_NUMNODES];
 795static int num_node_masks;
 796
 
 
 
 
 
 
 
 
 
 
 
 
 797int numa_cpu_lookup_table[NR_CPUS];
 798cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 799
 800#ifdef CONFIG_NEED_MULTIPLE_NODES
 801
 802struct mdesc_mblock {
 803	u64	base;
 804	u64	size;
 805	u64	offset; /* RA-to-PA */
 806};
 807static struct mdesc_mblock *mblocks;
 808static int num_mblocks;
 809
 810static unsigned long ra_to_pa(unsigned long addr)
 811{
 
 812	int i;
 813
 814	for (i = 0; i < num_mblocks; i++) {
 815		struct mdesc_mblock *m = &mblocks[i];
 816
 817		if (addr >= m->base &&
 818		    addr < (m->base + m->size)) {
 819			addr += m->offset;
 820			break;
 821		}
 822	}
 823	return addr;
 
 824}
 825
 826static int find_node(unsigned long addr)
 827{
 828	int i;
 
 
 
 
 
 
 
 
 
 
 
 
 829
 830	addr = ra_to_pa(addr);
 831	for (i = 0; i < num_node_masks; i++) {
 832		struct node_mem_mask *p = &node_masks[i];
 
 
 
 833
 834		if ((addr & p->mask) == p->val)
 835			return i;
 836	}
 837	return -1;
 
 
 838}
 839
 840static u64 memblock_nid_range(u64 start, u64 end, int *nid)
 841{
 842	*nid = find_node(start);
 843	start += PAGE_SIZE;
 844	while (start < end) {
 845		int n = find_node(start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 846
 847		if (n != *nid)
 
 
 848			break;
 849		start += PAGE_SIZE;
 850	}
 851
 852	if (start > end)
 853		start = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 854
 855	return start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 856}
 857#endif
 858
 859/* This must be invoked after performing all of the necessary
 860 * memblock_set_node() calls for 'nid'.  We need to be able to get
 861 * correct data from get_pfn_range_for_nid().
 862 */
 863static void __init allocate_node_data(int nid)
 864{
 865	struct pglist_data *p;
 866	unsigned long start_pfn, end_pfn;
 867#ifdef CONFIG_NEED_MULTIPLE_NODES
 868	unsigned long paddr;
 869
 870	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 871	if (!paddr) {
 
 872		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 873		prom_halt();
 874	}
 875	NODE_DATA(nid) = __va(paddr);
 876	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 877
 878	NODE_DATA(nid)->node_id = nid;
 879#endif
 880
 881	p = NODE_DATA(nid);
 882
 883	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 884	p->node_start_pfn = start_pfn;
 885	p->node_spanned_pages = end_pfn - start_pfn;
 886}
 887
 888static void init_node_masks_nonnuma(void)
 889{
 
 890	int i;
 
 891
 892	numadbg("Initializing tables for non-numa.\n");
 893
 894	node_masks[0].mask = node_masks[0].val = 0;
 
 895	num_node_masks = 1;
 896
 
 897	for (i = 0; i < NR_CPUS; i++)
 898		numa_cpu_lookup_table[i] = 0;
 899
 900	cpumask_setall(&numa_cpumask_lookup_table[0]);
 
 901}
 902
 903#ifdef CONFIG_NEED_MULTIPLE_NODES
 904struct pglist_data *node_data[MAX_NUMNODES];
 905
 906EXPORT_SYMBOL(numa_cpu_lookup_table);
 907EXPORT_SYMBOL(numa_cpumask_lookup_table);
 908EXPORT_SYMBOL(node_data);
 909
 910struct mdesc_mlgroup {
 911	u64	node;
 912	u64	latency;
 913	u64	match;
 914	u64	mask;
 915};
 916static struct mdesc_mlgroup *mlgroups;
 917static int num_mlgroups;
 918
 919static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 920				   u32 cfg_handle)
 921{
 922	u64 arc;
 923
 924	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 925		u64 target = mdesc_arc_target(md, arc);
 926		const u64 *val;
 927
 928		val = mdesc_get_property(md, target,
 929					 "cfg-handle", NULL);
 930		if (val && *val == cfg_handle)
 931			return 0;
 932	}
 933	return -ENODEV;
 934}
 935
 936static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 937				    u32 cfg_handle)
 938{
 939	u64 arc, candidate, best_latency = ~(u64)0;
 940
 941	candidate = MDESC_NODE_NULL;
 942	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 943		u64 target = mdesc_arc_target(md, arc);
 944		const char *name = mdesc_node_name(md, target);
 945		const u64 *val;
 946
 947		if (strcmp(name, "pio-latency-group"))
 948			continue;
 949
 950		val = mdesc_get_property(md, target, "latency", NULL);
 951		if (!val)
 952			continue;
 953
 954		if (*val < best_latency) {
 955			candidate = target;
 956			best_latency = *val;
 957		}
 958	}
 959
 960	if (candidate == MDESC_NODE_NULL)
 961		return -ENODEV;
 962
 963	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 964}
 965
 966int of_node_to_nid(struct device_node *dp)
 967{
 968	const struct linux_prom64_registers *regs;
 969	struct mdesc_handle *md;
 970	u32 cfg_handle;
 971	int count, nid;
 972	u64 grp;
 973
 974	/* This is the right thing to do on currently supported
 975	 * SUN4U NUMA platforms as well, as the PCI controller does
 976	 * not sit behind any particular memory controller.
 977	 */
 978	if (!mlgroups)
 979		return -1;
 980
 981	regs = of_get_property(dp, "reg", NULL);
 982	if (!regs)
 983		return -1;
 984
 985	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
 986
 987	md = mdesc_grab();
 988
 989	count = 0;
 990	nid = -1;
 991	mdesc_for_each_node_by_name(md, grp, "group") {
 992		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
 993			nid = count;
 994			break;
 995		}
 996		count++;
 997	}
 998
 999	mdesc_release(md);
1000
1001	return nid;
1002}
1003
1004static void __init add_node_ranges(void)
1005{
1006	struct memblock_region *reg;
 
 
1007
1008	for_each_memblock(memory, reg) {
1009		unsigned long size = reg->size;
1010		unsigned long start, end;
1011
1012		start = reg->base;
1013		end = start + size;
1014		while (start < end) {
1015			unsigned long this_end;
1016			int nid;
1017
1018			this_end = memblock_nid_range(start, end, &nid);
1019
1020			numadbg("Setting memblock NUMA node nid[%d] "
1021				"start[%lx] end[%lx]\n",
1022				nid, start, this_end);
1023
1024			memblock_set_node(start, this_end - start,
1025					  &memblock.memory, nid);
 
