Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Kernel support for the ptrace() and syscall tracing interfaces.
4 *
5 * Copyright (C) 1999-2005 Hewlett-Packard Co
6 * David Mosberger-Tang <davidm@hpl.hp.com>
7 * Copyright (C) 2006 Intel Co
8 * 2006-08-12 - IA64 Native Utrace implementation support added by
9 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
10 *
11 * Derived from the x86 and Alpha versions.
12 */
13#include <linux/kernel.h>
14#include <linux/sched.h>
15#include <linux/sched/task.h>
16#include <linux/sched/task_stack.h>
17#include <linux/mm.h>
18#include <linux/errno.h>
19#include <linux/ptrace.h>
20#include <linux/user.h>
21#include <linux/security.h>
22#include <linux/audit.h>
23#include <linux/signal.h>
24#include <linux/regset.h>
25#include <linux/elf.h>
26#include <linux/resume_user_mode.h>
27
28#include <asm/processor.h>
29#include <asm/ptrace_offsets.h>
30#include <asm/rse.h>
31#include <linux/uaccess.h>
32#include <asm/unwind.h>
33
34#include "entry.h"
35
36/*
37 * Bits in the PSR that we allow ptrace() to change:
38 * be, up, ac, mfl, mfh (the user mask; five bits total)
39 * db (debug breakpoint fault; one bit)
40 * id (instruction debug fault disable; one bit)
41 * dd (data debug fault disable; one bit)
42 * ri (restart instruction; two bits)
43 * is (instruction set; one bit)
44 */
45#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
46 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
47
48#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
49#define PFM_MASK MASK(38)
50
51#define PTRACE_DEBUG 0
52
53#if PTRACE_DEBUG
54# define dprintk(format...) printk(format)
55# define inline
56#else
57# define dprintk(format...)
58#endif
59
60/* Return TRUE if PT was created due to kernel-entry via a system-call. */
61
62static inline int
63in_syscall (struct pt_regs *pt)
64{
65 return (long) pt->cr_ifs >= 0;
66}
67
68/*
69 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
70 * bitset where bit i is set iff the NaT bit of register i is set.
71 */
72unsigned long
73ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
74{
75# define GET_BITS(first, last, unat) \
76 ({ \
77 unsigned long bit = ia64_unat_pos(&pt->r##first); \
78 unsigned long nbits = (last - first + 1); \
79 unsigned long mask = MASK(nbits) << first; \
80 unsigned long dist; \
81 if (bit < first) \
82 dist = 64 + bit - first; \
83 else \
84 dist = bit - first; \
85 ia64_rotr(unat, dist) & mask; \
86 })
87 unsigned long val;
88
89 /*
90 * Registers that are stored consecutively in struct pt_regs
91 * can be handled in parallel. If the register order in
92 * struct_pt_regs changes, this code MUST be updated.
93 */
94 val = GET_BITS( 1, 1, scratch_unat);
95 val |= GET_BITS( 2, 3, scratch_unat);
96 val |= GET_BITS(12, 13, scratch_unat);
97 val |= GET_BITS(14, 14, scratch_unat);
98 val |= GET_BITS(15, 15, scratch_unat);
99 val |= GET_BITS( 8, 11, scratch_unat);
100 val |= GET_BITS(16, 31, scratch_unat);
101 return val;
102
103# undef GET_BITS
104}
105
106/*
107 * Set the NaT bits for the scratch registers according to NAT and
108 * return the resulting unat (assuming the scratch registers are
109 * stored in PT).
110 */
111unsigned long
112ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
113{
114# define PUT_BITS(first, last, nat) \
115 ({ \
116 unsigned long bit = ia64_unat_pos(&pt->r##first); \
117 unsigned long nbits = (last - first + 1); \
118 unsigned long mask = MASK(nbits) << first; \
119 long dist; \
120 if (bit < first) \
121 dist = 64 + bit - first; \
122 else \
123 dist = bit - first; \
124 ia64_rotl(nat & mask, dist); \
125 })
126 unsigned long scratch_unat;
127
128 /*
129 * Registers that are stored consecutively in struct pt_regs
130 * can be handled in parallel. If the register order in
131 * struct_pt_regs changes, this code MUST be updated.
132 */
133 scratch_unat = PUT_BITS( 1, 1, nat);
134 scratch_unat |= PUT_BITS( 2, 3, nat);
135 scratch_unat |= PUT_BITS(12, 13, nat);
136 scratch_unat |= PUT_BITS(14, 14, nat);
137 scratch_unat |= PUT_BITS(15, 15, nat);
138 scratch_unat |= PUT_BITS( 8, 11, nat);
139 scratch_unat |= PUT_BITS(16, 31, nat);
140
141 return scratch_unat;
142
143# undef PUT_BITS
144}
145
146#define IA64_MLX_TEMPLATE 0x2
147#define IA64_MOVL_OPCODE 6
148
149void
150ia64_increment_ip (struct pt_regs *regs)
151{
152 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
153
154 if (ri > 2) {
155 ri = 0;
156 regs->cr_iip += 16;
157 } else if (ri == 2) {
158 get_user(w0, (char __user *) regs->cr_iip + 0);
159 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
160 /*
161 * rfi'ing to slot 2 of an MLX bundle causes
162 * an illegal operation fault. We don't want
163 * that to happen...
164 */
165 ri = 0;
166 regs->cr_iip += 16;
167 }
168 }
169 ia64_psr(regs)->ri = ri;
170}
171
172void
173ia64_decrement_ip (struct pt_regs *regs)
174{
175 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
176
177 if (ia64_psr(regs)->ri == 0) {
178 regs->cr_iip -= 16;
179 ri = 2;
180 get_user(w0, (char __user *) regs->cr_iip + 0);
181 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
182 /*
183 * rfi'ing to slot 2 of an MLX bundle causes
184 * an illegal operation fault. We don't want
185 * that to happen...
186 */
187 ri = 1;
188 }
189 }
190 ia64_psr(regs)->ri = ri;
191}
192
193/*
194 * This routine is used to read an rnat bits that are stored on the
195 * kernel backing store. Since, in general, the alignment of the user
196 * and kernel are different, this is not completely trivial. In
197 * essence, we need to construct the user RNAT based on up to two
198 * kernel RNAT values and/or the RNAT value saved in the child's
199 * pt_regs.
200 *
201 * user rbs
202 *
203 * +--------+ <-- lowest address
204 * | slot62 |
205 * +--------+
206 * | rnat | 0x....1f8
207 * +--------+
208 * | slot00 | \
209 * +--------+ |
210 * | slot01 | > child_regs->ar_rnat
211 * +--------+ |
212 * | slot02 | / kernel rbs
213 * +--------+ +--------+
214 * <- child_regs->ar_bspstore | slot61 | <-- krbs
215 * +- - - - + +--------+
216 * | slot62 |
217 * +- - - - + +--------+
218 * | rnat |
219 * +- - - - + +--------+
220 * vrnat | slot00 |
221 * +- - - - + +--------+
222 * = =
223 * +--------+
224 * | slot00 | \
225 * +--------+ |
226 * | slot01 | > child_stack->ar_rnat
227 * +--------+ |
228 * | slot02 | /
229 * +--------+
230 * <--- child_stack->ar_bspstore
231 *
232 * The way to think of this code is as follows: bit 0 in the user rnat
233 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
234 * value. The kernel rnat value holding this bit is stored in
235 * variable rnat0. rnat1 is loaded with the kernel rnat value that
236 * form the upper bits of the user rnat value.
237 *
238 * Boundary cases:
239 *
240 * o when reading the rnat "below" the first rnat slot on the kernel
241 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
242 * merged in from pt->ar_rnat.
243 *
244 * o when reading the rnat "above" the last rnat slot on the kernel
245 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
246 */
247static unsigned long
248get_rnat (struct task_struct *task, struct switch_stack *sw,
249 unsigned long *krbs, unsigned long *urnat_addr,
250 unsigned long *urbs_end)
251{
252 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
253 unsigned long umask = 0, mask, m;
254 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
255 long num_regs, nbits;
256 struct pt_regs *pt;
257
258 pt = task_pt_regs(task);
259 kbsp = (unsigned long *) sw->ar_bspstore;
260 ubspstore = (unsigned long *) pt->ar_bspstore;
261
262 if (urbs_end < urnat_addr)
263 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
264 else
265 nbits = 63;
266 mask = MASK(nbits);
267 /*
268 * First, figure out which bit number slot 0 in user-land maps
269 * to in the kernel rnat. Do this by figuring out how many
270 * register slots we're beyond the user's backingstore and
271 * then computing the equivalent address in kernel space.
272 */
273 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
274 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
275 shift = ia64_rse_slot_num(slot0_kaddr);
276 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
277 rnat0_kaddr = rnat1_kaddr - 64;
278
279 if (ubspstore + 63 > urnat_addr) {
280 /* some bits need to be merged in from pt->ar_rnat */
281 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
282 urnat = (pt->ar_rnat & umask);
283 mask &= ~umask;
284 if (!mask)
285 return urnat;
286 }
287
288 m = mask << shift;
289 if (rnat0_kaddr >= kbsp)
290 rnat0 = sw->ar_rnat;
291 else if (rnat0_kaddr > krbs)
292 rnat0 = *rnat0_kaddr;
293 urnat |= (rnat0 & m) >> shift;
294
295 m = mask >> (63 - shift);
296 if (rnat1_kaddr >= kbsp)
297 rnat1 = sw->ar_rnat;
298 else if (rnat1_kaddr > krbs)
299 rnat1 = *rnat1_kaddr;
300 urnat |= (rnat1 & m) << (63 - shift);
301 return urnat;
302}
303
304/*
305 * The reverse of get_rnat.
306 */
307static void
308put_rnat (struct task_struct *task, struct switch_stack *sw,
309 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
310 unsigned long *urbs_end)
311{
312 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
313 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
314 long num_regs, nbits;
315 struct pt_regs *pt;
316 unsigned long cfm, *urbs_kargs;
317
318 pt = task_pt_regs(task);
319 kbsp = (unsigned long *) sw->ar_bspstore;
320 ubspstore = (unsigned long *) pt->ar_bspstore;
321
322 urbs_kargs = urbs_end;
323 if (in_syscall(pt)) {
324 /*
325 * If entered via syscall, don't allow user to set rnat bits
326 * for syscall args.
327 */
328 cfm = pt->cr_ifs;
329 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
330 }
331
332 if (urbs_kargs >= urnat_addr)
333 nbits = 63;
334 else {
335 if ((urnat_addr - 63) >= urbs_kargs)
336 return;
337 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
338 }
339 mask = MASK(nbits);
340
341 /*
342 * First, figure out which bit number slot 0 in user-land maps
343 * to in the kernel rnat. Do this by figuring out how many
344 * register slots we're beyond the user's backingstore and
345 * then computing the equivalent address in kernel space.
346 */
347 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
348 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
349 shift = ia64_rse_slot_num(slot0_kaddr);
350 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
351 rnat0_kaddr = rnat1_kaddr - 64;
352
353 if (ubspstore + 63 > urnat_addr) {
354 /* some bits need to be place in pt->ar_rnat: */
355 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
356 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
357 mask &= ~umask;
358 if (!mask)
359 return;
360 }
361 /*
362 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
363 * rnat slot is ignored. so we don't have to clear it here.
364 */
365 rnat0 = (urnat << shift);
366 m = mask << shift;
367 if (rnat0_kaddr >= kbsp)
368 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
369 else if (rnat0_kaddr > krbs)
370 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
371
372 rnat1 = (urnat >> (63 - shift));
373 m = mask >> (63 - shift);
374 if (rnat1_kaddr >= kbsp)
375 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
376 else if (rnat1_kaddr > krbs)
377 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
378}
379
380static inline int
381on_kernel_rbs (unsigned long addr, unsigned long bspstore,
382 unsigned long urbs_end)
383{
384 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
385 urbs_end);
386 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
387}
388
389/*
390 * Read a word from the user-level backing store of task CHILD. ADDR
391 * is the user-level address to read the word from, VAL a pointer to
392 * the return value, and USER_BSP gives the end of the user-level
393 * backing store (i.e., it's the address that would be in ar.bsp after
394 * the user executed a "cover" instruction).
395 *
396 * This routine takes care of accessing the kernel register backing
397 * store for those registers that got spilled there. It also takes
398 * care of calculating the appropriate RNaT collection words.
399 */
400long
401ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
402 unsigned long user_rbs_end, unsigned long addr, long *val)
403{
404 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
405 struct pt_regs *child_regs;
406 size_t copied;
407 long ret;
408
409 urbs_end = (long *) user_rbs_end;
410 laddr = (unsigned long *) addr;
411 child_regs = task_pt_regs(child);
412 bspstore = (unsigned long *) child_regs->ar_bspstore;
413 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
414 if (on_kernel_rbs(addr, (unsigned long) bspstore,
415 (unsigned long) urbs_end))
416 {
417 /*
418 * Attempt to read the RBS in an area that's actually
419 * on the kernel RBS => read the corresponding bits in
420 * the kernel RBS.
421 */
422 rnat_addr = ia64_rse_rnat_addr(laddr);
423 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
424
425 if (laddr == rnat_addr) {
426 /* return NaT collection word itself */
427 *val = ret;
428 return 0;
429 }
430
431 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
432 /*
433 * It is implementation dependent whether the
434 * data portion of a NaT value gets saved on a
435 * st8.spill or RSE spill (e.g., see EAS 2.6,
436 * 4.4.4.6 Register Spill and Fill). To get
437 * consistent behavior across all possible
438 * IA-64 implementations, we return zero in
439 * this case.
440 */
441 *val = 0;
442 return 0;
443 }
444
445 if (laddr < urbs_end) {
446 /*
447 * The desired word is on the kernel RBS and
448 * is not a NaT.
449 */
450 regnum = ia64_rse_num_regs(bspstore, laddr);
451 *val = *ia64_rse_skip_regs(krbs, regnum);
452 return 0;
453 }
454 }
455 copied = access_process_vm(child, addr, &ret, sizeof(ret), FOLL_FORCE);
456 if (copied != sizeof(ret))
457 return -EIO;
458 *val = ret;
459 return 0;
460}
461
462long
463ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
464 unsigned long user_rbs_end, unsigned long addr, long val)
465{
466 unsigned long *bspstore, *krbs, regnum, *laddr;
467 unsigned long *urbs_end = (long *) user_rbs_end;
468 struct pt_regs *child_regs;
469
470 laddr = (unsigned long *) addr;
471 child_regs = task_pt_regs(child);
472 bspstore = (unsigned long *) child_regs->ar_bspstore;
473 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
474 if (on_kernel_rbs(addr, (unsigned long) bspstore,
475 (unsigned long) urbs_end))
476 {
477 /*
478 * Attempt to write the RBS in an area that's actually
479 * on the kernel RBS => write the corresponding bits
480 * in the kernel RBS.
481 */
482 if (ia64_rse_is_rnat_slot(laddr))
483 put_rnat(child, child_stack, krbs, laddr, val,
484 urbs_end);
485 else {
486 if (laddr < urbs_end) {
487 regnum = ia64_rse_num_regs(bspstore, laddr);
488 *ia64_rse_skip_regs(krbs, regnum) = val;
489 }
490 }
491 } else if (access_process_vm(child, addr, &val, sizeof(val),
492 FOLL_FORCE | FOLL_WRITE)
493 != sizeof(val))
494 return -EIO;
495 return 0;
496}
497
498/*
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
505 */
506unsigned long
507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
509{
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
512
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
521
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525}
526
527/*
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
533 */
534long
535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
537{
538 unsigned long addr, val;
539 long ret;
540
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val),
547 FOLL_FORCE | FOLL_WRITE)
548 != sizeof(val))
549 return -EIO;
550 }
551 return 0;
552}
553
554static long
555ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
556 unsigned long user_rbs_start, unsigned long user_rbs_end)
557{
558 unsigned long addr, val;
559 long ret;
560
561 /* now copy word for word from user rbs to kernel rbs: */
562 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
563 if (access_process_vm(child, addr, &val, sizeof(val),
564 FOLL_FORCE)
565 != sizeof(val))
566 return -EIO;
567
568 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
569 if (ret < 0)
570 return ret;
571 }
572 return 0;
573}
574
575typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
576 unsigned long, unsigned long);
577
578static void do_sync_rbs(struct unw_frame_info *info, void *arg)
579{
580 struct pt_regs *pt;
581 unsigned long urbs_end;
582 syncfunc_t fn = arg;
583
584 if (unw_unwind_to_user(info) < 0)
585 return;
586 pt = task_pt_regs(info->task);
587 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
588
589 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
590}
591
592/*
593 * when a thread is stopped (ptraced), debugger might change thread's user
594 * stack (change memory directly), and we must avoid the RSE stored in kernel
595 * to override user stack (user space's RSE is newer than kernel's in the
596 * case). To workaround the issue, we copy kernel RSE to user RSE before the
597 * task is stopped, so user RSE has updated data. we then copy user RSE to
598 * kernel after the task is resummed from traced stop and kernel will use the
599 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
600 * synchronize user RSE to kernel.
601 */
602void ia64_ptrace_stop(void)
603{
604 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
605 return;
606 set_notify_resume(current);
607 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
608}
609
610/*
611 * This is called to read back the register backing store.
