Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  arch/sparc64/mm/init.c
   4 *
   5 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   6 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   7 */
   8 
   9#include <linux/extable.h>
  10#include <linux/kernel.h>
  11#include <linux/sched.h>
  12#include <linux/string.h>
  13#include <linux/init.h>
  14#include <linux/memblock.h>
  15#include <linux/mm.h>
  16#include <linux/hugetlb.h>
  17#include <linux/initrd.h>
  18#include <linux/swap.h>
  19#include <linux/pagemap.h>
  20#include <linux/poison.h>
  21#include <linux/fs.h>
  22#include <linux/seq_file.h>
  23#include <linux/kprobes.h>
  24#include <linux/cache.h>
  25#include <linux/sort.h>
  26#include <linux/ioport.h>
  27#include <linux/percpu.h>
 
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
  30#include <linux/bootmem_info.h>
  31
  32#include <asm/head.h>
  33#include <asm/page.h>
  34#include <asm/pgalloc.h>
 
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/setup.h>
  52#include <asm/irq.h>
  53
  54#include "init_64.h"
  55
  56unsigned long kern_linear_pte_xor[4] __read_mostly;
  57static unsigned long page_cache4v_flag;
  58
  59/* A bitmap, two bits for every 256MB of physical memory.  These two
  60 * bits determine what page size we use for kernel linear
  61 * translations.  They form an index into kern_linear_pte_xor[].  The
  62 * value in the indexed slot is XOR'd with the TLB miss virtual
  63 * address to form the resulting TTE.  The mapping is:
  64 *
  65 *	0	==>	4MB
  66 *	1	==>	256MB
  67 *	2	==>	2GB
  68 *	3	==>	16GB
  69 *
  70 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  71 * support 2GB pages, and hopefully future cpus will support the 16GB
  72 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  73 * if these larger page sizes are not supported by the cpu.
  74 *
  75 * It would be nice to determine this from the machine description
  76 * 'cpu' properties, but we need to have this table setup before the
  77 * MDESC is initialized.
  78 */
  79
  80#ifndef CONFIG_DEBUG_PAGEALLOC
  81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  82 * Space is allocated for this right after the trap table in
  83 * arch/sparc64/kernel/head.S
  84 */
  85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  86#endif
  87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  88
  89static unsigned long cpu_pgsz_mask;
  90
  91#define MAX_BANKS	1024
  92
  93static struct linux_prom64_registers pavail[MAX_BANKS];
  94static int pavail_ents;
  95
  96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
  97
  98static int cmp_p64(const void *a, const void *b)
  99{
 100	const struct linux_prom64_registers *x = a, *y = b;
 101
 102	if (x->phys_addr > y->phys_addr)
 103		return 1;
 104	if (x->phys_addr < y->phys_addr)
 105		return -1;
 106	return 0;
 107}
 108
 109static void __init read_obp_memory(const char *property,
 110				   struct linux_prom64_registers *regs,
 111				   int *num_ents)
 112{
 113	phandle node = prom_finddevice("/memory");
 114	int prop_size = prom_getproplen(node, property);
 115	int ents, ret, i;
 116
 117	ents = prop_size / sizeof(struct linux_prom64_registers);
 118	if (ents > MAX_BANKS) {
 119		prom_printf("The machine has more %s property entries than "
 120			    "this kernel can support (%d).\n",
 121			    property, MAX_BANKS);
 122		prom_halt();
 123	}
 124
 125	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 126	if (ret == -1) {
 127		prom_printf("Couldn't get %s property from /memory.\n",
 128				property);
 129		prom_halt();
 130	}
 131
 132	/* Sanitize what we got from the firmware, by page aligning
 133	 * everything.
 134	 */
 135	for (i = 0; i < ents; i++) {
 136		unsigned long base, size;
 137
 138		base = regs[i].phys_addr;
 139		size = regs[i].reg_size;
 140
 141		size &= PAGE_MASK;
 142		if (base & ~PAGE_MASK) {
 143			unsigned long new_base = PAGE_ALIGN(base);
 144
 145			size -= new_base - base;
 146			if ((long) size < 0L)
 147				size = 0UL;
 148			base = new_base;
 149		}
 150		if (size == 0UL) {
 151			/* If it is empty, simply get rid of it.
 152			 * This simplifies the logic of the other
 153			 * functions that process these arrays.
 154			 */
 155			memmove(&regs[i], &regs[i + 1],
 156				(ents - i - 1) * sizeof(regs[0]));
 157			i--;
 158			ents--;
 159			continue;
 160		}
 161		regs[i].phys_addr = base;
 162		regs[i].reg_size = size;
 163	}
 164
 165	*num_ents = ents;
 166
 167	sort(regs, ents, sizeof(struct linux_prom64_registers),
 168	     cmp_p64, NULL);
 169}
 170
 171/* Kernel physical address base and size in bytes.  */
 172unsigned long kern_base __read_mostly;
 173unsigned long kern_size __read_mostly;
 174
 175/* Initial ramdisk setup */
 176extern unsigned long sparc_ramdisk_image64;
 177extern unsigned int sparc_ramdisk_image;
 178extern unsigned int sparc_ramdisk_size;
 179
 180struct page *mem_map_zero __read_mostly;
 181EXPORT_SYMBOL(mem_map_zero);
 182
 183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 184
 185unsigned long sparc64_kern_pri_context __read_mostly;
 186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 187unsigned long sparc64_kern_sec_context __read_mostly;
 188
 189int num_kernel_image_mappings;
 190
 191#ifdef CONFIG_DEBUG_DCFLUSH
 192atomic_t dcpage_flushes = ATOMIC_INIT(0);
 193#ifdef CONFIG_SMP
 194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 195#endif
 196#endif
 197
 198inline void flush_dcache_page_impl(struct page *page)
 199{
 200	BUG_ON(tlb_type == hypervisor);
 201#ifdef CONFIG_DEBUG_DCFLUSH
 202	atomic_inc(&dcpage_flushes);
 203#endif
 204
 205#ifdef DCACHE_ALIASING_POSSIBLE
 206	__flush_dcache_page(page_address(page),
 207			    ((tlb_type == spitfire) &&
 208			     page_mapping_file(page) != NULL));
 209#else
 210	if (page_mapping_file(page) != NULL &&
 211	    tlb_type == spitfire)
 212		__flush_icache_page(__pa(page_address(page)));
 213#endif
 214}
 215
 216#define PG_dcache_dirty		PG_arch_1
 217#define PG_dcache_cpu_shift	32UL
 218#define PG_dcache_cpu_mask	\
 219	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 220
 221#define dcache_dirty_cpu(page) \
 222	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 223
 224static inline void set_dcache_dirty(struct page *page, int this_cpu)
 225{
 226	unsigned long mask = this_cpu;
 227	unsigned long non_cpu_bits;
 228
 229	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 230	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 231
 232	__asm__ __volatile__("1:\n\t"
 233			     "ldx	[%2], %%g7\n\t"
 234			     "and	%%g7, %1, %%g1\n\t"
 235			     "or	%%g1, %0, %%g1\n\t"
 236			     "casx	[%2], %%g7, %%g1\n\t"
 237			     "cmp	%%g7, %%g1\n\t"
 238			     "bne,pn	%%xcc, 1b\n\t"
 239			     " nop"
 240			     : /* no outputs */
 241			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 242			     : "g1", "g7");
 243}
 244
 245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 246{
 247	unsigned long mask = (1UL << PG_dcache_dirty);
 248
 249	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 250			     "1:\n\t"
 251			     "ldx	[%2], %%g7\n\t"
 252			     "srlx	%%g7, %4, %%g1\n\t"
 253			     "and	%%g1, %3, %%g1\n\t"
 254			     "cmp	%%g1, %0\n\t"
 255			     "bne,pn	%%icc, 2f\n\t"
 256			     " andn	%%g7, %1, %%g1\n\t"
 257			     "casx	[%2], %%g7, %%g1\n\t"
 258			     "cmp	%%g7, %%g1\n\t"
 259			     "bne,pn	%%xcc, 1b\n\t"
 260			     " nop\n"
 261			     "2:"
 262			     : /* no outputs */
 263			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 264			       "i" (PG_dcache_cpu_mask),
 265			       "i" (PG_dcache_cpu_shift)
 266			     : "g1", "g7");
 267}
 268
 269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 270{
 271	unsigned long tsb_addr = (unsigned long) ent;
 272
 273	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 274		tsb_addr = __pa(tsb_addr);
 275
 276	__tsb_insert(tsb_addr, tag, pte);
 277}
 278
 279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 280
 281static void flush_dcache(unsigned long pfn)
 282{
 283	struct page *page;
 284
 285	page = pfn_to_page(pfn);
 286	if (page) {
 287		unsigned long pg_flags;
 288
 289		pg_flags = page->flags;
 290		if (pg_flags & (1UL << PG_dcache_dirty)) {
 291			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 292				   PG_dcache_cpu_mask);
 293			int this_cpu = get_cpu();
 294
 295			/* This is just to optimize away some function calls
 296			 * in the SMP case.
 297			 */
 298			if (cpu == this_cpu)
 299				flush_dcache_page_impl(page);
 300			else
 301				smp_flush_dcache_page_impl(page, cpu);
 302
 303			clear_dcache_dirty_cpu(page, cpu);
 304
 305			put_cpu();
 306		}
 307	}
 308}
 309
 310/* mm->context.lock must be held */
 311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 312				    unsigned long tsb_hash_shift, unsigned long address,
 313				    unsigned long tte)
 314{
 315	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 316	unsigned long tag;
 317
 318	if (unlikely(!tsb))
 319		return;
 320
 321	tsb += ((address >> tsb_hash_shift) &
 322		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 323	tag = (address >> 22UL);
 324	tsb_insert(tsb, tag, tte);
 325}
 326
 327#ifdef CONFIG_HUGETLB_PAGE
 328static int __init hugetlbpage_init(void)
 329{
 330	hugetlb_add_hstate(HPAGE_64K_SHIFT - PAGE_SHIFT);
 331	hugetlb_add_hstate(HPAGE_SHIFT - PAGE_SHIFT);
 332	hugetlb_add_hstate(HPAGE_256MB_SHIFT - PAGE_SHIFT);
 333	hugetlb_add_hstate(HPAGE_2GB_SHIFT - PAGE_SHIFT);
 334
 335	return 0;
 336}
 337
 338arch_initcall(hugetlbpage_init);
 339
 340static void __init pud_huge_patch(void)
 341{
 342	struct pud_huge_patch_entry *p;
 343	unsigned long addr;
 344
 345	p = &__pud_huge_patch;
 346	addr = p->addr;
 347	*(unsigned int *)addr = p->insn;
 348
 349	__asm__ __volatile__("flush %0" : : "r" (addr));
 350}
 351
 352bool __init arch_hugetlb_valid_size(unsigned long size)
 353{
 354	unsigned int hugepage_shift = ilog2(size);
 355	unsigned short hv_pgsz_idx;
 356	unsigned int hv_pgsz_mask;
 357
 358	switch (hugepage_shift) {
 359	case HPAGE_16GB_SHIFT:
 360		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
 361		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
 362		pud_huge_patch();
 363		break;
 364	case HPAGE_2GB_SHIFT:
 365		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
 366		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
 367		break;
 368	case HPAGE_256MB_SHIFT:
 369		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
 370		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
 371		break;
 372	case HPAGE_SHIFT:
 373		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
 374		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
 375		break;
 376	case HPAGE_64K_SHIFT:
 377		hv_pgsz_mask = HV_PGSZ_MASK_64K;
 378		hv_pgsz_idx = HV_PGSZ_IDX_64K;
 379		break;
 380	default:
 381		hv_pgsz_mask = 0;
 382	}
 383
 384	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U)
 385		return false;
 386
 387	return true;
 388}
 389#endif	/* CONFIG_HUGETLB_PAGE */
 390
 391void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 392{
 393	struct mm_struct *mm;
 394	unsigned long flags;
 395	bool is_huge_tsb;
 396	pte_t pte = *ptep;
 397
 398	if (tlb_type != hypervisor) {
 399		unsigned long pfn = pte_pfn(pte);
 400
 401		if (pfn_valid(pfn))
 402			flush_dcache(pfn);
 403	}
 404
 405	mm = vma->vm_mm;
 406
 407	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 408	if (!pte_accessible(mm, pte))
 409		return;
 410
 411	spin_lock_irqsave(&mm->context.lock, flags);
 412
 413	is_huge_tsb = false;
 414#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 415	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
 416		unsigned long hugepage_size = PAGE_SIZE;
 417
 418		if (is_vm_hugetlb_page(vma))
 419			hugepage_size = huge_page_size(hstate_vma(vma));
 420
 421		if (hugepage_size >= PUD_SIZE) {
 422			unsigned long mask = 0x1ffc00000UL;
 423
 424			/* Transfer bits [32:22] from address to resolve
 425			 * at 4M granularity.
 426			 */
 427			pte_val(pte) &= ~mask;
 428			pte_val(pte) |= (address & mask);
 429		} else if (hugepage_size >= PMD_SIZE) {
 430			/* We are fabricating 8MB pages using 4MB
 431			 * real hw pages.
 432			 */
 433			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 434		}
 435
 436		if (hugepage_size >= PMD_SIZE) {
 437			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
 438				REAL_HPAGE_SHIFT, address, pte_val(pte));
 439			is_huge_tsb = true;
 440		}
 441	}
 442#endif
 443	if (!is_huge_tsb)
 444		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 445					address, pte_val(pte));
 446
 447	spin_unlock_irqrestore(&mm->context.lock, flags);
 448}
 449
 450void flush_dcache_page(struct page *page)
 451{
 452	struct address_space *mapping;
 453	int this_cpu;
 454
 455	if (tlb_type == hypervisor)
 456		return;
 457
 458	/* Do not bother with the expensive D-cache flush if it
 459	 * is merely the zero page.  The 'bigcore' testcase in GDB
 460	 * causes this case to run millions of times.
 461	 */
 462	if (page == ZERO_PAGE(0))
 463		return;
 464
 465	this_cpu = get_cpu();
 466
 467	mapping = page_mapping_file(page);
 468	if (mapping && !mapping_mapped(mapping)) {
 469		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 470		if (dirty) {
 471			int dirty_cpu = dcache_dirty_cpu(page);
 472
 473			if (dirty_cpu == this_cpu)
 474				goto out;
 475			smp_flush_dcache_page_impl(page, dirty_cpu);
 476		}
 477		set_dcache_dirty(page, this_cpu);
 478	} else {
 479		/* We could delay the flush for the !page_mapping
 480		 * case too.  But that case is for exec env/arg
 481		 * pages and those are %99 certainly going to get
 482		 * faulted into the tlb (and thus flushed) anyways.
 483		 */
 484		flush_dcache_page_impl(page);
 485	}
 486
 487out:
 488	put_cpu();
 489}
 490EXPORT_SYMBOL(flush_dcache_page);
 491
 492void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 493{
 494	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 495	if (tlb_type == spitfire) {
 496		unsigned long kaddr;
 497
 498		/* This code only runs on Spitfire cpus so this is
 499		 * why we can assume _PAGE_PADDR_4U.
 500		 */
 501		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 502			unsigned long paddr, mask = _PAGE_PADDR_4U;
 503
 504			if (kaddr >= PAGE_OFFSET)
 505				paddr = kaddr & mask;
 506			else {
 507				pte_t *ptep = virt_to_kpte(kaddr);
 
 
 
 508
 509				paddr = pte_val(*ptep) & mask;
 510			}
 511			__flush_icache_page(paddr);
 512		}
 513	}
 514}
 515EXPORT_SYMBOL(flush_icache_range);
 516
 517void mmu_info(struct seq_file *m)
 518{
 519	static const char *pgsz_strings[] = {
 520		"8K", "64K", "512K", "4MB", "32MB",
 521		"256MB", "2GB", "16GB",
 522	};
 523	int i, printed;
 524
 525	if (tlb_type == cheetah)
 526		seq_printf(m, "MMU Type\t: Cheetah\n");
 527	else if (tlb_type == cheetah_plus)
 528		seq_printf(m, "MMU Type\t: Cheetah+\n");
 529	else if (tlb_type == spitfire)
 530		seq_printf(m, "MMU Type\t: Spitfire\n");
 531	else if (tlb_type == hypervisor)
 532		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 533	else
 534		seq_printf(m, "MMU Type\t: ???\n");
 535
 536	seq_printf(m, "MMU PGSZs\t: ");
 537	printed = 0;
 538	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 539		if (cpu_pgsz_mask & (1UL << i)) {
 540			seq_printf(m, "%s%s",
 541				   printed ? "," : "", pgsz_strings[i]);
 542			printed++;
 543		}
 544	}
 545	seq_putc(m, '\n');
 546
 547#ifdef CONFIG_DEBUG_DCFLUSH
 548	seq_printf(m, "DCPageFlushes\t: %d\n",
 549		   atomic_read(&dcpage_flushes));
 550#ifdef CONFIG_SMP
 551	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 552		   atomic_read(&dcpage_flushes_xcall));
 553#endif /* CONFIG_SMP */
 554#endif /* CONFIG_DEBUG_DCFLUSH */
 555}
 556
 557struct linux_prom_translation prom_trans[512] __read_mostly;
 558unsigned int prom_trans_ents __read_mostly;
 559
 560unsigned long kern_locked_tte_data;
 561
 562/* The obp translations are saved based on 8k pagesize, since obp can
 563 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 564 * HI_OBP_ADDRESS range are handled in ktlb.S.
 565 */
 566static inline int in_obp_range(unsigned long vaddr)
 567{
 568	return (vaddr >= LOW_OBP_ADDRESS &&
 569		vaddr < HI_OBP_ADDRESS);
 570}
 571
 572static int cmp_ptrans(const void *a, const void *b)
 573{
 574	const struct linux_prom_translation *x = a, *y = b;
 575
 576	if (x->virt > y->virt)
 577		return 1;
 578	if (x->virt < y->virt)
 579		return -1;
 580	return 0;
 581}
 582
 583/* Read OBP translations property into 'prom_trans[]'.  */
 584static void __init read_obp_translations(void)
 585{
 586	int n, node, ents, first, last, i;
 587
 588	node = prom_finddevice("/virtual-memory");
 589	n = prom_getproplen(node, "translations");
 590	if (unlikely(n == 0 || n == -1)) {
 591		prom_printf("prom_mappings: Couldn't get size.\n");
 592		prom_halt();
 593	}
 594	if (unlikely(n > sizeof(prom_trans))) {
 595		prom_printf("prom_mappings: Size %d is too big.\n", n);
 596		prom_halt();
 597	}
 598
 599	if ((n = prom_getproperty(node, "translations",
 600				  (char *)&prom_trans[0],
 601				  sizeof(prom_trans))) == -1) {
 602		prom_printf("prom_mappings: Couldn't get property.\n");
 603		prom_halt();
 604	}
 605
 606	n = n / sizeof(struct linux_prom_translation);
 607
 608	ents = n;
 609
 610	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 611	     cmp_ptrans, NULL);
 612
 613	/* Now kick out all the non-OBP entries.  */
 614	for (i = 0; i < ents; i++) {
 615		if (in_obp_range(prom_trans[i].virt))
 616			break;
 617	}
 618	first = i;
 619	for (; i < ents; i++) {
 620		if (!in_obp_range(prom_trans[i].virt))
 621			break;
 622	}
 623	last = i;
 624
 625	for (i = 0; i < (last - first); i++) {
 626		struct linux_prom_translation *src = &prom_trans[i + first];
 627		struct linux_prom_translation *dest = &prom_trans[i];
 628
 629		*dest = *src;
 630	}
 631	for (; i < ents; i++) {
 632		struct linux_prom_translation *dest = &prom_trans[i];
 633		dest->virt = dest->size = dest->data = 0x0UL;
 634	}
 635
 636	prom_trans_ents = last - first;
 637
 638	if (tlb_type == spitfire) {
 639		/* Clear diag TTE bits. */
 640		for (i = 0; i < prom_trans_ents; i++)
 641			prom_trans[i].data &= ~0x0003fe0000000000UL;
 642	}
 643
 644	/* Force execute bit on.  */
 645	for (i = 0; i < prom_trans_ents; i++)
 646		prom_trans[i].data |= (tlb_type == hypervisor ?
 647				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 648}
 649
 650static void __init hypervisor_tlb_lock(unsigned long vaddr,
 651				       unsigned long pte,
 652				       unsigned long mmu)
 653{
 654	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 655
 656	if (ret != 0) {
 657		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 658			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 659		prom_halt();
 660	}
 661}
 662
 663static unsigned long kern_large_tte(unsigned long paddr);
 664
 665static void __init remap_kernel(void)
 666{
 667	unsigned long phys_page, tte_vaddr, tte_data;
 668	int i, tlb_ent = sparc64_highest_locked_tlbent();
 669
 670	tte_vaddr = (unsigned long) KERNBASE;
 671	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 672	tte_data = kern_large_tte(phys_page);
 673
 674	kern_locked_tte_data = tte_data;
 675
 676	/* Now lock us into the TLBs via Hypervisor or OBP. */
 677	if (tlb_type == hypervisor) {
 678		for (i = 0; i < num_kernel_image_mappings; i++) {
 679			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 680			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 681			tte_vaddr += 0x400000;
 682			tte_data += 0x400000;
 683		}
 684	} else {
 685		for (i = 0; i < num_kernel_image_mappings; i++) {
 686			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 687			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 688			tte_vaddr += 0x400000;
 689			tte_data += 0x400000;
 690		}
 691		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 692	}
 693	if (tlb_type == cheetah_plus) {
 694		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 695					    CTX_CHEETAH_PLUS_NUC);
 696		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 697		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 698	}
 699}
 700
 701
 702static void __init inherit_prom_mappings(void)
 703{
 704	/* Now fixup OBP's idea about where we really are mapped. */
 705	printk("Remapping the kernel... ");
 706	remap_kernel();
 707	printk("done.\n");
 708}
 709
 710void prom_world(int enter)
 711{
 712	/*
 713	 * No need to change the address space any more, just flush
 714	 * the register windows
 715	 */
 716	__asm__ __volatile__("flushw");
 717}
 718
 719void __flush_dcache_range(unsigned long start, unsigned long end)
 720{
 721	unsigned long va;
 722
 723	if (tlb_type == spitfire) {
 724		int n = 0;
 725
 726		for (va = start; va < end; va += 32) {
 727			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 728			if (++n >= 512)
 729				break;
 730		}
 731	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 732		start = __pa(start);
 733		end = __pa(end);
 734		for (va = start; va < end; va += 32)
 735			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 736					     "membar #Sync"
 737					     : /* no outputs */
 738					     : "r" (va),
 739					       "i" (ASI_DCACHE_INVALIDATE));
 740	}
 741}
 742EXPORT_SYMBOL(__flush_dcache_range);
 743
 744/* get_new_mmu_context() uses "cache + 1".  */
 745DEFINE_SPINLOCK(ctx_alloc_lock);
 746unsigned long tlb_context_cache = CTX_FIRST_VERSION;
 747#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 748#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 749DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 750DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};
 751
 752static void mmu_context_wrap(void)
 753{
 754	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
 755	unsigned long new_ver, new_ctx, old_ctx;
 756	struct mm_struct *mm;
 757	int cpu;
 758
 759	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);
 760
 761	/* Reserve kernel context */
 762	set_bit(0, mmu_context_bmap);
 763
 764	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
 765	if (unlikely(new_ver == 0))
 766		new_ver = CTX_FIRST_VERSION;
 767	tlb_context_cache = new_ver;
 768
 769	/*
 770	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
 771	 * are going to go through get_new_mmu_context() path.
 772	 */
 773	mb();
 774
 775	/*
 776	 * Updated versions to current on those CPUs that had valid secondary
 777	 * contexts
 778	 */
 779	for_each_online_cpu(cpu) {
 780		/*
 781		 * If a new mm is stored after we took this mm from the array,
 782		 * it will go into get_new_mmu_context() path, because we
 783		 * already bumped the version in tlb_context_cache.
 784		 */
 785		mm = per_cpu(per_cpu_secondary_mm, cpu);
 786
 787		if (unlikely(!mm || mm == &init_mm))
 788			continue;
 789
 790		old_ctx = mm->context.sparc64_ctx_val;
 791		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
 792			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
 793			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
 794			mm->context.sparc64_ctx_val = new_ctx;
 795		}
 796	}
 797}
 798
 799/* Caller does TLB context flushing on local CPU if necessary.
 800 * The caller also ensures that CTX_VALID(mm->context) is false.
 801 *
 802 * We must be careful about boundary cases so that we never
 803 * let the user have CTX 0 (nucleus) or we ever use a CTX
 804 * version of zero (and thus NO_CONTEXT would not be caught
 805 * by version mis-match tests in mmu_context.h).
 806 *
 807 * Always invoked with interrupts disabled.
 808 */
 809void get_new_mmu_context(struct mm_struct *mm)
 810{
 811	unsigned long ctx, new_ctx;
 812	unsigned long orig_pgsz_bits;
 