 
1026			start = this_end;
1027		}
1028	}
1029}
1030
1031static int __init grab_mlgroups(struct mdesc_handle *md)
1032{
1033	unsigned long paddr;
1034	int count = 0;
1035	u64 node;
1036
1037	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1038		count++;
1039	if (!count)
1040		return -ENOENT;
1041
1042	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1043			  SMP_CACHE_BYTES);
1044	if (!paddr)
1045		return -ENOMEM;
1046
1047	mlgroups = __va(paddr);
1048	num_mlgroups = count;
1049
1050	count = 0;
1051	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1052		struct mdesc_mlgroup *m = &mlgroups[count++];
1053		const u64 *val;
1054
1055		m->node = node;
1056
1057		val = mdesc_get_property(md, node, "latency", NULL);
1058		m->latency = *val;
1059		val = mdesc_get_property(md, node, "address-match", NULL);
1060		m->match = *val;
1061		val = mdesc_get_property(md, node, "address-mask", NULL);
1062		m->mask = *val;
1063
1064		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1065			"match[%llx] mask[%llx]\n",
1066			count - 1, m->node, m->latency, m->match, m->mask);
1067	}
1068
1069	return 0;
1070}
1071
1072static int __init grab_mblocks(struct mdesc_handle *md)
1073{
1074	unsigned long paddr;
1075	int count = 0;
1076	u64 node;
1077
1078	mdesc_for_each_node_by_name(md, node, "mblock")
1079		count++;
1080	if (!count)
1081		return -ENOENT;
1082
1083	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1084			  SMP_CACHE_BYTES);
1085	if (!paddr)
1086		return -ENOMEM;
1087
1088	mblocks = __va(paddr);
1089	num_mblocks = count;
1090
1091	count = 0;
1092	mdesc_for_each_node_by_name(md, node, "mblock") {
1093		struct mdesc_mblock *m = &mblocks[count++];
1094		const u64 *val;
1095
1096		val = mdesc_get_property(md, node, "base", NULL);
1097		m->base = *val;
1098		val = mdesc_get_property(md, node, "size", NULL);
1099		m->size = *val;
1100		val = mdesc_get_property(md, node,
1101					 "address-congruence-offset", NULL);
1102
1103		/* The address-congruence-offset property is optional.
1104		 * Explicity zero it be identifty this.
1105		 */
1106		if (val)
1107			m->offset = *val;
1108		else
1109			m->offset = 0UL;
1110
1111		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1112			count - 1, m->base, m->size, m->offset);
1113	}
1114
1115	return 0;
1116}
1117
1118static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1119					       u64 grp, cpumask_t *mask)
1120{
1121	u64 arc;
1122
1123	cpumask_clear(mask);
1124
1125	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1126		u64 target = mdesc_arc_target(md, arc);
1127		const char *name = mdesc_node_name(md, target);
1128		const u64 *id;
1129
1130		if (strcmp(name, "cpu"))
1131			continue;
1132		id = mdesc_get_property(md, target, "id", NULL);
1133		if (*id < nr_cpu_ids)
1134			cpumask_set_cpu(*id, mask);
1135	}
1136}
1137
1138static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1139{
1140	int i;
1141
1142	for (i = 0; i < num_mlgroups; i++) {
1143		struct mdesc_mlgroup *m = &mlgroups[i];
1144		if (m->node == node)
1145			return m;
1146	}
1147	return NULL;
1148}
1149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1151				      int index)
1152{
1153	struct mdesc_mlgroup *candidate = NULL;
1154	u64 arc, best_latency = ~(u64)0;
1155	struct node_mem_mask *n;
1156
1157	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1158		u64 target = mdesc_arc_target(md, arc);
1159		struct mdesc_mlgroup *m = find_mlgroup(target);
1160		if (!m)
1161			continue;
1162		if (m->latency < best_latency) {
1163			candidate = m;
1164			best_latency = m->latency;
1165		}
1166	}
1167	if (!candidate)
1168		return -ENOENT;
1169
1170	if (num_node_masks != index) {
1171		printk(KERN_ERR "Inconsistent NUMA state, "
1172		       "index[%d] != num_node_masks[%d]\n",
1173		       index, num_node_masks);
1174		return -EINVAL;
1175	}
1176
1177	n = &node_masks[num_node_masks++];
1178
1179	n->mask = candidate->mask;
1180	n->val = candidate->match;
1181
1182	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1183		index, n->mask, n->val, candidate->latency);
1184
1185	return 0;
1186}
1187
1188static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1189					 int index)
1190{
1191	cpumask_t mask;
1192	int cpu;
1193
1194	numa_parse_mdesc_group_cpus(md, grp, &mask);
1195
1196	for_each_cpu(cpu, &mask)
1197		numa_cpu_lookup_table[cpu] = index;
1198	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1199
1200	if (numa_debug) {
1201		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1202		for_each_cpu(cpu, &mask)
1203			printk("%d ", cpu);
1204		printk("]\n");
1205	}
1206
1207	return numa_attach_mlgroup(md, grp, index);
1208}
1209
1210static int __init numa_parse_mdesc(void)
1211{
1212	struct mdesc_handle *md = mdesc_grab();
1213	int i, err, count;
1214	u64 node;
1215
1216	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1217	if (node == MDESC_NODE_NULL) {
1218		mdesc_release(md);
1219		return -ENOENT;
1220	}
1221
1222	err = grab_mblocks(md);
1223	if (err < 0)
1224		goto out;
1225
1226	err = grab_mlgroups(md);
1227	if (err < 0)
1228		goto out;
1229
1230	count = 0;
1231	mdesc_for_each_node_by_name(md, node, "group") {
1232		err = numa_parse_mdesc_group(md, node, count);
1233		if (err < 0)
1234			break;
1235		count++;
1236	}
1237
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238	add_node_ranges();
1239
1240	for (i = 0; i < num_node_masks; i++) {
1241		allocate_node_data(i);
1242		node_set_online(i);
1243	}
1244
1245	err = 0;
1246out:
1247	mdesc_release(md);
1248	return err;
1249}
1250
1251static int __init numa_parse_jbus(void)
1252{
1253	unsigned long cpu, index;
1254
1255	/* NUMA node id is encoded in bits 36 and higher, and there is
1256	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1257	 */
1258	index = 0;
1259	for_each_present_cpu(cpu) {
1260		numa_cpu_lookup_table[cpu] = index;
1261		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1262		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1263		node_masks[index].val = cpu << 36UL;
1264
1265		index++;
1266	}
1267	num_node_masks = index;
1268
1269	add_node_ranges();
1270
1271	for (index = 0; index < num_node_masks; index++) {
1272		allocate_node_data(index);
1273		node_set_online(index);
1274	}
1275
1276	return 0;
1277}
1278
1279static int __init numa_parse_sun4u(void)
1280{
1281	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1282		unsigned long ver;
1283
1284		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1285		if ((ver >> 32UL) == __JALAPENO_ID ||
1286		    (ver >> 32UL) == __SERRANO_ID)
1287			return numa_parse_jbus();
1288	}
1289	return -1;
1290}
1291
1292static int __init bootmem_init_numa(void)
1293{
 
1294	int err = -1;
1295
1296	numadbg("bootmem_init_numa()\n");
1297
 
 
 
 
 
 
 