612 */
613void ia64_sync_krbs(void)
614{
615 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
616
617 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
618}
619
620/*
621 * Write f32-f127 back to task->thread.fph if it has been modified.
622 */
623inline void
624ia64_flush_fph (struct task_struct *task)
625{
626 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
627
628 /*
629 * Prevent migrating this task while
630 * we're fiddling with the FPU state
631 */
632 preempt_disable();
633 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
634 psr->mfh = 0;
635 task->thread.flags |= IA64_THREAD_FPH_VALID;
636 ia64_save_fpu(&task->thread.fph[0]);
637 }
638 preempt_enable();
639}
640
641/*
642 * Sync the fph state of the task so that it can be manipulated
643 * through thread.fph. If necessary, f32-f127 are written back to
644 * thread.fph or, if the fph state hasn't been used before, thread.fph
645 * is cleared to zeroes. Also, access to f32-f127 is disabled to
646 * ensure that the task picks up the state from thread.fph when it
647 * executes again.
648 */
649void
650ia64_sync_fph (struct task_struct *task)
651{
652 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
653
654 ia64_flush_fph(task);
655 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
656 task->thread.flags |= IA64_THREAD_FPH_VALID;
657 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
658 }
659 ia64_drop_fpu(task);
660 psr->dfh = 1;
661}
662
663/*
664 * Change the machine-state of CHILD such that it will return via the normal
665 * kernel exit-path, rather than the syscall-exit path.
666 */
667static void
668convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
669 unsigned long cfm)
670{
671 struct unw_frame_info info, prev_info;
672 unsigned long ip, sp, pr;
673
674 unw_init_from_blocked_task(&info, child);
675 while (1) {
676 prev_info = info;
677 if (unw_unwind(&info) < 0)
678 return;
679
680 unw_get_sp(&info, &sp);
681 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
682 < IA64_PT_REGS_SIZE) {
683 dprintk("ptrace.%s: ran off the top of the kernel "
684 "stack\n", __func__);
685 return;
686 }
687 if (unw_get_pr (&prev_info, &pr) < 0) {
688 unw_get_rp(&prev_info, &ip);
689 dprintk("ptrace.%s: failed to read "
690 "predicate register (ip=0x%lx)\n",
691 __func__, ip);
692 return;
693 }
694 if (unw_is_intr_frame(&info)
695 && (pr & (1UL << PRED_USER_STACK)))
696 break;
697 }
698
699 /*
700 * Note: at the time of this call, the target task is blocked
701 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
702 * (aka, "pLvSys") we redirect execution from
703 * .work_pending_syscall_end to .work_processed_kernel.
704 */
705 unw_get_pr(&prev_info, &pr);
706 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
707 pr |= (1UL << PRED_NON_SYSCALL);
708 unw_set_pr(&prev_info, pr);
709
710 pt->cr_ifs = (1UL << 63) | cfm;
711 /*
712 * Clear the memory that is NOT written on syscall-entry to
713 * ensure we do not leak kernel-state to user when execution
714 * resumes.
715 */
716 pt->r2 = 0;
717 pt->r3 = 0;
718 pt->r14 = 0;
719 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
720 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
721 pt->b7 = 0;
722 pt->ar_ccv = 0;
723 pt->ar_csd = 0;
724 pt->ar_ssd = 0;
725}
726
727static int
728access_nat_bits (struct task_struct *child, struct pt_regs *pt,
729 struct unw_frame_info *info,
730 unsigned long *data, int write_access)
731{
732 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
733 char nat = 0;
734
735 if (write_access) {
736 nat_bits = *data;
737 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
738 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
739 dprintk("ptrace: failed to set ar.unat\n");
740 return -1;
741 }
742 for (regnum = 4; regnum <= 7; ++regnum) {
743 unw_get_gr(info, regnum, &dummy, &nat);
744 unw_set_gr(info, regnum, dummy,
745 (nat_bits >> regnum) & 1);
746 }
747 } else {
748 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
749 dprintk("ptrace: failed to read ar.unat\n");
750 return -1;
751 }
752 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
753 for (regnum = 4; regnum <= 7; ++regnum) {
754 unw_get_gr(info, regnum, &dummy, &nat);
755 nat_bits |= (nat != 0) << regnum;
756 }
757 *data = nat_bits;
758 }
759 return 0;
760}
761
762static int
763access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
764 unsigned long addr, unsigned long *data, int write_access);
765
766static long
767ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
768{
769 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
770 struct unw_frame_info info;
771 struct ia64_fpreg fpval;
772 struct switch_stack *sw;
773 struct pt_regs *pt;
774 long ret, retval = 0;
775 char nat = 0;
776 int i;
777
778 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
779 return -EIO;
780
781 pt = task_pt_regs(child);
782 sw = (struct switch_stack *) (child->thread.ksp + 16);
783 unw_init_from_blocked_task(&info, child);
784 if (unw_unwind_to_user(&info) < 0) {
785 return -EIO;
786 }
787
788 if (((unsigned long) ppr & 0x7) != 0) {
789 dprintk("ptrace:unaligned register address %p\n", ppr);
790 return -EIO;
791 }
792
793 if (access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 0) < 0 ||
794 access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 0) < 0 ||
795 access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 0) < 0 ||
796 access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 0) < 0 ||
797 access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 0) < 0 ||
798 access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 0) < 0 ||
799 access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 0) < 0)
800 return -EIO;
801
802 /* control regs */
803
804 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
805 retval |= __put_user(psr, &ppr->cr_ipsr);
806
807 /* app regs */
808
809 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
810 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
811 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
812 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
813 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
814 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
815
816 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
817 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
818 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
819 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
820 retval |= __put_user(cfm, &ppr->cfm);
821
822 /* gr1-gr3 */
823
824 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
825 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
826
827 /* gr4-gr7 */
828
829 for (i = 4; i < 8; i++) {
830 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
831 return -EIO;
832 retval |= __put_user(val, &ppr->gr[i]);
833 }
834
835 /* gr8-gr11 */
836
837 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
838
839 /* gr12-gr15 */
840
841 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
842 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
843 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
844
845 /* gr16-gr31 */
846
847 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
848
849 /* b0 */
850
851 retval |= __put_user(pt->b0, &ppr->br[0]);
852
853 /* b1-b5 */
854
855 for (i = 1; i < 6; i++) {
856 if (unw_access_br(&info, i, &val, 0) < 0)
857 return -EIO;
858 __put_user(val, &ppr->br[i]);
859 }
860
861 /* b6-b7 */
862
863 retval |= __put_user(pt->b6, &ppr->br[6]);
864 retval |= __put_user(pt->b7, &ppr->br[7]);
865
866 /* fr2-fr5 */
867
868 for (i = 2; i < 6; i++) {
869 if (unw_get_fr(&info, i, &fpval) < 0)
870 return -EIO;
871 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
872 }
873
874 /* fr6-fr11 */
875
876 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
877 sizeof(struct ia64_fpreg) * 6);
878
879 /* fp scratch regs(12-15) */
880
881 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
882 sizeof(struct ia64_fpreg) * 4);
883
884 /* fr16-fr31 */
885
886 for (i = 16; i < 32; i++) {
887 if (unw_get_fr(&info, i, &fpval) < 0)
888 return -EIO;
889 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
890 }
891
892 /* fph */
893
894 ia64_flush_fph(child);
895 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
896 sizeof(ppr->fr[32]) * 96);
897
898 /* preds */
899
900 retval |= __put_user(pt->pr, &ppr->pr);
901
902 /* nat bits */
903
904 retval |= __put_user(nat_bits, &ppr->nat);
905
906 ret = retval ? -EIO : 0;
907 return ret;
908}
909
910static long
911ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
912{
913 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
914 struct unw_frame_info info;
915 struct switch_stack *sw;
916 struct ia64_fpreg fpval;
917 struct pt_regs *pt;
918 long retval = 0;
919 int i;
920
921 memset(&fpval, 0, sizeof(fpval));
922
923 if (!access_ok(ppr, sizeof(struct pt_all_user_regs)))
924 return -EIO;
925
926 pt = task_pt_regs(child);
927 sw = (struct switch_stack *) (child->thread.ksp + 16);
928 unw_init_from_blocked_task(&info, child);
929 if (unw_unwind_to_user(&info) < 0) {
930 return -EIO;
931 }
932
933 if (((unsigned long) ppr & 0x7) != 0) {
934 dprintk("ptrace:unaligned register address %p\n", ppr);
935 return -EIO;
936 }
937
938 /* control regs */
939
940 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
941 retval |= __get_user(psr, &ppr->cr_ipsr);
942
943 /* app regs */
944
945 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
946 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
947 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
948 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
949 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
950 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
951
952 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
953 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
954 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
955 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
956 retval |= __get_user(cfm, &ppr->cfm);
957
958 /* gr1-gr3 */
959
960 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
961 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
962
963 /* gr4-gr7 */
964
965 for (i = 4; i < 8; i++) {
966 retval |= __get_user(val, &ppr->gr[i]);
967 /* NaT bit will be set via PT_NAT_BITS: */
968 if (unw_set_gr(&info, i, val, 0) < 0)
969 return -EIO;
970 }
971
972 /* gr8-gr11 */
973
974 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
975
976 /* gr12-gr15 */
977
978 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
979 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
980 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
981
982 /* gr16-gr31 */
983
984 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
985
986 /* b0 */
987
988 retval |= __get_user(pt->b0, &ppr->br[0]);
989
990 /* b1-b5 */
991
992 for (i = 1; i < 6; i++) {
993 retval |= __get_user(val, &ppr->br[i]);
994 unw_set_br(&info, i, val);
995 }
996
997 /* b6-b7 */
998
999 retval |= __get_user(pt->b6, &ppr->br[6]);
1000 retval |= __get_user(pt->b7, &ppr->br[7]);
1001
1002 /* fr2-fr5 */
1003
1004 for (i = 2; i < 6; i++) {
1005 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1006 if (unw_set_fr(&info, i, fpval) < 0)
1007 return -EIO;
1008 }
1009
1010 /* fr6-fr11 */
1011
1012 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1013 sizeof(ppr->fr[6]) * 6);
1014
1015 /* fp scratch regs(12-15) */
1016
1017 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1018 sizeof(ppr->fr[12]) * 4);
1019
1020 /* fr16-fr31 */
1021
1022 for (i = 16; i < 32; i++) {
1023 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1024 sizeof(fpval));
1025 if (unw_set_fr(&info, i, fpval) < 0)
1026 return -EIO;
1027 }
1028
1029 /* fph */
1030
1031 ia64_sync_fph(child);
1032 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1033 sizeof(ppr->fr[32]) * 96);
1034
1035 /* preds */
1036
1037 retval |= __get_user(pt->pr, &ppr->pr);
1038
1039 /* nat bits */
1040
1041 retval |= __get_user(nat_bits, &ppr->nat);
1042
1043 retval |= access_elf_reg(child, &info, ELF_CR_IPSR_OFFSET, &psr, 1);
1044 retval |= access_elf_reg(child, &info, ELF_AR_RSC_OFFSET, &rsc, 1);
1045 retval |= access_elf_reg(child, &info, ELF_AR_EC_OFFSET, &ec, 1);
1046 retval |= access_elf_reg(child, &info, ELF_AR_LC_OFFSET, &lc, 1);
1047 retval |= access_elf_reg(child, &info, ELF_AR_RNAT_OFFSET, &rnat, 1);
1048 retval |= access_elf_reg(child, &info, ELF_AR_BSP_OFFSET, &bsp, 1);
1049 retval |= access_elf_reg(child, &info, ELF_CFM_OFFSET, &cfm, 1);
1050 retval |= access_elf_reg(child, &info, ELF_NAT_OFFSET, &nat_bits, 1);
1051
1052 return retval ? -EIO : 0;
1053}
1054
1055void
1056user_enable_single_step (struct task_struct *child)
1057{
1058 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1059
1060 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1061 child_psr->ss = 1;
1062}
1063
1064void
1065user_enable_block_step (struct task_struct *child)
1066{
1067 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1068
1069 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1070 child_psr->tb = 1;
1071}
1072
1073void
1074user_disable_single_step (struct task_struct *child)
1075{
1076 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1077
1078 /* make sure the single step/taken-branch trap bits are not set: */
1079 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1080 child_psr->ss = 0;
1081 child_psr->tb = 0;
1082}
1083
1084/*
1085 * Called by kernel/ptrace.c when detaching..
1086 *
1087 * Make sure the single step bit is not set.
1088 */
1089void
1090ptrace_disable (struct task_struct *child)
1091{
1092 user_disable_single_step(child);
1093}
1094
1095static int
1096access_uarea (struct task_struct *child, unsigned long addr,
1097 unsigned long *data, int write_access);
1098
1099long
1100arch_ptrace (struct task_struct *child, long request,
1101 unsigned long addr, unsigned long data)
1102{
1103 switch (request) {
1104 case PTRACE_PEEKTEXT:
1105 case PTRACE_PEEKDATA:
1106 /* read word at location addr */
1107 if (ptrace_access_vm(child, addr, &data, sizeof(data),
1108 FOLL_FORCE)
1109 != sizeof(data))
1110 return -EIO;
1111 /* ensure return value is not mistaken for error code */
1112 force_successful_syscall_return();
1113 return data;
1114
1115 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1116 * by the generic ptrace_request().
1117 */
1118
1119 case PTRACE_PEEKUSR:
1120 /* read the word at addr in the USER area */
1121 if (access_uarea(child, addr, &data, 0) < 0)
1122 return -EIO;
1123 /* ensure return value is not mistaken for error code */
1124 force_successful_syscall_return();
1125 return data;
1126
1127 case PTRACE_POKEUSR:
1128 /* write the word at addr in the USER area */
1129 if (access_uarea(child, addr, &data, 1) < 0)
1130 return -EIO;
1131 return 0;
1132
1133 case PTRACE_OLD_GETSIGINFO:
1134 /* for backwards-compatibility */
1135 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1136
1137 case PTRACE_OLD_SETSIGINFO:
1138 /* for backwards-compatibility */
1139 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1140
1141 case PTRACE_GETREGS:
1142 return ptrace_getregs(child,
1143 (struct pt_all_user_regs __user *) data);
1144
1145 case PTRACE_SETREGS:
1146 return ptrace_setregs(child,
1147 (struct pt_all_user_regs __user *) data);
1148
1149 default:
1150 return ptrace_request(child, request, addr, data);
1151 }
1152}
1153
1154
1155/* "asmlinkage" so the input arguments are preserved... */
1156
1157asmlinkage long
1158syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1159 long arg4, long arg5, long arg6, long arg7,
1160 struct pt_regs regs)
1161{
1162 if (test_thread_flag(TIF_SYSCALL_TRACE))
1163 if (ptrace_report_syscall_entry(®s))
1164 return -ENOSYS;
1165
1166 /* copy user rbs to kernel rbs */
1167 if (test_thread_flag(TIF_RESTORE_RSE))
1168 ia64_sync_krbs();
1169
1170
1171 audit_syscall_entry(regs.r15, arg0, arg1, arg2, arg3);
1172
1173 return 0;
1174}
1175
1176/* "asmlinkage" so the input arguments are preserved... */
1177
1178asmlinkage void
1179syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1180 long arg4, long arg5, long arg6, long arg7,
1181 struct pt_regs regs)
1182{
1183 int step;
1184
1185 audit_syscall_exit(®s);
1186
1187 step = test_thread_flag(TIF_SINGLESTEP);
1188 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1189 ptrace_report_syscall_exit(®s, step);
1190
1191 /* copy user rbs to kernel rbs */
1192 if (test_thread_flag(TIF_RESTORE_RSE))
1193 ia64_sync_krbs();
1194}
1195
1196/* Utrace implementation starts here */
1197struct regset_get {
1198 void *kbuf;
1199 void __user *ubuf;
1200};
1201
1202struct regset_set {
1203 const void *kbuf;
1204 const void __user *ubuf;
1205};
1206
1207struct regset_getset {
1208 struct task_struct *target;
1209 const struct user_regset *regset;
1210 union {
1211 struct regset_get get;
1212 struct regset_set set;
1213 } u;
1214 unsigned int pos;
1215 unsigned int count;
1216 int ret;
1217};
1218
1219static const ptrdiff_t pt_offsets[32] =
1220{
1221#define R(n) offsetof(struct pt_regs, r##n)
1222 [0] = -1, R(1), R(2), R(3),
1223 [4] = -1, [5] = -1, [6] = -1, [7] = -1,
1224 R(8), R(9), R(10), R(11), R(12), R(13), R(14), R(15),
1225 R(16), R(17), R(18), R(19), R(20), R(21), R(22), R(23),
1226 R(24), R(25), R(26), R(27), R(28), R(29), R(30), R(31),
1227#undef R
1228};
1229
1230static int
1231access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1232 unsigned long addr, unsigned long *data, int write_access)
1233{
1234 struct pt_regs *pt = task_pt_regs(target);
1235 unsigned reg = addr / sizeof(unsigned long);
1236 ptrdiff_t d = pt_offsets[reg];
1237
1238 if (d >= 0) {
1239 unsigned long *ptr = (void *)pt + d;
1240 if (write_access)
1241 *ptr = *data;
1242 else
1243 *data = *ptr;
1244 return 0;
1245 } else {
1246 char nat = 0;
1247 if (write_access) {
1248 /* read NaT bit first: */
1249 unsigned long dummy;
1250 int ret = unw_get_gr(info, reg, &dummy, &nat);
1251 if (ret < 0)
1252 return ret;
1253 }
1254 return unw_access_gr(info, reg, data, &nat, write_access);
1255 }
1256}
1257
1258static int
1259access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1260 unsigned long addr, unsigned long *data, int write_access)
1261{
1262 struct pt_regs *pt;
1263 unsigned long *ptr = NULL;
1264
1265 pt = task_pt_regs(target);
1266 switch (addr) {
1267 case ELF_BR_OFFSET(0):
1268 ptr = &pt->b0;
1269 break;
1270 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1271 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1272 data, write_access);
1273 case ELF_BR_OFFSET(6):
1274 ptr = &pt->b6;
1275 break;
1276 case ELF_BR_OFFSET(7):
1277 ptr = &pt->b7;
1278 }
1279 if (write_access)
1280 *ptr = *data;
1281 else
1282 *data = *ptr;
1283 return 0;
1284}
1285
1286static int
1287access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1288 unsigned long addr, unsigned long *data, int write_access)
1289{
1290 struct pt_regs *pt;
1291 unsigned long cfm, urbs_end;
1292 unsigned long *ptr = NULL;
1293
1294 pt = task_pt_regs(target);
1295 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1296 switch (addr) {
1297 case ELF_AR_RSC_OFFSET:
1298 /* force PL3 */
1299 if (write_access)
1300 pt->ar_rsc = *data | (3 << 2);
1301 else
1302 *data = pt->ar_rsc;
1303 return 0;
1304 case ELF_AR_BSP_OFFSET:
1305 /*
1306 * By convention, we use PT_AR_BSP to refer to
1307 * the end of the user-level backing store.