 813
 814	spin_lock(&ctx_alloc_lock);
 815retry:
 816	/* wrap might have happened, test again if our context became valid */
 817	if (unlikely(CTX_VALID(mm->context)))
 818		goto out;
 819	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 820	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 821	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 
 822	if (new_ctx >= (1 << CTX_NR_BITS)) {
 823		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 824		if (new_ctx >= ctx) {
 825			mmu_context_wrap();
 826			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 827		}
 828	}
 829	if (mm->context.sparc64_ctx_val)
 830		cpumask_clear(mm_cpumask(mm));
 831	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 832	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 
 833	tlb_context_cache = new_ctx;
 834	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 835out:
 836	spin_unlock(&ctx_alloc_lock);
 
 
 
 837}
 838
 839static int numa_enabled = 1;
 840static int numa_debug;
 841
 842static int __init early_numa(char *p)
 843{
 844	if (!p)
 845		return 0;
 846
 847	if (strstr(p, "off"))
 848		numa_enabled = 0;
 849
 850	if (strstr(p, "debug"))
 851		numa_debug = 1;
 852
 853	return 0;
 854}
 855early_param("numa", early_numa);
 856
 857#define numadbg(f, a...) \
 858do {	if (numa_debug) \
 859		printk(KERN_INFO f, ## a); \
 860} while (0)
 861
 862static void __init find_ramdisk(unsigned long phys_base)
 863{
 864#ifdef CONFIG_BLK_DEV_INITRD
 865	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 866		unsigned long ramdisk_image;
 867
 868		/* Older versions of the bootloader only supported a
 869		 * 32-bit physical address for the ramdisk image
 870		 * location, stored at sparc_ramdisk_image.  Newer
 871		 * SILO versions set sparc_ramdisk_image to zero and
 872		 * provide a full 64-bit physical address at
 873		 * sparc_ramdisk_image64.
 874		 */
 875		ramdisk_image = sparc_ramdisk_image;
 876		if (!ramdisk_image)
 877			ramdisk_image = sparc_ramdisk_image64;
 878
 879		/* Another bootloader quirk.  The bootloader normalizes
 880		 * the physical address to KERNBASE, so we have to
 881		 * factor that back out and add in the lowest valid
 882		 * physical page address to get the true physical address.
 883		 */
 884		ramdisk_image -= KERNBASE;
 885		ramdisk_image += phys_base;
 886
 887		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 888			ramdisk_image, sparc_ramdisk_size);
 889
 890		initrd_start = ramdisk_image;
 891		initrd_end = ramdisk_image + sparc_ramdisk_size;
 892
 893		memblock_reserve(initrd_start, sparc_ramdisk_size);
 894
 895		initrd_start += PAGE_OFFSET;
 896		initrd_end += PAGE_OFFSET;
 897	}
 898#endif
 899}
 900
 901struct node_mem_mask {
 902	unsigned long mask;
 903	unsigned long match;
 904};
 905static struct node_mem_mask node_masks[MAX_NUMNODES];
 906static int num_node_masks;
 907
 908#ifdef CONFIG_NUMA
 909
 910struct mdesc_mlgroup {
 911	u64	node;
 912	u64	latency;
 913	u64	match;
 914	u64	mask;
 915};
 916
 917static struct mdesc_mlgroup *mlgroups;
 918static int num_mlgroups;
 919
 920int numa_cpu_lookup_table[NR_CPUS];
 921cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 922
 923struct mdesc_mblock {
 924	u64	base;
 925	u64	size;
 926	u64	offset; /* RA-to-PA */
 927};
 928static struct mdesc_mblock *mblocks;
 929static int num_mblocks;
 
 
 930
 931static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
 932{
 933	struct mdesc_mblock *m = NULL;
 934	int i;
 935
 936	for (i = 0; i < num_mblocks; i++) {
 937		m = &mblocks[i];
 938
 939		if (addr >= m->base &&
 940		    addr < (m->base + m->size)) {
 
 941			break;
 942		}
 943	}
 944
 945	return m;
 946}
 947
 948static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
 949{
 950	int prev_nid, new_nid;
 951
 952	prev_nid = NUMA_NO_NODE;
 953	for ( ; start < end; start += PAGE_SIZE) {
 954		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
 955			struct node_mem_mask *p = &node_masks[new_nid];
 956
 957			if ((start & p->mask) == p->match) {
 958				if (prev_nid == NUMA_NO_NODE)
 959					prev_nid = new_nid;
 960				break;
 961			}
 962		}
 963
 964		if (new_nid == num_node_masks) {
 965			prev_nid = 0;
 966			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
 967				  start);
 968			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 969		}
 970
 971		if (prev_nid != new_nid)
 972			break;
 973	}
 974	*nid = prev_nid;
 975
 976	return start > end ? end : start;
 977}
 978
 979static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
 980{
 981	u64 ret_end, pa_start, m_mask, m_match, m_end;
 982	struct mdesc_mblock *mblock;
 983	int _nid, i;
 984
 985	if (tlb_type != hypervisor)
 986		return memblock_nid_range_sun4u(start, end, nid);
 987
 988	mblock = addr_to_mblock(start);
 989	if (!mblock) {
 990		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
 991			  start);
 992
 993		_nid = 0;
 994		ret_end = end;
 995		goto done;
 996	}
 997
 998	pa_start = start + mblock->offset;
 999	m_match = 0;
1000	m_mask = 0;
1001
1002	for (_nid = 0; _nid < num_node_masks; _nid++) {
1003		struct node_mem_mask *const m = &node_masks[_nid];
1004
1005		if ((pa_start & m->mask) == m->match) {
1006			m_match = m->match;
1007			m_mask = m->mask;
1008			break;
1009		}
1010	}
1011
1012	if (num_node_masks == _nid) {
1013		/* We could not find NUMA group, so default to 0, but lets
1014		 * search for latency group, so we could calculate the correct
1015		 * end address that we return
1016		 */
1017		_nid = 0;
1018
1019		for (i = 0; i < num_mlgroups; i++) {
1020			struct mdesc_mlgroup *const m = &mlgroups[i];
1021
1022			if ((pa_start & m->mask) == m->match) {
1023				m_match = m->match;
1024				m_mask = m->mask;
1025				break;
1026			}
1027		}
1028
1029		if (i == num_mlgroups) {
1030			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
1031				  start);
1032
1033			ret_end = end;
1034			goto done;
1035		}
1036	}
1037
1038	/*
1039	 * Each latency group has match and mask, and each memory block has an
1040	 * offset.  An address belongs to a latency group if its address matches
1041	 * the following formula: ((addr + offset) & mask) == match
1042	 * It is, however, slow to check every single page if it matches a
1043	 * particular latency group. As optimization we calculate end value by
1044	 * using bit arithmetics.
1045	 */
1046	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
1047	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
1048	ret_end = m_end > end ? end : m_end;
1049
1050done:
1051	*nid = _nid;
1052	return ret_end;
1053}
1054#endif
1055
1056/* This must be invoked after performing all of the necessary
1057 * memblock_set_node() calls for 'nid'.  We need to be able to get
1058 * correct data from get_pfn_range_for_nid().
1059 */
1060static void __init allocate_node_data(int nid)
1061{
1062	struct pglist_data *p;
1063	unsigned long start_pfn, end_pfn;
1064#ifdef CONFIG_NUMA
 
1065
1066	NODE_DATA(nid) = memblock_alloc_node(sizeof(struct pglist_data),
1067					     SMP_CACHE_BYTES, nid);
1068	if (!NODE_DATA(nid)) {
1069		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
1070		prom_halt();
1071	}
 
 
1072
1073	NODE_DATA(nid)->node_id = nid;
1074#endif
1075
1076	p = NODE_DATA(nid);
1077
1078	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1079	p->node_start_pfn = start_pfn;
1080	p->node_spanned_pages = end_pfn - start_pfn;
1081}
1082
1083static void init_node_masks_nonnuma(void)
1084{
1085#ifdef CONFIG_NUMA
1086	int i;
1087#endif
1088
1089	numadbg("Initializing tables for non-numa.\n");
1090
1091	node_masks[0].mask = 0;
1092	node_masks[0].match = 0;
1093	num_node_masks = 1;
1094
1095#ifdef CONFIG_NUMA
1096	for (i = 0; i < NR_CPUS; i++)
1097		numa_cpu_lookup_table[i] = 0;
1098
1099	cpumask_setall(&numa_cpumask_lookup_table[0]);
1100#endif
1101}
1102
1103#ifdef CONFIG_NUMA
1104struct pglist_data *node_data[MAX_NUMNODES];
1105
1106EXPORT_SYMBOL(numa_cpu_lookup_table);
1107EXPORT_SYMBOL(numa_cpumask_lookup_table);
1108EXPORT_SYMBOL(node_data);
1109
 
 
 
 
 
 
 
 
 
1110static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
1111				   u32 cfg_handle)
1112{
1113	u64 arc;
1114
1115	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
1116		u64 target = mdesc_arc_target(md, arc);
1117		const u64 *val;
1118
1119		val = mdesc_get_property(md, target,
1120					 "cfg-handle", NULL);
1121		if (val && *val == cfg_handle)
1122			return 0;
1123	}
1124	return -ENODEV;
1125}
1126
1127static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
1128				    u32 cfg_handle)
1129{
1130	u64 arc, candidate, best_latency = ~(u64)0;
1131
1132	candidate = MDESC_NODE_NULL;
1133	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1134		u64 target = mdesc_arc_target(md, arc);
1135		const char *name = mdesc_node_name(md, target);
1136		const u64 *val;
1137
1138		if (strcmp(name, "pio-latency-group"))
1139			continue;
1140
1141		val = mdesc_get_property(md, target, "latency", NULL);
1142		if (!val)
1143			continue;
1144
1145		if (*val < best_latency) {
1146			candidate = target;
1147			best_latency = *val;
1148		}
1149	}
1150
1151	if (candidate == MDESC_NODE_NULL)
1152		return -ENODEV;
1153
1154	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
1155}
1156
1157int of_node_to_nid(struct device_node *dp)
1158{
1159	const struct linux_prom64_registers *regs;
1160	struct mdesc_handle *md;
1161	u32 cfg_handle;
1162	int count, nid;
1163	u64 grp;
1164
1165	/* This is the right thing to do on currently supported
1166	 * SUN4U NUMA platforms as well, as the PCI controller does
1167	 * not sit behind any particular memory controller.
1168	 */
1169	if (!mlgroups)
1170		return -1;
1171
1172	regs = of_get_property(dp, "reg", NULL);
1173	if (!regs)
1174		return -1;
1175
1176	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1177
1178	md = mdesc_grab();
1179
1180	count = 0;
1181	nid = NUMA_NO_NODE;
1182	mdesc_for_each_node_by_name(md, grp, "group") {
1183		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1184			nid = count;
1185			break;
1186		}
1187		count++;
1188	}
1189
1190	mdesc_release(md);
1191
1192	return nid;
1193}
1194
1195static void __init add_node_ranges(void)
1196{
1197	phys_addr_t start, end;
1198	unsigned long prev_max;
1199	u64 i;
1200
1201memblock_resized:
1202	prev_max = memblock.memory.max;
 
1203
1204	for_each_mem_range(i, &start, &end) {
 
1205		while (start < end) {
1206			unsigned long this_end;
1207			int nid;
1208
1209			this_end = memblock_nid_range(start, end, &nid);
1210
1211			numadbg("Setting memblock NUMA node nid[%d] "
1212				"start[%llx] end[%lx]\n",
1213				nid, start, this_end);
1214
1215			memblock_set_node(start, this_end - start,
1216					  &memblock.memory, nid);
1217			if (memblock.memory.max != prev_max)
1218				goto memblock_resized;
1219			start = this_end;
1220		}
1221	}
1222}
1223
1224static int __init grab_mlgroups(struct mdesc_handle *md)
1225{
1226	unsigned long paddr;
1227	int count = 0;
1228	u64 node;
1229
1230	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1231		count++;
1232	if (!count)
1233		return -ENOENT;
1234
1235	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mlgroup),
1236				    SMP_CACHE_BYTES);
1237	if (!paddr)
1238		return -ENOMEM;
1239
1240	mlgroups = __va(paddr);
1241	num_mlgroups = count;
1242
1243	count = 0;
1244	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1245		struct mdesc_mlgroup *m = &mlgroups[count++];
1246		const u64 *val;
1247
1248		m->node = node;
1249
1250		val = mdesc_get_property(md, node, "latency", NULL);
1251		m->latency = *val;
1252		val = mdesc_get_property(md, node, "address-match", NULL);
1253		m->match = *val;
1254		val = mdesc_get_property(md, node, "address-mask", NULL);
1255		m->mask = *val;
1256
1257		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1258			"match[%llx] mask[%llx]\n",
1259			count - 1, m->node, m->latency, m->match, m->mask);
1260	}
1261
1262	return 0;
1263}
1264
1265static int __init grab_mblocks(struct mdesc_handle *md)
1266{
1267	unsigned long paddr;
1268	int count = 0;
1269	u64 node;
1270
1271	mdesc_for_each_node_by_name(md, node, "mblock")
1272		count++;
1273	if (!count)
1274		return -ENOENT;
1275
1276	paddr = memblock_phys_alloc(count * sizeof(struct mdesc_mblock),
1277				    SMP_CACHE_BYTES);
1278	if (!paddr)
1279		return -ENOMEM;
1280
1281	mblocks = __va(paddr);
1282	num_mblocks = count;
1283
1284	count = 0;
1285	mdesc_for_each_node_by_name(md, node, "mblock") {
1286		struct mdesc_mblock *m = &mblocks[count++];
1287		const u64 *val;
1288
1289		val = mdesc_get_property(md, node, "base", NULL);
1290		m->base = *val;
1291		val = mdesc_get_property(md, node, "size", NULL);
1292		m->size = *val;
1293		val = mdesc_get_property(md, node,
1294					 "address-congruence-offset", NULL);
1295
1296		/* The address-congruence-offset property is optional.
1297		 * Explicity zero it be identifty this.
1298		 */
1299		if (val)
1300			m->offset = *val;
1301		else
1302			m->offset = 0UL;
1303
1304		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1305			count - 1, m->base, m->size, m->offset);
1306	}
1307
1308	return 0;
1309}
1310
1311static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1312					       u64 grp, cpumask_t *mask)
1313{
1314	u64 arc;
1315
1316	cpumask_clear(mask);
1317
1318	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1319		u64 target = mdesc_arc_target(md, arc);
1320		const char *name = mdesc_node_name(md, target);
1321		const u64 *id;
1322
1323		if (strcmp(name, "cpu"))
1324			continue;
1325		id = mdesc_get_property(md, target, "id", NULL);
1326		if (*id < nr_cpu_ids)
1327			cpumask_set_cpu(*id, mask);
1328	}
1329}
1330
1331static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1332{
1333	int i;
1334
1335	for (i = 0; i < num_mlgroups; i++) {
1336		struct mdesc_mlgroup *m = &mlgroups[i];
1337		if (m->node == node)
1338			return m;
1339	}
1340	return NULL;
1341}
1342
1343int __node_distance(int from, int to)
1344{
1345	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1346		pr_warn("Returning default NUMA distance value for %d->%d\n",
1347			from, to);
1348		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1349	}
1350	return numa_latency[from][to];
1351}
1352EXPORT_SYMBOL(__node_distance);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1353
1354static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1355{
1356	int i;
1357
1358	for (i = 0; i < MAX_NUMNODES; i++) {
1359		struct node_mem_mask *n = &node_masks[i];
1360
1361		if ((grp->mask == n->mask) && (grp->match == n->match))
1362			break;
1363	}
1364	return i;
1365}
1366
1367static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1368						 u64 grp, int index)
1369{
1370	u64 arc;
1371
1372	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1373		int tnode;
1374		u64 target = mdesc_arc_target(md, arc);
1375		struct mdesc_mlgroup *m = find_mlgroup(target);
1376
1377		if (!m)
1378			continue;
1379		tnode = find_best_numa_node_for_mlgroup(m);
1380		if (tnode == MAX_NUMNODES)
1381			continue;
1382		numa_latency[index][tnode] = m->latency;
1383	}
1384}
1385
1386static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1387				      int index)
1388{
1389	struct mdesc_mlgroup *candidate = NULL;
1390	u64 arc, best_latency = ~(u64)0;
1391	struct node_mem_mask *n;
1392
1393	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1394		u64 target = mdesc_arc_target(md, arc);
1395		struct mdesc_mlgroup *m = find_mlgroup(target);
1396		if (!m)
1397			continue;
1398		if (m->latency < best_latency) {
1399			candidate = m;
1400			best_latency = m->latency;
1401		}
1402	}
1403	if (!candidate)
1404		return -ENOENT;
1405
1406	if (num_node_masks != index) {
1407		printk(KERN_ERR "Inconsistent NUMA state, "
1408		       "index[%d] != num_node_masks[%d]\n",
1409		       index, num_node_masks);
1410		return -EINVAL;
1411	}
1412
1413	n = &node_masks[num_node_masks++];
1414
1415	n->mask = candidate->mask;
1416	n->match = candidate->match;
1417
1418	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
1419		index, n->mask, n->match, candidate->latency);
1420
1421	return 0;
1422}
1423
1424static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1425					 int index)
1426{
1427	cpumask_t mask;
1428	int cpu;
1429
1430	numa_parse_mdesc_group_cpus(md, grp, &mask);
1431
1432	for_each_cpu(cpu, &mask)
1433		numa_cpu_lookup_table[cpu] = index;
1434	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1435
1436	if (numa_debug) {
1437		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1438		for_each_cpu(cpu, &mask)
1439			printk("%d ", cpu);
1440		printk("]\n");
1441	}
1442
1443	return numa_attach_mlgroup(md, grp, index);
1444}
1445
1446static int __init numa_parse_mdesc(void)
1447{
1448	struct mdesc_handle *md = mdesc_grab();
1449	int i, j, err, count;
1450	u64 node;
1451
1452	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1453	if (node == MDESC_NODE_NULL) {
1454		mdesc_release(md);
1455		return -ENOENT;
1456	}
1457
1458	err = grab_mblocks(md);
1459	if (err < 0)
1460		goto out;
1461
1462	err = grab_mlgroups(md);
1463	if (err < 0)
1464		goto out;
1465
1466	count = 0;
1467	mdesc_for_each_node_by_name(md, node, "group") {
1468		err = numa_parse_mdesc_group(md, node, count);
1469		if (err < 0)
1470			break;
1471		count++;
1472	}
1473
1474	count = 0;
1475	mdesc_for_each_node_by_name(md, node, "group") {
1476		find_numa_latencies_for_group(md, node, count);
1477		count++;
1478	}
1479
1480	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1481	for (i = 0; i < MAX_NUMNODES; i++) {
1482		u64 self_latency = numa_latency[i][i];
1483
1484		for (j = 0; j < MAX_NUMNODES; j++) {
1485			numa_latency[i][j] =
1486				(numa_latency[i][j] * LOCAL_DISTANCE) /
1487				self_latency;
1488		}
1489	}
1490
1491	add_node_ranges();
1492
1493	for (i = 0; i < num_node_masks; i++) {
1494		allocate_node_data(i);
1495		node_set_online(i);
1496	}
1497
1498	err = 0;
1499out:
1500	mdesc_release(md);
1501	return err;
1502}
1503
1504static int __init numa_parse_jbus(void)
1505{
1506	unsigned long cpu, index;
1507
1508	/* NUMA node id is encoded in bits 36 and higher, and there is
1509	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1510	 */
1511	index = 0;
1512	for_each_present_cpu(cpu) {
1513		numa_cpu_lookup_table[cpu] = index;
1514		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1515		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1516		node_masks[index].match = cpu << 36UL;
1517
1518		index++;
1519	}
1520	num_node_masks = index;
1521
1522	add_node_ranges();
1523
1524	for (index = 0; index < num_node_masks; index++) {
1525		allocate_node_data(index);
1526		node_set_online(index);
1527	}
1528
1529	return 0;
1530}
1531
1532static int __init numa_parse_sun4u(void)
1533{
1534	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1535		unsigned long ver;
1536
1537		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1538		if ((ver >> 32UL) == __JALAPENO_ID ||
1539		    (ver >> 32UL) == __SERRANO_ID)
1540			return numa_parse_jbus();
1541	}
1542	return -1;
1543}
1544
1545static int __init bootmem_init_numa(void)
1546{
1547	int i, j;
1548	int err = -1;
1549
1550	numadbg("bootmem_init_numa()\n");
1551
1552	/* Some sane defaults for numa latency values */
1553	for (i = 0; i < MAX_NUMNODES; i++) {
1554		for (j = 0; j < MAX_NUMNODES; j++)
1555			numa_latency[i][j] = (i == j) ?
1556				LOCAL_DISTANCE : REMOTE_DISTANCE;
1557	}
1558
1559	if (numa_enabled) {
1560		if (tlb_type == hypervisor)
1561			err = numa_parse_mdesc();
1562		else
1563			err = numa_parse_sun4u();
1564	}
1565	return err;
1566}
1567
1568#else
1569
1570static int bootmem_init_numa(void)
1571{
1572	return -1;
1573}
1574
1575#endif
1576
1577static void __init bootmem_init_nonnuma(void)
1578{
1579	unsigned long top_of_ram = memblock_end_of_DRAM();
1580	unsigned long total_ram = memblock_phys_mem_size();
1581
1582	numadbg("bootmem_init_nonnuma()\n");
1583
1584	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1585	       top_of_ram, total_ram);
1586	printk(KERN_INFO "Memory hole size: %ldMB\n",
1587	       (top_of_ram - total_ram) >> 20);
1588
1589	init_node_masks_nonnuma();
1590	memblock_set_node(0, PHYS_ADDR_MAX, &memblock.memory, 0);
1591	allocate_node_data(0);
1592	node_set_online(0);
1593}
1594
1595static unsigned long __init bootmem_init(unsigned long phys_base)
1596{
1597	unsigned long end_pfn;
1598
1599	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1600	max_pfn = max_low_pfn = end_pfn;
1601	min_low_pfn = (phys_base >> PAGE_SHIFT);
1602
1603	if (bootmem_init_numa() < 0)
1604		bootmem_init_nonnuma();
1605
1606	/* Dump memblock with node info. */
1607	memblock_dump_all();
1608
1609	/* XXX cpu notifier XXX */
1610
 