1298	if (numa_enabled) {
1299		if (tlb_type == hypervisor)
1300			err = numa_parse_mdesc();
1301		else
1302			err = numa_parse_sun4u();
1303	}
1304	return err;
1305}
1306
1307#else
1308
1309static int bootmem_init_numa(void)
1310{
1311	return -1;
1312}
1313
1314#endif
1315
1316static void __init bootmem_init_nonnuma(void)
1317{
1318	unsigned long top_of_ram = memblock_end_of_DRAM();
1319	unsigned long total_ram = memblock_phys_mem_size();
1320
1321	numadbg("bootmem_init_nonnuma()\n");
1322
1323	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1324	       top_of_ram, total_ram);
1325	printk(KERN_INFO "Memory hole size: %ldMB\n",
1326	       (top_of_ram - total_ram) >> 20);
1327
1328	init_node_masks_nonnuma();
1329	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1330	allocate_node_data(0);
1331	node_set_online(0);
1332}
1333
1334static unsigned long __init bootmem_init(unsigned long phys_base)
1335{
1336	unsigned long end_pfn;
1337
1338	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1339	max_pfn = max_low_pfn = end_pfn;
1340	min_low_pfn = (phys_base >> PAGE_SHIFT);
1341
1342	if (bootmem_init_numa() < 0)
1343		bootmem_init_nonnuma();
1344
1345	/* Dump memblock with node info. */
1346	memblock_dump_all();
1347
1348	/* XXX cpu notifier XXX */
1349
1350	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1351	sparse_init();
1352
1353	return end_pfn;
1354}
1355
1356static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1357static int pall_ents __initdata;
1358
1359#ifdef CONFIG_DEBUG_PAGEALLOC
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1360static unsigned long __ref kernel_map_range(unsigned long pstart,
1361					    unsigned long pend, pgprot_t prot)
 
1362{
1363	unsigned long vstart = PAGE_OFFSET + pstart;
1364	unsigned long vend = PAGE_OFFSET + pend;
1365	unsigned long alloc_bytes = 0UL;
1366
1367	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1368		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1369			    vstart, vend);
1370		prom_halt();
1371	}
1372
1373	while (vstart < vend) {
1374		unsigned long this_end, paddr = __pa(vstart);
1375		pgd_t *pgd = pgd_offset_k(vstart);
 
1376		pud_t *pud;
1377		pmd_t *pmd;
1378		pte_t *pte;
1379
1380		pud = pud_offset(pgd, vstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1381		if (pud_none(*pud)) {
1382			pmd_t *new;
1383
1384			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
 
 
 
 
1385			alloc_bytes += PAGE_SIZE;
1386			pud_populate(&init_mm, pud, new);
1387		}
1388
1389		pmd = pmd_offset(pud, vstart);
1390		if (!pmd_present(*pmd)) {
1391			pte_t *new;
1392
1393			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
 
 
 
 
1394			alloc_bytes += PAGE_SIZE;
1395			pmd_populate_kernel(&init_mm, pmd, new);
1396		}
1397
1398		pte = pte_offset_kernel(pmd, vstart);
1399		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1400		if (this_end > vend)
1401			this_end = vend;
1402
1403		while (vstart < this_end) {
1404			pte_val(*pte) = (paddr | pgprot_val(prot));
1405
1406			vstart += PAGE_SIZE;
1407			paddr += PAGE_SIZE;
1408			pte++;
1409		}
1410	}
1411
1412	return alloc_bytes;
1413}
1414
1415extern unsigned int kvmap_linear_patch[1];
1416#endif /* CONFIG_DEBUG_PAGEALLOC */
1417
1418static void __init kpte_set_val(unsigned long index, unsigned long val)
1419{
1420	unsigned long *ptr = kpte_linear_bitmap;
1421
1422	val <<= ((index % (BITS_PER_LONG / 2)) * 2);
1423	ptr += (index / (BITS_PER_LONG / 2));
1424
1425	*ptr |= val;
 
 
 
1426}
1427
1428static const unsigned long kpte_shift_min = 28; /* 256MB */
1429static const unsigned long kpte_shift_max = 34; /* 16GB */
1430static const unsigned long kpte_shift_incr = 3;
1431
1432static unsigned long kpte_mark_using_shift(unsigned long start, unsigned long end,
1433					   unsigned long shift)
1434{
1435	unsigned long size = (1UL << shift);
1436	unsigned long mask = (size - 1UL);
1437	unsigned long remains = end - start;
1438	unsigned long val;
1439
1440	if (remains < size || (start & mask))
1441		return start;
1442
1443	/* VAL maps:
1444	 *
1445	 *	shift 28 --> kern_linear_pte_xor index 1
1446	 *	shift 31 --> kern_linear_pte_xor index 2
1447	 *	shift 34 --> kern_linear_pte_xor index 3
1448	 */
1449	val = ((shift - kpte_shift_min) / kpte_shift_incr) + 1;
1450
1451	remains &= ~mask;
1452	if (shift != kpte_shift_max)
1453		remains = size;
1454
1455	while (remains) {
1456		unsigned long index = start >> kpte_shift_min;
1457
1458		kpte_set_val(index, val);
1459
1460		start += 1UL << kpte_shift_min;
1461		remains -= 1UL << kpte_shift_min;
1462	}
 
 
 
1463
1464	return start;
1465}
1466
1467static void __init mark_kpte_bitmap(unsigned long start, unsigned long end)
1468{
1469	unsigned long smallest_size, smallest_mask;
1470	unsigned long s;
1471
1472	smallest_size = (1UL << kpte_shift_min);
1473	smallest_mask = (smallest_size - 1UL);
1474
1475	while (start < end) {
1476		unsigned long orig_start = start;
1477
1478		for (s = kpte_shift_max; s >= kpte_shift_min; s -= kpte_shift_incr) {
1479			start = kpte_mark_using_shift(start, end, s);
1480
1481			if (start != orig_start)
1482				break;
1483		}
1484
1485		if (start == orig_start)
1486			start = (start + smallest_size) & ~smallest_mask;
1487	}
 
1488}
1489
1490static void __init init_kpte_bitmap(void)
1491{
1492	unsigned long i;
1493
1494	for (i = 0; i < pall_ents; i++) {
1495		unsigned long phys_start, phys_end;
1496
1497		phys_start = pall[i].phys_addr;
1498		phys_end = phys_start + pall[i].reg_size;
1499
1500		mark_kpte_bitmap(phys_start, phys_end);
1501	}
1502}
1503
1504static void __init kernel_physical_mapping_init(void)
1505{
1506#ifdef CONFIG_DEBUG_PAGEALLOC
1507	unsigned long i, mem_alloced = 0UL;
 
1508
 
 
 
1509	for (i = 0; i < pall_ents; i++) {
1510		unsigned long phys_start, phys_end;
1511
1512		phys_start = pall[i].phys_addr;
1513		phys_end = phys_start + pall[i].reg_size;
1514
1515		mem_alloced += kernel_map_range(phys_start, phys_end,
1516						PAGE_KERNEL);
1517	}
1518
1519	printk("Allocated %ld bytes for kernel page tables.\n",
1520	       mem_alloced);
1521
1522	kvmap_linear_patch[0] = 0x01000000; /* nop */
1523	flushi(&kvmap_linear_patch[0]);
1524
 