1308 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1309 * to get the real value of ar.bsp at the time
1310 * the kernel was entered.
1311 *
1312 * Furthermore, when changing the contents of
1313 * PT_AR_BSP (or PT_CFM) while the task is
1314 * blocked in a system call, convert the state
1315 * so that the non-system-call exit
1316 * path is used. This ensures that the proper
1317 * state will be picked up when resuming
1318 * execution. However, it *also* means that
1319 * once we write PT_AR_BSP/PT_CFM, it won't be
1320 * possible to modify the syscall arguments of
1321 * the pending system call any longer. This
1322 * shouldn't be an issue because modifying
1323 * PT_AR_BSP/PT_CFM generally implies that
1324 * we're either abandoning the pending system
1325 * call or that we defer it's re-execution
1326 * (e.g., due to GDB doing an inferior
1327 * function call).
1328 */
1329 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1330 if (write_access) {
1331 if (*data != urbs_end) {
1332 if (in_syscall(pt))
1333 convert_to_non_syscall(target,
1334 pt,
1335 cfm);
1336 /*
1337 * Simulate user-level write
1338 * of ar.bsp:
1339 */
1340 pt->loadrs = 0;
1341 pt->ar_bspstore = *data;
1342 }
1343 } else
1344 *data = urbs_end;
1345 return 0;
1346 case ELF_AR_BSPSTORE_OFFSET:
1347 ptr = &pt->ar_bspstore;
1348 break;
1349 case ELF_AR_RNAT_OFFSET:
1350 ptr = &pt->ar_rnat;
1351 break;
1352 case ELF_AR_CCV_OFFSET:
1353 ptr = &pt->ar_ccv;
1354 break;
1355 case ELF_AR_UNAT_OFFSET:
1356 ptr = &pt->ar_unat;
1357 break;
1358 case ELF_AR_FPSR_OFFSET:
1359 ptr = &pt->ar_fpsr;
1360 break;
1361 case ELF_AR_PFS_OFFSET:
1362 ptr = &pt->ar_pfs;
1363 break;
1364 case ELF_AR_LC_OFFSET:
1365 return unw_access_ar(info, UNW_AR_LC, data,
1366 write_access);
1367 case ELF_AR_EC_OFFSET:
1368 return unw_access_ar(info, UNW_AR_EC, data,
1369 write_access);
1370 case ELF_AR_CSD_OFFSET:
1371 ptr = &pt->ar_csd;
1372 break;
1373 case ELF_AR_SSD_OFFSET:
1374 ptr = &pt->ar_ssd;
1375 }
1376 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1377 switch (addr) {
1378 case ELF_CR_IIP_OFFSET:
1379 ptr = &pt->cr_iip;
1380 break;
1381 case ELF_CFM_OFFSET:
1382 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1383 if (write_access) {
1384 if (((cfm ^ *data) & PFM_MASK) != 0) {
1385 if (in_syscall(pt))
1386 convert_to_non_syscall(target,
1387 pt,
1388 cfm);
1389 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1390 | (*data & PFM_MASK));
1391 }
1392 } else
1393 *data = cfm;
1394 return 0;
1395 case ELF_CR_IPSR_OFFSET:
1396 if (write_access) {
1397 unsigned long tmp = *data;
1398 /* psr.ri==3 is a reserved value: SDM 2:25 */
1399 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1400 tmp &= ~IA64_PSR_RI;
1401 pt->cr_ipsr = ((tmp & IPSR_MASK)
1402 | (pt->cr_ipsr & ~IPSR_MASK));
1403 } else
1404 *data = (pt->cr_ipsr & IPSR_MASK);
1405 return 0;
1406 }
1407 } else if (addr == ELF_NAT_OFFSET)
1408 return access_nat_bits(target, pt, info,
1409 data, write_access);
1410 else if (addr == ELF_PR_OFFSET)
1411 ptr = &pt->pr;
1412 else
1413 return -1;
1414
1415 if (write_access)
1416 *ptr = *data;
1417 else
1418 *data = *ptr;
1419
1420 return 0;
1421}
1422
1423static int
1424access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1425 unsigned long addr, unsigned long *data, int write_access)
1426{
1427 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(31))
1428 return access_elf_gpreg(target, info, addr, data, write_access);
1429 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1430 return access_elf_breg(target, info, addr, data, write_access);
1431 else
1432 return access_elf_areg(target, info, addr, data, write_access);
1433}
1434
1435struct regset_membuf {
1436 struct membuf to;
1437 int ret;
1438};
1439
1440static void do_gpregs_get(struct unw_frame_info *info, void *arg)
1441{
1442 struct regset_membuf *dst = arg;
1443 struct membuf to = dst->to;
1444 unsigned int n;
1445 elf_greg_t reg;
1446
1447 if (unw_unwind_to_user(info) < 0)
1448 return;
1449
1450 /*
1451 * coredump format:
1452 * r0-r31
1453 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1454 * predicate registers (p0-p63)
1455 * b0-b7
1456 * ip cfm user-mask
1457 * ar.rsc ar.bsp ar.bspstore ar.rnat
1458 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1459 */
1460
1461
1462 /* Skip r0 */
1463 membuf_zero(&to, 8);
1464 for (n = 8; to.left && n < ELF_AR_END_OFFSET; n += 8) {
1465 if (access_elf_reg(info->task, info, n, ®, 0) < 0) {
1466 dst->ret = -EIO;
1467 return;
1468 }
1469 membuf_store(&to, reg);
1470 }
1471}
1472
1473static void do_gpregs_set(struct unw_frame_info *info, void *arg)
1474{
1475 struct regset_getset *dst = arg;
1476
1477 if (unw_unwind_to_user(info) < 0)
1478 return;
1479
1480 if (!dst->count)
1481 return;
1482 /* Skip r0 */
1483 if (dst->pos < ELF_GR_OFFSET(1)) {
1484 user_regset_copyin_ignore(&dst->pos, &dst->count,
1485 &dst->u.set.kbuf, &dst->u.set.ubuf,
1486 0, ELF_GR_OFFSET(1));
1487 dst->ret = 0;
1488 }
1489
1490 while (dst->count && dst->pos < ELF_AR_END_OFFSET) {
1491 unsigned int n, from, to;
1492 elf_greg_t tmp[16];
1493
1494 from = dst->pos;
1495 to = from + sizeof(tmp);
1496 if (to > ELF_AR_END_OFFSET)
1497 to = ELF_AR_END_OFFSET;
1498 /* get up to 16 values */
1499 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1500 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1501 from, to);
1502 if (dst->ret)
1503 return;
1504 /* now copy them into registers */
1505 for (n = 0; from < dst->pos; from += sizeof(elf_greg_t), n++)
1506 if (access_elf_reg(dst->target, info, from,
1507 &tmp[n], 1) < 0) {
1508 dst->ret = -EIO;
1509 return;
1510 }
1511 }
1512}
1513
1514#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1515
1516static void do_fpregs_get(struct unw_frame_info *info, void *arg)
1517{
1518 struct task_struct *task = info->task;
1519 struct regset_membuf *dst = arg;
1520 struct membuf to = dst->to;
1521 elf_fpreg_t reg;
1522 unsigned int n;
1523
1524 if (unw_unwind_to_user(info) < 0)
1525 return;
1526
1527 /* Skip pos 0 and 1 */
1528 membuf_zero(&to, 2 * sizeof(elf_fpreg_t));
1529
1530 /* fr2-fr31 */
1531 for (n = 2; to.left && n < 32; n++) {
1532 if (unw_get_fr(info, n, ®)) {
1533 dst->ret = -EIO;
1534 return;
1535 }
1536 membuf_write(&to, ®, sizeof(reg));
1537 }
1538
1539 /* fph */
1540 if (!to.left)
1541 return;
1542
1543 ia64_flush_fph(task);
1544 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1545 membuf_write(&to, &task->thread.fph, 96 * sizeof(reg));
1546 else
1547 membuf_zero(&to, 96 * sizeof(reg));
1548}
1549
1550static void do_fpregs_set(struct unw_frame_info *info, void *arg)
1551{
1552 struct regset_getset *dst = arg;
1553 elf_fpreg_t fpreg, tmp[30];
1554 int index, start, end;
1555
1556 if (unw_unwind_to_user(info) < 0)
1557 return;
1558
1559 /* Skip pos 0 and 1 */
1560 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1561 user_regset_copyin_ignore(&dst->pos, &dst->count,
1562 &dst->u.set.kbuf, &dst->u.set.ubuf,
1563 0, ELF_FP_OFFSET(2));
1564 dst->ret = 0;
1565 if (dst->count == 0)
1566 return;
1567 }
1568
1569 /* fr2-fr31 */
1570 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1571 start = dst->pos;
1572 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1573 dst->pos + dst->count);
1574 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1575 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1576 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1577 if (dst->ret)
1578 return;
1579
1580 if (start & 0xF) { /* only write high part */
1581 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1582 &fpreg)) {
1583 dst->ret = -EIO;
1584 return;
1585 }
1586 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1587 = fpreg.u.bits[0];
1588 start &= ~0xFUL;
1589 }
1590 if (end & 0xF) { /* only write low part */
1591 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1592 &fpreg)) {
1593 dst->ret = -EIO;
1594 return;
1595 }
1596 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1597 = fpreg.u.bits[1];
1598 end = (end + 0xF) & ~0xFUL;
1599 }
1600
1601 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1602 index = start / sizeof(elf_fpreg_t);
1603 if (unw_set_fr(info, index, tmp[index - 2])) {
1604 dst->ret = -EIO;
1605 return;
1606 }
1607 }
1608 if (dst->ret || dst->count == 0)
1609 return;
1610 }
1611
1612 /* fph */
1613 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1614 ia64_sync_fph(dst->target);
1615 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1616 &dst->u.set.kbuf,
1617 &dst->u.set.ubuf,
1618 &dst->target->thread.fph,
1619 ELF_FP_OFFSET(32), -1);
1620 }
1621}
1622
1623static void
1624unwind_and_call(void (*call)(struct unw_frame_info *, void *),
1625 struct task_struct *target, void *data)
1626{
1627 if (target == current)
1628 unw_init_running(call, data);
1629 else {
1630 struct unw_frame_info info;
1631 memset(&info, 0, sizeof(info));
1632 unw_init_from_blocked_task(&info, target);
1633 (*call)(&info, data);
1634 }
1635}
1636
1637static int
1638do_regset_call(void (*call)(struct unw_frame_info *, void *),
1639 struct task_struct *target,
1640 const struct user_regset *regset,
1641 unsigned int pos, unsigned int count,
1642 const void *kbuf, const void __user *ubuf)
1643{
1644 struct regset_getset info = { .target = target, .regset = regset,
1645 .pos = pos, .count = count,
1646 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1647 .ret = 0 };
1648 unwind_and_call(call, target, &info);
1649 return info.ret;
1650}
1651
1652static int
1653gpregs_get(struct task_struct *target,
1654 const struct user_regset *regset,
1655 struct membuf to)
1656{
1657 struct regset_membuf info = {.to = to};
1658 unwind_and_call(do_gpregs_get, target, &info);
1659 return info.ret;
1660}
1661
1662static int gpregs_set(struct task_struct *target,
1663 const struct user_regset *regset,
1664 unsigned int pos, unsigned int count,
1665 const void *kbuf, const void __user *ubuf)
1666{
1667 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1668 kbuf, ubuf);
1669}
1670
1671static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1672{
1673 do_sync_rbs(info, ia64_sync_user_rbs);
1674}
1675
1676/*
1677 * This is called to write back the register backing store.
1678 * ptrace does this before it stops, so that a tracer reading the user
1679 * memory after the thread stops will get the current register data.