1611	sparse_init();
1612
1613	return end_pfn;
1614}
1615
1616static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1617static int pall_ents __initdata;
1618
1619static unsigned long max_phys_bits = 40;
1620
1621bool kern_addr_valid(unsigned long addr)
1622{
1623	pgd_t *pgd;
1624	p4d_t *p4d;
1625	pud_t *pud;
1626	pmd_t *pmd;
1627	pte_t *pte;
1628
1629	if ((long)addr < 0L) {
1630		unsigned long pa = __pa(addr);
1631
1632		if ((pa >> max_phys_bits) != 0UL)
1633			return false;
1634
1635		return pfn_valid(pa >> PAGE_SHIFT);
1636	}
1637
1638	if (addr >= (unsigned long) KERNBASE &&
1639	    addr < (unsigned long)&_end)
1640		return true;
1641
1642	pgd = pgd_offset_k(addr);
1643	if (pgd_none(*pgd))
1644		return false;
1645
1646	p4d = p4d_offset(pgd, addr);
1647	if (p4d_none(*p4d))
1648		return false;
1649
1650	pud = pud_offset(p4d, addr);
1651	if (pud_none(*pud))
1652		return false;
1653
1654	if (pud_large(*pud))
1655		return pfn_valid(pud_pfn(*pud));
1656
1657	pmd = pmd_offset(pud, addr);
1658	if (pmd_none(*pmd))
1659		return false;
1660
1661	if (pmd_large(*pmd))
1662		return pfn_valid(pmd_pfn(*pmd));
1663
1664	pte = pte_offset_kernel(pmd, addr);
1665	if (pte_none(*pte))
1666		return false;
1667
1668	return pfn_valid(pte_pfn(*pte));
1669}
 
1670
1671static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1672					      unsigned long vend,
1673					      pud_t *pud)
1674{
1675	const unsigned long mask16gb = (1UL << 34) - 1UL;
1676	u64 pte_val = vstart;
1677
1678	/* Each PUD is 8GB */
1679	if ((vstart & mask16gb) ||
1680	    (vend - vstart <= mask16gb)) {
1681		pte_val ^= kern_linear_pte_xor[2];
1682		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1683
1684		return vstart + PUD_SIZE;
1685	}
1686
1687	pte_val ^= kern_linear_pte_xor[3];
1688	pte_val |= _PAGE_PUD_HUGE;
1689
1690	vend = vstart + mask16gb + 1UL;
1691	while (vstart < vend) {
1692		pud_val(*pud) = pte_val;
1693
1694		pte_val += PUD_SIZE;
1695		vstart += PUD_SIZE;
1696		pud++;
1697	}
1698	return vstart;
1699}
1700
1701static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1702				   bool guard)
1703{
1704	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1705		return true;
1706
1707	return false;
1708}
1709
1710static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1711					      unsigned long vend,
1712					      pmd_t *pmd)
1713{
1714	const unsigned long mask256mb = (1UL << 28) - 1UL;
1715	const unsigned long mask2gb = (1UL << 31) - 1UL;
1716	u64 pte_val = vstart;
1717
1718	/* Each PMD is 8MB */
1719	if ((vstart & mask256mb) ||
1720	    (vend - vstart <= mask256mb)) {
1721		pte_val ^= kern_linear_pte_xor[0];
1722		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1723
1724		return vstart + PMD_SIZE;
1725	}
1726
1727	if ((vstart & mask2gb) ||
1728	    (vend - vstart <= mask2gb)) {
1729		pte_val ^= kern_linear_pte_xor[1];
1730		pte_val |= _PAGE_PMD_HUGE;
1731		vend = vstart + mask256mb + 1UL;
1732	} else {
1733		pte_val ^= kern_linear_pte_xor[2];
1734		pte_val |= _PAGE_PMD_HUGE;
1735		vend = vstart + mask2gb + 1UL;
1736	}
1737
1738	while (vstart < vend) {
1739		pmd_val(*pmd) = pte_val;
1740
1741		pte_val += PMD_SIZE;
1742		vstart += PMD_SIZE;
1743		pmd++;
1744	}
1745
1746	return vstart;
1747}
1748
1749static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1750				   bool guard)
1751{
1752	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1753		return true;
1754
1755	return false;
1756}
1757
1758static unsigned long __ref kernel_map_range(unsigned long pstart,
1759					    unsigned long pend, pgprot_t prot,
1760					    bool use_huge)
1761{
1762	unsigned long vstart = PAGE_OFFSET + pstart;
1763	unsigned long vend = PAGE_OFFSET + pend;
1764	unsigned long alloc_bytes = 0UL;
1765
1766	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1767		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1768			    vstart, vend);
1769		prom_halt();
1770	}
1771
1772	while (vstart < vend) {
1773		unsigned long this_end, paddr = __pa(vstart);
1774		pgd_t *pgd = pgd_offset_k(vstart);
1775		p4d_t *p4d;
1776		pud_t *pud;
1777		pmd_t *pmd;
1778		pte_t *pte;
1779
1780		if (pgd_none(*pgd)) {
1781			pud_t *new;
1782
1783			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1784						  PAGE_SIZE);
1785			if (!new)
1786				goto err_alloc;
1787			alloc_bytes += PAGE_SIZE;
1788			pgd_populate(&init_mm, pgd, new);
1789		}
1790
1791		p4d = p4d_offset(pgd, vstart);
1792		if (p4d_none(*p4d)) {
1793			pud_t *new;
1794
1795			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1796						  PAGE_SIZE);
1797			if (!new)
1798				goto err_alloc;
1799			alloc_bytes += PAGE_SIZE;
1800			p4d_populate(&init_mm, p4d, new);
1801		}
1802
1803		pud = pud_offset(p4d, vstart);
1804		if (pud_none(*pud)) {
1805			pmd_t *new;
1806
1807			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1808				vstart = kernel_map_hugepud(vstart, vend, pud);
1809				continue;
1810			}
1811			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1812						  PAGE_SIZE);
1813			if (!new)
1814				goto err_alloc;
1815			alloc_bytes += PAGE_SIZE;
1816			pud_populate(&init_mm, pud, new);
1817		}
1818
1819		pmd = pmd_offset(pud, vstart);
1820		if (pmd_none(*pmd)) {
1821			pte_t *new;
1822
1823			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1824				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1825				continue;
1826			}
1827			new = memblock_alloc_from(PAGE_SIZE, PAGE_SIZE,
1828						  PAGE_SIZE);
1829			if (!new)
1830				goto err_alloc;
1831			alloc_bytes += PAGE_SIZE;
1832			pmd_populate_kernel(&init_mm, pmd, new);
1833		}
1834
1835		pte = pte_offset_kernel(pmd, vstart);
1836		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1837		if (this_end > vend)
1838			this_end = vend;
1839
1840		while (vstart < this_end) {
1841			pte_val(*pte) = (paddr | pgprot_val(prot));
1842
1843			vstart += PAGE_SIZE;
1844			paddr += PAGE_SIZE;
1845			pte++;
1846		}
1847	}
1848
1849	return alloc_bytes;
1850
1851err_alloc:
1852	panic("%s: Failed to allocate %lu bytes align=%lx from=%lx\n",
1853	      __func__, PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
1854	return -ENOMEM;
1855}
1856
1857static void __init flush_all_kernel_tsbs(void)
1858{
1859	int i;
1860
1861	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1862		struct tsb *ent = &swapper_tsb[i];
1863
1864		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1865	}
1866#ifndef CONFIG_DEBUG_PAGEALLOC
1867	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1868		struct tsb *ent = &swapper_4m_tsb[i];
1869
1870		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1871	}
1872#endif
1873}
1874
1875extern unsigned int kvmap_linear_patch[1];
1876
1877static void __init kernel_physical_mapping_init(void)
1878{
1879	unsigned long i, mem_alloced = 0UL;
1880	bool use_huge = true;
1881
1882#ifdef CONFIG_DEBUG_PAGEALLOC
1883	use_huge = false;
1884#endif
1885	for (i = 0; i < pall_ents; i++) {
1886		unsigned long phys_start, phys_end;
1887
1888		phys_start = pall[i].phys_addr;
1889		phys_end = phys_start + pall[i].reg_size;
1890
1891		mem_alloced += kernel_map_range(phys_start, phys_end,
1892						PAGE_KERNEL, use_huge);
1893	}
1894
1895	printk("Allocated %ld bytes for kernel page tables.\n",
1896	       mem_alloced);
1897
1898	kvmap_linear_patch[0] = 0x01000000; /* nop */
1899	flushi(&kvmap_linear_patch[0]);
1900
1901	flush_all_kernel_tsbs();
1902
1903	__flush_tlb_all();
1904}
1905
1906#ifdef CONFIG_DEBUG_PAGEALLOC
1907void __kernel_map_pages(struct page *page, int numpages, int enable)
1908{
1909	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1910	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1911
1912	kernel_map_range(phys_start, phys_end,
1913			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1914
1915	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1916			       PAGE_OFFSET + phys_end);
1917
1918	/* we should perform an IPI and flush all tlbs,
1919	 * but that can deadlock->flush only current cpu.
1920	 */
1921	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1922				 PAGE_OFFSET + phys_end);
1923}
1924#endif
1925
1926unsigned long __init find_ecache_flush_span(unsigned long size)
1927{
1928	int i;
1929
1930	for (i = 0; i < pavail_ents; i++) {
1931		if (pavail[i].reg_size >= size)
1932			return pavail[i].phys_addr;
1933	}
1934
1935	return ~0UL;
1936}
1937
1938unsigned long PAGE_OFFSET;
1939EXPORT_SYMBOL(PAGE_OFFSET);
1940
1941unsigned long VMALLOC_END   = 0x0000010000000000UL;
1942EXPORT_SYMBOL(VMALLOC_END);
1943
1944unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1945unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1946
1947static void __init setup_page_offset(void)
1948{
1949	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1950		/* Cheetah/Panther support a full 64-bit virtual
1951		 * address, so we can use all that our page tables
1952		 * support.
1953		 */
1954		sparc64_va_hole_top =    0xfff0000000000000UL;
1955		sparc64_va_hole_bottom = 0x0010000000000000UL;
1956
1957		max_phys_bits = 42;
1958	} else if (tlb_type == hypervisor) {
1959		switch (sun4v_chip_type) {
1960		case SUN4V_CHIP_NIAGARA1:
1961		case SUN4V_CHIP_NIAGARA2:
1962			/* T1 and T2 support 48-bit virtual addresses.  */
1963			sparc64_va_hole_top =    0xffff800000000000UL;
1964			sparc64_va_hole_bottom = 0x0000800000000000UL;
1965
1966			max_phys_bits = 39;
1967			break;
1968		case SUN4V_CHIP_NIAGARA3:
1969			/* T3 supports 48-bit virtual addresses.  */
1970			sparc64_va_hole_top =    0xffff800000000000UL;
1971			sparc64_va_hole_bottom = 0x0000800000000000UL;
1972
1973			max_phys_bits = 43;
1974			break;
1975		case SUN4V_CHIP_NIAGARA4:
1976		case SUN4V_CHIP_NIAGARA5:
1977		case SUN4V_CHIP_SPARC64X:
1978		case SUN4V_CHIP_SPARC_M6:
1979			/* T4 and later support 52-bit virtual addresses.  */
1980			sparc64_va_hole_top =    0xfff8000000000000UL;
1981			sparc64_va_hole_bottom = 0x0008000000000000UL;
1982			max_phys_bits = 47;
1983			break;
1984		case SUN4V_CHIP_SPARC_M7:
1985		case SUN4V_CHIP_SPARC_SN:
 
1986			/* M7 and later support 52-bit virtual addresses.  */
1987			sparc64_va_hole_top =    0xfff8000000000000UL;
1988			sparc64_va_hole_bottom = 0x0008000000000000UL;
1989			max_phys_bits = 49;
1990			break;
1991		case SUN4V_CHIP_SPARC_M8:
1992		default:
1993			/* M8 and later support 54-bit virtual addresses.
1994			 * However, restricting M8 and above VA bits to 53
1995			 * as 4-level page table cannot support more than
1996			 * 53 VA bits.
1997			 */
1998			sparc64_va_hole_top =    0xfff0000000000000UL;
1999			sparc64_va_hole_bottom = 0x0010000000000000UL;
2000			max_phys_bits = 51;
2001			break;
2002		}
2003	}
2004
2005	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
2006		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
2007			    max_phys_bits);
2008		prom_halt();
2009	}
2010
2011	PAGE_OFFSET = sparc64_va_hole_top;
2012	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
2013		       (sparc64_va_hole_bottom >> 2));
2014
2015	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
2016		PAGE_OFFSET, max_phys_bits);
2017	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
2018		VMALLOC_START, VMALLOC_END);
2019	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
2020		VMEMMAP_BASE, VMEMMAP_BASE << 1);
2021}
2022
2023static void __init tsb_phys_patch(void)
2024{
2025	struct tsb_ldquad_phys_patch_entry *pquad;
2026	struct tsb_phys_patch_entry *p;
2027
2028	pquad = &__tsb_ldquad_phys_patch;
2029	while (pquad < &__tsb_ldquad_phys_patch_end) {
2030		unsigned long addr = pquad->addr;
2031
2032		if (tlb_type == hypervisor)
2033			*(unsigned int *) addr = pquad->sun4v_insn;
2034		else
2035			*(unsigned int *) addr = pquad->sun4u_insn;
2036		wmb();
2037		__asm__ __volatile__("flush	%0"
2038				     : /* no outputs */
2039				     : "r" (addr));
2040
2041		pquad++;
2042	}
2043
2044	p = &__tsb_phys_patch;
2045	while (p < &__tsb_phys_patch_end) {
2046		unsigned long addr = p->addr;
2047
2048		*(unsigned int *) addr = p->insn;
2049		wmb();
2050		__asm__ __volatile__("flush	%0"
2051				     : /* no outputs */
2052				     : "r" (addr));
2053
2054		p++;
2055	}
2056}
2057
2058/* Don't mark as init, we give this to the Hypervisor.  */
2059#ifndef CONFIG_DEBUG_PAGEALLOC
2060#define NUM_KTSB_DESCR	2
2061#else
2062#define NUM_KTSB_DESCR	1
2063#endif
2064static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
2065
2066/* The swapper TSBs are loaded with a base sequence of:
2067 *
2068 *	sethi	%uhi(SYMBOL), REG1
2069 *	sethi	%hi(SYMBOL), REG2
2070 *	or	REG1, %ulo(SYMBOL), REG1
2071 *	or	REG2, %lo(SYMBOL), REG2
2072 *	sllx	REG1, 32, REG1
2073 *	or	REG1, REG2, REG1
2074 *
2075 * When we use physical addressing for the TSB accesses, we patch the
2076 * first four instructions in the above sequence.
2077 */
2078
2079static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
2080{
2081	unsigned long high_bits, low_bits;
2082
2083	high_bits = (pa >> 32) & 0xffffffff;
2084	low_bits = (pa >> 0) & 0xffffffff;
2085
2086	while (start < end) {
2087		unsigned int *ia = (unsigned int *)(unsigned long)*start;
2088
2089		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
2090		__asm__ __volatile__("flush	%0" : : "r" (ia));
2091
2092		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
2093		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
2094
2095		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
2096		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
2097
2098		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
2099		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
2100
2101		start++;
2102	}
2103}
2104
2105static void ktsb_phys_patch(void)
2106{
2107	extern unsigned int __swapper_tsb_phys_patch;
2108	extern unsigned int __swapper_tsb_phys_patch_end;
2109	unsigned long ktsb_pa;
2110
2111	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2112	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
2113			    &__swapper_tsb_phys_patch_end, ktsb_pa);
2114#ifndef CONFIG_DEBUG_PAGEALLOC
2115	{
2116	extern unsigned int __swapper_4m_tsb_phys_patch;
2117	extern unsigned int __swapper_4m_tsb_phys_patch_end;
2118	ktsb_pa = (kern_base +
2119		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2120	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
2121			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
2122	}
2123#endif
2124}
2125
2126static void __init sun4v_ktsb_init(void)
2127{
2128	unsigned long ktsb_pa;
2129
2130	/* First KTSB for PAGE_SIZE mappings.  */
2131	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
2132
2133	switch (PAGE_SIZE) {
2134	case 8 * 1024:
2135	default:
2136		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
2137		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
2138		break;
2139
2140	case 64 * 1024:
2141		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
2142		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
2143		break;
2144
2145	case 512 * 1024:
2146		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
2147		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
2148		break;
2149
2150	case 4 * 1024 * 1024:
2151		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
2152		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
2153		break;
2154	}
2155
2156	ktsb_descr[0].assoc = 1;
2157	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
2158	ktsb_descr[0].ctx_idx = 0;
2159	ktsb_descr[0].tsb_base = ktsb_pa;
2160	ktsb_descr[0].resv = 0;
2161
2162#ifndef CONFIG_DEBUG_PAGEALLOC
2163	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
2164	ktsb_pa = (kern_base +
2165		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
2166
2167	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
2168	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
2169				    HV_PGSZ_MASK_256MB |
2170				    HV_PGSZ_MASK_2GB |
2171				    HV_PGSZ_MASK_16GB) &
2172				   cpu_pgsz_mask);
2173	ktsb_descr[1].assoc = 1;
2174	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2175	ktsb_descr[1].ctx_idx = 0;
2176	ktsb_descr[1].tsb_base = ktsb_pa;
2177	ktsb_descr[1].resv = 0;
2178#endif
2179}
2180
2181void sun4v_ktsb_register(void)
2182{
2183	unsigned long pa, ret;
2184
2185	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2186
2187	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2188	if (ret != 0) {
2189		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2190			    "errors with %lx\n", pa, ret);
2191		prom_halt();
2192	}
2193}
2194
2195static void __init sun4u_linear_pte_xor_finalize(void)
2196{
2197#ifndef CONFIG_DEBUG_PAGEALLOC
2198	/* This is where we would add Panther support for
2199	 * 32MB and 256MB pages.
2200	 */
2201#endif
2202}
2203
2204static void __init sun4v_linear_pte_xor_finalize(void)
2205{
2206	unsigned long pagecv_flag;
2207
2208	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2209	 * enables MCD error. Do not set bit 9 on M7 processor.
2210	 */
2211	switch (sun4v_chip_type) {
2212	case SUN4V_CHIP_SPARC_M7:
2213	case SUN4V_CHIP_SPARC_M8:
2214	case SUN4V_CHIP_SPARC_SN:
2215		pagecv_flag = 0x00;
2216		break;
2217	default:
2218		pagecv_flag = _PAGE_CV_4V;
2219		break;
2220	}
2221#ifndef CONFIG_DEBUG_PAGEALLOC
2222	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2223		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2224			PAGE_OFFSET;
2225		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2226					   _PAGE_P_4V | _PAGE_W_4V);
2227	} else {
2228		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2229	}
2230
2231	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2232		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2233			PAGE_OFFSET;
2234		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2235					   _PAGE_P_4V | _PAGE_W_4V);
2236	} else {
2237		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2238	}
2239
2240	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2241		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2242			PAGE_OFFSET;
2243		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2244					   _PAGE_P_4V | _PAGE_W_4V);
2245	} else {
2246		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2247	}
2248#endif
2249}
2250
2251/* paging_init() sets up the page tables */
2252
2253static unsigned long last_valid_pfn;
2254
2255static void sun4u_pgprot_init(void);
2256static void sun4v_pgprot_init(void);
2257
 
 
 
 
 
 
 
 
 
 
 
 
 