 
1525	__flush_tlb_all();
1526#endif
1527}
1528
1529#ifdef CONFIG_DEBUG_PAGEALLOC
1530void kernel_map_pages(struct page *page, int numpages, int enable)
1531{
1532	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1533	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1534
1535	kernel_map_range(phys_start, phys_end,
1536			 (enable ? PAGE_KERNEL : __pgprot(0)));
1537
1538	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1539			       PAGE_OFFSET + phys_end);
1540
1541	/* we should perform an IPI and flush all tlbs,
1542	 * but that can deadlock->flush only current cpu.
1543	 */
1544	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1545				 PAGE_OFFSET + phys_end);
1546}
1547#endif
1548
1549unsigned long __init find_ecache_flush_span(unsigned long size)
1550{
1551	int i;
1552
1553	for (i = 0; i < pavail_ents; i++) {
1554		if (pavail[i].reg_size >= size)
1555			return pavail[i].phys_addr;
1556	}
1557
1558	return ~0UL;
1559}
1560
1561unsigned long PAGE_OFFSET;
1562EXPORT_SYMBOL(PAGE_OFFSET);
1563
1564static void __init page_offset_shift_patch_one(unsigned int *insn, unsigned long phys_bits)
1565{
1566	unsigned long final_shift;
1567	unsigned int val = *insn;
1568	unsigned int cnt;
1569
1570	/* We are patching in ilog2(max_supported_phys_address), and
1571	 * we are doing so in a manner similar to a relocation addend.
1572	 * That is, we are adding the shift value to whatever value
1573	 * is in the shift instruction count field already.
1574	 */
1575	cnt = (val & 0x3f);
1576	val &= ~0x3f;
1577
1578	/* If we are trying to shift >= 64 bits, clear the destination
1579	 * register.  This can happen when phys_bits ends up being equal
1580	 * to MAX_PHYS_ADDRESS_BITS.
1581	 */
1582	final_shift = (cnt + (64 - phys_bits));
1583	if (final_shift >= 64) {
1584		unsigned int rd = (val >> 25) & 0x1f;
1585
1586		val = 0x80100000 | (rd << 25);
1587	} else {
1588		val |= final_shift;
1589	}
1590	*insn = val;
1591
1592	__asm__ __volatile__("flush	%0"
1593			     : /* no outputs */
1594			     : "r" (insn));
1595}
1596
1597static void __init page_offset_shift_patch(unsigned long phys_bits)
1598{
1599	extern unsigned int __page_offset_shift_patch;
1600	extern unsigned int __page_offset_shift_patch_end;
1601	unsigned int *p;
1602
1603	p = &__page_offset_shift_patch;
1604	while (p < &__page_offset_shift_patch_end) {
1605		unsigned int *insn = (unsigned int *)(unsigned long)*p;
1606
1607		page_offset_shift_patch_one(insn, phys_bits);
1608
1609		p++;
1610	}
1611}
1612
1613static void __init setup_page_offset(void)
1614{
1615	unsigned long max_phys_bits = 40;
 
 
 
 
 
 
1616
1617	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1618		max_phys_bits = 42;
1619	} else if (tlb_type == hypervisor) {
1620		switch (sun4v_chip_type) {
1621		case SUN4V_CHIP_NIAGARA1:
1622		case SUN4V_CHIP_NIAGARA2:
 
 
 
 
1623			max_phys_bits = 39;
1624			break;
1625		case SUN4V_CHIP_NIAGARA3:
 
 
 
 
1626			max_phys_bits = 43;
1627			break;
1628		case SUN4V_CHIP_NIAGARA4:
1629		case SUN4V_CHIP_NIAGARA5:
1630		case SUN4V_CHIP_SPARC64X:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1631		default:
1632			max_phys_bits = 47;
 
 
 
 
 
 
 
1633			break;
1634		}
1635	}
1636
1637	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1638		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1639			    max_phys_bits);
1640		prom_halt();
1641	}
1642
1643	PAGE_OFFSET = PAGE_OFFSET_BY_BITS(max_phys_bits);
 
 
1644
1645	pr_info("PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1646		PAGE_OFFSET, max_phys_bits);
1647
1648	page_offset_shift_patch(max_phys_bits);
 
 
1649}
1650
1651static void __init tsb_phys_patch(void)
1652{
1653	struct tsb_ldquad_phys_patch_entry *pquad;
1654	struct tsb_phys_patch_entry *p;
1655
1656	pquad = &__tsb_ldquad_phys_patch;
1657	while (pquad < &__tsb_ldquad_phys_patch_end) {
1658		unsigned long addr = pquad->addr;
1659
1660		if (tlb_type == hypervisor)
1661			*(unsigned int *) addr = pquad->sun4v_insn;
1662		else
1663			*(unsigned int *) addr = pquad->sun4u_insn;
1664		wmb();
1665		__asm__ __volatile__("flush	%0"
1666				     : /* no outputs */
1667				     : "r" (addr));
1668
1669		pquad++;
1670	}
1671
1672	p = &__tsb_phys_patch;
1673	while (p < &__tsb_phys_patch_end) {
1674		unsigned long addr = p->addr;
1675
1676		*(unsigned int *) addr = p->insn;
1677		wmb();
1678		__asm__ __volatile__("flush	%0"
1679				     : /* no outputs */
1680				     : "r" (addr));
1681
1682		p++;
1683	}
1684}
1685
1686/* Don't mark as init, we give this to the Hypervisor.  */
1687#ifndef CONFIG_DEBUG_PAGEALLOC
1688#define NUM_KTSB_DESCR	2
1689#else
1690#define NUM_KTSB_DESCR	1
1691#endif
1692static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1693extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
 
 
 
 
 
 
 
 
 
 
 
 
1694
1695static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1696{
1697	pa >>= KTSB_PHYS_SHIFT;
 
 
 
1698
1699	while (start < end) {
1700		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1701
1702		ia[0] = (ia[0] & ~0x3fffff) | (pa >> 10);
1703		__asm__ __volatile__("flush	%0" : : "r" (ia));
1704
1705		ia[1] = (ia[1] & ~0x3ff) | (pa & 0x3ff);
1706		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1707
 
 
 
 
 