1680 */
1681static int
1682gpregs_writeback(struct task_struct *target,
1683 const struct user_regset *regset,
1684 int now)
1685{
1686 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1687 return 0;
1688 set_notify_resume(target);
1689 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1690 NULL, NULL);
1691}
1692
1693static int
1694fpregs_active(struct task_struct *target, const struct user_regset *regset)
1695{
1696 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1697}
1698
1699static int fpregs_get(struct task_struct *target,
1700 const struct user_regset *regset,
1701 struct membuf to)
1702{
1703 struct regset_membuf info = {.to = to};
1704 unwind_and_call(do_fpregs_get, target, &info);
1705 return info.ret;
1706}
1707
1708static int fpregs_set(struct task_struct *target,
1709 const struct user_regset *regset,
1710 unsigned int pos, unsigned int count,
1711 const void *kbuf, const void __user *ubuf)
1712{
1713 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1714 kbuf, ubuf);
1715}
1716
1717static int
1718access_uarea(struct task_struct *child, unsigned long addr,
1719 unsigned long *data, int write_access)
1720{
1721 unsigned int pos = -1; /* an invalid value */
1722 unsigned long *ptr, regnum;
1723
1724 if ((addr & 0x7) != 0) {
1725 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1726 return -1;
1727 }
1728 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1729 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1730 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1731 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1732 dprintk("ptrace: rejecting access to register "
1733 "address 0x%lx\n", addr);
1734 return -1;
1735 }
1736
1737 switch (addr) {
1738 case PT_F32 ... (PT_F127 + 15):
1739 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1740 break;
1741 case PT_F2 ... (PT_F5 + 15):
1742 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1743 break;
1744 case PT_F10 ... (PT_F31 + 15):
1745 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1746 break;
1747 case PT_F6 ... (PT_F9 + 15):
1748 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1749 break;
1750 }
1751
1752 if (pos != -1) {
1753 unsigned reg = pos / sizeof(elf_fpreg_t);
1754 int which_half = (pos / sizeof(unsigned long)) & 1;
1755
1756 if (reg < 32) { /* fr2-fr31 */
1757 struct unw_frame_info info;
1758 elf_fpreg_t fpreg;
1759
1760 memset(&info, 0, sizeof(info));
1761 unw_init_from_blocked_task(&info, child);
1762 if (unw_unwind_to_user(&info) < 0)
1763 return 0;
1764
1765 if (unw_get_fr(&info, reg, &fpreg))
1766 return -1;
1767 if (write_access) {
1768 fpreg.u.bits[which_half] = *data;
1769 if (unw_set_fr(&info, reg, fpreg))
1770 return -1;
1771 } else {
1772 *data = fpreg.u.bits[which_half];
1773 }
1774 } else { /* fph */
1775 elf_fpreg_t *p = &child->thread.fph[reg - 32];
1776 unsigned long *bits = &p->u.bits[which_half];
1777
1778 ia64_sync_fph(child);
1779 if (write_access)
1780 *bits = *data;
1781 else if (child->thread.flags & IA64_THREAD_FPH_VALID)
1782 *data = *bits;
1783 else
1784 *data = 0;
1785 }
1786 return 0;
1787 }
1788
1789 switch (addr) {
1790 case PT_NAT_BITS:
1791 pos = ELF_NAT_OFFSET;
1792 break;
1793 case PT_R4 ... PT_R7:
1794 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1795 break;
1796 case PT_B1 ... PT_B5:
1797 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1798 break;
1799 case PT_AR_EC:
1800 pos = ELF_AR_EC_OFFSET;
1801 break;
1802 case PT_AR_LC:
1803 pos = ELF_AR_LC_OFFSET;
1804 break;
1805 case PT_CR_IPSR:
1806 pos = ELF_CR_IPSR_OFFSET;
1807 break;
1808 case PT_CR_IIP:
1809 pos = ELF_CR_IIP_OFFSET;
1810 break;
1811 case PT_CFM:
1812 pos = ELF_CFM_OFFSET;
1813 break;
1814 case PT_AR_UNAT:
1815 pos = ELF_AR_UNAT_OFFSET;
1816 break;
1817 case PT_AR_PFS:
1818 pos = ELF_AR_PFS_OFFSET;
1819 break;
1820 case PT_AR_RSC:
1821 pos = ELF_AR_RSC_OFFSET;
1822 break;
1823 case PT_AR_RNAT:
1824 pos = ELF_AR_RNAT_OFFSET;
1825 break;
1826 case PT_AR_BSPSTORE:
1827 pos = ELF_AR_BSPSTORE_OFFSET;
1828 break;
1829 case PT_PR:
1830 pos = ELF_PR_OFFSET;
1831 break;
1832 case PT_B6:
1833 pos = ELF_BR_OFFSET(6);
1834 break;
1835 case PT_AR_BSP:
1836 pos = ELF_AR_BSP_OFFSET;
1837 break;
1838 case PT_R1 ... PT_R3:
1839 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
1840 break;
1841 case PT_R12 ... PT_R15:
1842 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
1843 break;
1844 case PT_R8 ... PT_R11:
1845 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
1846 break;
1847 case PT_R16 ... PT_R31:
1848 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
1849 break;
1850 case PT_AR_CCV:
1851 pos = ELF_AR_CCV_OFFSET;
1852 break;
1853 case PT_AR_FPSR:
1854 pos = ELF_AR_FPSR_OFFSET;
1855 break;
1856 case PT_B0:
1857 pos = ELF_BR_OFFSET(0);
1858 break;
1859 case PT_B7:
1860 pos = ELF_BR_OFFSET(7);
1861 break;
1862 case PT_AR_CSD:
1863 pos = ELF_AR_CSD_OFFSET;
1864 break;
1865 case PT_AR_SSD:
1866 pos = ELF_AR_SSD_OFFSET;
1867 break;
1868 }
1869
1870 if (pos != -1) {
1871 struct unw_frame_info info;
1872
1873 memset(&info, 0, sizeof(info));
1874 unw_init_from_blocked_task(&info, child);
1875 if (unw_unwind_to_user(&info) < 0)
1876 return 0;
1877
1878 return access_elf_reg(child, &info, pos, data, write_access);
1879 }
1880
1881 /* access debug registers */
1882 if (addr >= PT_IBR) {
1883 regnum = (addr - PT_IBR) >> 3;
1884 ptr = &child->thread.ibr[0];
1885 } else {
1886 regnum = (addr - PT_DBR) >> 3;
1887 ptr = &child->thread.dbr[0];
1888 }
1889
1890 if (regnum >= 8) {
1891 dprintk("ptrace: rejecting access to register "
1892 "address 0x%lx\n", addr);
1893 return -1;
1894 }
1895
1896 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
1897 child->thread.flags |= IA64_THREAD_DBG_VALID;
1898 memset(child->thread.dbr, 0,
1899 sizeof(child->thread.dbr));
1900 memset(child->thread.ibr, 0,
1901 sizeof(child->thread.ibr));
1902 }
1903
1904 ptr += regnum;
1905
1906 if ((regnum & 1) && write_access) {
1907 /* don't let the user set kernel-level breakpoints: */
1908 *ptr = *data & ~(7UL << 56);
1909 return 0;
1910 }
1911 if (write_access)
1912 *ptr = *data;
1913 else
1914 *data = *ptr;
1915 return 0;
1916}
1917
1918static const struct user_regset native_regsets[] = {
1919 {
1920 .core_note_type = NT_PRSTATUS,
1921 .n = ELF_NGREG,
1922 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
1923 .regset_get = gpregs_get, .set = gpregs_set,
1924 .writeback = gpregs_writeback
1925 },
1926 {
1927 .core_note_type = NT_PRFPREG,
1928 .n = ELF_NFPREG,
1929 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
1930 .regset_get = fpregs_get, .set = fpregs_set, .active = fpregs_active
1931 },
1932};
1933
1934static const struct user_regset_view user_ia64_view = {
1935 .name = "ia64",
1936 .e_machine = EM_IA_64,
1937 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
1938};
1939
1940const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
1941{
1942 return &user_ia64_view;
1943}
1944
1945struct syscall_get_args {
1946 unsigned int i;
1947 unsigned int n;
1948 unsigned long *args;
1949 struct pt_regs *regs;
1950};
1951
1952static void syscall_get_args_cb(struct unw_frame_info *info, void *data)
1953{
1954 struct syscall_get_args *args = data;
1955 struct pt_regs *pt = args->regs;
1956 unsigned long *krbs, cfm, ndirty, nlocals, nouts;
1957 int i, count;
1958
1959 if (unw_unwind_to_user(info) < 0)
1960 return;
1961
1962 /*
1963 * We get here via a few paths:
1964 * - break instruction: cfm is shared with caller.
1965 * syscall args are in out= regs, locals are non-empty.
1966 * - epsinstruction: cfm is set by br.call
1967 * locals don't exist.
1968 *
1969 * For both cases arguments are reachable in cfm.sof - cfm.sol.
1970 * CFM: [ ... | sor: 17..14 | sol : 13..7 | sof : 6..0 ]
1971 */
1972 cfm = pt->cr_ifs;
1973 nlocals = (cfm >> 7) & 0x7f; /* aka sol */
1974 nouts = (cfm & 0x7f) - nlocals; /* aka sof - sol */
1975 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
1976 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
1977
1978 count = 0;
1979 if (in_syscall(pt))
1980 count = min_t(int, args->n, nouts);
1981
1982 /* Iterate over outs. */
1983 for (i = 0; i < count; i++) {
1984 int j = ndirty + nlocals + i + args->i;
1985 args->args[i] = *ia64_rse_skip_regs(krbs, j);
1986 }
1987
1988 while (i < args->n) {
1989 args->args[i] = 0;
1990 i++;
1991 }
1992}
1993
1994void syscall_get_arguments(struct task_struct *task,
1995 struct pt_regs *regs, unsigned long *args)
1996{
1997 struct syscall_get_args data = {
1998 .i = 0,
1999 .n = 6,
2000 .args = args,
2001 .regs = regs,
2002 };
2003
2004 if (task == current)
2005 unw_init_running(syscall_get_args_cb, &data);
2006 else {
2007 struct unw_frame_info ufi;
2008 memset(&ufi, 0, sizeof(ufi));
2009 unw_init_from_blocked_task(&ufi, task);
2010 syscall_get_args_cb(&ufi, &data);
2011 }
2012}
1/*
2 * Kernel support for the ptrace() and syscall tracing interfaces.
3 *
4 * Copyright (C) 1999-2005 Hewlett-Packard Co
5 * David Mosberger-Tang <davidm@hpl.hp.com>
6 * Copyright (C) 2006 Intel Co
7 * 2006-08-12 - IA64 Native Utrace implementation support added by
8 * Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
9 *
10 * Derived from the x86 and Alpha versions.
11 */
12#include <linux/kernel.h>
13#include <linux/sched.h>
14#include <linux/mm.h>
15#include <linux/errno.h>
16#include <linux/ptrace.h>
17#include <linux/user.h>
18#include <linux/security.h>
19#include <linux/audit.h>
20#include <linux/signal.h>
21#include <linux/regset.h>
22#include <linux/elf.h>
23#include <linux/tracehook.h>
24
25#include <asm/pgtable.h>
26#include <asm/processor.h>
27#include <asm/ptrace_offsets.h>
28#include <asm/rse.h>
29#include <asm/uaccess.h>
30#include <asm/unwind.h>
31#ifdef CONFIG_PERFMON
32#include <asm/perfmon.h>
33#endif
34
35#include "entry.h"
36
37/*
38 * Bits in the PSR that we allow ptrace() to change:
39 * be, up, ac, mfl, mfh (the user mask; five bits total)
40 * db (debug breakpoint fault; one bit)
41 * id (instruction debug fault disable; one bit)
42 * dd (data debug fault disable; one bit)
43 * ri (restart instruction; two bits)
44 * is (instruction set; one bit)
45 */
46#define IPSR_MASK (IA64_PSR_UM | IA64_PSR_DB | IA64_PSR_IS \
47 | IA64_PSR_ID | IA64_PSR_DD | IA64_PSR_RI)
48
49#define MASK(nbits) ((1UL << (nbits)) - 1) /* mask with NBITS bits set */
50#define PFM_MASK MASK(38)
51
52#define PTRACE_DEBUG 0
53
54#if PTRACE_DEBUG
55# define dprintk(format...) printk(format)
56# define inline
57#else
58# define dprintk(format...)
59#endif
60
61/* Return TRUE if PT was created due to kernel-entry via a system-call. */
62
63static inline int
64in_syscall (struct pt_regs *pt)
65{
66 return (long) pt->cr_ifs >= 0;
67}
68
69/*
70 * Collect the NaT bits for r1-r31 from scratch_unat and return a NaT
71 * bitset where bit i is set iff the NaT bit of register i is set.
72 */
73unsigned long
74ia64_get_scratch_nat_bits (struct pt_regs *pt, unsigned long scratch_unat)
75{
76# define GET_BITS(first, last, unat) \
77 ({ \
78 unsigned long bit = ia64_unat_pos(&pt->r##first); \
79 unsigned long nbits = (last - first + 1); \
80 unsigned long mask = MASK(nbits) << first; \
81 unsigned long dist; \
82 if (bit < first) \
83 dist = 64 + bit - first; \
84 else \
85 dist = bit - first; \
86 ia64_rotr(unat, dist) & mask; \
87 })
88 unsigned long val;
89
90 /*
91 * Registers that are stored consecutively in struct pt_regs
92 * can be handled in parallel. If the register order in
93 * struct_pt_regs changes, this code MUST be updated.
94 */
95 val = GET_BITS( 1, 1, scratch_unat);
96 val |= GET_BITS( 2, 3, scratch_unat);
97 val |= GET_BITS(12, 13, scratch_unat);
98 val |= GET_BITS(14, 14, scratch_unat);
99 val |= GET_BITS(15, 15, scratch_unat);
100 val |= GET_BITS( 8, 11, scratch_unat);
101 val |= GET_BITS(16, 31, scratch_unat);
102 return val;
103
104# undef GET_BITS
105}
106
107/*
108 * Set the NaT bits for the scratch registers according to NAT and
109 * return the resulting unat (assuming the scratch registers are
110 * stored in PT).
111 */
112unsigned long
113ia64_put_scratch_nat_bits (struct pt_regs *pt, unsigned long nat)
114{
115# define PUT_BITS(first, last, nat) \
116 ({ \
117 unsigned long bit = ia64_unat_pos(&pt->r##first); \
118 unsigned long nbits = (last - first + 1); \
119 unsigned long mask = MASK(nbits) << first; \
120 long dist; \
121 if (bit < first) \
122 dist = 64 + bit - first; \
123 else \
124 dist = bit - first; \
125 ia64_rotl(nat & mask, dist); \
126 })
127 unsigned long scratch_unat;
128
129 /*
130 * Registers that are stored consecutively in struct pt_regs
131 * can be handled in parallel. If the register order in
132 * struct_pt_regs changes, this code MUST be updated.
133 */
134 scratch_unat = PUT_BITS( 1, 1, nat);
135 scratch_unat |= PUT_BITS( 2, 3, nat);
136 scratch_unat |= PUT_BITS(12, 13, nat);
137 scratch_unat |= PUT_BITS(14, 14, nat);
138 scratch_unat |= PUT_BITS(15, 15, nat);
139 scratch_unat |= PUT_BITS( 8, 11, nat);
140 scratch_unat |= PUT_BITS(16, 31, nat);
141
142 return scratch_unat;
143
144# undef PUT_BITS
145}
146
147#define IA64_MLX_TEMPLATE 0x2
148#define IA64_MOVL_OPCODE 6
149
150void
151ia64_increment_ip (struct pt_regs *regs)
152{
153 unsigned long w0, ri = ia64_psr(regs)->ri + 1;
154
155 if (ri > 2) {
156 ri = 0;
157 regs->cr_iip += 16;
158 } else if (ri == 2) {
159 get_user(w0, (char __user *) regs->cr_iip + 0);
160 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
161 /*
162 * rfi'ing to slot 2 of an MLX bundle causes
163 * an illegal operation fault. We don't want
164 * that to happen...
165 */
166 ri = 0;
167 regs->cr_iip += 16;
168 }
169 }
170 ia64_psr(regs)->ri = ri;
171}
172
173void
174ia64_decrement_ip (struct pt_regs *regs)
175{
176 unsigned long w0, ri = ia64_psr(regs)->ri - 1;
177
178 if (ia64_psr(regs)->ri == 0) {
179 regs->cr_iip -= 16;
180 ri = 2;
181 get_user(w0, (char __user *) regs->cr_iip + 0);
182 if (((w0 >> 1) & 0xf) == IA64_MLX_TEMPLATE) {
183 /*
184 * rfi'ing to slot 2 of an MLX bundle causes
185 * an illegal operation fault. We don't want
186 * that to happen...
187 */
188 ri = 1;
189 }
190 }
191 ia64_psr(regs)->ri = ri;
192}
193
194/*
195 * This routine is used to read an rnat bits that are stored on the
196 * kernel backing store. Since, in general, the alignment of the user
197 * and kernel are different, this is not completely trivial. In
198 * essence, we need to construct the user RNAT based on up to two
199 * kernel RNAT values and/or the RNAT value saved in the child's
200 * pt_regs.
201 *
202 * user rbs
203 *
204 * +--------+ <-- lowest address
205 * | slot62 |
206 * +--------+
207 * | rnat | 0x....1f8
208 * +--------+
209 * | slot00 | \
210 * +--------+ |
211 * | slot01 | > child_regs->ar_rnat
212 * +--------+ |
213 * | slot02 | / kernel rbs
214 * +--------+ +--------+
215 * <- child_regs->ar_bspstore | slot61 | <-- krbs
216 * +- - - - + +--------+
217 * | slot62 |
218 * +- - - - + +--------+
219 * | rnat |
220 * +- - - - + +--------+
221 * vrnat | slot00 |
222 * +- - - - + +--------+
223 * = =
224 * +--------+
225 * | slot00 | \
226 * +--------+ |
227 * | slot01 | > child_stack->ar_rnat
228 * +--------+ |
229 * | slot02 | /
230 * +--------+
231 * <--- child_stack->ar_bspstore
232 *
233 * The way to think of this code is as follows: bit 0 in the user rnat
234 * corresponds to some bit N (0 <= N <= 62) in one of the kernel rnat
235 * value. The kernel rnat value holding this bit is stored in
236 * variable rnat0. rnat1 is loaded with the kernel rnat value that
237 * form the upper bits of the user rnat value.
238 *
239 * Boundary cases:
240 *
241 * o when reading the rnat "below" the first rnat slot on the kernel
242 * backing store, rnat0/rnat1 are set to 0 and the low order bits are
243 * merged in from pt->ar_rnat.
244 *
245 * o when reading the rnat "above" the last rnat slot on the kernel
246 * backing store, rnat0/rnat1 gets its value from sw->ar_rnat.
247 */
248static unsigned long
249get_rnat (struct task_struct *task, struct switch_stack *sw,
250 unsigned long *krbs, unsigned long *urnat_addr,
251 unsigned long *urbs_end)
252{
253 unsigned long rnat0 = 0, rnat1 = 0, urnat = 0, *slot0_kaddr;
254 unsigned long umask = 0, mask, m;
255 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
256 long num_regs, nbits;
257 struct pt_regs *pt;
258
259 pt = task_pt_regs(task);
260 kbsp = (unsigned long *) sw->ar_bspstore;
261 ubspstore = (unsigned long *) pt->ar_bspstore;
262
263 if (urbs_end < urnat_addr)
264 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_end);
265 else
266 nbits = 63;
267 mask = MASK(nbits);
268 /*
269 * First, figure out which bit number slot 0 in user-land maps
270 * to in the kernel rnat. Do this by figuring out how many
271 * register slots we're beyond the user's backingstore and
272 * then computing the equivalent address in kernel space.
273 */
274 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
275 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
276 shift = ia64_rse_slot_num(slot0_kaddr);
277 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
278 rnat0_kaddr = rnat1_kaddr - 64;
279
280 if (ubspstore + 63 > urnat_addr) {
281 /* some bits need to be merged in from pt->ar_rnat */
282 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
283 urnat = (pt->ar_rnat & umask);
284 mask &= ~umask;
285 if (!mask)
286 return urnat;
287 }
288
289 m = mask << shift;
290 if (rnat0_kaddr >= kbsp)
291 rnat0 = sw->ar_rnat;
292 else if (rnat0_kaddr > krbs)
293 rnat0 = *rnat0_kaddr;
294 urnat |= (rnat0 & m) >> shift;
295
296 m = mask >> (63 - shift);
297 if (rnat1_kaddr >= kbsp)
298 rnat1 = sw->ar_rnat;
299 else if (rnat1_kaddr > krbs)
300 rnat1 = *rnat1_kaddr;
301 urnat |= (rnat1 & m) << (63 - shift);
302 return urnat;
303}
304
305/*
306 * The reverse of get_rnat.