2258#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2259#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2260#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2261#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2262#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2263#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2264
2265/* We need to exclude reserved regions. This exclusion will include
2266 * vmlinux and initrd. To be more precise the initrd size could be used to
2267 * compute a new lower limit because it is freed later during initialization.
2268 */
2269static void __init reduce_memory(phys_addr_t limit_ram)
2270{
2271	limit_ram += memblock_reserved_size();
2272	memblock_enforce_memory_limit(limit_ram);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2273}
2274
2275void __init paging_init(void)
2276{
2277	unsigned long end_pfn, shift, phys_base;
2278	unsigned long real_end, i;
2279
2280	setup_page_offset();
2281
2282	/* These build time checkes make sure that the dcache_dirty_cpu()
2283	 * page->flags usage will work.
2284	 *
2285	 * When a page gets marked as dcache-dirty, we store the
2286	 * cpu number starting at bit 32 in the page->flags.  Also,
2287	 * functions like clear_dcache_dirty_cpu use the cpu mask
2288	 * in 13-bit signed-immediate instruction fields.
2289	 */
2290
2291	/*
2292	 * Page flags must not reach into upper 32 bits that are used
2293	 * for the cpu number
2294	 */
2295	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2296
2297	/*
2298	 * The bit fields placed in the high range must not reach below
2299	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2300	 * at the 32 bit boundary.
2301	 */
2302	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2303		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2304
2305	BUILD_BUG_ON(NR_CPUS > 4096);
2306
2307	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2308	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2309
2310	/* Invalidate both kernel TSBs.  */
2311	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2312#ifndef CONFIG_DEBUG_PAGEALLOC
2313	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2314#endif
2315
2316	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2317	 * bit on M7 processor. This is a conflicting usage of the same
2318	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2319	 * Detection error on all pages and this will lead to problems
2320	 * later. Kernel does not run with MCD enabled and hence rest
2321	 * of the required steps to fully configure memory corruption
2322	 * detection are not taken. We need to ensure TTE.mcde is not
2323	 * set on M7 processor. Compute the value of cacheability
2324	 * flag for use later taking this into consideration.
2325	 */
2326	switch (sun4v_chip_type) {
2327	case SUN4V_CHIP_SPARC_M7:
2328	case SUN4V_CHIP_SPARC_M8:
2329	case SUN4V_CHIP_SPARC_SN:
2330		page_cache4v_flag = _PAGE_CP_4V;
2331		break;
2332	default:
2333		page_cache4v_flag = _PAGE_CACHE_4V;
2334		break;
2335	}
2336
2337	if (tlb_type == hypervisor)
2338		sun4v_pgprot_init();
2339	else
2340		sun4u_pgprot_init();
2341
2342	if (tlb_type == cheetah_plus ||
2343	    tlb_type == hypervisor) {
2344		tsb_phys_patch();
2345		ktsb_phys_patch();
2346	}
2347
2348	if (tlb_type == hypervisor)
2349		sun4v_patch_tlb_handlers();
2350
2351	/* Find available physical memory...
2352	 *
2353	 * Read it twice in order to work around a bug in openfirmware.
2354	 * The call to grab this table itself can cause openfirmware to
2355	 * allocate memory, which in turn can take away some space from
2356	 * the list of available memory.  Reading it twice makes sure
2357	 * we really do get the final value.
2358	 */
2359	read_obp_translations();
2360	read_obp_memory("reg", &pall[0], &pall_ents);
2361	read_obp_memory("available", &pavail[0], &pavail_ents);
2362	read_obp_memory("available", &pavail[0], &pavail_ents);
2363
2364	phys_base = 0xffffffffffffffffUL;
2365	for (i = 0; i < pavail_ents; i++) {
2366		phys_base = min(phys_base, pavail[i].phys_addr);
2367		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2368	}
2369
2370	memblock_reserve(kern_base, kern_size);
2371
2372	find_ramdisk(phys_base);
2373
2374	if (cmdline_memory_size)
2375		reduce_memory(cmdline_memory_size);
2376
2377	memblock_allow_resize();
2378	memblock_dump_all();
2379
2380	set_bit(0, mmu_context_bmap);
2381
2382	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2383
2384	real_end = (unsigned long)_end;
2385	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2386	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2387	       num_kernel_image_mappings);
2388
2389	/* Set kernel pgd to upper alias so physical page computations
2390	 * work.
2391	 */
2392	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2393	
2394	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2395
2396	inherit_prom_mappings();
2397	
2398	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2399	setup_tba();
2400
2401	__flush_tlb_all();
2402
2403	prom_build_devicetree();
2404	of_populate_present_mask();
2405#ifndef CONFIG_SMP
2406	of_fill_in_cpu_data();
2407#endif
2408
2409	if (tlb_type == hypervisor) {
2410		sun4v_mdesc_init();
2411		mdesc_populate_present_mask(cpu_all_mask);
2412#ifndef CONFIG_SMP
2413		mdesc_fill_in_cpu_data(cpu_all_mask);
2414#endif
2415		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2416
2417		sun4v_linear_pte_xor_finalize();
2418
2419		sun4v_ktsb_init();
2420		sun4v_ktsb_register();
2421	} else {
2422		unsigned long impl, ver;
2423
2424		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2425				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2426
2427		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2428		impl = ((ver >> 32) & 0xffff);
2429		if (impl == PANTHER_IMPL)
2430			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2431					  HV_PGSZ_MASK_256MB);
2432
2433		sun4u_linear_pte_xor_finalize();
2434	}
2435
2436	/* Flush the TLBs and the 4M TSB so that the updated linear
2437	 * pte XOR settings are realized for all mappings.
2438	 */
2439	__flush_tlb_all();
2440#ifndef CONFIG_DEBUG_PAGEALLOC
2441	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2442#endif
2443	__flush_tlb_all();
2444
2445	/* Setup bootmem... */
2446	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2447
2448	kernel_physical_mapping_init();
2449
2450	{
2451		unsigned long max_zone_pfns[MAX_NR_ZONES];
2452
2453		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2454
2455		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2456
2457		free_area_init(max_zone_pfns);
2458	}
2459
2460	printk("Booting Linux...\n");
2461}
2462
2463int page_in_phys_avail(unsigned long paddr)
2464{
2465	int i;
2466
2467	paddr &= PAGE_MASK;
2468
2469	for (i = 0; i < pavail_ents; i++) {
2470		unsigned long start, end;
2471
2472		start = pavail[i].phys_addr;
2473		end = start + pavail[i].reg_size;
2474
2475		if (paddr >= start && paddr < end)
2476			return 1;
2477	}
2478	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2479		return 1;
2480#ifdef CONFIG_BLK_DEV_INITRD
2481	if (paddr >= __pa(initrd_start) &&
2482	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2483		return 1;
2484#endif
2485
2486	return 0;
2487}
2488
2489static void __init register_page_bootmem_info(void)
2490{
2491#ifdef CONFIG_NUMA
2492	int i;
2493
2494	for_each_online_node(i)
2495		if (NODE_DATA(i)->node_spanned_pages)
2496			register_page_bootmem_info_node(NODE_DATA(i));
2497#endif
2498}
2499void __init mem_init(void)
2500{
2501	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2502
2503	memblock_free_all();
2504
2505	/*
2506	 * Must be done after boot memory is put on freelist, because here we
2507	 * might set fields in deferred struct pages that have not yet been
2508	 * initialized, and memblock_free_all() initializes all the reserved
2509	 * deferred pages for us.
2510	 */
2511	register_page_bootmem_info();
 
2512
2513	/*
2514	 * Set up the zero page, mark it reserved, so that page count
2515	 * is not manipulated when freeing the page from user ptes.
2516	 */
2517	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2518	if (mem_map_zero == NULL) {
2519		prom_printf("paging_init: Cannot alloc zero page.\n");
2520		prom_halt();
2521	}
2522	mark_page_reserved(mem_map_zero);
2523
 
2524
2525	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2526		cheetah_ecache_flush_init();
2527}
2528
2529void free_initmem(void)
2530{
2531	unsigned long addr, initend;
2532	int do_free = 1;
2533
2534	/* If the physical memory maps were trimmed by kernel command
2535	 * line options, don't even try freeing this initmem stuff up.
2536	 * The kernel image could have been in the trimmed out region
2537	 * and if so the freeing below will free invalid page structs.
2538	 */
2539	if (cmdline_memory_size)
2540		do_free = 0;
2541
2542	/*
2543	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2544	 */
2545	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2546	initend = (unsigned long)(__init_end) & PAGE_MASK;
2547	for (; addr < initend; addr += PAGE_SIZE) {
2548		unsigned long page;
2549
2550		page = (addr +
2551			((unsigned long) __va(kern_base)) -
2552			((unsigned long) KERNBASE));
2553		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2554
2555		if (do_free)
2556			free_reserved_page(virt_to_page(page));
2557	}
2558}
2559
 
 
 
 
 
 
 
 
2560pgprot_t PAGE_KERNEL __read_mostly;
2561EXPORT_SYMBOL(PAGE_KERNEL);
2562
2563pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2564pgprot_t PAGE_COPY __read_mostly;
2565
2566pgprot_t PAGE_SHARED __read_mostly;
2567EXPORT_SYMBOL(PAGE_SHARED);
2568
2569unsigned long pg_iobits __read_mostly;
2570
2571unsigned long _PAGE_IE __read_mostly;
2572EXPORT_SYMBOL(_PAGE_IE);
2573
2574unsigned long _PAGE_E __read_mostly;
2575EXPORT_SYMBOL(_PAGE_E);
2576
2577unsigned long _PAGE_CACHE __read_mostly;
2578EXPORT_SYMBOL(_PAGE_CACHE);
2579
2580#ifdef CONFIG_SPARSEMEM_VMEMMAP
2581int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2582			       int node, struct vmem_altmap *altmap)
2583{
2584	unsigned long pte_base;
2585
2586	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2587		    _PAGE_CP_4U | _PAGE_CV_4U |
2588		    _PAGE_P_4U | _PAGE_W_4U);
2589	if (tlb_type == hypervisor)
2590		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2591			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2592
2593	pte_base |= _PAGE_PMD_HUGE;
2594
2595	vstart = vstart & PMD_MASK;
2596	vend = ALIGN(vend, PMD_SIZE);
2597	for (; vstart < vend; vstart += PMD_SIZE) {
2598		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
2599		unsigned long pte;
2600		p4d_t *p4d;
2601		pud_t *pud;
2602		pmd_t *pmd;
2603
2604		if (!pgd)
2605			return -ENOMEM;
 
 
 
 
 
 
 
 
 
2606
2607		p4d = vmemmap_p4d_populate(pgd, vstart, node);
2608		if (!p4d)
2609			return -ENOMEM;
2610
2611		pud = vmemmap_pud_populate(p4d, vstart, node);
2612		if (!pud)
2613			return -ENOMEM;
2614
2615		pmd = pmd_offset(pud, vstart);
 
2616		pte = pmd_val(*pmd);
2617		if (!(pte & _PAGE_VALID)) {
2618			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2619
2620			if (!block)
2621				return -ENOMEM;
2622
2623			pmd_val(*pmd) = pte_base | __pa(block);
2624		}
2625	}
2626
2627	return 0;
2628}
2629
2630void vmemmap_free(unsigned long start, unsigned long end,
2631		struct vmem_altmap *altmap)
2632{
2633}
2634#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2635
2636/* These are actually filled in at boot time by sun4{u,v}_pgprot_init() */
2637static pgprot_t protection_map[16] __ro_after_init;
2638
2639static void prot_init_common(unsigned long page_none,
2640			     unsigned long page_shared,
2641			     unsigned long page_copy,
2642			     unsigned long page_readonly,
2643			     unsigned long page_exec_bit)
2644{
2645	PAGE_COPY = __pgprot(page_copy);
2646	PAGE_SHARED = __pgprot(page_shared);
2647
2648	protection_map[0x0] = __pgprot(page_none);
2649	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2650	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2651	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2652	protection_map[0x4] = __pgprot(page_readonly);
2653	protection_map[0x5] = __pgprot(page_readonly);
2654	protection_map[0x6] = __pgprot(page_copy);
2655	protection_map[0x7] = __pgprot(page_copy);
2656	protection_map[0x8] = __pgprot(page_none);
2657	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2658	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2659	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2660	protection_map[0xc] = __pgprot(page_readonly);
2661	protection_map[0xd] = __pgprot(page_readonly);
2662	protection_map[0xe] = __pgprot(page_shared);
2663	protection_map[0xf] = __pgprot(page_shared);
2664}
2665
2666static void __init sun4u_pgprot_init(void)
2667{
2668	unsigned long page_none, page_shared, page_copy, page_readonly;
2669	unsigned long page_exec_bit;
2670	int i;
2671
2672	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2673				_PAGE_CACHE_4U | _PAGE_P_4U |
2674				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2675				_PAGE_EXEC_4U);
2676	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2677				       _PAGE_CACHE_4U | _PAGE_P_4U |
2678				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2679				       _PAGE_EXEC_4U | _PAGE_L_4U);
2680
2681	_PAGE_IE = _PAGE_IE_4U;
2682	_PAGE_E = _PAGE_E_4U;
2683	_PAGE_CACHE = _PAGE_CACHE_4U;
2684
2685	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2686		     __ACCESS_BITS_4U | _PAGE_E_4U);
2687
2688#ifdef CONFIG_DEBUG_PAGEALLOC
2689	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2690#else
2691	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2692		PAGE_OFFSET;
2693#endif
2694	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2695				   _PAGE_P_4U | _PAGE_W_4U);
2696
2697	for (i = 1; i < 4; i++)
2698		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2699
2700	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2701			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2702			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2703
2704
2705	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2706	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2707		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2708	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2709		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2710	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2711			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2712
2713	page_exec_bit = _PAGE_EXEC_4U;
2714
2715	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2716			 page_exec_bit);
2717}
2718
2719static void __init sun4v_pgprot_init(void)
2720{
2721	unsigned long page_none, page_shared, page_copy, page_readonly;
2722	unsigned long page_exec_bit;
2723	int i;
2724
2725	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2726				page_cache4v_flag | _PAGE_P_4V |
2727				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2728				_PAGE_EXEC_4V);
2729	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2730
2731	_PAGE_IE = _PAGE_IE_4V;
2732	_PAGE_E = _PAGE_E_4V;
2733	_PAGE_CACHE = page_cache4v_flag;
2734
2735#ifdef CONFIG_DEBUG_PAGEALLOC
2736	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2737#else
2738	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2739		PAGE_OFFSET;
2740#endif
2741	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2742				   _PAGE_W_4V);
2743
2744	for (i = 1; i < 4; i++)
2745		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2746
2747	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2748		     __ACCESS_BITS_4V | _PAGE_E_4V);
2749
2750	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2751			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2752			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2753			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2754
2755	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2756	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2757		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2758	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2759		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2760	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2761			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2762
2763	page_exec_bit = _PAGE_EXEC_4V;
2764
2765	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2766			 page_exec_bit);
2767}
2768
2769unsigned long pte_sz_bits(unsigned long sz)
2770{
2771	if (tlb_type == hypervisor) {
2772		switch (sz) {
2773		case 8 * 1024:
2774		default:
2775			return _PAGE_SZ8K_4V;
2776		case 64 * 1024:
2777			return _PAGE_SZ64K_4V;
2778		case 512 * 1024:
2779			return _PAGE_SZ512K_4V;
2780		case 4 * 1024 * 1024:
2781			return _PAGE_SZ4MB_4V;
2782		}
2783	} else {
2784		switch (sz) {
2785		case 8 * 1024:
2786		default:
2787			return _PAGE_SZ8K_4U;
2788		case 64 * 1024:
2789			return _PAGE_SZ64K_4U;
2790		case 512 * 1024:
2791			return _PAGE_SZ512K_4U;
2792		case 4 * 1024 * 1024:
2793			return _PAGE_SZ4MB_4U;
2794		}
2795	}
2796}
2797
2798pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2799{
2800	pte_t pte;
2801
2802	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2803	pte_val(pte) |= (((unsigned long)space) << 32);
2804	pte_val(pte) |= pte_sz_bits(page_size);
2805
2806	return pte;
2807}
2808
2809static unsigned long kern_large_tte(unsigned long paddr)
2810{
2811	unsigned long val;
2812
2813	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2814	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2815	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2816	if (tlb_type == hypervisor)
2817		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2818		       page_cache4v_flag | _PAGE_P_4V |
2819		       _PAGE_EXEC_4V | _PAGE_W_4V);
2820
2821	return val | paddr;
2822}
2823
2824/* If not locked, zap it. */
2825void __flush_tlb_all(void)
2826{
2827	unsigned long pstate;
2828	int i;
2829
2830	__asm__ __volatile__("flushw\n\t"
2831			     "rdpr	%%pstate, %0\n\t"
2832			     "wrpr	%0, %1, %%pstate"
2833			     : "=r" (pstate)
2834			     : "i" (PSTATE_IE));
2835	if (tlb_type == hypervisor) {
2836		sun4v_mmu_demap_all();
2837	} else if (tlb_type == spitfire) {
2838		for (i = 0; i < 64; i++) {
2839			/* Spitfire Errata #32 workaround */
2840			/* NOTE: Always runs on spitfire, so no
2841			 *       cheetah+ page size encodings.
2842			 */
2843			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2844					     "flush	%%g6"
2845					     : /* No outputs */
2846					     : "r" (0),
2847					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2848
2849			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2850				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2851						     "membar #Sync"
2852						     : /* no outputs */
2853						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2854				spitfire_put_dtlb_data(i, 0x0UL);
2855			}
2856
2857			/* Spitfire Errata #32 workaround */
2858			/* NOTE: Always runs on spitfire, so no
2859			 *       cheetah+ page size encodings.
2860			 */
2861			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2862					     "flush	%%g6"
2863					     : /* No outputs */
2864					     : "r" (0),
2865					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2866
2867			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2868				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2869						     "membar #Sync"
2870						     : /* no outputs */
2871						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2872				spitfire_put_itlb_data(i, 0x0UL);
2873			}
2874		}
2875	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2876		cheetah_flush_dtlb_all();
2877		cheetah_flush_itlb_all();
2878	}
2879	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2880			     : : "r" (pstate));
2881}
2882
2883pte_t *pte_alloc_one_kernel(struct mm_struct *mm)
 
2884{
2885	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2886	pte_t *pte = NULL;
2887
2888	if (page)
2889		pte = (pte_t *) page_address(page);
2890
2891	return pte;
2892}
2893
2894pgtable_t pte_alloc_one(struct mm_struct *mm)
 
2895{
2896	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
2897	if (!page)
2898		return NULL;
2899	if (!pgtable_pte_page_ctor(page)) {
2900		__free_page(page);
2901		return NULL;
2902	}
2903	return (pte_t *) page_address(page);
2904}
2905
2906void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2907{
2908	free_page((unsigned long)pte);
2909}
2910
2911static void __pte_free(pgtable_t pte)
2912{
2913	struct page *page = virt_to_page(pte);
2914
2915	pgtable_pte_page_dtor(page);
2916	__free_page(page);
2917}
2918
2919void pte_free(struct mm_struct *mm, pgtable_t pte)
2920{
2921	__pte_free(pte);
2922}
2923
2924void pgtable_free(void *table, bool is_page)
2925{
2926	if (is_page)
2927		__pte_free(table);
2928	else
2929		kmem_cache_free(pgtable_cache, table);
2930}
2931
2932#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2933void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2934			  pmd_t *pmd)
2935{
2936	unsigned long pte, flags;
2937	struct mm_struct *mm;
2938	pmd_t entry = *pmd;
2939
2940	if (!pmd_large(entry) || !pmd_young(entry))
2941		return;
2942
2943	pte = pmd_val(entry);
2944
2945	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2946	if (!(pte & _PAGE_VALID))
2947		return;
2948
2949	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2950	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2951
2952	mm = vma->vm_mm;
2953
2954	spin_lock_irqsave(&mm->context.lock, flags);
2955
2956	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2957		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2958					addr, pte);
2959
2960	spin_unlock_irqrestore(&mm->context.lock, flags);
2961}
2962#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2963
2964#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2965static void context_reload(void *__data)
2966{
2967	struct mm_struct *mm = __data;
2968
2969	if (mm == current->mm)
2970		load_secondary_context(mm);
2971}
2972
2973void hugetlb_setup(struct pt_regs *regs)
2974{
2975	struct mm_struct *mm = current->mm;
2976	struct tsb_config *tp;
2977
2978	if (faulthandler_disabled() || !mm) {
2979		const struct exception_table_entry *entry;
2980
2981		entry = search_exception_tables(regs->tpc);
2982		if (entry) {
2983			regs->tpc = entry->fixup;
2984			regs->tnpc = regs->tpc + 4;
2985			return;
2986		}
2987		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2988		die_if_kernel("HugeTSB in atomic", regs);
2989	}
2990
2991	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2992	if (likely(tp->tsb == NULL))
2993		tsb_grow(mm, MM_TSB_HUGE, 0);
2994
2995	tsb_context_switch(mm);
2996	smp_tsb_sync(mm);
2997
2998	/* On UltraSPARC-III+ and later, configure the second half of
2999	 * the Data-TLB for huge pages.
3000	 */
3001	if (tlb_type == cheetah_plus) {
3002		bool need_context_reload = false;
3003		unsigned long ctx;
3004
3005		spin_lock_irq(&ctx_alloc_lock);
3006		ctx = mm->context.sparc64_ctx_val;
3007		ctx &= ~CTX_PGSZ_MASK;
3008		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
3009		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
3010
3011		if (ctx != mm->context.sparc64_ctx_val) {
3012			/* When changing the page size fields, we
3013			 * must perform a context flush so that no
3014			 * stale entries match.  This flush must
3015			 * occur with the original context register
3016			 * settings.
3017			 */
3018			do_flush_tlb_mm(mm);
3019
3020			/* Reload the context register of all processors
3021			 * also executing in this address space.
3022			 */
3023			mm->context.sparc64_ctx_val = ctx;
3024			need_context_reload = true;
3025		}
3026		spin_unlock_irq(&ctx_alloc_lock);
3027
3028		if (need_context_reload)
3029			on_each_cpu(context_reload, mm, 0);
3030	}
3031}
3032#endif
3033
3034static struct resource code_resource = {
3035	.name	= "Kernel code",
3036	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3037};
3038
3039static struct resource data_resource = {
3040	.name	= "Kernel data",
3041	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3042};
3043
3044static struct resource bss_resource = {
3045	.name	= "Kernel bss",
3046	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
3047};
3048
3049static inline resource_size_t compute_kern_paddr(void *addr)
3050{
3051	return (resource_size_t) (addr - KERNBASE + kern_base);
3052}
3053
3054static void __init kernel_lds_init(void)
3055{
3056	code_resource.start = compute_kern_paddr(_text);
3057	code_resource.end   = compute_kern_paddr(_etext - 1);
3058	data_resource.start = compute_kern_paddr(_etext);
3059	data_resource.end   = compute_kern_paddr(_edata - 1);
3060	bss_resource.start  = compute_kern_paddr(__bss_start);
3061	bss_resource.end    = compute_kern_paddr(_end - 1);
3062}
3063
3064static int __init report_memory(void)
3065{
3066	int i;
3067	struct resource *res;
3068
3069	kernel_lds_init();
3070
3071	for (i = 0; i < pavail_ents; i++) {
3072		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
3073
3074		if (!res) {
3075			pr_warn("Failed to allocate source.\n");
3076			break;
3077		}
3078
3079		res->name = "System RAM";
3080		res->start = pavail[i].phys_addr;
3081		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
3082		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
3083
3084		if (insert_resource(&iomem_resource, res) < 0) {
3085			pr_warn("Resource insertion failed.\n");
3086			break;
3087		}
3088
3089		insert_resource(res, &code_resource);
3090		insert_resource(res, &data_resource);
3091		insert_resource(res, &bss_resource);
3092	}
3093
3094	return 0;
3095}
3096arch_initcall(report_memory);
3097
3098#ifdef CONFIG_SMP
3099#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
3100#else
3101#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
3102#endif
3103
3104void flush_tlb_kernel_range(unsigned long start, unsigned long end)
3105{
3106	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
3107		if (start < LOW_OBP_ADDRESS) {
3108			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
3109			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
3110		}
3111		if (end > HI_OBP_ADDRESS) {
3112			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
3113			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
3114		}
3115	} else {
3116		flush_tsb_kernel_range(start, end);
3117		do_flush_tlb_kernel_range(start, end);
3118	}
3119}
3120
3121void copy_user_highpage(struct page *to, struct page *from,
3122	unsigned long vaddr, struct vm_area_struct *vma)
3123{
3124	char *vfrom, *vto;
3125
3126	vfrom = kmap_atomic(from);
3127	vto = kmap_atomic(to);
3128	copy_user_page(vto, vfrom, vaddr, to);
3129	kunmap_atomic(vto);
3130	kunmap_atomic(vfrom);
3131
3132	/* If this page has ADI enabled, copy over any ADI tags
3133	 * as well
3134	 */
3135	if (vma->vm_flags & VM_SPARC_ADI) {
3136		unsigned long pfrom, pto, i, adi_tag;
3137
3138		pfrom = page_to_phys(from);
3139		pto = page_to_phys(to);
3140
3141		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3142			asm volatile("ldxa [%1] %2, %0\n\t"
3143					: "=r" (adi_tag)
3144					:  "r" (i), "i" (ASI_MCD_REAL));
3145			asm volatile("stxa %0, [%1] %2\n\t"
3146					:
3147					: "r" (adi_tag), "r" (pto),
3148					  "i" (ASI_MCD_REAL));
3149			pto += adi_blksize();
3150		}
3151		asm volatile("membar #Sync\n\t");
3152	}
3153}
3154EXPORT_SYMBOL(copy_user_highpage);
3155
3156void copy_highpage(struct page *to, struct page *from)
3157{
3158	char *vfrom, *vto;
3159
3160	vfrom = kmap_atomic(from);
3161	vto = kmap_atomic(to);
3162	copy_page(vto, vfrom);
3163	kunmap_atomic(vto);
3164	kunmap_atomic(vfrom);
3165
3166	/* If this platform is ADI enabled, copy any ADI tags
3167	 * as well
3168	 */
3169	if (adi_capable()) {
3170		unsigned long pfrom, pto, i, adi_tag;
3171
3172		pfrom = page_to_phys(from);
3173		pto = page_to_phys(to);
3174
3175		for (i = pfrom; i < (pfrom + PAGE_SIZE); i += adi_blksize()) {
3176			asm volatile("ldxa [%1] %2, %0\n\t"
3177					: "=r" (adi_tag)
3178					:  "r" (i), "i" (ASI_MCD_REAL));
3179			asm volatile("stxa %0, [%1] %2\n\t"
3180					:
3181					: "r" (adi_tag), "r" (pto),
3182					  "i" (ASI_MCD_REAL));
3183			pto += adi_blksize();
3184		}
3185		asm volatile("membar #Sync\n\t");
3186	}
3187}
3188EXPORT_SYMBOL(copy_highpage);
3189
3190pgprot_t vm_get_page_prot(unsigned long vm_flags)
3191{
3192	unsigned long prot = pgprot_val(protection_map[vm_flags &
3193					(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]);
3194
3195	if (vm_flags & VM_SPARC_ADI)
3196		prot |= _PAGE_MCD_4V;
3197
3198	return __pgprot(prot);
3199}
3200EXPORT_SYMBOL(vm_get_page_prot);
v4.10.11
 