 
1708		start++;
1709	}
1710}
1711
1712static void ktsb_phys_patch(void)
1713{
1714	extern unsigned int __swapper_tsb_phys_patch;
1715	extern unsigned int __swapper_tsb_phys_patch_end;
1716	unsigned long ktsb_pa;
1717
1718	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1719	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1720			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1721#ifndef CONFIG_DEBUG_PAGEALLOC
1722	{
1723	extern unsigned int __swapper_4m_tsb_phys_patch;
1724	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1725	ktsb_pa = (kern_base +
1726		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1727	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1728			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1729	}
1730#endif
1731}
1732
1733static void __init sun4v_ktsb_init(void)
1734{
1735	unsigned long ktsb_pa;
1736
1737	/* First KTSB for PAGE_SIZE mappings.  */
1738	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1739
1740	switch (PAGE_SIZE) {
1741	case 8 * 1024:
1742	default:
1743		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1744		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1745		break;
1746
1747	case 64 * 1024:
1748		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1749		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1750		break;
1751
1752	case 512 * 1024:
1753		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1754		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1755		break;
1756
1757	case 4 * 1024 * 1024:
1758		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1759		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1760		break;
1761	}
1762
1763	ktsb_descr[0].assoc = 1;
1764	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1765	ktsb_descr[0].ctx_idx = 0;
1766	ktsb_descr[0].tsb_base = ktsb_pa;
1767	ktsb_descr[0].resv = 0;
1768
1769#ifndef CONFIG_DEBUG_PAGEALLOC
1770	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1771	ktsb_pa = (kern_base +
1772		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1773
1774	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1775	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1776				    HV_PGSZ_MASK_256MB |
1777				    HV_PGSZ_MASK_2GB |
1778				    HV_PGSZ_MASK_16GB) &
1779				   cpu_pgsz_mask);
1780	ktsb_descr[1].assoc = 1;
1781	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
1782	ktsb_descr[1].ctx_idx = 0;
1783	ktsb_descr[1].tsb_base = ktsb_pa;
1784	ktsb_descr[1].resv = 0;
1785#endif
1786}
1787
1788void sun4v_ktsb_register(void)
1789{
1790	unsigned long pa, ret;
1791
1792	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
1793
1794	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
1795	if (ret != 0) {
1796		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
1797			    "errors with %lx\n", pa, ret);
1798		prom_halt();
1799	}
1800}
1801
1802static void __init sun4u_linear_pte_xor_finalize(void)
1803{
1804#ifndef CONFIG_DEBUG_PAGEALLOC
1805	/* This is where we would add Panther support for
1806	 * 32MB and 256MB pages.
1807	 */
1808#endif
1809}
1810
1811static void __init sun4v_linear_pte_xor_finalize(void)
1812{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1813#ifndef CONFIG_DEBUG_PAGEALLOC
1814	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
1815		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
1816			PAGE_OFFSET;
1817		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1818					   _PAGE_P_4V | _PAGE_W_4V);
1819	} else {
1820		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
1821	}
1822
1823	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
1824		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
1825			PAGE_OFFSET;
1826		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1827					   _PAGE_P_4V | _PAGE_W_4V);
1828	} else {
1829		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
1830	}
1831
1832	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
1833		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
1834			PAGE_OFFSET;
1835		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | _PAGE_CV_4V |
1836					   _PAGE_P_4V | _PAGE_W_4V);
1837	} else {
1838		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
1839	}
1840#endif
1841}
1842
1843/* paging_init() sets up the page tables */
1844
1845static unsigned long last_valid_pfn;
1846pgd_t swapper_pg_dir[PTRS_PER_PGD];
1847
1848static void sun4u_pgprot_init(void);
1849static void sun4v_pgprot_init(void);
1850
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1851void __init paging_init(void)
1852{
1853	unsigned long end_pfn, shift, phys_base;
1854	unsigned long real_end, i;
1855	int node;
1856
1857	setup_page_offset();
1858
1859	/* These build time checkes make sure that the dcache_dirty_cpu()
1860	 * page->flags usage will work.
1861	 *
1862	 * When a page gets marked as dcache-dirty, we store the
1863	 * cpu number starting at bit 32 in the page->flags.  Also,
1864	 * functions like clear_dcache_dirty_cpu use the cpu mask
1865	 * in 13-bit signed-immediate instruction fields.
1866	 */
1867
1868	/*
1869	 * Page flags must not reach into upper 32 bits that are used
1870	 * for the cpu number
1871	 */
1872	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
1873
1874	/*
1875	 * The bit fields placed in the high range must not reach below
1876	 * the 32 bit boundary. Otherwise we cannot place the cpu field
1877	 * at the 32 bit boundary.
1878	 */
1879	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
1880		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
1881
1882	BUILD_BUG_ON(NR_CPUS > 4096);
1883
1884	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
1885	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
1886
1887	/* Invalidate both kernel TSBs.  */
1888	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
1889#ifndef CONFIG_DEBUG_PAGEALLOC
1890	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
1891#endif
1892
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1893	if (tlb_type == hypervisor)
1894		sun4v_pgprot_init();
1895	else
1896		sun4u_pgprot_init();
1897
1898	if (tlb_type == cheetah_plus ||
1899	    tlb_type == hypervisor) {
1900		tsb_phys_patch();
1901		ktsb_phys_patch();
1902	}
1903
1904	if (tlb_type == hypervisor)
1905		sun4v_patch_tlb_handlers();
1906
1907	/* Find available physical memory...
1908	 *
1909	 * Read it twice in order to work around a bug in openfirmware.
1910	 * The call to grab this table itself can cause openfirmware to
1911	 * allocate memory, which in turn can take away some space from
1912	 * the list of available memory.  Reading it twice makes sure
1913	 * we really do get the final value.
1914	 */
1915	read_obp_translations();
1916	read_obp_memory("reg", &pall[0], &pall_ents);
1917	read_obp_memory("available", &pavail[0], &pavail_ents);
1918	read_obp_memory("available", &pavail[0], &pavail_ents);
1919
1920	phys_base = 0xffffffffffffffffUL;
1921	for (i = 0; i < pavail_ents; i++) {
1922		phys_base = min(phys_base, pavail[i].phys_addr);
1923		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
1924	}
1925
1926	memblock_reserve(kern_base, kern_size);
1927
1928	find_ramdisk(phys_base);
1929
1930	memblock_enforce_memory_limit(cmdline_memory_size);
 