307 */
308static void
309put_rnat (struct task_struct *task, struct switch_stack *sw,
310 unsigned long *krbs, unsigned long *urnat_addr, unsigned long urnat,
311 unsigned long *urbs_end)
312{
313 unsigned long rnat0 = 0, rnat1 = 0, *slot0_kaddr, umask = 0, mask, m;
314 unsigned long *kbsp, *ubspstore, *rnat0_kaddr, *rnat1_kaddr, shift;
315 long num_regs, nbits;
316 struct pt_regs *pt;
317 unsigned long cfm, *urbs_kargs;
318
319 pt = task_pt_regs(task);
320 kbsp = (unsigned long *) sw->ar_bspstore;
321 ubspstore = (unsigned long *) pt->ar_bspstore;
322
323 urbs_kargs = urbs_end;
324 if (in_syscall(pt)) {
325 /*
326 * If entered via syscall, don't allow user to set rnat bits
327 * for syscall args.
328 */
329 cfm = pt->cr_ifs;
330 urbs_kargs = ia64_rse_skip_regs(urbs_end, -(cfm & 0x7f));
331 }
332
333 if (urbs_kargs >= urnat_addr)
334 nbits = 63;
335 else {
336 if ((urnat_addr - 63) >= urbs_kargs)
337 return;
338 nbits = ia64_rse_num_regs(urnat_addr - 63, urbs_kargs);
339 }
340 mask = MASK(nbits);
341
342 /*
343 * First, figure out which bit number slot 0 in user-land maps
344 * to in the kernel rnat. Do this by figuring out how many
345 * register slots we're beyond the user's backingstore and
346 * then computing the equivalent address in kernel space.
347 */
348 num_regs = ia64_rse_num_regs(ubspstore, urnat_addr + 1);
349 slot0_kaddr = ia64_rse_skip_regs(krbs, num_regs);
350 shift = ia64_rse_slot_num(slot0_kaddr);
351 rnat1_kaddr = ia64_rse_rnat_addr(slot0_kaddr);
352 rnat0_kaddr = rnat1_kaddr - 64;
353
354 if (ubspstore + 63 > urnat_addr) {
355 /* some bits need to be place in pt->ar_rnat: */
356 umask = MASK(ia64_rse_slot_num(ubspstore)) & mask;
357 pt->ar_rnat = (pt->ar_rnat & ~umask) | (urnat & umask);
358 mask &= ~umask;
359 if (!mask)
360 return;
361 }
362 /*
363 * Note: Section 11.1 of the EAS guarantees that bit 63 of an
364 * rnat slot is ignored. so we don't have to clear it here.
365 */
366 rnat0 = (urnat << shift);
367 m = mask << shift;
368 if (rnat0_kaddr >= kbsp)
369 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat0 & m);
370 else if (rnat0_kaddr > krbs)
371 *rnat0_kaddr = ((*rnat0_kaddr & ~m) | (rnat0 & m));
372
373 rnat1 = (urnat >> (63 - shift));
374 m = mask >> (63 - shift);
375 if (rnat1_kaddr >= kbsp)
376 sw->ar_rnat = (sw->ar_rnat & ~m) | (rnat1 & m);
377 else if (rnat1_kaddr > krbs)
378 *rnat1_kaddr = ((*rnat1_kaddr & ~m) | (rnat1 & m));
379}
380
381static inline int
382on_kernel_rbs (unsigned long addr, unsigned long bspstore,
383 unsigned long urbs_end)
384{
385 unsigned long *rnat_addr = ia64_rse_rnat_addr((unsigned long *)
386 urbs_end);
387 return (addr >= bspstore && addr <= (unsigned long) rnat_addr);
388}
389
390/*
391 * Read a word from the user-level backing store of task CHILD. ADDR
392 * is the user-level address to read the word from, VAL a pointer to
393 * the return value, and USER_BSP gives the end of the user-level
394 * backing store (i.e., it's the address that would be in ar.bsp after
395 * the user executed a "cover" instruction).
396 *
397 * This routine takes care of accessing the kernel register backing
398 * store for those registers that got spilled there. It also takes
399 * care of calculating the appropriate RNaT collection words.
400 */
401long
402ia64_peek (struct task_struct *child, struct switch_stack *child_stack,
403 unsigned long user_rbs_end, unsigned long addr, long *val)
404{
405 unsigned long *bspstore, *krbs, regnum, *laddr, *urbs_end, *rnat_addr;
406 struct pt_regs *child_regs;
407 size_t copied;
408 long ret;
409
410 urbs_end = (long *) user_rbs_end;
411 laddr = (unsigned long *) addr;
412 child_regs = task_pt_regs(child);
413 bspstore = (unsigned long *) child_regs->ar_bspstore;
414 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
415 if (on_kernel_rbs(addr, (unsigned long) bspstore,
416 (unsigned long) urbs_end))
417 {
418 /*
419 * Attempt to read the RBS in an area that's actually
420 * on the kernel RBS => read the corresponding bits in
421 * the kernel RBS.
422 */
423 rnat_addr = ia64_rse_rnat_addr(laddr);
424 ret = get_rnat(child, child_stack, krbs, rnat_addr, urbs_end);
425
426 if (laddr == rnat_addr) {
427 /* return NaT collection word itself */
428 *val = ret;
429 return 0;
430 }
431
432 if (((1UL << ia64_rse_slot_num(laddr)) & ret) != 0) {
433 /*
434 * It is implementation dependent whether the
435 * data portion of a NaT value gets saved on a
436 * st8.spill or RSE spill (e.g., see EAS 2.6,
437 * 4.4.4.6 Register Spill and Fill). To get
438 * consistent behavior across all possible
439 * IA-64 implementations, we return zero in
440 * this case.
441 */
442 *val = 0;
443 return 0;
444 }
445
446 if (laddr < urbs_end) {
447 /*
448 * The desired word is on the kernel RBS and
449 * is not a NaT.
450 */
451 regnum = ia64_rse_num_regs(bspstore, laddr);
452 *val = *ia64_rse_skip_regs(krbs, regnum);
453 return 0;
454 }
455 }
456 copied = access_process_vm(child, addr, &ret, sizeof(ret), 0);
457 if (copied != sizeof(ret))
458 return -EIO;
459 *val = ret;
460 return 0;
461}
462
463long
464ia64_poke (struct task_struct *child, struct switch_stack *child_stack,
465 unsigned long user_rbs_end, unsigned long addr, long val)
466{
467 unsigned long *bspstore, *krbs, regnum, *laddr;
468 unsigned long *urbs_end = (long *) user_rbs_end;
469 struct pt_regs *child_regs;
470
471 laddr = (unsigned long *) addr;
472 child_regs = task_pt_regs(child);
473 bspstore = (unsigned long *) child_regs->ar_bspstore;
474 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
475 if (on_kernel_rbs(addr, (unsigned long) bspstore,
476 (unsigned long) urbs_end))
477 {
478 /*
479 * Attempt to write the RBS in an area that's actually
480 * on the kernel RBS => write the corresponding bits
481 * in the kernel RBS.
482 */
483 if (ia64_rse_is_rnat_slot(laddr))
484 put_rnat(child, child_stack, krbs, laddr, val,
485 urbs_end);
486 else {
487 if (laddr < urbs_end) {
488 regnum = ia64_rse_num_regs(bspstore, laddr);
489 *ia64_rse_skip_regs(krbs, regnum) = val;
490 }
491 }
492 } else if (access_process_vm(child, addr, &val, sizeof(val), 1)
493 != sizeof(val))
494 return -EIO;
495 return 0;
496}
497
498/*
499 * Calculate the address of the end of the user-level register backing
500 * store. This is the address that would have been stored in ar.bsp
501 * if the user had executed a "cover" instruction right before
502 * entering the kernel. If CFMP is not NULL, it is used to return the
503 * "current frame mask" that was active at the time the kernel was
504 * entered.
505 */
506unsigned long
507ia64_get_user_rbs_end (struct task_struct *child, struct pt_regs *pt,
508 unsigned long *cfmp)
509{
510 unsigned long *krbs, *bspstore, cfm = pt->cr_ifs;
511 long ndirty;
512
513 krbs = (unsigned long *) child + IA64_RBS_OFFSET/8;
514 bspstore = (unsigned long *) pt->ar_bspstore;
515 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
516
517 if (in_syscall(pt))
518 ndirty += (cfm & 0x7f);
519 else
520 cfm &= ~(1UL << 63); /* clear valid bit */
521
522 if (cfmp)
523 *cfmp = cfm;
524 return (unsigned long) ia64_rse_skip_regs(bspstore, ndirty);
525}
526
527/*
528 * Synchronize (i.e, write) the RSE backing store living in kernel
529 * space to the VM of the CHILD task. SW and PT are the pointers to
530 * the switch_stack and pt_regs structures, respectively.
531 * USER_RBS_END is the user-level address at which the backing store
532 * ends.
533 */
534long
535ia64_sync_user_rbs (struct task_struct *child, struct switch_stack *sw,
536 unsigned long user_rbs_start, unsigned long user_rbs_end)
537{
538 unsigned long addr, val;
539 long ret;
540
541 /* now copy word for word from kernel rbs to user rbs: */
542 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
543 ret = ia64_peek(child, sw, user_rbs_end, addr, &val);
544 if (ret < 0)
545 return ret;
546 if (access_process_vm(child, addr, &val, sizeof(val), 1)
547 != sizeof(val))
548 return -EIO;
549 }
550 return 0;
551}
552
553static long
554ia64_sync_kernel_rbs (struct task_struct *child, struct switch_stack *sw,
555 unsigned long user_rbs_start, unsigned long user_rbs_end)
556{
557 unsigned long addr, val;
558 long ret;
559
560 /* now copy word for word from user rbs to kernel rbs: */
561 for (addr = user_rbs_start; addr < user_rbs_end; addr += 8) {
562 if (access_process_vm(child, addr, &val, sizeof(val), 0)
563 != sizeof(val))
564 return -EIO;
565
566 ret = ia64_poke(child, sw, user_rbs_end, addr, val);
567 if (ret < 0)
568 return ret;
569 }
570 return 0;
571}
572
573typedef long (*syncfunc_t)(struct task_struct *, struct switch_stack *,
574 unsigned long, unsigned long);
575
576static void do_sync_rbs(struct unw_frame_info *info, void *arg)
577{
578 struct pt_regs *pt;
579 unsigned long urbs_end;
580 syncfunc_t fn = arg;
581
582 if (unw_unwind_to_user(info) < 0)
583 return;
584 pt = task_pt_regs(info->task);
585 urbs_end = ia64_get_user_rbs_end(info->task, pt, NULL);
586
587 fn(info->task, info->sw, pt->ar_bspstore, urbs_end);
588}
589
590/*
591 * when a thread is stopped (ptraced), debugger might change thread's user
592 * stack (change memory directly), and we must avoid the RSE stored in kernel
593 * to override user stack (user space's RSE is newer than kernel's in the
594 * case). To workaround the issue, we copy kernel RSE to user RSE before the
595 * task is stopped, so user RSE has updated data. we then copy user RSE to
596 * kernel after the task is resummed from traced stop and kernel will use the
597 * newer RSE to return to user. TIF_RESTORE_RSE is the flag to indicate we need
598 * synchronize user RSE to kernel.
599 */
600void ia64_ptrace_stop(void)
601{
602 if (test_and_set_tsk_thread_flag(current, TIF_RESTORE_RSE))
603 return;
604 set_notify_resume(current);
605 unw_init_running(do_sync_rbs, ia64_sync_user_rbs);
606}
607
608/*
609 * This is called to read back the register backing store.
610 */
611void ia64_sync_krbs(void)
612{
613 clear_tsk_thread_flag(current, TIF_RESTORE_RSE);
614
615 unw_init_running(do_sync_rbs, ia64_sync_kernel_rbs);
616}
617
618/*
619 * After PTRACE_ATTACH, a thread's register backing store area in user
620 * space is assumed to contain correct data whenever the thread is
621 * stopped. arch_ptrace_stop takes care of this on tracing stops.
622 * But if the child was already stopped for job control when we attach
623 * to it, then it might not ever get into ptrace_stop by the time we
624 * want to examine the user memory containing the RBS.
625 */
626void
627ptrace_attach_sync_user_rbs (struct task_struct *child)
628{
629 int stopped = 0;
630 struct unw_frame_info info;
631
632 /*
633 * If the child is in TASK_STOPPED, we need to change that to
634 * TASK_TRACED momentarily while we operate on it. This ensures
635 * that the child won't be woken up and return to user mode while
636 * we are doing the sync. (It can only be woken up for SIGKILL.)
637 */
638
639 read_lock(&tasklist_lock);
640 if (child->sighand) {
641 spin_lock_irq(&child->sighand->siglock);
642 if (child->state == TASK_STOPPED &&
643 !test_and_set_tsk_thread_flag(child, TIF_RESTORE_RSE)) {
644 set_notify_resume(child);
645
646 child->state = TASK_TRACED;
647 stopped = 1;
648 }
649 spin_unlock_irq(&child->sighand->siglock);
650 }
651 read_unlock(&tasklist_lock);
652
653 if (!stopped)
654 return;
655
656 unw_init_from_blocked_task(&info, child);
657 do_sync_rbs(&info, ia64_sync_user_rbs);
658
659 /*
660 * Now move the child back into TASK_STOPPED if it should be in a
661 * job control stop, so that SIGCONT can be used to wake it up.
662 */
663 read_lock(&tasklist_lock);
664 if (child->sighand) {
665 spin_lock_irq(&child->sighand->siglock);
666 if (child->state == TASK_TRACED &&
667 (child->signal->flags & SIGNAL_STOP_STOPPED)) {
668 child->state = TASK_STOPPED;
669 }
670 spin_unlock_irq(&child->sighand->siglock);
671 }
672 read_unlock(&tasklist_lock);
673}
674
675/*
676 * Write f32-f127 back to task->thread.fph if it has been modified.
677 */
678inline void
679ia64_flush_fph (struct task_struct *task)
680{
681 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
682
683 /*
684 * Prevent migrating this task while
685 * we're fiddling with the FPU state
686 */
687 preempt_disable();
688 if (ia64_is_local_fpu_owner(task) && psr->mfh) {
689 psr->mfh = 0;
690 task->thread.flags |= IA64_THREAD_FPH_VALID;
691 ia64_save_fpu(&task->thread.fph[0]);
692 }
693 preempt_enable();
694}
695
696/*
697 * Sync the fph state of the task so that it can be manipulated
698 * through thread.fph. If necessary, f32-f127 are written back to
699 * thread.fph or, if the fph state hasn't been used before, thread.fph
700 * is cleared to zeroes. Also, access to f32-f127 is disabled to
701 * ensure that the task picks up the state from thread.fph when it
702 * executes again.
703 */
704void
705ia64_sync_fph (struct task_struct *task)
706{
707 struct ia64_psr *psr = ia64_psr(task_pt_regs(task));
708
709 ia64_flush_fph(task);
710 if (!(task->thread.flags & IA64_THREAD_FPH_VALID)) {
711 task->thread.flags |= IA64_THREAD_FPH_VALID;
712 memset(&task->thread.fph, 0, sizeof(task->thread.fph));
713 }
714 ia64_drop_fpu(task);
715 psr->dfh = 1;
716}
717
718/*
719 * Change the machine-state of CHILD such that it will return via the normal
720 * kernel exit-path, rather than the syscall-exit path.
721 */
722static void
723convert_to_non_syscall (struct task_struct *child, struct pt_regs *pt,
724 unsigned long cfm)
725{
726 struct unw_frame_info info, prev_info;
727 unsigned long ip, sp, pr;
728
729 unw_init_from_blocked_task(&info, child);
730 while (1) {
731 prev_info = info;
732 if (unw_unwind(&info) < 0)
733 return;
734
735 unw_get_sp(&info, &sp);
736 if ((long)((unsigned long)child + IA64_STK_OFFSET - sp)
737 < IA64_PT_REGS_SIZE) {
738 dprintk("ptrace.%s: ran off the top of the kernel "
739 "stack\n", __func__);
740 return;
741 }
742 if (unw_get_pr (&prev_info, &pr) < 0) {
743 unw_get_rp(&prev_info, &ip);
744 dprintk("ptrace.%s: failed to read "
745 "predicate register (ip=0x%lx)\n",
746 __func__, ip);
747 return;
748 }
749 if (unw_is_intr_frame(&info)
750 && (pr & (1UL << PRED_USER_STACK)))
751 break;
752 }
753
754 /*
755 * Note: at the time of this call, the target task is blocked
756 * in notify_resume_user() and by clearling PRED_LEAVE_SYSCALL
757 * (aka, "pLvSys") we redirect execution from
758 * .work_pending_syscall_end to .work_processed_kernel.
759 */
760 unw_get_pr(&prev_info, &pr);
761 pr &= ~((1UL << PRED_SYSCALL) | (1UL << PRED_LEAVE_SYSCALL));
762 pr |= (1UL << PRED_NON_SYSCALL);
763 unw_set_pr(&prev_info, pr);
764
765 pt->cr_ifs = (1UL << 63) | cfm;
766 /*
767 * Clear the memory that is NOT written on syscall-entry to
768 * ensure we do not leak kernel-state to user when execution
769 * resumes.