   1/*
   2 *  arch/sparc64/mm/init.c
   3 *
   4 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
   5 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
   6 */
   7 
   8#include <linux/extable.h>
   9#include <linux/kernel.h>
  10#include <linux/sched.h>
  11#include <linux/string.h>
  12#include <linux/init.h>
  13#include <linux/bootmem.h>
  14#include <linux/mm.h>
  15#include <linux/hugetlb.h>
  16#include <linux/initrd.h>
  17#include <linux/swap.h>
  18#include <linux/pagemap.h>
  19#include <linux/poison.h>
  20#include <linux/fs.h>
  21#include <linux/seq_file.h>
  22#include <linux/kprobes.h>
  23#include <linux/cache.h>
  24#include <linux/sort.h>
  25#include <linux/ioport.h>
  26#include <linux/percpu.h>
  27#include <linux/memblock.h>
  28#include <linux/mmzone.h>
  29#include <linux/gfp.h>
 
  30
  31#include <asm/head.h>
  32#include <asm/page.h>
  33#include <asm/pgalloc.h>
  34#include <asm/pgtable.h>
  35#include <asm/oplib.h>
  36#include <asm/iommu.h>
  37#include <asm/io.h>
  38#include <linux/uaccess.h>
  39#include <asm/mmu_context.h>
  40#include <asm/tlbflush.h>
  41#include <asm/dma.h>
  42#include <asm/starfire.h>
  43#include <asm/tlb.h>
  44#include <asm/spitfire.h>
  45#include <asm/sections.h>
  46#include <asm/tsb.h>
  47#include <asm/hypervisor.h>
  48#include <asm/prom.h>
  49#include <asm/mdesc.h>
  50#include <asm/cpudata.h>
  51#include <asm/setup.h>
  52#include <asm/irq.h>
  53
  54#include "init_64.h"
  55
  56unsigned long kern_linear_pte_xor[4] __read_mostly;
  57static unsigned long page_cache4v_flag;
  58
  59/* A bitmap, two bits for every 256MB of physical memory.  These two
  60 * bits determine what page size we use for kernel linear
  61 * translations.  They form an index into kern_linear_pte_xor[].  The
  62 * value in the indexed slot is XOR'd with the TLB miss virtual
  63 * address to form the resulting TTE.  The mapping is:
  64 *
  65 *	0	==>	4MB
  66 *	1	==>	256MB
  67 *	2	==>	2GB
  68 *	3	==>	16GB
  69 *
  70 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
  71 * support 2GB pages, and hopefully future cpus will support the 16GB
  72 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
  73 * if these larger page sizes are not supported by the cpu.
  74 *
  75 * It would be nice to determine this from the machine description
  76 * 'cpu' properties, but we need to have this table setup before the
  77 * MDESC is initialized.
  78 */
  79
  80#ifndef CONFIG_DEBUG_PAGEALLOC
  81/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
  82 * Space is allocated for this right after the trap table in
  83 * arch/sparc64/kernel/head.S
  84 */
  85extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
  86#endif
  87extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];
  88
  89static unsigned long cpu_pgsz_mask;
  90
  91#define MAX_BANKS	1024
  92
  93static struct linux_prom64_registers pavail[MAX_BANKS];
  94static int pavail_ents;
  95
  96u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];
  97
  98static int cmp_p64(const void *a, const void *b)
  99{
 100	const struct linux_prom64_registers *x = a, *y = b;
 101
 102	if (x->phys_addr > y->phys_addr)
 103		return 1;
 104	if (x->phys_addr < y->phys_addr)
 105		return -1;
 106	return 0;
 107}
 108
 109static void __init read_obp_memory(const char *property,
 110				   struct linux_prom64_registers *regs,
 111				   int *num_ents)
 112{
 113	phandle node = prom_finddevice("/memory");
 114	int prop_size = prom_getproplen(node, property);
 115	int ents, ret, i;
 116
 117	ents = prop_size / sizeof(struct linux_prom64_registers);
 118	if (ents > MAX_BANKS) {
 119		prom_printf("The machine has more %s property entries than "
 120			    "this kernel can support (%d).\n",
 121			    property, MAX_BANKS);
 122		prom_halt();
 123	}
 124
 125	ret = prom_getproperty(node, property, (char *) regs, prop_size);
 126	if (ret == -1) {
 127		prom_printf("Couldn't get %s property from /memory.\n",
 128				property);
 129		prom_halt();
 130	}
 131
 132	/* Sanitize what we got from the firmware, by page aligning
 133	 * everything.
 134	 */
 135	for (i = 0; i < ents; i++) {
 136		unsigned long base, size;
 137
 138		base = regs[i].phys_addr;
 139		size = regs[i].reg_size;
 140
 141		size &= PAGE_MASK;
 142		if (base & ~PAGE_MASK) {
 143			unsigned long new_base = PAGE_ALIGN(base);
 144
 145			size -= new_base - base;
 146			if ((long) size < 0L)
 147				size = 0UL;
 148			base = new_base;
 149		}
 150		if (size == 0UL) {
 151			/* If it is empty, simply get rid of it.
 152			 * This simplifies the logic of the other
 153			 * functions that process these arrays.
 154			 */
 155			memmove(&regs[i], &regs[i + 1],
 156				(ents - i - 1) * sizeof(regs[0]));
 157			i--;
 158			ents--;
 159			continue;
 160		}
 161		regs[i].phys_addr = base;
 162		regs[i].reg_size = size;
 163	}
 164
 165	*num_ents = ents;
 166
 167	sort(regs, ents, sizeof(struct linux_prom64_registers),
 168	     cmp_p64, NULL);
 169}
 170
 171/* Kernel physical address base and size in bytes.  */
 172unsigned long kern_base __read_mostly;
 173unsigned long kern_size __read_mostly;
 174
 175/* Initial ramdisk setup */
 176extern unsigned long sparc_ramdisk_image64;
 177extern unsigned int sparc_ramdisk_image;
 178extern unsigned int sparc_ramdisk_size;
 179
 180struct page *mem_map_zero __read_mostly;
 181EXPORT_SYMBOL(mem_map_zero);
 182
 183unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;
 184
 185unsigned long sparc64_kern_pri_context __read_mostly;
 186unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
 187unsigned long sparc64_kern_sec_context __read_mostly;
 188
 189int num_kernel_image_mappings;
 190
 191#ifdef CONFIG_DEBUG_DCFLUSH
 192atomic_t dcpage_flushes = ATOMIC_INIT(0);
 193#ifdef CONFIG_SMP
 194atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
 195#endif
 196#endif
 197
 198inline void flush_dcache_page_impl(struct page *page)
 199{
 200	BUG_ON(tlb_type == hypervisor);
 201#ifdef CONFIG_DEBUG_DCFLUSH
 202	atomic_inc(&dcpage_flushes);
 203#endif
 204
 205#ifdef DCACHE_ALIASING_POSSIBLE
 206	__flush_dcache_page(page_address(page),
 207			    ((tlb_type == spitfire) &&
 208			     page_mapping(page) != NULL));
 209#else
 210	if (page_mapping(page) != NULL &&
 211	    tlb_type == spitfire)
 212		__flush_icache_page(__pa(page_address(page)));
 213#endif
 214}
 215
 216#define PG_dcache_dirty		PG_arch_1
 217#define PG_dcache_cpu_shift	32UL
 218#define PG_dcache_cpu_mask	\
 219	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)
 220
 221#define dcache_dirty_cpu(page) \
 222	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)
 223
 224static inline void set_dcache_dirty(struct page *page, int this_cpu)
 225{
 226	unsigned long mask = this_cpu;
 227	unsigned long non_cpu_bits;
 228
 229	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
 230	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);
 231
 232	__asm__ __volatile__("1:\n\t"
 233			     "ldx	[%2], %%g7\n\t"
 234			     "and	%%g7, %1, %%g1\n\t"
 235			     "or	%%g1, %0, %%g1\n\t"
 236			     "casx	[%2], %%g7, %%g1\n\t"
 237			     "cmp	%%g7, %%g1\n\t"
 238			     "bne,pn	%%xcc, 1b\n\t"
 239			     " nop"
 240			     : /* no outputs */
 241			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
 242			     : "g1", "g7");
 243}
 244
 245static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
 246{
 247	unsigned long mask = (1UL << PG_dcache_dirty);
 248
 249	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
 250			     "1:\n\t"
 251			     "ldx	[%2], %%g7\n\t"
 252			     "srlx	%%g7, %4, %%g1\n\t"
 253			     "and	%%g1, %3, %%g1\n\t"
 254			     "cmp	%%g1, %0\n\t"
 255			     "bne,pn	%%icc, 2f\n\t"
 256			     " andn	%%g7, %1, %%g1\n\t"
 257			     "casx	[%2], %%g7, %%g1\n\t"
 258			     "cmp	%%g7, %%g1\n\t"
 259			     "bne,pn	%%xcc, 1b\n\t"
 260			     " nop\n"
 261			     "2:"
 262			     : /* no outputs */
 263			     : "r" (cpu), "r" (mask), "r" (&page->flags),
 264			       "i" (PG_dcache_cpu_mask),
 265			       "i" (PG_dcache_cpu_shift)
 266			     : "g1", "g7");
 267}
 268
 269static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
 270{
 271	unsigned long tsb_addr = (unsigned long) ent;
 272
 273	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
 274		tsb_addr = __pa(tsb_addr);
 275
 276	__tsb_insert(tsb_addr, tag, pte);
 277}
 278
 279unsigned long _PAGE_ALL_SZ_BITS __read_mostly;
 280
 281static void flush_dcache(unsigned long pfn)
 282{
 283	struct page *page;
 284
 285	page = pfn_to_page(pfn);
 286	if (page) {
 287		unsigned long pg_flags;
 288
 289		pg_flags = page->flags;
 290		if (pg_flags & (1UL << PG_dcache_dirty)) {
 291			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
 292				   PG_dcache_cpu_mask);
 293			int this_cpu = get_cpu();
 294
 295			/* This is just to optimize away some function calls
 296			 * in the SMP case.
 297			 */
 298			if (cpu == this_cpu)
 299				flush_dcache_page_impl(page);
 300			else
 301				smp_flush_dcache_page_impl(page, cpu);
 302
 303			clear_dcache_dirty_cpu(page, cpu);
 304
 305			put_cpu();
 306		}
 307	}
 308}
 309
 310/* mm->context.lock must be held */
 311static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
 312				    unsigned long tsb_hash_shift, unsigned long address,
 313				    unsigned long tte)
 314{
 315	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
 316	unsigned long tag;
 317
 318	if (unlikely(!tsb))
 319		return;
 320
 321	tsb += ((address >> tsb_hash_shift) &
 322		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
 323	tag = (address >> 22UL);
 324	tsb_insert(tsb, tag, tte);
 325}
 326
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 327void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
 328{
 329	struct mm_struct *mm;
 330	unsigned long flags;
 
 331	pte_t pte = *ptep;
 332
 333	if (tlb_type != hypervisor) {
 334		unsigned long pfn = pte_pfn(pte);
 335
 336		if (pfn_valid(pfn))
 337			flush_dcache(pfn);
 338	}
 339
 340	mm = vma->vm_mm;
 341
 342	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
 343	if (!pte_accessible(mm, pte))
 344		return;
 345
 346	spin_lock_irqsave(&mm->context.lock, flags);
 347
 
 348#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
 349	if ((mm->context.hugetlb_pte_count || mm->context.thp_pte_count) &&
 350	    is_hugetlb_pte(pte)) {
 351		/* We are fabricating 8MB pages using 4MB real hw pages.  */
 352		pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
 353		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
 354					address, pte_val(pte));
 355	} else
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 356#endif
 
 357		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
 358					address, pte_val(pte));
 359
 360	spin_unlock_irqrestore(&mm->context.lock, flags);
 361}
 362
 363void flush_dcache_page(struct page *page)
 364{
 365	struct address_space *mapping;
 366	int this_cpu;
 367
 368	if (tlb_type == hypervisor)
 369		return;
 370
 371	/* Do not bother with the expensive D-cache flush if it
 372	 * is merely the zero page.  The 'bigcore' testcase in GDB
 373	 * causes this case to run millions of times.
 374	 */
 375	if (page == ZERO_PAGE(0))
 376		return;
 377
 378	this_cpu = get_cpu();
 379
 380	mapping = page_mapping(page);
 381	if (mapping && !mapping_mapped(mapping)) {
 382		int dirty = test_bit(PG_dcache_dirty, &page->flags);
 383		if (dirty) {
 384			int dirty_cpu = dcache_dirty_cpu(page);
 385
 386			if (dirty_cpu == this_cpu)
 387				goto out;
 388			smp_flush_dcache_page_impl(page, dirty_cpu);
 389		}
 390		set_dcache_dirty(page, this_cpu);
 391	} else {
 392		/* We could delay the flush for the !page_mapping
 393		 * case too.  But that case is for exec env/arg
 394		 * pages and those are %99 certainly going to get
 395		 * faulted into the tlb (and thus flushed) anyways.
 396		 */
 397		flush_dcache_page_impl(page);
 398	}
 399
 400out:
 401	put_cpu();
 402}
 403EXPORT_SYMBOL(flush_dcache_page);
 404
 405void __kprobes flush_icache_range(unsigned long start, unsigned long end)
 406{
 407	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
 408	if (tlb_type == spitfire) {
 409		unsigned long kaddr;
 410
 411		/* This code only runs on Spitfire cpus so this is
 412		 * why we can assume _PAGE_PADDR_4U.
 413		 */
 414		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
 415			unsigned long paddr, mask = _PAGE_PADDR_4U;
 416
 417			if (kaddr >= PAGE_OFFSET)
 418				paddr = kaddr & mask;
 419			else {
 420				pgd_t *pgdp = pgd_offset_k(kaddr);
 421				pud_t *pudp = pud_offset(pgdp, kaddr);
 422				pmd_t *pmdp = pmd_offset(pudp, kaddr);
 423				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);
 424
 425				paddr = pte_val(*ptep) & mask;
 426			}
 427			__flush_icache_page(paddr);
 428		}
 429	}
 430}
 431EXPORT_SYMBOL(flush_icache_range);
 432
 433void mmu_info(struct seq_file *m)
 434{
 435	static const char *pgsz_strings[] = {
 436		"8K", "64K", "512K", "4MB", "32MB",
 437		"256MB", "2GB", "16GB",
 438	};
 439	int i, printed;
 440
 441	if (tlb_type == cheetah)
 442		seq_printf(m, "MMU Type\t: Cheetah\n");
 443	else if (tlb_type == cheetah_plus)
 444		seq_printf(m, "MMU Type\t: Cheetah+\n");
 445	else if (tlb_type == spitfire)
 446		seq_printf(m, "MMU Type\t: Spitfire\n");
 447	else if (tlb_type == hypervisor)
 448		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
 449	else
 450		seq_printf(m, "MMU Type\t: ???\n");
 451
 452	seq_printf(m, "MMU PGSZs\t: ");
 453	printed = 0;
 454	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
 455		if (cpu_pgsz_mask & (1UL << i)) {
 456			seq_printf(m, "%s%s",
 457				   printed ? "," : "", pgsz_strings[i]);
 458			printed++;
 459		}
 460	}
 461	seq_putc(m, '\n');
 462
 463#ifdef CONFIG_DEBUG_DCFLUSH
 464	seq_printf(m, "DCPageFlushes\t: %d\n",
 465		   atomic_read(&dcpage_flushes));
 466#ifdef CONFIG_SMP
 467	seq_printf(m, "DCPageFlushesXC\t: %d\n",
 468		   atomic_read(&dcpage_flushes_xcall));
 469#endif /* CONFIG_SMP */
 470#endif /* CONFIG_DEBUG_DCFLUSH */
 471}
 472
 473struct linux_prom_translation prom_trans[512] __read_mostly;
 474unsigned int prom_trans_ents __read_mostly;
 475
 476unsigned long kern_locked_tte_data;
 477
 478/* The obp translations are saved based on 8k pagesize, since obp can
 479 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 480 * HI_OBP_ADDRESS range are handled in ktlb.S.
 481 */
 482static inline int in_obp_range(unsigned long vaddr)
 483{
 484	return (vaddr >= LOW_OBP_ADDRESS &&
 485		vaddr < HI_OBP_ADDRESS);
 486}
 487
 488static int cmp_ptrans(const void *a, const void *b)
 489{
 490	const struct linux_prom_translation *x = a, *y = b;
 491
 492	if (x->virt > y->virt)
 493		return 1;
 494	if (x->virt < y->virt)
 495		return -1;
 496	return 0;
 497}
 498
 499/* Read OBP translations property into 'prom_trans[]'.  */
 500static void __init read_obp_translations(void)
 501{
 502	int n, node, ents, first, last, i;
 503
 504	node = prom_finddevice("/virtual-memory");
 505	n = prom_getproplen(node, "translations");
 506	if (unlikely(n == 0 || n == -1)) {
 507		prom_printf("prom_mappings: Couldn't get size.\n");
 508		prom_halt();
 509	}
 510	if (unlikely(n > sizeof(prom_trans))) {
 511		prom_printf("prom_mappings: Size %d is too big.\n", n);
 512		prom_halt();
 513	}
 514
 515	if ((n = prom_getproperty(node, "translations",
 516				  (char *)&prom_trans[0],
 517				  sizeof(prom_trans))) == -1) {
 518		prom_printf("prom_mappings: Couldn't get property.\n");
 519		prom_halt();
 520	}
 521
 522	n = n / sizeof(struct linux_prom_translation);
 523
 524	ents = n;
 525
 526	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
 527	     cmp_ptrans, NULL);
 528
 529	/* Now kick out all the non-OBP entries.  */
 530	for (i = 0; i < ents; i++) {
 531		if (in_obp_range(prom_trans[i].virt))
 532			break;
 533	}
 534	first = i;
 535	for (; i < ents; i++) {
 536		if (!in_obp_range(prom_trans[i].virt))
 537			break;
 538	}
 539	last = i;
 540
 541	for (i = 0; i < (last - first); i++) {
 542		struct linux_prom_translation *src = &prom_trans[i + first];
 543		struct linux_prom_translation *dest = &prom_trans[i];
 544
 545		*dest = *src;
 546	}
 547	for (; i < ents; i++) {
 548		struct linux_prom_translation *dest = &prom_trans[i];
 549		dest->virt = dest->size = dest->data = 0x0UL;
 550	}
 551
 552	prom_trans_ents = last - first;
 553
 554	if (tlb_type == spitfire) {
 555		/* Clear diag TTE bits. */
 556		for (i = 0; i < prom_trans_ents; i++)
 557			prom_trans[i].data &= ~0x0003fe0000000000UL;
 558	}
 559
 560	/* Force execute bit on.  */
 561	for (i = 0; i < prom_trans_ents; i++)
 562		prom_trans[i].data |= (tlb_type == hypervisor ?
 563				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
 564}
 565
 566static void __init hypervisor_tlb_lock(unsigned long vaddr,
 567				       unsigned long pte,
 568				       unsigned long mmu)
 569{
 570	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);
 571
 572	if (ret != 0) {
 573		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
 574			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
 575		prom_halt();
 576	}
 577}
 578
 579static unsigned long kern_large_tte(unsigned long paddr);
 580
 581static void __init remap_kernel(void)
 582{
 583	unsigned long phys_page, tte_vaddr, tte_data;
 584	int i, tlb_ent = sparc64_highest_locked_tlbent();
 585
 586	tte_vaddr = (unsigned long) KERNBASE;
 587	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
 588	tte_data = kern_large_tte(phys_page);
 589
 590	kern_locked_tte_data = tte_data;
 591
 592	/* Now lock us into the TLBs via Hypervisor or OBP. */
 593	if (tlb_type == hypervisor) {
 594		for (i = 0; i < num_kernel_image_mappings; i++) {
 595			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
 596			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
 597			tte_vaddr += 0x400000;
 598			tte_data += 0x400000;
 599		}
 600	} else {
 601		for (i = 0; i < num_kernel_image_mappings; i++) {
 602			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
 603			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
 604			tte_vaddr += 0x400000;
 605			tte_data += 0x400000;
 606		}
 607		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
 608	}
 609	if (tlb_type == cheetah_plus) {
 610		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
 611					    CTX_CHEETAH_PLUS_NUC);
 612		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
 613		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
 614	}
 615}
 616
 617
 618static void __init inherit_prom_mappings(void)
 619{
 620	/* Now fixup OBP's idea about where we really are mapped. */
 621	printk("Remapping the kernel... ");
 622	remap_kernel();
 623	printk("done.\n");
 624}
 625
 626void prom_world(int enter)
 627{
 628	if (!enter)
 629		set_fs(get_fs());
 630
 