1931
1932	memblock_allow_resize();
1933	memblock_dump_all();
1934
1935	set_bit(0, mmu_context_bmap);
1936
1937	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
1938
1939	real_end = (unsigned long)_end;
1940	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
1941	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
1942	       num_kernel_image_mappings);
1943
1944	/* Set kernel pgd to upper alias so physical page computations
1945	 * work.
1946	 */
1947	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
1948	
1949	memset(swapper_low_pmd_dir, 0, sizeof(swapper_low_pmd_dir));
1950
1951	/* Now can init the kernel/bad page tables. */
1952	pud_set(pud_offset(&swapper_pg_dir[0], 0),
1953		swapper_low_pmd_dir + (shift / sizeof(pgd_t)));
1954	
1955	inherit_prom_mappings();
1956	
1957	init_kpte_bitmap();
1958
1959	/* Ok, we can use our TLB miss and window trap handlers safely.  */
1960	setup_tba();
1961
1962	__flush_tlb_all();
1963
1964	prom_build_devicetree();
1965	of_populate_present_mask();
1966#ifndef CONFIG_SMP
1967	of_fill_in_cpu_data();
1968#endif
1969
1970	if (tlb_type == hypervisor) {
1971		sun4v_mdesc_init();
1972		mdesc_populate_present_mask(cpu_all_mask);
1973#ifndef CONFIG_SMP
1974		mdesc_fill_in_cpu_data(cpu_all_mask);
1975#endif
1976		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
1977
1978		sun4v_linear_pte_xor_finalize();
1979
1980		sun4v_ktsb_init();
1981		sun4v_ktsb_register();
1982	} else {
1983		unsigned long impl, ver;
1984
1985		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
1986				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
1987
1988		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
1989		impl = ((ver >> 32) & 0xffff);
1990		if (impl == PANTHER_IMPL)
1991			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
1992					  HV_PGSZ_MASK_256MB);
1993
1994		sun4u_linear_pte_xor_finalize();
1995	}
1996
1997	/* Flush the TLBs and the 4M TSB so that the updated linear
1998	 * pte XOR settings are realized for all mappings.
1999	 */
2000	__flush_tlb_all();
2001#ifndef CONFIG_DEBUG_PAGEALLOC
2002	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2003#endif
2004	__flush_tlb_all();
2005
2006	/* Setup bootmem... */
2007	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2008
2009	/* Once the OF device tree and MDESC have been setup, we know
2010	 * the list of possible cpus.  Therefore we can allocate the
2011	 * IRQ stacks.
2012	 */
2013	for_each_possible_cpu(i) {
2014		node = cpu_to_node(i);
2015
2016		softirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2017							THREAD_SIZE,
2018							THREAD_SIZE, 0);
2019		hardirq_stack[i] = __alloc_bootmem_node(NODE_DATA(node),
2020							THREAD_SIZE,
2021							THREAD_SIZE, 0);
2022	}
2023
2024	kernel_physical_mapping_init();
2025
2026	{
2027		unsigned long max_zone_pfns[MAX_NR_ZONES];
2028
2029		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2030
2031		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2032
2033		free_area_init_nodes(max_zone_pfns);
2034	}
2035
2036	printk("Booting Linux...\n");
2037}
2038
2039int page_in_phys_avail(unsigned long paddr)
2040{
2041	int i;
2042
2043	paddr &= PAGE_MASK;
2044
2045	for (i = 0; i < pavail_ents; i++) {
2046		unsigned long start, end;
2047
2048		start = pavail[i].phys_addr;
2049		end = start + pavail[i].reg_size;
2050
2051		if (paddr >= start && paddr < end)
2052			return 1;
2053	}
2054	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2055		return 1;
2056#ifdef CONFIG_BLK_DEV_INITRD
2057	if (paddr >= __pa(initrd_start) &&
2058	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2059		return 1;
2060#endif
2061
2062	return 0;
2063}
2064
2065static struct linux_prom64_registers pavail_rescan[MAX_BANKS] __initdata;
2066static int pavail_rescan_ents __initdata;
2067
2068/* Certain OBP calls, such as fetching "available" properties, can
2069 * claim physical memory.  So, along with initializing the valid
2070 * address bitmap, what we do here is refetch the physical available
2071 * memory list again, and make sure it provides at least as much
2072 * memory as 'pavail' does.
2073 */
2074static void __init setup_valid_addr_bitmap_from_pavail(unsigned long *bitmap)
2075{
2076	int i;
2077
2078	read_obp_memory("available", &pavail_rescan[0], &pavail_rescan_ents);
2079
2080	for (i = 0; i < pavail_ents; i++) {
2081		unsigned long old_start, old_end;
2082
2083		old_start = pavail[i].phys_addr;
2084		old_end = old_start + pavail[i].reg_size;
2085		while (old_start < old_end) {
2086			int n;
2087
2088			for (n = 0; n < pavail_rescan_ents; n++) {
2089				unsigned long new_start, new_end;
2090
2091				new_start = pavail_rescan[n].phys_addr;
2092				new_end = new_start +
2093					pavail_rescan[n].reg_size;
2094
2095				if (new_start <= old_start &&
2096				    new_end >= (old_start + PAGE_SIZE)) {
2097					set_bit(old_start >> ILOG2_4MB, bitmap);
2098					goto do_next_page;
2099				}
2100			}
2101
2102			prom_printf("mem_init: Lost memory in pavail\n");
2103			prom_printf("mem_init: OLD start[%lx] size[%lx]\n",
2104				    pavail[i].phys_addr,
2105				    pavail[i].reg_size);
2106			prom_printf("mem_init: NEW start[%lx] size[%lx]\n",
2107				    pavail_rescan[i].phys_addr,
2108				    pavail_rescan[i].reg_size);
2109			prom_printf("mem_init: Cannot continue, aborting.\n");
2110			prom_halt();
2111
2112		do_next_page:
2113			old_start += PAGE_SIZE;
2114		}
2115	}
2116}
2117
2118static void __init patch_tlb_miss_handler_bitmap(void)
2119{
2120	extern unsigned int valid_addr_bitmap_insn[];
2121	extern unsigned int valid_addr_bitmap_patch[];
2122
2123	valid_addr_bitmap_insn[1] = valid_addr_bitmap_patch[1];
2124	mb();
2125	valid_addr_bitmap_insn[0] = valid_addr_bitmap_patch[0];
2126	flushi(&valid_addr_bitmap_insn[0]);
2127}
2128
2129static void __init register_page_bootmem_info(void)
2130{
2131#ifdef CONFIG_NEED_MULTIPLE_NODES
2132	int i;
2133
2134	for_each_online_node(i)
2135		if (NODE_DATA(i)->node_spanned_pages)
2136			register_page_bootmem_info_node(NODE_DATA(i));
2137#endif
2138}
2139void __init mem_init(void)
2140{
2141	unsigned long addr, last;
2142
2143	addr = PAGE_OFFSET + kern_base;
2144	last = PAGE_ALIGN(kern_size) + addr;
2145	while (addr < last) {
2146		set_bit(__pa(addr) >> ILOG2_4MB, sparc64_valid_addr_bitmap);
2147		addr += PAGE_SIZE;
2148	}
2149
2150	setup_valid_addr_bitmap_from_pavail(sparc64_valid_addr_bitmap);
2151	patch_tlb_miss_handler_bitmap();
2152
2153	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2154
 
 
 
 
 
 
2155	register_page_bootmem_info();
2156	free_all_bootmem();
2157
2158	/*
2159	 * Set up the zero page, mark it reserved, so that page count
2160	 * is not manipulated when freeing the page from user ptes.
2161	 */
2162	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2163	if (mem_map_zero == NULL) {
2164		prom_printf("paging_init: Cannot alloc zero page.\n");
2165		prom_halt();
2166	}
2167	mark_page_reserved(mem_map_zero);
2168
2169	mem_init_print_info(NULL);
2170
2171	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2172		cheetah_ecache_flush_init();
2173}
2174
2175void free_initmem(void)
2176{
2177	unsigned long addr, initend;
2178	int do_free = 1;
2179
2180	/* If the physical memory maps were trimmed by kernel command
2181	 * line options, don't even try freeing this initmem stuff up.
2182	 * The kernel image could have been in the trimmed out region
2183	 * and if so the freeing below will free invalid page structs.
2184	 */
2185	if (cmdline_memory_size)
2186		do_free = 0;
2187
2188	/*
2189	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2190	 */
2191	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2192	initend = (unsigned long)(__init_end) & PAGE_MASK;
2193	for (; addr < initend; addr += PAGE_SIZE) {
2194		unsigned long page;
2195
2196		page = (addr +
2197			((unsigned long) __va(kern_base)) -
2198			((unsigned long) KERNBASE));
2199		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2200
2201		if (do_free)
2202			free_reserved_page(virt_to_page(page));
2203	}
2204}
2205
2206#ifdef CONFIG_BLK_DEV_INITRD
2207void free_initrd_mem(unsigned long start, unsigned long end)
2208{
2209	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2210			   "initrd");
2211}
2212#endif
2213
2214#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2215#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2216#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2217#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2218#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2219#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2220
2221pgprot_t PAGE_KERNEL __read_mostly;
2222EXPORT_SYMBOL(PAGE_KERNEL);
2223
2224pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2225pgprot_t PAGE_COPY __read_mostly;
2226
2227pgprot_t PAGE_SHARED __read_mostly;
2228EXPORT_SYMBOL(PAGE_SHARED);
2229
2230unsigned long pg_iobits __read_mostly;
2231
2232unsigned long _PAGE_IE __read_mostly;
2233EXPORT_SYMBOL(_PAGE_IE);
2234
2235unsigned long _PAGE_E __read_mostly;
2236EXPORT_SYMBOL(_PAGE_E);
2237
2238unsigned long _PAGE_CACHE __read_mostly;
2239EXPORT_SYMBOL(_PAGE_CACHE);
2240
2241#ifdef CONFIG_SPARSEMEM_VMEMMAP
2242unsigned long vmemmap_table[VMEMMAP_SIZE];
2243
2244static long __meminitdata addr_start, addr_end;
2245static int __meminitdata node_start;
2246
2247int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2248			       int node)
2249{
2250	unsigned long phys_start = (vstart - VMEMMAP_BASE);
2251	unsigned long phys_end = (vend - VMEMMAP_BASE);
2252	unsigned long addr = phys_start & VMEMMAP_CHUNK_MASK;
2253	unsigned long end = VMEMMAP_ALIGN(phys_end);
2254	unsigned long pte_base;
2255
2256	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2257		    _PAGE_CP_4U | _PAGE_CV_4U |
2258		    _PAGE_P_4U | _PAGE_W_4U);
2259	if (tlb_type == hypervisor)
2260		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2261			    _PAGE_CP_4V | _PAGE_CV_4V |
2262			    _PAGE_P_4V | _PAGE_W_4V);
 