770 */
771 pt->r2 = 0;
772 pt->r3 = 0;
773 pt->r14 = 0;
774 memset(&pt->r16, 0, 16*8); /* clear r16-r31 */
775 memset(&pt->f6, 0, 6*16); /* clear f6-f11 */
776 pt->b7 = 0;
777 pt->ar_ccv = 0;
778 pt->ar_csd = 0;
779 pt->ar_ssd = 0;
780}
781
782static int
783access_nat_bits (struct task_struct *child, struct pt_regs *pt,
784 struct unw_frame_info *info,
785 unsigned long *data, int write_access)
786{
787 unsigned long regnum, nat_bits, scratch_unat, dummy = 0;
788 char nat = 0;
789
790 if (write_access) {
791 nat_bits = *data;
792 scratch_unat = ia64_put_scratch_nat_bits(pt, nat_bits);
793 if (unw_set_ar(info, UNW_AR_UNAT, scratch_unat) < 0) {
794 dprintk("ptrace: failed to set ar.unat\n");
795 return -1;
796 }
797 for (regnum = 4; regnum <= 7; ++regnum) {
798 unw_get_gr(info, regnum, &dummy, &nat);
799 unw_set_gr(info, regnum, dummy,
800 (nat_bits >> regnum) & 1);
801 }
802 } else {
803 if (unw_get_ar(info, UNW_AR_UNAT, &scratch_unat) < 0) {
804 dprintk("ptrace: failed to read ar.unat\n");
805 return -1;
806 }
807 nat_bits = ia64_get_scratch_nat_bits(pt, scratch_unat);
808 for (regnum = 4; regnum <= 7; ++regnum) {
809 unw_get_gr(info, regnum, &dummy, &nat);
810 nat_bits |= (nat != 0) << regnum;
811 }
812 *data = nat_bits;
813 }
814 return 0;
815}
816
817static int
818access_uarea (struct task_struct *child, unsigned long addr,
819 unsigned long *data, int write_access);
820
821static long
822ptrace_getregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
823{
824 unsigned long psr, ec, lc, rnat, bsp, cfm, nat_bits, val;
825 struct unw_frame_info info;
826 struct ia64_fpreg fpval;
827 struct switch_stack *sw;
828 struct pt_regs *pt;
829 long ret, retval = 0;
830 char nat = 0;
831 int i;
832
833 if (!access_ok(VERIFY_WRITE, ppr, sizeof(struct pt_all_user_regs)))
834 return -EIO;
835
836 pt = task_pt_regs(child);
837 sw = (struct switch_stack *) (child->thread.ksp + 16);
838 unw_init_from_blocked_task(&info, child);
839 if (unw_unwind_to_user(&info) < 0) {
840 return -EIO;
841 }
842
843 if (((unsigned long) ppr & 0x7) != 0) {
844 dprintk("ptrace:unaligned register address %p\n", ppr);
845 return -EIO;
846 }
847
848 if (access_uarea(child, PT_CR_IPSR, &psr, 0) < 0
849 || access_uarea(child, PT_AR_EC, &ec, 0) < 0
850 || access_uarea(child, PT_AR_LC, &lc, 0) < 0
851 || access_uarea(child, PT_AR_RNAT, &rnat, 0) < 0
852 || access_uarea(child, PT_AR_BSP, &bsp, 0) < 0
853 || access_uarea(child, PT_CFM, &cfm, 0)
854 || access_uarea(child, PT_NAT_BITS, &nat_bits, 0))
855 return -EIO;
856
857 /* control regs */
858
859 retval |= __put_user(pt->cr_iip, &ppr->cr_iip);
860 retval |= __put_user(psr, &ppr->cr_ipsr);
861
862 /* app regs */
863
864 retval |= __put_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
865 retval |= __put_user(pt->ar_rsc, &ppr->ar[PT_AUR_RSC]);
866 retval |= __put_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
867 retval |= __put_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
868 retval |= __put_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
869 retval |= __put_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
870
871 retval |= __put_user(ec, &ppr->ar[PT_AUR_EC]);
872 retval |= __put_user(lc, &ppr->ar[PT_AUR_LC]);
873 retval |= __put_user(rnat, &ppr->ar[PT_AUR_RNAT]);
874 retval |= __put_user(bsp, &ppr->ar[PT_AUR_BSP]);
875 retval |= __put_user(cfm, &ppr->cfm);
876
877 /* gr1-gr3 */
878
879 retval |= __copy_to_user(&ppr->gr[1], &pt->r1, sizeof(long));
880 retval |= __copy_to_user(&ppr->gr[2], &pt->r2, sizeof(long) *2);
881
882 /* gr4-gr7 */
883
884 for (i = 4; i < 8; i++) {
885 if (unw_access_gr(&info, i, &val, &nat, 0) < 0)
886 return -EIO;
887 retval |= __put_user(val, &ppr->gr[i]);
888 }
889
890 /* gr8-gr11 */
891
892 retval |= __copy_to_user(&ppr->gr[8], &pt->r8, sizeof(long) * 4);
893
894 /* gr12-gr15 */
895
896 retval |= __copy_to_user(&ppr->gr[12], &pt->r12, sizeof(long) * 2);
897 retval |= __copy_to_user(&ppr->gr[14], &pt->r14, sizeof(long));
898 retval |= __copy_to_user(&ppr->gr[15], &pt->r15, sizeof(long));
899
900 /* gr16-gr31 */
901
902 retval |= __copy_to_user(&ppr->gr[16], &pt->r16, sizeof(long) * 16);
903
904 /* b0 */
905
906 retval |= __put_user(pt->b0, &ppr->br[0]);
907
908 /* b1-b5 */
909
910 for (i = 1; i < 6; i++) {
911 if (unw_access_br(&info, i, &val, 0) < 0)
912 return -EIO;
913 __put_user(val, &ppr->br[i]);
914 }
915
916 /* b6-b7 */
917
918 retval |= __put_user(pt->b6, &ppr->br[6]);
919 retval |= __put_user(pt->b7, &ppr->br[7]);
920
921 /* fr2-fr5 */
922
923 for (i = 2; i < 6; i++) {
924 if (unw_get_fr(&info, i, &fpval) < 0)
925 return -EIO;
926 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
927 }
928
929 /* fr6-fr11 */
930
931 retval |= __copy_to_user(&ppr->fr[6], &pt->f6,
932 sizeof(struct ia64_fpreg) * 6);
933
934 /* fp scratch regs(12-15) */
935
936 retval |= __copy_to_user(&ppr->fr[12], &sw->f12,
937 sizeof(struct ia64_fpreg) * 4);
938
939 /* fr16-fr31 */
940
941 for (i = 16; i < 32; i++) {
942 if (unw_get_fr(&info, i, &fpval) < 0)
943 return -EIO;
944 retval |= __copy_to_user(&ppr->fr[i], &fpval, sizeof (fpval));
945 }
946
947 /* fph */
948
949 ia64_flush_fph(child);
950 retval |= __copy_to_user(&ppr->fr[32], &child->thread.fph,
951 sizeof(ppr->fr[32]) * 96);
952
953 /* preds */
954
955 retval |= __put_user(pt->pr, &ppr->pr);
956
957 /* nat bits */
958
959 retval |= __put_user(nat_bits, &ppr->nat);
960
961 ret = retval ? -EIO : 0;
962 return ret;
963}
964
965static long
966ptrace_setregs (struct task_struct *child, struct pt_all_user_regs __user *ppr)
967{
968 unsigned long psr, rsc, ec, lc, rnat, bsp, cfm, nat_bits, val = 0;
969 struct unw_frame_info info;
970 struct switch_stack *sw;
971 struct ia64_fpreg fpval;
972 struct pt_regs *pt;
973 long ret, retval = 0;
974 int i;
975
976 memset(&fpval, 0, sizeof(fpval));
977
978 if (!access_ok(VERIFY_READ, ppr, sizeof(struct pt_all_user_regs)))
979 return -EIO;
980
981 pt = task_pt_regs(child);
982 sw = (struct switch_stack *) (child->thread.ksp + 16);
983 unw_init_from_blocked_task(&info, child);
984 if (unw_unwind_to_user(&info) < 0) {
985 return -EIO;
986 }
987
988 if (((unsigned long) ppr & 0x7) != 0) {
989 dprintk("ptrace:unaligned register address %p\n", ppr);
990 return -EIO;
991 }
992
993 /* control regs */
994
995 retval |= __get_user(pt->cr_iip, &ppr->cr_iip);
996 retval |= __get_user(psr, &ppr->cr_ipsr);
997
998 /* app regs */
999
1000 retval |= __get_user(pt->ar_pfs, &ppr->ar[PT_AUR_PFS]);
1001 retval |= __get_user(rsc, &ppr->ar[PT_AUR_RSC]);
1002 retval |= __get_user(pt->ar_bspstore, &ppr->ar[PT_AUR_BSPSTORE]);
1003 retval |= __get_user(pt->ar_unat, &ppr->ar[PT_AUR_UNAT]);
1004 retval |= __get_user(pt->ar_ccv, &ppr->ar[PT_AUR_CCV]);
1005 retval |= __get_user(pt->ar_fpsr, &ppr->ar[PT_AUR_FPSR]);
1006
1007 retval |= __get_user(ec, &ppr->ar[PT_AUR_EC]);
1008 retval |= __get_user(lc, &ppr->ar[PT_AUR_LC]);
1009 retval |= __get_user(rnat, &ppr->ar[PT_AUR_RNAT]);
1010 retval |= __get_user(bsp, &ppr->ar[PT_AUR_BSP]);
1011 retval |= __get_user(cfm, &ppr->cfm);
1012
1013 /* gr1-gr3 */
1014
1015 retval |= __copy_from_user(&pt->r1, &ppr->gr[1], sizeof(long));
1016 retval |= __copy_from_user(&pt->r2, &ppr->gr[2], sizeof(long) * 2);
1017
1018 /* gr4-gr7 */
1019
1020 for (i = 4; i < 8; i++) {
1021 retval |= __get_user(val, &ppr->gr[i]);
1022 /* NaT bit will be set via PT_NAT_BITS: */
1023 if (unw_set_gr(&info, i, val, 0) < 0)
1024 return -EIO;
1025 }
1026
1027 /* gr8-gr11 */
1028
1029 retval |= __copy_from_user(&pt->r8, &ppr->gr[8], sizeof(long) * 4);
1030
1031 /* gr12-gr15 */
1032
1033 retval |= __copy_from_user(&pt->r12, &ppr->gr[12], sizeof(long) * 2);
1034 retval |= __copy_from_user(&pt->r14, &ppr->gr[14], sizeof(long));
1035 retval |= __copy_from_user(&pt->r15, &ppr->gr[15], sizeof(long));
1036
1037 /* gr16-gr31 */
1038
1039 retval |= __copy_from_user(&pt->r16, &ppr->gr[16], sizeof(long) * 16);
1040
1041 /* b0 */
1042
1043 retval |= __get_user(pt->b0, &ppr->br[0]);
1044
1045 /* b1-b5 */
1046
1047 for (i = 1; i < 6; i++) {
1048 retval |= __get_user(val, &ppr->br[i]);
1049 unw_set_br(&info, i, val);
1050 }
1051
1052 /* b6-b7 */
1053
1054 retval |= __get_user(pt->b6, &ppr->br[6]);
1055 retval |= __get_user(pt->b7, &ppr->br[7]);
1056
1057 /* fr2-fr5 */
1058
1059 for (i = 2; i < 6; i++) {
1060 retval |= __copy_from_user(&fpval, &ppr->fr[i], sizeof(fpval));
1061 if (unw_set_fr(&info, i, fpval) < 0)
1062 return -EIO;
1063 }
1064
1065 /* fr6-fr11 */
1066
1067 retval |= __copy_from_user(&pt->f6, &ppr->fr[6],
1068 sizeof(ppr->fr[6]) * 6);
1069
1070 /* fp scratch regs(12-15) */
1071
1072 retval |= __copy_from_user(&sw->f12, &ppr->fr[12],
1073 sizeof(ppr->fr[12]) * 4);
1074
1075 /* fr16-fr31 */
1076
1077 for (i = 16; i < 32; i++) {
1078 retval |= __copy_from_user(&fpval, &ppr->fr[i],
1079 sizeof(fpval));
1080 if (unw_set_fr(&info, i, fpval) < 0)
1081 return -EIO;
1082 }
1083
1084 /* fph */
1085
1086 ia64_sync_fph(child);
1087 retval |= __copy_from_user(&child->thread.fph, &ppr->fr[32],
1088 sizeof(ppr->fr[32]) * 96);
1089
1090 /* preds */
1091
1092 retval |= __get_user(pt->pr, &ppr->pr);
1093
1094 /* nat bits */
1095
1096 retval |= __get_user(nat_bits, &ppr->nat);
1097
1098 retval |= access_uarea(child, PT_CR_IPSR, &psr, 1);
1099 retval |= access_uarea(child, PT_AR_RSC, &rsc, 1);
1100 retval |= access_uarea(child, PT_AR_EC, &ec, 1);
1101 retval |= access_uarea(child, PT_AR_LC, &lc, 1);
1102 retval |= access_uarea(child, PT_AR_RNAT, &rnat, 1);
1103 retval |= access_uarea(child, PT_AR_BSP, &bsp, 1);
1104 retval |= access_uarea(child, PT_CFM, &cfm, 1);
1105 retval |= access_uarea(child, PT_NAT_BITS, &nat_bits, 1);
1106
1107 ret = retval ? -EIO : 0;
1108 return ret;
1109}
1110
1111void
1112user_enable_single_step (struct task_struct *child)
1113{
1114 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1115
1116 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1117 child_psr->ss = 1;
1118}
1119
1120void
1121user_enable_block_step (struct task_struct *child)
1122{
1123 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1124
1125 set_tsk_thread_flag(child, TIF_SINGLESTEP);
1126 child_psr->tb = 1;
1127}
1128
1129void
1130user_disable_single_step (struct task_struct *child)
1131{
1132 struct ia64_psr *child_psr = ia64_psr(task_pt_regs(child));
1133
1134 /* make sure the single step/taken-branch trap bits are not set: */
1135 clear_tsk_thread_flag(child, TIF_SINGLESTEP);
1136 child_psr->ss = 0;
1137 child_psr->tb = 0;
1138}
1139
1140/*
1141 * Called by kernel/ptrace.c when detaching..
1142 *
1143 * Make sure the single step bit is not set.
1144 */
1145void
1146ptrace_disable (struct task_struct *child)
1147{
1148 user_disable_single_step(child);
1149}
1150
1151long
1152arch_ptrace (struct task_struct *child, long request,
1153 unsigned long addr, unsigned long data)
1154{
1155 switch (request) {
1156 case PTRACE_PEEKTEXT:
1157 case PTRACE_PEEKDATA:
1158 /* read word at location addr */
1159 if (access_process_vm(child, addr, &data, sizeof(data), 0)
1160 != sizeof(data))
1161 return -EIO;
1162 /* ensure return value is not mistaken for error code */
1163 force_successful_syscall_return();
1164 return data;
1165
1166 /* PTRACE_POKETEXT and PTRACE_POKEDATA is handled
1167 * by the generic ptrace_request().