 631	__asm__ __volatile__("flushw");
 632}
 633
 634void __flush_dcache_range(unsigned long start, unsigned long end)
 635{
 636	unsigned long va;
 637
 638	if (tlb_type == spitfire) {
 639		int n = 0;
 640
 641		for (va = start; va < end; va += 32) {
 642			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
 643			if (++n >= 512)
 644				break;
 645		}
 646	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
 647		start = __pa(start);
 648		end = __pa(end);
 649		for (va = start; va < end; va += 32)
 650			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
 651					     "membar #Sync"
 652					     : /* no outputs */
 653					     : "r" (va),
 654					       "i" (ASI_DCACHE_INVALIDATE));
 655	}
 656}
 657EXPORT_SYMBOL(__flush_dcache_range);
 658
 659/* get_new_mmu_context() uses "cache + 1".  */
 660DEFINE_SPINLOCK(ctx_alloc_lock);
 661unsigned long tlb_context_cache = CTX_FIRST_VERSION - 1;
 662#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
 663#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
 664DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 665
 666/* Caller does TLB context flushing on local CPU if necessary.
 667 * The caller also ensures that CTX_VALID(mm->context) is false.
 668 *
 669 * We must be careful about boundary cases so that we never
 670 * let the user have CTX 0 (nucleus) or we ever use a CTX
 671 * version of zero (and thus NO_CONTEXT would not be caught
 672 * by version mis-match tests in mmu_context.h).
 673 *
 674 * Always invoked with interrupts disabled.
 675 */
 676void get_new_mmu_context(struct mm_struct *mm)
 677{
 678	unsigned long ctx, new_ctx;
 679	unsigned long orig_pgsz_bits;
 680	int new_version;
 681
 682	spin_lock(&ctx_alloc_lock);
 
 
 
 
 683	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
 684	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
 685	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
 686	new_version = 0;
 687	if (new_ctx >= (1 << CTX_NR_BITS)) {
 688		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
 689		if (new_ctx >= ctx) {
 690			int i;
 691			new_ctx = (tlb_context_cache & CTX_VERSION_MASK) +
 692				CTX_FIRST_VERSION;
 693			if (new_ctx == 1)
 694				new_ctx = CTX_FIRST_VERSION;
 695
 696			/* Don't call memset, for 16 entries that's just
 697			 * plain silly...
 698			 */
 699			mmu_context_bmap[0] = 3;
 700			mmu_context_bmap[1] = 0;
 701			mmu_context_bmap[2] = 0;
 702			mmu_context_bmap[3] = 0;
 703			for (i = 4; i < CTX_BMAP_SLOTS; i += 4) {
 704				mmu_context_bmap[i + 0] = 0;
 705				mmu_context_bmap[i + 1] = 0;
 706				mmu_context_bmap[i + 2] = 0;
 707				mmu_context_bmap[i + 3] = 0;
 708			}
 709			new_version = 1;
 710			goto out;
 711		}
 712	}
 
 
 713	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
 714	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
 715out:
 716	tlb_context_cache = new_ctx;
 717	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
 
 718	spin_unlock(&ctx_alloc_lock);
 719
 720	if (unlikely(new_version))
 721		smp_new_mmu_context_version();
 722}
 723
 724static int numa_enabled = 1;
 725static int numa_debug;
 726
 727static int __init early_numa(char *p)
 728{
 729	if (!p)
 730		return 0;
 731
 732	if (strstr(p, "off"))
 733		numa_enabled = 0;
 734
 735	if (strstr(p, "debug"))
 736		numa_debug = 1;
 737
 738	return 0;
 739}
 740early_param("numa", early_numa);
 741
 742#define numadbg(f, a...) \
 743do {	if (numa_debug) \
 744		printk(KERN_INFO f, ## a); \
 745} while (0)
 746
 747static void __init find_ramdisk(unsigned long phys_base)
 748{
 749#ifdef CONFIG_BLK_DEV_INITRD
 750	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
 751		unsigned long ramdisk_image;
 752
 753		/* Older versions of the bootloader only supported a
 754		 * 32-bit physical address for the ramdisk image
 755		 * location, stored at sparc_ramdisk_image.  Newer
 756		 * SILO versions set sparc_ramdisk_image to zero and
 757		 * provide a full 64-bit physical address at
 758		 * sparc_ramdisk_image64.
 759		 */
 760		ramdisk_image = sparc_ramdisk_image;
 761		if (!ramdisk_image)
 762			ramdisk_image = sparc_ramdisk_image64;
 763
 764		/* Another bootloader quirk.  The bootloader normalizes
 765		 * the physical address to KERNBASE, so we have to
 766		 * factor that back out and add in the lowest valid
 767		 * physical page address to get the true physical address.
 768		 */
 769		ramdisk_image -= KERNBASE;
 770		ramdisk_image += phys_base;
 771
 772		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
 773			ramdisk_image, sparc_ramdisk_size);
 774
 775		initrd_start = ramdisk_image;
 776		initrd_end = ramdisk_image + sparc_ramdisk_size;
 777
 778		memblock_reserve(initrd_start, sparc_ramdisk_size);
 779
 780		initrd_start += PAGE_OFFSET;
 781		initrd_end += PAGE_OFFSET;
 782	}
 783#endif
 784}
 785
 786struct node_mem_mask {
 787	unsigned long mask;
 788	unsigned long val;
 789};
 790static struct node_mem_mask node_masks[MAX_NUMNODES];
 791static int num_node_masks;
 792
 793#ifdef CONFIG_NEED_MULTIPLE_NODES
 
 
 
 
 
 
 
 
 
 
 794
 795int numa_cpu_lookup_table[NR_CPUS];
 796cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];
 797
 798struct mdesc_mblock {
 799	u64	base;
 800	u64	size;
 801	u64	offset; /* RA-to-PA */
 802};
 803static struct mdesc_mblock *mblocks;
 804static int num_mblocks;
 805static int find_numa_node_for_addr(unsigned long pa,
 806				   struct node_mem_mask *pnode_mask);
 807
 808static unsigned long __init ra_to_pa(unsigned long addr)
 809{
 
 810	int i;
 811
 812	for (i = 0; i < num_mblocks; i++) {
 813		struct mdesc_mblock *m = &mblocks[i];
 814
 815		if (addr >= m->base &&
 816		    addr < (m->base + m->size)) {
 817			addr += m->offset;
 818			break;
 819		}
 820	}
 821	return addr;
 
 822}
 823
 824static int __init find_node(unsigned long addr)
 825{
 826	static bool search_mdesc = true;
 827	static struct node_mem_mask last_mem_mask = { ~0UL, ~0UL };
 828	static int last_index;
 829	int i;
 
 
 830
 831	addr = ra_to_pa(addr);
 832	for (i = 0; i < num_node_masks; i++) {
 833		struct node_mem_mask *p = &node_masks[i];
 
 
 
 834
 835		if ((addr & p->mask) == p->val)
 836			return i;
 837	}
 838	/* The following condition has been observed on LDOM guests because
 839	 * node_masks only contains the best latency mask and value.
 840	 * LDOM guest's mdesc can contain a single latency group to
 841	 * cover multiple address range. Print warning message only if the
 842	 * address cannot be found in node_masks nor mdesc.
 843	 */
 844	if ((search_mdesc) &&
 845	    ((addr & last_mem_mask.mask) != last_mem_mask.val)) {
 846		/* find the available node in the mdesc */
 847		last_index = find_numa_node_for_addr(addr, &last_mem_mask);
 848		numadbg("find_node: latency group for address 0x%lx is %d\n",
 849			addr, last_index);
 850		if ((last_index < 0) || (last_index >= num_node_masks)) {
 851			/* WARN_ONCE() and use default group 0 */
 852			WARN_ONCE(1, "find_node: A physical address doesn't match a NUMA node rule. Some physical memory will be owned by node 0.");
 853			search_mdesc = false;
 854			last_index = 0;
 855		}
 
 
 
 856	}
 
 857
 858	return last_index;
 859}
 860
 861static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
 862{
 863	*nid = find_node(start);
 864	start += PAGE_SIZE;
 865	while (start < end) {
 866		int n = find_node(start);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 867
 868		if (n != *nid)
 
 
 869			break;
 870		start += PAGE_SIZE;
 871	}
 872
 873	if (start > end)
 874		start = end;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875
 876	return start;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 877}
 878#endif
 879
 880/* This must be invoked after performing all of the necessary
 881 * memblock_set_node() calls for 'nid'.  We need to be able to get
 882 * correct data from get_pfn_range_for_nid().
 883 */
 884static void __init allocate_node_data(int nid)
 885{
 886	struct pglist_data *p;
 887	unsigned long start_pfn, end_pfn;
 888#ifdef CONFIG_NEED_MULTIPLE_NODES
 889	unsigned long paddr;
 890
 891	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
 892	if (!paddr) {
 
 893		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
 894		prom_halt();
 895	}
 896	NODE_DATA(nid) = __va(paddr);
 897	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));
 898
 899	NODE_DATA(nid)->node_id = nid;
 900#endif
 901
 902	p = NODE_DATA(nid);
 903
 904	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
 905	p->node_start_pfn = start_pfn;
 906	p->node_spanned_pages = end_pfn - start_pfn;
 907}
 908
 909static void init_node_masks_nonnuma(void)
 910{
 911#ifdef CONFIG_NEED_MULTIPLE_NODES
 912	int i;
 913#endif
 914
 915	numadbg("Initializing tables for non-numa.\n");
 916
 917	node_masks[0].mask = node_masks[0].val = 0;
 
 918	num_node_masks = 1;
 919
 920#ifdef CONFIG_NEED_MULTIPLE_NODES
 921	for (i = 0; i < NR_CPUS; i++)
 922		numa_cpu_lookup_table[i] = 0;
 923
 924	cpumask_setall(&numa_cpumask_lookup_table[0]);
 925#endif
 926}
 927
 928#ifdef CONFIG_NEED_MULTIPLE_NODES
 929struct pglist_data *node_data[MAX_NUMNODES];
 930
 931EXPORT_SYMBOL(numa_cpu_lookup_table);
 932EXPORT_SYMBOL(numa_cpumask_lookup_table);
 933EXPORT_SYMBOL(node_data);
 934
 935struct mdesc_mlgroup {
 936	u64	node;
 937	u64	latency;
 938	u64	match;
 939	u64	mask;
 940};
 941static struct mdesc_mlgroup *mlgroups;
 942static int num_mlgroups;
 943
 944static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
 945				   u32 cfg_handle)
 946{
 947	u64 arc;
 948
 949	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
 950		u64 target = mdesc_arc_target(md, arc);
 951		const u64 *val;
 952
 953		val = mdesc_get_property(md, target,
 954					 "cfg-handle", NULL);
 955		if (val && *val == cfg_handle)
 956			return 0;
 957	}
 958	return -ENODEV;
 959}
 960
 961static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
 962				    u32 cfg_handle)
 963{
 964	u64 arc, candidate, best_latency = ~(u64)0;
 965
 966	candidate = MDESC_NODE_NULL;
 967	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
 968		u64 target = mdesc_arc_target(md, arc);
 969		const char *name = mdesc_node_name(md, target);
 970		const u64 *val;
 971
 972		if (strcmp(name, "pio-latency-group"))
 973			continue;
 974
 975		val = mdesc_get_property(md, target, "latency", NULL);
 976		if (!val)
 977			continue;
 978
 979		if (*val < best_latency) {
 980			candidate = target;
 981			best_latency = *val;
 982		}
 983	}
 984
 985	if (candidate == MDESC_NODE_NULL)
 986		return -ENODEV;
 987
 988	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
 989}
 990
 991int of_node_to_nid(struct device_node *dp)
 992{
 993	const struct linux_prom64_registers *regs;
 994	struct mdesc_handle *md;
 995	u32 cfg_handle;
 996	int count, nid;
 997	u64 grp;
 998
 999	/* This is the right thing to do on currently supported
1000	 * SUN4U NUMA platforms as well, as the PCI controller does
1001	 * not sit behind any particular memory controller.
1002	 */
1003	if (!mlgroups)
1004		return -1;
1005
1006	regs = of_get_property(dp, "reg", NULL);
1007	if (!regs)
1008		return -1;
1009
1010	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;
1011
1012	md = mdesc_grab();
1013
1014	count = 0;
1015	nid = -1;
1016	mdesc_for_each_node_by_name(md, grp, "group") {
1017		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
1018			nid = count;
1019			break;
1020		}
1021		count++;
1022	}
1023
1024	mdesc_release(md);
1025
1026	return nid;
1027}
1028
1029static void __init add_node_ranges(void)
1030{
1031	struct memblock_region *reg;
 
 
1032
1033	for_each_memblock(memory, reg) {
1034		unsigned long size = reg->size;
1035		unsigned long start, end;
1036
1037		start = reg->base;
1038		end = start + size;
1039		while (start < end) {
1040			unsigned long this_end;
1041			int nid;
1042
1043			this_end = memblock_nid_range(start, end, &nid);
1044
1045			numadbg("Setting memblock NUMA node nid[%d] "
1046				"start[%lx] end[%lx]\n",
1047				nid, start, this_end);
1048
1049			memblock_set_node(start, this_end - start,
1050					  &memblock.memory, nid);
 
 
1051			start = this_end;
1052		}
1053	}
1054}
1055
1056static int __init grab_mlgroups(struct mdesc_handle *md)
1057{
1058	unsigned long paddr;
1059	int count = 0;
1060	u64 node;
1061
1062	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
1063		count++;
1064	if (!count)
1065		return -ENOENT;
1066
1067	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
1068			  SMP_CACHE_BYTES);
1069	if (!paddr)
1070		return -ENOMEM;
1071
1072	mlgroups = __va(paddr);
1073	num_mlgroups = count;
1074
1075	count = 0;
1076	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
1077		struct mdesc_mlgroup *m = &mlgroups[count++];
1078		const u64 *val;
1079
1080		m->node = node;
1081
1082		val = mdesc_get_property(md, node, "latency", NULL);
1083		m->latency = *val;
1084		val = mdesc_get_property(md, node, "address-match", NULL);
1085		m->match = *val;
1086		val = mdesc_get_property(md, node, "address-mask", NULL);
1087		m->mask = *val;
1088
1089		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
1090			"match[%llx] mask[%llx]\n",
1091			count - 1, m->node, m->latency, m->match, m->mask);
1092	}
1093
1094	return 0;
1095}
1096
1097static int __init grab_mblocks(struct mdesc_handle *md)
1098{
1099	unsigned long paddr;
1100	int count = 0;
1101	u64 node;
1102
1103	mdesc_for_each_node_by_name(md, node, "mblock")
1104		count++;
1105	if (!count)
1106		return -ENOENT;
1107
1108	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
1109			  SMP_CACHE_BYTES);
1110	if (!paddr)
1111		return -ENOMEM;
1112
1113	mblocks = __va(paddr);
1114	num_mblocks = count;
1115
1116	count = 0;
1117	mdesc_for_each_node_by_name(md, node, "mblock") {
1118		struct mdesc_mblock *m = &mblocks[count++];
1119		const u64 *val;
1120
1121		val = mdesc_get_property(md, node, "base", NULL);
1122		m->base = *val;
1123		val = mdesc_get_property(md, node, "size", NULL);
1124		m->size = *val;
1125		val = mdesc_get_property(md, node,
1126					 "address-congruence-offset", NULL);
1127
1128		/* The address-congruence-offset property is optional.
1129		 * Explicity zero it be identifty this.
1130		 */
1131		if (val)
1132			m->offset = *val;
1133		else
1134			m->offset = 0UL;
1135
1136		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
1137			count - 1, m->base, m->size, m->offset);
1138	}
1139
1140	return 0;
1141}
1142
1143static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
1144					       u64 grp, cpumask_t *mask)
1145{
1146	u64 arc;
1147
1148	cpumask_clear(mask);
1149
1150	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
1151		u64 target = mdesc_arc_target(md, arc);
1152		const char *name = mdesc_node_name(md, target);
1153		const u64 *id;
1154
1155		if (strcmp(name, "cpu"))
1156			continue;
1157		id = mdesc_get_property(md, target, "id", NULL);
1158		if (*id < nr_cpu_ids)
1159			cpumask_set_cpu(*id, mask);
1160	}
1161}
1162
1163static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
1164{
1165	int i;
1166
1167	for (i = 0; i < num_mlgroups; i++) {
1168		struct mdesc_mlgroup *m = &mlgroups[i];
1169		if (m->node == node)
1170			return m;
1171	}
1172	return NULL;
1173}
1174
1175int __node_distance(int from, int to)
1176{
1177	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
1178		pr_warn("Returning default NUMA distance value for %d->%d\n",
1179			from, to);
1180		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
1181	}
1182	return numa_latency[from][to];
1183}
1184
1185static int find_numa_node_for_addr(unsigned long pa,
1186				   struct node_mem_mask *pnode_mask)
1187{
1188	struct mdesc_handle *md = mdesc_grab();
1189	u64 node, arc;
1190	int i = 0;
1191
1192	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1193	if (node == MDESC_NODE_NULL)
1194		goto out;
1195
1196	mdesc_for_each_node_by_name(md, node, "group") {
1197		mdesc_for_each_arc(arc, md, node, MDESC_ARC_TYPE_FWD) {
1198			u64 target = mdesc_arc_target(md, arc);
1199			struct mdesc_mlgroup *m = find_mlgroup(target);
1200
1201			if (!m)
1202				continue;
1203			if ((pa & m->mask) == m->match) {
1204				if (pnode_mask) {
1205					pnode_mask->mask = m->mask;
1206					pnode_mask->val = m->match;
1207				}
1208				mdesc_release(md);
1209				return i;
1210			}
1211		}
1212		i++;
1213	}
1214
1215out:
1216	mdesc_release(md);
1217	return -1;
1218}
1219
1220static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
1221{
1222	int i;
1223
1224	for (i = 0; i < MAX_NUMNODES; i++) {
1225		struct node_mem_mask *n = &node_masks[i];
1226
1227		if ((grp->mask == n->mask) && (grp->match == n->val))
1228			break;
1229	}
1230	return i;
1231}
1232
1233static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
1234						 u64 grp, int index)
1235{
1236	u64 arc;
1237
1238	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1239		int tnode;
1240		u64 target = mdesc_arc_target(md, arc);
1241		struct mdesc_mlgroup *m = find_mlgroup(target);
1242
1243		if (!m)
1244			continue;
1245		tnode = find_best_numa_node_for_mlgroup(m);
1246		if (tnode == MAX_NUMNODES)
1247			continue;
1248		numa_latency[index][tnode] = m->latency;
1249	}
1250}
1251
1252static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
1253				      int index)
1254{
1255	struct mdesc_mlgroup *candidate = NULL;
1256	u64 arc, best_latency = ~(u64)0;
1257	struct node_mem_mask *n;
1258
1259	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
1260		u64 target = mdesc_arc_target(md, arc);
1261		struct mdesc_mlgroup *m = find_mlgroup(target);
1262		if (!m)
1263			continue;
1264		if (m->latency < best_latency) {
1265			candidate = m;
1266			best_latency = m->latency;
1267		}
1268	}
1269	if (!candidate)
1270		return -ENOENT;
1271
1272	if (num_node_masks != index) {
1273		printk(KERN_ERR "Inconsistent NUMA state, "
1274		       "index[%d] != num_node_masks[%d]\n",
1275		       index, num_node_masks);
1276		return -EINVAL;
1277	}
1278
1279	n = &node_masks[num_node_masks++];
1280
1281	n->mask = candidate->mask;
1282	n->val = candidate->match;
1283
1284	numadbg("NUMA NODE[%d]: mask[%lx] val[%lx] (latency[%llx])\n",
1285		index, n->mask, n->val, candidate->latency);
1286
1287	return 0;
1288}
1289
1290static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
1291					 int index)
1292{
1293	cpumask_t mask;
1294	int cpu;
1295
1296	numa_parse_mdesc_group_cpus(md, grp, &mask);
1297
1298	for_each_cpu(cpu, &mask)
1299		numa_cpu_lookup_table[cpu] = index;
1300	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);
1301
1302	if (numa_debug) {
1303		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
1304		for_each_cpu(cpu, &mask)
1305			printk("%d ", cpu);
1306		printk("]\n");
1307	}
1308
1309	return numa_attach_mlgroup(md, grp, index);
1310}
1311
1312static int __init numa_parse_mdesc(void)
1313{
1314	struct mdesc_handle *md = mdesc_grab();
1315	int i, j, err, count;
1316	u64 node;
1317
1318	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
1319	if (node == MDESC_NODE_NULL) {
1320		mdesc_release(md);
1321		return -ENOENT;
1322	}
1323
1324	err = grab_mblocks(md);
1325	if (err < 0)
1326		goto out;
1327
1328	err = grab_mlgroups(md);
1329	if (err < 0)
1330		goto out;
1331
1332	count = 0;
1333	mdesc_for_each_node_by_name(md, node, "group") {
1334		err = numa_parse_mdesc_group(md, node, count);
1335		if (err < 0)
1336			break;
1337		count++;
1338	}
1339
1340	count = 0;
1341	mdesc_for_each_node_by_name(md, node, "group") {
1342		find_numa_latencies_for_group(md, node, count);
1343		count++;
1344	}
1345
1346	/* Normalize numa latency matrix according to ACPI SLIT spec. */
1347	for (i = 0; i < MAX_NUMNODES; i++) {
1348		u64 self_latency = numa_latency[i][i];
1349
1350		for (j = 0; j < MAX_NUMNODES; j++) {
1351			numa_latency[i][j] =
1352				(numa_latency[i][j] * LOCAL_DISTANCE) /
1353				self_latency;
1354		}
1355	}
1356
1357	add_node_ranges();
1358
1359	for (i = 0; i < num_node_masks; i++) {
1360		allocate_node_data(i);
1361		node_set_online(i);
1362	}
1363
1364	err = 0;
1365out:
1366	mdesc_release(md);
1367	return err;
1368}
1369
1370static int __init numa_parse_jbus(void)
1371{
1372	unsigned long cpu, index;
1373
1374	/* NUMA node id is encoded in bits 36 and higher, and there is
1375	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
1376	 */
1377	index = 0;
1378	for_each_present_cpu(cpu) {
1379		numa_cpu_lookup_table[cpu] = index;
1380		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
1381		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
1382		node_masks[index].val = cpu << 36UL;
1383
1384		index++;
1385	}
1386	num_node_masks = index;
1387
1388	add_node_ranges();
1389
1390	for (index = 0; index < num_node_masks; index++) {
1391		allocate_node_data(index);
1392		node_set_online(index);
1393	}
1394
1395	return 0;
1396}
1397
1398static int __init numa_parse_sun4u(void)
1399{
1400	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1401		unsigned long ver;
1402
1403		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
1404		if ((ver >> 32UL) == __JALAPENO_ID ||
1405		    (ver >> 32UL) == __SERRANO_ID)
1406			return numa_parse_jbus();
1407	}
1408	return -1;
1409}
1410
1411static int __init bootmem_init_numa(void)
1412{
1413	int i, j;
1414	int err = -1;
1415
1416	numadbg("bootmem_init_numa()\n");
1417
1418	/* Some sane defaults for numa latency values */
1419	for (i = 0; i < MAX_NUMNODES; i++) {
1420		for (j = 0; j < MAX_NUMNODES; j++)
1421			numa_latency[i][j] = (i == j) ?
1422				LOCAL_DISTANCE : REMOTE_DISTANCE;
1423	}
1424
1425	if (numa_enabled) {
1426		if (tlb_type == hypervisor)
1427			err = numa_parse_mdesc();
1428		else
1429			err = numa_parse_sun4u();
1430	}
1431	return err;
1432}
1433
1434#else
1435
1436static int bootmem_init_numa(void)
1437{
1438	return -1;
1439}
1440
1441#endif
1442
1443static void __init bootmem_init_nonnuma(void)
1444{
1445	unsigned long top_of_ram = memblock_end_of_DRAM();
1446	unsigned long total_ram = memblock_phys_mem_size();
1447
1448	numadbg("bootmem_init_nonnuma()\n");
1449
1450	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1451	       top_of_ram, total_ram);
1452	printk(KERN_INFO "Memory hole size: %ldMB\n",
1453	       (top_of_ram - total_ram) >> 20);
1454
1455	init_node_masks_nonnuma();
1456	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
1457	allocate_node_data(0);
1458	node_set_online(0);
1459}
1460
1461static unsigned long __init bootmem_init(unsigned long phys_base)
1462{
1463	unsigned long end_pfn;
1464
1465	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1466	max_pfn = max_low_pfn = end_pfn;
1467	min_low_pfn = (phys_base >> PAGE_SHIFT);
1468
1469	if (bootmem_init_numa() < 0)
1470		bootmem_init_nonnuma();
1471
1472	/* Dump memblock with node info. */
1473	memblock_dump_all();
1474
1475	/* XXX cpu notifier XXX */
1476
1477	sparse_memory_present_with_active_regions(MAX_NUMNODES);
1478	sparse_init();
1479
1480	return end_pfn;
1481}
1482
1483static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
1484static int pall_ents __initdata;
1485
1486static unsigned long max_phys_bits = 40;
1487
1488bool kern_addr_valid(unsigned long addr)
1489{
1490	pgd_t *pgd;
 