 
 
 
 
 
 
 
 
 
2263
2264	for (; addr < end; addr += VMEMMAP_CHUNK) {
2265		unsigned long *vmem_pp =
2266			vmemmap_table + (addr >> VMEMMAP_CHUNK_SHIFT);
2267		void *block;
 
 
 
 
 
 
 
 
 
 
 
2268
2269		if (!(*vmem_pp & _PAGE_VALID)) {
2270			block = vmemmap_alloc_block(1UL << ILOG2_4MB, node);
2271			if (!block)
2272				return -ENOMEM;
2273
2274			*vmem_pp = pte_base | __pa(block);
2275
2276			/* check to see if we have contiguous blocks */
2277			if (addr_end != addr || node_start != node) {
2278				if (addr_start)
2279					printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2280					       addr_start, addr_end-1, node_start);
2281				addr_start = addr;
2282				node_start = node;
2283			}
2284			addr_end = addr + VMEMMAP_CHUNK;
2285		}
2286	}
 
2287	return 0;
2288}
2289
2290void __meminit vmemmap_populate_print_last(void)
 
2291{
2292	if (addr_start) {
2293		printk(KERN_DEBUG " [%lx-%lx] on node %d\n",
2294		       addr_start, addr_end-1, node_start);
2295		addr_start = 0;
2296		addr_end = 0;
2297		node_start = 0;
2298	}
2299}
 