1168 */
1169
1170 case PTRACE_PEEKUSR:
1171 /* read the word at addr in the USER area */
1172 if (access_uarea(child, addr, &data, 0) < 0)
1173 return -EIO;
1174 /* ensure return value is not mistaken for error code */
1175 force_successful_syscall_return();
1176 return data;
1177
1178 case PTRACE_POKEUSR:
1179 /* write the word at addr in the USER area */
1180 if (access_uarea(child, addr, &data, 1) < 0)
1181 return -EIO;
1182 return 0;
1183
1184 case PTRACE_OLD_GETSIGINFO:
1185 /* for backwards-compatibility */
1186 return ptrace_request(child, PTRACE_GETSIGINFO, addr, data);
1187
1188 case PTRACE_OLD_SETSIGINFO:
1189 /* for backwards-compatibility */
1190 return ptrace_request(child, PTRACE_SETSIGINFO, addr, data);
1191
1192 case PTRACE_GETREGS:
1193 return ptrace_getregs(child,
1194 (struct pt_all_user_regs __user *) data);
1195
1196 case PTRACE_SETREGS:
1197 return ptrace_setregs(child,
1198 (struct pt_all_user_regs __user *) data);
1199
1200 default:
1201 return ptrace_request(child, request, addr, data);
1202 }
1203}
1204
1205
1206/* "asmlinkage" so the input arguments are preserved... */
1207
1208asmlinkage long
1209syscall_trace_enter (long arg0, long arg1, long arg2, long arg3,
1210 long arg4, long arg5, long arg6, long arg7,
1211 struct pt_regs regs)
1212{
1213 if (test_thread_flag(TIF_SYSCALL_TRACE))
1214 if (tracehook_report_syscall_entry(®s))
1215 return -ENOSYS;
1216
1217 /* copy user rbs to kernel rbs */
1218 if (test_thread_flag(TIF_RESTORE_RSE))
1219 ia64_sync_krbs();
1220
1221
1222 audit_syscall_entry(AUDIT_ARCH_IA64, regs.r15, arg0, arg1, arg2, arg3);
1223
1224 return 0;
1225}
1226
1227/* "asmlinkage" so the input arguments are preserved... */
1228
1229asmlinkage void
1230syscall_trace_leave (long arg0, long arg1, long arg2, long arg3,
1231 long arg4, long arg5, long arg6, long arg7,
1232 struct pt_regs regs)
1233{
1234 int step;
1235
1236 audit_syscall_exit(®s);
1237
1238 step = test_thread_flag(TIF_SINGLESTEP);
1239 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1240 tracehook_report_syscall_exit(®s, step);
1241
1242 /* copy user rbs to kernel rbs */
1243 if (test_thread_flag(TIF_RESTORE_RSE))
1244 ia64_sync_krbs();
1245}
1246
1247/* Utrace implementation starts here */
1248struct regset_get {
1249 void *kbuf;
1250 void __user *ubuf;
1251};
1252
1253struct regset_set {
1254 const void *kbuf;
1255 const void __user *ubuf;
1256};
1257
1258struct regset_getset {
1259 struct task_struct *target;
1260 const struct user_regset *regset;
1261 union {
1262 struct regset_get get;
1263 struct regset_set set;
1264 } u;
1265 unsigned int pos;
1266 unsigned int count;
1267 int ret;
1268};
1269
1270static int
1271access_elf_gpreg(struct task_struct *target, struct unw_frame_info *info,
1272 unsigned long addr, unsigned long *data, int write_access)
1273{
1274 struct pt_regs *pt;
1275 unsigned long *ptr = NULL;
1276 int ret;
1277 char nat = 0;
1278
1279 pt = task_pt_regs(target);
1280 switch (addr) {
1281 case ELF_GR_OFFSET(1):
1282 ptr = &pt->r1;
1283 break;
1284 case ELF_GR_OFFSET(2):
1285 case ELF_GR_OFFSET(3):
1286 ptr = (void *)&pt->r2 + (addr - ELF_GR_OFFSET(2));
1287 break;
1288 case ELF_GR_OFFSET(4) ... ELF_GR_OFFSET(7):
1289 if (write_access) {
1290 /* read NaT bit first: */
1291 unsigned long dummy;
1292
1293 ret = unw_get_gr(info, addr/8, &dummy, &nat);
1294 if (ret < 0)
1295 return ret;
1296 }
1297 return unw_access_gr(info, addr/8, data, &nat, write_access);
1298 case ELF_GR_OFFSET(8) ... ELF_GR_OFFSET(11):
1299 ptr = (void *)&pt->r8 + addr - ELF_GR_OFFSET(8);
1300 break;
1301 case ELF_GR_OFFSET(12):
1302 case ELF_GR_OFFSET(13):
1303 ptr = (void *)&pt->r12 + addr - ELF_GR_OFFSET(12);
1304 break;
1305 case ELF_GR_OFFSET(14):
1306 ptr = &pt->r14;
1307 break;
1308 case ELF_GR_OFFSET(15):
1309 ptr = &pt->r15;
1310 }
1311 if (write_access)
1312 *ptr = *data;
1313 else
1314 *data = *ptr;
1315 return 0;
1316}
1317
1318static int
1319access_elf_breg(struct task_struct *target, struct unw_frame_info *info,
1320 unsigned long addr, unsigned long *data, int write_access)
1321{
1322 struct pt_regs *pt;
1323 unsigned long *ptr = NULL;
1324
1325 pt = task_pt_regs(target);
1326 switch (addr) {
1327 case ELF_BR_OFFSET(0):
1328 ptr = &pt->b0;
1329 break;
1330 case ELF_BR_OFFSET(1) ... ELF_BR_OFFSET(5):
1331 return unw_access_br(info, (addr - ELF_BR_OFFSET(0))/8,
1332 data, write_access);
1333 case ELF_BR_OFFSET(6):
1334 ptr = &pt->b6;
1335 break;
1336 case ELF_BR_OFFSET(7):
1337 ptr = &pt->b7;
1338 }
1339 if (write_access)
1340 *ptr = *data;
1341 else
1342 *data = *ptr;
1343 return 0;
1344}
1345
1346static int
1347access_elf_areg(struct task_struct *target, struct unw_frame_info *info,
1348 unsigned long addr, unsigned long *data, int write_access)
1349{
1350 struct pt_regs *pt;
1351 unsigned long cfm, urbs_end;
1352 unsigned long *ptr = NULL;
1353
1354 pt = task_pt_regs(target);
1355 if (addr >= ELF_AR_RSC_OFFSET && addr <= ELF_AR_SSD_OFFSET) {
1356 switch (addr) {
1357 case ELF_AR_RSC_OFFSET:
1358 /* force PL3 */
1359 if (write_access)
1360 pt->ar_rsc = *data | (3 << 2);
1361 else
1362 *data = pt->ar_rsc;
1363 return 0;
1364 case ELF_AR_BSP_OFFSET:
1365 /*
1366 * By convention, we use PT_AR_BSP to refer to
1367 * the end of the user-level backing store.
1368 * Use ia64_rse_skip_regs(PT_AR_BSP, -CFM.sof)
1369 * to get the real value of ar.bsp at the time
1370 * the kernel was entered.
1371 *
1372 * Furthermore, when changing the contents of
1373 * PT_AR_BSP (or PT_CFM) while the task is
1374 * blocked in a system call, convert the state
1375 * so that the non-system-call exit
1376 * path is used. This ensures that the proper
1377 * state will be picked up when resuming
1378 * execution. However, it *also* means that
1379 * once we write PT_AR_BSP/PT_CFM, it won't be
1380 * possible to modify the syscall arguments of
1381 * the pending system call any longer. This
1382 * shouldn't be an issue because modifying
1383 * PT_AR_BSP/PT_CFM generally implies that
1384 * we're either abandoning the pending system
1385 * call or that we defer it's re-execution
1386 * (e.g., due to GDB doing an inferior
1387 * function call).
1388 */
1389 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1390 if (write_access) {
1391 if (*data != urbs_end) {
1392 if (in_syscall(pt))
1393 convert_to_non_syscall(target,
1394 pt,
1395 cfm);
1396 /*
1397 * Simulate user-level write
1398 * of ar.bsp:
1399 */
1400 pt->loadrs = 0;
1401 pt->ar_bspstore = *data;
1402 }
1403 } else
1404 *data = urbs_end;
1405 return 0;
1406 case ELF_AR_BSPSTORE_OFFSET:
1407 ptr = &pt->ar_bspstore;
1408 break;
1409 case ELF_AR_RNAT_OFFSET:
1410 ptr = &pt->ar_rnat;
1411 break;
1412 case ELF_AR_CCV_OFFSET:
1413 ptr = &pt->ar_ccv;
1414 break;
1415 case ELF_AR_UNAT_OFFSET:
1416 ptr = &pt->ar_unat;
1417 break;
1418 case ELF_AR_FPSR_OFFSET:
1419 ptr = &pt->ar_fpsr;
1420 break;
1421 case ELF_AR_PFS_OFFSET:
1422 ptr = &pt->ar_pfs;
1423 break;
1424 case ELF_AR_LC_OFFSET:
1425 return unw_access_ar(info, UNW_AR_LC, data,
1426 write_access);
1427 case ELF_AR_EC_OFFSET:
1428 return unw_access_ar(info, UNW_AR_EC, data,
1429 write_access);
1430 case ELF_AR_CSD_OFFSET:
1431 ptr = &pt->ar_csd;
1432 break;
1433 case ELF_AR_SSD_OFFSET:
1434 ptr = &pt->ar_ssd;
1435 }
1436 } else if (addr >= ELF_CR_IIP_OFFSET && addr <= ELF_CR_IPSR_OFFSET) {
1437 switch (addr) {
1438 case ELF_CR_IIP_OFFSET:
1439 ptr = &pt->cr_iip;
1440 break;
1441 case ELF_CFM_OFFSET:
1442 urbs_end = ia64_get_user_rbs_end(target, pt, &cfm);
1443 if (write_access) {
1444 if (((cfm ^ *data) & PFM_MASK) != 0) {
1445 if (in_syscall(pt))
1446 convert_to_non_syscall(target,
1447 pt,
1448 cfm);
1449 pt->cr_ifs = ((pt->cr_ifs & ~PFM_MASK)
1450 | (*data & PFM_MASK));
1451 }
1452 } else
1453 *data = cfm;
1454 return 0;
1455 case ELF_CR_IPSR_OFFSET:
1456 if (write_access) {
1457 unsigned long tmp = *data;
1458 /* psr.ri==3 is a reserved value: SDM 2:25 */
1459 if ((tmp & IA64_PSR_RI) == IA64_PSR_RI)
1460 tmp &= ~IA64_PSR_RI;
1461 pt->cr_ipsr = ((tmp & IPSR_MASK)
1462 | (pt->cr_ipsr & ~IPSR_MASK));
1463 } else
1464 *data = (pt->cr_ipsr & IPSR_MASK);
1465 return 0;
1466 }
1467 } else if (addr == ELF_NAT_OFFSET)
1468 return access_nat_bits(target, pt, info,
1469 data, write_access);
1470 else if (addr == ELF_PR_OFFSET)
1471 ptr = &pt->pr;
1472 else
1473 return -1;
1474
1475 if (write_access)
1476 *ptr = *data;
1477 else
1478 *data = *ptr;
1479
1480 return 0;
1481}
1482
1483static int
1484access_elf_reg(struct task_struct *target, struct unw_frame_info *info,
1485 unsigned long addr, unsigned long *data, int write_access)
1486{
1487 if (addr >= ELF_GR_OFFSET(1) && addr <= ELF_GR_OFFSET(15))
1488 return access_elf_gpreg(target, info, addr, data, write_access);
1489 else if (addr >= ELF_BR_OFFSET(0) && addr <= ELF_BR_OFFSET(7))
1490 return access_elf_breg(target, info, addr, data, write_access);
1491 else
1492 return access_elf_areg(target, info, addr, data, write_access);
1493}
1494
1495void do_gpregs_get(struct unw_frame_info *info, void *arg)
1496{
1497 struct pt_regs *pt;
1498 struct regset_getset *dst = arg;
1499 elf_greg_t tmp[16];
1500 unsigned int i, index, min_copy;
1501
1502 if (unw_unwind_to_user(info) < 0)
1503 return;
1504
1505 /*
1506 * coredump format:
1507 * r0-r31
1508 * NaT bits (for r0-r31; bit N == 1 iff rN is a NaT)
1509 * predicate registers (p0-p63)
1510 * b0-b7
1511 * ip cfm user-mask
1512 * ar.rsc ar.bsp ar.bspstore ar.rnat
1513 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec
1514 */
1515
1516
1517 /* Skip r0 */
1518 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1519 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1520 &dst->u.get.kbuf,
1521 &dst->u.get.ubuf,
1522 0, ELF_GR_OFFSET(1));
1523 if (dst->ret || dst->count == 0)
1524 return;
1525 }
1526
1527 /* gr1 - gr15 */
1528 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1529 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1530 min_copy = ELF_GR_OFFSET(16) > (dst->pos + dst->count) ?
1531 (dst->pos + dst->count) : ELF_GR_OFFSET(16);
1532 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1533 index++)
1534 if (access_elf_reg(dst->target, info, i,
1535 &tmp[index], 0) < 0) {
1536 dst->ret = -EIO;
1537 return;
1538 }
1539 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1540 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1541 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1542 if (dst->ret || dst->count == 0)
1543 return;
1544 }
1545
1546 /* r16-r31 */
1547 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1548 pt = task_pt_regs(dst->target);
1549 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1550 &dst->u.get.kbuf, &dst->u.get.ubuf, &pt->r16,
1551 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1552 if (dst->ret || dst->count == 0)
1553 return;
1554 }
1555
1556 /* nat, pr, b0 - b7 */
1557 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1558 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1559 min_copy = ELF_CR_IIP_OFFSET > (dst->pos + dst->count) ?
1560 (dst->pos + dst->count) : ELF_CR_IIP_OFFSET;
1561 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1562 index++)
1563 if (access_elf_reg(dst->target, info, i,
1564 &tmp[index], 0) < 0) {
1565 dst->ret = -EIO;
1566 return;
1567 }
1568 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1569 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1570 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1571 if (dst->ret || dst->count == 0)
1572 return;
1573 }
1574
1575 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1576 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1577 */
1578 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1579 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1580 min_copy = ELF_AR_END_OFFSET > (dst->pos + dst->count) ?