1491	pud_t *pud;
1492	pmd_t *pmd;
1493	pte_t *pte;
1494
1495	if ((long)addr < 0L) {
1496		unsigned long pa = __pa(addr);
1497
1498		if ((addr >> max_phys_bits) != 0UL)
1499			return false;
1500
1501		return pfn_valid(pa >> PAGE_SHIFT);
1502	}
1503
1504	if (addr >= (unsigned long) KERNBASE &&
1505	    addr < (unsigned long)&_end)
1506		return true;
1507
1508	pgd = pgd_offset_k(addr);
1509	if (pgd_none(*pgd))
1510		return 0;
 
 
 
 
1511
1512	pud = pud_offset(pgd, addr);
1513	if (pud_none(*pud))
1514		return 0;
1515
1516	if (pud_large(*pud))
1517		return pfn_valid(pud_pfn(*pud));
1518
1519	pmd = pmd_offset(pud, addr);
1520	if (pmd_none(*pmd))
1521		return 0;
1522
1523	if (pmd_large(*pmd))
1524		return pfn_valid(pmd_pfn(*pmd));
1525
1526	pte = pte_offset_kernel(pmd, addr);
1527	if (pte_none(*pte))
1528		return 0;
1529
1530	return pfn_valid(pte_pfn(*pte));
1531}
1532EXPORT_SYMBOL(kern_addr_valid);
1533
1534static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
1535					      unsigned long vend,
1536					      pud_t *pud)
1537{
1538	const unsigned long mask16gb = (1UL << 34) - 1UL;
1539	u64 pte_val = vstart;
1540
1541	/* Each PUD is 8GB */
1542	if ((vstart & mask16gb) ||
1543	    (vend - vstart <= mask16gb)) {
1544		pte_val ^= kern_linear_pte_xor[2];
1545		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;
1546
1547		return vstart + PUD_SIZE;
1548	}
1549
1550	pte_val ^= kern_linear_pte_xor[3];
1551	pte_val |= _PAGE_PUD_HUGE;
1552
1553	vend = vstart + mask16gb + 1UL;
1554	while (vstart < vend) {
1555		pud_val(*pud) = pte_val;
1556
1557		pte_val += PUD_SIZE;
1558		vstart += PUD_SIZE;
1559		pud++;
1560	}
1561	return vstart;
1562}
1563
1564static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
1565				   bool guard)
1566{
1567	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
1568		return true;
1569
1570	return false;
1571}
1572
1573static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
1574					      unsigned long vend,
1575					      pmd_t *pmd)
1576{
1577	const unsigned long mask256mb = (1UL << 28) - 1UL;
1578	const unsigned long mask2gb = (1UL << 31) - 1UL;
1579	u64 pte_val = vstart;
1580
1581	/* Each PMD is 8MB */
1582	if ((vstart & mask256mb) ||
1583	    (vend - vstart <= mask256mb)) {
1584		pte_val ^= kern_linear_pte_xor[0];
1585		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;
1586
1587		return vstart + PMD_SIZE;
1588	}
1589
1590	if ((vstart & mask2gb) ||
1591	    (vend - vstart <= mask2gb)) {
1592		pte_val ^= kern_linear_pte_xor[1];
1593		pte_val |= _PAGE_PMD_HUGE;
1594		vend = vstart + mask256mb + 1UL;
1595	} else {
1596		pte_val ^= kern_linear_pte_xor[2];
1597		pte_val |= _PAGE_PMD_HUGE;
1598		vend = vstart + mask2gb + 1UL;
1599	}
1600
1601	while (vstart < vend) {
1602		pmd_val(*pmd) = pte_val;
1603
1604		pte_val += PMD_SIZE;
1605		vstart += PMD_SIZE;
1606		pmd++;
1607	}
1608
1609	return vstart;
1610}
1611
1612static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
1613				   bool guard)
1614{
1615	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
1616		return true;
1617
1618	return false;
1619}
1620
1621static unsigned long __ref kernel_map_range(unsigned long pstart,
1622					    unsigned long pend, pgprot_t prot,
1623					    bool use_huge)
1624{
1625	unsigned long vstart = PAGE_OFFSET + pstart;
1626	unsigned long vend = PAGE_OFFSET + pend;
1627	unsigned long alloc_bytes = 0UL;
1628
1629	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
1630		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
1631			    vstart, vend);
1632		prom_halt();
1633	}
1634
1635	while (vstart < vend) {
1636		unsigned long this_end, paddr = __pa(vstart);
1637		pgd_t *pgd = pgd_offset_k(vstart);
 
1638		pud_t *pud;
1639		pmd_t *pmd;
1640		pte_t *pte;
1641
1642		if (pgd_none(*pgd)) {
1643			pud_t *new;
1644
1645			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
1646			alloc_bytes += PAGE_SIZE;
1647			pgd_populate(&init_mm, pgd, new);
1648		}
1649		pud = pud_offset(pgd, vstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
1650		if (pud_none(*pud)) {
1651			pmd_t *new;
1652
1653			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
1654				vstart = kernel_map_hugepud(vstart, vend, pud);
1655				continue;
1656			}
1657			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
1658			alloc_bytes += PAGE_SIZE;
1659			pud_populate(&init_mm, pud, new);
1660		}
1661
1662		pmd = pmd_offset(pud, vstart);
1663		if (pmd_none(*pmd)) {
1664			pte_t *new;
1665
1666			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
1667				vstart = kernel_map_hugepmd(vstart, vend, pmd);
1668				continue;
1669			}
1670			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
 
 
 
1671			alloc_bytes += PAGE_SIZE;
1672			pmd_populate_kernel(&init_mm, pmd, new);
1673		}
1674
1675		pte = pte_offset_kernel(pmd, vstart);
1676		this_end = (vstart + PMD_SIZE) & PMD_MASK;
1677		if (this_end > vend)
1678			this_end = vend;
1679
1680		while (vstart < this_end) {
1681			pte_val(*pte) = (paddr | pgprot_val(prot));
1682
1683			vstart += PAGE_SIZE;
1684			paddr += PAGE_SIZE;
1685			pte++;
1686		}
1687	}
1688
1689	return alloc_bytes;
 
 
 
 
 
1690}
1691
1692static void __init flush_all_kernel_tsbs(void)
1693{
1694	int i;
1695
1696	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
1697		struct tsb *ent = &swapper_tsb[i];
1698
1699		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1700	}
1701#ifndef CONFIG_DEBUG_PAGEALLOC
1702	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
1703		struct tsb *ent = &swapper_4m_tsb[i];
1704
1705		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
1706	}
1707#endif
1708}
1709
1710extern unsigned int kvmap_linear_patch[1];
1711
1712static void __init kernel_physical_mapping_init(void)
1713{
1714	unsigned long i, mem_alloced = 0UL;
1715	bool use_huge = true;
1716
1717#ifdef CONFIG_DEBUG_PAGEALLOC
1718	use_huge = false;
1719#endif
1720	for (i = 0; i < pall_ents; i++) {
1721		unsigned long phys_start, phys_end;
1722
1723		phys_start = pall[i].phys_addr;
1724		phys_end = phys_start + pall[i].reg_size;
1725
1726		mem_alloced += kernel_map_range(phys_start, phys_end,
1727						PAGE_KERNEL, use_huge);
1728	}
1729
1730	printk("Allocated %ld bytes for kernel page tables.\n",
1731	       mem_alloced);
1732
1733	kvmap_linear_patch[0] = 0x01000000; /* nop */
1734	flushi(&kvmap_linear_patch[0]);
1735
1736	flush_all_kernel_tsbs();
1737
1738	__flush_tlb_all();
1739}
1740
1741#ifdef CONFIG_DEBUG_PAGEALLOC
1742void __kernel_map_pages(struct page *page, int numpages, int enable)
1743{
1744	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
1745	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);
1746
1747	kernel_map_range(phys_start, phys_end,
1748			 (enable ? PAGE_KERNEL : __pgprot(0)), false);
1749
1750	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
1751			       PAGE_OFFSET + phys_end);
1752
1753	/* we should perform an IPI and flush all tlbs,
1754	 * but that can deadlock->flush only current cpu.
1755	 */
1756	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
1757				 PAGE_OFFSET + phys_end);
1758}
1759#endif
1760
1761unsigned long __init find_ecache_flush_span(unsigned long size)
1762{
1763	int i;
1764
1765	for (i = 0; i < pavail_ents; i++) {
1766		if (pavail[i].reg_size >= size)
1767			return pavail[i].phys_addr;
1768	}
1769
1770	return ~0UL;
1771}
1772
1773unsigned long PAGE_OFFSET;
1774EXPORT_SYMBOL(PAGE_OFFSET);
1775
1776unsigned long VMALLOC_END   = 0x0000010000000000UL;
1777EXPORT_SYMBOL(VMALLOC_END);
1778
1779unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
1780unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;
1781
1782static void __init setup_page_offset(void)
1783{
1784	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
1785		/* Cheetah/Panther support a full 64-bit virtual
1786		 * address, so we can use all that our page tables
1787		 * support.
1788		 */
1789		sparc64_va_hole_top =    0xfff0000000000000UL;
1790		sparc64_va_hole_bottom = 0x0010000000000000UL;
1791
1792		max_phys_bits = 42;
1793	} else if (tlb_type == hypervisor) {
1794		switch (sun4v_chip_type) {
1795		case SUN4V_CHIP_NIAGARA1:
1796		case SUN4V_CHIP_NIAGARA2:
1797			/* T1 and T2 support 48-bit virtual addresses.  */
1798			sparc64_va_hole_top =    0xffff800000000000UL;
1799			sparc64_va_hole_bottom = 0x0000800000000000UL;
1800
1801			max_phys_bits = 39;
1802			break;
1803		case SUN4V_CHIP_NIAGARA3:
1804			/* T3 supports 48-bit virtual addresses.  */
1805			sparc64_va_hole_top =    0xffff800000000000UL;
1806			sparc64_va_hole_bottom = 0x0000800000000000UL;
1807
1808			max_phys_bits = 43;
1809			break;
1810		case SUN4V_CHIP_NIAGARA4:
1811		case SUN4V_CHIP_NIAGARA5:
1812		case SUN4V_CHIP_SPARC64X:
1813		case SUN4V_CHIP_SPARC_M6:
1814			/* T4 and later support 52-bit virtual addresses.  */
1815			sparc64_va_hole_top =    0xfff8000000000000UL;
1816			sparc64_va_hole_bottom = 0x0008000000000000UL;
1817			max_phys_bits = 47;
1818			break;
1819		case SUN4V_CHIP_SPARC_M7:
1820		case SUN4V_CHIP_SPARC_SN:
1821		default:
1822			/* M7 and later support 52-bit virtual addresses.  */
1823			sparc64_va_hole_top =    0xfff8000000000000UL;
1824			sparc64_va_hole_bottom = 0x0008000000000000UL;
1825			max_phys_bits = 49;
1826			break;
 
 
 
 
 
 
 
 
 
 
 
1827		}
1828	}
1829
1830	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
1831		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
1832			    max_phys_bits);
1833		prom_halt();
1834	}
1835
1836	PAGE_OFFSET = sparc64_va_hole_top;
1837	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
1838		       (sparc64_va_hole_bottom >> 2));
1839
1840	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
1841		PAGE_OFFSET, max_phys_bits);
1842	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
1843		VMALLOC_START, VMALLOC_END);
1844	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
1845		VMEMMAP_BASE, VMEMMAP_BASE << 1);
1846}
1847
1848static void __init tsb_phys_patch(void)
1849{
1850	struct tsb_ldquad_phys_patch_entry *pquad;
1851	struct tsb_phys_patch_entry *p;
1852
1853	pquad = &__tsb_ldquad_phys_patch;
1854	while (pquad < &__tsb_ldquad_phys_patch_end) {
1855		unsigned long addr = pquad->addr;
1856
1857		if (tlb_type == hypervisor)
1858			*(unsigned int *) addr = pquad->sun4v_insn;
1859		else
1860			*(unsigned int *) addr = pquad->sun4u_insn;
1861		wmb();
1862		__asm__ __volatile__("flush	%0"
1863				     : /* no outputs */
1864				     : "r" (addr));
1865
1866		pquad++;
1867	}
1868
1869	p = &__tsb_phys_patch;
1870	while (p < &__tsb_phys_patch_end) {
1871		unsigned long addr = p->addr;
1872
1873		*(unsigned int *) addr = p->insn;
1874		wmb();
1875		__asm__ __volatile__("flush	%0"
1876				     : /* no outputs */
1877				     : "r" (addr));
1878
1879		p++;
1880	}
1881}
1882
1883/* Don't mark as init, we give this to the Hypervisor.  */
1884#ifndef CONFIG_DEBUG_PAGEALLOC
1885#define NUM_KTSB_DESCR	2
1886#else
1887#define NUM_KTSB_DESCR	1
1888#endif
1889static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];
1890
1891/* The swapper TSBs are loaded with a base sequence of:
1892 *
1893 *	sethi	%uhi(SYMBOL), REG1
1894 *	sethi	%hi(SYMBOL), REG2
1895 *	or	REG1, %ulo(SYMBOL), REG1
1896 *	or	REG2, %lo(SYMBOL), REG2
1897 *	sllx	REG1, 32, REG1
1898 *	or	REG1, REG2, REG1
1899 *
1900 * When we use physical addressing for the TSB accesses, we patch the
1901 * first four instructions in the above sequence.
1902 */
1903
1904static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
1905{
1906	unsigned long high_bits, low_bits;
1907
1908	high_bits = (pa >> 32) & 0xffffffff;
1909	low_bits = (pa >> 0) & 0xffffffff;
1910
1911	while (start < end) {
1912		unsigned int *ia = (unsigned int *)(unsigned long)*start;
1913
1914		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
1915		__asm__ __volatile__("flush	%0" : : "r" (ia));
1916
1917		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
1918		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));
1919
1920		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
1921		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));
1922
1923		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
1924		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));
1925
1926		start++;
1927	}
1928}
1929
1930static void ktsb_phys_patch(void)
1931{
1932	extern unsigned int __swapper_tsb_phys_patch;
1933	extern unsigned int __swapper_tsb_phys_patch_end;
1934	unsigned long ktsb_pa;
1935
1936	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1937	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
1938			    &__swapper_tsb_phys_patch_end, ktsb_pa);
1939#ifndef CONFIG_DEBUG_PAGEALLOC
1940	{
1941	extern unsigned int __swapper_4m_tsb_phys_patch;
1942	extern unsigned int __swapper_4m_tsb_phys_patch_end;
1943	ktsb_pa = (kern_base +
1944		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1945	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
1946			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
1947	}
1948#endif
1949}
1950
1951static void __init sun4v_ktsb_init(void)
1952{
1953	unsigned long ktsb_pa;
1954
1955	/* First KTSB for PAGE_SIZE mappings.  */
1956	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
1957
1958	switch (PAGE_SIZE) {
1959	case 8 * 1024:
1960	default:
1961		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
1962		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
1963		break;
1964
1965	case 64 * 1024:
1966		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
1967		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
1968		break;
1969
1970	case 512 * 1024:
1971		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
1972		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
1973		break;
1974
1975	case 4 * 1024 * 1024:
1976		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
1977		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
1978		break;
1979	}
1980
1981	ktsb_descr[0].assoc = 1;
1982	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
1983	ktsb_descr[0].ctx_idx = 0;
1984	ktsb_descr[0].tsb_base = ktsb_pa;
1985	ktsb_descr[0].resv = 0;
1986
1987#ifndef CONFIG_DEBUG_PAGEALLOC
1988	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
1989	ktsb_pa = (kern_base +
1990		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
1991
1992	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
1993	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
1994				    HV_PGSZ_MASK_256MB |
1995				    HV_PGSZ_MASK_2GB |
1996				    HV_PGSZ_MASK_16GB) &
1997				   cpu_pgsz_mask);
1998	ktsb_descr[1].assoc = 1;
1999	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
2000	ktsb_descr[1].ctx_idx = 0;
2001	ktsb_descr[1].tsb_base = ktsb_pa;
2002	ktsb_descr[1].resv = 0;
2003#endif
2004}
2005
2006void sun4v_ktsb_register(void)
2007{
2008	unsigned long pa, ret;
2009
2010	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);
2011
2012	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
2013	if (ret != 0) {
2014		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
2015			    "errors with %lx\n", pa, ret);
2016		prom_halt();
2017	}
2018}
2019
2020static void __init sun4u_linear_pte_xor_finalize(void)
2021{
2022#ifndef CONFIG_DEBUG_PAGEALLOC
2023	/* This is where we would add Panther support for
2024	 * 32MB and 256MB pages.
2025	 */
2026#endif
2027}
2028
2029static void __init sun4v_linear_pte_xor_finalize(void)
2030{
2031	unsigned long pagecv_flag;
2032
2033	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
2034	 * enables MCD error. Do not set bit 9 on M7 processor.
2035	 */
2036	switch (sun4v_chip_type) {
2037	case SUN4V_CHIP_SPARC_M7:
 
2038	case SUN4V_CHIP_SPARC_SN:
2039		pagecv_flag = 0x00;
2040		break;
2041	default:
2042		pagecv_flag = _PAGE_CV_4V;
2043		break;
2044	}
2045#ifndef CONFIG_DEBUG_PAGEALLOC
2046	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
2047		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
2048			PAGE_OFFSET;
2049		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
2050					   _PAGE_P_4V | _PAGE_W_4V);
2051	} else {
2052		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
2053	}
2054
2055	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
2056		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
2057			PAGE_OFFSET;
2058		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
2059					   _PAGE_P_4V | _PAGE_W_4V);
2060	} else {
2061		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
2062	}
2063
2064	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
2065		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
2066			PAGE_OFFSET;
2067		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
2068					   _PAGE_P_4V | _PAGE_W_4V);
2069	} else {
2070		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
2071	}
2072#endif
2073}
2074
2075/* paging_init() sets up the page tables */
2076
2077static unsigned long last_valid_pfn;
2078
2079static void sun4u_pgprot_init(void);
2080static void sun4v_pgprot_init(void);
2081
2082static phys_addr_t __init available_memory(void)
2083{
2084	phys_addr_t available = 0ULL;
2085	phys_addr_t pa_start, pa_end;
2086	u64 i;
2087
2088	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2089				&pa_end, NULL)
2090		available = available + (pa_end  - pa_start);
2091
2092	return available;
2093}
2094
2095#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
2096#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
2097#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
2098#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
2099#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
2100#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)
2101
2102/* We need to exclude reserved regions. This exclusion will include
2103 * vmlinux and initrd. To be more precise the initrd size could be used to
2104 * compute a new lower limit because it is freed later during initialization.
2105 */
2106static void __init reduce_memory(phys_addr_t limit_ram)
2107{
2108	phys_addr_t avail_ram = available_memory();
2109	phys_addr_t pa_start, pa_end;
2110	u64 i;
2111
2112	if (limit_ram >= avail_ram)
2113		return;
2114
2115	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
2116				&pa_end, NULL) {
2117		phys_addr_t region_size = pa_end - pa_start;
2118		phys_addr_t clip_start = pa_start;
2119
2120		avail_ram = avail_ram - region_size;
2121		/* Are we consuming too much? */
2122		if (avail_ram < limit_ram) {
2123			phys_addr_t give_back = limit_ram - avail_ram;
2124
2125			region_size = region_size - give_back;
2126			clip_start = clip_start + give_back;
2127		}
2128
2129		memblock_remove(clip_start, region_size);
2130
2131		if (avail_ram <= limit_ram)
2132			break;
2133		i = 0UL;
2134	}
2135}
2136
2137void __init paging_init(void)
2138{
2139	unsigned long end_pfn, shift, phys_base;
2140	unsigned long real_end, i;
2141
2142	setup_page_offset();
2143
2144	/* These build time checkes make sure that the dcache_dirty_cpu()
2145	 * page->flags usage will work.
2146	 *
2147	 * When a page gets marked as dcache-dirty, we store the
2148	 * cpu number starting at bit 32 in the page->flags.  Also,
2149	 * functions like clear_dcache_dirty_cpu use the cpu mask
2150	 * in 13-bit signed-immediate instruction fields.
2151	 */
2152
2153	/*
2154	 * Page flags must not reach into upper 32 bits that are used
2155	 * for the cpu number
2156	 */
2157	BUILD_BUG_ON(NR_PAGEFLAGS > 32);
2158
2159	/*
2160	 * The bit fields placed in the high range must not reach below
2161	 * the 32 bit boundary. Otherwise we cannot place the cpu field
2162	 * at the 32 bit boundary.
2163	 */
2164	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
2165		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);
2166
2167	BUILD_BUG_ON(NR_CPUS > 4096);
2168
2169	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
2170	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;
2171
2172	/* Invalidate both kernel TSBs.  */
2173	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
2174#ifndef CONFIG_DEBUG_PAGEALLOC
2175	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2176#endif
2177
2178	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
2179	 * bit on M7 processor. This is a conflicting usage of the same
2180	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
2181	 * Detection error on all pages and this will lead to problems
2182	 * later. Kernel does not run with MCD enabled and hence rest
2183	 * of the required steps to fully configure memory corruption
2184	 * detection are not taken. We need to ensure TTE.mcde is not
2185	 * set on M7 processor. Compute the value of cacheability
2186	 * flag for use later taking this into consideration.
2187	 */
2188	switch (sun4v_chip_type) {
2189	case SUN4V_CHIP_SPARC_M7:
 