2300
2301void vmemmap_free(unsigned long start, unsigned long end)
2302{
2303}
2304
2305#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2306
2307static void prot_init_common(unsigned long page_none,
2308			     unsigned long page_shared,
2309			     unsigned long page_copy,
2310			     unsigned long page_readonly,
2311			     unsigned long page_exec_bit)
2312{
2313	PAGE_COPY = __pgprot(page_copy);
2314	PAGE_SHARED = __pgprot(page_shared);
2315
2316	protection_map[0x0] = __pgprot(page_none);
2317	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2318	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2319	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2320	protection_map[0x4] = __pgprot(page_readonly);
2321	protection_map[0x5] = __pgprot(page_readonly);
2322	protection_map[0x6] = __pgprot(page_copy);
2323	protection_map[0x7] = __pgprot(page_copy);
2324	protection_map[0x8] = __pgprot(page_none);
2325	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2326	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2327	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2328	protection_map[0xc] = __pgprot(page_readonly);
2329	protection_map[0xd] = __pgprot(page_readonly);
2330	protection_map[0xe] = __pgprot(page_shared);
2331	protection_map[0xf] = __pgprot(page_shared);
2332}
2333
2334static void __init sun4u_pgprot_init(void)
2335{
2336	unsigned long page_none, page_shared, page_copy, page_readonly;
2337	unsigned long page_exec_bit;
2338	int i;
2339
2340	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2341				_PAGE_CACHE_4U | _PAGE_P_4U |
2342				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2343				_PAGE_EXEC_4U);
2344	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2345				       _PAGE_CACHE_4U | _PAGE_P_4U |
2346				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2347				       _PAGE_EXEC_4U | _PAGE_L_4U);
2348
2349	_PAGE_IE = _PAGE_IE_4U;
2350	_PAGE_E = _PAGE_E_4U;
2351	_PAGE_CACHE = _PAGE_CACHE_4U;
2352
2353	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2354		     __ACCESS_BITS_4U | _PAGE_E_4U);
2355
2356#ifdef CONFIG_DEBUG_PAGEALLOC
2357	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2358#else
2359	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2360		PAGE_OFFSET;
2361#endif
2362	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2363				   _PAGE_P_4U | _PAGE_W_4U);
2364
2365	for (i = 1; i < 4; i++)
2366		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2367
2368	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2369			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2370			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2371
2372
2373	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2374	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2375		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2376	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2377		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2378	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2379			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2380
2381	page_exec_bit = _PAGE_EXEC_4U;
2382
2383	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2384			 page_exec_bit);
2385}
2386
2387static void __init sun4v_pgprot_init(void)
2388{
2389	unsigned long page_none, page_shared, page_copy, page_readonly;
2390	unsigned long page_exec_bit;
2391	int i;
2392
2393	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2394				_PAGE_CACHE_4V | _PAGE_P_4V |
2395				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2396				_PAGE_EXEC_4V);
2397	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2398
2399	_PAGE_IE = _PAGE_IE_4V;
2400	_PAGE_E = _PAGE_E_4V;
2401	_PAGE_CACHE = _PAGE_CACHE_4V;
2402
2403#ifdef CONFIG_DEBUG_PAGEALLOC
2404	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2405#else
2406	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2407		PAGE_OFFSET;
2408#endif
2409	kern_linear_pte_xor[0] |= (_PAGE_CP_4V | _PAGE_CV_4V |
2410				   _PAGE_P_4V | _PAGE_W_4V);
2411
2412	for (i = 1; i < 4; i++)
2413		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2414
2415	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2416		     __ACCESS_BITS_4V | _PAGE_E_4V);
2417
2418	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2419			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2420			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2421			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2422
2423	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | _PAGE_CACHE_4V;
2424	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2425		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2426	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2427		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2428	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | _PAGE_CACHE_4V |
2429			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2430
2431	page_exec_bit = _PAGE_EXEC_4V;
2432
2433	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2434			 page_exec_bit);
2435}
2436
2437unsigned long pte_sz_bits(unsigned long sz)
2438{
2439	if (tlb_type == hypervisor) {
2440		switch (sz) {
2441		case 8 * 1024:
2442		default:
2443			return _PAGE_SZ8K_4V;
2444		case 64 * 1024:
2445			return _PAGE_SZ64K_4V;
2446		case 512 * 1024:
2447			return _PAGE_SZ512K_4V;
2448		case 4 * 1024 * 1024:
2449			return _PAGE_SZ4MB_4V;
2450		}
2451	} else {
2452		switch (sz) {
2453		case 8 * 1024:
2454		default:
2455			return _PAGE_SZ8K_4U;
2456		case 64 * 1024:
2457			return _PAGE_SZ64K_4U;
2458		case 512 * 1024:
2459			return _PAGE_SZ512K_4U;
2460		case 4 * 1024 * 1024:
2461			return _PAGE_SZ4MB_4U;
2462		}
2463	}
2464}
2465
2466pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2467{
2468	pte_t pte;
2469
2470	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2471	pte_val(pte) |= (((unsigned long)space) << 32);
2472	pte_val(pte) |= pte_sz_bits(page_size);
2473
2474	return pte;
2475}
2476
2477static unsigned long kern_large_tte(unsigned long paddr)
2478{
2479	unsigned long val;
2480
2481	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2482	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2483	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2484	if (tlb_type == hypervisor)
2485		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2486		       _PAGE_CP_4V | _PAGE_CV_4V | _PAGE_P_4V |
2487		       _PAGE_EXEC_4V | _PAGE_W_4V);
2488
2489	return val | paddr;
2490}
2491
2492/* If not locked, zap it. */
2493void __flush_tlb_all(void)
2494{
2495	unsigned long pstate;
2496	int i;
2497
2498	__asm__ __volatile__("flushw\n\t"
2499			     "rdpr	%%pstate, %0\n\t"
2500			     "wrpr	%0, %1, %%pstate"
2501			     : "=r" (pstate)
2502			     : "i" (PSTATE_IE));
2503	if (tlb_type == hypervisor) {
2504		sun4v_mmu_demap_all();
2505	} else if (tlb_type == spitfire) {
2506		for (i = 0; i < 64; i++) {
2507			/* Spitfire Errata #32 workaround */
2508			/* NOTE: Always runs on spitfire, so no
2509			 *       cheetah+ page size encodings.
2510			 */
2511			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2512					     "flush	%%g6"
2513					     : /* No outputs */
2514					     : "r" (0),
2515					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2516
2517			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2518				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2519						     "membar #Sync"
2520						     : /* no outputs */
2521						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2522				spitfire_put_dtlb_data(i, 0x0UL);
2523			}
2524
2525			/* Spitfire Errata #32 workaround */
2526			/* NOTE: Always runs on spitfire, so no
2527			 *       cheetah+ page size encodings.
2528			 */
2529			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2530					     "flush	%%g6"
2531					     : /* No outputs */
2532					     : "r" (0),
2533					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2534
2535			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2536				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2537						     "membar #Sync"
2538						     : /* no outputs */
2539						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2540				spitfire_put_itlb_data(i, 0x0UL);
2541			}
2542		}
2543	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2544		cheetah_flush_dtlb_all();
2545		cheetah_flush_itlb_all();
2546	}
2547	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2548			     : : "r" (pstate));
2549}
2550
2551pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2552			    unsigned long address)
2553{
2554	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2555				       __GFP_REPEAT | __GFP_ZERO);
2556	pte_t *pte = NULL;
2557
2558	if (page)
2559		pte = (pte_t *) page_address(page);
2560
2561	return pte;
2562}
2563
2564pgtable_t pte_alloc_one(struct mm_struct *mm,
2565			unsigned long address)
2566{
2567	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
2568				       __GFP_REPEAT | __GFP_ZERO);
2569	if (!page)
2570		return NULL;
2571	if (!pgtable_page_ctor(page)) {
2572		free_hot_cold_page(page, 0);
2573		return NULL;
2574	}
2575	return (pte_t *) page_address(page);
2576}
2577
2578void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2579{
2580	free_page((unsigned long)pte);
2581}
2582
2583static void __pte_free(pgtable_t pte)
2584{
2585	struct page *page = virt_to_page(pte);
2586
2587	pgtable_page_dtor(page);
2588	__free_page(page);
2589}
2590
2591void pte_free(struct mm_struct *mm, pgtable_t pte)
2592{
2593	__pte_free(pte);
2594}
2595
2596void pgtable_free(void *table, bool is_page)
2597{
2598	if (is_page)
2599		__pte_free(table);
2600	else
2601		kmem_cache_free(pgtable_cache, table);
2602}
2603
2604#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2605void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2606			  pmd_t *pmd)
2607{
2608	unsigned long pte, flags;
2609	struct mm_struct *mm;
2610	pmd_t entry = *pmd;
2611
2612	if (!pmd_large(entry) || !pmd_young(entry))
2613		return;
2614
2615	pte = pmd_val(entry);
2616
 
 
 
 
2617	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2618	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2619
2620	mm = vma->vm_mm;
2621
2622	spin_lock_irqsave(&mm->context.lock, flags);
2623
2624	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2625		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2626					addr, pte);
2627
2628	spin_unlock_irqrestore(&mm->context.lock, flags);
2629}
2630#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2631
2632#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2633static void context_reload(void *__data)
2634{
2635	struct mm_struct *mm = __data;
2636
2637	if (mm == current->mm)
2638		load_secondary_context(mm);
2639}
2640
2641void hugetlb_setup(struct pt_regs *regs)
2642{
2643	struct mm_struct *mm = current->mm;
2644	struct tsb_config *tp;
2645
2646	if (in_atomic() || !mm) {
2647		const struct exception_table_entry *entry;
2648
2649		entry = search_exception_tables(regs->tpc);
2650		if (entry) {
2651			regs->tpc = entry->fixup;
2652			regs->tnpc = regs->tpc + 4;
2653			return;
2654		}
2655		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2656		die_if_kernel("HugeTSB in atomic", regs);
2657	}
2658
2659	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2660	if (likely(tp->tsb == NULL))
2661		tsb_grow(mm, MM_TSB_HUGE, 0);
2662
2663	tsb_context_switch(mm);
2664	smp_tsb_sync(mm);
2665
2666	/* On UltraSPARC-III+ and later, configure the second half of
2667	 * the Data-TLB for huge pages.
2668	 */
2669	if (tlb_type == cheetah_plus) {
 
2670		unsigned long ctx;
2671
2672		spin_lock(&ctx_alloc_lock);
2673		ctx = mm->context.sparc64_ctx_val;
2674		ctx &= ~CTX_PGSZ_MASK;
2675		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2676		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2677
2678		if (ctx != mm->context.sparc64_ctx_val) {
2679			/* When changing the page size fields, we
2680			 * must perform a context flush so that no
2681			 * stale entries match.  This flush must
2682			 * occur with the original context register
2683			 * settings.
2684			 */
2685			do_flush_tlb_mm(mm);
2686
2687			/* Reload the context register of all processors
2688			 * also executing in this address space.
2689			 */
2690			mm->context.sparc64_ctx_val = ctx;
 
 
 
 
 
2691			on_each_cpu(context_reload, mm, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2692		}
2693		spin_unlock(&ctx_alloc_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
2694	}
 
 
2695}
 
 
 
 
 
 
2696#endif