1581 (dst->pos + dst->count) : ELF_AR_END_OFFSET;
1582 for (i = dst->pos; i < min_copy; i += sizeof(elf_greg_t),
1583 index++)
1584 if (access_elf_reg(dst->target, info, i,
1585 &tmp[index], 0) < 0) {
1586 dst->ret = -EIO;
1587 return;
1588 }
1589 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1590 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1591 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1592 }
1593}
1594
1595void do_gpregs_set(struct unw_frame_info *info, void *arg)
1596{
1597 struct pt_regs *pt;
1598 struct regset_getset *dst = arg;
1599 elf_greg_t tmp[16];
1600 unsigned int i, index;
1601
1602 if (unw_unwind_to_user(info) < 0)
1603 return;
1604
1605 /* Skip r0 */
1606 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(1)) {
1607 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1608 &dst->u.set.kbuf,
1609 &dst->u.set.ubuf,
1610 0, ELF_GR_OFFSET(1));
1611 if (dst->ret || dst->count == 0)
1612 return;
1613 }
1614
1615 /* gr1-gr15 */
1616 if (dst->count > 0 && dst->pos < ELF_GR_OFFSET(16)) {
1617 i = dst->pos;
1618 index = (dst->pos - ELF_GR_OFFSET(1)) / sizeof(elf_greg_t);
1619 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1620 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1621 ELF_GR_OFFSET(1), ELF_GR_OFFSET(16));
1622 if (dst->ret)
1623 return;
1624 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1625 if (access_elf_reg(dst->target, info, i,
1626 &tmp[index], 1) < 0) {
1627 dst->ret = -EIO;
1628 return;
1629 }
1630 if (dst->count == 0)
1631 return;
1632 }
1633
1634 /* gr16-gr31 */
1635 if (dst->count > 0 && dst->pos < ELF_NAT_OFFSET) {
1636 pt = task_pt_regs(dst->target);
1637 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1638 &dst->u.set.kbuf, &dst->u.set.ubuf, &pt->r16,
1639 ELF_GR_OFFSET(16), ELF_NAT_OFFSET);
1640 if (dst->ret || dst->count == 0)
1641 return;
1642 }
1643
1644 /* nat, pr, b0 - b7 */
1645 if (dst->count > 0 && dst->pos < ELF_CR_IIP_OFFSET) {
1646 i = dst->pos;
1647 index = (dst->pos - ELF_NAT_OFFSET) / sizeof(elf_greg_t);
1648 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1649 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1650 ELF_NAT_OFFSET, ELF_CR_IIP_OFFSET);
1651 if (dst->ret)
1652 return;
1653 for (; i < dst->pos; i += sizeof(elf_greg_t), index++)
1654 if (access_elf_reg(dst->target, info, i,
1655 &tmp[index], 1) < 0) {
1656 dst->ret = -EIO;
1657 return;
1658 }
1659 if (dst->count == 0)
1660 return;
1661 }
1662
1663 /* ip cfm psr ar.rsc ar.bsp ar.bspstore ar.rnat
1664 * ar.ccv ar.unat ar.fpsr ar.pfs ar.lc ar.ec ar.csd ar.ssd
1665 */
1666 if (dst->count > 0 && dst->pos < (ELF_AR_END_OFFSET)) {
1667 i = dst->pos;
1668 index = (dst->pos - ELF_CR_IIP_OFFSET) / sizeof(elf_greg_t);
1669 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1670 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1671 ELF_CR_IIP_OFFSET, ELF_AR_END_OFFSET);
1672 if (dst->ret)
1673 return;
1674 for ( ; i < dst->pos; i += sizeof(elf_greg_t), index++)
1675 if (access_elf_reg(dst->target, info, i,
1676 &tmp[index], 1) < 0) {
1677 dst->ret = -EIO;
1678 return;
1679 }
1680 }
1681}
1682
1683#define ELF_FP_OFFSET(i) (i * sizeof(elf_fpreg_t))
1684
1685void do_fpregs_get(struct unw_frame_info *info, void *arg)
1686{
1687 struct regset_getset *dst = arg;
1688 struct task_struct *task = dst->target;
1689 elf_fpreg_t tmp[30];
1690 int index, min_copy, i;
1691
1692 if (unw_unwind_to_user(info) < 0)
1693 return;
1694
1695 /* Skip pos 0 and 1 */
1696 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1697 dst->ret = user_regset_copyout_zero(&dst->pos, &dst->count,
1698 &dst->u.get.kbuf,
1699 &dst->u.get.ubuf,
1700 0, ELF_FP_OFFSET(2));
1701 if (dst->count == 0 || dst->ret)
1702 return;
1703 }
1704
1705 /* fr2-fr31 */
1706 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1707 index = (dst->pos - ELF_FP_OFFSET(2)) / sizeof(elf_fpreg_t);
1708
1709 min_copy = min(((unsigned int)ELF_FP_OFFSET(32)),
1710 dst->pos + dst->count);
1711 for (i = dst->pos; i < min_copy; i += sizeof(elf_fpreg_t),
1712 index++)
1713 if (unw_get_fr(info, i / sizeof(elf_fpreg_t),
1714 &tmp[index])) {
1715 dst->ret = -EIO;
1716 return;
1717 }
1718 dst->ret = user_regset_copyout(&dst->pos, &dst->count,
1719 &dst->u.get.kbuf, &dst->u.get.ubuf, tmp,
1720 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1721 if (dst->count == 0 || dst->ret)
1722 return;
1723 }
1724
1725 /* fph */
1726 if (dst->count > 0) {
1727 ia64_flush_fph(dst->target);
1728 if (task->thread.flags & IA64_THREAD_FPH_VALID)
1729 dst->ret = user_regset_copyout(
1730 &dst->pos, &dst->count,
1731 &dst->u.get.kbuf, &dst->u.get.ubuf,
1732 &dst->target->thread.fph,
1733 ELF_FP_OFFSET(32), -1);
1734 else
1735 /* Zero fill instead. */
1736 dst->ret = user_regset_copyout_zero(
1737 &dst->pos, &dst->count,
1738 &dst->u.get.kbuf, &dst->u.get.ubuf,
1739 ELF_FP_OFFSET(32), -1);
1740 }
1741}
1742
1743void do_fpregs_set(struct unw_frame_info *info, void *arg)
1744{
1745 struct regset_getset *dst = arg;
1746 elf_fpreg_t fpreg, tmp[30];
1747 int index, start, end;
1748
1749 if (unw_unwind_to_user(info) < 0)
1750 return;
1751
1752 /* Skip pos 0 and 1 */
1753 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(2)) {
1754 dst->ret = user_regset_copyin_ignore(&dst->pos, &dst->count,
1755 &dst->u.set.kbuf,
1756 &dst->u.set.ubuf,
1757 0, ELF_FP_OFFSET(2));
1758 if (dst->count == 0 || dst->ret)
1759 return;
1760 }
1761
1762 /* fr2-fr31 */
1763 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(32)) {
1764 start = dst->pos;
1765 end = min(((unsigned int)ELF_FP_OFFSET(32)),
1766 dst->pos + dst->count);
1767 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1768 &dst->u.set.kbuf, &dst->u.set.ubuf, tmp,
1769 ELF_FP_OFFSET(2), ELF_FP_OFFSET(32));
1770 if (dst->ret)
1771 return;
1772
1773 if (start & 0xF) { /* only write high part */
1774 if (unw_get_fr(info, start / sizeof(elf_fpreg_t),
1775 &fpreg)) {
1776 dst->ret = -EIO;
1777 return;
1778 }
1779 tmp[start / sizeof(elf_fpreg_t) - 2].u.bits[0]
1780 = fpreg.u.bits[0];
1781 start &= ~0xFUL;
1782 }
1783 if (end & 0xF) { /* only write low part */
1784 if (unw_get_fr(info, end / sizeof(elf_fpreg_t),
1785 &fpreg)) {
1786 dst->ret = -EIO;
1787 return;
1788 }
1789 tmp[end / sizeof(elf_fpreg_t) - 2].u.bits[1]
1790 = fpreg.u.bits[1];
1791 end = (end + 0xF) & ~0xFUL;
1792 }
1793
1794 for ( ; start < end ; start += sizeof(elf_fpreg_t)) {
1795 index = start / sizeof(elf_fpreg_t);
1796 if (unw_set_fr(info, index, tmp[index - 2])) {
1797 dst->ret = -EIO;
1798 return;
1799 }
1800 }
1801 if (dst->ret || dst->count == 0)
1802 return;
1803 }
1804
1805 /* fph */
1806 if (dst->count > 0 && dst->pos < ELF_FP_OFFSET(128)) {
1807 ia64_sync_fph(dst->target);
1808 dst->ret = user_regset_copyin(&dst->pos, &dst->count,
1809 &dst->u.set.kbuf,
1810 &dst->u.set.ubuf,
1811 &dst->target->thread.fph,
1812 ELF_FP_OFFSET(32), -1);
1813 }
1814}
1815
1816static int
1817do_regset_call(void (*call)(struct unw_frame_info *, void *),
1818 struct task_struct *target,
1819 const struct user_regset *regset,
1820 unsigned int pos, unsigned int count,
1821 const void *kbuf, const void __user *ubuf)
1822{
1823 struct regset_getset info = { .target = target, .regset = regset,
1824 .pos = pos, .count = count,
1825 .u.set = { .kbuf = kbuf, .ubuf = ubuf },
1826 .ret = 0 };
1827
1828 if (target == current)
1829 unw_init_running(call, &info);
1830 else {
1831 struct unw_frame_info ufi;
1832 memset(&ufi, 0, sizeof(ufi));
1833 unw_init_from_blocked_task(&ufi, target);
1834 (*call)(&ufi, &info);
1835 }
1836
1837 return info.ret;
1838}
1839
1840static int
1841gpregs_get(struct task_struct *target,
1842 const struct user_regset *regset,
1843 unsigned int pos, unsigned int count,
1844 void *kbuf, void __user *ubuf)
1845{
1846 return do_regset_call(do_gpregs_get, target, regset, pos, count,
1847 kbuf, ubuf);
1848}
1849
1850static int gpregs_set(struct task_struct *target,
1851 const struct user_regset *regset,
1852 unsigned int pos, unsigned int count,
1853 const void *kbuf, const void __user *ubuf)
1854{
1855 return do_regset_call(do_gpregs_set, target, regset, pos, count,
1856 kbuf, ubuf);
1857}
1858
1859static void do_gpregs_writeback(struct unw_frame_info *info, void *arg)
1860{
1861 do_sync_rbs(info, ia64_sync_user_rbs);
1862}
1863
1864/*
1865 * This is called to write back the register backing store.
1866 * ptrace does this before it stops, so that a tracer reading the user
1867 * memory after the thread stops will get the current register data.
1868 */
1869static int
1870gpregs_writeback(struct task_struct *target,
1871 const struct user_regset *regset,
1872 int now)
1873{
1874 if (test_and_set_tsk_thread_flag(target, TIF_RESTORE_RSE))
1875 return 0;
1876 set_notify_resume(target);
1877 return do_regset_call(do_gpregs_writeback, target, regset, 0, 0,
1878 NULL, NULL);
1879}
1880
1881static int
1882fpregs_active(struct task_struct *target, const struct user_regset *regset)
1883{
1884 return (target->thread.flags & IA64_THREAD_FPH_VALID) ? 128 : 32;
1885}
1886
1887static int fpregs_get(struct task_struct *target,
1888 const struct user_regset *regset,
1889 unsigned int pos, unsigned int count,
1890 void *kbuf, void __user *ubuf)
1891{
1892 return do_regset_call(do_fpregs_get, target, regset, pos, count,
1893 kbuf, ubuf);
1894}
1895
1896static int fpregs_set(struct task_struct *target,
1897 const struct user_regset *regset,
1898 unsigned int pos, unsigned int count,
1899 const void *kbuf, const void __user *ubuf)
1900{
1901 return do_regset_call(do_fpregs_set, target, regset, pos, count,
1902 kbuf, ubuf);
1903}
1904
1905static int
1906access_uarea(struct task_struct *child, unsigned long addr,
1907 unsigned long *data, int write_access)
1908{
1909 unsigned int pos = -1; /* an invalid value */
1910 int ret;
1911 unsigned long *ptr, regnum;
1912
1913 if ((addr & 0x7) != 0) {
1914 dprintk("ptrace: unaligned register address 0x%lx\n", addr);
1915 return -1;
1916 }
1917 if ((addr >= PT_NAT_BITS + 8 && addr < PT_F2) ||
1918 (addr >= PT_R7 + 8 && addr < PT_B1) ||
1919 (addr >= PT_AR_LC + 8 && addr < PT_CR_IPSR) ||
1920 (addr >= PT_AR_SSD + 8 && addr < PT_DBR)) {
1921 dprintk("ptrace: rejecting access to register "
1922 "address 0x%lx\n", addr);
1923 return -1;
1924 }
1925
1926 switch (addr) {
1927 case PT_F32 ... (PT_F127 + 15):
1928 pos = addr - PT_F32 + ELF_FP_OFFSET(32);
1929 break;
1930 case PT_F2 ... (PT_F5 + 15):
1931 pos = addr - PT_F2 + ELF_FP_OFFSET(2);
1932 break;
1933 case PT_F10 ... (PT_F31 + 15):
1934 pos = addr - PT_F10 + ELF_FP_OFFSET(10);
1935 break;
1936 case PT_F6 ... (PT_F9 + 15):
1937 pos = addr - PT_F6 + ELF_FP_OFFSET(6);
1938 break;
1939 }
1940
1941 if (pos != -1) {
1942 if (write_access)
1943 ret = fpregs_set(child, NULL, pos,
1944 sizeof(unsigned long), data, NULL);
1945 else
1946 ret = fpregs_get(child, NULL, pos,
1947 sizeof(unsigned long), data, NULL);
1948 if (ret != 0)
1949 return -1;
1950 return 0;
1951 }
1952
1953 switch (addr) {
1954 case PT_NAT_BITS:
1955 pos = ELF_NAT_OFFSET;
1956 break;
1957 case PT_R4 ... PT_R7:
1958 pos = addr - PT_R4 + ELF_GR_OFFSET(4);
1959 break;
1960 case PT_B1 ... PT_B5:
1961 pos = addr - PT_B1 + ELF_BR_OFFSET(1);
1962 break;
1963 case PT_AR_EC:
1964 pos = ELF_AR_EC_OFFSET;
1965 break;
1966 case PT_AR_LC:
1967 pos = ELF_AR_LC_OFFSET;
1968 break;
1969 case PT_CR_IPSR:
1970 pos = ELF_CR_IPSR_OFFSET;
1971 break;
1972 case PT_CR_IIP:
1973 pos = ELF_CR_IIP_OFFSET;
1974 break;
1975 case PT_CFM:
1976 pos = ELF_CFM_OFFSET;
1977 break;
1978 case PT_AR_UNAT:
1979 pos = ELF_AR_UNAT_OFFSET;
1980 break;
1981 case PT_AR_PFS:
1982 pos = ELF_AR_PFS_OFFSET;
1983 break;
1984 case PT_AR_RSC:
1985 pos = ELF_AR_RSC_OFFSET;
1986 break;
1987 case PT_AR_RNAT:
1988 pos = ELF_AR_RNAT_OFFSET;
1989 break;
1990 case PT_AR_BSPSTORE:
1991 pos = ELF_AR_BSPSTORE_OFFSET;
1992 break;
1993 case PT_PR:
1994 pos = ELF_PR_OFFSET;
1995 break;
1996 case PT_B6:
1997 pos = ELF_BR_OFFSET(6);
1998 break;
1999 case PT_AR_BSP:
2000 pos = ELF_AR_BSP_OFFSET;
2001 break;
2002 case PT_R1 ... PT_R3:
2003 pos = addr - PT_R1 + ELF_GR_OFFSET(1);
2004 break;
2005 case PT_R12 ... PT_R15:
2006 pos = addr - PT_R12 + ELF_GR_OFFSET(12);
2007 break;
2008 case PT_R8 ... PT_R11:
2009 pos = addr - PT_R8 + ELF_GR_OFFSET(8);
2010 break;
2011 case PT_R16 ... PT_R31:
2012 pos = addr - PT_R16 + ELF_GR_OFFSET(16);
2013 break;
2014 case PT_AR_CCV:
2015 pos = ELF_AR_CCV_OFFSET;
2016 break;
2017 case PT_AR_FPSR:
2018 pos = ELF_AR_FPSR_OFFSET;
2019 break;
2020 case PT_B0:
2021 pos = ELF_BR_OFFSET(0);
2022 break;
2023 case PT_B7:
2024 pos = ELF_BR_OFFSET(7);
2025 break;
2026 case PT_AR_CSD:
2027 pos = ELF_AR_CSD_OFFSET;
2028 break;
2029 case PT_AR_SSD:
2030 pos = ELF_AR_SSD_OFFSET;
2031 break;
2032 }
2033
2034 if (pos != -1) {
2035 if (write_access)
2036 ret = gpregs_set(child, NULL, pos,
2037 sizeof(unsigned long), data, NULL);
2038 else
2039 ret = gpregs_get(child, NULL, pos,
2040 sizeof(unsigned long), data, NULL);
2041 if (ret != 0)
2042 return -1;
2043 return 0;
2044 }
2045
2046 /* access debug registers */
2047 if (addr >= PT_IBR) {
2048 regnum = (addr - PT_IBR) >> 3;
2049 ptr = &child->thread.ibr[0];
2050 } else {
2051 regnum = (addr - PT_DBR) >> 3;
2052 ptr = &child->thread.dbr[0];
2053 }
2054
2055 if (regnum >= 8) {
2056 dprintk("ptrace: rejecting access to register "
2057 "address 0x%lx\n", addr);
2058 return -1;
2059 }
2060#ifdef CONFIG_PERFMON
2061 /*
2062 * Check if debug registers are used by perfmon. This
2063 * test must be done once we know that we can do the
2064 * operation, i.e. the arguments are all valid, but
2065 * before we start modifying the state.
2066 *
2067 * Perfmon needs to keep a count of how many processes
2068 * are trying to modify the debug registers for system
2069 * wide monitoring sessions.
2070 *
2071 * We also include read access here, because they may
2072 * cause the PMU-installed debug register state
2073 * (dbr[], ibr[]) to be reset. The two arrays are also
2074 * used by perfmon, but we do not use
2075 * IA64_THREAD_DBG_VALID. The registers are restored
2076 * by the PMU context switch code.
2077 */
2078 if (pfm_use_debug_registers(child))
2079 return -1;
2080#endif
2081
2082 if (!(child->thread.flags & IA64_THREAD_DBG_VALID)) {
2083 child->thread.flags |= IA64_THREAD_DBG_VALID;
2084 memset(child->thread.dbr, 0,
2085 sizeof(child->thread.dbr));
2086 memset(child->thread.ibr, 0,
2087 sizeof(child->thread.ibr));
2088 }
2089
2090 ptr += regnum;
2091
2092 if ((regnum & 1) && write_access) {
2093 /* don't let the user set kernel-level breakpoints: */
2094 *ptr = *data & ~(7UL << 56);
2095 return 0;
2096 }
2097 if (write_access)
2098 *ptr = *data;
2099 else
2100 *data = *ptr;
2101 return 0;
2102}
2103
2104static const struct user_regset native_regsets[] = {
2105 {
2106 .core_note_type = NT_PRSTATUS,
2107 .n = ELF_NGREG,
2108 .size = sizeof(elf_greg_t), .align = sizeof(elf_greg_t),
2109 .get = gpregs_get, .set = gpregs_set,
2110 .writeback = gpregs_writeback
2111 },
2112 {
2113 .core_note_type = NT_PRFPREG,
2114 .n = ELF_NFPREG,
2115 .size = sizeof(elf_fpreg_t), .align = sizeof(elf_fpreg_t),
2116 .get = fpregs_get, .set = fpregs_set, .active = fpregs_active
2117 },
2118};
2119
2120static const struct user_regset_view user_ia64_view = {
2121 .name = "ia64",
2122 .e_machine = EM_IA_64,
2123 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
2124};
2125
2126const struct user_regset_view *task_user_regset_view(struct task_struct *tsk)
2127{
2128 return &user_ia64_view;
2129}
2130
2131struct syscall_get_set_args {
2132 unsigned int i;
2133 unsigned int n;
2134 unsigned long *args;
2135 struct pt_regs *regs;
2136 int rw;
2137};
2138
2139static void syscall_get_set_args_cb(struct unw_frame_info *info, void *data)
2140{
2141 struct syscall_get_set_args *args = data;
2142 struct pt_regs *pt = args->regs;
2143 unsigned long *krbs, cfm, ndirty;
2144 int i, count;
2145
2146 if (unw_unwind_to_user(info) < 0)
2147 return;
2148
2149 cfm = pt->cr_ifs;
2150 krbs = (unsigned long *)info->task + IA64_RBS_OFFSET/8;
2151 ndirty = ia64_rse_num_regs(krbs, krbs + (pt->loadrs >> 19));
2152
2153 count = 0;
2154 if (in_syscall(pt))
2155 count = min_t(int, args->n, cfm & 0x7f);
2156
2157 for (i = 0; i < count; i++) {
2158 if (args->rw)
2159 *ia64_rse_skip_regs(krbs, ndirty + i + args->i) =
2160 args->args[i];
2161 else
2162 args->args[i] = *ia64_rse_skip_regs(krbs,
2163 ndirty + i + args->i);
2164 }
2165
2166 if (!args->rw) {
2167 while (i < args->n) {
2168 args->args[i] = 0;
2169 i++;
2170 }
2171 }
2172}
2173
2174void ia64_syscall_get_set_arguments(struct task_struct *task,
2175 struct pt_regs *regs, unsigned int i, unsigned int n,
2176 unsigned long *args, int rw)
2177{
2178 struct syscall_get_set_args data = {
2179 .i = i,
2180 .n = n,
2181 .args = args,
2182 .regs = regs,
2183 .rw = rw,
2184 };
2185
2186 if (task == current)
2187 unw_init_running(syscall_get_set_args_cb, &data);
2188 else {
2189 struct unw_frame_info ufi;
2190 memset(&ufi, 0, sizeof(ufi));
2191 unw_init_from_blocked_task(&ufi, task);
2192 syscall_get_set_args_cb(&ufi, &data);
2193 }
2194}