2190	case SUN4V_CHIP_SPARC_SN:
2191		page_cache4v_flag = _PAGE_CP_4V;
2192		break;
2193	default:
2194		page_cache4v_flag = _PAGE_CACHE_4V;
2195		break;
2196	}
2197
2198	if (tlb_type == hypervisor)
2199		sun4v_pgprot_init();
2200	else
2201		sun4u_pgprot_init();
2202
2203	if (tlb_type == cheetah_plus ||
2204	    tlb_type == hypervisor) {
2205		tsb_phys_patch();
2206		ktsb_phys_patch();
2207	}
2208
2209	if (tlb_type == hypervisor)
2210		sun4v_patch_tlb_handlers();
2211
2212	/* Find available physical memory...
2213	 *
2214	 * Read it twice in order to work around a bug in openfirmware.
2215	 * The call to grab this table itself can cause openfirmware to
2216	 * allocate memory, which in turn can take away some space from
2217	 * the list of available memory.  Reading it twice makes sure
2218	 * we really do get the final value.
2219	 */
2220	read_obp_translations();
2221	read_obp_memory("reg", &pall[0], &pall_ents);
2222	read_obp_memory("available", &pavail[0], &pavail_ents);
2223	read_obp_memory("available", &pavail[0], &pavail_ents);
2224
2225	phys_base = 0xffffffffffffffffUL;
2226	for (i = 0; i < pavail_ents; i++) {
2227		phys_base = min(phys_base, pavail[i].phys_addr);
2228		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
2229	}
2230
2231	memblock_reserve(kern_base, kern_size);
2232
2233	find_ramdisk(phys_base);
2234
2235	if (cmdline_memory_size)
2236		reduce_memory(cmdline_memory_size);
2237
2238	memblock_allow_resize();
2239	memblock_dump_all();
2240
2241	set_bit(0, mmu_context_bmap);
2242
2243	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);
2244
2245	real_end = (unsigned long)_end;
2246	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
2247	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
2248	       num_kernel_image_mappings);
2249
2250	/* Set kernel pgd to upper alias so physical page computations
2251	 * work.
2252	 */
2253	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
2254	
2255	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));
2256
2257	inherit_prom_mappings();
2258	
2259	/* Ok, we can use our TLB miss and window trap handlers safely.  */
2260	setup_tba();
2261
2262	__flush_tlb_all();
2263
2264	prom_build_devicetree();
2265	of_populate_present_mask();
2266#ifndef CONFIG_SMP
2267	of_fill_in_cpu_data();
2268#endif
2269
2270	if (tlb_type == hypervisor) {
2271		sun4v_mdesc_init();
2272		mdesc_populate_present_mask(cpu_all_mask);
2273#ifndef CONFIG_SMP
2274		mdesc_fill_in_cpu_data(cpu_all_mask);
2275#endif
2276		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);
2277
2278		sun4v_linear_pte_xor_finalize();
2279
2280		sun4v_ktsb_init();
2281		sun4v_ktsb_register();
2282	} else {
2283		unsigned long impl, ver;
2284
2285		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
2286				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);
2287
2288		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
2289		impl = ((ver >> 32) & 0xffff);
2290		if (impl == PANTHER_IMPL)
2291			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
2292					  HV_PGSZ_MASK_256MB);
2293
2294		sun4u_linear_pte_xor_finalize();
2295	}
2296
2297	/* Flush the TLBs and the 4M TSB so that the updated linear
2298	 * pte XOR settings are realized for all mappings.
2299	 */
2300	__flush_tlb_all();
2301#ifndef CONFIG_DEBUG_PAGEALLOC
2302	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
2303#endif
2304	__flush_tlb_all();
2305
2306	/* Setup bootmem... */
2307	last_valid_pfn = end_pfn = bootmem_init(phys_base);
2308
2309	kernel_physical_mapping_init();
2310
2311	{
2312		unsigned long max_zone_pfns[MAX_NR_ZONES];
2313
2314		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
2315
2316		max_zone_pfns[ZONE_NORMAL] = end_pfn;
2317
2318		free_area_init_nodes(max_zone_pfns);
2319	}
2320
2321	printk("Booting Linux...\n");
2322}
2323
2324int page_in_phys_avail(unsigned long paddr)
2325{
2326	int i;
2327
2328	paddr &= PAGE_MASK;
2329
2330	for (i = 0; i < pavail_ents; i++) {
2331		unsigned long start, end;
2332
2333		start = pavail[i].phys_addr;
2334		end = start + pavail[i].reg_size;
2335
2336		if (paddr >= start && paddr < end)
2337			return 1;
2338	}
2339	if (paddr >= kern_base && paddr < (kern_base + kern_size))
2340		return 1;
2341#ifdef CONFIG_BLK_DEV_INITRD
2342	if (paddr >= __pa(initrd_start) &&
2343	    paddr < __pa(PAGE_ALIGN(initrd_end)))
2344		return 1;
2345#endif
2346
2347	return 0;
2348}
2349
2350static void __init register_page_bootmem_info(void)
2351{
2352#ifdef CONFIG_NEED_MULTIPLE_NODES
2353	int i;
2354
2355	for_each_online_node(i)
2356		if (NODE_DATA(i)->node_spanned_pages)
2357			register_page_bootmem_info_node(NODE_DATA(i));
2358#endif
2359}
2360void __init mem_init(void)
2361{
2362	high_memory = __va(last_valid_pfn << PAGE_SHIFT);
2363
 
 
 
 
 
 
 
 
2364	register_page_bootmem_info();
2365	free_all_bootmem();
2366
2367	/*
2368	 * Set up the zero page, mark it reserved, so that page count
2369	 * is not manipulated when freeing the page from user ptes.
2370	 */
2371	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
2372	if (mem_map_zero == NULL) {
2373		prom_printf("paging_init: Cannot alloc zero page.\n");
2374		prom_halt();
2375	}
2376	mark_page_reserved(mem_map_zero);
2377
2378	mem_init_print_info(NULL);
2379
2380	if (tlb_type == cheetah || tlb_type == cheetah_plus)
2381		cheetah_ecache_flush_init();
2382}
2383
2384void free_initmem(void)
2385{
2386	unsigned long addr, initend;
2387	int do_free = 1;
2388
2389	/* If the physical memory maps were trimmed by kernel command
2390	 * line options, don't even try freeing this initmem stuff up.
2391	 * The kernel image could have been in the trimmed out region
2392	 * and if so the freeing below will free invalid page structs.
2393	 */
2394	if (cmdline_memory_size)
2395		do_free = 0;
2396
2397	/*
2398	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
2399	 */
2400	addr = PAGE_ALIGN((unsigned long)(__init_begin));
2401	initend = (unsigned long)(__init_end) & PAGE_MASK;
2402	for (; addr < initend; addr += PAGE_SIZE) {
2403		unsigned long page;
2404
2405		page = (addr +
2406			((unsigned long) __va(kern_base)) -
2407			((unsigned long) KERNBASE));
2408		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);
2409
2410		if (do_free)
2411			free_reserved_page(virt_to_page(page));
2412	}
2413}
2414
2415#ifdef CONFIG_BLK_DEV_INITRD
2416void free_initrd_mem(unsigned long start, unsigned long end)
2417{
2418	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
2419			   "initrd");
2420}
2421#endif
2422
2423pgprot_t PAGE_KERNEL __read_mostly;
2424EXPORT_SYMBOL(PAGE_KERNEL);
2425
2426pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
2427pgprot_t PAGE_COPY __read_mostly;
2428
2429pgprot_t PAGE_SHARED __read_mostly;
2430EXPORT_SYMBOL(PAGE_SHARED);
2431
2432unsigned long pg_iobits __read_mostly;
2433
2434unsigned long _PAGE_IE __read_mostly;
2435EXPORT_SYMBOL(_PAGE_IE);
2436
2437unsigned long _PAGE_E __read_mostly;
2438EXPORT_SYMBOL(_PAGE_E);
2439
2440unsigned long _PAGE_CACHE __read_mostly;
2441EXPORT_SYMBOL(_PAGE_CACHE);
2442
2443#ifdef CONFIG_SPARSEMEM_VMEMMAP
2444int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
2445			       int node)
2446{
2447	unsigned long pte_base;
2448
2449	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2450		    _PAGE_CP_4U | _PAGE_CV_4U |
2451		    _PAGE_P_4U | _PAGE_W_4U);
2452	if (tlb_type == hypervisor)
2453		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2454			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);
2455
2456	pte_base |= _PAGE_PMD_HUGE;
2457
2458	vstart = vstart & PMD_MASK;
2459	vend = ALIGN(vend, PMD_SIZE);
2460	for (; vstart < vend; vstart += PMD_SIZE) {
2461		pgd_t *pgd = pgd_offset_k(vstart);
2462		unsigned long pte;
 
2463		pud_t *pud;
2464		pmd_t *pmd;
2465
2466		if (pgd_none(*pgd)) {
2467			pud_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2468
2469			if (!new)
2470				return -ENOMEM;
2471			pgd_populate(&init_mm, pgd, new);
2472		}
2473
2474		pud = pud_offset(pgd, vstart);
2475		if (pud_none(*pud)) {
2476			pmd_t *new = vmemmap_alloc_block(PAGE_SIZE, node);
2477
2478			if (!new)
2479				return -ENOMEM;
2480			pud_populate(&init_mm, pud, new);
2481		}
 
 
 
2482
2483		pmd = pmd_offset(pud, vstart);
2484
2485		pte = pmd_val(*pmd);
2486		if (!(pte & _PAGE_VALID)) {
2487			void *block = vmemmap_alloc_block(PMD_SIZE, node);
2488
2489			if (!block)
2490				return -ENOMEM;
2491
2492			pmd_val(*pmd) = pte_base | __pa(block);
2493		}
2494	}
2495
2496	return 0;
2497}
2498
2499void vmemmap_free(unsigned long start, unsigned long end)
 
2500{
2501}
2502#endif /* CONFIG_SPARSEMEM_VMEMMAP */
2503
 
 
 
2504static void prot_init_common(unsigned long page_none,
2505			     unsigned long page_shared,
2506			     unsigned long page_copy,
2507			     unsigned long page_readonly,
2508			     unsigned long page_exec_bit)
2509{
2510	PAGE_COPY = __pgprot(page_copy);
2511	PAGE_SHARED = __pgprot(page_shared);
2512
2513	protection_map[0x0] = __pgprot(page_none);
2514	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
2515	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
2516	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
2517	protection_map[0x4] = __pgprot(page_readonly);
2518	protection_map[0x5] = __pgprot(page_readonly);
2519	protection_map[0x6] = __pgprot(page_copy);
2520	protection_map[0x7] = __pgprot(page_copy);
2521	protection_map[0x8] = __pgprot(page_none);
2522	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
2523	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
2524	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
2525	protection_map[0xc] = __pgprot(page_readonly);
2526	protection_map[0xd] = __pgprot(page_readonly);
2527	protection_map[0xe] = __pgprot(page_shared);
2528	protection_map[0xf] = __pgprot(page_shared);
2529}
2530
2531static void __init sun4u_pgprot_init(void)
2532{
2533	unsigned long page_none, page_shared, page_copy, page_readonly;
2534	unsigned long page_exec_bit;
2535	int i;
2536
2537	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2538				_PAGE_CACHE_4U | _PAGE_P_4U |
2539				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
2540				_PAGE_EXEC_4U);
2541	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
2542				       _PAGE_CACHE_4U | _PAGE_P_4U |
2543				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
2544				       _PAGE_EXEC_4U | _PAGE_L_4U);
2545
2546	_PAGE_IE = _PAGE_IE_4U;
2547	_PAGE_E = _PAGE_E_4U;
2548	_PAGE_CACHE = _PAGE_CACHE_4U;
2549
2550	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
2551		     __ACCESS_BITS_4U | _PAGE_E_4U);
2552
2553#ifdef CONFIG_DEBUG_PAGEALLOC
2554	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2555#else
2556	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
2557		PAGE_OFFSET;
2558#endif
2559	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
2560				   _PAGE_P_4U | _PAGE_W_4U);
2561
2562	for (i = 1; i < 4; i++)
2563		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2564
2565	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
2566			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
2567			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);
2568
2569
2570	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
2571	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2572		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
2573	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2574		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2575	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
2576			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);
2577
2578	page_exec_bit = _PAGE_EXEC_4U;
2579
2580	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2581			 page_exec_bit);
2582}
2583
2584static void __init sun4v_pgprot_init(void)
2585{
2586	unsigned long page_none, page_shared, page_copy, page_readonly;
2587	unsigned long page_exec_bit;
2588	int i;
2589
2590	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
2591				page_cache4v_flag | _PAGE_P_4V |
2592				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
2593				_PAGE_EXEC_4V);
2594	PAGE_KERNEL_LOCKED = PAGE_KERNEL;
2595
2596	_PAGE_IE = _PAGE_IE_4V;
2597	_PAGE_E = _PAGE_E_4V;
2598	_PAGE_CACHE = page_cache4v_flag;
2599
2600#ifdef CONFIG_DEBUG_PAGEALLOC
2601	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
2602#else
2603	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
2604		PAGE_OFFSET;
2605#endif
2606	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
2607				   _PAGE_W_4V);
2608
2609	for (i = 1; i < 4; i++)
2610		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];
2611
2612	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
2613		     __ACCESS_BITS_4V | _PAGE_E_4V);
2614
2615	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
2616			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
2617			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
2618			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);
2619
2620	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
2621	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2622		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
2623	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2624		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2625	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
2626			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);
2627
2628	page_exec_bit = _PAGE_EXEC_4V;
2629
2630	prot_init_common(page_none, page_shared, page_copy, page_readonly,
2631			 page_exec_bit);
2632}
2633
2634unsigned long pte_sz_bits(unsigned long sz)
2635{
2636	if (tlb_type == hypervisor) {
2637		switch (sz) {
2638		case 8 * 1024:
2639		default:
2640			return _PAGE_SZ8K_4V;
2641		case 64 * 1024:
2642			return _PAGE_SZ64K_4V;
2643		case 512 * 1024:
2644			return _PAGE_SZ512K_4V;
2645		case 4 * 1024 * 1024:
2646			return _PAGE_SZ4MB_4V;
2647		}
2648	} else {
2649		switch (sz) {
2650		case 8 * 1024:
2651		default:
2652			return _PAGE_SZ8K_4U;
2653		case 64 * 1024:
2654			return _PAGE_SZ64K_4U;
2655		case 512 * 1024:
2656			return _PAGE_SZ512K_4U;
2657		case 4 * 1024 * 1024:
2658			return _PAGE_SZ4MB_4U;
2659		}
2660	}
2661}
2662
2663pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
2664{
2665	pte_t pte;
2666
2667	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
2668	pte_val(pte) |= (((unsigned long)space) << 32);
2669	pte_val(pte) |= pte_sz_bits(page_size);
2670
2671	return pte;
2672}
2673
2674static unsigned long kern_large_tte(unsigned long paddr)
2675{
2676	unsigned long val;
2677
2678	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
2679	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
2680	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
2681	if (tlb_type == hypervisor)
2682		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
2683		       page_cache4v_flag | _PAGE_P_4V |
2684		       _PAGE_EXEC_4V | _PAGE_W_4V);
2685
2686	return val | paddr;
2687}
2688
2689/* If not locked, zap it. */
2690void __flush_tlb_all(void)
2691{
2692	unsigned long pstate;
2693	int i;
2694
2695	__asm__ __volatile__("flushw\n\t"
2696			     "rdpr	%%pstate, %0\n\t"
2697			     "wrpr	%0, %1, %%pstate"
2698			     : "=r" (pstate)
2699			     : "i" (PSTATE_IE));
2700	if (tlb_type == hypervisor) {
2701		sun4v_mmu_demap_all();
2702	} else if (tlb_type == spitfire) {
2703		for (i = 0; i < 64; i++) {
2704			/* Spitfire Errata #32 workaround */
2705			/* NOTE: Always runs on spitfire, so no
2706			 *       cheetah+ page size encodings.
2707			 */
2708			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2709					     "flush	%%g6"
2710					     : /* No outputs */
2711					     : "r" (0),
2712					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2713
2714			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
2715				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2716						     "membar #Sync"
2717						     : /* no outputs */
2718						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
2719				spitfire_put_dtlb_data(i, 0x0UL);
2720			}
2721
2722			/* Spitfire Errata #32 workaround */
2723			/* NOTE: Always runs on spitfire, so no
2724			 *       cheetah+ page size encodings.
2725			 */
2726			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
2727					     "flush	%%g6"
2728					     : /* No outputs */
2729					     : "r" (0),
2730					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));
2731
2732			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
2733				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
2734						     "membar #Sync"
2735						     : /* no outputs */
2736						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
2737				spitfire_put_itlb_data(i, 0x0UL);
2738			}
2739		}
2740	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
2741		cheetah_flush_dtlb_all();
2742		cheetah_flush_itlb_all();
2743	}
2744	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
2745			     : : "r" (pstate));
2746}
2747
2748pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
2749			    unsigned long address)
2750{
2751	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2752	pte_t *pte = NULL;
2753
2754	if (page)
2755		pte = (pte_t *) page_address(page);
2756
2757	return pte;
2758}
2759
2760pgtable_t pte_alloc_one(struct mm_struct *mm,
2761			unsigned long address)
2762{
2763	struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO);
2764	if (!page)
2765		return NULL;
2766	if (!pgtable_page_ctor(page)) {
2767		free_hot_cold_page(page, 0);
2768		return NULL;
2769	}
2770	return (pte_t *) page_address(page);
2771}
2772
2773void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
2774{
2775	free_page((unsigned long)pte);
2776}
2777
2778static void __pte_free(pgtable_t pte)
2779{
2780	struct page *page = virt_to_page(pte);
2781
2782	pgtable_page_dtor(page);
2783	__free_page(page);
2784}
2785
2786void pte_free(struct mm_struct *mm, pgtable_t pte)
2787{
2788	__pte_free(pte);
2789}
2790
2791void pgtable_free(void *table, bool is_page)
2792{
2793	if (is_page)
2794		__pte_free(table);
2795	else
2796		kmem_cache_free(pgtable_cache, table);
2797}
2798
2799#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2800void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
2801			  pmd_t *pmd)
2802{
2803	unsigned long pte, flags;
2804	struct mm_struct *mm;
2805	pmd_t entry = *pmd;
2806
2807	if (!pmd_large(entry) || !pmd_young(entry))
2808		return;
2809
2810	pte = pmd_val(entry);
2811
2812	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
2813	if (!(pte & _PAGE_VALID))
2814		return;
2815
2816	/* We are fabricating 8MB pages using 4MB real hw pages.  */
2817	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));
2818
2819	mm = vma->vm_mm;
2820
2821	spin_lock_irqsave(&mm->context.lock, flags);
2822
2823	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
2824		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
2825					addr, pte);
2826
2827	spin_unlock_irqrestore(&mm->context.lock, flags);
2828}
2829#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
2830
2831#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
2832static void context_reload(void *__data)
2833{
2834	struct mm_struct *mm = __data;
2835
2836	if (mm == current->mm)
2837		load_secondary_context(mm);
2838}
2839
2840void hugetlb_setup(struct pt_regs *regs)
2841{
2842	struct mm_struct *mm = current->mm;
2843	struct tsb_config *tp;
2844
2845	if (faulthandler_disabled() || !mm) {
2846		const struct exception_table_entry *entry;
2847
2848		entry = search_exception_tables(regs->tpc);
2849		if (entry) {
2850			regs->tpc = entry->fixup;
2851			regs->tnpc = regs->tpc + 4;
2852			return;
2853		}
2854		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
2855		die_if_kernel("HugeTSB in atomic", regs);
2856	}
2857
2858	tp = &mm->context.tsb_block[MM_TSB_HUGE];
2859	if (likely(tp->tsb == NULL))
2860		tsb_grow(mm, MM_TSB_HUGE, 0);
2861
2862	tsb_context_switch(mm);
2863	smp_tsb_sync(mm);
2864
2865	/* On UltraSPARC-III+ and later, configure the second half of
2866	 * the Data-TLB for huge pages.
2867	 */
2868	if (tlb_type == cheetah_plus) {
2869		bool need_context_reload = false;
2870		unsigned long ctx;
2871
2872		spin_lock_irq(&ctx_alloc_lock);
2873		ctx = mm->context.sparc64_ctx_val;
2874		ctx &= ~CTX_PGSZ_MASK;
2875		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
2876		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;
2877
2878		if (ctx != mm->context.sparc64_ctx_val) {
2879			/* When changing the page size fields, we
2880			 * must perform a context flush so that no
2881			 * stale entries match.  This flush must
2882			 * occur with the original context register
2883			 * settings.
2884			 */
2885			do_flush_tlb_mm(mm);
2886
2887			/* Reload the context register of all processors
2888			 * also executing in this address space.
2889			 */
2890			mm->context.sparc64_ctx_val = ctx;
2891			need_context_reload = true;
2892		}
2893		spin_unlock_irq(&ctx_alloc_lock);
2894
2895		if (need_context_reload)
2896			on_each_cpu(context_reload, mm, 0);
2897	}
2898}
2899#endif
2900
2901static struct resource code_resource = {
2902	.name	= "Kernel code",
2903	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2904};
2905
2906static struct resource data_resource = {
2907	.name	= "Kernel data",
2908	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2909};
2910
2911static struct resource bss_resource = {
2912	.name	= "Kernel bss",
2913	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
2914};
2915
2916static inline resource_size_t compute_kern_paddr(void *addr)
2917{
2918	return (resource_size_t) (addr - KERNBASE + kern_base);
2919}
2920
2921static void __init kernel_lds_init(void)
2922{
2923	code_resource.start = compute_kern_paddr(_text);
2924	code_resource.end   = compute_kern_paddr(_etext - 1);
2925	data_resource.start = compute_kern_paddr(_etext);
2926	data_resource.end   = compute_kern_paddr(_edata - 1);
2927	bss_resource.start  = compute_kern_paddr(__bss_start);
2928	bss_resource.end    = compute_kern_paddr(_end - 1);
2929}
2930
2931static int __init report_memory(void)
2932{
2933	int i;
2934	struct resource *res;
2935
2936	kernel_lds_init();
2937
2938	for (i = 0; i < pavail_ents; i++) {
2939		res = kzalloc(sizeof(struct resource), GFP_KERNEL);
2940
2941		if (!res) {
2942			pr_warn("Failed to allocate source.\n");
2943			break;
2944		}
2945
2946		res->name = "System RAM";
2947		res->start = pavail[i].phys_addr;
2948		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
2949		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;
2950
2951		if (insert_resource(&iomem_resource, res) < 0) {
2952			pr_warn("Resource insertion failed.\n");
2953			break;
2954		}
2955
2956		insert_resource(res, &code_resource);
2957		insert_resource(res, &data_resource);
2958		insert_resource(res, &bss_resource);
2959	}
2960
2961	return 0;
2962}
2963arch_initcall(report_memory);
2964
2965#ifdef CONFIG_SMP
2966#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
2967#else
2968#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
2969#endif
2970
2971void flush_tlb_kernel_range(unsigned long start, unsigned long end)
2972{
2973	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
2974		if (start < LOW_OBP_ADDRESS) {
2975			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
2976			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
2977		}
2978		if (end > HI_OBP_ADDRESS) {
2979			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
2980			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
2981		}
2982	} else {
2983		flush_tsb_kernel_range(start, end);
2984		do_flush_tlb_kernel_range(start, end);
2985	}
2986}